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Preface

As an extension to Itd’s stochastic differential equations (SDEs) describing
linear parabolic equations, distribution dependent SDEs (DDSDEs) charac-
terize nonlinear Fokker-Planck equations. This type SDEs are named after
McKean-Vlasov due to the pioneering work of H. P. McKean (1966) where
an expectation dependent SDE is proposed to study nonlinear PDEs for
Maxwellian gas. Moreover, according to the propagation of chaos, a DDS-
DE is characterized as the limit of the equation for a single particle in the
corresponding mean field particle systems, when the number of particles
goes to infinity. So, DDSDEs are also called mean-field SDEs. To restrict a
DDSDE in a domain, we consider the reflection boundary by following the
line of A. V. Skorohod (1961), or kill the solution at the hitting time of the
boundary. This book aims to provide a self-contained account on singular
SDEs and DDSDEs in R¢, and the reflected or killed equations in a domain
which might be unbounded and non-convex.

In Chapter 1, we study singular SDEs with coefficients satisfying local
integrability conditions, which allow the drift to be unbounded in bounded
domains. The main idea is to kill the singular drift using a strong enough
noise, for which Krylov’s and Khasminskii’s estimates as well as Girsanov’s
and Zvonkin’s transforms are used. The study goes back to A. J. Vereten-
nikov(1979) who proved the well-posedness of non-degenerate SDEs with
bounded drifts, and by now has led to a relatively complete theory on
singular SDEs. Besides the well-posedness, we also characterize the regu-
larity (Harnack inequalities, gradient estimates, Bismut formulas) and the
exponential ergodicity.

In Chapter 2, we investigate singular reflected SDEs in a domain. A
key point is to construct Zvonkin’s transform in the domain, for which we
extend a PDE from the domain to the whole space such that estimates
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presented in Chapter 1 apply to the reflecting setting.

Chapter 3 presents criteria on the well-posedness of DDSDEs in several
different situations including the monotone case, the time-spatially singular
case with distribution independent noise, and the time-spatial singular case
with distribution dependent noise.

Chapter 4 devotes to derivative estimates on the law of singular DDS-
DEs with respect to the initial distribution. We first establish the log-
Harnack and power Harnack inequalities, then introduce the intrinsic and
L derivatives for functions of probability measures, and finally present Bis-
mut type formulas for these derivatives of the DDSDEs in the initial dis-
tribution.

Chapter 5 focuses on long time behaviors of DDSDEs. The unifor-
m ergodicity is proved for a class of singular equations, the exponential
convergence in entropy and Wasserstein distance is derived for the dissipa-
tive case, the exponential ergodicity in weighted Wasserstein distances is
presented for non-dissipative equations, and the Donsker-Varadhan large
deviation principle is established by comparing DDSDEs with the corre-
sponding stationary SDEs.

In Chapters 6 and 7 we study reflected and killed DDSDEs in a domain
which may be unbounded and non-convex, such that results presented in
Chapters 3-5 are extended to the domain case.

For readers’ references, some remarks and further results are presented
in the end of most chapters. Results and techniques introduced in the book
are mainly organized from recent papers worked out by the authors and
collaborators. We have to indicate that due to the limitation of space and
our own interests, many related results and references are not included.
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Chapter 1

Singular Stochastic Differential
Equations

Let A be the Laplace operator on the d-dimensional Euclidean space R?. Tt
was observed by A. Einstein (1905) that the distribution density function
p(x,-) of the d-dimensional Brownian motion starting at point z is the
fundamental solution of the heat equation

1
8{114/ = §Aut, t Z 0.

To characterize the Fokker-Planck equation where A is replaced by a second
order differential operator, K. 1t6 (1944) developed his stochastic calculus
and then established the chain rule (It6’s formula) of stochastic differentials
in 1951, which settled the foundation of stochastic differential equations
(SDEs). There are plentiful references concerning SDEs and applications,
which include, among many others, the books [Tkeda and Watanabe (1977)],
[Oksendal (2014)] and [Situ (2005)].

In this chapter, we summarize some recent progress made to singular
SDEs with non-degenerate noise, where the drift only satisfies an integra-
bility condition and thus can be unbounded on bounded domains. We first
introduce the link between SDEs and Fokker-Planck equations, then study
properties of singular SDEs: well-posedness, Harnack inequalities, Bismut
formula, and the exponential ergodicity.

1.1 TIt6’s SDE and linear Fokker-Planck equation

Let W; be the m-dimensional Brownian motion on a complete filtration
probability space (Q,{F;}i>0,P), and let R¥®™ be the space of d x m-
matrices. Consider the following It6’s SDE on R¢ for a fixed time T > 0:

dXt = bt(Xt)dt + O't(Xt)th7 t e [O,T], (1].].)
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where
b:[0,T] xR* - R4, o:[0,T] x RY — RI®™
are measurable.

To define solutions of (1.1.1), let | - | and (-,-) be the norm and inner
product in R%, let || - || and || - ||zs be the operator norm and the Hilbert-
Schmidt norm of matrices, and denote by L the distribution of a random
variable . When different probabilities are concerned, we denote L¢ = Le¢|p
to emphasize the distribution under the probability measure P.

Without loss of generality, we assume that (€, Fp,P) is atomless, such
that for any probability measure g on a Polish space E, there exists an
Fo-measurable E-valued random variable ¢ such that £ = p. In case
(Q, Fo,P) has an atom, i.e. there exists A € Fy with P(A) > 0 such that
Fo > B C Aimplies B=0 or B= A, we may use (2 X R, F; x B,P X pp)
to replace (2, F;,P), where (R, B, 1g) is an atomless complete probability
space such that (@ x R, F; X B,P X ) is atomless and Wy(w, ) := W (w)
for (w,x) € 2 x R is m-dimensional Brownian motion.

Definition 1.1.1.

(1) A stochastic process (X;)¢epo,r) on R? is called a (strong) solution of
(1.1.1), if it is continuous (i.e. P-a.s. X; is continuous in ¢ € [0,7]),
adapted (i.e. X; is F;-measurable for ¢ € [0,7]), and P-a.s.

/|b |ds+/||as 2)[Pds < oo,

X = Xo+/0b( )ds+/0 os(Xs)dW,, te€[0,T].

(2) (1.1.1) is said to have pathwise (strong) uniqueness, if X; = Y;(t €
[0, T) holds for any two solutions (X¢)¢cjo,7) and (Y3):e[o,r) of the SDE
with XO = YQ.

(3) We call (1.1.1) (strongly) well-posed, if for any initial value it has a
unique solution.

(4) A couple (X;, W)iepo,r is called a weak solution of (1.1.1), if there
exists a complete filtration probability space such that W; is an m-
dimensional Brownian motion and X; solves (1.1.1).

(5) (1.1.1) is said to have weak uniqueness (joint weak uniqueness), if
for any two weak solutions (X}, W});—1.2 under probabilities (P*);—; o,
ﬁXélPl = ng“pz implies ,CX}“pl = ,CX?l]pZ (L:(X}7W.1)|P1 = 'C(X?,W?)\IP?)'
The SDE is called weakly well-posed, if for any initial distribution it
has a unique weak solution.
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By Yamada-Watanabe principle [Yamada and Watanabe (1971)] (see
Lemma 1.3.2 below for a general version), the weak existence together with
the pathwise uniqueness implies the strong and weak well-posedness. In
particular, the strong well-posedness implies the weak one.

Let P be the space of all probability measures on R? equipped with the
weak topology. Let (X¢)icjo,r] be a (weak) solution of (1.1.1). By Ité’s
formula,

df(Xy) = Lof (X)dt + (VF(Xy), 00(X)dWy), t€[0,T], f € C*(RY)
holds for
Ly := %tr(atofvz) +V,, t€][0,T],

where V,, := b; - V = (b;, V) is the directional derivative along b;, V and
V2 are the gradient and Hessian operators on R? respectively, and for any
k € Z, (the set of nonnegative integers), C*(RY) denotes the space of real
functions on R with continuous derivatives up to order k. When k& = 0 we
simply denote C(R?) = C°(R%). Then for any solution X; to (1.1.1) with
e = Lx, satisfying

¢
/ ds/ (|bs| + llosl|*)dps < 00, >0, (1.1.2)
0 B(0,r)
where B(0,7) := {z € R? : |z| < 7}, p solves the linear Fokker-Planck
equation
at,ut = L:/,Lt, t e [O,T] (113)

in the sense that u € C([0, 00); P) satisfying (1.1.2) and

pf) = [ f = o)+ [ pe(Lf)ds, te 0.7, 1 € CHRO.

where for any k € Zy U {oo}, CE(R?) is the space of functions in C¥(R?)
with compact supports.

On the other hand, by the superposition principle presented in [Trevisan
(2016)], a solution of (1.1.3) is the time-marginal of the distribution of a
weak solution to (1.1.1). So, we have the following correspondence between
SDEs and linear Fokker-Planck equations.

Theorem 1.1.1 ([Trevisan (2016)]). For any weak solution (X:, W;) of
(1.1.1) with py = Lx, satisfying (1.1.2), s solves (1.1.3). On the other
hand, if p is a solution of (1.1.3), then (1.1.1) has a weak solution such that
My = [:Xt,t S [O,T}
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1.2 Krylov’s and Khasminskii’s estimates

As a crucial tool in the study of singular SDEs, Krylov’s estimate [Krylov
(1980)] bounds the conditional expectation for time-integrals of (unbound-
ed) singular functions of a solution to the SDEs. To understand this type
estimate, let us simply consider the d-dimensional Brownian motion W;
(i.e. m = d). For any p,q > 1,0 < s < t, and a measurable function f on
[5,t] x R? with

t q
ez = ([ Dlgur) " < o0

where || f;||zr := ( [pa |fr\p(x)dx)%, we have

a |[Ws—z|2
2

(E(, (W,)|F)| = ’(271'(1" —) 7t [ e

_d
< (27‘(’(7‘ - S)) p ||f7‘||LPa Te (Svt}
Consequently,

‘]E(/St fr(W,)dr ]-"s>

a1
___da q
< ([ et -9y mmar) il

S

s/k%v—@r%wwmw

d 2 __dg _
When >t o< 2, we have Sp(g—T) < 1 so that

g—1

t d a
Cpg = Sup (/ (2m(r — s))_%(qql)dr) < 0o0.
S

0<s<t<T

Therefore,

E(Lﬁﬁ@%ﬁﬁ

Krylov’s estimate extends this inequality to solutions of singular SDEs,
which also implies an exponential estimate which is called Khasminskii’s
estimate. In the spirit of [Xia et al (2020)], we will establish these estimates
using the local norm IN/{]’ replacing L}, see (1.2.7) and (1.2.17) below for
details.

For any p > 1, let LP(R?) be the class of measurable functions f on R?
such that || f|| z»gay < co. For any € >0 and p > 1, let

1 ez gy = [(1=2)% fll Lo may < 00, f € H*P(RY) := (1-A)"2LP(R),

-7:5)‘ <cpgllfllzesey, 0<s<t<T.
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where (1 — A)~% is defined by spectral representations of A. In general,
letting
o —y|?

etA f(z) == /]Rd (47rt)_%e_ - f(y)dy,

for any A > 0 we have

—£ . 1 > £—-1_—t tA
()\—A) 2 :‘fg)otg_le)\tdt‘/o t2 e e dt7

A=A :=(A—A"A—A)S™" neNn> g

(1.2.1)

For any z € R% and r > 0, let B(z,7) := {z € R?: |z — 2| < r}. For any
p,q > 1 and to < 1, let LP(to,t1) denote the class of measurable functions
f on [tg, 1] x R? such that

1

t1 2
Iz = 50, ([ Moo il aydt) <o

Let g € C§°(R?) satisfy g|p(o,1) = 1, where C§°(R?) is the class of C>
functions on R¢ with compact support. For any € > 0, let H, o (to, t1) be
the space of f € ifl’(to,tl) with

ty :
a0y = 500, ([ oo+l dt) " < .

to
We remark that the space H, +P(to,t1) does not depend on the choice of g.
When tg = 0, we simply denote
LP(t1) == LP(0,t1), HEP(t1) := HP(0,t1), t1 > 0.

Finally, let L? (resp. H?) denote the set of functions in L?(T) (resp.
HeP(T)) which are independent of the time parameter ¢.

A vector or matrix valued function is said in one of the above introduced
spaces, if so are its components.

We will take (p, ¢) from the class

d 2
K= {(nq) :p,q € (1,00), 5+5<1},

and use the following assumptions on the coefficients b and o, where || - || oo

denotes the uniform norm for real (or vector/matrix) valued functions. Let

V? be the i-th order gradient in the spatial variable z € R?, and for a

Lipschitz continuous function f on R%,

vaHoo = sup |f(.1‘) — f(y)|
T#£yY ‘x - y|

is its Lipschitz constant.
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(A1) Let T > 0. There exist a constant K > 0 and (po,qo) € K such that
o and b satisfy the following conditions on [0,T] x R®.
(1) a := oo™ is invertible with ||a| + [|a™ oo < K, where o* is the
transposition of o, and

lim sup llat(z) — a(y)|| = 0.
e70 z—y|<e,te(0,T]

(2) b=0b® +bM, b(M) is locally bounded and
16Ol 253y VIVH o < . (12

To establish Krylov’s estimate, we first introduce two lemmas, where
the first is taken from [Chapter III, Theorem 2.4] in [Krylov (1985)], and
the second follows from Theorem 2.1 in [Zhang and Yuan (2021)] which
extends Theorem 3.2 in [Xia et al (2020)] for b(!) = 0, see also [Zhang
(2011)] and references therein.

Lemma 1.2.1. For any 0 < f € C*°([0,00) x R?) and A > 0, there exists
0 <u € C>®([0,00) x RY) satisfying

BOuy + tr{atV2ut} — )\(5 + trat)ut + (ﬁdetat)ﬁft <0, 8>0,t>0,
Vel < Vg, wp < Kg\~ 700 | | v 0,00y xR,

for any measurable symmetric nonnegative definite matrix valued function
a, and some constant Kq > 0 depending only on d.

Lemma 1.2.2. Assume (A1) and let p,q > 1.
(1) Forany0 <ty <ty <T and f € Eg(to,tl), the PDE
(0 + Le)u = M + fr, t € [to,t1],us, =0, (1.2.3)
has a unique solution in f{g’p(to,tl) with ||wu>‘||ig(
wi(z) = w(w) = (1 +]z))~"
(2) If (2p,2q) € K, then for any 0 € [0,2),p" € [p, 0] and ¢’ € [g, 0] with
d 2 d 2
Shlc2-0+ =42,
P q p q
there exist constants \g,c > 0 depending only on T,d,p,q,p',q,0, K
and the continuity modulus of a, such that for any 0 <ty <t; <T and
f S Lg(to,tl),

lio—p4+4d 41 _d_2 A
)\2( P T p q)\|u||ﬁ9;p/(to,tl)+||(8t+vb<1))u ”ifz’(to,tl)
q

toty) < 09 where

+ ||’LL)\||H3,]J(tO7t1) S C||f||ig(t07t1)’ A 2 Ao.
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According to Theorem 2.1 in [Zhang and Yuan (2021)], (1.2.3) has a
unique solution in Wﬁ’f’“’(to,tl), which consists of f € HZP(to,t1) such
that for w(z) := (14 |z|)~" (note that w(z) therein should be (1 + |z|?)~2

according to Lemma 2.3 in [Yang and Zhang (2023)]),
[wfl+ WV I+ [0V | + wd f| € Li(to, 1),

Since w < 1 and f € ﬁg’p(to,tl), the condition |wf| + |wV f| + [wV2f| €
ié’(to,tl) can be dropped. When (2p,2¢) € K, by Lemma 1.2.2(2) we have
|(0: + Vb“))u)\nig’(to,tl) < 00, since Vu? is bounded and (A!'!) implies
|b§1)(:v)| < k(1+|z|) for some constant k > 0, we derive |wo, f| € f/f]’(tmtl),

so that in this case we have Wi’;”w (to,t1) = f{g’p(to, t1).

We also need the following mollifying approximations of functions. Let
0< S € Cg°(RH) with [pu41 S(s,z)dsdz = 1. For a bounded measurable
function g on [tg,t1] x R?, its mollifying approximations {S,(g)}n>1 C
Ce(RT1) are defined by

{Sn(9)}i(x) :=nH! / Ii(t+s)violat, (T +y)S(ns, ny)dsdy.  (1.2.4)

Rd+1

Moreover, for a topological space E, let C(E) (respectively Cy(E)) be
the space of all continuous (respectively bounded continuous) functions on
E.

Theorem 1.2.3 (Krylov’s estimate). Assume (A1), Let (X¢):eq0,1) be
a continuous adapted process on R? satisfying

t t t
Xt:XO—i—/ bS(Xs)ds+/ aS(XS)dWS+/ B,dA,, te0,T] (1.2.5)
0 0 0

for some continuous adapted increasing process Ay and a bounded adapted
process By.

(1) For any (p,q) € K and any € € (0,1), there exists a constant ¢ > 0
depending only on T,d,p,q, K and the continuity modulus of a, such
that for any X, satisfying (1.2.5),

ty
E s(Xs)|ds| Fr,
(/to | fs(Xs)|ds t) (1.2.6)
< {c+eE(A, — Atoffto)}||f|\ig(to,t1)

holds fO’f‘ 0<ty<t1 <T, and f € f/g(t(],tl).
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(2) Let dA; = Bydt. For any p,q > 1 with (2p,2q) € K and any € € (0,1),
there exists a constant ¢ > 0 such that for any X; satisfying (1.2.5),

t1

B [ 1z,

to
t1 %

< {c—l—e{E(/ |Bs\2d5 ft())} }”fig(to,tl)
to

holds for all 0 < to < t1 < T and f € L2(to,t1).
(3) For any u € C([0,T] x RY) with

[ulloe + 1 Vulloo + IVl £y + 106 + Vi Jull g5y < 00,

(1.2.7)

{ut(Xt) beepo,y 48 a semimartingale satisfying

dut(Xt) = (875 + Lt)ut(Xt)dt + <Vut(Xt), O't(Xt)th + dAt> (128)

Proof. By Jensen’s inequality, for assertions (1) and (2) we only need to
consider f > 0.
(a) By (A1) and conditions on 8, and Ay, (1.2.5) implies that
t
[t07T} S5t |Xt|+ |bS(X5)|dS+At—AtO
to
is a continuous adapted process. For any k& > 0, let
t
Tk ‘= 1nf{t € [tQ,T] : |Xt‘ + |bs(Xs)|d8+At — Ato > k}

to
Then 7, — T as k — co. We claim that for some constant ¢(k) > 0

t1 ATk
B( [ 20007 ) < el gz

to d

fe L™ ([to, ta] x RY).

(1.2.9)

Let v be the (random) finite measure on [0, 00) x R¢ given by

vi(A) = E(/tl/w 14(s, X,)ds

to

]-}0), A€ B(]0,00) x RY),

where B(FE) is the Borel o-algebra of a measurable space E. Since
C5°([0, 00) x R?) is dense in L4+ (v +dsdz), it suffices to prove (1.2.9) for
0 < feCg([0,00) x RY).

Let w > 0 be given in Lemma 1.2.1 for a; := %Jtaz‘,ﬁ =A=1. By Itd’s
formula, we find constants ¢y, co > 0 such that

dut(Xt) = (8t + Lt)ut(Xt)dt + <ﬁt, Vut(Xt)>dAt + th

S {(Vbt’u/t)(Xt) + Cgut(Xt)}dt + Vﬁtut(Xt)dAt - C]ft(Xt)dt + th
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for some martingale M;. Combining this with the definition of 7, the
boundedness of f;, and using estimates on |u| and |Vu| in Lemma 1.2.1,
we derive (1.2.9) for some constant c(k) > 0.

(b) Proofs of (1.2.6) and (1.2.7). Let {xy,},n>1 C R? such that

1
1122 to,00) < B2y fllzzo,00) + o > 1.
Let
i1
v(A) = E(/ 1a(s, X5)ds
to
Since C5°([0,00) x RY) is dense in LPY9(v + Lty 4,]x B(wn,1) (S, ¥)dsda) for
each n > 1, it suffices to prove for 0 < f € C5°(]0, 00) x R?).
Let u solve (1.2.3). By Lemma 1.2.2 with # = 1 and p’, ¢’ = oo, we find
constants ¢, g9 > 0 such that

X (lulloe + 1Vulloo) < ellfll 252,80 (1.2.10)

Since || fllee < o0, we have |VZu| + [(9; + Vym)u| € L™ (tg,t1) for any
m > 1. To apply Itd’s formula, we consider the mollifying approximation

uM := S, (u) of u, see (1.2.4). Then (1.2.10) and |V2u| +|(0; + Vo) )u| €
LZ+}(to,t1) imply

}}O>, A € B(]0,00) x RY).

A% ([ oo + Ve o) < ll |22 40,009 (1.2.11)
Jim {Jlu =" oo + [V (= ") o}
(1.2.12)
+ nh—{& 10 + Lt — Vo ) (u — u* )||Lgﬁ(to,t1) =0.

Moreover, by Ité’s formula and (1.2.3), we obtain
dup™(X;) = (9, + Lo)upy ™ (Xo)dt + { V0™ (X) }dA, + dM™
= {fi + 20 + (9 + Lo = Vo ) (™" = 0d) + Voo (1" — ud) }(Xo)dt
+{Vp,u)™ (X)) YA, + AM™, > 1,1 € [to, 1],

where dM™ = (Vu}"(X,), 04(X,)dW,) is a martingale. Let h € C3°(R%)
with h|po,1) = 1 and 0 < h < 1, and take hp,(z) := h(m~'z) for m > 1.
By the above formula for du;""(X,) and applying (A1), we find a constant
c1 > 0 such that up to a martingale,

(™) (Xe) = (B o) (Xp)dt
—{ [ M} + (0 + Ly — ngo))(u;\’" —u}) + Vo (up™ — ud)[] }(Xy)dt
— erm ™ {(Ju "+ 7] [V ) (X0) + [V " (X)L x5 m) St
- cl{|Vu (X)) + exm™Hup "1(Xy) JdA,.
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Combining this with (1.2.9), (1.2.11), and using the definition of 7, we find
constants cg, ¢(k), c¢(k, m) > 0 such that for any n,m,k > 1,

5( [ T o £)(X s %)

to

<1+ A+ ATOE(Ay, — Ay | Fy) + C(k)m71}||f||ig(to,t1)

1 ATE
ream( [ (L mds + a4 | ) I
0
eI =0+ el )@+ L = Ty =0 g

By (1.2.12), letting first n — oo, then m — oo and finally & — oo, and
taking large enough A such that coA™¢° < g, we derive (1.2.6).
In the situation of (2), we find a constant ¢z > 0 such that

t1
E(/ \Vgsu;""(Xs”dAs ft0>
}}0>

to
t1
§C3E(/ |Bs| - |Vuy™(X,)|ds
to
t 3 ty 3
§C3{E</ |B,|?ds }‘to)} {E(/ V)" (X,)[2ds }‘to)} :
t() 7:0

On the other hand, by Lemma 1.2.2 with 6 = 0 and p’, ¢’ = oo, as well as
6 =1and (p/,q") = (2p,2q), we find constants ¢,e9 > 0 such that

A {lluMloo + IV z20 10,001 < €N N 22 00.00) - (1.2.13)

Combining these with (1.2.6) and taking large enough A, we obtain

}'t0> SE{E</,5 |Bs|?ds fto)] 11122 (b, 1)
0

Substituting into the above lower bound estimate on d(hn,u;™)(X;) and
applying (1.2.13), as in above we find a constant ¢ > 0 such that

E( / T o ) (X )ds ]-"t0>

to
1
2
Ft“ﬂ }Hf”E‘é’(to,tl) + &kmin

t1
< {c—|—€[]E</ | Bs|?ds
to

holds for random variables {&x ) satisfying

ty1
E( [ sncxias,

to

lim lim lim & .y = 0.
k—oo m—oon—oo ~

Then (1.2.7) holds.
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(¢) Proof of (3). Let u satisfy
lulloo + 1 Vaulloo + V2l 2y + 102 + Vi Jull g ) < 00

Then the mollifying approximations {u(™},>; satisfy the same estimate
and

Jim {flu =0 oo + 19 (0 = ™)}
. (1.2.14)
+ Tim [|(8; + Le)(u — u) gp ) = 0.

By Ito’s formula we have
t t
u (X,) = uo(Xo) + / (05 + Ly)ul (X,)ds + / (B, Vul™ (X,))d A,
0 0
t
+/ (Vul™ (X)), 06(X)dW,), te[0,T],n> 1.
0

By (1.2.6) and (1.2.14), we may let n — oo to derive (1.2.8). O

Since Krylov’s estimate is uniform in 0 < ty < t; < T, we have the
following exponential estimate (1.2.17) due to [Khasminskii (1959)].

Theorem 1.2.4 (Khasminskii’s estimate). Let K be a non-empty open
subset of {(p,q) : p,q > 1}. Let X; be a continuous adapted process on R?
satisfying the Krylov estimate for some map ¢ : K — (0,00) :

i ( / (X lds

}‘to) < cp DN 0,00

(1.2.15)
0<tg <t <T,(p.q) €K, f€ELP(to,t1).
Then for any (p,q) € K and j € N (the set of natural numbers),
t1 J ) )
< T
B[ [ 100 |F) <0 Oy g
0<to <t <T,(p.q) €K, f€E LP(to, t1),
and for any (p,q) € K, there exist constants ¢’,k > 1 such that
ot o +c k ~
B ek -l 7 ) < o Wzgcons | fe ot tn)  (1.217)

holds for all 0 <tqg <t <T.
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Proof. We first prove (1.2.16) by induction. By (1.2.15), (1.2.16) holds
for j = 1. Assume that it holds for m = k for some k € N, then

ty k+1
s(| [ o] |7,
to
tl tl k
= e ve{ [l ose(| [ ineca] |£,)]7)
to S1
K+ DL [ 171 o (K|}
t
< R+ DA,
Next, since K is open, there exists a map
k:K— (1,00], kpg<aq, (pkpgq) €K,

LY (to,t1)"
such that (1.2.15) with ¢’ := k, 4 replacing ¢ yields

t1 a—q’
B( [ 1005\ ) < ety 0 < alt = 10T Wl
0

for some constant ¢; = ¢1(p,q) > 0. Let

mf{N eN: e (T/N)'w ||f||Lp o) < 2—1},

t1 —t
5i::to+w, ng’gn,
n
Di7j5:{515-~- i) 10 <51 <82 <. <Sj§5i+1},j21.
We find constants c2 = ca2(p,¢) > 0 and k :=
nécﬁcﬂlfl\’i;;(tmy (1.2.18)
Oit1 1
E(/ fs(Xs)ds .7-}) < > 0<i<n-1 (1.2.19)
d;

By (1.2.19), forany 0 <i<n—1and j > 1, we have

1 dit1
—=E / fs Xs dS) :| = |:/ fsJ sJ dS
J! K 8 (%) D:LJJI_[l 7
dit1 —
:IE/ E(/ fs, (X5, )ds; | Fs, 1) ds
j—1
< 2_1E[/ o H fsj/(ij/)de’
D:LYJ_l j/:1

- ([ )

fﬁ

d

)

féi:|7 7> 1.
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By induction we obtain
1 Oit1 J
|E{</ fs(Xs)ds)

fal} <27, j>1,
so that

f&} <Y 29 =2 0<i<n-1.
=0

Combining with (1.2.18) we obtain

B[ 1100 7, | ol K0 L, 1050

]-"to]

= E[efs ™" o (Xdog (ofil, S0

EIIEN

5;_
< 2E[efto FFo(Xe)ds Fto], 1<i<n.

By induction, ¢t; = §,, and the definition of n, we derive

E |:eftt01 fs(Xs)ds

k
CQJFCZHinE(to,H) .

Fio| <27 <2
Taking ¢’ = colog 2, we obtain

t ’ / Ig
]E|:eft01 fs(Xs)ds "Ft[)i| < ec +c ||fHL1;(t0,,/1), 0<ty<t, <T,

and hence finish the proof. ([l

1.3 Well-posedness

We first state the main result on the well-posedness of singular SDEs;
then introduce some lemmas including a general version of the Yamada-
Watanabe principle, the stochastic Gronwall’s inequality, estimates on the
maximal functionals, the BDG (Burkholder-Davis-Gundy) inequality and
the Girsanov theorem; and finally prove the main result.

1.3.1 The main result

When (1.1.1) is well-posed, let X7 be the solution starting from z. We
consider the associated semigroup P; given by

Pif(z) ;= E[f(X®)], t€[0,T),f € By(RY),z € RY, (1.3.1)

where By(R?) is the set of all bounded measurable functions on R%. We
call P, strong Feller if P,B,(R?) C Cy(R?).
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Let
® = {¢' [0,00) — [1,00) is increasing /Oo & < oo}
. . 9 bl 5 ) S + ¢(S) .

(AY2) o and b= b0 + b satisfy the following conditions on [0,T] x R
(1) o satisfies (A*1)(1), and there exist {(pi, ;) }o<i<i C K with p; > 2,
and 0 < f; € LF (T),1 <i <1, such that

l
b e Lro(T), Vol <> fi.
i=1

(2) b1 is locally bounded, and there exist constants K,e > 0, increasing

¢ € C1([0,00);[1,00)) with floo S_ﬁ% =00, and V € C*(R%;[1,00))

with lim ||, V(2) = 00, such that

OO (@), VV (@) + bV ()] S {IVVI+[V?V]} < Ko(V (),

sup {|VV|+|V2V||} < KV(z), zeR%te0,T]
B(z,)

(A13) (AY2) holds with (AY2)(2) strengthened as (1.2.2).

When |b§1)(x)| < 1 + |z|log(1l + |z|)} for some constant ¢ > 0, then
(A12)(2) holds for V(x) := 1 + |z|%,¢(r) := 1+ rlog(1 + r) and some
constant K > 0. In particular, (1.2.2) is stronger than (A!2)(2).

For a signed measure @, let |¢| be its total variation, and define the

variation norm as

lellvar = |W|(Rd)~

In general, for a positive measurable function V on R, let

lelly = leV)] = [ Vgl
R4

Theorem 1.3.1.
(1) Assume (A'1). Then (1.1.1) is weakly well-posed, and for any k €

R there exists a constant c(k) > 0 such that the (weak) solution X7
starting at x satisfies

E| sup (14 |XZ)*| <c(k)(d+ |z))*, zeR™L (1.3.2)
te[0,T]
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(2) Assume (AY2). Then (1.1.1) is well-posed and

lim sup E| sup |[X7 - X/|IA1] =0, k>1. (1.3.3)
40 5 yeB(0.k),Jo—y|<e  “te[0,T]

Moreover, for any t € (0,T],

lim || P8y — Py'dyllvar =0, t€(0,T],2 € R, (1.3.4)
Yy x
and Py has a transition density p:(x,y) satisfying
inf  pi(z,y) >0, te(0,T],r € (0,00). (1.3.5)
lz|V]y|<r

If ¢(r) = r, then for any k > 1 there exists a constant c(k) > 0 such
that

E[ sup V(Xf)k] < c(k)V(z)*, zeRe (1.3.6)
t€[0,T]

(3) Assume (AY3). Then (1.1.1) is well-posed, and for any k € R there
exists a constant c(k) > 0 such that

E[ sup |X7 - X}| <c(l)le —yl", @ #yeRre (1.3.7)
te[0,T)
Consequently, for any p > 1,
P, - P,
|VPtf|(£L') = limsup | tf(x) tf(y)|
Yy lz =yl
feCtRY, 2z e R te[0,T].

<elp/(p—1)"7 (PIVP(2))7,

(1.3.8)

(4) Assume (AY3). Then for P-a.e. w € Q and all t € [0,T], x — X¥ is a
homeomorphism on R?.

Assertions in this result are taken from [Ren (2023)] and [Wang (2023c)],
and will be proved by using Zvonkin’s transform [Zvonkin (1974)] and the
above introduced Krylov’s and Khasminskii’s estimates. The main idea
of the proof goes back to [Veretennikov (1981)] where the well-posedness
is proved for (1.1.1) with d = m,o = I; (the d x d identity matrix) and
bounded b, which is then improved in [Krylov and Réckner (2005)] for
o = Iy and [b] € LE(T) := L9([0,T] — LP(R%);dt) for some (p,q) € K,
in [Zhang (2011)] with |Veo| € LL(T) for some (p,q) € K, and in [Xia
et al (2020)] under some local integrability conditions. In recent years, this
method has been applied to various different models. For readers’ reference
we summarize below some related studies.
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Remark 1.3.1.

(1)

1.3.

Consider the critical case that p,q € [2,00) with % + % = 1. When
o = 14, the existence and uniqueness of (1.1.1) for a.e. starting points
have been proved in [Beck et al (2019)] for [b] € LZ(T); the weak
existence is proved in [Kinzebulatov and Semenov (2020)], and the well-
posedness is proved in [Nam (2020)] for |b] in the Lorentz space L; | (T),
ie.

oo T ,11
/0 (/O 1{I|bt|Lp(Rd)>T}dt) dr < oo.

Moreover, the weak well-posedness has been proved in [Xia et al (2020)]
for the case that o satisfies (A*1)(1) and |b| € LE"™(T) in the sense
that [b] € LI (T) and

timsup S ) ~ ol o) =0,

N0 ¢el0,1]
where S,,(|b]) is the mollifying approximation of ||, see (1.2.4).
The well-posedness is proved in [Yang and Zhang (2020b)] for o = I
and |b|? belonging to the Kato class K4, for some a € (0,2), see
Subsection 1.7.3 for details. Moreover, in the early paper [Yan (1988)]
the weak existence is proved for (o¢,b:) = (0,b) independent of ¢, oo™
is bounded, uniformly invertible and Hoérlder continuous, and b satisfies
sup / {1+ 1gg=ny log |z —y[~" +1azsy |z —yI* *}Hb(y)*dy < oo.
z€R? J B(x,3)
Concerning singular degenerate SDEs, the stochastic Hamiltonian sys-
tems have been investigated in [Chaudru de Raynal (2017)], [Huang
and Lv (2020)], [Wang and Zhang (2016)], [Zhang (2018)], the sin-
gular SDEs on Heisenberg groups are studied in [Huang and Wang
(2018)], and the Gruchin type singular SDEs are considered in [Wang
and Zhang (2018)]. See Subsections 1.7.1 and 1.7.2 for concrete results.
Singular SDEs with jumps are studied in [Chen et al (2021)] and [X-
ie and Zhang (2020)], the singular semilinear SPDEs are investigated
in [Da Prato et al (2013)], [Da Prato et al (2015)] and [Wang (2016)],
and the singular functional (i.e. path dependent) SPDEs are considered
in [Huang and Wang (2017)] and [Lv and Huang (2021)].

2 Some lemmas

A. Yamada-Watanabe principle. This principle goes back to [Yamada
and Watanabe (1971)] which says that the weak existence and pathwise
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uniqueness for an SDE imply the well-posedness. Furthermore, [Cherny
(2003)] proved a stronger statement: the weak existence together with the
pathwise uniqueness is equivalent to the strong existence together with joint
weak uniqueness. In the following we state a general version of this principle
due to [Kurtz (2014)].

Let S; and S; be two Polish spaces. For a measurable space F, let
P(FE) denote the set of all probability measures on E. Let v € P(S3) and
I' be a collection of constraints for random variables on S x Sy. We write
(X,Y) eTif (X,Y) is a random variable on S; X S3 under a probability
space satisfying all constraints in I'. In the SDE set up, S; and S5 stand for
the path spaces of the solution and the noise respectively, and we denote
(X,Y) e T'if X solves the equation with noise Y.

Definition 1.3.1. Let v € P(S3) and I be a set of constraints for random
variables on S; x Ss.

(1) A weak solution for (T, v) is a random variable (X,Y") on S; x S under
a probability space such that (X,Y) €T and Ly =v. (T,v) is said to
have joint weak uniqueness if for any two weak solutions (X%, Y*);_; o
under probabilities (Pi)i=172, we have E(X17Y1)\IP’1 = L(X27y2)“p2.

(2) A random variable (X,Y) on S; x Sy is called a strong solution for
(T,v) if it is a weak solution and there exists a measurable function
F: Sy — Sy such that X = F(Y) a.s.

(3) (T, v) is said to have pointwise (pathwise for stochastic processes) u-
niqueness, if for any random variables {X', X2, Y} under the same
probability space such that (X!,Y),(X2,Y) €T and Ly = v, we have
X! = X2 as.

Lemma 1.3.2 (Yamada-Watanabe Principle [Kurtz (2014)]). Let
v € P(S3) and T be a set of constraints for random variables on Sy X Ss.
The following statements are equivalent:

(1) (T,v) has a weak solution and the pointwise uniqueness.
(2) (T,v) has a strong solution and the joint weak uniqueness.

B. Stochastic Gronwall inequality. This inequality was first found by
[Scheutzow (2013)] for continuous martingales. The following version is
taken from [Xie and Zhang (2020)].

Lemma 1.3.3 (Stochastic Gronwall Inequality). Let & and 1 be
nonnegative progressively measurable processes under a complete filtration



July 27, 2024 9:20 ws-book9x6 13512-main page 18

18 Distribution Dependent Stochastic Differential Equations

probability space such that & is cddldg (i.e. right continuous with left limit),
let A; be a continuous adapted increasing process with Ay = 0, and let M,
be a local martingale with My = 0. If

t t
fts50+/nsds+/fsdAs+Mt, £>0,
0 0

then for any 0 < g<p<1andt>0,

() < 29 %) (o [ ).

C. Maximal functional. Consider the local Hardy-Littlewood maximal
function for a nonnegative function f on R¢:

Mf(x):= sup !

_ f(z+y)dy, =eR9
re1) 1B0,7)] JB0,)

The following result is taken from Lemma 2.1 in [Xia et al (2020)], which
goes back to [Stein (1970)].

Lemma 1.3.4 (Maximal function estimates). There exists a constant
¢ > 0 such that

(1) For any nonnegative function f on R% with |V f| € L}, (R%),

loc
[f(2)=f(y)] < cle—y| (MIVFI(@)+MIVFI)+Ifll), ae z,ye R

(2) For any nonnegative measurable function f on [0,T] x R?,
IMfllzeery < clflipey, pa=1.

D. BDG (Burkholder-Davis-Gundy) inequality. This inequality
goes back to [Burkholder and Gundy (1970)] and [Davis (1970)].

Lemma 1.3.5 (BDG inequality). For any p > 0 there exist constants
Cp > ¢, > 0 such that for any continuous local martingale M, with My = 0,
and any stopping time T,

GEONE)SE| sup (M| <CE(MD]) t20
se|0,tAT

where (M); is the quadratic variational of My, i.e. the unique continuous
increasing process such that M? — (M), is a local martingale.
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E. Girsanov theorem. The following result is initiated in [Girsanov
(1960)].

Lemma 1.3.6 (Girsanov theorem). Let (&)scpo,r) be an adapted pro-
cess on R™ such that P-a.s. fOT |€s|?ds < oo. If

Rt =e f&(gsadws>7% Ot‘ES‘QdS, te [O,T]

18 a martingale, then
t
W, ::/ Eds+W,, tel0,T]
0

is an m-dimensional Brownian motion under the probability Q := RrP (i.e.
dQ = RpdP).

The proof is straightforward by verifying that under Q, (Wt)te[O,T] is
a local martingale with (W); = ¢. In general, (R¢)ic[o,r] is only a local
martingale, and it becomes a martingale if and only if the following uniform
integrability condition hold:
lim sup E[(R;—n)T]=0.
N0 ¢c[0,T)
It is in particular the case under Novikov’s condition:

Ele? I 1€:17ds] < o0,

1.3.3 Proof of Theorem 1.3.1

Proof of Theorem 1.3.1(1).

(a) The weak existence and (1.3.2). We first consider b® = 0. In
this case, b = bV is locally bounded and Lipschitz continuous in z € R?
uniformly in ¢ € [0,7]. Since o is bounded and |b;(x)| has linear growth in
2 uniformly in ¢ € [0, T, it is easy to prove (1.3.2) by applying Itd’s formula
to (1+ |X;2)* and the BDG inequality in Lemma 1.3.5. Let

b = 1B(O,n)b7 n>1.

Since b is bounded, (1.1.1) with b(™ replacing b is weakly well-posed, see
for instance Theorem 1.4 in [Xia et al (2020)]. Let P(®™) be the distribution
of the weak solution (X7*, W")ic[0,7] starting from (z,0) € R? x R™, which
is a probability measure on the path space C([0,7];R? x R™). By the
boundedness of o, the linear growth of sup;c(o 7 [b¢| and (1.3.2), we find a
constant K > 0 such that for any n > 1,

B[ swp {XP - X+ W - WY S KO+ feDet, e 0,1),

0<s<t<T,|t—s|<e
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so that by the Arzeld-Ascoli theorem, {P(z’”)}nzl is tight. By the conti-
nuity of the coefficients in the space variable, the weak limit for a con-
vergent subsequence of {P(I’”)}nzl gives to the distribution of a weak
solution (X¢, Wi)epo,r) of (1.1.1) with b = 0; that is, W; is an m-
dimensional Brownian motion under a complete filtration probability space
(Q,{Fi}+>0,P), and X; solves the SDE

dx, = bV (X,)dt + oy (X)dW,, Xo = 2.t € [0, 7). (1.3.9)

Next, when b(®) # 0, we reformulate (1.3.9) as
dXy = by(X,)dt 4 0,(X,)dW,, Xo =z, t € [0,T),

where W, := W, — fg{U;‘(USU;‘)_lbgO)}(XS)ds. By (A!) and (1.2.17) for
(p.q) = (Po/2,q0/2) due to (1.2.7),
Ry = oo {(eso) oY (Xa)ou (X)AWa) =3 fg 103 (a0 ) OO P (Xa)ds 4 ¢ [0, 7]
is a martingale with E[|Rr|?] < ¢; for some constants ¢; > 0 independent
of x. By Girsanov’s theorem, W, is an m-dimensional Brownian motion
under the probability Q := RrP. Consequently, (X, W;) under Q is a weak

solution of (1.1.1), and by (1.3.2) for the SDE (1.3.9) implied by (A1), we
find a constant ¢y > 0 such that

Eo| sup (1+|X))] < (B[ sup (14 |X:)*] )" B! < ea(1+ Jz))".
te[0,T] te[0,T]

(b) To prove the weak uniqueness, let (X7, Wy);—1 » under probabilities
(P*);=1,2 be two weak solutions of (1.1.1) starting from z, i.e.

dX} = b(X))dt + oy (X])dW}, t€[0,T], X§ = . (1.3.10)
It suffices to show
E(X})te[o,T] [Pt = E(XE)tE[D,T] [p2- (1311)
To this end, let
rti=inf{t € [0,T]):|X}| > N}, i=1,2, n>1,

where we set inf @ = T by convention. By (A1), (1.2.17) and Girsanov’s
theorem, for each i =1, 2,

AATE

) ArD o ) ) i e ]
R, = o= Joo M {(o0) T (X ) 0a (X)AW ) — 5 fo T [0l (000 l) T ba[F(X)ds
n,t *

for t € [0,7T] is a Pi-martingale, and

t/\TfL )
Wi Wg+/ (0 (0007) b }(XT)ds, ¢ € [0,T]
0
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is an m-dimensional Brownian motion under the probability Q;, := R!, ,P".
Consequently, (X7, W)= 2 under (Q} )12 are weak solutions of the ref-
erence SDE

dY; = oy (Yy)dWy, Yo ==z,t € (0,77, (1.3.12)
which has weak uniqueness according to Theorem 1.4 in [Xia et al
(2020)]. Since (1.3.10) implies os(X,)dW} = dX{ — bs(X?)ds, and R}, ; =
Gn(XY), 7t = H,(X") hold for some measurable functions G,, and H,,

n
the weak uniqueness of (1.3.12) implies that for any bounded measurable

function F on C([0, T]; R9),
Ep1 [1(71 57y F(X1)] = Egi [11a, (x1)>7} Gn(X ) T F (X))
= Eq2 [, (x»)>11Gn(X*) T F(X?)] = Ep[1 725y F(X?)], n> 1.

Since 71 — T as n — 0o, by letting n — oo we obtain (1.3.11) since F is
an arbitrary bounded measurable function on C([0, 7]; R%). O

Proof of Theorem 1.3.1(2).
(a) For any n > 1, let

b i= 1p(g,mb™" + b,
By Theorem 1.1 in [Xia et al (2020)], for any = € R%, the following SDE is

well-posed:
dX[ =0"(X)dt + o(X[)dW,, X§ =z,
and
supE| sup w < 00, (1.3.13)
zF#y  -t€[0,T) |z —y|

where X;"" is the solution starting at .
Let 77 := inf{t € [0,7] : |X;""| > n}. Then X" solves (1.1.1) up to
time 77, and by the uniqueness we have

X, =XP" t<Tmr ATh n,m > 1

So, it suffices to prove that 7% =T asn — T
By Lemma 1.2.2 and (A1), for any A > 0, the PDE

(O + Ly — Vo) )ue = Mg — 0, t € [0,T),ur =0 (1.3.14)

has a unique solution u € ﬁgg (T), and there exist constants Ag,c,0 > 0
such that

M (llullse + 1Vullso) + 10eull 20 () + 1 V?ull 20y S € A= Ao (1.3.15)
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So, we may take A > )\g such that
llu]loo + ||Vt < e. (1.3.16)
Let O4(x) = x + u(x). By Itd’s formula (1.2.8), Y;* := O:(X]") satisfies

dy;" = {1B(O,n)b(1) + Aug + 1o, Vo ue  (XT)dt

+{(VOy)o}(X;")dW,. (1.3.17)

By (1.3.16) and (A!?)(2), there exist constants cg,c1,c; > 0 such that for
some martingale My,

V() + M} < (Lo B0 + Ty u}(X7), VV (V)
(VY] + V2V ()] |t
<{1p0m [0, FV)+elbD] sup (IVV] + V2V (X)) + oKV (V") at
B(‘,E)

< {KG(V(XP)) + co KV (Y]") bt
< K{op((1+eK)V(Y) + coV(Y) }dt, t< 7.

Let H(r) =[] W. Then [ Sféf(s) = oo implies
H(oo) := lim H(r) = occ. (1.3.18)
T—00

Since ¢ € C1([0,00);[1,00)) is increasing, we have H” < 0, so that by Itd’s
formula we obtain

dH(V (V™)) < eadt +dM;, t€[0,7,]
for some constant c3 > 0 and some martingale Mt. Thus,
E[(H o V)(Y{r, )] < V(z4u(z)) +cst, t€[0,T],n>1.
Since (1.3.16) and |z| > n imply |©:(2)| > |z| — |u(2)] > n — &, we derive

V(z+6Oo(x)) +cat N
o HV ) cen@s £ 0T (13.19)

By lim|| o0 H(V)(7) = 00, we have lim, o &¢,n(z) = 0. Therefore, 77 —
T when n — oo as desired.

(b) Let X and X} solve (1.1.1) with initial values z,y respectively.
Then

Py <t) <

X =X7, XP"=X!, te0,TATEATY].
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Combining this with (1.3.13) and (1.3.19), we obtain

sup E[ sup |Xf—X§’|/\1]
z,y€B(0,k),|lz—y|<e te[0,T
< sup {]E[ sup |Xf’"—Xf’”|/\1} +]P’(Tfj/\7£{<T)}

" 2,yeB(0k),|z—y|<e t€(0,T]

<c(n)e+ern(z)+ern(y), n>k>1.
By letting first € | 0 then n — oo, we derive (1.3.3).

(c) Let P and (P/*)* be defined as P; and P for X}* solving (1.1.1).
By Theorem 1.4.2 below, (1.4.3) holds for P/* such that for some constant
cn > 0,

T\ * M\ * Cn
I(PE")" 0z = (B") 0y [lvar < 7
Next, by (1.3.19) and X; = X for ¢ < 7,,, we obtain
sup |Pf(z) — P f(z)| <2P(7, <t) < ey pn(x) = 0 as n — occ.
lf1<1

Then
limsup || P} 6z — P/ 0yl var

Yy—x

|‘T7y‘7 T,y € Rdvt € (OvT]

< limsuplimsup sup { [Py f(2) = PP S (y)| + e0.0(w) + c1n(y) }

n—00 y—z | fI<1
=0, te(0,T].
So, (1.3.4) holds.

(d) By Theorem 6.2.7(ii)—(iii) in [Bogachev et al (2015)], P; has a heat
kernel p;(z,y) continuous in y such that for some ¢ : (0,7] x N — (0, 00),
lyiln<fnpt(x,y) > c(t,n) |Zsl‘11<pnpt/2(x, ) >0, te(0,T),z € R n>1.

Combining this with (1.3.4) implies (1.3.5).
(e) When ¢(r) = r, by (A1?)(2), (1.3.17) and Ito’s formula, for any
k > 1 we find a constant ¢; (k) > 0 such that
V') < eV (V") dt + dMf
holds for some martingale M} with d(M*); < {c1(k)V (Y;*)*}2dt. Com-
bining this with | X7 — Y"| < |Ju|lec < € due to (1.3.16) and Y;” =
X + u (X7Y), BDG’s inequality, (1.3.16) and (A'2)(2), we find constants
ca(k), cs3(k), ca(k) > 0 such that
E[ swp V(X!)"] < e(b)E| sup V()"
te[0,T] te[0,T]
< es(k)V (2 + uo(2)) < ca(k)V ()", n>1.
By Fatou’s lemma with n — oo, we derive (1.3.6). O
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Proof of Theorem 1.3.1(3). By Theorem 1.3.1(1) and the Yamada-
Watanabe principle, it suffices to prove (1.3.7), which implies the pathwise
uniqueness as well as (1.3.8).

To prove (1.3.7), we use Zvonkin’s transform. By Lemma 1.2.2, there
exists \g > 0 such that for any A > Ao, the PDE

(0, + Ly — Nug = —b, up =0, (1.3.20)

for u; : R? — R has a unique solution in f{g’p (T), and there exist constants
€,c > 0 such that

X (l[ulloo + IVello) + 110 + Vi ull go () + 1Vl 20 ()
S C, A Z )\0.

(1.3.21)

Then for large enough Ag > 0, ©; := id + u; satisfies
1 2 2 2 d
§|x—y| < |O¢(x) — O (y)|* <2z —y|?, A > Ao, z,y €RY. (1.3.22)

For (X});—12 solving (1.1.1) starting at (a%);—12 respectively, by
(1.3.20) and Itd’s formula in Theorem 1.2.3(3), we obtain

A0 (X7) = {6+ Aug H(X])AE+{(VO,) o, }(X[)dW;, ¢ € [0,T]. (1.3.23)
So, by (A1), (1.3.21), (1.3.22) and Lemma 1.3.4,
Hy = [04(X7) — 0,(X7)1**, t€[0,T]
satisfies
dH, < A H,dt + dM,, (1.3.24)

where M; is a local martingale and for some constant K > 0
2 l '
A= K{1+ Y MO P + 195 ?) (XD} (13.26)
i=1 j=1
By (1.2.7) and (1.2.17) for (p,q) = %(pi,¢;),0 < i <, and (1.3.21), we see
that

E[e)‘AT] < oo, A>0.

So, applying the stochastic Gronwall inequality in Lemma 1.3.7 for ¢ = %,
p= %, we find a constant ¢ > 0 such that

2 1
(E[ sup | X} — Xf|2k]> < (SEeBAT)3 |zt — 22F < cfat — 2?2,
t€[0,T]
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Therefore, (1.3.7) holds for some constant ¢(k) > 0, and for p > 1, (1.3.8)
follows by noting that

xE vy
VP f|(z) < limsupE[\Vf(th)H t f |}
e |z —y|
1 T _ Yy ppj prl
< (PIVf|P)? (z) limsup (E[lXT - Y1)
y—x |g; _y‘

< elp/(p— 1) 7 (PIVSIP)F (x).

Proof of Theorem 1.3.1(4). As in (1.3.23), we have
A6, (X7) = {b + A HXP)dt + {(VO,) o H(XE)AW,, XT = a.
Since |u| + [[(VO)*o|| is bounded and sup,¢jg 7 |b§1)(x)| has linear growth
in |z|, for any p > 1 we find a constant C},, > 0 such that
E[|0:(X}) — 04(X7)*]
<Cp(1+|z))?P|t —sP, 0<s<t<T,xecRL
Next, by (1.3.2) and (1.3.22), we find a function ¢ : R — (0, 00) such that

S[upT]E[I@t(Xf) — OUX)IP] < clp)lz — Y|, 2,y e R p>1,
telo,

sup E[(140:(X7))*] < e(k)(1 + J2)*, =€ Rk eR.
t€[0,T]

(1.3.26)

By a standard argument with Kolmogorov’s continuity theorem, this to-
gether with (1.6.14) yields that for P-a.s. w and all t € [0,T], z — XF(w) is
a homeomorphism in R, see the proof of Theorem 4.5.1 in [Kutani (1990)]
or Theorem 3.4 in [Zhang (2011)]. O

1.4 Bismut formula

The following type of derivative formula
VPMf=E[f(X:)M], t>0,f € ByR?)

for some random variable M; was first established by [Bismut (1984)] for the
heat semigroup P on a Riemannian manifold M using Malliavin calculus,
then by [Elworthy and Li (1994)] using martingale argument, and has been
intensively developed for many different models including SDEs and SPDEs.

In the following we first recall the integration by parts formula in Malli-
avin calculus, then establish Bismut formula for P; associated with (1.1.1).
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1.4.1 Malliavin calculus

Malliavin calculus, also known as Stochastic Calculus of Variations, was
developed by Malliavin [Malliavin (1978)] to study hypoelliptic operators
using stochastic analysis. Roughly speaking, Malliavin calculus is analysis
on the Wienner space for functionals of the Brownian motion. There are
many articles and books on Malliavin calculus and applications, see for
instance [Fang (2004)] and references therein.

For fixed T > 0, let Ay be the Wiener measure on the path s-
pace Cp = C([0,T];R™), which is the distribution of the m-dimensional
Brownian motion (W;)icjo,r)- To develop analysis on the Wiener space
(Cr,B(Cr),Ar), we first define the directional derivative of a nice func-
tion f € L?(Ar) along a direction h € Cr:

i R = f()

Dpf(v) = 18%1 .

Noting that each f € L?(Ar) is an equivalent class, i.e. f = g in L?(A7) if
f = g Ar-as., to ensure that Dy, f is well-defined in L?(Ar), one needs to
show that the limit does not depend on the choice of f from its equivalent
class, i.e. f = g Ar-a.s. should imply f(- + eh) = g(- + eh) Ar-a.s.. This
property is called the quasi-invariance of A under shift by eh. According
to the Carmon-Martin theorem, this property holds if and only if h belongs
to the Carmon-Martin space

T 3
H:= {heCT: |h|la = (/ |ht|2dt> <oo},
0

where hy = %ht is the derivative of h; in the weak (i.e. integration by
parts) sense. Observe that H is a separable Hilbert space under the inner

5 ’YECT.

product
T . .
<h, ¢>H = / <ht, ¢t>dt, h,¢ € H.
0

Definition 1.4.1. (1) A function f € L?(Ar) is called Malliavin differen-
tiable, denoted by f € D2, if
fl+eh)—f

- € L*(A7)

H>hw— Dyf:=1lim
el0
is a well-defined bounded linear functional. In this case, there exists a
unique bounded linear operator D f from H to L?(Cr — H, Ar) such that
(Df,h)u = Dpf.
We call Df the Malliavin derivative (or gradient) of f.
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(2) A measurable map h : Cr — H is called a vector field. We denote
h € D(D*) if there exists a unique D*h € L?(Ar) such that

/(th)dAT:/ (fD*h)dAr, fe DY2
Cr

Cr
In this case, D*h is called the Malliavin divergence of h.

Theorem 1.4.1 (Integration by parts formula). Let Wi 77 : Q — Cr
be the m-dimensional Brownian motion. Then

E[(Dnf)(Wiom)] = E[(fD*h)(Wo.m)], f € D"? h e D(DY).
In particular, if hi(Wo 1)) is adapted in the natural filtration of Wy, then

T .
(D*h)(W[O,T]):/O (he(Wio,17), dWy).

In applications we may simply take (,P) = (Cr,Ar) such that the
Brownian motion becomes the coordinate process Wi(v) = v4,v € Q = Cr.
In this case, a vector field i coincides with h(Wio 7)), hence the composition
of Wip ) can be dropped from Theorem 1.4.1.

1.4.2 The main result

The following result is taken from [Wang (2023d)], which establishes such
a formula for (1.1.1) under assumption (A'-3). See Theorem 1.1(ii) in [Xia

et al (2020)] for the case with b1) =0, B, = £ and f € C}(R?).

Theorem 1.4.2. Assume (A'3), and let P, be given in (1.3.1) for X¢
solving (1.1.1) with Xo = x. Then for any v,z € R,

Xx+5v _ Xz
VX7 :=lim 228

, s€10,7T)
el0 3

exists in LI (Q — C([0,T];RY),P) for any j > 1, and

sup E[ sup |VvXt””|J} <c(f, z,veR? (14.1)
z€R t€[0,T]

holds for some constant c(j) > 0. Moreover, for any 3 € C([0,t]) with
Bo =0 and By =1, and any f € BE(RY),
t
VP f(x) = ]E{f(Xf)/ Bi{{o5(0502) T HXD VL XL, AW, | (1.4.2)
0
Consequently, for any p > 1 there exists a constant c(p) > 0 such that

VP f| < C(fg(mf”);, t>0,f € By(RY). (1.4.3)



July 27, 2024 9:20 ws-book9x6 13512-main page 28

28 Distribution Dependent Stochastic Differential Equations

Proof.
(a) Let A > 0 be large enough such that the unique solution of (1.3.20)
satisfies (1.3.21) and

N |

[ulloo + [ Vlloo <
Let ©; := id + u; and
bi={Mu+bP}o0, 5= ({I;+ Vulo)oO
Then (A!3) implies
IVBlloe + 115l + VG £20 ¢y + 1(557) ™ oo < 00 (1.4.4)
By (1.3.20), (1.3.21) and Theorem 1.2.3(iii), Y;* := ©,(X}) solves
AV = b (YF)dt + 64(Y,) AWy, Y = (). (1.4.5)
By (1.4.4), (1.2.7) and (1.2.17), the increasing process
A= [QVBI 4 9o 028, 1€ 0.7
satisfies
E[e*A7] < 00, a > 0.
So, for any v,z € R?, the linear SDE
dve = (Vi b)) (YE) + (Vi 60) (Y)dWy, v =v + Vyug(z)  (1.4.6)

has a unique solution, and by It6’s formula and the stochastic Gronwall
inequality, for any j > 1 there exists a constant ¢(j) > 0 such that

sup IEI[ sup |’Ut‘]} < (), j>1. (1.4.7)
z€ER? t€[0,T)

(b) Proof of assertion (1). Let Y**V := ©,(X}**"). By (1.4.7), for the
first assertion it suffices to prove
Yx+5v _ Y;m

lim]E[ sup |Lt—-—L — 0

j
} =0, j>1. (1.4.8)
=0 Liclo, 1] €

Indeed, by an approximation argument indicated in Remark 1.4.1 below,
see also Remark 2.1 in [Zhang and Yuan (2021)], we may assume that VZbgl)
is bounded so that by Lemma 2.3(3) in [Zhang and Yuan (2021)],

VO (z) — VO, (y)| < ¢z —y|¥, te[0,T],z,y € R? (1.4.9)
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holds for some constants ¢ > 0 and « € (0,1). Since X7 = 0, '(Y/*), (1.4.8)
implies that V, X exists in L/ (Q — C([0, T]; R?), P) with
Vo X{ = (VO(XT) 'V, Y = (VO(X]))Mof, te[0,T].

To prove (1.4.8), let

Yerev _ Yz
Vs = %, s€[0,T),e € (0,1].
By (1.4.4), (1.2.17), Lemma 1.3.4, and the stochastic Gronwall inequality
in Lemma 1.3.3, we have

sup IE{ sup |vf|7} <oo, j>1 (1.4.10)
e€(0,1] “tel0,T)
Write
vi= [(Vubds+ [ (Vo) ()Wt ot e bl (1)
0 0
where
T t
af = §§ds+/ ns dWs (1.4.12)
0 0
for
be Y'Sz—i-av _ 55 YE B .
g o= PO 0D (g0,
5_5 Ysa:Jrev _ 5.5 Y'Sz ~ -
g = PEET 200D (g6
We aim to prove
limE{ sup af”} =0, n>1. (1.4.13)
=0 | ¢efo,17

Firstly, since Vb, and V&, exists a.e., for a.e. z € R? we have

lim sup { bs(@ +ev) — bs(@) - vvi)s(l')’
s¢0‘ <1 €
+ ‘ ZACh 5? — 0@ _ VU&s(z)H} —0.

Combining this with (1.4.10) and noting that Ly= (s € (0,7T7) is absolutely
continuous with respect to the Lebesgue measure, see for instance Theo-
rem 6.3.1 in [Bogachev et al (2015)], we obtain

s € (4 _ _
lim {I¢5] + [0S} =0, P-as., s €(0,7]. (1.4.14)
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Next, let # > 1 such that (0 71p;,071¢;) € K,0<i <. By f; € E{Z’Z(T),
Lemma 1.3.4 and (1.2.17) with f = f? and (p,q) = (0 'p;,071q:), we
obtain

T n
sup IEK/ (Mffe)(xﬁev)dt’f()) ]gKn, 0<i<l  (1.4.15)
0

€€]0,1]

for some constant K, > 0. By (A'3) and Lemma 1.3.4, there exists a
constant ¢; > 0 such that

l
€SP HIE 1 < a2 (1437 { M2 (5, ) (XD HMFP (5, ) (XTH0)}).

=0
Combining this with (1.4.10) and (1.4.15), for any n > 1 we find constants
c1(n), c2(n) > 0 such that

e( [t + ias) |

Scl(n)E[( sup |v \2”)

s€[0,T]

([ {1+Z M5, DX + (M) s ) |

1

sq<n><ﬁ{<gs;apﬂwzw>}>2
<(=[( [ {1+2 M5, D08 + g, 7 ) )

< ca(n) < oo, €€(0,1].

N

Thus, by (1.4.14) and the dominated convergence theorem, we derive

T n
: €12 2
| ([ (6P + InEP)as) | =0 nz1
Therefore, (3.7.17) and BDG’s inequality in Lemma 1.3.5 imply (1.4.13).
Finally, by (1.4.4), (1.4.6), (1.4.11), and Lemma 1.3.4, for any j > 1,
we find a constant ¢(j) > 0 such that

l
d|vs — 1)§|2]' < c(]){l + Z f;(s’ st)}ws — vi|2jd5
=0

+c(j) sup |og|¥ +dM;, s €0,
r€l0,s]
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holds for some local martingale M. Since lim._,q |vg — v§| = 0, by com-
bining this with (1.2.17), (1.4.13), and the stochastic Gronwall inequality
in Lemma 1.3.3, we derive (1.4.8).

(¢) Proof of (1.4.2) for f € CLi,(R?), the space of Lipschitz continuous
functions on RY. Let t € (0,7 be fixed, and consider

hs ::/ BLl6:{oror} (Y )vedr, s €(0,1]. (1.4.16)
0

By the same reason leading to (1.4.7), the SDE
dws = { Vo, bs(YE) + G5 (YEVR, }ds + (Vo 65) (YE) AW,

(1.4.17)
Wy = 0,5 € [O,t]
has a unique solution satisfying
sup IE{ sup |ws|3} <oo, j>1 (1.4.18)
z€RI te[0,7)

We aim to prove that the Malliavin derivative Dy YY" of Y,* along h exists
and

DLY)" = wy. (1.4.19)
By Theorem 1.3.1, for any € > 0 the following SDE is well-posed:
AYE = {b(YEF) + 65 (Y2 R, bds + 65(YEF)dW,
s € 10,1, Yy =Y.

By (1.4.4), (1.4.16), Lemma 1.3.4 and It6’s formula, for any j > 1 we find
a constant ¢1(j) > 0 such that

(1.4.20)

!
AV =YE 7 < eV =YY {1+ M{fils, ) P (YE)
1=0
+{M fi(s, ) YY) bds + e1(§)e v [P ds + dM;, s € [0, 1]

holds for some local martingale M. Noting that Y, — Y = 0, by com-
bining this with Lemma 1.3.3 and Lemma 1.3.4, we obtain

Y&e _y® 7
sup IE[ sup M

<oo, j=1 1.4.21
€€(0,1] te[0,T) gl ] o )= ( )

D
Let wi = —————=-. Then

wi = [ (b (02) 4 5,020

(1.4.22)
+/ (Vs ) (Y)W, + &2, € [0,
0



July 27, 2024 9:20 ws-book9x6 13512-main page 32

32 Distribution Dependent Stochastic Differential Equations

holds for ) )
as = /Or{bs(ysx’g);bs(w) (Vusb)(¥7) s

4 /0 {0, (V) — 5, (V) I ds
JF/OT {55(}/?’6); a5 (YY) _ (Vwadg)( )}dW

Combining this with (1.4.17) and using the same argument leading to
(1.4.8), we derive (1.4.19).
By (1.4.16) and the SDE (1.4.6) for v, we see that Ssvs solves (1.4.17),
so that by the uniqueness we obtain
VUY;I =V = Wt = Dhnz-

For f € CLip(R?), V f exists a.e. and ||V f||o < 00. Since Lx; is absolutely
continuous, see for instance Theorem 6.3.1 in [Bogachev et al (2015)], we
conclude that (Vf)(X7) is a bounded random variable. By Theorem 1.4.1,
V,Y{ = D), Y implies

Vo Pf(x) = VLE[(S 0 (0 }(VF)] = E[(V(/ 0 07 ) (i), V, )]
— E[Du{(f 007 )(¥7)}] = E[f(XZ”) / <h;7dws>]

t
=B |707) [ (520650 0 ), f € Cuay(R,
0
By v, = VY, Y = ©4(X¥) and &, = {(VO,)o;} 0 ©; ', we obtain
{o5(5s0% 1} (Y )vs
_ [g (0:07) " H{(VO,)o0: (VO,)*} 1](X§”){V68(X§)}VX§
= {o} (05 ) THXHVXE, seo0,T],
so that the previous formula implies
VP f(z) [ F(x®) / B({o*(0.07) L H(XT)VXE, dWs>},

f € Crip(®?).
(d) Proof of (1.4.3) and (1.4.2). Let P;d, = Lxz and let v, be the finite
signed measure defined by

v.(A)

- / 51@[1,4()@*”) / t 6;<{o;*(as<os>*>—1}(X:““)vxsm,dwsﬂ ar

(1.4.23)
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for A € B(R?), the Borel o-algebra on R%. Then (1.4.23) implies

(Pt*61+sv - Pt*(sr)(f) = Vs(f)a VS CLiP(Rd)7

where v(f) := [ fdv for a (signed) measure v and f € L!(|v|). Since
CLip(Rd) determines measures, we obtain

Pt*6m+51) - Pt*gm = Vg,
so that for any f € By(R?),
Pf(x +ev) — P.f(x)

N /SE{f(Xf””)/ Bel{{o(os(o0)) T HXTT) VAT i, AW | dr
0 0

Combining this with (1.4.1) and the boundedness of o*(c0*)™!, we derive
(1.4.3).

Next, let f € By(RY). For any r € (0,T), let (XZ,)sepr1) solve (1.1.1)
from time r with X7, = x. Let

Prof(z) =E[f(XZ,)], f€By(RY),zeR (1.4.24)
Then the well-posedness implies
Po=PPFP.,;, 0<r<t<T.
Moreover, considering the SDE from time r replacing 0, (1.4.3) implies
VP i flloo < 00, f€By(RY,0<r<t<T.
So, by (1.4.23) for (P., 8s/8;) replacing (P, 8s), we obtain

VP f(z) = VUPT(PMf)(x)
— i T " / 0_* oo *\—1 x x
&E[Pr,tﬂxr)/o B1({0(0:(04)") }<X5>vxs7dws>}

for all f € By(R?) and r € (0,t) such that 8, > 0. Since the Markov
property implies

E[f(XD)IF] = Prof(XT),

we obtain
1 ‘s
VuRSw) = 5B 1E) [ ({03 ou007) HEDAE ),
so that letting r 1 ¢ gives (1.4.2). O

To conclude this section, we make the following remark which will be
used to study distribution dependent SDEs in Chapter 3.
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Remark 1.4.1. For fixed o but may be variable b, the constants c(-) in
Theorem 1.4.2 are uniformly in b = b©) + (1) satisfying

1Dl zz0 +IV0V | < N (1.4.25)

for a given constant N > 0. Indeed, letting v be the standard Gaussian
measure and taking

i@ = [ 8t pnian. veRlie T
we find constant ¢ > 0 only depending on N such that (1.4.25) implies
IV oo+ 1925V oo + 165" = B4 < c.
Then b© := p© + p(1) — p(1) gatisfies
D 2o < 18 NIzze +cllLlizge =: ¢

According to the proofs of Theorem 2.1 in [Zhang and Yuan (2021)] as well
as Theorems 1.2.3 and 1.2.4 for b = b(® + (), the constant Ay > 0 before
(1.3.20), upper bounds on ||u||s + ||Vu||oo||V2uH£58, and the constants in
Krylov’s and Khasminskii’s estimates (1.2.7) and (1.2.17), are uniformly in
b satisfying (1.4.25).

1.5 Dimension-free Harnack inequality

Let P be a Markov operator on B,(R?), i.e. P is a bounded linear operator
on By(R%) with P1 =1 and Pf > 0 for f > 0. We consider the following
type of Harnack inequality:

d(Pf(x)) < (PR(f)(y)e’ ™), x,y€ E, f e Bf (RY), (1.5.1)

where ® is a nonnegative convex function on [0,00), ¥ is a nonnegative
function on R? x RY, and B; (R) is the set of bounded positive measurable
functions on R<.

This type of inequality was first found in [Wang (1997)] for diffusion
semigroups on Riemannian manifolds where ®(r) := P for p > 1, U(z,y) =
cp(z,y)? for some constant ¢ > 0 and the Riemannian distance p (we call it
power Hanarck inequality), and was extended in [Wang (2010)] to ®(r) = "
for which (1.5.1) reduces to the log-Harnack inequality

Plog f(z) < log Pf(y) + cp(z,y)*.
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For any u € P, the space of probability measures on R?, let P*u € P be
defined as

(P*1)(A) i= p(P14) = / Pladu, A€ B(RY).

Then the above log-Harnack inequality is equivalent to
Ent(P*p1|P*p2) < Wo(pr, p2)?, p, p2 € P,

where
p2(flog f), if p1 = fuz,
Ent(uilpe) :=  sup  pu(log f) = { .
F>0,u2(f)<1 00, otherwise
is the relative entropy, and for any p > 1,
»
Wy (p1, p2) == inf (/ |z — ypw(dx,dy)>
TweC(p1,p2) R x R4

for C(p1, p2) being the set of couplings for pq and ps.

Comparing with classical Harnack inequalities, a crucial feature of
(1.5.1) is dimension-free so that it applies to infinite-dimensional model-
s. Due to this essential difference, in references this type of inequality is
called Wang’s Harnack inequality. The dimension-free Harnack inequali-
ty has been developed and applied to many different models of Markov
processes and SDEs/SPDEs, see [Wang (2013)] for a general theory on
dimension-free Harnack inequality and applications.

In this section, we establish the log-Harnack inequality and the power
Harnack inequality for the singular SDE (1.1.1).

1.5.1 Log-Harnack inequality

The following result was presented in [Zhang and Yuan (2021)] using an
approximation argument due to [Xia et al (2020)] and the log-Harnack
inequality proved in [Li et al (2015)]. Below we give a simple proof using
the idea of [Réckner and Wang (2010)].

Theorem 1.5.1. Assume (A'3). Then there exists a constant ¢ > 0 such
that for any f € B;}"(Rd), the class of nonnegative bounded measurable
functions on R?,

_ 2
Pt 1Og f(x) < IOgPtf(y) + M7 te (O,T],.T,y € Rd' (152)

Equivalently,

Wo(py, p2)?

Ent (P pu | P po) < P

, te (O,T],,ul,,ug eP. (153)
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Proof. Let P, be given in (1.4.24). For any f € C°(R?) := R+C§°(R?),
by It6’s formula we have

P, f(x) = f(z) + /t P (Lyf)(z)dr, 0<s<t<T.

This implies the Kolmogorov forward equation

OuPstf = Pst(Lif), ae.tels,T)]. (1.5.4)
On the other hand, by Lemma 1.2.2, for any ¢t € (0,T], the PDE
(0s + Ls)us = —Lsf, s€[0,t],us =0 (1.5.5)

has a unique solution, such that by It6’s formula in Theorem 1.2.3(3),
dus(Xs) = _Lsf(Xs) + <Vf(Xs)v Us(Xs)dWs>» s € [Ovt]'
This and (1.5.4) yield

0 =u(x) = us(x) — / (Psr Ly f)dr

t
d
:us(x)_/E(Ps,rf)dr:us(‘r)_Ps,tf+f7 OSSStST
Combining this with (1.5.5) we derive the Kolmogorov backward equation
O0sPs 1 f = 0sus = —Lg(us + f) = —LsPs s f, 0<s<t<T. (1.5.6)
Let vs = = + s(y — x)/t for s € [0,t]. By (1.5.6) and Itd’s formula in
Theorem 1.2.3(3), for any 0 < f € C°(R?), we have

LyP;
dlog P f(X3) = {Lu(log Poof) ~ 524t
S,

+ (Vo X2 Viog P f )(X)ds My, s € 0.1

for some martingale M. Since oo™ > Al for some constant A > 0, this
implies

dlog Ps 1 f(X7*)

J(x27)ds

< { —AVlog P, f] + @]Vlogﬂ’tﬂ}(XgS)ds—deS
< le—yl

T AN2
Combining this with (1.4.1), we find a constant ¢ > 0 such that

Pilog f(y) —log Pif(z) =E [log f(XY) —log PO,tf(Xg)}

a2 gt
< eyl /E[wxgs
0

(VX2 [*ds + dM,, s € [0,1].

2
2)ds < M t € (0,T).

— 4M?
By an approximation argument, this implies (1.5.2) for f € B, (R%). O
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1.5.2 Power Harnack inequality

By constructing a new coupling to force two marginal processes to meet
before a fixed time, under the monotone condition

2(be(2) = be(y), @ — y) + low(z) — oe(y) | Frs < Klx — yl?,

{ou(z) —oe(y)} (@ —y)| < K|z —yl, =,y Rt €(0,T)]
for some constant K > 0, the power Harnack inequality was established in
[Wang (2011)]: there exist constants ¢, p* > 1 such that for any p > p*,

clo—

PR PP @), 2y e Rt e (0,T], f € By(RY). (1.5.7)

[Pif(y)I" < e

This result has been extended to singular SDEs.
Under (A1) and that oy is Lipshitzi continuous uniformly in ¢ € [0, T,
the following inequality was established in [Shao (2013)] for p > p*:

clz

Pf() < e B fP(2), @y Rt E (0,T), f € By(RY). (15.8)

This inequality is less sharp for small |x — y|. To make the exponential
term sharp for z = y, when p% + q% < % and o, is a-Holder continuous with

a€(3,1- Z% - q%), Theorem 4.3(2) in [Zhang and Yuan (2021)] gives
P f(y)lP < et (z=lVIiz=sl) B fIP(2), 2,y e RY t € (0,T).

The following result is due to [Ren (2023)], which establishes the sharp

inequality (1.5.7) under (A'?) without any additional conditions.

Theorem 1.5.2. Assume (A'?) and let

ko= sup |lov(@) —o@)I?, k1= llo (00T
t€[0,T],z,yeR?

Then for any
3+ 1+(8 -1
p>pti= o + (Bror) ;
\/1+(8K/0/€1)_1—1

there exists a constant ¢ > 0 such that (1.5.7) holds.

To prove this result, we present the following lemma which gives the
less sharp Harnack inequality (1.5.8).

Lemma 1.5.3. Assume (A'3). Then for any p > p*, there exists a con-
stant ¢ > 0 such that (1.5.8) holds.
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Propf. (a) We first observe that it suffices to prove for b(©) = 0. Indeed,
let P, be the semigroup associated with the SDE
AX7 = b (XP)dt + 0y (XF)AW,, t € [0,T).
Let
R — olo Hoi(oe0) 0O N XD, dWe) = F [ {o7 (o007) (O H(X])Pdt

By (A1), (1.2.7) with (p,q) = (po/2, qo/2) and Khasminskii’s estimate in
Theorem 1.2.4, we obtain

sup E[|R*|?] < 00, ¢>1.
z€R4

Then by Girsanov’s theorem, for any p > 1 there exists ¢(p) > 0 such that

|P.f|P(x) = [E[R" f(X7)]|”
< (E [|R$|ﬁ]) 'E[fP(XP)] < c(p) PSP (), p>1.
Similarly, the same inequality holds by exchanging positions of P; and B,

so that
[P fIP < c(p)PAfIP, |PfIP < cp)PlfP, p>1,t€[0,T].  (159)

Thus, if the desired assertion holds for Pt, it also holds for P;. Indeed,
assuming

{Ptf }p Ptfp C1(10)+c1(p)7571Ir*y|27 T,y € Rd,t € (0,T],p > p*

for some ¢; : (p*,00) — (0,00), then for any p > p* we have

pl':( y >1>1 pa: _ Pty >p*, pip2=p
. p+p* 9 2 ) 1 )

so that this inequality and (1.5.9) yield
(Pf (@) < elp) 7T { B f7 ()} 77
< C(pl)% {ecl(P2)+61(P2)t71\zfy|2ﬁ>tfplp2 (y)}pl
< c(pl)%Jrlepm(pz)ﬂm(pz)fl\x—ylzptfp(y) < ec+ct’1|z—y|2ptfp(y)

for some constant ¢ > 0.
(b) Now, we consider the regular case that b = b1, In this case, by
(A*3) and Lemma 1.3.4, there exists a constant co > 0 such that

o (@) = oe()llizs < d(1 + ko)llow(@) — oe(y) s

!
<colw —y| Y (14 Mfilt,z) + Mfi(t,y)).

i=1
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Combining this with b = b(!),| we find a constant ¢; > 0 such that
2(z —y,be(2) — be(y)) + lloe(@) — oo (v) s

! (1.5.10)
<ale—yP +ale -yl Yy (1+Mfilt,z) + Mfi(t,y)).
i=1
For fixed t € (0,71, let
1— c1(s—t)
Vs = 677 s € [Oat]7
C1

so that for some constant Ky > 0 such that
s —2—9L=-1, v, > Ko(t—s), se€][0,t]. (1.5.11)

Since the coefficients of the following SDE are continuous and of linear
growth in z locally uniformly in s € [0,¢), it has a weak solution:

dX;, = b.s(Xé)ds + Us(Xs)dWs; Xo =, (1 5 12)
dYQ = {bs(Ys) + O's(Y;)fs}dS + Us(Ys)dVVSa YO =Y, o
where
gs — {U:(USO':)fl}(Xs)(Xs - YS)’ se [O,t] (1513)

Vs
This construction of coupling is due to [Wang (2011)].
For any n > 1, let
nt

/\inf{s >0:|Xs| VY > n},
n+1 (1.5.14)
R, = o Jo (& dWa=3 M 1€ds e 1 ).

Tn =

By Girsanov’s theorem,
SATn
Wy = W, +/ &dr, s €10,
0
is an m-dimensional Brownian motion under the probability Q,, := R, P.
So, before time 7,, (1.5.12) is reformulated as
dX, = {bs(X,) — XXodds + 0 (X)W, Xo =,
dY, = by(Ya)ds + os(Ye)dW, Yo =y, s € [0, 7).
By (1.5.10) and It6’s formula, we obtain
d| X, — Y,|* —dM,
!
< {c1|Xs VP el Xe— Vil 3 [ M5 X) + Mi(s, V)] }ds,

=1
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where M is a Q,-martingale with
d(M) s < dro| X5 — Ys|* (1.5.15)
Combining this with (1.5.11) and applying Itd’s formula, we obtain
d{lxs —YSP} i
Vs Vs

1
'XWY' S (1 + Mfi(s, X,) + Mfils,Y,))ds

i=1
s — 2 — ! Xs - Y; 2
Vs
l
X, —Y,
_ U'Z (1+ MFils, X,) + Mfi(s,y))ds (1.5.16)
S i=1
|Xs _}/s|2
— 72(18
2 l 2
< D[S+ MAs X))+ MJi(s, ¥2))] s
i=1
|Xs _}/;|2
_ Tds, CRS [O,Tn}'

Thus, by 79 > Kot in (1.5.11), we derive

E [e)\ o Md} 2z —yl?
Qn Kot
< Eqg {exc? ST I (M (3, X+ MFi(s,Yo))*ds+2) [ %}

. . (1.5.17)
< (EQ [ef fJ”[22:1(1+Mf1-(s,xs>+Mfi<s,Ys>>12ds}) "

oxr [Tn AMT\ T
x (EQn{e rJs TD S A> 07> 1
By (A!'?) and Lemma 1.3.8, there exists a constant ca > 0 such that

l

Do IMSillzee < eo.

i=1
Noting that X solves (1.1.1) under probability P while Y; solves the same
equation under Q,, combining this with (1.2.7) for (p,q) = (pi/2,¢:/2)
and Khasminskii’s inequality in Theorem 1.2.4; we find an increasing map
d:(0,00) — (0,00) such that

E[e* o il |Mfi<s,xs>\2ds] +Eg, [ Jom o, \Mfi(s,m\?ds]

<do(A), A>0,n>1.
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Consequently,
E@n I:eA ng" Zé:l ‘Mfi(S,Xs)‘zds] — E[R e)\ fT" 25:1 |Mf7‘,(5,Xs)|2ds]
< (E[RZ ])3(E[eq*1 0" Ty IMfi(s. X)) ds])
1
<5(\g/(g—1)T (B[RL])7, ¢>1.

Therefore, for any A > 0,7, g > 1, there exists a constant ¢(\,r,q) > 0 such
that

AeFr

sup (E@n [eﬁ

T S MG X M Vo) )} ds] ) 5
n>1

r—1

<cA\rq)(ERL]) ™, ¢r>1,1>0.

Tn

Thus, by (1.5.17), (1.5.15) and Eq, [eN*] < (Eg, [e2N*])2 for a continuous
Q,,-martingale Ny, we arrive at

Eq

n

[ A fom 7"‘8 Yl ds} ~ 2\z —yP?
Kyt

_ -
c(\ 7, q) (E[R? ])Téll(EQ" [e8*2’"2f0 d%?)*ds})"’q (1.5.18)

Tn

r=1 2.2, [Xs=Ysl® 4o\ =
e ra) BIRL ) T (B, [0 T

for any A > 0,¢,7 > 1. For any ¢ > 1 and \ € [0, 3% ), we take r = ﬁ >
1 such that for some constant 8(\, q) > 0,
n 1Xs 7Ys\ s
supE@n{ Mo ‘ ]
n>1
< (E[R? ])%M BB z—y|* (1.5.19)

1 - 1
< (BlRy ) e 00 00 g ae o L),

Noting that for any

* 3++/1+4+(8 -1
1 §q<q* = *p _ ( “{’30’{1) ,
p*—1 4

we have 0 < (2¢% — 3¢ + 1)k < by (1.5.19) and

32;@ ’
K;lle - YS|2

2 ’
Vs

€)% <



July 27, 2024 9:20 ws-book9x6 13512-main page 42

42 Distribution Dependent Stochastic Differential Equations

we find an increasing function k : (1, ¢*) — (0, 00) such that
1 ~ 1
(E[|R-,|7])7 = (EQ o—(a=1) [y (€. dW)+452 [ |ss|5ds) :

1
< (EQ o—2(a=1) [ (€0, dWs) —2(a—1)° [ \sswds)%

1
X (EQ e(2q2_3q+1) ()Tn ‘58‘2‘13) 2q

2 1
(2q273q+1)m -[‘OT" ‘Xs;izyﬂds) 2q

< (E@ne
e _
< (B[R, |7]) 2 ebethat Tl g e (1,q7).
Consequently,

1 _
blilzl) (EURHJ(I]) q S e2k,1+2kqt 1|1—y\2’ = (Lq*)
n_

By the martingale convergence theorem with n — oo, this implies that

(Rs)sefo,q is a martingale with

(E[Rf])% < kot 2hgtHa—ul® g e (1, g, (1.5.20)

such that Girsanov’s theorem implies that (W;)scpo,4 is an m-dimensional
Brownian motion under QQ := R;PP, and Y, solves the SDE

dY, = by (Y.)ds + oo (Ys)dW,, Yo =1y,s € [0,t].
By the weak uniqueness we obtain

Fif(y) = Eqlf (Y1)l. (1.5.21)

Moreover, (1.5.19) ensures
t|Xs—Ys|? s
Eq o TR } < o0
for some constant A > 0, together with the continuity of | X;—Ys| in s € [0, ]
and fot %ds = oo imply Q(X; = Y;) = 1. Therefore, by (1.5.20), (1.5.21)

and Holder’s inequality, for any p > p* = q*qil so that ¢ := 1% € [1,¢%),

we find a constant ¢ > 0 such that for any ¢ € (0,7

[P f(y)P = [E[Ref(Y)]]P = |E[Ref(X0)]P
< (BR7 )T E[fP(X0)] < (PfI7)(m)ectt " lo=v f € By(RY).
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Proof of Theorem 1.5.2. By an approximation argument, it suffices to
prove for 0 < f € C°(R?) := R + C°(R?).

By (1.4.1), for any ¢ > 1 there exists a constant k(q) > 0 such that

IVPig| < k(q)(P|Vg|)i, geCLRY),te (0,T). (1.5.22)

Below we show that this and the Harnack inequality in Lemma 1.6.5 imply
the desired inequality.

For p > p*, we have

\/5p? + 4pp* —p
= € (1,2), =
Y41 D+ p* (1,2), p2

+ * 2
pAP . P2
2 2-m

(1.5.23)
By Kolmogorov equations (1.5.4) and (1.5.6), for 0 < f € C2(R?),

Os{Pst (Pt )1} = tPst{|U:tvpst,tf|2(Pst,tf)pl_2}

) . (1.5.24)
Z Cltjjst{lvpst,tf| (Pst,tf)pl }7 s € [Oa 1]

Next, by (1.5.22) and Holder’s inequality,

IV Pt (Pt )] < K(p1) (Pt V (Pag o )P P1) 75
= plk(pl)(Ret{|VPst,tf|p1 (Pst,tf)(plil)pl })H

< p1k(p1) (Pat{ [V Pas i f 12 (Pat s )P ~21)? (Pa{Parn f}770) 71, s € [0,1].

Combining this with (1.5.24), and letting z5 := sz + (1 — s)y, s € [0, 1], we
find a constant ¢; = ¢1(p) > 0 such that
d

dS {Pst(Pst,tf)pl (Zs)}

{%Pst(Pst,tf)pl }(Zs) + <33 — 4, VPt (Pa 1 )P (Zs)>
> 1t Py { |V Py f1?(Por,t /)P 72} (25)

3 1.5.25
*p1|1' - y|{R@t(|vRet,tf|2(Pst,tf)p172)} (Ze) ( )

Pl

p2 2—
X {Pst(Pst,tf)ﬁ} . (zs)

2-p1

p2
R@t(Pst,tf)ﬁ} "

>7ﬁ@*mq
- 4eqt
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By Jensen’s inequality and Lemma 1.6.5, we find a constant ¢y = co(p) > 0
such that

2—py 2-py

p? p? >
{Pst(Pst7tf)27;1 } () < {PstPst,tfm} b (2s)

2—-p1

2 2 2-p1
() T ) < (g gt

= (Pfr(@) T et el gy e e,

Combining this with (1.5.25) we derive

2 _ 2 _
(Pf)P (y) < Pof? () + %(a 7Y% (w)ecrreat o=l

Pl 2662 €T — 2 _
< (Pyr@) 7 (14 B 4‘0175 y Jocat Mol

(m)ec’ffllm_yﬁ, z,yc Ryt e (0,7,

P1
P

< (Pf?)

2 c
where ¢ := ¢y + %. Then the proof is finished. [

1.6 Exponential ergodicity

There are many results on the ergodicity of diffusion processes under dissi-
pative or Lyapunov conditions. In this section we investigate the ergodicity
of the following time-homogeneous singular SDE:

for which dissipative or Lyapunov conditions are not available.

We first state the main results in this part, then recall two ergodic
theorems and present a lemma on elliptic equations, and finally prove the
main results.

1.6.1 Main results

(AYY) o is weakly differentiable, oo* is invertible, and b = b® + b)) such
that the following conditions hold.
(1) There exists p > dV 2 such that

lolloe + 11(00™) Moo + 160 + Vol 7 < o0
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(2) b is locally bounded, there exist constants K > 0,¢ € (0,1), some
compact function V € C?(R% [1,00)), and a continuous increasing
function @ : [1,00) — [1,00) with ®(n) — oo as n — oo, such that

W, VV) (@) +ebM ()| sup {|VV|+ [VZV][}
B(z,e)

<K—¢g(®oV)(x), (1.6.2)

i o ITVIHITV]
|z|—o0 B(z,e) V(SC) A ((I) o V)(JL‘)

Theorem 1.6.1. Assume (AY*). Then (1.1.1) is well-posed, and the asso-
ciated Markov semigroup P has a unique invariant probability measure [i
such that p(®(g0V)) < oo for some g € (0,1), and

M (Prv)(f) = p(f), veP,fe By(R?). (1.6.3)
Moreover:

(1) If ®(r) > or for some constant 6 > 0 and all r > 0, then there ewist
constants ¢ > 1, A > 0 such that

1P = Py < ce |l = pollv, pa,pe € Pt >0, (1.6.4)
In particular,
1Prv—filly < ey —filly, vePt>0.

(2) Let H(r) := [ 35 forr > 0. If ® is convex, then there exist constants

0 ®(s)
k> 1,A> 0 such that for any x € Rt >0,
|P6, — allv < k{1+H (H(V(z)) — k™ 't)}e ™, (1.6.5)

where H=' is the inverse of H with H='(r) := 0 for r < 0. Con-
sequently, if H(oo) < oo then there exist constants ¢, \,t* > 0 such
that

| Pfpn — pally < ce™ ||y — palloars t>t* p1,p2 € P. (1.6.6)

The above result is taken from [Wang (2023c)]. To illustrate this result, we
present below a consequence which covers the situation that

(O (2),2) < e1 = cale P, PV ()] < eq (14 |27

for some constants ¢1,cp > 0 and ¢ > 1, since (1.6.7) and (1.6.8) hold for
1+gq

#(r) == (1 +7)= , and (1.6.9) holds for ¢(r) := (1 + r2)¥ for any k > 0
when ¢ > 1. See also [Xie and Zhang (2020)] for the case with jumps.
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Corollary 1.6.2. Assume (A**)(1) and let bV satisfy

OV (@), 2) < 1 = eag(|al?), BV (@) < crg(jaf’), zeRT  (1.6.7)

for some constants c1,c2 > 0 and increasing function ¢ : [0,00) — [1,00)
with

log ¢(r)

« := lim inf —2"—2% >

1
=. 1.6.
r—oo  logr 2 (16.8)

Then

(1) (1.6.1) is well-posed, P; has a unique invariant probability measure [i
such that @(V) < oo and (1.6.4) hold for V := e(HI) with 6 € ((1-

o)™, 3). In general, for any increasing function 1 < ¢ € C?([1,00))
satisfying
1 (r)e(r) " (r)r
liminf ———* >0, lim =0, 1.6.9
r—00 ¢(r) r—00 w(r) ( )

i(V) < 0o and (1.6.4) hold for V = (|- |?).
(2) If [5° % < 00, then (1.6.6) holds for V := (1 +]-|*)4(q > 0) and
some constants c, \,t* > 0.

Remark 1.6.1. We have the following assertions on the invariant prob-
ability measure i1 and the ergodicity in Wasserstein distance and relative
entropy.

(1) According to Corollary 1.6.7 and Theorem 3.4.2 in [Bogachev et al
(2015)], (AY*) implies that fi has a strictly positive density function
p € HJP, the space of functions f such that fg € H"?(R?) for all g €
Cs°(R%). Moreover, by Theorem 3.1.2 in [Bogachev et al (2015)], when
o is Lipschitz continuous and fi([b|?) < oo, we have /p € H"?(R?).
So, when (1.6.7) holds for ¢(r) ~ r? for some ¢ > % and large r > 0,
Corollary 1.6.2(1) implies that i has density with \/p € H“?(R).
See also [Wang (2017)] and [Wang (2018b)] for different type of global
regularity estimates on p under integrability conditions.

(2) Let V := (1 +]-|?)% for some k > 1. By Theorem 6.15 in [Villani
(2009)], there exists a constant c¢(k) > 0 such that

Wi (11,0)* < (k)1 — vy
So, by Corollary 1.6.2, if (A14) holds with ®(r) > &7 for some & > 0,
then there exist constants ¢, A > 0 such that
We(Prv,a)? <c(l4v(-|%)e ™, t>0,veP;
and if moreover ® is convex with [ @cti 5
stants ¢, A, t* > 0 such that
Wi (Prv, a)f <ce ™' t>t" vePy.

< o0, then there exist con-



July 27, 2024 9:20 ws-book9x6 13512-main page 47

Singular Stochastic Differential Equations 47

(3) When b is Lipschitz continuous, the log-Harnack inequality in The-
orem 1.5.1 implies

C/

1At
for some constant ¢’ > 0, where Ent(v|f) is the relative entropy. Thus,
by Corollary 1.6.2, if (A4) holds for V(z) := 1 + |z|? and ®(r) > dr
for some constant § > 0, then there exist constants ¢, A > 0 such that

Ent(P/v|n) < Wy (v, )%, veEP,t>0

Ent(Pv|a) <c(1+v(]-]?)e™™, t>1,veP;

and if moreover ® is convex with fooo % < o0, then there exist

¢, A\, t* > 0 such that
Ent(Pv|p) < c(1+uv(]-[?)e ™, t>t"veP.

1.6.2 Ergodic theorems

In this part we recall two ergodic theorems. To this end, we first introduce
the following notions. For a topological space E, let By(E) (respective-
ly Cp(E)) be the classes of bounded measurable (respectively continuous)
functions on E.

A family {P;(x,-)};>04erae is called a Markov transition kernel, if
Py(z, A) is measurable in z for any ¢ > 0 and measurable A C R?, Py(z, ) is
a probability measure on R? for any (¢, ) € [0,00) x R?, and the Chapman-
Kolmogorov equation

Piys(z,) = Py(y,)P,(z,dz), t,s>0,z cR?
Rd

holds. In this case,
Pif(@)i= [ f)Pody), ¢20.f € B(RY)
R

gives rise to a Markov semigroup P; on B,(R%). We call the transition kernel
stochastically continuous, if for any z € R?, P;(x,-) is weakly continuous
in t.

Definition 1.6.1. Let P; be a Markov semigroup with stochastically con-
tinuous transition kernel P;(x,-) on a Polish space E.

(1) P is called tp-regular for some to > 0 if the transition probabilities
{Py,(z,")}sep are mutually equivalent.
(2) P is called strong Feller if P,B,(E) C Cy(E).
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(3) P, is called irreducible if for any non-empty open set G C E,
P(z,G)>0, z€E.
(4) A set K C E is called petite (or small) if there exists nontrivial measure

v such that for some ¢ > 0

inf P, D>
nf i () > v

Theorem 1.6.3. Let P; be a Markov semigroup with stochastically contin-
uous transition kernel P(x,-) on a Polish space E.

(1) If Py, is strong Feller and P, is irreducible, then Py is (t1 +1t2)-regular.
(2) If P; has an invariant probability measure fi and is to-reqular for some
to > 0, then i is equivalent to Py(x,-) for allt >ty and x € E, and

Jim P f(x) = p(f), =€ E,f€By(E).
(3) Let V > 1 be measurable such that the level sets {V < r}.~o of V are
petite and
PV <ci+e @V, t>0 (1.6.10)
holds for some constant c1,co > 0. Then P; has a unique invariant

probability measure such that for some ¢, A > 0

_ N\t d
tVx — = ) = Y .
1Py — v < ce™V(z), t>0,z€R

The first result is due to Khasminskii [Khasminskii (1980)], the second
is due to Doob [Doob (1948)], and the third is called Harris theorem (see
Theorem 4.2.1 in [Da Prato and Zabczyk (1996)]), see also [Hairer et al
(2011)] for a weaker version of Harris theorem.

The condition (1.6.10) holds if V is in the weak domain of L, i.e.

t
V(X)) — / LV (X)ds
0
is a locally martingale for the associated Markov process X;, such that
LV § C1Cy — CQV

Finally, we present a result on the exponential ergodicity in a probability
distance. Let (E, B) be a measurable space and let P be a non-empty convex
set of probability measures on E equipped with a complete metric W. A
family (P;)¢>o is called a semigroup on P, if P is identity, Py, = PP}
for s,t > 0, and

[0,00) X P 3 (t,u) = PiucP

is measurable.
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Theorem 1.6.4. Let (P;});>0 be a semigroup on ’ﬁ, a convex subspace
of P equipped with a complete metric W. If for any u € P, the family
{Pfu : t > 0} is locally bounded in t with respect to W, and there exist
constants tg > 0 and € € (0,1) such that

W (P}, Piv) < eW(p,v), p,veP, (1.6.11)

0

then P} has a unique invariant probability measure ji € ’ﬁ, and

WP ) < @007 sup W(Pa ), 20, peP.  (1.6.12)
s€[0,toAt]
Proof. By (1.6.11), P} is contractive in the complete metric space
(P, W), so it has a unique fixed point i € P. To prove that i is the u-
nique invariant probability measure, let
1 [t
,LL* = P:/]ds,
to Jo

which is in P by the boundedness of { P [i}sefo,to) as well as the convexity
and completeness of (P, W). Then for any t € [0, ], P i = pi and the
semigroup property imply

1 t+to . 1 to . 1 t
Pry* = % Pl uds = %/ P uds + %/0 Pr, ids
t t
1 to 1 t 1 to
= — Ps*/ids—&——/ Plpds = — Plpuds = p*.
to Ji to Jo to Jo

Thus, p* is an invariant probability measure of P;*. In particular, p* € P
is a fixed point of P . By the uniqueness of the fixed point we conclude
that p* = fi. It remains to prove estimate (1.6.12).

(1.6.12) is obvious for t € [0,tg]. For any ¢t > to, there exist n € N and
s € [0,tp) such that ¢t = ntg + s. By (1.6.11) and the semigroup property,

WP, 1) = W(Py, (Pip), Py p) < &" S[lép ]W(Ps* 1 1),
s€|0,to

so that (1.6.12) holds for ¢ > to. O

1.6.3 Elliptic equations

(AY5) a:=oo* and b= b® 4+ b() satisfy the following conditions.
(1) a is invertible, uniformly continuous, and |al|ec + [Ja™ oo < 00.
(2) b € LPo for some po > d, and bV is Lipschitz continuous.
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When b(") = 0, the following lemma follows from [Xie and Zhang (2020)]
where a jump term is also considered.

Lemma 1.6.5. Assume (A'5) and let p € (1,00). There exist constants
Ao > 0 increasing in ||b©||;,, such that for any A > Ao and any f € LP,
the elliptic equation

(L—=MNu=f (1.6.13)

has a unique solution uw € H>P. Moreover, for any p' € [p, 0] and 0 €
[0,2 — % + Z%), there exists a constant ¢ > 0 increasing in ||b(0]|;,, such
that

l2—0+4 -2 =
Nl o+l oy < lfllpor fELP (16.14)

Proof. (a) Let us verify the priori estimate (1.6.14) for a solution u to
(1.6.13), which in particular implies the uniqueness, since the difference of
two solutions solves the equation with f = 0.

For w solving (1.6.13), let

ﬂt = U(l - t), t S [07 1]
By (1.6.13) we have
@ +L =N, =f(l—t) —u, te[0,1],a=0.

By Lemma 1.2.2, there exist constants A\j,c; > 1 increasing in [|b(?)] ;,,

and sufficient large ¢ > 2 such that
1 d d
AT | g + ]
Hy” Ha (1.6.15)
<alf(—1t) —ullzp <eallflge +cllullze-

Taking 6 = 0,p = p" and ¢z = ||1 — || £a([0,1)), We obtain
C1
Allullz, < g(”f”zp +llullze)s A=A
Letting Ag > A1 such that

C
)‘0 Z 2717
C2

we obtain

lullzr < [1fllzes A= Ao

Combining this with (1.6.15) implies (1.6.14) for some constant ¢ > 0.
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(b) Existence of solution for f € LP. Let {fatn>1 C C° (R%) such that
| fn— fllz» — 0 as n — oco. Let

un:/ e_)‘tPtfndt.
0

By Kolmogorov equations, see (1.5.4) and (1.5.6) with P, ; = P;_, for the
present setting, we have

8tPtfn = LPtfn = Pthn
so that

Lu, = / e MLP, fdt = / e MO Py fndt = Muy — f.
0 0

Then
(L =N (un = um) = fo = fim, nym =1
By (1.6.14),
i { = o + 90— )5} = 0.
s0 that u := lim, e u, exists in H%?" N H*P which solves (1.6.13). O

1.6.4 Proofs of Theorem 1.6.1 and Corollary 1.6.2

Proof of Theorem 1.6.1. By (A'%), conditions in Theorem 1.3.1 hold
for ¢(r) = 1, so that we have the well-posedness, strong Feller property and
irreducibility of (1.6.1). According to Theorem 1.6.3(1)—(2), it remains to
prove the existence of the invariant probability measure i and the claimed
assertions on the ergodicity.

(a) Let u solve (1.6.13) for b = 0 and f = —b® for large enough
A >0, ie.

(L -V — Nu = f, (1.6.16)

such that (1.6.14) implies (1.3.16). Moreover, for ©(x) =  + u(z), let P,
be the Markov semigroup associated with Y; := ©(X}), so that

P f(z) = {P(fo0)}(© Hz)), t>0,z R feBy(RY). (1.6.17)

Since limjz| o0 SUPjy,_ (<. WV‘ES’)’” =0, by (1.3.16) and V > 1, we find a

constant 6 € (0,1) such that
Vu(@)| V]z —6(x)] <e,
oV(O(z)) < V(x) <67'V(O(z)), zecR”

(1.6.18)
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Thus, it suffices to prove the desired assertions for ]5,5 replacing Py, where
the unique invariant probability measure i of P; and that p of P; satisfies

fi=jo0® 1 (1.6.19)

(b) Let X[*,Y;" and 7, be given in the proof of Theorem 1.3.1(2) for the
present time-homogeneous setting. Since Y;" = Y; and 159, (X}) =1 for
t < 7, and since 7, — 00 as n — oo, (1.6.16) implies that Y; := O(X})
solves the SDE

4Y; = {6W + M+ Vo u} (Xp)dt + {(VO)o }(Xy)dWs,

so that for any € € (0, 1Arg), by Itd’s formula and (2.4.8), we find a constant
c. > 0 such that

A{V(¥i) + My}
< [(10 + Vs ub(X0), TV (%) + e ([9V ()| + [ V2V (V) )|t
< {pM ) vvx)

+epD(X)] s {IVV]+ V2V + e sup (IVV]+[V2V]) e,

Xy,€) B(X¢,e)

Combining this with (1.6.2), when e > 0 is small enough we find constants
c1,co > 0 such that

AV (Y1) + My} < {er — 2@(V(Xy)) }dt.
By (1.6.18), this implies that for some constant ¢4 > 0,

AV (Y3) < {cs — 2®(8V (Y;)) }dt — dM,. (1.6.20)
Thus,

/ "Ea(v (v))ds < 2V E)
0 C2

<00, t>0,Yy=2xeR%

Since ®(AV) is a compact function, this implies the existence of invariant
probability ji according to the standard Bogoliubov-Krylov’s tightness ar-
gument. Moreover, (1.6.20) implies 4(®(0V)) < oo, so that by (1.6.18) and
(1.6.19), i(®(g9V)) < oo holds for g9 = 62.

(¢) By (1.3.5) and (1.6.17), P, is t-regular for any ¢ > 0, and any compact
set K C R? is a petite set of Pt, i.e. there exist ¢ > 0 and a nontrivial
measure v such that

inf Pfé, > v.
reK Lor =
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By Theorem 1.6.3(2), (1.6.3) holds. Let L be the generator of P,. When
®(r) > kr for some constant k& > 0, (1.6.20) implies
LV(z) <ki —kV(x), t>0,2eR? (1.6.21)

for some constants ki, ky > 0. Since lim|y|o V(2) = 0o and as observed
above that any compact set is a petite set for P;, by Theorem 1.6.3(3), we
obtain

|16, — filly < ce™ ™V (z), zeR%Lt>0
for some constants ¢, A > 0. Thus,
|Pf6, — Proy|lv < ce M(V(x)+V(y), t>0,z,yecR
Therefore, for any pi, uo € P,
1B 11 = P pallv = 1P (1 = p2)™ = P (= p2) ™ [lv
pr 2(pu1 — p2) ™ pr 2(p — p2)”

¢ 1 — p2lvar ! 1 — p2llvar
2 — + 2 — -
(11 — p2) (11 — p2) ) V)

1 — p2llvar lwr — p2llvar

= Sl — o
= 9 H1 M2 ||var v

ei)\tH,Ul - NQHWM‘(

< ce M|p1 — pallv

This together with (1.6.17) and (1.6.18) implies (1.6.4) for some constants
c, A > 0.

(d) Let ® be convex. By Jensen’s inequality and (1.6.20), ¢ :=
OE[V (Y;)] satisfies

%% < Ocy — Oco®(y), t>0. (1.6.22)

" ds
H(r)::/0 () r>0

We aim to prove that for some constant £ > 1

Let

v <k+H '(H(yw)—th™"), t>0, (1.6.23)

where H~!(r) := 0 for r < 0. We prove this estimate by considering three
situations.

(1) Let ®(y) < £. Since (1.6.22) implies 7; < 0 for 7, > ®~1(£), so

v <D Hey/cr), t>0. (1.6.24)
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(2) Let & < ®(y) < % Then (1.6.22) implies v; < 0 for all ¢ > 0 so that
v < ®7H(2¢4/c2), t>0. (1.6.25)
(3) Let ®(yo) > 2. 1If
2
t <ty = inf{t >0:3(7,) < ﬁ}
C2
then (1.6.22) implies

dH () Y < fco

dt — ®(y) — 27
so that
962
H(’Yt) S H(’YO) - 7ta te [O;tO]v (1626)

which implies
Ye < H ' (H(v0) — 0cat/2), t € [0, o).

Note that when ¢ > tg, (V¢)i>1, satisfies (1.6.22) with -, satisfying
& < D(yy,) < %4, 50 that (1.6.24) holds, i.c.

v < D7 (24 /o).
In conclusion, we obtain

v < D7 (2¢q/co) + HH(H (o) — fcat/2), t>0.

Combining this with (1) and (2), we derive (1.6.23) for some constant
k> 1.

(e) Since 1 < ®(r) — oo as r — oo, we find a constant § > 0 such
that ®(r) > dr,r > 0. So, by step (b), (1.6.4) holds. Combining this with
(1.6.23) we derive

1B 60 = illv = sup |P(Pif = a(f))(x)]
Ifl<v

<ce MPV(x) <clk+ H YHOV(x)) — k™ 's)fe ™.
Combining this with (1.6.17), (1.6.18) and (1.6.19), we derive (1.6.5) for

some constants k, A > 0.
Finally, if H(co) < oo, we take t* = kH(00) in (1.6.5) to derive
sup ||Pyd, — ally < ce” M, t >t
z€D

for some constants ¢, A > 0, which implies (1.6.6) by the argument leading
to (1.6.4) in step (¢). O
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Proof of Corollary 1.6.2. By (1.6.8), for any 6 € ((1 — a)*t, 1) there
exists a constant ¢z > 0 such that

B(r) > cs(1+7)'0 r>o0.

[

Then (1.6.2) holds for V := e(1+1*)
in (1) follows from Theorem 1.6.1(1).

Next, (1.6.7) and (1.6.9) imply (1.6.2) for V := 9(| - |?) and ®(r) = r,
so that the second assertion in (1) holds by Theorem 1.6.1(1).

Finally, if [/~ % < oo, then for any ¢ > 0, (1.6.2) holds for V :=

(1+]-2)7 and ®(r) = (1+ )" a¢(r7), so that I % < 00. Then the
proof is finished by Theorem 1.6.1(2). O

and ®(r) = r. So the first assertion

1.7 Notes and further results

In the previous sections we studied singular SDEs using Zvonkin’s transform
such that the non-degenerate noise kills the singular drift.

Intuitively, a degenerate noise should be able to kill a singular drift
taking values in the image of the noise coefficients. In this spirit, the
following SDE where oo* may be non-invertible has been studied in [Huang
and Wang (2018)]:

dX; = {6V + oblV N (Xp)dt + 04 (X,)dAW;, t € [0,T),

where |[Vb()]|o < 0o and |o¢b{”)| > A[b{”)| holds for some constant A > 0.
This model contains two typical degenerate singular SDEs:

(1) singular SDEs on Heisenberg groups;
(2) singular stochastic Hamiltonian systems.

In the following we introduce some results on these two typical degener-
ate models. We will also introduce a result of [Yang and Zhang (2020b)] for
the well-posedness of SDEs with a Kato class drift which is not included
in assumption (A!3). See also [Wang (2016)] and references therein for
the study of singular SDEs on Hilbert space as well as [Huang and Wang
(2018)] for path-dependent singular SDEs.
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1.7.1 Singular SDEs on Heisenberg groups

Consider the following vector fields on R™*¢, where m > 2,d > 1:

m d
Ui(x7 y) = Z Hkiaxk + Z(Alx)iay“ 1 S Z S m7 (171)

k=1 1=1
where (z,y) = (T1,. .+, Tm, Y1,---,Ya) € R™T4 O 1= (0;;) and A(1 <1 <

d) are m x m-matrices satisfying the following assumption:

(AM®) © is invertible, G; :== 4,0 — ©* A} #£ 0(1 <1 < d), and there exists
€ € [0,1) such that

d
EZalQ|Glu|2 > Z larar(Gru, Gru)|, a € R u e R™.
=1 1<i#k<d

Under this condition, the operator

1’ITL
L::§;U3

is hypoelliptic and symmetric in L?(R™*+%), and the associated diffusion
process solves the SDE for (X;,Y;) € Rm+4:

d(Xe, V) = > Ui(Xe) o dW} = Zdt + o(Xy)dWy, t € [0,T],  (1.7.2)

=1

where Wy := (W{)1<i<m is the m-dimensional Brownian motion, and

m d
o(z) = (0, Ayz,..., Agz), Z-V:=Y VyUi=> tr(0A)d,.

i=1 =1
We now consider the following SDE with a singular drift b : [0, T] x R™*4 —
R™:
d(X:, ;) = {o(Xe)be(Xe, Y2) + Z}dE + o(Xy)dW,. (1.7.3)
A typical example is d = m — 1,0 = I, and for some constants
ar # P,
a, ifi=1,j7=1+1,
(Al)i_]: ﬁl? 1fZ:l+17]:17

0, otherwise.
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Then G;Gy, = 0 for | # k, so that (A'6) holds with € = 0. In particular,
for qj = —f; = %, L is the Kohn-Laplacian operator on the (2m — 1)-
dimensional Heisenberg group. In general, R™*? is a group under the
action

(z,y) o (2", y) = (x + 2y +y + (") Ax,a')),

N (1.7.4)
(z,y), (2, y) € R4,

and U;,1 < ¢ < m are left-invariant vector fields. So, we call (1.7.3) a
singular SDE on the generalized Heisenberg group.

Let A, = sz:1 92 Then (A, W22(R%)) is a negative definite operator
in L2(R%). For any o > 0 and A > 0, we consider the operator (A — A,)®
defined on domain D((—A,)?) := H?**2(R%), see (1.2.1). This operator
extends naturally to a measurable function f on the product space R™*¢
such that f(z,-) € D((—A,)%) for z € R™:

(A= Ay)"f(z,y) == (A= B)* f(z,)(y)-

For any 8 > 0,p > 1, let H;"P be the space of measurable functions on
R™+4 such that

1l = 1= A)% fllp = 1Fllp + 1(=A9)% Fllp < o0,

where f =< g for two positive functions means that ¢! f < g < cf holds for
some constant ¢ > 1. Recall that for 8 € (0,2) and z € R™+4,

CA)EE) =cl8) [ (4 0~ Sy

holds for some constant ¢(/5) > 0.
For any 8 > 0,p,q > 1, let Hg’p’q be the completion of C§5°([0,T] x
R™*4) with respect to the norm

B8 B8
[ ppora = 110 =Ay)2 fllzg = N fllog + 1(=2y)= fllzg-

The following result is taken from Theorem 3.1 in [Huang and Wang (2018)].
Theorem 1.7.1. Assume (AY®) and let p,q > 1 satisfy % + %Qd < 1.
(1) If |b| € LY([0,T] x R™*%), then for any initial value x € R™T,
the SDE (1.7.3) has a weak solution (Xi)icpo,r) starting at x with
E[e*Jo 16(XOI”d) < o6 for all A > 0.
1
(2) If (hb) € HZ™"? holds for any h € Cg°(R™*9), then for any initial

value x € R™*9 the SDE (1.7.3) has a unique strong solution up to
life time.
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1.7.2 Singular stochastic Hamiltonian systems

As a probability model characterizing Langevin kinetic equations, the fol-
lowing degenerate SDE for (X;,Y;) € R?? is known as stochastic Hamilto-
nian equation system:

(1.7.5)

dXt == Zt(Xt,}/t)dt,
dY; = b(Xy, YVy)dt + 04(Xy, Yy)dW,, t€[0,T],

where W; is the d-dimensional Brownian motion and
oc:[0,T] xR* 5 RE@RY, Z,b:[0,T] x R* — R?

are measurable. A typical model is that Z;(z,y) = y, for which the SDE
becomes

dX; = Y,dt, (17.6)
dY; = by(Xy, Yy)dt 4 04 ( Xy, Yy)dWe, t € [0,T], o

where X; stands for the position at time ¢ of a moving random particle
while Y; is the speed of X, so that the noise perturbs the speed variable.
Let V() be the gradient in the i-th component of (z,y) € R? x R¢, i =
1,2. The following well-posedness result of (1.7.5) is taken from [Wang and
Zhang (2016)] where moments and continuity estimates are also presented.

Theorem 1.7.2. The SDE (1.7.5) is well-posed if there exist a closed
convex subspace M, of invertible d x d-matrices, an increasing function
¢ :[0,00) = [0, 00) with

1
/ @dt<oo, lim@ZL A >0,
o t tl0 ¢(t)

and a function v € C1(]0, 00); [0,00)) with

1
e _ Y 5 (O R
/0 ) - 00, hl?ul)nf{ 1 +ty (t)} > 0,

such that
(1) VA Z,(z,y) € My, and o,(x) is invertible such that
IV Zloo + llolloe + llo ™ oo < o0
(2) For anyt € [0,T] and x,y,2",y € R,
|Zi(@,y) = Zu(@' )| < | — /|56 (|x = 2']),
IV® Zi(w,y) = VP Zo(, )| < ¢y —y'])-
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(3) FEither

lbe(,y) — be(a’, )| < {Jo — /|3 p(|z — 2']) + 2 (ly — y'])}
||O-t(x) - Ut(y)H S |JI - y| V 7(|x - y‘)7 t S [OaT]axax/ay7y/ S Rd;

or [|[VPo||s < 00 and

Ibe(2,y) — be(a',y)| < {Je — 2|5 (|z — '|) + ¢(ly — v}
IV®oy(z,y) — Vo, (e, y)|| < |z — 2’|~z — 2],

lot(z,y) = oe(a’ )|l < | — 2|V A(|z = 2']), ¢ € [0,T], 2,2y, € R™.

By a standard truncation argument, if conditions in Theorem 1.7.2 hold
for z,2’,y,y" in any compact set of R?, then the SDE is locally well-posed;
i.e. it is well-posed up to life time. The weak well-posedness of (1.7.5) is
also derived in [Wang and Zhang (2016)] under slightly weaker conditions.

The following result for (1.7.6) is modified from [Zhang (2018)], where
by a localization argument, we have replaced LP by LP, see [Zhang (2021)]
for the weak existence of (1.7.6) where the drift b only satisfies a locally
integrable condition and may depend on the distribution density of the
solution (see Subsection 3.6.3).

Theorem 1.7.3. The SDE (1.7.6) is well-posed if ||0||oo + [|0 7 oo < 00
and there exists p > 2(2d + 1) such that

T
sup {190l + [ 10= A0, s} <o
0

t€[0,T)

where A, is the Laplacian for the first variable x and LP is with respect to
the Lebesgue measure on R??,

For other references on the SDE (1.7.6), see [Chaudru de Raynal (2017)]
and [Wang and Zhang (2018)] for a stronger situation where the drift is
Holder continuous, [Wang and Zhang (2013)] for Bismut formula for this
type of degenerate SDEs, [Wang (2017b)] and [Wang and Zhang (2014)]
for the hypercontractivity and dimension-free Harnack inequalities for finite
and infinite-dimensional stochastic Hamiltonian systems, and [Grothause
and Stigenbauer (2014)], [Grothause and Wang (2019)], [Baudoin et al
(2021)] and references therein for the ergodicity of stochastic Hamiltoni-
an systems.
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1.7.3 Singular SDEs with Kato and critical drifts
Consider the following SDE on R? with additive noise:
dX; = by (Xy)dt + dWy, ¢ € (0,7, (1.7.7)

ie. in (1.1.1) we set m = d and ¢ = I;. A measurable function f on
[0,T] x R? is said in the Kato class Kgo for a >0, if

. € _dt2—a _Az—y|?
im  sup / L (s)]sl~ 5 ds / e 5 s (1) |dy = 0.
0 te[0,T+e],zeR? J —¢ Rd

The following result is due to Theorems 2.2 and 5.1 in [Yang and Zhang
(2020b)].

Theorem 1.7.4. (1) If [b> € Ky for some o > 0, then (1.7.7) is well-
posed.

(2) If |b| € Kg,1 then (1.7.7) is weakly well-posed, and the solution has a
transition density satisfying the following Gaussian upper bounded estimate
for some constants cq,co > 0:

colz— \2
Pz, y) < Cilde_ e, 0<s<t<T,zycR%
(t—s)

Finally, the following well-posedness result has been proved in [Réckner
and Zhao (2023)] and [Réckner and Zhao (2020Db)] for b satisfying the critical
integrability condition [b| € LE with pio + q% =1.

Theorem 1.7.5. If either b € C([0,T); L“(R?)) or [b] € LP for some
(o, qo) € (2,00) with p% + q% =1, then (1.7.7) is well-posed. If |b] € L%,

then (1.7.7) is weakly well-posed.



July 27, 2024 9:20 ws-book9x6 13512-main page 61

Chapter 2

Singular Reflected SDEs

When the SDE (1.1.1) is restricted to a domain D C R%, a natural model
is the following reflected SDE:

dXt = bt(Xt)dt + O't(Xt)th + n(Xt)dlt, te [O,T}, (201)

where n is the inward normal vector field of the boundary 0D (see Def-
inition 2.1.1), and [; is a continuous adapted increasing process with dl;
supported on {t € [0,T]: X; € OD}.

The problem of confining a stochastic process to a domain goes back to
[Skorohod (1961, 1962)], and has been well developed under monotone (or
locally semi-Lipschitz) conditions, see the recent work of [Hino et al (2021)]
and references therein. In this chapter, we study (2.0.1) with singular
coefficients based on [Wang (2023b)].

2.1 Reflected SDE and Neumann problem
Let D Cc R? be a connected open domain with boundary dD. For any
r € 0D and r > 0, let

Neri={neR*:|n|=1,B(z—r,r)ND =0},

where B(x,r) := {y € R : |z — y| < r}. Since N, is decreasing in r > 0,
we have

Ny = UpsoNgr = lig)l/\/zm, x € 0D.
T
We call NV, the set of inward unit normal vectors of D at point z. When
AD is differentiable at x, N, is a singleton set. Otherwise AV, may be empty

or contain more than one vector. For instance, letting D be the interior of a
triangle in R?, at each vertex z, the set \V, contains infinite many vectors,

61
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whereas for D being the exterior of the triangle, NV, is empty at each vertex
point x.

Definition 2.1.1. A measurable map n : 9D — R? with n(z) € N,(z €
0D) is called an inward normal vector field of dD.

The following assumption on D goes back to [Lions and Sznitman
(1984); Saisho (1987)]. Recall that D is called convex, if rx + (1 —r)y € D
for z,y € D and r € [0,1].

(D) Either D is convex, or there exists a constant ro > 0 such that N, =
Ny vy # 0 for x € OM, and

sup inf {(v,n(y)) : y € B(z,79) N 0D, n(y) € N, }
vERY |v|=1 (211)
>ry, x€0D.

Remark 2.1.1. We present below some facts on assumption (D).

(1) According to Remark 1.1 in [Saisho (1987)], for any € 9D and r > 0,
n € N, , if and only if

ly —xf ~
g 0 Y €D,

so that the condition N, = N, ., in (D) implies

(yf:z:,n> 2

Cly—=?

, y€ D,z €0D,n(z) € N,. (2.1.2)
27‘0

(y —z,n(z)) >
When D is convex, N = N, ,, holds for all z € D and r¢ > 0,
(y—z,n(x)) >0, ye€ D,z e€dD,n(z) €N, (2.1.3)

and (2.1.1) holds if d = 2 or D is bounded, see [Tanaka (1979)].

(2) When 9D is C'-smooth, for each z € 9D the set A, is singleton. If
n(z) € N, is uniformly continuous in = € dD, then (2.1.1) holds for
small 79 > 0. In particular, (D) holds when 0D € C? in the following
sense.

Definition 2.1.2. For any r > 0, let

oD :={x € D:dist(z,0D) <r}, 0_,.D:={xe D:dist(z,0D) <r},
D, :=DU(0_,D) = {z € R? : dist(z, D) < r}.
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For any k € N, we write 9D € C* (respectively, D € CF) if there exists a
constant 1y > 0 such that the polar coordinate map

I:0D x [_TO7TO] Sl (eapa) =0+ Pan(e) € (aroD) U a—roD

is a C*-diffeomorphism, such that (6(x), pa(z)) := I~1(z) having contin-
uous (respectively, bounded and continuous) derivatives in x € (9,,D) U
O—_r, D up to the k-th order, where 0(x) is the projection of z to D and

polx) = dist(z, 8D)1{3TOD}(:v) — dist(z, 8D)1{37TDD}(:B),

(2.1.4)
x € (0p,D)UI_,, D.

Moreover, for ¢ € (0,1), we denote D € CF1e if it is in CF with V¥ py
and V*0 being e-Hélder continuous on 9, D. Finally, we write 9D € Cf L
if it is le with V¥py being Lipschitz continuous on d,, D.

Note that 9D € C’l’f does not imply the boundedness of D or 0D, but
any bounded C* domain satisfies 9D € CF.

(AZY) (D) holds, a := oo* and b are measurable functions on [0,T] x R¢,
b has decomposition b = b(®) + b1 with b£0)|Dc = 0, such that the
following conditions hold:

(1) ay is invertible with ||a|s + ||} s < 00, and
lim sup lat(z) — as(y)]| = 0. (2.1.5)
0o —y|<e t€(0,7]
(2) There exists (po, qo) € K such that |bV] € szl’g (T). Moreover, bV is
locally bounded on [0,T] x R, and there exist a constant L > 1 and
a function py € CZ(D) such that

b1 () — b (y)]

VO | :=  sup <L, (2.1.6)
te[0,T],x#y |$ - y|
0", Via)lp > —L, (Vpomlop =1, te[0,T].  (2.1.7)

(A2%2) (~A2'1) holds, and there exist | € N, {(pi, qi)}o<i<i C K and {f; €
LPi(T)}1<i<i such that

l
b € Lo(T), |[Vol* <> fi.
=1
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Remark 2.1.2. Each of the following two conditions implies the existence
of pp in (2.1.7):

(a) 0D € C? and there exists a constant K > 0 such that (bgl), n)lop > —K
for t € [0, T7;
(b) D is bounded and there exist € € (0,1) and g € D such that

(xo —z,n(x)) > el —xo|, =€ ID. (2.1.8)

Indeed, if (a) holds then there exists o > 0 such that py € CZ(9,,D).
Let h € C°°([0,00)) with h(r) = r for r € [0,70/4] and h(r) = r¢/2 for
r > ro/2. By taking pg = hopy we have py € CE(D), (Vpa,n)|op =1, and
for any x € D letting T € 0D such that |v — Z| = ps(x), we deduce from
(2.1.6) that

(b (), Vo)) = W (po (@) { (0 (@), n(@)) + (b (2) — bV (7),n(2)) }
> —(1+70)L||A |00

Therefore, (2.1.7) holds for some (different) constant L. Next, if (b) holds,
by (2.1.8) we may take pg(x) = N\/1+ |x — x|? for large enough N >
1 such that (Vjs,n)|ap > 1. So, by the boundedness of D and b(!) ¢
C([0,T] x R%), (2.1.7) holds for some constant L > 0.

Assumption (A%1) will be used to establish Krylov’s estimate for func-
tions f € ﬂ(p’q)eKig(T), see Lemma 2.2.1 below. To improve this estimate
for (p,q) satisfying % + % < 2 as in Theorem 1.2.3(2), we introduce one
more assumption.

Consider the following differential operators on D:

1
Lo = (0 V?) + Voo, € [0,T]: (2.1.9)

(1) _
Let {Pg’tb }r>t,>t>s>0 be the Neumann semigroup on D generated by

Ltg’b(l), that is, for any ¢ € CZ(D), and any t € (0,77, (P;%b(l)qb)se[ovt] is
the unique solution of the PDE

Ostg = —L‘S”b(l)us, Vauslop = 0 for s € [0,t),us = ¢. (2.1.10)

For any t > 0, let C*2([0,¢) x D) be the set of functions f € C4([0,t) x D)
with continuous derivatives 9; f, Vf and V2f.

For any p,g > 1, any 0 < s < t < T, let Eg’(s,t,D) be the class of
measurable functions on [s,¢] x D such that 15 f € LP(s,t). Moreover, we
denote L2(t, D) := Lb(0,t,D),t € (0,T].
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(A%3) 0D € C’g’L and the following conditions hold for o and b on [0,T] x

D:

(1) a; = oy0] is invertible, (2.1.5) holds for x,y € D, and for some
{fi € LY(T, D), (pi» @) € K}i<i<i,

!
lalloc + lla™ oo < 00, Vol <D fi
i=1

holds on [0,T] x D.

(2) b—b<1>+b<0> with Vb |op = 0, [V ||oo + || 1op (60, 1)|| s < 00
and |b0)| € Lé’g (T, D) for some (po,qo) € K with py > 2.

(3) For any ¢ € CZ(D) and t € (0,T], the PDE (2.1.10) has a unique
solution Pﬁ’gb(l)¢ € CY2([0,t) x D), such that for V¢ := ¢ and some
constant ¢ > 0, we have

o b 1
10 PZE $lloe < et — 5)7 2|V oo (2.1.11)

0<s<t<T i=126¢¢cCD).

i 5o, b _1 .
IVPI) ¢lloe <t =) 2|V oo,

Remark 2.1.3. (1) Let pg € CZ(9,, D) for some 7 > 0. Since Vpslap =
n, VO lao + [1op(b®,m) a0 < oo implies [15,, oY, Vpo)lleo < oo,
Wthh will be used in the proof of Lemma 2.2.2 below.
(2) (A%3)(3) holds if D is bounded with 9D € C** for some « € (0,1),
and there exists ¢ > 0 such that

{6V (@) = b ()] + llae(@) — as(y)|} < et — s + o —y|F),

(2.1.12)
s,t €[0,T), 2,y € D.

Indeed, D € C**° implies n € C'T*(9D), so that (2.1.12) implies esti-
mates (3.4) and (3.6) in Theorem VI.3.1 in [Carroni and Menaldi (1992)]

€ €)
with ¢ = oo for the Neumann heat kernel pgf ' (z,y) of PJ ;b . We note

that according to its proof, the condition (3.3) therein is assumed for some

€ (0,1) rather than all « € (0,1). In particular, Vngf( )(,y)(az) and

(1) —
8Spg”f (x,y) are continuous in (s,z) € [0,¢] x D, and there exists a con-
stant ¢ > 1 such that

(€] lz—y|?
asp z,y)| = La pD a‘b Ly <c|t—s|” e c(,,_ls) ,
s,t s ,t

b ati _ le—y|?

Vil (y)@)] < et — s~ e,
0<s<t<T, z,yeD, i=0,1,2.
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These properties imply (2.1.11). For instance, by [, ps¢(z,y)dy = 1, the
second estimate implies that for some constant ¢’ > 0,

b o.pL
0 P5) b(x)| = |05 /D Py (:c,y>¢<y>dy‘

s /Dpi’:f“) (z,9){o(y) — ¢(z) }dy

le=y|?
S C||V¢||oo/ |J? — y| . ‘t — 5|_%6_ c(t,yb,) dy
D
<d(t—s)"% 0<s<t<T,zeD.

When D = R%, these estimates (hence (2.1.11)) hold for more general o
and bV, see [Menozzi et al (2021)].

Definition 2.1.3. (1) A pair (X¢,1¢)ieo,r) is called a solution of (2.0.1),
if X, is an adapted continuous process on D, I, is an adapted continuous
increasing process with dl; supported on {¢t € [0,T] : X; € 9D}, such that
P-a.s.

/0 {1 ()] + [l (X, 2}dr < oo, £ € [0,T),

and for an inward normal vector field n of 9D, P-a.s.
t t t

X, = Xot | bo(Xo, L. )drt / o (X, L ) AWt / n(X,)dl,, t e [0,T].
0 0 0

In this case, l; is called the local time of X; on D. We call (2.0.1) strongly
well-posed if for any Xy € D, the equation has a unique solution.

(2) A triple (X¢,lt, Wi)iepo,r) is called a weak solution of (2.0.1), if
Wy is an m-dimensional Brownian motion under a probability space and
(Xt,1t)ef0,m) solves (2.0.1). (2.0.1) is said to have weak uniqueness (resp.
jointly weak uniqueness), if~ fol" any two weak solutions (Xt,lz, Wi)ielo.1)
under probability P and (X¢,ls, Wi)¢cjo,r) under probability P, Lx p =
L:f(o@ implies ’C(Xtvlt)te[O,T]‘P = ﬁ()?t,l})te[oyﬂ\]?’ (resp. ’C(XtJth)te[o,T]UP’ =
E(thhwt)t&[o’ﬂl@). We call (2.0.1) weakly well-posed, if it has a unique
weak solution for any initial value.

To characterize the linear Fokker-Planck equation associated with
(2.0.1), consider the time-distribution dependent second order differential
operator on D:

1
Ly = 5tr{atgg‘vz} + Vs, t€[0,T]. (2.1.13)
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Let C% (D) be the class of C2-functions on D satisfying the Neumann
boundary condition V,, f|sp = 0. By Itd’s formula, for any (weak) solution
X to (2.0.1), pt := Lx, solves the nonlinear Fokker-Planck equation

Oipy = Lips with respect to C%(D), t € [0,T] (2.1.14)

for probability measures on D, in the sense that u. € C([0,00); P(D)) and

ﬂt(f) :/Dfdlut:'u()(f)—i_/o ﬂs(Lsf)ds7
t€[0,7], f € CX(D).

(2.1.15)

To understand (2.1.14) as a linear Neumann problem on D, let L} be
the adjoint operator of Ly: for any g € L}, (D, (|lo¢(x)||* + |be(z)|)dz), Lig

loc
is the linear functional on CZ(D) given by

C4(D)> = [ {fLighwnta = [ faLuf} (o). (2.1.16)

Assume that Lx, has a density function py, i.e. uy := Lx, = pe(z)dz. It is
the case under a general non-degenerate or Hormander condition (see for
instance [Bogachev et al (2015)]). When D € C?, (2.1.14) implies that p,
solves the following linear Neumann problem on D:

(')tpt = L:pt, Vt)nptb[) = O, t e [O,T] (2117)
in the weak sense, where for a function g on 0D
Ving = Vo,0:ng + divap(groioin)

for the divergence divgp on 9D and the projection 7 to the tangent space
of OD:
mev = v — (v,n(z))n(z), ve Rz edD.

If in particular co*n = An holds on [0,00) x 9D for a function A # 0 a.e.,
Vinptlop = 0 is equivalent to the standard Neumann boundary condition

vnpt‘aD =0.
We now deduce (2.1.17) from (2.1.15). Firstly, by (2.1.16), (2.1.15)

implies

/D (fpr) ()dz = /D (fpo)(@)dz + / ds /D (fL?ps)(@)de,
feCiD).ten.T)
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so that Oypr = Lip:. Next, by the integration by parts formula, (2.1.15)
implies

/D(fpt)(x)dx:/D(fpo)(m)dx-i-/OtdS/D(PsLsf)(x)dx
:/D(fpo)(x)dx—l—/ot ds/D(fLips)(w)dw

+/Ot ds/aD{ngsa;nps — psVo,ornf}(z)de
:/D(fpo)(x)dx—l-/ot ds/D(fasps)(w)dw

+ /0 s /8 ASVouinpe + Jdivop(pirosoim)} (a)da

=ﬁ;m»wa+A<uLD{ﬂmmmnWMa feCD)teo.T)

ThUS, vt,npt|8D = 0.

2.2 Krylov’s and Khasminskii’s estimates

Let us first explain the main difficulty in the study of singular reflected
SDEs using Zvonkin’s transform. Consider the following simple reflected
SDE on D:

dX; = by(X;)dt + V2dW; + n(X;)dly, t€[0,T], (2.2.1)

where W; is the d-dimensional Brownian motion and fOT 16e]l% (raydt < 00
for some p,q > 2 with % + % < 1. By Lemma 1.2.2, when A > 0 is large
enough, the unique solution of the PDE

(325 + A + Vbt)ut = )\ut — bt, t e [O,T],’LLT =0

satisfies

1 T a
ol + 190l < 50 1920l 5= ([ 192000 ) < o
Thus, for any t € [0,7], ©; := id + u; is a homeomorphism on R?, and by
Itd’s formula, Y; := 04(X;) solves

dY; = Muy 0 O }(Y;)dt + AW,
+{(Vuz) 0 7} (Y)W, + {n(Xy) + Ve (Xy) bdiy.
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To prove the pathwise uniqueness of Y; by applying It6’s formula to |Y; —
Y;|?, where Y; := O;(X;) for another solution X; of (2.2.1) with local time
Iy, one needs to find a constant ¢ > 0 such that

(04(Xy) — O4(Xy), (n+ Viauy ) (X,))dl,
+ <®t(Xt) — et(Xt)7 (1’1 + Vnut)(f(t»dit (222)
< el X, — X, 2(dl + diy).

This is not implied by (2.1.2) except for d = 1, since only in this case the
vectors ©,(z) — O,(y) and (n+ Vyu,)(z) are in the same directions of z —y
and n(z) respectively for large A > 0.

To overcome this difficulty, we will construct a Zvokin’s transform by
solving the associated Neumann problem on D, for which Vautlop = 0.
Even in this case, ©; may also map a point from D to D® such that (2.1.2)
does not apply. To this end, we will construct a modified process of |X; —
X,|?> by using a function from [Dupuis and Ishii (1990)], see [Yang and
Zhang (2023)] for the study of bounded b and bounded C? domain D.

In the following we first deduce Krylov’s estimate and Khasminskii’s
estimate by using Lemma 1.2.2, then make improvements by solving a Neu-
mann problem on D.

Lemma 2.2.1. Assume (A?1). Let (p,q) € K.

(1) There exist a constant i > 1 depending only on (p,q), and a constan-
t ¢ > 1 increasing in Hb(O)HEZO(T), such that for any solution X of
0

(2.0.1), any 0 <ty <t; <T, and any f € Ef;(to,tl),

e[ / |fs<Xs>|)jds

E e/ X087, ) < oxp [+ el L,

F| £ My 521 (229

to,tl)]’ (2.2.4)

sup E(eA(lT*lt0)|fto) < ec(1+)‘2), A>0. (2.2.5)
t()E[O,T]
(2) For any u € C([0,T] x RY) with continuous Vu and
lulloo + 1 Vullos + 1% + Vool 2oy + 1V 2ull oy < 0, (2:2.6)
we have the following Ité’s formula for a solution X; to (2.0.1):
dut(Xt) = (8t + Lt)ut(Xt)dt + (Vut(Xt), O't(Xt)th>

(2.2.7)
+ (Vau)(X)dl, te[0,T].
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Proof. (1) We first prove (2.2.3) for j = 1. By Theorem 1.2.3(1), for any
e € (0,1) there exists a constant ¢ > 0 such that

]E( " (Xds

to

]:to) < e+ eBly — ol Fro) HIflzr o,y (2:28)

On the other hand, by (2.1.7) and the boundedness of o, we find a constant
c1 > 0 such that

Apo(X,) > —crdt — 1 |b{V (X)) [dt + dly + (Vpa(Xy), o0(X,)dW,). (2.2.9)
So, (2.2.8) with (p,q) = (po, go) implies that

ty
E(ly, — 1| Fio) < c1(t1 — to) + clﬂz(/ 6 (X,)|ds

to

]:to) + 116l 0o

< co + ClEE(ltl — lt0|ft0), t e [tO,T]

holds for some constant ¢y > 0 increasing in [|b()| ir(r)- By an approxi-
mation argument we may assume that Elr < oo, so that by taking € > 0
small enough such that c;e < %, we arrive at

E(ly, — Uty Fty) < ez, to<t1 <T (2.2.10)

for some constant c3 > 0 increasing in ||b(0)||£{;(T)~ This and (2.2.8) imply
(2.2.3) for j = 1, which further yields the inequality for any j > 1 as well as
(2.2.4) according to the proof of Theorem 1.2.4. Finally, combining (2.2.4)
with (2.2.9), b € Lro(T) and [0 Voo < 00, we derive (2.2.5).

(2) We first extend u to RI*! by letting us = wurpp for t € R, and
consider its mollifying approximation u!™ := S, (u) in (1.2.4). Then
lo]|lco < 00 and (2.2.6) imply

. . {n} _ g in}
nh_)rréo{Hu U || oo + |V (1 — w1 )| 0o

(2.2.11)
+ (9 + L) (u — U{n})HL’;(T)} =0.
Combining this with ||o]|e < oo and (2.2.3), we obtain
lim sup |ul™ (X)) — w(X,)| =0, P-as.
n=00 40,1
t t

lim [ Vyul™H(X,)dl, = / Vats(X,)dl,, P-a.s.
n—oo

’ ’ (2.2.12)

T
lim E / (8, + Lo)(ul™ — )| (X,)ds = 0, P-as.
0

n— oo

lim E sup
n=0o0  tel0,T)

A (V™ — u)(X.),0(X)d W) | = 0.
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Therefore, we derive (2.2.7) by letting n — oo in the following It6’s formula:

ul™ (X)) = ul™ (Xo) + /Ot@s + L) (ul™)(X,)ds

' ulnt o ! ulnt _
= [ e aw + [ (Tud X, te 0T

To improve Lemma 2.2.1 for (p,q) € K with %—i—% < 2, we ex-
tend Lemma 1.2.2 to the Neumann boundary case. For any k € N, let
Cg’k([to,tl] x D;R?) be the space of f € Cy([to,t1] x D;R?) with bounded
and continuous derivatives in # € D up to order k. Let Cp*([to, t1] x D; RY)
denote the space of f € Cy"*([to, 1] x D;R?) with bounded and continuous
O f.

Lemma 2.2.2. Assume (A%3) but without the condition on ||Vo|. Then
assumption (A%1) and the following assertions hold.

(1) Forany A > 0,0 <ty <t; <T and b, f € CI?’Q([tO,tl] x D;RY), the
PDE
JRYCH) _ - .
Oe+LY" +V5, =N = fi, @) = Vaiy|op = 0,t € [to, t1] (2.2.13)

has a unique solution @ € C;’Z([to,tl] x D;R%).

(2) For any (p,q),(p',q') € K and b € Cg’z([07T] x D;R%), there ewist
a constant ¢ > 0 depending only on (p,q) and (p',q'), and constants
Ao, ¢ > 0 increasing in ||I~)Hip:( such that for any 0 <ty <t; <T

q

and f € CY*([to, t1] x D;RY),
X (la oo + IV8M 2210 40, 0))

< ch”igﬁ(to,tl,D) (when p > 2), X\ > )\,

T,D)’

(2.2.14)

NIViM oo < elfliggonpy: A= 20  (2215)
and there exists decomposition & = aM' + a2 such that
||V2ﬂ)\71”i§(tg,t1,D) + ||(6t + vb(1>)a>\71||ifl’(to,t1,D)
+ [ vPar? 1@+ V)@t 1,y (2:2.16)

|£§f(t0,t1,D)
< C”f”ig(tmthp)a A= Ao

Proof. (1) Let V := C*([to, t1] x D; R%), which is a Banach space under

the norm

yn = sup e VOl + Vgl + | Vuelloo }, u €V
te[tu,tl]

[l
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for N > 0. To solve (2.2.13), for any A > 0 and v € V, let
t1
& (u) = / N prd UG uy — f)dt, s € [to, ).

Then (A%3) implies ®*(u) € C,*([to, 1] x D) with
(@ + LI = NN (u) = f, — V; us,

\ \ (2.2.17)
s € [thtlL an)t (’LL)|3D =0, (I)tl (u) =0.
So, it suffices to prove that ®* has a unique fixed point @* € V:
t1
@ = / e A=) prt I @) — fYdt, s € [to, t], (2.2.18)

which, according to (2.2.17), is the unique solution of (2.2.13) in
Cy 2 ([to, t1] x D;RY).
For any u, @ € V, by ||b|lcc < 00, we find a constant ¢; > 0 such that

t1 _
192 (u) — 23 (@)oo S/ [t |0 IV (e — @1t) [ oo
ty
< cl/ IV (uy — ) ||oodt, s € [to,t1].
Similarly, (2.1.11) with ¢ = 1 implies
t1 -
[V{®* (u)s = DM (@)s} oo < c/ (t = 5)7 2 |[belloo ||V (ue — g0 dt
t 1
<er [ (=5 HIV( - o) |t
while (2.1.11) with ¢ = 2 and [|b]|ee + || Vb¢||ee < 00 yield
t1 .
[V2{®] (u) — @3 (@) }Hoo < 0/ (t — )72 || V{V3, (ue — a)}|  dt
t1 N
< 61/ (t = )72 {[V(ur — @) l|oo + [[V?(ur — @) || oo pl.

Combining these with (2.2.17) and the boundedness of a and b
Cl?’l([to,tl] x D;R?), we find a constant cy > 0 such that

122 (u) — @*(@) v~

t1 g=N(t1—s) - 2
< cy sup

seltoti] s m{;lv (1w = @) pat

t1
< eollu —Tllv,y  sup / e N=9)( — s)"2dt.
s€[to,t1] /s

>
m



July 27, 2024 9:20 ws-book9x6 13512-main page 73

Singular Reflected SDEs 73

So, ®* is contractive under the norm || - ||y x for large enough N > 0, and
hence has a unique fixed point @* in V.

(2) To prove (2.2.14) and (2.2.16), we extend the PDE (2.2.13) to a
global one such that estimates in Lemma 1.2.2 apply. By (A4%3), there
exists g > 0 such that

©:0_pop = OpgD; 0 —1n(0) — 04+ rn(d), re€[0,ro],0 € 0D

is a C; ’L—diffeomorphism (i.e. it is a homeomorphism with V¢ bounded
and Lipschitz continuous) and pp := dist(-, D) € CZ(D., \ 9D), recall that
D,, = {pp < ro}. For any vector field v on 9,,D, v* := (p~1)*v is the
vector field on 8°, D := 0_,,D\ 0D given by

(v*,Vg)(x) == (1,V(go ™ ))(p(x), z€d, D, geC'(d, D).
We then extend bgl) and b; to R? by taking
b = 150" + h(pp/2)1a0, p(B)", b= 1pbi+1p0, p(b)*, (2219)
where h € C*°(R) such that
0<h<1, hlcsro/a) =1, hlre/2,00) = 0.

Since (A23) implies |15V < oo and VpbM|sp = 0, we have
VoMo < 0. Let

p(x) == xlp(x) + gp(aj)lang(m), z € D,,. (2.2.20)
We extend @ to [to,t;] x RY by setting
u} = hipp) (@) o @), t € [to,t1]. (2.2.21)
We claim that
u) € CpH(RY), t € [to, t1], (2.2.22)

where C; L(D,,) is the class of C}-functions f on D,, with Lipschitz con-
tinuous V f. Indeed, since ¢ is a C; L_diffeomorphism from d_,, D to 8,, D,
GRS C; (D, \ D) with bounded and continuous first and second order
derivatives, which together with @} € CZ(D) yields u} € Cp"(R%\ D).
So, we only need to verify that @ o @ € C;’L(DTO). To this end, for any
r €0_,,D and v € R, let

7m0 = v — (v,n(0(z)))n(0(x))
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be the projection of v € T, R? to the tangent space of 9D, recall that 6(x)
is the projection of z to 9D, i.e. x = 0(x) — pp(x)n(f(zx)) for pp(x) =
dist(z, D). We have
V(@) =V (o,n(0(2)m(0() P(@) + Vr,op(z)
= 1op(z)|(v,n(0(x)))n(6(z))
+{lp —1a0 p}(x)(v,n(0(x)))n(0(x))
+ 750 + pp(2)(Vr,on)(0(z)).
Since @y € CZ(D) with Vaa|sp = 0, (2.2.23) yields
V(@ 0 @)(x) = (Voiip) o ¢(x)
=2l p(2)(v,n(0(2))) - (n(6(2)), (V) o §()) (2.2.24)
+ pp(2) (Vv on)0)Tr) © B(x), T € Dy

Combining this with Vi € C}(D), Vai) |aD = 0 and that n, Vn are Lip-
schitz continuous on 0_,,D due to 9D € C , we conclude that V() o )
is Lipschitz continuous on Dy, .

Next, we construct the PDE satisfied by u*. By (2.2.23), we see that

(V@) (V@)* = Q holds on D, \ 9D, (2.2.25)

(2.2.23)

where @ is a d X d symmetric matrix valued function given by
(Q(@)v1,v2) = (v1,02) + pp(2)*((Vr,0,0) (0(2)), (Vr,0,1)(0(2)))
+ pD(x){<v1 —2lo_, p(){v1,0(0(2)))n(0(x)), (Vr,u,n)(0()))
+ (v2 = 21o_, p(x)(v2,0(0(2)))n(0(2)), (len)(ﬁ(x))>},
T € Dy, v1,v2 € R,
Then by taking 7o > 0 small enough, on D,, the matrix-valued functional
Q is bounded, invertible, Lipchitz continuous, and symmetric with
Q' (z) > %Id, T € D,y (2.2.26)
We extend a; := %atof from D to R? by letting

ar == h(pp/2)(a; o )Q~' + (1 — h(pp/2))1a. (2.2.27)
Since (2.1.5) holds for =,y € D, with this extension of a, it holds for all
z,y € R% Combining this with (2.2.19), Remark 2.1(a) for the existence

of ps, and noting that b, = bgl) + 1Db§0) extends b from D to R, we see
that (A1) holds.
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Since h(pp/2), h(pp) € CZ(R?) with h(pp/2) =1 on {h(pp) # 0}, and
since (V@)% = Q on D,, \ 9D, by (2.2.13), (2.2.19), (2.2.27) and (2.2.22),

we see that u; in (2.2.21) solves the PDE
(9 + tr{a,V?} + V0 g Jup = + £+ 2,
t € [to,t1],up, =0,
where outside the null set 0D,
f = (ho pp) fi 0 @+ 2@V (ko pp), V{a} o 5},
1= (@} 0 (LT + V5, )(ho pp).
By (2.2.23), h € C°°(]0,00)) with support supph C [0,r0/2],

(2.2.28)

lalloo +

115,, 0V palle < 00 according to (A*?) and Remark 2.2(1), we find

a constant ¢ > 0 such that
1 . -
0 < ey (Uil + V) 0 &,
(2
2] < A pppemay {0+ B} o .

(2.2.29)

Since | f| + |b| +|@*| is bounded on [0, T] x D, so is | fM|+|f@®| on [0, T] x
R?. Hence, by Lemma 1.2.2, the PDE (2.2.28) has a unique solution in

f{qz’p(to,tl). Moreover, for each ¢ = 1,2 and A > 0, the PDE

(8t+tr{atv2}+vb(1>+b) =)+ £t e fto, ] up =0 (2.2.30)
has a unique solution in H 3’p (to,t1), and there exist constants ¢1,co > 0
increasing in ||6\|Epr(T D) such that

q/ )

_d_2 l1_d_2
AT M oo + AT VUM 2o 1) < PPN 200

(||f||LP/2(t0 t1,D) + ||Ut HLP(tO,tl,D)) p>2,

MO0 96N oo + V20N 754, 0,
ALy L
110+ V40)u™ a0,y < el P2z,

< C2(Hf||i§(to,t1,D) + ||U ||Eg(t0,t1,D))v
and

1 _i_
N OT T ([0 oo + VUM |oo) + V20|

Lp t[) tl)

+ (0% + Vi u Yoty S Pz g4y

< 02(1 + ”bHiP;(to)tl,D)>”u}\H00ﬂ

(2.2.31)

(2.2.32)

(2.2.33)
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where the last step in these estimates follows from (2.2.29) and the integral
transform

¢:D,;\D— D
with [[(V@) s < 0o due to (2.2.25) and (2.2.26). By taking large enough

Ao > 0 increasing in ||b||ip/(T py» We derive from (2.2.31) and (2.2.33) that

1
Al PN AT ~A |
1™ oo + Ve zg 0,00 < 5 12272000 10 ) + 18 N 25 00,01,
1,
[ lloe + Ve [loc < Sl oo, A > o
Noting that the uniqueness of (2.2.28) and (2.2.30) implies u} = up"* +u)"?,
this and the definition of u} yield

2
A ~\ At Al
”u ”OO + ||Vu ”ig(tthD) < Z(Hut ZHOO + ||Vu ZHLZ(tmtl))
i=1

~A ~A
< S e+ 10+ 1 0,0}

N =

so that
||’l~j,)‘HOO + ||vﬂA||E5(t0,t17D) S Hf”is;g(tmtl,D)’ A Z )\O.

This together with (2.2.31)—(2.2.33) imply (2.2.14), (2.2.15) and (2.2.16)
for some ¢, > 0. [l

Lemma 2.2.3. Assume (A%3) but without the condition on ||Vo||. For any

(p,q) € K with p > 2, there exist a constant i > 1 depending only on (p,q),

and a constant ¢ > 1 increasing in ||b() ||igo (1,p)» Such that for any solution
0(T,

(Xt)tepo,r) of (2.0.1), any 0 <to <t; < T, and any f € ng(tg,tl),

q<ATﬂMQ®y

T .
]E(efto \fr,(Xf,)\dt|].‘t0) < exp [c + c||f\|%p/2 ], tg € [0,T]. (2.2.35)
q/2(t0,T)

EJS&MﬂV i>1 (2230

fzz;g(to,h)’

Proof. According to the proofs of Theorems 1.2.3 and 1.2.4, for (2.2.34),
it suffices to consider j = 1 and f € C§°([to,t1] x R?). In the following, all
constants are increasing in ||b(°) ||i§g () When b varies.

Let (b%™),>1 be the mollifying approximations of b = 1560, We
have

6%l z0 ry < 16N zgg (s Jimm 8" =0 o 7y = 0. (2.2.36)
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By Lemma 2.2.2 for (f,0,...,0) replacing f for f € C5°([to,t1] x R?), there
exist constants ¢, \g > 0 such that for any A > A, the following PDE on D

g (1) n
@+ LYY + Vi = Nup™ = fi,

(2.2.37)
t e [t(],tl), Vnu?’"

An
oD = 0, ’LLt1 =0

has a unique solution in C12([tg,#;] x D), and for some constant ¢; > 0,
we have

A,n
u’ [e's) S c P ’
| [ 1||fHLq;§(t0,t1,D) (2.2.38)
‘ ;u)\’n”oo < allfllees A= Ao,n = 1.

Moreover, since (A?3) implies (A%!) due to Lemma 2.2.2, by (2.2.3) for
f = b —1%"|, we find a constant c¢; > 0 such that

t1
IE:(/ 6@ —p0m|(X,)ds

to

]:to) < CQHb(O)_bomuiﬁg(to,tl)’ n>1. (2.2.39)

By (2.2.37) and u™" € C;’Q([to, t1]x D), we have the following It6’s formula
dup™ (X)) = (0 + Le)up™(X,)dt + dM,
= {ft + vbgo)_bg,nu?’n}(Xt)dt + th

for some martingale M;. Combining this with (2.2.38) and (2.2.39), we
obtain

ty
0 0,n
E( ft<xt>dt‘fto)gq|f||i5;§(t07tl)+clcz||f|oo||b§>_bt 1225 0.0

to
Therefore, by (2.2.36), we may let n — oo to derive (2.2.34) for j =1. O

2.3 Weak well-posedness

The following is the main result of this section.

Theorem 2.3.1 (Weak well-posedness). If either (A*?) or (A?3)
holds, then (2.0.1) is weakly well-posed. Moreover, for any k > 1 there
exists a constant ¢ > 0 such that
IE[ sup |Xf|k} <e(1+|zff), Bt <e¢, zeD, (2.3.1)
te[0,T]
where (XF,17) is the (weak) solution of (2.0.1) with X} = x.

Below we first introduce some results for the reflected SDE with random
coefficients, then present two lemmas which will be used in the proof of
Theorem 2.3.1.
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2.3.1 Preparations
Consider the following reflected SDE with random coefficients:
dXt = Jt(Xt)dt + St(Xt)th + H(Xt)dlt, te [O,T], (232)

where (W;);c(o,7) is an m-dimensional Brownian motion on a complete fil-
tration probability space (€2, {F;}icjo,77, P),

J:0,T)x QxR - RY, §:[0,7T] x QxR - RY@R™

are progressively measurable, and [; is the local time of X; on 0D. Let A

be the set of increasing functions A : (0,1] — (0, c0) such that fl dz) = o0,
and let T be the class of increasing functions « : [0,00) — [1,00) such that
-

A continuous adapted process (X, l¢)co,r) is called a solution of (2.3.2)
with life time 7, if 7 is a stopping time, lim¢t, sup,¢jg 4 [Xs| = oo holds on
{r < T}, ; is an increasing process with di; supported on {t € [0,7) : X; €
0D}, and P-a.s.

t t
Xt:X0+/ Jo(X, ds+/ So(X)dW, +/ n(X,)dl,, tel0,T)t<r.
0

When P(7 > T) = 1, we call the solution non-explosive. A weak solution

(X, 1, W) is defined in the same spirit where W; is an m-dimensional

Brownian motion under a (not given) complete filtration probability space.
We have the following result.

Theorem 2.3.2. Assume (D).

(1) For any two solutions X; and Y; of (2.3.2) with Xo =Yy € D, if there
exist h € A and a positive L' ([0, T])-valued random variable g such that
P-a.s.

1S:(X¢) — S (YD)l Hs + 2(Xe — Ve, Ju(Xy) — Je(Y2))
< gh(|Xy = Y3|?), te[0,T],

then X; = Y; up to life time.

(2) If P-a.s. S and J are continuous and locally bounded on [0,00) x D,
then for any initial value in D, (2.3.2) has a weak solution up to life
time. If S and J are bounded and deterministic S and J on [0,T] x D,
(2.3.2) has a non-explosive weak solution.

(3) If either D is bounded, or there exist 1 <V € CY2([0,T] x D) with

lim inf Vi(xz) =00, VaVilop <0,

@€ D, x| o0 t€[0,T]
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and a positive L'([0,T])-valued random variable g such that P-a.s.
tr{S;S;V2Vi} + 2(VV (), Jo(x)) + 20,Vi(x)
<g(V(2)), te[0,T],z€D

holds for some v € T', then any solution to (2.3.2) is non-explosive.

Remark 2.3.1. When D is convex, this result goes back to [Tanaka
(1979)], and in general it is mainly summarized from Theorem 1, Corol-
lary 1 and Theorem 2 in [Hino et al (2021)].

The condition in the first assertion is modified from that in [Hino et al
(2021)):

IS¢ () =S () [ Frs+2(z—y, Ju(2) =T (y)) < geh(la—y|?), t € [0,T], 2,y € D,
since in the proof of this assertion, one only uses the upper bound of
156(Xe) = Se(Yo) s + 20Xe = Yo, Je(Xe) = Ju(Y)),

so that the present condition is enough for the pathwise uniqueness. The
present version of the condition is weaker when L x, y,) does not have full
support R% x R<.

In assertion (3), the term tr{S;S; V2V, } was formulated in Theorem 1.1
in [Hino et al (2021)] as ||S;(z)||*AV;(x), which should be changed into the
present one according to It6’s formula of V;(X).

Moreover, when S and J are bounded and deterministic, the weak ex-
istence is given in Theorem 2.1 in [Rozkosz and Slominski (1997)].

Next, we apply Theorem 2.3.2 to (2.0.1) with coefficients satisfying the
following assumption, where (1;) is known as monotone or semi-Lipschitz
condition, which comparing with (1,) allows o to be unbounded.

(H) b and o are locally bounded and satisfy the following conditions.

(1) One of the following conditions hold:

(1a) (A%1) holds with |V < Si_, fi for some {f; € LE(T), (ps, i) €
K}i<i<i, or (A%3) holds. Moreover, there exists a constant K > 0

such that
<$ - Y bt(x) - bt(y)> < K|.’I} - y|27 te [OvTany € D. (233)
(1,) There exists an increasing function h : [0,00) — [0,00) with
01 TerTT(T) = 00, such that

2(z =y, be(2) = be(y)) " + lloe(@) — oe (W) s

; _ (2.3.4)
<h(lz—yl|*), t€[0,T],z,y €D.
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(2) |loll < e(1+4]-]?) holds for some constant ¢ > 0, there exist xo € D
and 0D C 0D such that
(z —20,n(z)) <0, 2€9D\ID, n(x) € Ny; (2.3.5)
and when dD # () there exists a function py € C%(D) such that
<v[)8a n>|3D > léDa
sup_{[lo" Voll + ller{oo"V?po} | + (b, Vpo) "} < K. (236)
[0,7]x D
According to (2.1.3) and Remark 2.1.2, (H)(2) holds with pg = 0if D is
convex, and it holds with ps = pg in 0, /2D for some ro > 0 when 9D € C?
and ||o|| + (b, Vps)~ is bounded on [0,T] X 0y, D.
To estimate | X;| and [l;, we need the following lemma on the maximal
functional for nonnegative functions f on D:

1
M T):= su 7/ 1 r+y)dy, € D.
Df( ) TE(OI,)l) |B(0,’I")| B(O,r)( Df)( y) Y

Lemma 2.3.3. Let 9D € C?.
(1) For any real function f on D with |V f| € L}, (D),

loc
[f(2)=f ()| < clz—y|(Mp|V fI(2)+Mp|V fI(y)+| fll=), ae. z,y € D.
(2) There exists a constant ¢ > 0 such that for any nonnegative measurable
function f on [0,T] x D,
IMbflizeir,py < cllfllzeer )y Pra=1.

Proof. We only prove (1), since (2) follows from Lemma 1.3.4(2) with
15 f replacing f. Let ¢ be in (2.2.20). Take 0 < h € Cp°(R) with h(r) =1
for r < rg/4 and h(r) = 0 for r > /2. We then extend a function f on D
to f on R? by letting

f(x):={hopp}tfop,
where pp is the distance function to D. Then there exists a constant ¢ > 0
such that

IV <1p|V Sl +clo, .p(If o @l + Vo).
By Lemma 1.3.4(1) and the integral transform z +— @(x) with |[(V) 7|
bounded on 0_,,D, we find constants ¢1,ce > 0 such that for any z,y € D,

[f(x) = f)l = |f(2) = f(y)l
< erlz =y { M|V (@) + M|V FI(y) + [| Flloo }
< ez — y{(Mp |V f|(x) + Mp|VF(y) + | fllc}
where M := Mp for D = R, O
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We are now able to prove the following result.

Lemma 2.3.4. Assume (D) and (H)(1). Then the reflected SDE (2.0.1)
is well-posed up to life time. If (H)(2) holds, then the solution is non-
explosive, and for any k > 0 there exists a constant ¢ > 0 such that

E[ sup \ngvf] <1+ |z|F), zeD,telo,T), (2.3.7)
t€[0,T]
sup E(ek(sz[fo)|fto) <ec 0<typ<t;<T, (2.3.8)
z€D

where (X, 1%) is the solution with X¢ = x, and I¥ := fot 150py(X3)dig.

Proof. (1) We first prove the existence and uniqueness up to life time.
Since o and b are locally bounded, by a truncation argument we may and
do assume that o and b are bounded. Indeed, let for any n > 1, we take
o (@) = o ({1 A (/e])}a), 0" (@) = hlle|/m)be(a), ¢ €[0,T],2 € D,
where h € C§°([0,00)) with 0 < h < 1 and h|j,;] = 1. Then o{™} and b{"}
are bounded on [0, T] x D, and for some constant K, > 0,
bf" (@) 0" (y) =)t
< h(lz]/n)(be(x) = bely), x — y)™ + [A(|z]/n) = h(|yl/n) |[(be(y), 2 — y) T
< (be(@) = be(y),x — )" + Kulz —yf*, t€[0,T),2,y € D, |yl < |a|.
So, by the symmetry of (b;{n} (x) — b;{"}(y),x — T in (z,9), (1,) implies
that o and b{™ are bounded on [0, 7] x D and satisfy (2.3.3) with K + K,
replacing K; while (1) and
{1A(n/lz))}z = {1 A (n/lyD}yl < [z =y
yield that oi™ and b{™} are bounded and satisfy (2.3.4) for 2h(r) + K,r
replacing h(r). Therefore, if the well-posedness is proved under (H) for
bounded b and o, then the SDE is well-posed up to the hitting time of
0B(0,n) for any n > 1, i.e. it is well-posed up to life time.
When o and b are bounded, the weak existence is implied by Theo-
rem 2.3.2(2). By the Yamada-Watanabe principle, it suffices to verify the

pathwise uniqueness. Let X; and Y; be two solutions starting from z € D.
By Lemma 2.3.3(1) and (H)(1),

low(Xe) — 0e(Yo) [ Frs + 2(Xe — Vi, b (X0) — be (V1))

< gt| Xt — Yi|?, under (1,),
T |\ R(X: = Yi)?), under (1,),
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where for some constant ¢ > 0,
gt == c{1+ Mpl||Voi|*(X¢) + Mpl|Vae|*(Y2) }.
So, by Theorem 2.3.2(1), it suffices to prove fOT gdt < oo under (1,). By
Lemma 2.3.3, this follows from (2.2.3) under condition (4%1) with ||Vo||? <
22:1 fi, or (2.2.34) under condition (A%3).
(2) To prove the non-explosion, we simply denote (X¢,l;) = (XF,IT)
and let
o = 1nf{t € [0,T] : | X¢| > n}, n>1.
By (H)(2), we find a constant ¢; > 0 such that
dpa(Xy) > —Kdt +dM, +di;, t€[0,T] (2.3.9)
holds for dM; = (04(X;)*Vpa(X¢),dW;) satisfying d(M), < K2dt. This
implies (2.3.8). Next, by (H), we find a constant ¢; > 0 such that
2(be(2), @ — o) + lloe(@) I
= 2(be(w) — bi(wo), = — wo) + [loe(x) — o (o)l
+2(be(wo), & — wo) + l|ow (o) 715 + 2(0e(20), 0¢(2)) ms
<ei(1+ |z —x0)?), z€D.
Then by (H)(2) and It6’s formula, for any k& > 2 we find a constant c¢; > 0
such that
d|X; — 0" < ea(1+ | Xy — mo|")dt + dM, + k| X, — xo|"~1dl,,
where M, is a local martingale with d(M), < e(1 + | X, — x0|*)2dt. By
BDG’s inequality and (2.3.8), we find constants c¢s,cs > 0 such that

nt{n} = sup (1+]|Xs—xz0l"), n>1,t€0,7T]
SE[0,tAT,]

satisfies

t
En™ <1+ |z — mof* + 03E/ nitds
0

' : (n} hzl 7
seamr ([ i Pas) ke[l
0

t
< Ent{”}+c4(1+|x\’“)+c4/ Enl™tds, te0,T].
0

1
2
By Gronwall’s lemma, we obtain

En{™) < 2¢4(1 + [x|*)e>!, t€[0,T],x € D,n > 1,
which implies that X; is non-explosive and (2.3.7) holds for some constant
c>0. g
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2.3.2 Proof of Theorem 2.3.1

Let Xo = 2 € D. We consider the following two cases respectively.
(a) Let (A%2) hold. Then (H) holds for b(") replacing b. By Lem-
ma 2.3.4, the reflected SDE

dX, = bl (X,)dt + oy (X)dW, + n(X,)dl, (2.3.10)

is well-posed with (2.3.7) holding for all £ > 1 and some constant ¢ > 0
depending on k. By Lemmas 2.2.1-2.2.3, (2.3.8) and (A%!) with [0(9|? €
f/gg (T), we see that (2.2.4) holds for f := [b(®)]?, so that for some map
¢:[1,00) = (0,00) independent of the initial value z,

sup E?|Rp|" < c(k), k>1 (2.3.11)
x€D

holds for
Ry 1= el (103 (0000) 0O H(Xo).dWa)— 4 [ 1o (000 ) 0O P(Xa)ds 4 ¢ [0, 77,

By Girsanov’s theorem,
t
W, = Wt—/ {0 (os0) O} (X,)ds, te€[0,T]
0

is an m-dimensional Brownian motion under the probability measure Q :=
RrP. Rewriting (2.3.10) as

dXt = bt(Xt)dt + O't(Xt)th + I’I(Xt)dlt,

we see that (XhltaWt)te[O,T] under probability Q is a weak solution of
(2.0.1). Moreover, letting Eg be the expectation under Q, by (2.3.7) and
(2.3.11), for any k > 1 we find a constant ¢(k) > 0 independent of x such
that

Bo| sup |Xi[*| =E[Rr sup |X,|"]
t€[0,T] t€[0,T

1
< E[83)* ([E sw 1X,™])" <)t +1al"), z€D
t€[0,T]
for some constant ¢ > 0. Similarly, (2.3.8) and (2.3.11) imply
Eg[e*'m] < C(k), k>1

for constants C'(k) > 0 independent of z. So, (2.3.1) holds for this weak
solution.

To prove the weak uniqueness, let (X;, s, Wt)te[o,T] under probability P
be another weak solution of (2.0.1) with Xy =z, i.e.

dXt = bt(Xt)dt + O't(Xt)th + H(Xt)dl_t7 te [O,T],XO = xT. (2312)
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It suffices to show
Lx, 1) ieomP = LX) icp0.m0- (2.3.13)

By Lemma 2.2.1 the estimate (2.2.4) holds for X; and f = |b(®)|?, so that

Ep [e? Ji 1087 (XOPd]  og - X >0, (2.3.14)
By Girsanov’s theorem, this and ||o*(00*)7!|ls < oo imply that

GUX W) = Wit [ (030,00 0O (Kds, 1€ 0.7
is an 7m—_dimensional Brownian motion under the probability Q :=
R(X,W)P, where
R(X, W) := e~ Jo (ol (o) WO} (Xa)dWa) =3 [ Hol (0u0D) b} (R Pds
Reformulating (2.3.12) as
AX; = b (X,)dt + 04(X)dG (X, W) + n(X,)dl,, t e [0,T),
and applying the well-posedness of (2.3.10) which implies the joint weak
uniqueness, we conclude that
LRG0 R W))eio,1110 = L1 W cio,m P+

Noting that
R(X,W)~L = e~ Jo Hol(oao) TN X0Pds p( X G(X, W)L,

this implies that for any bounded continuous function F on C([0,T];R? x
[0,00)),

= Eg[R(X,G(X,W)) te~ Jo Kot (oo D) O HXIPds p( % )]
= Ep[R(X, W) Le= Jo Hoi(oaod) Y (X0 "ds p 1))
= Ep[RrF (X, )] = Eg[F(X,1)].

Therefore, (2.3.13) holds.

(b) Let (4%3) hold. By Lemma 2.2.3, (2.3.11) and (2.3.14) hold, so that
the desired assertions follow from Girsanov’s transforms as in step (a).
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2.4 Strong well-posedness and gradient estimates

Let B;r (D) be the space of bounded strictly positive measurable functions
on D. The first result in this section is the following.

Theorem 2.4.1. Assume that one of the following conditions holds:

(i) d =1 and (A?2?) holds;

(ii) (A23) holds with p; > 2,1 <i <.

Then (2.0.1) is well-posed, and for any k > 1, there exists a constant ¢ > 0
such that

IEJ[ sup | X7 — Xty\k] <clz —y*, z,yeD. (2.4.1)
t€[0,T]

Consequently,

(1) For any p > 1 there exists a constant c(p) > 0 such that
Pf(x) :==E[f(X])], z€ D,t€0,T],f € By(D)

satisfies
VES| < c@)PIVP)7, feCyD), te0.T).  (242)
(2) There ezist a constant C > 0 and a map c: (1.00) — (0,00) such that
VRS AR, (e OT1FEBD) p> 1 (243
Ptf2 - (Ptf)2 < tCPt|Vf‘2a f € Cl}(D)a te [07T]7 (244)

Clz —y|?

Pylog f(z) < log Pf(y) + ————, (2.4.5)

t€ (0,7),z,y € D, f € B (D).

To relax the condition on b(!) as in (A!-2)(2), we consider the following
time dependent differential operator on D:

1
LY = itr(atafvz), te[0,7). (2.4.6)

Let {PZ,}7>t,>t>s>0 be the Neumann semigroup on D generated by L7;
that is, for any ¢ € CZ(D), and any t € (0,T], (PZ,
solution of the PDE

Osus = —LIus, Vnuslgp =0 for s € [0,t),ur = . (2.4.7)

©)sejo, is the unique
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(A%4) (A23) holds for bV = 0. Moreover, there exist constants K, >

0, increasing ¢ € C1([0,00);[1,00)) with fooo %;(s) = o0, and a
compact function V € C?(R%;[1,00)) satisfying
Vam)V(y) <0, z€dD,ly—z|<ro (2.4.8)

for some constant rq > 0, such that

sup {|VV|+[|V?V||} < KV(z),
B(z,e)

(0 (@), VV (@) +elpf (2)] sup {[VV]+[IV2V]}  (24.9)

(z.€)
< Ké(V(x)), (t,z)e€l0,T]xR™L

(2.4.8) can be dropped when 9D is bounded. Indeed, for V satisfying
(2.4.9), when D is bounded, we may take 1 <V € C?(R%) such that V = 1
on 8,,(8D) and V = V outside a compact set, so that (2.4.8) and (2.4.9)
hold for V replacing V with a different constant K. Similarly, (2.4.8) holds
for V(z1,x9) := Vi(x1) + Va(x3) and D = D; x R! where | € N is less than
d, 9D, C R%!is bounded, and V; = 1 in a neighborhood of 0D;.

Theorem 2.4.2. Assume (A%4). Then (2.0.1) is well-posed up to time T.
Moreover, for any t € (0,T],

lim |6, — POy llear =0, t€(0,T],z €D, (2.4.10)

D3y—x

and Py has probability density (i.e. heat kernel) pi(x,y) such that

~inf pe(z,y) >0, N>1,te(0,7], (2.4.11)
x,yeDNBN, pa(y)>N—1

where inf () := oo.

2.4.1 Proof of Theorem 2.4.1

The weak existence is implied by Theorem 2.3.1. By the Yamada-Watanabe
principle in Lemma 1.3.2, it suffices to prove estimate (2.4.1) which in
particular implies the pathwise uniqueness as well as estimate (2.4.2), since

P, — P, X&) — f(X}
Daoy—zx |‘T - y| Doy—zx |1‘ - y|
X7) = f(XD)P\ (E[|XF — XP|[7T] 5
§limsup<E|f( ;) f(yt)\) ( [XE = Xi| 1])
D3y—az | X7 — X/ P | —y|P—T

< e(p)(PIVFP)?(2), =€ D,te0,T),feCHD).
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Let (Xt(i),lt(i)) be two solutions of (2.0.1) with X(()i) =29 € Di =1,2.
Below we prove (2.4.1) in situations (¢) and (i) respectively, and prove
inequalities in Theorem 2.4.1(2).

Proof of Theorem 2.4.1 under (i). In this case, D is an interval or
a half-line. For any A > 0, let u} be the unique solution to (1.2.3) with
to=0,t; =T and f = —b® that is,

O + Lo)u) = xu} — bV, te0,T],u) =0. (2.4.12)
By Lemma 1.2.2 with f = —b(0) ¢ iggg (T), we take large enough A > 0
such that
1
I T (2413)
Then

O)Mz) =z +u}z), x€R
is a diffeomorphism and there exists a constant C' > 0 such that

1
sle =yl <167(@) - Of W) < 20w —yl, zyeREe(0,T]. (2414)

Let (Xt(i),lgi)) solve (2.0.1) for Xéi) =29 e D,i=1,2, and let
v =erx() = X +ud(x("), i=12
By Itd’s formula in Lemma 2.2.1(2),
Ay, ? = B, (v )dt + S, (V) dW, + {1+ Vur (X)) (XDl (2.4.15)
holds for ¢ = 1,2 and
Bi(x) = {b{" + M} ({07} (@),
Si(z) = {1+ Vu))o: } ({67} (2)).

By (2.4.13), (2.4.16) and ||[Vb(V||o < 1 due to (4%1), we find nonnegative
functions F; € Lk (T),0 <4 <1 such that

(2.4.16)

!
IVBlloo, [IVSII* <) Fi (2.4.17)
i=0
Since d = 1, for any x € 9D and y € D we have y — z = |y — x|n(x), so
that (2.4.13) implies

(67 (y) — O (), {1+ Vu (2) In(x)) > ly—=2|(1— || Vut||s)? > 0. (2.4.18)
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Combining this with (2.4.15) and It6’s formula, up to a local martingale we
have

1B(Y")) — B,(v,?))|
v - v

1 2
RLIDACARE A >>||%{s}dt_
|Y1-€(1) _ }/t(2)|2

d‘Yi(l) B Yt(2)‘2k < 2k|Yt(1) _ Yt(2)2k{

So, by Lemma 2.3.3, we find a constant ¢; > 0 and a local martingale M,
such that

t
YO YO < D - [0 - YO PRL, + d
0
where

t
Lo= [ {1Mo(IVB] + V2 )
0 (2.4.19)

+ Mp (VB + [V, %) (V) }ds.

Combining this with (2.2.4), (2.4.17), Lemma 2.3.3 and the stochastic Gron-
wall inequality in Lemma 1.3.3, we find constants cg, cs > 0 such that

(B[ s, 020007 - 020" = (& sup i - ¥

cy1p p=1
< o Y — VP PR (Ber TE) 7 < 5100 (V) — 03 (2P

This together with (2.4.14) implies (2.4.1) for some constant ¢ > 0. O

To prove (2.4.1) under (A%3), we need the following lemma due to
Lemma 5.2 in [Yang and Zhang (2023)], which is contained in the proof of
Lemma 4.4 in [Dupuis and Ishii (1990)]. Let V() and V(?) be the gradient
operators in the first and second variables on R¢ x R<.

Lemma 2.4.3. There exists a function g € C*(R? x RY) N C?((R%\ {0}) x
R?) having the following properties for some constants ko > 1 and ky €
(0,1) :

(1) k’1|$|2 < g(xvy) < k’2|$|2, T,y €< Rd;
(2) (VWg(z,y).y) <0, [y| =1, (z,y) < kalzl;
(3) (V) (VD)ig(x,y)| < kolx>~?, i,j €{0,1,2},i+j < 2,2,y € RL
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Proof of Theorem 2.4.1 under (ii). Let b%" be the mollifying approx-
imation of b(®) = 1Db(0). By Lemma 2.2.2, there exists A\g > 0 such that
for any A > )¢ and n > 1, the PDE

(@ + Lt + Vo0 Nup™ = b uy™ = Vpup"|op = 0, (2.4.20)

has a unique solution in C’,}’Q([O7 T] x D), and there exist constants &, ¢ > 0
such that

)\E(Hu)\,n

oo + [IVUM o) + (10 + V) )u™" | £20 7, ) (2.421)
+ HV%A’nHig’g(T,D) < C||b(0)||igg(T,D)7 A2 Ag,n > 1.

Then for large enough Ao > 0, ©)" := id + u,"" satisfies
1 _
ST =y <1677(@) — 0" (W) < 2w —y’, A>Ao,z,y€D. (2422)

Since 0D € CbQ’L, there exists a constant 79 > 0 such that py € CZ(9,,D)
with V2pp Lipschitz continuous on 8,, D. Take h € C°*°([0, 0); [0, 0)) such
that h' > 0, h(r) =r for r < rg/2 and h(r) = r¢ for r > rg.

Let (Xt(i),lii)) solve (2.0.1) starting at () € D for i = 1,2. Alterna-
tively to | X" — X |2, we consider the process

Hy = g(07"(X{M) = 01"(X(*), V(h o po)(X{M)), € [0,7),
where g is in Lemma 2.4.3. By Lemma 2.4.3(1) and (2.4.22), we have
k
31|X§” — X2 < H, < 2k XV = X2 teo,T). (2.4.23)
Simply denote
&= 01" (XY) =02 (X)), e = V(o po)(X{V).

By Ito’s formula, (2.4.20) and V,0""|sp = n due to Vau)"
have

dér = " () = xe (X(7)
+ (B = b XYY = (68 — b))t
+{I(ver M (X)) = (VO e (X)) baw,
+n(x)di? - n(x{?)an?,

dm = LV (ko po) (X V) dt + {[V2(h 0 o)y HX )W,
+{VaV(ho pa) (XMl

oD :0, we

(2.4.24)
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Hence, 1t6’s formula for H; reads
dH, = Aydt + BP AV — BP a1 + dn, (2.4.25)
where for N, := {(VO}™)o, }(XV) — {(VO} ™)1 } (X)),

Ay = (Vg m), 2™ (XD) = 2" (X2))

(Vg€ m), Vo€ (X() = Ty 003" (X))
(V®g(&,m), LiV(ho pa)(Xt(l))> + <(V(1))29(5t, 1) NeNJ') g

(VOVg(g,me), Neoe(XV)V2(ho po)(X{)) g

(

+
+
+((VO)2g(&me), {V2(ho po)loa; V2 (ho pa) JX)) g

(2.4.26)

Bt(l) ::<V(1)g(ft, nt)s n(Xt(l))>
+ (VP g(&m), Va{V(ho po) HX)), (2.4.27)
B =(VWg(&,m), n(X?)),

M, := (V@g(&,m), [{V2(h o po)}or] (X{M)d W)
+{(VOg(er,m), [{(VOI™a HXD) — (VO™ HXD) ]| dWr).
(2.4.28)

In the following we estimate A;, Bt(l) and ng) respectively.
Firstly, (2.1.2) implies

2
n n r =Yy ? a
@)~ 0X"()n(w) < LI 4 9 wlo — ), v 0Dy € D.

Combining this with (2.4.21), we find constants €y, Ay > 0 such that for
any A > Aq,

(0" (x) — O (y),n(2)) < k1O (z) — 0" ()],
r€0D,yeD,|lz—y| <ep,n>1,t€]0,T).
So, Lemma 2.4.3 yields
(VWg(0}"(x) — 0" (y), n(x)), n(z))
< kol {jamy>203 107" (2) — O7" (1)) (2.4.29)
< koegt|O ™ () — O} ()2, 2 €D,y e D,n>1,t€0,T).
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Next, by the same reason leading to (2.4.29), we find a constant ¢; > 0

such that
(VWg(07"(x) — 07" (1), V<hopa><x>>7n< )
> (Vg0 () — 0" (y) n(y))
— Vg1 () — 0" (y > <h opa>(y>>
— Vg0 (x) — 0" (1), V(h o po)(x))]
|

> —1jay|>eophagy 07" (z) — O ()
— [Wlloo IV g(07" () = 3" (1), ) [0 07" () — 3" ()
> —¢1|0)" () — 0" (y))?, zeD,yedD,n>1tel0,T)
(2.4.30)

Moreover, by (A%?) and hopy € CE’L(D), there exists a constant C' > 0
such that

IL{V(hopa)}| < C(L+ V), te[0,T).

Combining this with Lemma 2.4.3, Lemma 2.3.3, (2.4.23), and (2.4.26)—
(2.4.30), we find a constant K > 0 such that

A < KB — b0 2 (M) + [0 — b 12X}

2
n 2 i
L RXD - X,52>|2{1 FOIKD) + 3 Mo | T{TOM o (X )>},

=1

T D {HZMDHV{ ver o () |
=1
BV < KXV - xPP, -B? <K|x{V - xP1.

Combining these with (2.4.23) and (2.4.25), for any k& > 1, we find a con-
stant ¢; > 0 such that

dH} <ep| X — x PP

< B — B0 RXM) 4+ p0 — b0 R(xP)}de (2.4.31)
tolxM - xP ke, + kHFAM,,

where

Lp=1" 41

¢ (2.4.32)
+/O {14 O 1x) )+ Mo |[V{TOR o} P X) )}ds.

=1
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For any m > 1, let
T = inf {t € [0,7] : [ XV — XD > m}.
By (2.4.23) and (2.4.31), we find a constant co > 0 such that

AT ~
X0, = X3 1R < Gnlt) + e / XD — XPPRac, + N1, (2.4.33)
0

holds for some local martingale M, and

G (t) = colzV) — D)2k
tATm
deamtD [T O g0 XD) 4 60— 10X s,
0

Since (A?3) and (2.4.21) imply
!
sup [|[V{(VO "o} < ZFi
n>1 i—0

for some 0 < F; € I:gil (T),0 < i <1, by (2.2.34), (2.2.35), the stochastic
Gronwall lemma, and Lemma 2.3.3, for any p € (%, 1), there exist constants
c3,cq4 > 0 such that

(&] swp X0 - XPP]) < o5 T EG ()

SE[0,tATH]
< C4(|.T(1) _ x(2)|2k + mQ(k—l)Hb(O) _ bO,nHigg(T))7 n,m > 1.

By first letting n — oo then m — oo and applying (2.2.36), we derive
(2.4.1) for some constant ¢ > 0. O

Proof of Theorem 2.4.1(2). Let {Ps;}1>s>0 be the Markov semigroup
associated with (2.0.1), i.e.
P f(x) := E[f(Xf’t)}, t>s, f € By(D),

where (X7 ;):>s is the unique solution of (2.0.1) starting from z at time s.

We have

Pif(x) = E[(Po: /)(XD)], s €[0,4], f € Cy(D), (2.4.34)
where X7 := X§ .. By (2.4.2) for (2.0.1) from time s, for any p > 1, we
have

VP o f] < c(p) (Pt VFP)7, 0<s<t<T,feCHD). (2.4.35)

If P, f € CY%([0,t] x D) for f € C%(D) such that
(0s + Ly)Pssf =0, f€C%(D),VaPsiflop =0, (2.4.36)
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then the desired inequalities follow from (2.4.35) by taking derivative in s
to the following reference functions respectively:

Ps{Ps,t(E"‘f)}pv Ps{Ps,t(g"‘f)}Qv Ps{IOg Pg,t(a—l—f)}(x—i-s(y—s)/t), ERS [O,t],

see for instance the proof of Theorem 3.1 in [Wang and Zhang (2014)].
However, in the present singular setting it is not clear whether (2.4.36)
holds or not. So, below we make an approximation argument.

(a) Proof of (2.4.3). Let {b%"},,>1 be the mollifying approximations of
b0, By (A%3), for any f € C% (D) and t € (0,T), the equation

n tT,b(1> ¢ o,bM) n
us,t = Ps,t f + Ps,:r' (vbg‘"us,t)dr? s € [O7t]

S

has a unique solution in C*2([0,t] x D), and P/, f := ul, satisfies
(s + LI + Vyou) P2 f =0, s € 0,8, f € C3(D). (2.4.37)
By this and It6’s formula for the reflected SDE
AXT = (0 00 (XM At 0y (XS AW An (XMl ¢ > 5, X3 =,
we obtain
Plf(z) =Ef(X5E), 0<s<t.
Let X; solve (2.0.1) from time s with X, = z, and define
&= {07 (0503) T (O — b)) H(Xo),
R, = oo EdWa) =5 [T 1&-1%dr g c [0, 4],
By Girsanov’s theorem, we obtain
|Ps,tf - P;ntf‘(x) = [E[f(X:) — Re f(X1)]|
< [l (Beo 5 ) 1) =2 | fllen, 0<s<t<T,

where ¢ > 0 is a constant, and due to (2.2.35), &, — 0 as n — oco. Conse-
quently,

|Ps.ef — Pgiflloo < enllfllooy, m>1,0<s <t <T. (2.4.38)

Moreover, the proof of (2.4.35) implies that it holds for P, replacing P ;
uniformly in n > 1, since the constant is increasing in ||b(®)|| £70 (7> Which
0
is not less than Hbo’"”igo (T). Thus,
0

VP2 f| < e(p)(PL|VFP)5, 0<s<t<T,feCLD),n>1 (24.39)



July 27, 2024 9:20 ws-book9x6 13512-main page 94

94 Distribution Dependent Stochastic Differential Equations

Now, let 0 < f € C%(D) and t € (0,T]. For any ¢ > 0 and p € (1,2],
by (2.4.39), (2.4.37), (2.4.38), (A%3) and It&’s formula, we find constants
c1,co > 0 such that

d(e+ P f = {p(e + PLAP B — )", VP f)
+p< D)(e+ Po )" 2|U VPR 2 HX)ds + dM,
> {ea(e + PRSP VP2 = eV Flloolbt” = 077} (Xo)ds + dM,

holds for s € [0,¢],¢ > 0 and some martingale M,. By (2.2.3), Holder’s

inequality, and [|6(® — %" ;0 () — 0 as n — 00, we find a constant c3 > 0
0

and sequence g, — 0 as n — oo such that

en t Pile+ [P — (PP f 4 &)
zCz/ Po{(e + PrfyP [V PT £} ds
0

- / (PAVPLI)F
~ o P+ P

t vpg 2
> 03/ VEF S s—ds, €€ (0,1).
0 {Ps(e+Pof)P} 7
Thus, for any « € D and « # y € B(z,0) C D for small § > 0 such that
z,=x+r(y—x)€eD, rel0,1],

this implies

PP" — P, P )d
‘fo | | st() 5|</ dr/ IVP,P tf| ,)ds
rT—y

: /o1 (/ot (P, (lsv +P ngtt;;f}f (o) ds)

(/{P (e + PR (2,)d s)édr

g/o &5 en + Pile + )Y (w4 1y — 2)

t R 3
x (/ (e + PPy fP ) r(z T)ds) dr.
0
Combining this with (2.4.38) and letting n — 0o,e — 0, we obtain

B <|; - th Wi / (e B () ( / t(Ptfpfp”(xT)ds) ar
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Letting y — x, we derive (2.4.3) for some constant ¢ depending on p for
p € (1,2] and all f € C%(D). By Jensen’s inequality the estimate also holds
for p > 2, and by approximation argument, it holds for all f € B,(D).

(b) Proof of (2.4.4). By (2.4.39), 1t6’s formula and (A%3), we find a
constant ¢4 > 0 and a martingale M, such that

A(PL*(X) = 2{(VPLF. b — 007) + 0LV PL f12H(X)ds + dM,

< ea{[VF o0 = 007 + P2V }(X,)ds + dM,, s € [0,1].
Integrating both sides over s € [0, ], taking expectations and letting n —
00, and combining with (2.2.3) and (2.4.38), we derive (2.4.4).

(¢) Proof of (2.4.5). Let 0 < f € C%(D). By taking It6’s formula to
Pl (e + f)(X;) for € > 0 and taking expectation, we derive
d
P log Pl{e+ [} = —Pu|oyVlog P+ Po (b b3, Vog Py (e+ 1))
For any z,y € D, let v : [0,1] — D be a curve linking = and y such that
[9-] < c|lz — y| for some constant ¢ > 0 independent of z,y. Combining
these with (4%3) and (2.4.2), for p = 2 we find a constant c5 > 0 such that

t
Pylog{e + f}(x) —log P'{e + f}(y) = /0 %Ps log Py, f(7s/¢)ds

t
< / {ct™ Nz — y||[VPslog P2, f(vs/e)| — PsloiV log Pl f12} (s /¢ )ds
0

t _ 2 o 2
§05/ [z tj" ds:c5|””t W2y e0,1).
0

Therefore, (2.4.5) holds. O

2.4.2 Proof of Theorem 2.4.2

(a) The well-posedness. The proof is similar to that of Theorem 1.3.1(2).
For any n > 1, let

b= 15,00 + 0.
By Theorem 2.4.1, the following SDE is well-posed:
dX" =0 XPM)dt + o( X)) AW, + n(X A", X" = @

Let 7% :=inf{t € [0,7] : | X;""| > n}. Then X;"" solves (2.0.1) up to time
7, and by the uniqueness we have

X =X0" t< i ATE n,m > 1.

So, it suffices to prove that 7% — oo as n — oo.
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Let L) := L7 +V,©. By Lemma 2.2.2, (A%5) implies that for any A > 0,
the PDE '

O+ Ly = My — 0", ¢t €0, T, ur =0, Vauglop =0 (2.4.40)

has a unique solution u € f{é’g (T'), and there exist constants Ag,c,0 > 0
such that

A (Jlullso + [ Vulloo) + ||3tu||f;§g(T) + ||V2UHZ§3(T) <e, A> X (2.4.41)
So, we may take A\ > \g such that
ulloo + [[Vulloo <&, (2.4.42)

where we take ¢ < 1o when 9D exists. Let O¢(x) = x + u¢(x). By (2.4.8)
and (2.4.42) for € < ry when 9D exists, we have

(VV(¥), n(XEM)dE™ < 0.
So, by Ito’s formula, Y;"" := ©,(X;"") satisfies
Av;™ = {156 + My + 13, Vo }(XP")dt
4 {(VO)o H(XZ™) AW, + n(X)dIr.

By (2.4.42) and (A%%), there exists a constant ¢y > 0 such that for some
martingale My,

V(") + M}
< ({00 + Ty (X ), YV (™)

(2.4.43)

+ ol [TV (V)| + V2V (™ )t
< {OOXE"), VV(XE") + oKV (V)

FepXEN] sup (V] VRV fe
B xT,n

X7 e)
< {KQ(V(X{™) + e KV (¥;"") fdt
< K{o((A1+eK)V(Y,"™) +cV(Y,"")}dt, t <.
Letting H(r) := for W, by It6’s formula and noting that ¢’ > 0,
we find a constant ¢; > 0 such that
dH(V(Y"™) < erdt + dM;, t €[0,77]
holds for some martingale M,. Thus,

E[(H o V)(YA2)] < V(e +u(@) +eit, t€[0.T]n> 1,
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Since (2.4.42) and |z| > n imply |©:(2)] > |2| — |u(2)] > n — &, we derive
V(.T + @O(JC)) + Clt

n St) < - =: gt n(x), t>0. 2.4.44

1nf\y|2n—s H(V(y)) " ( ) ( )

Since lim|,| o0 H(V)(z) = [ m = 00, we obtain 7% — oco(n —
00) as desired.

(b) Proof of (2.4.10). By Proposition 1.3.8 in [Wang (2013)], the log-
Harnack inequality

Pylog f(y) <log P, f(z) + clx —y|?, z,y € D,0< f € By(D)

for some constant ¢ > 0 implies the gradient estimate
VP f|> < 2cP|f|?, f € By(D),
and hence

1,1/% | Py — P0yllvar =0, z € D.

Let P[* be the Markov semigroup associated with X;*. Thus, by the log-
Harnack inequality in Theorem 2.4.1(2), we have

liin |(P*)* 05 — (P")*0yllvar =0, t € (0,T]. (2.4.45)
y x
On the other hand, by (2.4.44) and X; = XJ* for t < 7,,, we obtain

lim sup P76y — (P")"0yllvar
=0 e PNB(x,1)

= lim sup P f(y) — PP f(y)]
00| f|<1,yeDNB(,1)

<2 lim sup P(rf <t)=0.
N ye DNB(x,1)

Combining this with (2.4.45) and the triangle inequality, we derive (2.4.10).
(¢) Finally, let L, := L? + Vy,. For any f € C2((0,T) x D), by Itd’s
formula,

dft(Xt) - (at + Lt)ft(Xt)dt + th
holds for some martingale My, so that fo = fr = 0 yields

/ PO+ L0, feCE((0.7) x D).
0

By the Harnack inequality as in Theorem 3 in [Aronson and Serrin (1967)]
(see also [Trudinger (1968)]), for any 0 < s <t < T and N > 1 with

By = {xeDﬂBN: pa(z) zN_l}
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having positive volume, there exists a constant c(s, ¢, N) > 0 such that the
heat kernel pi(z,y) of P, satisfies

supps(z,-) <e(s,t, N)inf pi(x, ), x € D. (2.4.46)
BN Bn

Since fBN ps(x,y)dy — 1 as N — oo, this implies p;(z,y) > 0 for any
(t,z,y) € (0,T] x D x D. In particular, P15 > 0. On the other hand,
(2.4.10) implies that P15  is continuous, so that

inf Pl >0, te (0,T].
L g, (2) (0,7]

This together with (2.4.46) gives

1
inf >—— inf Pz ()>0, 0<s<t<T.
(DﬂBN)XBNpt o C(S,t,N) IGDQBN BN( )

Therefore, (2.4.11) holds.

2.5 Power Harnack inequality

By repeating the proof of Theorem 1.5.2 with coupling in (1.5.12) for the
reflected SDE, and noting that for convex D we have

(X, = Yo,n(X,))dIF <0, —(X,—Y,,n(Y,))dl} <0,
we obtain the following result.

Theorem 2.5.1. Assume that D is convex and (A*3) holds with p; > 2.
Let

ko= sup  |low(z) — o (@)]? w1 = [lo*(00*) 2
te[0,T],z,ycRd

Then for any

. 3+ 1+ (8kok)™!
p>p*i= ——,
V14 (8kor1)~ 1 —1

there exists a constant ¢ > 0 such that (1.5.7) holds for P; associated with
(2.0.1).
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2.6 Exponential ergodicity

Consider the following time dependent differential operator on D:
1
LY = 5tr(ata,;*v?), te0,7). (2.6.1)

Let {P¢,}1>t,>t>s>0 be the Neumann semigroup on D generated by L{;
that is, for any ¢ € CZ(D), and any t € (0,T], (PZy¢)sejo,q is the unique

s,t
solution of the PDE
Osus = —LIus, Vauslgp =0 for s € [0,),ur = . (2.6.2)

For any t > 0, let C;"*([0,#] x D) be the set of functions f € Cy([0,¢] x D)
with bounded and continuous derivatives &, f, Vf and V2f.

(A%5) 0D € CE’L and the following conditions hold.
(1) (AY*) holds for D replacing R?, and there exists o > 0 such that
(2.4.8) holds.
(2) For any ¢ € CZ(D), the PDE (2.6.2) has a unique solution P{p €
C;"Q(D), such that for some constant ¢ > 0 we have

IVIPf gl < c(1AD) T2 [V g, >0, i=1,2,0€ C}D),
where V0 := .

By repeating the proof of Theorem 1.6.1 using Theorem 2.4.2 in place
of Theorem 1.3.1, we derive the following result.

Theorem 2.6.1. Assume (A?5). Then all assertions in Theorem 1.6.1
hold for the reflected SDE (2.0.1).
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Chapter 3

DDSDESs: Well-posedness

To characterize nonlinear PDEs in Vlasov’s kinetic theory, the “propagation
of chaos” using mean field particle systems was proposed by Kac [Kac (1954,
1959)]. To realize this proposal, McKean [McKean (1966)] introduced a
stochastic differential equation with expectation dependent drift, which de-
scribes the evolution of a single particle in the mean field particle systems
as the number of particles goes to infinity. So, in references, distribution de-
pendent SDEs (DDSDEs) are called McKean-Valasov or mean field SDEs,
see [Sznitman (1991)] and [Carmona and Delarue (2019)].

In this chapter, we first describe the correspondence between DDSDEs
and nonlinear Fokker-Planck equations, then introduce a general result to
solve DDSDESs by using SDEs with fixed distribution parameters, and final-
ly present results on the well-posedness for monotone and singular coeffi-
cients respectively. Most results in this part are organized from [Huang et al
(2021)], [Wang (2023b)], [Wang (2023¢)] and [Ren (2023)]. Some additional
results are introduced in the last section.

3.1 DDSDE and nonlinear Fokker-Planck equation

For fixed T' > 0, we consider the following DDSDE on R?:
dX; = bt(Xt, ['X,)dt + O't(Xt, EXt)th, te [0, T], (311)

where (W};)c(o,7) is an m-dimensional Brownian motion on a complete fil-
tration probability space (Q, {F; }teo,7, P), Le := Po&™ ! is the distribution
(i.e. the law) of a random variable &, and

b:[0,T] xR x P — R4,

c:[0,T] xREx P - RI®@R™

101
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are measurable. When different probability measures are concerned, we
denote L¢ by L¢p to emphasize the distribution of £ under P. Recall that P
is the space of probability measures on R? equipped with the weak topology.

We will solve (3.1.1) for distributions in a sub-space P of P equipped
with a complete metric d whose topology may be different from the weak
topology, such that Lx belongs to the class

C*([0,T); P) := {p:10,7] — P is weakly continuous},

(0,71 P) = {n e C(0.T:P) : sup d(ps, o) < 0. (3.12)
te[0,T]

Without specification, the complete metric on P = P defaults to the total
variation distance which is bounded, so that C*([0,T]; P) = C™([0,T]; P).

Definition 3.1.1.

(1) A continuous adapted process (X¢):eo, 1) is called a solution of (3.1.1),
if P-a.s.

T
/ (16X, £)] + o0 (X L,)[2]dr < o0,
0

t t
Xt:Xo—i-/ bT(XT,LX,,,)dr—&—/ or(X,, Lx,)AW,, te[0,T].
0 0

(2) A couple (f(t, Wt)te[O,T] is called a weak solution of (3.1.1), if
(Wt)tepo,r) is the m-dimensional Brownian motion on a complete fil-
tration probability space (€2, {F;}icjo, 7], P) such that (Xi)icjo,r) is a
solution of (3.1.1) for (W, P) replacing (W, P). (3.1.1) is called weak-
ly unique for an initial distribution v € P, if for any two weak solutions
(Xti, th) with EX%UP”" = v, we have [,X1|p1 = EXQ\IP’Q-

(3) Let P be a subspace of P equipped with a complete metric d. (3.1.1)
is called strongly (respectively, weakly) well-posed for distributions in
P, if for any Fo-measurable Xo with Lx, € P (respectively, any initial
distribution v € P), it has a unique strong (respectively, weak) solution
with Lx. € C([0,T];P). When P = P, we drop “for distributions in
P” and simply call the equation strongly (respectively, weakly) well-
posed.

We call the equation well-posed (for distributions in 75) if it is both
strongly and weakly well-posed (for distributions in 75)
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Remark 3.1.1. Assume that for any s € [0,7), (3.1.1) with t € [s,T] is
well-posed for distributions in P. Let P, be the class of F,-measurable &
with L¢ € P. For any s € [0,T) and ¢ € Py, let (Xit)te[s’;p] be the unique
solution of (3.1.1) for ¢ € [s,T] and X§_ = £. Then

Py = EXf,t’ ==L € P
gives rise to a family of maps

Pip:P—P, 0<s<t<T,
which satisfy the semigroup property

Pr, = PP 0<s<t<T. (3.1.3)

5,19
Moreover, (Xg’t)0<s<t<T ceP. is a Markov process satisfying the flow prop-
erty
I3 Xf - ~
Xo=X,0", 0<s<r<t<T {€Ps (3.1.4)

Due to the distribution dependence of the SDE, this Markov process is
nonlinear in spatial variable, i.e. the crucial property for linear Markov
process

Prn= [ (Pibulde), 0<s<t<Tpue?
Rd

is no longer available. The study of nonlinear Markov process goes back to
McKean [McKean (1966)], see [Ren et al (2022)], [Rehmeier and Réckner
(2022)] and references therein.

We also consider the density dependent SDE (also denote by DDSDE),
which is known as Nemytskii-type McKean-Vlasov SDE:

dXe = be( Xy, bx, (Xt), Ux, )dt + 0e( X4, Ux, (X)), Lx, )dWr, (3.1.5)
where (x, is the distribution density function of X, and for D being the
class of probability density functions,

b:[0,7] x R x [0,00) x D — R,
0:[0,T] x R x [0,00) x D — R*®@ R™
are measurable. When b,(x,r, p) = b.(z, p) and oy(x,r, p) = o¢(z, p) do not

depend on r, this SDE reduces to (3.1.1).
Next, consider the following nonlinear Fokker-Planck equation on P:

8tut = L;Htut’ t e [O,T], (316)
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where for any (¢,u) € [0,7] x P, the Kolmogorov operator Ly, on R? is
given by

1
Ltvﬂ tl"{ UtJt) v }+vbf (+,1)

Definition 3.1.2. p. € C([0,T); P) is called a solution of (3.1.6), if

T
[ ar [ Qo)+ b)) < o
0 Rd

and for any f € C§°(RY),

0= [ e =no(5)+ / (L H)dr, tE0,T]. (3.1.7)

Assume that (X7, Wt)te[o 7] is a weak solution of (3.1.1) under a com-
plete filtration probability space (€2, {}-t}te[o T P) such that

/[O AC (X L. )|+ 0n(%r L) [F)drdP < o0, (3.18)

By It0’s formula we have
Af (Xe) = { Loy, F(Xo) }dt + (VF(X0), 08, Xy, ) dWS).

Integrating both sides over [0, t] and taking expectations, we obtain (3.1.7)
for puy := Lz, 5, hence py solves (3.1.6). On the other hand, by the su-
perposition theorem, a solution of (3.1.6) also provides a weak solution of
(3.1.1), see [Barbu and Rockner (2020)] and [Barbu and Rockner (2018)].
So, we have the following correspondence between (3.1.1) and (3.1.6).

Theorem 3.1.1. Let v € P. Then the DDSDE (3.1.1) has a weak solution
(X, Wi)eepo,m) with ﬁf(o\l?’ = v satisfying (3.1.8), if and only if (3.1.6) has
a solution (i )eeo,r) with po = v. In this case, pp = Lg 5, t € [0,T].

Similarly, we may formulate the nonlinear PDE for the density function
fr := £x, associated with (3.1.5):

Orfr = L;ftfh

where Ltyf = %tr{(JtU:)(', f(), f)VQ} + Vbt(.,f(,),f).
To conclude this section, we introduce some typical nonlinear PDES
and state their corresponding DDSDEs.
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Example 3.1.1 (Landau type equations). Consider the following non-
linear PDE for probability density functions (f;):ejo,7) on R<:

O fr = ;div{ /Rd a(- = 2)(fi(2)V fi — ftVft(z))dz}, (3.1.9)

where a : R? — R? ® R? has weak derivatives. For the real-world model of
homogeneous Landau equation, we have d = 3 and
. TR
a(z) = |zt (I BRFE ), reR?

for some constant r € [—3, 1]. In this case (3.1.9) is a limit version of Boltz-
mann equation (for thermodynamic system) when all collisions become
grazing. To characterize this equation using SDE, let m = d, b = %diva
and o = y/a. Consider the DDSDE

dXt = (b * £Xt)(Xt)dt + (O’ * [th)(Xt)tha (3110)
where
(f*p)(z) = Wf@—ZMMd~
Then the distribution density fi(z) := Exéiidz) solves the Landau type

equation (3.1.9).

There are many references studying Landau type equations, see [Desvil-
lettes and Villani (2000a)], [Desvillettes and Villani (2000b)], [Carrapatoso
(2015)], [Fournier and Guillin (2017)], [Funaki (1985)], [Guérin (2002)] and
references within.

Example 3.1.2 (Porous media equation). Consider the following non-
linear PDE for probability density functions on R¢:

Oufe = Af2. (3.1.11)
Then for any solution to the (3.1.5) with coefficients
b=0, o(z,r)=V2rly,
the probability density function solves the porous media equation (3.1.11).

Example 3.1.3 (Granular media equation). Consider the following
nonlinear PDE for probability density functions on R%:

Ofe=Af +div{f;,VV + iV(W « f)}. (3.1.12)
Then the associated DDSDE (3.1.1) has coefficients
blz,p) = —=VV(z) = V(W % p)(x), olz,p) =2,
where I; is the d x d identity matrix, and

(W 1) (&) = / W~ y)uldy).
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3.2 Fixed point in distribution and Yamada-Watanabe
principle

To solve (3.1.1), we will fix a subspace P C P. Typical examples of (75, CZ)
include the following Py, for a constant k € (0, 00) and Py for a measurable
function V.

(1) Lk-Wasserstein space for k > 0:
Pp={peP: u(- ") <o}
It is a Polish space under the L*-Wasserstein distance

1
®VI
Wi (p,v) := inf </ |z — y’%r(dx,dy)) , v € Py,
Re xR

weC(p,v)

where C(p,v) is the set of all couplings for p and v.
(2) V-weighted variation space for a measurable function V' > 1:

Py i={peP:pulV)<oo},

which is a complete (but not separable) metric space under the V-
weighted variation distance ||u — v||y.

When V =1+ |- |¥ for some k > 0, we denote || - ||[v by || - lx.var, i-e.

e =vllkvar = sup u(f) = v(Hl = lu = v+ 7).
FEBY(RD),|FIS1H |

Remark 3.2.1. According to Theorem 6.15 in [Villani (2009)], for any
k > 0 there exists a constant ¢ > 0 such that

||,U, - VH’ULLT‘ + Wk(ﬂ'a V)l\/k S CH,U - V”k,varv M,V S Pk' (321)

However, when k& > 1, for any constant ¢ > 0, Wy (u,v) < ¢||p — v|
does not hold. Indeed, by taking

k,var

p=20, v=>0-n"1"M35 +n"1"%5., n>1ecR?with |e| =1,
we have Wy (u,v) = n~%, while

kyvar — n_l_kH(SO - 6ne||k:,var

I — vl

< RIS A F) + Gne(1+ ][} <2, n>1

) — )

3
n

so that lim,,_, o i Wilv)  — o for k> 1.

b=k, var
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For any ~ € 75, consider the path space over P
CY(P) = {n. € CY'([0, T;P) : jio = 7}

The following is an easy observation reducing the well-posedness of DDS-
DEs to that of classical SDEs.

Theorem 3.2.1. Assume that for any v € P and ue C7(75), the SDE
dX} = b (X}, pue)dt + oo (X}, e )dWy, ¢ €[0,T] (3.2.2)
with Lyr =y has a unique weak solution, such that the map
07(75) Spu— = (‘I)z.“)te[o,T] = (EX{‘)te[O,T] € 07(75)

has a unique fized point. Then the DDSDE (3.1.1) is weakly well-posed
for distributions in P. If moreover (3.2.2) is strongly well-posed, then so is
(3.1.1) for distributions in P.

The following is a simple consequence of Theorem 3.2.1, where for in-
vertible oo}, (3.2.4) holds for

Ly(w, p,v) = {of (0007) " [ou (-, v) = bu(, )]} ().
To this end, we recall the Pinsker’s inequality: for any measurable space
(E,B(E)),

ln= vl = sup |u(A) - v(B)® < 2Ent(ulv), u,veP(E), (3:2.3)
AEB(E)

where P(FE) is the set of all probability measures on W.

Corollary 3.2.2. Let oy(z, ) = or(z) for t € [0,T]. Assume that (3.2.2)
is weak (respectively strong) well-posed for any p € CV([0,T]; P). If there
exists a measurable map

L:0,T] xRYx P xP —R™
such that

bt(x’ V) - bt(-r7 M) = Ut(x)rt(xaua V),

3.2.4
(t,z,p,v) € [0,T] x R x P x P, (38:24)

and there exists a constant K > 0 such that
Ty (2, 11, )| < K|lpt = v)war, (t2,0,0) €[0,T] x REx P xP. (3.2.5)

Then (3.1.1) is weakly (respectively strongly) well-posed.
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Proof. Let~y € P andlet ®7 be defined in Theorem 3.2.1. Then it suffices
to prove that ®7 has a unique fixed point in C7(P). Let p,v € C7(P), and
let X' solve (3.2.2). By (3.2.5),

Ry 1= elo Te(X/urwn) dWn) =4 [§ [T (X ) Pdr -y e [0, 7]
is a martingale, such that by Girsanov’s theorem,
t
Wy i=W; —/ Ds(X%, s, vs)ds, t€[0,T]
0
is a Brownian motion under the probability Qr := RrP. By (3.2.4), we
may reformulate (3.2.2) as
dX}' = by(X}', ve)dt + oo (XL)AWs, t € [0,T), Lxp = 1.

By the weak uniqueness of (3.2.2) we obtain ®/v = Ly gt € [0,T]. So,
(3.2.3) and (3.2.5) yield

|©7 - 2w

var

= sup [EI(R, = DI (X" = (B[R - 11)°

t
< 2E[R;log R;] = 2Eq, [log R] = Eq, / T (XE g, 1) 2dre
0

t
<K [l =il dr te (0.7
0
Considering the complete metrics

oAl v) == sup e M| — llvar, A>0
te[0,7)

)

on C7(P), we derive
A, @7v)* = sup e[| @7y — @]y
t€[0,7)

t 2
s K
< K2pa(p,v)* sup /e A dr < o—pa(uv).
tef0,77Jo 27

2
var

Thus, for large enough A > 0 the map ®7 is contractive in py, so that &7
has a unique fixed point on C7(P). O

As shown in Chapters 1 and 2, the Yamada-Watanabe principle is a
fundamental tool in the study of well-posedness for SDEs. The following
is a modified version for DDSDEs, see Lemma 3.4 in [Huang and Wang
(2019)].

Theorem 3.2.3. Assume that for any p € C ([0, TY; P), the classical SDE
(3.2.2) has pathwise uniqueness. If (3.1.1) has weak ezistence and strong
uniqueness for distributions in P, then it is well-posed for distributions in

P.
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Proof. Let p. = Lxp € C([0,T); P) for a weak solution (X, W;) of
(3.1.1) with distribution o € P. Then (X, W,) is a weak solution to
(3.2.2). By Yamada-Watanabe principle in Lemma 1.3.2, the strong u-
niqueness of (3.2.2) implies the well-posedness. So, given initial value X
with distribution pg, by the weak uniqueness, the strong solution of (3.2.2)
satisfies Ly, = Lx,p = pu, and hence, X; is a strong solution to (3.1.1).
Combining this with the strong uniqueness as assumed, we conclude that
(3.1.1) is strongly well-posed for distributions in P.

By the same reason, if (3.1.1) has two weak solutions (X}, W}) under
probabilities P (i = 1,2) with common initial distribution ug € P, then
the well-posedness of (3.2.2) for ut = L5 p: replacing p, gives two strong
solutions Xy of (3.1.1) with the same initial value and with Lx; = p; for
t € [0,7T), so that the pathwise uniqueness of (3.1.1) implies pj = p? for

t € [0,T], and the well-posedness of (3.2.2) yields E)g[lo B = EX[% nlB
Hence, (3.1.1) also has weak uniqueness, so that the weak well-posedness
holds for distributions in P. a

3.3 The monotone case

(A1) Let k € [1,00).
(1) For any p € C([0,T7; Pr), the SDE (3.2.2) is well-posed.
(2) There exists K € L*([0,T]; (0,00)) such that for anyt € [0,T],x,y €
R? and p,v € Py,

low(, 1) = oy )1 + (b, ) = ey, v), 2 — )™

< K(@){le — gl + Wi, )},
Theorem 3.3.1. Assume (A%1) for some k € [1,00).

(1) The DDSDE (3.1.1) is well-posed for distributions in Py. Moreover,
for any p > k, there exists a constant ¢ > 0 such that for any solution
X of (3.1.1) with Lx, € Py,

E[ sup |X,J”
t€(0,T)

Fo <e(t+1Xol + EIXol"}E).  (331)
(2) For any p > k, there exists a constant ¢ > 0 such that for any two
solutions X and Yy of (3.1.1) with Lx,, Ly, € Pk,

E[ sup. X, — Yt|”’]-"0] < e(WilLxo, L) + X0 — Yol)’.  (3.32)
tel0,T
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Consequently, there exists a constant ¢ > 0 such that

Wi (P, Piv) < cWy(u,v), t€[0,T],p,v € P (3.3.3)
Proof. (a) Let Xy be Fp-measurable with v := Lx, € Pi. Then
¢y = {1 € CY([0.T):Py) < jio = 7}
is a complete space under the following metric for any A > 0:
Wk,)\(“? V) ‘= Ssup ei)\twk(/“[’h Vt)7 W,V e CZ (334)
t€[0,T]

Let (X{')cjo,r) be the unique solution of (3.2.2) with X = Xo. By Theo-
rem 3.2.1, for the well-posedness of (3.1.1), it suffices to prove the contrac-
tion of the map

Clopu—®p:=Lyn €C}

under the metric Wy, for large enough A > 0, where the continuity of ®; u
in ¢ follows from (1.3.1).

By (A%!) and It6’s formula, for any p > k V 2 := max{k, 2}, we find a
constant ¢; > 0 such that

X! = X7)P < aK@){|X! — X7 P4+ Wy (e, )P pdt + dM,
holds for some martingale M; with
d(M)y < et K(6){| X} = X7 1?P + Wi (pe, )P}t
Let

¢ := sup |X¥ —XY|P, te€][0,T].
s€l0,t]

By BDG inequality in Lemma 1.3.5, we find constants cs, cg > 0 such that

E[G[Fo] < 2 /0 K (5){E[¢s| Fo] + Wi (j1s, v5)P }ds
v E[( [ G+ s : )

E [¢] Fo] —|—03/ K(s Cgfo}ds+03</ K(s)Wy(ps,vs) pds)2
[0,T]. Thus,

m 1\3\’—‘

for t

E [¢] o] <203/ K (s)E[(s|Fo]ds
1 (3.3.5)

+203</0 K(S)Wk(,us,ys)zpds>2, t €10,7).
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By using (inr, for 7 :=inf{t > 0: | X}' — X}| > k} replacing ¢; and letting
k — oo, we may and do assume that E[Ct’]:o] < 00, so that by Gronwall’s
inequality,

1

[Ct‘]:o] < 2636203 fo K(s )dg</ K Wk(ﬂsal/s) ds)
(3.3.6)

< cs™W 5 (1, v </ K(s)e2PAt=8) (5 > , te[0,T)
holds for some constant ¢4 > 0. Since p > k, by Jensen’s inequality, this
implies

k
Wi (®70,070)" < sup e ME[(E[G1F))7 |
te[0,T]

M‘R‘

§C4Wk7,\(,u,l/)k( sup / K fQPA(t S)ds)

te[0,T]
Noting that
¢
lim sup / K(s)e™2PAt=8)qs = 0,
A=00 t€(0,T]

we see that ®7 is contractive in Wy,  for large A > 0.

(b) Next, for any p > k V2, let X; solve (3.1.1) with E[|X,|?] < co. By
(A31) and 1t6’s formula, there exists a constant c( ) > 0 such that

d| X, P < c(p)K(H){1 + | X P + (E (12X, [¥] }dt + dM;
for some martingale M, with
d(M); < e(p) K ({1 + | Xe|* + (B[ X[ *])*/* }dt.

Then (3.3.1) follows from BDG inequality.

(c) By Jensen’s inequality, it suffices to prove (3.3.2) and (3.3.3) for
p > kV2 Let X; and Y; be two solutions of (3.1.1), and denote u; =
Lx,,vs = Ly,. By (A*!) and Ito’s formula, we find a constant ¢y > 0 such
that

d|Xt — K'p S C(){|Xt — Xt‘p —+ Wk(,ut, Vt)p}dt + th
for some martingale M, satisfying
A(M)y < co{|Xe — Yo [P + Wi (pe, 1) P }dt.

By BDG inequality as in above, we find a constant ¢; > 0 such that

E[ sup |X; — Y|P
telo,s]

-7:0} < 1| Xo —Yol?

+cl/ (E[IX, — Yil"|Fo] + Wi (e, )P }t, ¢ € [0,T].
0
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By Gronwall’s inequality, for some constant cy > 0,

IE[ sup |X; — Y|P
telo,s]

7)
. (3.3.7)
< CQ‘XO - YE)‘p + 62/ Wk(usays)pdsa te [OvT}
0

Thus, (3.3.2) follows from (3.3.3).
To prove (3.3.3), we take X and Yp such that

1
Wi (po,10) = (E[|Xo — Yol])*, o := Lx,, 10 := Ly,.

By (3.7.20), we find some constant ¢z > 0 such that

)

k
.7-4) }(Jensen’s inequality)

sup Wk(,umys)k < E(E[ sup |Xs - Ys‘k
s€[0,t] s€[0,t]

< E[(E[ sup |Xs — Y|P
s€0,t]

A b

t
< E{CQXO — Yo‘p + 02/ Wk(us,ys)pds}
0

k
< cJ E[|Xo — Yol"]
k % t
+c§( sup Wk(,us,l/s)k> </ Wk(,us,l/s)kds)
0

s€0,t]

L3
P

1 t
< 3 Wy, (po, v0)* + 3 Sl[lp]Wk-(us, vs)k + 63/ Wi (s, vs) " ds.
se0,t 0

Then

t
sup Wk(,us,z/s)k < 203Wk(u0,1/0)k +203/ Wk(ps,ys)kds, t €[0,T).
s€0,t] 0

By Gronwall’s lemma we derive (3.3.3). d

3.4 Singular case: || - ||v-Lipschitz in distribution

We consider the case that b is singular and o¢(x, 1) = o¢(x) does not depend
on u, so that (3.1.1) reduces to

dXt = bt(Xt, EXf)dt + O't(Xt)th, te [O,T] (341)
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(A32) Let 1 <V € C}(R%[1,00)) be a compact function, and by(x, ) =
b (@) + b (2, ).
(1) (A“?)(1) holds for o and b(®).
(2) For any p € CP(10,T; Pv), bgl)(x,,ut) is locally bounded in (t,z) €
[0, T) xR, Moreover, there exist a constant € € (0,1) and a function
0 < K € LY([0,T]) such that

sup {|VV\ + HV2V||} < 5_1V(x),
B(z,e)
G&NLM%VVm»+6M”@4M;F%MVVHWV%W}

<K AV(@)+p(V)}, zeRpePy.
The following result is due to [Ren (2023)].
Theorem 3.4.1. Assume (A%?).
(1) If for any t € 0,7,
1687 (2, 1) = 0 (2, )] < Kol — v}, 2 €R% pv € Py, (34.2)

then (3.4.1) is well-posed for distributions in Py, and for any k > 1
there exists a constant ¢ > 0 such that for any solution X,

E Les[%pﬂ V(Xt)"‘XO} < e{V(Xo)* + (E[V(Xo)])*}. (3.4.3)

Moreover, for any sequence {y,}n>1 C Py with bounded ~,(V?P) for
some p > 1 such that v, — v weakly,

Tim ([P — Pl =0, te 0,7, (3.4.4)
(2) If for any t € [0,T],
0 @) = 0 @ )P < Kollp = v @ €RY v € Py, (345)
then for any {v,Vn}tn>1 C Py with v, — v weakly,
Tim [Py = PiAllar = 0, ¢ € 0.7 (3.4.6)

Proof. (1) Let Xy be Fp-measurable with vy := Lx, € Py. Simply denote
Cy = {n e CY([0,T];Pv) : po =}

For any p € CJ,, by Theorem 1.3.1, (A%2) implies that the following SDE
is well-posed,

AXH = by(XP, p)dt + op(X)AW,, XE = X, (3.4.7)
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Recall that ®]p := Lxy. By Theorem 3.2.1, for the well-posedness of
(3.4.1), it suffices to prove that ®7 has a unique fixed point in C{,. To
this end, we approximate C{, by bounded subsets

C";’N = {u eC”: sup p(V)e NP < N(1 +7(V))}, N> 1.
t€[0,T]

la) We aim to find a constant Ny > 1, such that ®7CYN c ¢V holds
% 1%

for N > Ng. By Lemma 1.2.2, we consider Zvonkin’s transform of X"
V= XU g (X]), up € Hio(T), (3.4.8)
(0 + LO)uy = dup — bio), te[0,7T], uy =0, -

for large A > 0 such that [|u}|s + [|Vui | < &, where
1
L(t) = Vb(o) + §tr{atafV2}.

By (A3?) and Itd’s formula, for any k > 1, we find a constant ¢; > 0 and

a martingale M; such that
YV VY < et KV (V) + (V)P )t + M, 510
A(M)y < V(Y2 =Dde, teo,T). o

By the condition on V and | X} — Y/}'| < 1, we find a constant C > 1 such
that

CTYV(X) < VYY) < ov(X, (3.4.10)
so that (3.4.9) implies that for some constant ¢z > 0,
E(V(X{)*|X6)

t
< 2% Jo Kedsy/(XE)? 4+ C%¢y / Koo ) Kedry, (V)2ds
0
t
< eaV(XE)? + co{ N(1 + 'y(V))}Q/ K.e*Neds (3.4.11)
0

t
< V(X)) +e{ N1+ 7<V))}262Nt/ Ko 2Nt=9) s
0
te0,T], ne C&’N,

Since 0 < K € L'([0,T]) implies

t
lim  sup /KsedN(t*S)ds:O,
N—=ootelo, 1) Jo
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we find a constant Ny > 1 such that

sup {7 u}(V)e ™ = sup e NE[V(X[')]
te[0,T] te[0,T]

1
S Vey(V) + 5N +9(V) S NAL+7(V)), N = No.
Thus, CIWC‘V,’N C C‘W,’N for N > N, where the continuity of ®)yu in ¢ is
implied by Theorem 1.3.1.
(1b) Let N > Ny. We prove that &7 has a unique fixed point in C‘W/’N,

and hence it has a unique fixed point in C{, by the arbitrariness of N > Nj.
Consider the following complete metric on C;QN:

oAl v) == sup e M| — vyl
t€[0,7)

Let
§o = {03 (050%) T b (XL, vs) — b (XL, )] H(XE), s €0,T].
By (3.4.2),
R, := efo €:dWa) =3 [ l&:1ds (3.4.12)

is a martingale, such that
W, =W, —/ &sds, re|0,1]
0

is a Brownian motion under the probability Q; := R;P. Reformulate (3.4.7)
as
dXH = b (XF, v)dr 4 o, (XM)dAW,, XF =Xy, re€[0,t].
By the uniqueness we obtain
®/v=Lxy = Lxpian

where L x|, stands for the distribution of X} under Q;. Then by (3.4.11),
we find a constant ¢;(N) > 0 such that

@) p— @) vy = |J§|u<pv |E[f(X{)(1 = Ry)]|
< E[{E(V(X;‘)2|X5)}%{1E[|Rt - 1|2|Xg]}ﬂ (3.4.13)
< e (N)E [V(XO){IE[Rf . 1|X0}}ﬂ.

Since p,v € CYN, by ||0*(00*) oo < 00 and (3.4.2), we find a constant
c2(N) > 0 such that

[&I* < ea(N)ES(LA [lus = vsll}), s € 0,7,
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so that for some constant ¢3(N) > 0,
E[R? — 1|Xo] <E {62 Jo (ge,dWa)— [ | 1%ds _ 1’Xo}

< E[e2 JEE AW =2 [} 1€ Pdstea(N) J¢ Ko (WA lma—ral?)ds _

x|
t

= o2 (N) J§ Ka (Al —vell¥)ds _ ) < 03(N)/ Kllns — sl ds,
0

where the last step follows from the fact that e — 1 < re” for r > 0.
Combining this with (3.4.13), we find a constant c4(N) > 0 such that

t
1971 — B7u]ly < ea(N) / Kullte —msl3ds, t€[0,7].  (3.4.14)
0

So,

pA(7 1, ®v) = sup e M|y — &y
te[0,7]
1

t 2
< cy(N)pa(p,v) sup (/ KseQ’\(ts)ds> N7 GC‘V,’N.
te[0,T] 0

Therefore, when A > 0 is large enough, ®7 is contractive in C‘V/’N under py,
so that it has a unique fixed point in C&’N.

(1c) By (3.4.9) for k = 1, (3.4.10), (A>?) and Lxp = Lx, =, we find
a constant k; > 0 such that

¢
BV(Y/)) < ki (V) + by [ EV()ds,
0
so that Gronwall’s inequality yields
E[V(Y/")] < kit (V).
Combining this with (3.4.9), (3.4.10), BDG inequality and Holder’s inequal-
ity for E[-|Xo], we find a constant ks > 0 such that

m = E|: sup V(Y;L)k‘XO], t e [O,T]
s€[0,t]
satisfies

t t
me < kaV(Xo)" +/ nsds + kol K/ V(Y'S#)Q(k—l)d8>
0 0

1
2

8

t
1
<RV +ha [ nds+ 36, te(0.7)
0

By Gronwall’s inequality and (3.4.10), this implies (3.4.3).
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(1d) It remains to prove (3.4.4). Let P; be the Markov semigroup of X/

for p; := P;~. Then
Piy =Py, tel0,T). (3.4.15)
By Theorem 1.3.1, we have
7}5% | P 6 — Pt*(sy”var =0, z¢€ R<.
Since ,, — v weakly, we may construct random variables {£,} and £ such
that L¢, = v, Le = v and &, — £ a.s.. Thus, by the dominated conver-
gence theorem we obtain
nlgrolo 127 = Pryllvar = nlgr;o IE[FP/ b¢, — P d¢]llvar

) ‘ (3.4.16)
< lim E[[|F0¢, — Py 0¢|lvar] = 0.
Hence,
lim sup HPt*’Yn - t*’YHV
n—roo

< klimsup [ Pf v — B Yllar +sup [ PV = k)Td(yn +9)  (3.4.17)

n—o00 n>1JR4
= sup {Pr (i + DIV =R)T), k>1.

Since 7, (V?) is bounded for some p € (1,2], (3.4.11) implies that

sup  (Pyn)(VP) < oo, (3.4.18)
n>1,t€[0,T]
so that letting k — oo in (3.4.17), we derive
limsup || Py — B y|lv = 0. (3.4.19)
n—oo

On the other hand, by (3.4.15) and the Girsanov transform in step (1b)
for v, replacing v, the argument leading to (3.4.14) implies

t
1P = Pimlly < C/o K||P;yn = Piyllvds, te0,T]  (3.4.20)

for some constant ¢ > 0. Combining this with (3.4.15), (3.4.19) and Fatou’s

lemma due to (3.4.18), we derive

lim sup || Py, — Pt*’Y”\Q/ < 21imsup{\|Pt*fyn - Pt*’Y”%/ + 1P — Pt*’Yn”%/}
n—oo n— 00

t
<2 [ Klimsup |[P;y, — P;y|3ds < oo, t€[0,T].

0 n—00
By Gronwall’s inequality, this implies (3.4.4).
(2) Similarly to eqref*B, by (3.4.5), Girsanov’s theorem and Pinsker’s

inequality (3.2.3), we find a constant ¢ > 0 such that
t

1P Y0 = Pl < C/O K||P;vn = Piyllsards, t€ (0,7,
Combining this with (3.4.15) and (3.4.16), we derive (3.4.6). O
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3.5 Singular case: (|| ||x,var + Wi)-Lipschitz in distribution

Comparing with (A32), the following assumption allows b;(z,-) to be Lip-
schitz in || - ||k,var + Wi with Lipschitz constant singular in (¢,2). By
Remark 3.2.1, when k& > 1 this norm is essentially larger than | - ||y for
Vi=1+]|" Let

1
e o= Lggsopa(] - [F)* + 1oy (3.5.1)

(A33) Let k >0 and b}’ := bi(-, ut) for p € CP([0,T]; P).
(1) There exists ji € Py such that (AYY) holds for b := b(-, i) replacing
b.
(2) There exist a constant >0 and 1 < f € Efl’g (T') such that for any
tc[0,7T], » € RY, and p,v € Py,

b (@) = " (@)] < fula) + allul, (3.52)
0} (2) = 0 ()] < fe(@){llpe = vl war + Wi(p, )} (3.5.3)
The following result is due to [Wang (2023b)] for D = R9.
Theorem 3.5.1. Assume (A33).

(1) (3.4.1) is weak well-posed for distributions in Py. Moreover, for any
v € Pk, and any n > 0, there exists a constant ¢ > 0, such that

E[ sup | X"
te[0,T)

XO} < (1 + | Xo[") (3.5.4)

holds for the solution with Lx, = .
(2) If moreover o satisfies (A12)(1), then (3.4.1) is well-posed for distribu-
tions in Py,.

To prove Theorem 3.5.1, we first present a more general result extending
Corollary 3.2.2 for kK = 0 and p = ¢ = oo, which may also apply to the
degenerate situation.

For any k > 0,v € Pr, N > 2, let

ep = {ne C(0.T1 P o =7, sup e (1 + (] ) < N

te[0,T)
(3.5.5)
Then as N 1 oo,

Nl = {p e G0, T Py) s o =) (3.5.6)
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For any 4 € C;, we will assume that the SDE

dX}" = b(XY', pe)dt + o (X{)AWy, t € [0,T], Lxp =1 (3.5.7)

has a unique weak solution with

®/p:=Lxy € Py, t€[0,T].

(A%*%) Let k > 0,7 > 0. For any v € Py and p € C}, (3.5.7) has a

unique weak solution, and there exist constants p,q > 1, Ny > 2 and
increasing maps C' : [Ng,00) — (0,00) and F : [Np,00) x [0,00) —
(0,00) such that for any N > Ny and p € Cg’N, the (weak) solution
satisfies

V1= Lixry,eom €0 (3.5.8)

(E[(1+|Xf|'f)2\x§])%SC(N)(1+|Xg\k), te0,7), (3.5.9)
B [ axt)s) < Cloly,

t mYds ~
Elelo -] < F(N, |lgllzp), ¢ €10,T],9 € Li(2).

(3.5.10)

Obviously, when k = 0, conditions (3.5.8) and (3.5.9) hold for Ny = 2.

So, Corollary 3.2.2 is a special situation of the following result with £ = 0
and p = ¢q = o0.

Theorem 3.5.2. Assume (A**) and
bi(x,v) — by (z, 1) = oy ()T (z, v, 1), = €RELEE[0,T),v,1 € Pp (3.5.11)
for some measurable map T : [0,T] x R? x P(RY) — R™.

(1)

If there exists f > 1 with |f|* € Eg’(T) such that
T (2, v, 1)| < fe(@)|v—ptllbwars © €REEE[0,T), v, € Pr, (3.5.12)
then (3.4.1) is weakly well-posed for distributions in Py. If, further-
more, in (A>*) the SDE (3.5.7) is strongly well-posed for any v € Py
and p € C, so is (3.4.1) for distributions in Pj.
Let k > 1 and assume that
Te(z, v, )| < fe(@){llv = pllkvar + We(p,v)},
(t,x) € [0,T] x RY, p, v € Py
holds for some f > 1 with |f|? € iZ(T). If for any v € Pr, and N > Ny,
there exists a constant K(N) > 0 such that for any p,v € C,Z’N,
Wi (@] 1, 27v)*"

(3.5.13)

t . . (3.5.14)
< K(N) / [lits = val2 o + Wi(pta v0)? Y s, ¢ € 0,71,

then assertions in (1) holds.
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Proof. Let v € Pg. Then the weak solution to (3.5.7) is a weak solution
to (3.4.1) if and only if y is a fixed point of the map ®7 in C;. So, if 7 has
a unique fixed point in C}/, then the (weak) well-posedness of (3.5.7) implies
that of (3.4.1). Thus, by (3.5.6), it suffices to show that for any N > Ny,
®7 has a unique fixed point in C,Z’N. By (3.5.8) and the fixed point theorem,
we only need to prove that for any N > N, ®” is contractive with respect
to a complete metric on C,Z’N

(1) For any A > 0, consider the metric
Wk,)\,var(,ua V) = sup ei)\tHNJt - Vt”k,vary o, vV S C]Z’N
t€[0,T)

Let X} solve (3.5.7) for some Brownian motion W, on a complete prob-
ability filtration space (2, {F;},P). By (3.5.10), (3.5.12) or (3.5.13) with
|fI? € LE(T), we find a constant ¢; > 0 depending on N such that

T w 2
Sup E(e12f0 |FS(XS »Vs>ll«s)| ds|f0) S C?,
pwecy N

T 2
sup B(( [ axmas)
pecy N 0

) .
< AlglZe ) g€ LET), v e ™.

;O) (3.5.15)

Then by Girsanov’s theorem,

t
W, = W, — / Ty (XE, vy pa)ds, ¢ € [0,T]
0

is a Brownian motion under the probability Q := RpP, where

R, = oo (Ta (XL ve,pa) dWa) =5 f§ \Fs(Xﬁ,szs)lzdS’ te0,7]

is a P-martingale. By (3.5.11), we may formulate (3.5.7) as
dX# = bt(X#a Vt)dt + Ut(thL)tha le [OvT]v'CXg =7

By the weak uniqueness due to (A3*), the definition of || - (3.5.9)
and (3.5.11), we obtain
197 = DY Wllkvar = sup  [E[(R — D F(X])]]
[FIS1+[|*
(1+ 1 XF5)Re — 1]
[ e 1l (3.5.16)

IN

<E
E[{E( (14 [XE)2170) )2 {E (1R, — 12170) } 2 }
C

(N) |:(1 + |X6L|k){E(eﬁf0 |Fs(X;L,V57HS)| ds _ 1|]_‘O)}§:|’

IN
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where we have used the facts that E(| R, — 1]2|F) = E(R?|F) — 1 and for
§s 1= Fs(ng stﬂls)a

E(R2|Fo) < (E[et o (€ dWo)=8 J§ |ss|2ds|].—0} ) 3 (B[S |§sl2ds|]:0])%
< E[e0 s 1617 7]

Moreover, by (3.5.15) we find a constant ¢z > 0 such that

t
< GE(e@fJFs(Xﬁ,us,usVds/ Do (X2, v, ps)|*ds ]—'0>
0

t 2 %
s{E(( [ e Pl = vl ds) f)}
0
2
< CQe2AthAvar ﬂv { ((/ Ifs 2 72/\1& S)d8>

S 0362/\t Hf2e—2)\(t— ) Hf,g(t)wk,/\,var(,uv l/) ) [07 T]

E(e 6 fo IDs (XL ve,pa)|ds —1|F0)

7))

Combining this with (3.5.16) and the definition of Wy, x yqr, We obtain

Wk,)\,var(q)’yp“a (I)’YV)

3.5.17
< C(N)(l + 7(| : |k))02\/‘ﬂwk,)\,vuﬁ(u7u)’ A> 07 ( )

where

e(\) := sup | fle= 2 )HLP(t)iO as A1 oo.
te[0,T]

So, ®7 is contractive on (C;”N,Wk,A’var) for 1~arge enough A > 0.
(2) Let £ > 1. We consider the metric Wi x yar := Wi xvar + Wi,
where

Wia(p,v) := sup e MWy (e, ve), v GC',Z’N.
t€[0,T

By using (3.5.13) replacing (3.5.12), instead of (3.5.17) we find constants
{C(N, ) > 0} x>0 with C(N,\) — 0 as A — oo such that
Wk,)\,var((b’yﬂv (I)’YV)

~ v (3.5.18)
< C(N, /\)Wk,/\,'uar(/uv I/), A> O,ILL, Ve C]ZV .
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On the other hand, (3.5.14) yields
Wk,A(tﬁv,u, (I)VI/)

t
< swp (c@)e [, -,
t€[0,T] 0

5 t "
< Wi xvar (1, V) sup (K(N)/ e_”k(t_s)ds>
t€[0,T] 0

L
2k

k var T Wk(,usa Vs k}d5>

K(N)3 -
<71W ,var V), /\>O
S g Ve ()

Combining this with (3.5.18), we conclude that ®7 is contractive in
under the metric Wy, » ,or When A is large enough, and hence finish the

N
proof. ([l

Proof of Theorem 38.5.1. Let v € Py, be fixed. By Theorem 1.3.1, (A43%3)
implies the weak well-posedness of (3.5.7) for distributions in Py, with
V= Lxr €C), pec,,

and also implies the strong well-posedness of (3.5.7) in the situation of
Theorem 3.5.1(2). Moreover, by Theorem 1.2.3 and (1.2.17), (A3-3) implies
that (3.5.10) holds for (p,q) = (po/2,q0/2), (3.5.11) with (3.5.12) holds for
k <1 due to (3.2.1), and (3.5.11) with (3.5.13) holds for k > 1. Therefore,
by Theorem 3.5.2, it remains to verify (3.5.4), (3.5.8), (3.5.9), and (3.5.14)
for £ > 1. Since (3.5.9) and (3.5.8) are trivial for kK = 0, we only need to
prove:

o (3.5.4);
e (3.5.9) and (3.5.8) for k > 0;
e (3.5.14) for k > 1.

(a) We first prove that for some constant ¢y > 0 and increasing function
c¢:[1,00) = (0,00) such that for any n > 1 and p € C},

B / (X ds) < clo) =+ e / ||us||id8)n,
Bexp o [ 1ox as] < o) x| A s

for ¢ € [0,T], where X! solves (3.5.7). Consider the SDE
AdX, = by(X,)ds + 04(X,)dW,, Xo = X/, s€[0,t]. (3.5.20)

(3.5.19)
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By (A34), (1.2.17) applies to this SDE, so that for any n > 1 we find a
constant ¢1(n) > 0 such that

E[en Jo (B P HEMXD] < ¢ (n), 1€ [0,T). (3.5.21)
Let & = {[07(0s07) 7 1](b — bs) }(X), and

Ry = efo (€ dWal =3 Jgl&ds gy =y _/ Yedr, s €0,t].
0

By Girsanov’s theorem, (Ws)¢[o,q is a Brownian motion under R;P, and
(3.5.20) becomes

dX, = bs(Xs,us)ds + US(XS)dWS, X = Xk, s e€0,t].

So, by (3.5.2), (3.5.21) and Holder’s inequality, we find constants cg, ¢1,
ca(n) > 0 such that

Ele" I \fs(X;">\2ds] — E[Re" N |fs(ffs>|2ds]
< (Be2nJa 1£:(X)Pds) 3 (g R2)) 2
< \/e1(2n) (Ee fo‘{\l%g“’\2+<fs+auus||k>2}(f<s>ds)% < co(n)eo Jo lmsllids

Next, taking cs(n) > 0 large enough such that the function
r > [log(r + e3(n))]"

is concave for r > 0, so that this and Jensen’s inequality imply

E(/O |fs(Xﬁ)|2d5) < E([log(cg(n) Jrefot\fs(XQ)\?dS)]n)

t n
< [log(Cg),(n) + Eelo \fs(X.it)|2ds)]n <c(n) + c(n)</ |us||id8>
0
for some constant c¢(n) > 0. Therefore, (3.5.19) holds.

(b) Proof of (3.5.8). Simply denote X; = X}'. By (A*%) and Itd’s
formula, we find constants ¢y, cs > 0 such that

E(1+|X|*) < er(1+ []1§)
‘ k
+ 01E</0 {‘Xs| =+ ‘fG(Xs)‘ + Hﬂs”k}d5> (3.5.22)

¢ 3
<c2+cQE(/ {XS|2+|MS||i}ds) , t€]0,T).
0

(b1) When k > 2, by (3.5.22) we find a constant k3 > 0 such that

t
B+ < ket o [ B+ s, te 0.7)
0
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By Gronwall’s lemma, and noting that u € C,Z’N, we find a constant k4 > 0
such that

t
EUH&WSM+M/G+MMMS
0

¢
< ky+ k4NeNt/ e Nt=9)ds < 2k,eMNt, te [0, 7.
0

Taking Ng = 2k4 we derive
sup e M1+ || ®p||F) = sup e ME(1 + | X:|*)
te[0,T]

t€[0,T]
<No<N, N>No,pecy?,
so that (3.5.8) holds.
(b2) When k € (0,2), by BDG inequality, and by the same reason
leading to (3.5.22), we find constants ks, kg, k7 > 0 such that

¢
Uy = ]E{ sup (1+ |Xs|k)] < ks+ k5E</ {‘Xs|2 + H/‘S”z}ds)
s€[0,1] 0

1k t : t £
< kﬁm{{ s?p]|xs|k} (/ |Xs|’fds> }+k6(/ ||us||§ds)
se(0,t 0 0

k
2

2

1 t t
§k6+§Ut+k7/ Usds+k6(/ |us||ids>  teo,T].
0 0

By Gronwall’s lemma, we find constants kg, kg > 0 such that for any p €
o,

t
MuathMS@+@(/m%@§
0
k

t bl )
< kg+ ksNeNt</ ezN(tS)/kds> < ks + koN'"2eNt ¢ € (0,7
0

Thus, there exists Ny > 0 such that for any N > Ny,

sup e V(L4 [|@epllf) = sup e ME(L+]X¢|")
te[0,T] te[0,T]

<ks+ kN3 <N, pecl?,
which implies (3.5.8).
(c) Proofs of (3.5.9) and (3.5.4). By Theorem 1.3.1, (A3%) implies that

for any n > 1 there exists a constant ¢ > 0 such that

E[ sup | X[ Xo} < e(1+|Xo|). (3.5.23)
t€[0,T]




July 27, 2024 9:20 ws-book9x6 13512-main page 125

DDSDEs: Well-posedness 125

So, by (1.2.17) and Girsanov’s theorem,

t
Wt = Wt —/ {U:(USU:)_I}(Xs){bs(Xsa,Ufs) - bs(Xs)}dsv te [OvT]
0
is a Q-Brownian motion for Q := Ry P, where

ne = {07 (000 T HX )b (X, o) — be(X)},
RT = efoT<77t,th —%foT |77t|2dt.

By (A434) and (1.2.17), we find an increasing function F' such that
E(|Rr[2|Fo) < E(efo HeElPUlua=il var tWilue)Y*ds| 20y < F(||pll1),
where |\utl[k,7 == sup;co, 7y e (] - |¥). Reformulating (3.5.20) as
dX, = b (X)dt + 0y (Xy)dWs, Ly, =1,

by the weak uniqueness we have Lg o = Lxu, so that (3.5.23) with 2n
replacing n implies

[ sup (XHI"
te[0,T]

Fo| = Bo sup 1%u"|70]

< (B[ s 152 |7] ) @R < /4 Kol Pl

te[0,T]
Since SUP o N lgell e, is a finite increasing function of N, this implies
(3.5.9).

Finally, since X; := X} solves (3.4.1) with initial distribution v and
ur = Lx, (i.e. p is the fixed point of ®7), and since ®7 has a unique fixed
point in C,Z’N for some N > 0 depending on 7 as shown in the proof of
Theorem 3.5.2 using (3.5.10) and (3.5.8), we have Lx € €)', and hence
(3.5.4) follows from (3.5.9).

(d) Proof of (3.5.14) for k > 1. Let u} solve (1.2.3) for L, = L, with
b© = p¥ — b under (A1), such that

IVl <

DN =

Let ©; = u} +id and
& 1= O4(X1) — Ou(XY) = Xf' +u}(XF) — X! — u}(X}).
We have
| X7 — XY] < 21&] (3.5.24)
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By It6’s formula we obtain
dée = { (v + D) (Xf) = (v} + 5 (X7) fa
+{[(VONod (XE) ~ [(VO)or) (X)) }dWTs.
y (A%%) and Lemma 1.3.4, there exists a constant ¢; > 0 such that

t
2k
|Xt# — Xf‘Zk < Cl/ (”,U'S - Vs”k,var +Wk(ﬂS7Vs)) ds
0

tATm
+a / |*X—s/\7'm S/\Tm |2kd‘c + Mt
0
holds for some local martingale M, and
t
L= Ay +/ |f(X¥)|2ds, te0,T],
0

where A, is in (1.3.25) for (X*, X¥) replacing (X!, X?2). By (3.5.24), the
stochastic Gronwall inequality in Lemma 1.3.3 and Kasminskii’s estimate
(1.2.17), we find a constant ¢ > 0 such that

Wi (@], @]v)%* < (BIX) — X7|F)?
. (3.5.25)
<C/ {”MS_VSHIC var+Wkr(/1'87Vs) }dS

Thus, (3.5.14) holds.

3.6 Singular case: with distribution dependent noise

In this part, we investigate the well-posedness of (3.1.1) where the noise is
distribution dependent, and the drift is singular in the spatial variable and
Wi-Lipschitzian in the distribution variable.

For any u € C([0,T); P), € R? and ¢t € [0,T], denote

of (z) = or(z, pe), by (x) = be(, pe).

Recall that by (3.5.1), ||ullx := u(| - [¥)* for k& > 0.

(A35) Let k > 1. There exist constants K > Ko > 0,1 € N, {(pi,q:) : 0 <
i <1} C K withp; > 2, and 1 < f; € LF«(T) for 0 < i <1, such that
ol(x) and b (x) = b () + b0 (x) satisfy the following conditions
for all € C([0,T); Pr).-
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(1) a* := ot (o")* is invertible with ||a" ]| + ||(a*) oo < K and

lim sup sup at (z) — ai (y)|| = 0.
=10 pecy (10,T1;Px) tel0,T), |z —y|<e

(2) b1 is locally bounded on [0, T] x R?, o} is weakly differentiable such
that

l
V(@) < folt2) + Kollelle, Yoy (@)l <Y filt, ),
i=1
B (@) — B ()| < Ko —yl, t € [0,T],2,y € RY

(3) For anyt € [0,T],r € R? and p,v € Py,

l

low(, 1) = o (@, )| + [be (s ) = be (2, v)| < Wi(pyv) Y filt, ).
i=0

Theorem 3.6.1. Assume (A>®). Then the following assertions hold.

(1) (3.1.1) is well-posed for distributions in Py. Moreover, for any j > k
there exists a constant c(j) > 0 such that any solution X, of (3.1.1)
satisfies

E[ swp [XiP|Fo) < c(){1+1Xol + EBIXo[DE}.  (36.1)
te[0,T]

(2) For any N > 0 and j > k, there exists a constant C; y > 0 such that
for any two solutions X} of (3.1.1) with E[|X{|*] < N,i=1,2,

E( sup |X} - X}'| %)
tel0.7] (3.6.2)
< Opn{1Xs — X517 + (B[IX5 — X3 }.

Consequently,

sup Wy (P ', PP p?) < 20k nWi(p', p?),
te[0,7] (3.6.3)
ptp? € Py pt (- 1F), 12(] - [F) < NV

When Ko = 0, this estimate holds for some constant C; > 0 replacing
Cj.N for any two solutions with distributions in Pj.
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3.6.1 Some lemmas

We first explain the main idea of the two-step fixed point argument.
Let Xo be Fo-measurable with v := Lx, € Py. Let
Cr={neCy(0,T;Pr) : po=r}.
We solve (3.1.1) with a fixed distribution parameter p € C}! in the drift:
dX{ = b (X{, pe)dt + op (X, Lxp)dWy, ¢ €[0,T], X5 = Xo,  (3.6.4)
such that the well-posedness of this SDE for distributions in Py, provides a
map
Clop— ®p:=Lxr €C). (3.6.5)
Then the well-posedness of (3.1.1) follows if the map ®7 has a unique fixed
point in C.
To solve (3.6.4), we further fix the distribution parameter v € C; in o
such that the SDE becomes
dX} = b (XY e )dt + o (X1 1) dWe, ¢ € [0, T, X5 = Xo,
which is well-posed under (A43) according to Theorem 1.3.1(3). This gives
a map
Clovm OVHy = Lynr € (). (3.6.6)
So, we first prove that this map has a unique fixed point such that (3.6.4)
is well-posed, then apply the fixed point theorem to ®7 to derive the well-
posedness of the original SDE (3.1.1).
To apply the fixed point theorem, we will use the following complete
metric on C; for § > 0:

Wk,@(:uﬂ V) = Sup eiatwk(utayt% IR S C]’gy (367)
t€(0,7T7]

To prove that ®” has a unique fixed point in C}/, we need to restrict the
map to the following bounded subspaces of C}':
N = {u €C): sup e N1+ (] F) < N}, N>0, (3.6.8)
t€[0,T]
and to prove that these spaces are ®7-invariant for large V. This enables
us to verify the contraction of ®7 in C,Z’N under a suitable complete metric.
For this purpose, we present the following lemmas. The first one ensures
the well-posedness of (3.6.4).

Lemma 3.6.2. Assume (A%5) and let p € C. Then (3.6.4) is well-posed
for distributions in Py. Moreover, there exist 8g > 0 and decreasing func-
tion f3 : [0, 00) — (0,00) with B(0) L 0 as 6 T oo such that ®7 defined in
(3.6.5) satisfies

Wi o (@711, ®70) < BO)Wpo(,v), v €PN (3.6.9)
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Proof. (a) For the well-posedness, it suffices to prove that ®7# defined
in (3.6.6) has a unique fixed point in C}.
In general, let p* € C,Zi’N for some N > 0,~" € P*,i = 1,2. For /! €
C,Zi’N and initial value X¢ with Lx; = ~*,i = 1,2, consider the SDEs
AX} = b (XDt + oV (XD)AW,, te[0,T),i=1,2. (3.6.10)
According to Theorem 1.3.1(3), under (A3%) these SDEs are well-posed,

and by Lemma 1.2.2; there exist constants cg, Ay > 0 depending on N via
1 7N
u € Cl due to

1
|bf )O(x)‘ < fO(tw%') + KO”:utlHlﬁ
such that for any A > \g, the PDE for
1 1

(at + 5tr{ay V) + vbfl)ut = — W0 e 0, T ur =0 (3.6.11)

has a unique solution such that
1
192l 2302y < 0 Nulloo + Ve < 5. (3.6.12)
Let Y} := @t(Xi) i=1,2,0; :=id + u;. By Itd’s formula we obtain
= {0+ v MDAt + ({VO, ol ) (X)) dW,

av = ({0 + N + <vet><b;‘ ~ U }ED)

1 y2 l/l ’/2
+stel{(ar” — ) VR (X))t + (VO oy ) (X7) dWs.
Let n; := | X} — X?| and

l
9 =Zfi<r,xf>, Gr = 0| V2un(X2)]),

2 l
levzurll XD+ D" filr, X)), reo,T).

j=114=0

Since bgl) + Auy is Lipschitz continuous uniformly in ¢ € [0, 7], by (43®) and

the maximal functional inequality in Lemma 1.3.4, there exists a constant
c1 > 0 depending on N such that

(B2 4 ha, () = {0851 A, J(X2)| < eanpr,y
{(VO) B =) HXD)| < crgr Wi (), 1),
[[er{(a” = @ )V2u, Y] (XP)] < g, Wi (v, ),
{(veney (X)) = {(Ve,)a }(x7)]

< e1geny + g Wi (v, v7), re[0,T).
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So, by It6’s formula, for any 7 > k we find a constant ¢s > 1 depending on
N such that

A" = Y217 <ealgf + a0 {Wa(pi, 1) + Wi (v, 1) Jdt
+ CzﬁfjdAt + th
holds for some martingale M; with My = 0 and

(3.6.13)

¢
Ay = / {1+ 92 +3§s+g2}ds.
0
Since [|[Vull < 3 implies |V — Y?| > Ln,, this implies

t
ni? < 22 My + 293! + 2% ¢y / nFdA,
, 0 (3.6.14)
429 [ (g2 g [k + Wi, 2 s
0

for some constant ¢ > 0 and all t € [0,7]. By (3.6.12), f; € I~/1q’ (T) for
(i, qi) € K, Krylov’s estimate (1.2.7) and Khasminskii’s estimate (1.2.17)
for (p,q) = (pi/2, ¢;/2), we find an increasing function « : (0,00) — (0, c0)
and a decreasing function € : (0,00) — (0, 00) with g — 0 as § — oo, such
that

E[eTAT|]-'O] <ar), r>0,

t
sup ]E</ e 2RO (g2 4 g ydr ]—"0> < e, 6>0.
0

t€[0,T]
By the stochastic Gronwall inequality in Lemma 1.3.3 and the maximal

inequality in Lemma 1.3.4, we find a constant c¢3 > 0 depending on N such
that (3.6.7) and (3.6.14) yield

. 2 .
{E( swp nl| 7))} —coni?
s€0,t]

t
< C3E</ (93 +gs){Wk(/‘lvﬂg)2J Jer(V;’V?)zJ}ds
0

S Cge2k0t€9{wk$9(u1, N2)2j + Wk,O(V17 V2)2j}.
Noting that

fo) (3.6.15)

Wi (Lx1, Lx2)" <E[|IX} — X2|*] = E[n}],
by taking j = k we obtain
Wk’g([,Xl,,sz)k

(3.6.16)
< VesEmG] + veseg{Weo (', 1) + Wi o (v, v)* .
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By taking X¢ = X2 = Xgand p! = p?2 =p € C,Z’N, when 6 > 0 is large
enough such that \/cseg < %, OVHyt = L satisfies
1
Wk,g(q)'y"uvl,q)%#l/Q) < §Wk79(1/1,l/2), V1,V € CZ

Thus, 7* has a unique fixed point in C}/, so that (3.6.4) is well-posed for
distributions in Py.
(b) Taking v* = ®7puf, we have Lx: = ®7u’, so that (3.6.16) becomes

Wi (@70t 8702) < (c3e0) 2 { Wi g(uh, 12) + Wi g (@7t @7pi2) ).

Choosing 0y > 0 large enough such that czeg, < 1, we derive (3.6.9) for

o) = LBy

1~ (cseq) 7" O

Lemma 3.6.3. Assume (A%®). For any (p,q) € K, there exist a constant
co > 1 and a function ¢ : [1,00) — (0,00) such that for any j > 1 and
p e C, any solution X, to (3.6.4) satisfies

E[efi e (X0Pas| 7] < ooreo o Imelidereol gy, (3.6.17)

E[(/Otus(X;‘)l?ds)j XIS / ||ué|kds) 1712, (3638)

for any t € [0,T] andfeig()té[() T).

Proof. Let ®7 be defined in (3.6.5). Consider the SDE
AX, = b(X,)dt + 0y (Xy, ) p)dW,, Xo = Xo,t € [0, 7).

By Krylov’s estimate (1.2.7) which implies Khasminskii’s estimate in The-
orem 1.2.4, there exists a constant ¢; > 1 depending only on K,T,d,p,q
and the continuity modulus of a* which is uniform in g, such that

E[elo 15 (XPds| 7)1 < MG e LP(t),t€0,T).  (3.6.19)
By (A4%?),
& = 0y(Xo, @] 1) {00 (Ko, @7 )0 (Ko, @7 )"} 040 (X)
satisfies
|€t| < C2f0(taXt) + C2||:u’tHk, te [07T]
for some constant cy > 0. Combining this with (3.6.19), we conclude that

Ry = elo(€dWa) =3 [f1&Pds 4 < [0 T
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is a martingale satisfying
E[R2|Fo] < ecstes folusllkds 4 < [0, 7] (3.6.20)

for some constant c3 > 0. By Girsanov’s theorem

t
Wt = Wt */ gst, te [O,T]
0

is m-dimensional Brownian motion under the probability Qr := RyP. Since
b = b 4 b0 we may reformulate the SDE for X, as

dX, = b(X)dt + oy ( Xy, @) p)dW,, Xo = Xo,t € 0,77,

so that the weak uniqueness of (3.6.4) yields L g, = Lx». Combining
this with (3.6.19) and (3.6.20), we obtain

E[elo f( X% | 7] = E[Ryelo 7(5X)%s| 7]

1 t T 2 1 c c ds+c
< (IR Fol)? (Bl 70Xy 3 e o el e,
for some constant ¢4 > 0. This implies (3.6.17) for some constant ¢y > 1.
By choosing large enough constant C; > 0 such that h(r) := {log(C; +
r)} is concave for r > 0, using Jensen’s inequality and (3.6.17), we find a
constant C; > 1 increasing in j > 1 such that

K/ | fs (X1 ds)‘ } SE([log (Cj+ef(ffs(Xg)2ds)}j

Cr xRy i t j
< [1og ¢y + Bl #O0r 2)]" < & (14 [ alias 115, )

Using S replacing f, we derive
HfHLg(t)

([ 1noras) [mi] <112y, 0 (1 [ itas 1)

which implies (3.6.18). O

Lemma 3.6.4. Assume (A3®).

(1) There exists a constant No > 0 such that ®CPN < N holds for
N > Np.

(2) There exists ¢ : [k, 00) — (0,00) such that (3.6.1) holds for any solution
X, to (3.1.1).
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Proof. (1) Simply denote M; = [ 04 (X%, Lxs)dW,. Since [|o]o < 00
due to (A43?), we have
sup E[M|*] < oo.

te[0,T]
Combining this with Lemma 3.6.3 below, we find some constants cg,c; > 0
such that
E(L + | X{'[)
k

+E[M,|*

t
<E(1+ [ Xol") +ch‘ / (Kolltsll + fols, XE) + [ X5 + 1)ds
0

t
/ a2
0

By Gronwall’s inequality and (3.6.8), we find constants ca, cs > 0 such that

t k/2
2N 2N
/ e | ugllfe s *ds
0

<c3+ 03N1*k/2eNt, e C,Z’N,t e [0, 7).
Therefore, we find a constant Ny > 0 such that
sup (14|87 u)F)e ™ < ez 4+ esN*F2 <N, N> Ny, pecm.
te[0,T
That is, ¢} ¢ 'Y for N > Nj.

(2) Let X; solve (3.1.1) with v := Lx, € Pk, and denote p; := Lx,.
Then X; = X}'. By (A3%) and Itd’s formula, for any j > 1 we find a
constant ¢; > 0 such that

| X[ — | Xo|¥

k/2

t
<ec+a —1—01/ E(1+ | X#|*)ds, te0,T].
0

E(1+ |Xf|k) < co+ e

, y - y (3.6.21)
<c {1+|XS| +|Xs| f0(37Xs)+||MS||k }ds+Mt
0

holds for some martingale M; with d(M); < ¢?|X,;|*?=1dt. Noting that
¢ ¢
1 / | X2 fo(s, Xg)ds < 01( sup |XS|2j_1) / fo(s, Xs)ds
0 s€[0,1] 0
1 ) t 2j
< = sup |X,|¥ +02</ fO(s,Xs)ds>
2 sefo 0
holds for some constant ¢z > 0, we see that 7, := sup,¢jo 4 | X,|%7 satisfies

t .
ne < 2 Xo|¥+ 201 / {147, + 12 Vs
0 (3.6.22)

t 2j
+262</ fo(s,Xs)ds> +2 sup M.
0

s€0,t]
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By d(M); < |X;|>*~Ddt and BDG inequality in Lemma 1.3.5, we find
constants cs, cq4 > 0 such that

t 3
fo) < c;,]EK/ |X5|2(2j_1)ds) ‘}'0}
0

1 t
< JE(m|Fo) +C4/ {1+ E(s|Fo) tds.
0

E( sup M;
s€[0,t]

Combining this with (3.6.22) and (3.6.18), we find a constant ¢5 > 0 such
that

t .
]E(T]t|f0) § Cc5 + C5|Xo|2J + 65/ {E(ns|.7:()) + H/LSHi]}dS (3623)
0

holds for ¢ € [0, T]. By Gronwall’s inequality, there exists a constant c¢g > 0
such that

t
E(n:|Fo) < ce + 6| Xol* + CG/ sl ds, t€0,T). (3.6.24)
0

In particular, choosing j = k and applying Jensen’s inequality, we derive

1

B s 1X0|70) < {B(|70)

t
Cg 1
< \/06(1+|Xo|k)+5/ lpssllids + 5 sup [lps|li-
0 s€(0,t]

Noting that [|us||¥ = E[|Xs|*], by taking expectation we obtain

t
IhellE < B[ sup 1Xal*] < 205 (1 + EIXol']) +co [l e .71
s€|0,t 0

By Gronwall’s inequality, we find a constant ¢ > 0 such that
el < e(1 +E[IXol*]), ¢ € [0,T].
Substituting into (3.6.24) we derive (3.6.1). O

3.6.2 Proof of Theorem 3.6.1

(1) Since (3.6.1) is included in Lemma 3.6.4, it remains to prove that ®7Y
has a unique fixed point in C]Z’N for N > Ny.

Taking large enough 6 such that §(0) < 1, by (3.6.9) we prove the
contraction of ®7 on the complete metric space (C;”N,Wk’g), so that ®7
has a unique fixed point in CZ’N.
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(2) Let N > 0. For any two solutions X} of (3.1.1) with E[|X{|*] < N,
they solve (3.6.4) for yu; = vf = Lx;,i = 1,2. By (3.6.1), there exists a
constant Ky > 0 depending on N such that u,v € C,Z’KN. By (3.6.16) for

large 8 such that /czey < i, where 6 and c3 depend on N, we obtain

Wi (i, 17)* < 2/e3E[|1Xg — X5
Substituting into (3.6.15) yields the estimate (3.6.2) for some constant
Cj,n > 0. When Ky = 0 we have |b*9| < fo for any u € C([0,T); P),
so that all the above constants are uniformly bounded in N, hence (3.6.2)
holds for some constant C'; y = C; independent of N.
Finally, by taking j = k and X§, X3 such that
Lxi=p', Lxz =" E[X;—X5F = W(u',p?)",

we deduce (3.6.3) from (3.6.2).

3.7 Singular density dependent SDEs

In this section, we study the following density dependent SDE on R:
dX; = bt(Xt,eXt(Xt),gXt)dt+Ut(Xt;£Xt)th7 te [O,T], (371)

where {¢ is the distribution density function of an absolutely continuous
random variable & on R?,

b:[0,7] x R x [0,00) x D} - RY, ¢:[0,T] xR x L' - R @ R™

are measurable, and
Dl = {f e LYRY) : f > 0,/ f(z)dx < 1}
Rd

is a closed subspace of L'(R?). We take D! as the set of sub-probability
densities rather than probability densities, to ensure the completeness of the
set in L* and L¥ for k > 1, which is crucial in the proof of well-posedness.

A continuous adapted process (Xi)ieo,r) on R? is called a (strong)
solution of (3.7.1), if

T
/ E[1ba(Xe x. (X), £x,)] + low(Xa £x)[2]ds < o0
0

and P-a.s.
t

t
Xt:XO—i—/ bS(XS,EXS(XS),EXt)ds—&—/ 0o(Xo, bx,)AWs, ¢ € [0,T].
0 0
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A pair (X, Wi)ieo,1) is called a weak solution of (3.7.1), if (W;)epo,m
is an m-dimensional Brownian under a complete filtration probability s-
pace (€, {F}iejo, 1), P) such that (X¢)¢ejo,7) solves (3.7.1). We identify any
two weak solutions (X, Wi)iepo,r) and (X, Wi)eejo,r) if (Xe,1t)eejo, ) and
(Xt,1t)e[0,m) have the same distribution under the corresponding probabil-
ity spaces.

When m = d, o = I (the d x d identity matrix), and b(x,r, p) = b(z, 1)
does not depend on p, the weak solutions are studied in [Hao et al (2021a);
Issoglio and Russo (2023)]. In [Hao et al (2021a)], the initial distribution
is not necessarily absolutely continuous, where the weak existence is proved
for by (x,r) bounded and continuous in (¢,r) locally uniformly in z, and the
weak and strong uniqueness holds when b;(z,r) is furthermore Lipschitz
continuous in 7 uniformly in (¢,2). In [Issoglio and Russo (2023)], the
initial density is in CP* := U,~3CP for some 3 € (0, %), the weak well-
posedness is proved for by (x,r) := F(r)b;(z), where b € C*([0,T];CF)
and F' is bounded and Lipschitz continuous such that rF(r) is Lipschitz
continuous in r > 0. See [Izydorczyk et al (2019)] and references within for
the case with better drift.

In (3.7.1) the noise does not point-wisely depend on the density. It
seems that to solve SDEs with point-wisely density dependent noise, one
needs stronger regularity for the initial density and the coefficients. For
instance, [Jourdain and Méléard (1998)] proved the well-posedness and
studied the propagation of chaos for the following SDE with point-wisely
density dependent noise:

dX: = b(lx, (Xy))dt + o(€x, (Xt))dWr,
where the initial distribution density is C?*-smooth, b is C%?-smooth, and
o is uniformly elliptic and C3-smooth. o)
. p(dz

For k > 1 and a signed measure p with density function ¢, (x) : I
let

lllpe s= Wullpe, Nullze = €]l ge-
When k =1, we define

Il == sup |u(f), lpllz == sup sup  [u(lpe1)f)ls
I £lloe<1 2€R || flloo <1

where pu(f) := [ga fdu. Note that || - |[z: is the total variation norm.
We will solve (3.7.1) with initial distributions in the classes

Pk .= {V eP |y < oo}7 Pk = {1/ eP vz < oo}, ke [1,00],

which are complete metric spaces under distances ||v1 — va||pr and ||v; —
V2|71 respectively. The main results in this part come from [Wang (2023e)].
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3.7.1 Density free noise

(A39) ay(z) := (o07)(x) and by(z,7,p) = bgl)(x) + bgo) (x,r, p) satisfy the
following conditions for some k € [1,00].
(1) as(z) is invertible with ||al|s + |l ||oo < 00, and there exist con-
stants a € (0,1) and C > 0 such that

sup_[las(z) — as(y)|| < Clz —y|*, @,y € R™
t€[0,T

(2) ihere exist (po,qo) € KC, 0 > q% + Z% —1,and1< fo e f/gg (T') such
that

167 (2,7, p) = b (2,7, 5)| < folt, )t (Ir — 7 + o — Allge),
b (@, 7, p)| < folt, ), (t,2) € (0,T] x RY,r,7 € [0,00),p, 5 € L¥ N DY,
(3) bgl)(()) is bounded in t € [0,T] and

(1) (1)
||Vb(1)||oo = sup sup by " (z) — b " (y)]
tel0,T) z#y |’JI - y|

< 00.

To ensure Ly, € L* for {x, € L*, we replace (A3-6)(2) by the following
condition.

(2') There exist a constant C > 0,(po,q0) € K, 0 > q% + p% — 1, and
0 < fo € LE(T) such that

6 (2,7, p) = b7 (2, 5,5)| < (C + folt, ) (Ir — s + lp = Bll ),
6 (2,7, p)| < folt, @), (t,) € (0,T] x R, 7,5 € [0,00),p, p € L¥ N D}

Under the above assumptions, the following result ensures the well-
posedness of (3.7.1) for initial distributions in P* or P* for

Po d
ke[ , }m ko, 00], ko i= .
o — 1 (ko, oc], ko 20 +1—2¢;" —dpy*

This explains the role played by the quantity 6 in (A43)(2)(2'): for bigger
6, (2) and (2') provide stronger conditions on |b§0) (x,r,p)— b,EO) (x,7,p)| for
small ¢, so that the SDE is solvable for initial distributions in larger classes
Pk and P*. In particular, when pg = oo and @ is large enough such that
ko < 1, we may take k = 1 so that the SDE is well-posed for any initial

distribution v € P.

Theorem 3.7.1. Let k € [pfil,oo} with k > kO = m
—<4p —%o
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(1) Under (A%9), for any v € P*, (3.7.1) has a unique weak solution with
Lx, = 7 satisfying £x. € L¥ (T), and there exists an increasing func-
tion A : [0,00) — (0,00) such that for any two weak solutions {X}}i—1 2
of (3.7.1) with £x: € Lk,

S[lépT] [€x; —Exzllpe < A(HEX(% IExAILx Iz+) 1£xz—Lxczllpe- (3.7.2)
telo,
If moreover oy is weakly differentiable with

1
IVa| < Zf’ for some l € N,
i=1
then for any Xo with Lx, € Lk, (3.7.1) has a unique strong solution
with £x. € L% (T).
(2) Under (A35) with (2') replacing (A%%)(2), assertions in (1) hold for
(P*, Lk, L*) replacing (P*, Lk (T), L*).

(3.7.3)

For fixed k > 1 and y € P, let 75$T be the set of all bounded measur-
able maps
p:(0,7) —>[~/kﬂD_1H Po =Y.
When k = 1, the initial value v may be singular, and if it is absolutely

continuous we regard it as its density function.
Then Plij is complete under the metric

dp (v 7?) = 2o e Mot = pillze, PP EPEL
<|0,

for A > 0. We define (Pﬁ,T, di.») in the same way with (L*, P*) replacing
(LFPF).

To prove the well-posedness of (3.7.1), we will use the fixed point theo-
rem for the map induced by the SDE for p € 75§T replacing ¢x . For any
pE 75,’;,71, let

W (x) := by(x, pe(x), 1), of(x) := oy(z,pr), te€[0,T),x R
Then for v := Lx, € L*, (3.7.1) has a unique (weak or strong) solution
with £x. € L¥_ if we could verify the following two things:

(1) For any p € 755,% the SDE
dXP =b)(XP)dt + of (X)dWy, t € [0,T), X§ = Xo (3.7.4)
is (weakly or strongly) well-posed, and
p— (I)gp = ‘CXf? te (OaT]

provides a map ®7 : 7517:,« — 75$T
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(2) @ has a unique fixed point p in 75571 Indeed, from these we see
that X; := X/ is the unique (weak or strong) solution of (3.7.1) with
Lx € L];O (T)

To verify (1) and (2), we recall some heat kernel upper bounds of
[Menozzi et al (2021)], and estimate the f){l’—f/g/ norm for time inhomo-
geneous semigroups.

We consider heat kernel estimates for the time dependent second order
differential operator

Lt = %tr{atv2} + Vb,
where
a:[0,T] xR* = RI@R? b:[0,7] x R — R?
satisfy the following conditions.

(H%") as(x) is invertible and there exist constants C' > 0 and a € (0,1)
such that

16.0) [l + llallc + lla™ | < C,
sup |lai(z) —ar(y)| < Cle —yl%,
t

)

sup [by(z) = bi(y)| < C(lz =yl + |z —y|*), =,yeR™
t€[0,T]

(H*) a;(z) is differentiable in z, and there exist constants C' € (0, c0) and
a € (0,1) such that

IValleo <C,  sup [[Vas(z) = Vai(y)|| < Clz —y|*, z,y € R%.
t€[0,T]

Under (H*?), for any s € [0,T), the SDE
dX7, = by(XZ)ds + Vas(XZ,)dW,, te[s,T], X, =z eR?
is weakly well-posed with semigroup {Pf ’tb}0§5<t§T and transition density
{pZ:?}0§s<t§T given by

PES@) = [ 9t flu)dy = BIFXEL f € BuRY)

and we have the following Kolmogorov backward equation (see Remark 2.2
in [Menozzi et al (2021)])

O PIVf = —LyPiYf, feCP(RY,s€(0,t],te (0,T). (3.7.5)
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Next, we denote s = Qt(}s) presented in [Menozzi et al (2021)]. Then
(s.t)o<s<t<T is a family of diffeomorphisms on RY satisfying

oo + IV tlloc} <6 (3.7.6)

for some constant § > 0 depending on a,C. For any x > 0, consider the
Gaussian heat kernel

a _lzl?

pi(z) := (kmt)"Ze " re, t>0, x € R%

The following result is taken from [Menozzi et al (2021)].

Theorem 3.7.2. Assume (H*®). Then there exist constants c,x > 0 de-
pending on C, « such that

V2l () (@)] < et — 8)7Epf_ (se(z) — ),

. (3.7.7)
1=0,1,2, 0<s<t<T, z,y € R%
If moreover (H®) holds, then
a,b _1
VR )] < et =) el )

0<s<t<TxyecR?

and for any B € (0,1) there exists a constant ¢ > 0 depending on C,«, 3
such that

VPl (- )(x)*VpZ’f(' y)(@)| + VPl (2, ) (y) - Vp?f(w,) vl

<C|y y‘ﬁ(t_s {pt stt ) )+pt sd}St y/ }7 379
0<s<t<T, x,x,yERd.

For any f € By(R?), 0<s<t<T and z € R?, let
Prf@) = [ vt =) f)a,
PLuf@) = [ usle) = ) ) (37.10)
PEof@) = [ 9 (wnals) = o))

It is well known that for some constant ¢ > 0,

7

_d'=p)
1PE oo = sup [P fllpw < ct™ 2
Ifllp<1 (3.7.11)

t>0,1<p<p <o
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Combining this with (3.7.6) we obtain
d(p’—p)
H stll Lo pe + P stllpo e Sclt—s) (3.7.12)
0<s<t<T,1<p<yp <00
for some different constant ¢ > 0. Below we extend this estimate to the
L{]’—sz’/ norm.

Lemma 3.7.3. There exists a constant ¢ > 0 such that for any 0 < s <
t<T,1<p<p <oco0andqc€ll, oo,

1B5 )+ HP fIILp o

g (3.7.13)
SCH(t*') 2 Nq(ty feBb([OaT] XRd)7
where and in the sequel, (t — -)(s) :=t — s is a function on [0,t], and
sup l9Pse(Lp ) )l
z€R
g ) (3.7.14)
<c(t—s) 2 f.9 € By(R?).

Proof. Let B, :={vecZd: |’U|1 = Z?:1 |vil =n},n > 0. By (3.7.6), we
find a constant ¢; > 1 such that

W’s t(z)— | ( 177'2701) T € 3(1/);51(2)7 1),y € UUGBnB(ZJFUvd)aZ €R%
Combining this with (3.7.11), we find constants cs, ¢35, ¢4 > 0 such that for
any z € RL 0<s<t<T, andf,geB;(Rd),

||1 gPs tf”Ll < Z Z ||1B(1p )J)glssﬁ,t(lB(z-&-v,d)f)”Ll
n=0veZd:|v|;=n
< Z 283 / et o@D (W (@) — D)ot () dardy
n=0ve
< 022 Z € C3(t *) / . |13(@,;}@),1)9‘(z)pg(t—s)ws,t(m) - )
n=0veB,

11B(z4v,a) f(y)dxdy

2
R ( —
<CS E E e c3(t—s)

n=0veB,

< 63 E E e C3(t s)

n=0veB,

(P39 Ut (2D Btv.a) [l

2(t s)( (7 (2), n9 ) ||1B(z+v d) flle

Lr—1
E § e CS(t B)

n=0veB,

<yt —s)” T

1BGz+v,a) flle-




July 27, 2024 9:20 ws-book9x6 13512-main page 142

142 Distribution Dependent Stochastic Differential Equations

Since

1
s ([ tseattds) " <l (3.7.15)

holds for some constant c¢; > 0, we find a constant cg > 0 such that this
and Holder’s inequality imply

: A A ;
s (| ||1B<Z,1)P:tfs||§plds) —sup ( / M 1>P::tfs‘;,,,ds)
z€R4 0 z€R4

t _a-mya .\
e (/ {eal b follin(t—s)" "5 }dS) o 303 e
0

z€R4 re(0,7] = 0veB,

(p — > n2
< e (t - ')J(g”"meig(t) YD e st

n=0veB,

This implies the upper bound for P* in (3.7.13), by noting that for some
constant K > 0,

oo "2 oo n2
YN emwT <Y K14t mT < oo (3.7.16)
n=0veB, n=0

By (3.7.6) and integral transforms, the estimate on P, ; follows from that
of PF.
Similarly, we find a constant K > 1 such that

19Ps (L Ol <D D> e+ gPi(sw. .0l

n=0v€eZd:|v|1=n

<>y / a0 40091 @PE s (s(z) = D)o, 0 (0)dady
n=0vcp, ’RIXRA
<K(t—s) Z > e xtin 9l Mol

n=0veB,
This together with (3.7.15) and (3.7.16) implies (3.7.14) for some ¢ > 0. O

For p € 755,% we denote
ot (2) = oulw, ). V(@) = bulw, po(a), pr) = b (@) + 0 °(@),
b0(@) = b (e pi(), ), £ € [0,T],w € R
Lemma 3.7.4. Assume (A35) with (A35)(1) holding for o” replacing o

uniformly in p € L* N D, where k € [JBor,00]. Then (3.7.4) is weakly
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well-posed for any v € P* and p € 755,% and for any B € (0,1) there exists
a constant ¢ > 1 independent of v and p such that ®]p := Uxr satisfies

1270z < cllVllge- (3.7.17)
Moreover, under (2') replacing (A36)(2), this estimate holds for (L*,L¥.)
in place of (L*, L* (T)).
Proof. (a) By (4%9)(2),
||b'o’OHE§g(T) < ||f0||igg(T) <o, pE€ 75§7T. (3.7.18)

According to Theorem 1.3.1, this together with (A%°) imply the well-
posedness of (3.7.4). Moreover, by Theorem 6.2.7(ii)—(iii) in [Bogachev
et al (2015)], the distribution density function £x» exists.

(b) To estimate ®] p for p € L¥, N DL, consider the SDE

dX? =) (XP)ds + o (XP)dWs,

. (3.7.19)
s €10,t], Xy =X{ = X, with Lx, =7.
Let a” := 0”(0o”)*. Then
> af b a? b
BUOI=BIF " N0l =[ | a6 @) f)rde)d. f € BTRY,
X

ey
and (3.7.7) holds for pZ;’b " with constants ¢, k > 0 uniformly in p. So, we
find a constant ¢; > 0 such that

B <o [ (F@nidn) = alFiin(h), e B ®RY, (3.720)
where

Pran = ( [ dennan)a te@0.1)aeP. 2
R,
On the other hand, let
Ry = efd €AW 16 Ps ¢ (50(g, (o)) 00} (X,).

By (3.7.18), the uniform boundedness of ||o?(a*(0”)*) ||, and Khasmin-
skii’s estimate in Theorem 1.2.4 and the Krylov’s estimate (1.2.7), we find
amap K, : [1,00) = (0,00) such that

K,(p) = (E[RY])?» < o0, p>1. (3.7.22)

By Girsanov’s theorem,

W, =W, — / &.dr, s e 0,4]
0
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is an m-dimensional Brownian motion under the probability measure Q; :=
R;P, with which the SDE (3.7.19) reduces to

dX, = b2(X,)ds + o?(X,)dW,, s € [0,1], Xo = X§.

By the weak uniqueness, the law of X/ under P coincides with that of X;
under Q;. Combining this with (3.7.20), (3.7.22) and (3.7.14), for any p > 1
and k' > k we find constants ¢;(p), c2(p) > 0 such that

/Rd {(@p) e fW)dy =E[(1pe1) (X)) =E[R(1penf)(X])]
(]E[(lB(z,l)fp)(Xf)]) '
<a®)( [ A QaenmHani)

1 dk k)
< 02(p)||’7||£kt 2REp ||f||£l‘3)’7li1’ te (OvT]vf € B+(Rd)'

p—1
p

=

< (E[R7))

1
P

Therefore, for any probability density v € L¥,

v L _d—k)
H(I)t p” ___pk! < cg(p)H'yHEkt kD
L 1

PR —FTF (3.7.23)
p>1K >kpePl,te(0T],
where for k' = k = oo we set pk,ﬁ% = ﬁ, dg:,;,;f) := 0. Using (3.7.12)
replacing the estimate in Lemma 3.7.3, we find a map ¢ : (1,00) — (0, 00)
such that
|(I)A/ H; _d(k —k)
pk’ <c Pt kR )
I1Pepll e < @)L (3.7.24)

p>1K >k pePr  te(0,T]
(¢) By the backward Kolmogorov equation (3.7.5) and It6’s formula, for

any f € C5°(R?) we have

A{(PL" )XY = (0 + L 4 9,,0) PP FL(X0)ds + dM,

= {ng,oPsytf}(Xg’)ds +dM,, s€]0,1]
for some martingale M. Then
p p(1)

E[f(X])] = [P} f(X])]

(3.7.25)

aﬂ,b(l)

= B[P £(X0)] + /0 E[(Vyr0 P2 )(X0)]ds, s € [0,1].

We explain that the last term in (3.7.25) exists. Indeed, by (1.4.1), there
exists a constant ¢y > 0 such that

af pD
IVPEY flloo < 2|V, 0<s<t, feCHRY,
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so that (3.7.18) and Krylov’s estimate (1.2.7) yield
/ (V0P )5 <8 [ a9 albf0X0) <
Noting that <I>;’p = {xr and "
P f(a) = /Rd " (2, 0) F )y,

(3.7.25) is equivalent to

(@7 f}(y)dy = y@)pe™ (2, y) f(y)dady
R4 R4 xRd
+[as [ @@t @)

feCe®Y, s elo,t].
Thus,

(]0)(y) = / 2 (@, )y (de)
+/0 ds/Rd(q)zp)(x){ bpopg‘;b(l) wy)(z)}dz, te€[0,T).

By (3.7.12) for p = p/, HPf*’yHEl < K||7||;: holds for some constant K > 0.
Combining this with (3.7.7), (3.7.18) and (3.7.26), we find a constant c¢5 > 0
such that for any [ € [1, o],

(3.7.26)

127 pll i < esllVll e

t (3.7.27)
+c3 sup/(t—s ||1Bz1Pt JA(@1p)fo(s, )} ds.
z€R JO
By k> ko and k > S22, for any I € (ko, k] N[22, k] we have
Dol 11 1
— e, —=—42, 3.7.28
a po +1 (1] @ po ! ( )
and (po, qo) € K implies
L dil—q) 1 d ; Qo —1
Bk S LY 3.7.29
2 2lq 2 2po qo ( )

Combining these with (3.7.13) for (p',p) = (I,q;) and applying Holder’s
inequality, we find a constant ¢4 > 0 such that

t
/O (t_5)7%|‘Pt'is{ 3p) fols }Hles <et—) fO‘I’TYpHi;”(t)
p
< call foll oo o |6 = )~ @7 pHquD o 1€ Uikl [pofl,k},
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where {(t — )" ®7}(s,z) := (t — s)~% ®7(x). This together with (3.7.27)
implies that for some constant c5 > 0,

127 pllze < eslVl e

a0—1

t 5 qo‘“jl a0
+c5fo||igg<t>( / {(t=5) 1920011} ds) . (3730)

te[0,T),1 € (ko, k] N [ppo 1,k]
—

Similarly, using (3.7.12) replacing Lemma 3.7.3, we derive

197 pllze < esllyllpe

qp—1

t g0 q
+aallfollgo( [ {97102} as) T gaay
a0 0 £

te[0,T],1 € (ko k] N [pp—ol,k]
-

Below we prove (3.7.17) by considering two different situations.
(c1) k < 0o. For any k' € (k,00) we have
k(k'—1 k'
Pk = ,( ) > 1, plf’k , =
K (k—1) Pk’ — K +1

k.

Noting that
d(k' — k)

kl’TLIllc 2kK pi i -
by (3.7.29) we find &’ > k such that
Ak’ — k) 540
= —-=c(0,1- 7)
Sl 2kK py 1 ( g —1
Combining this with (3.7.23) and (3.7.30) for I = k, we find a constant
K > 0 such that

sup [|®7pllzn < K|1v[l 2w
te[0.7]

t 5 — 490 q%_l
+ K sup </ (t—s)_%sfek,k/“,y”zi,k/(qo l)ds> 0 .
tef0,7] \ Jo
Therefore, by the generalized Gronwall inequality [Ye et al (2007)], (3.7.29)
and (3.7.30) implies (3.7.17).
When fy € LFo, by using (3.7.24) and (3.7.3~1) replacing (3.7.23) and

(3.7.30), we obtain this estimate for L replacing L.
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(c2) k = co. We take k' = k = oo, so that by (3.7.23), for any p > 1 we
find a constant ¢(p) > 0 such that

1
187l 2, < ..

p—1

Combining this with (3.7.30) for [ € (pg’ﬂl V kg, 00) and p := 5 > 1, we
obtain

sup [|®/ ||z < o0,
t€[0,T]

so that by the generalized Gronwall inequality [Ye et al (2007)], (3.7.30)
implies (3.7.17) for | € (pfﬂl V kg, 00) replacing k = oo with a uniform
constant ¢ > 0. By letting [ 1 k = oo, we derive (3.7.17).

Noting that a probability density function p € L implies p € L for
any [ > 1, when fo € LF0 we derive (3.7.17) for L replacing L by using
(3.7.24) and (3.7.31) replacing (3.7.23) and (3.7.30) respectively. O

Proof of Theorem 8.7.1(1). By Lemma 3.7.3, (3.7.4) is weakly well-
posed. By Theorem 1.3.1, it is also strongly well-posed provided (3.7.3)
holds. Thus, for the weak or strong well-posedness of (3.7.1), it suf-
fices to prove that ®7 has a unique fixed point in ’ﬁfT In general, for
probability density functions v!,7% € LF and p!,p? € ?Sff’T, we estimate
dk7A(¢71p1, @721)2) for A > 0.

By (3.7.26) for a” independent of p, (A435)(2) and (3.7.7), we find a
constant ¢; > 0 such that

97" = 8207 14 — eallm = 2l 20
t R

<o [(e— s H|Pn{nGs 02t - a2 (3:7.32)
0

+ (@7 1) (10— 21 + 10 = )]} s

Letting
_d(k—U)—kl
Fi(s,a) = (t—s)" = s"[(®0p")(Ips = P3| + llps — P2l 2+)] (=)
_d(k=D)—kl kpo
F(t— )" B 02 pt — 8722 (), 16{1, }
(t=3) 27! - 8767 () ——

by (3.7.13) for ¢ =1 and (p’,p) = (k,1), and applying Holder’s inequality,
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we find a constant ¢y > 0 such that
Pr{ fols ) [197 0" — @32

t 1
JEER
0
+50@2 1) (10} = 21+ ok~ p2150)] }

< el foFillz ) < C||f0||i§g(t)||ﬂ||ipgojl o
a9 (t
@

t d(k—1) 1
< cz||f0\|£gg(t) (/ {(t — )T TR T2 [qupl _ qmsz ol
0 Lro~!

ds

Lk

qo—1

Ol (P pl 1_ .2 1 2. ﬁ%d 0
+ 1122 0") (Iox = ol + Il = P2l 2| s, s) .

Since I € [1, k]ffgo] implies p’;ffl < k, combining this with (3.7.32) and

applying Holder’s inequality, we find a constant c3 > 0 such that
197" p' = @7 0% || 21 — crllvr — Y2l 2

t
<l [{e-o s lan st - o,
0

(3.7.33)
o\
0
030l 2]} )
L*@o—1—prol
holds for I € [1, klfgo]. Letting
qo (d(k =1 1) kpol
= — T3 = 3.7.34
W= o — 1\ 2k t3) A k(po —1) — pol’ ( )
by the definition of d~k A, this implies that for any A > 0 and [ € [1, k’f]‘;o],

~ 1 2
d (D7 ", @7 p?) < crllm — 2l zx
~ 1 2 ~
+ c3{d A (®7 p', D7 p?) + dia(p', p*)}

ap—1

t q
X sup {(/ (ts)a’e_fm(t_s)ds> ’ (3.7.35)
te(0,T] 0

t ; o1
+ (/ (t - s)ia" (806)\(ts)”q)zlplnim)%%ds)
0

a0
Below we complete the proof by considering two different situations
respectively.
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(a) Let k < oo. By (po,q0) € K and k > ko :=
(3.7.34) satisfies

lim o + —20 (i—9)+f 0 {d +1+<d 0)+}<1.

d .
4 qin
20+1—dp, " —2q; 7 4

nizm a0 —1\2k Ca-1l2p 27 \2k
So, we may take [ € (1, ,ﬁfgo) such that
0 ( d )+
——0) <1 1 . 3.7.36
al+q0_1 ok ’ ﬂle(voo) ( )
By (3.7.23) for k' = co and p = Blﬁjl, there exists a constant ¢4 > 0 such
that

123 H 1 < callylzos™ 3.
Combining this with (3.7.35) and (3.7.36), for large enough A > 0 which is
increasing in ||y || zx (< [|[7%]|7x), we have

~ 1 2 ]_ ~ 1 2 1 ~
de (@7 p', @7 p?) < el —yallpe + de,x(q’7 pt, @7 p?) + de,A(PI,PQ)

Taking v! = 72 = ~ we derive the contraction of ®” on the complete metric
space (75§T,c2k 2), and hence ®7 has a unique fixed point. This implies
the weak (also strong under (3.7.3)) well-posedness of (3.7.1). Moreover,
for two solutions (X i)izl,g of this SDE with initial distribution densities
(v9)i=1,2, by taking p* = Lx: so that p' = & p’, we deduce (3.7.2) for
some increasing function A.

(b) Let k = co. Bytakinglzpo,wehaveﬂl:ooand9>q%—i—p%—l
in (43)(2) implies
o0 (i_9>+: o {i 1 9,} 1
N -1\ o1l 270 ST
Combining (3.7.35) with (3.7.17) for k& = oo, we derive that for a large
enough A > 0 increasing in |7}z (< 72|75 )

~ 1 2
de (@7 ', 7 p?) < el — Y2l

- t Aa T
+03dk7)\(<1>71p1,<1>72,02) sup (/ (t—s)_(’leqogl(ts)ds> ’
te (0,7 0
j 12 ! — 290 (4—s), g1 0 e
seaduah ) sup ([0 s W s )
te(0.7] \Jo

1- 1 2 1-
<l =l + 7A@ 01, 87 p%) + 2dia (', 7).
Then we finish the proof as in step (a). O
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Proof of Theorem 3.7.1(2). Let (A%%) hold with condition (2) re-
placing (A36)(2). By (3.7.12) and Hélder’s inequality, we find constants

c1,c2 > 0 such that forany 0 < s<t<T and !l € [1,lf_’|r—ppﬂo]7

PE{(C+ fols. ) (10701 — @20 + " (@ ook = 2 }|
d(k

<er(t— )" {]|o7 ot — @7l + 5[ (@2 0ok — 2

+ ([ fols, (@ p" = 8L p?)|| 0 + 8[| fols, ) (DT pM) oy — p?IHLl}
<a(t -5 {01t — el + 07 o |, N0k = o2

oM oo |93 = 8207

S YOO R 17 [T Py 3

I Pok—k=pgl

. k . . l kl
Noting that | € [1, k?f;l(;o] implies [ V % < k and k’ill < m, by
combining this with (2'), (3.7.7), (3.7.26) and Holder’s inequality, we find

constants c3, c4 > 0 such that

187 p" — @72 p% (| pr — c1llyn — yallon

<e [[-on{c + pie)

< (j021 0" = @307 + 5" (@7 1)} — p2]) } | s
t T = [jlom ot — @22
< et ol @) ( | {(t— )5 4|70 — 27207 1
20 a0—1
01| 1_ 2 11 0 [kpo}
L e e N I !

Then the remainder of the proof is similar to that of Theorem 3.7.1(1) from
(3.7.33) with L replacing L. O

3.7.2 Density dependent noise

In this part we allow ¢ to be density dependent but make stronger assump-
tions for the coefficients in the spatial variable.

(A37) There exist 1 < fo € ligg (T), C € (0,00) and « € (0,1), such that
the following conditions hold for all t € (0,T), z,y € R%, r7 €
[0,00) and p,p € L

|bt(x’rv p)| < f()(t’x)v
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|be(, 7, p) = be(,7, p)| < C(lr — 7| + llp — pll),
lollss + IVl + [1(00™) oo < C,
IVoi(, p) (@) = Vou (-, p) ()]l < Clo —y[*,

loe (-, p) = 01 (-5 p)llog < Cllp = pllco-

Theorem 3.7.5. Assume (A>7) and let 3 € (0,1— Z%— q%) For any initial

value (initial density) with {x, € Cf (R9), (3.7.1) has a unique strong (weak)

solution satisfying {x. € L, and there exists a constant ¢ > 0 such that

sup [[0x, llgp < ellfxllop- (3.7.37)
t€[0,T]

Moreover, there exists an increasing function A : (0,00) — (0,00) such that
for any two solutions {X}}i=1.2 with lxi € Cf(Rd) and x: € L,

sup [[€x: — Cxzllo < A(lxells Alllxpllcs) Ixe — Cxzllo-  (3.7.38)
te[0,7T) b b

Let v € P> with ¢, € CbB. By Theorem 3.7.1 and (A7), for any
p € P, the following density dependent SDE has a unique (weak and
strong) solution with £xr~ € LY:

d)(tp’7 = bt(ti”Y, thpn (tiﬁ)’ eXfKY)dt + Jtp(ti’v),

(3.7.39)
[,Xc/)”“f = '}/,t S [O,T],
and there exists a constant ¢ > 0 depending on C, « such that
HEX{“Y ”oo < C||€'yH<X>7 pE ,P»E;,CT- (3.7-40)

We aim to show that the map
pr=Lxen

has a unique fixed point in ’ij’T, such that the (weak and strong) well-
posedness of (3.7.39) implies that of (3.7.1). As shown in the proof of
Theorem 3.7.1, we will need heat kernel estimates presented in Section 2
for the operator pr’bw, where

af = ot (al) B = b bxp (), ), HE 0T
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To this end, we first prove the Hélder continuity of 7. By (A4%7), this
follows from the Holder continuity of £xs..

Lemma 3.7.6. Assume (A7) and let 3 € (0,1 — i - q%) Then there

exists a constant ¢ > 0 such that for any p € 77 r and v € P with

0, ey,
lexolop < clisllgg: € .71 (3.1.41)
Proof. Simply denote ¢, = lxp~. Let psp’t be the heat kernel for the
operator
1 .. a? ,5°
LY = idlv{atpV} =L,
where
B d
ay = sop(0])", (b)) = Zaj(af%J
j=1

Then pf? ,(2,y) = pf,(y,x), and by Theorem 3.7.2, there exist constants
¢,k > 0 depending on C,a, such that for some diffeomorphisms s+
satisfying (3.7.6),

VP2, (o) (@) < er(t— )7 5pf (au(@) —y), i=0,1,2,
VP2 (2, ) ()] < et — 8)72pf ($ee(z) — y),

VP2, (o) (@) — Vil y) ()]

<aly =y Pt —8)7F P (bealz) —p)

hold for all 0 < s < ¢t < T, x,y € R% By the argument leading to (3.7.26),
we obtain

G) = [ sha(e. )t @do

(3.7.42)

t (3.7.43)
+/0 ds | E@{Vo, @ @)e0-52 P50 9) (2)de.

By the symmetry of p&t(x, y) we have
| hemi@is = [ o)t @de = (Pl G740

Let X} solve the SDE
dXF = b (X7)dt + of (X¢)dWy, t€[0,T],Xo = 2.
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By Theorem 1.3.1(3), we find a constant ¢; > 0 depending on C, o in (A4%7)
such that

IE[ sup | X} —Xfﬂ <eclz—yl, z,yeRL
t€[0,T)

Then (3.7.44) implies
|(P51L:) () — (PG L) ()] = [Elly (X)) = £4(X )]
< N6 BIXY = XP 7] < 1165l o (erly — o')°.

Since (A7) implies |b| 4 |b?| < cf for some constant ¢ > 0, by combining
this with (3.7.40), the last inequality in (3.7.42), and (3.7.43), we find a
constant ¢ > 0 independent of p,y such that

10:(y) — Le(y)| — coly — ')°
S@WNM%WW/@—S"ﬂ{tﬁ V@) + By fols, ) (') Hds,
0

where P, ; is in (3.7.10). By (3.7.13) for (p,q) = (po,qo) and p’ = oo, we
find a constant cg > 0 such that this implies

[6e(y) — t(y')| — coly —y/)”
c2llbyllooly = y'1?

< [ = B (Brf - 9 s}
+Pﬁt{ t—s) 2Pof0( )}(y/))ds

qo—l

t q
<202(/ (t_s)(l?i+zﬁ))q0°1ds) 1=t — - %fO}HLm(t)
0 q0

S C3Hf||f,p0(t)7 ) 7& yl>t € (OvT]v

where we have used the fact that |- HLOO o = ||Loc and (H"@—|—2p0 )l <
1 due to 5 € (0,1 — zTo - —) Combmmg this with (3.7.40), we finish the
proof. O

The next lemma contains two classical estimates on the operator 1 — A
and the heat semigroup P, = e'®.

Lemma 3.7.7. Let P, = et
(1) For any B > 0, there exists a constant ¢ > 0 such that

10— 2)% flloe < el fllgy-



July 27, 2024 9:20 ws-book9x6 13512-main page 154

154 Distribution Dependent Stochastic Differential Equations

(2) For any a, B,k > 0, there exists a constant ¢ > 0 such that
— (o _\t
(L = A)FPifllgars < ct™EP7 | fllgp, > 0.

Proof of Theorem 3.7.5. For Ly; = v with £, € C’g(Rd) and
pl e or, simply denote

=0 i, b =b(- (), ), tel0,T], i=1,2.

ti YT
Without loss of generality, let [[£2]| o6 < [[€41]| 5.
b b
By (3.7.43) with (v, p) = (v!, p'), we obtain
1

1 t
etl (y) = P(it£71 (y) + A dS Rd éi(l‘){vbﬁl (:C)—I_)fl (x)pg,t('7 y)}(m)dm

8
By the argument leading to (3.7.26) for (pg,lt, X?°7") replacing (pftb ' )

X?), we derive

80) =R )+ [ a5 [ BT, g o)}

+35 Z/ds {éi(a _a’ )Zjaajpst( y)}(w)dx

1] 1

Thus,
d
||£% - E?Hoo <Li+1I,+ Z 1;j, (3.7.45)
i,j=1
where
1 1

I = ”Pop,te"fl - P(ite’yz”m < ”E'yl - €,Y2||OO, (3'746)

and

[0 =B — 20— 0] VRl (oy) pa)|d,

IQ::/tds/Rd
/ds/Rd{€2 — )05l () } ()

Below we estimate I, and I;; respectively.
Firstly, by (A7) and (3.7.40), we find a constant ¢; > 0 such that

|2{08 () — B2 (2)} — X () {0 (2) — B2 (2)}]
<L = 2o S () — B2 ()] + [1€2]]oo8E () — B ()]
< 1l lloolllt = 2lloc fols, ), s €[0,T],z € RY.

1
= — sup
2 yerd
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Combining this with (3.7.42) for ¢ = 1, (3.7.13) for (p,q) = (po,q0) and
p' = oo, and applying Holder’s inequality, we find constant ¢y, c3 > 0 such
that for any ¢ € [0, 77,

t
I < callfy2 o / (b= ) 40— 2] PE, fols, ) (y)ds
0

_d_
< call el (£ = ) foll
gqp—1

(/{ I ) as)
q9—1

t _ ag(po+d) _d0 a0
< call bl llggeo ([ (-9 B 1 - 212 7as) 7
(3.7.47)

Next, by integration by parts formula, (437), (3.7.41), (3.7.42) fori = 1
and Lemma 3.7.7, for any 0 := a A 3, we find constants c4, c5 > 0 such that

{E —a waajpst( )}(x)dx

_ [ A2 — ') ”}(x)}~[aiaj(l—A)*%pé’l(-,y)(x)}dx
Rd

<l - mHEE o)) [ 000 - A Bt e

< ca| (et = af )l gpne t = 9)2 7
< sty 2Hc6(t—8) “Hios = pillce-
By combining this with (3.7.45), (3.7.46) and (3.7.47), we arrive at

108 = e < 1042 — ¢

')'2”00

t o) g0=1
90 (Po+ a0
+63£,y2||00</ (t—s)_m?o(qoo—l) ||€1 62”:10 T )
0
d C5 ¢
Soelep [ (€= 95 ok = s, ¢ e 0.7)

Consequently, for any A > 0,

dOOJ\(KXpl 'y17€X02,’v2) ‘= sup ei)\t”gtl - Z?HOO
t€(0,T)

< ||€V1 — 672”00 + E()\){doo)\(KXplﬁl,ZX;,QY,YQ) + doo’)\(p17p2)}
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holds for
t 20-1
_ a0(po+d) _ agA(t—s) a0
g(A) := sup {03872”00(/ (t—s) 2r0Go-De a1 ds>
0

t€[0,T]
d2 t
+ﬁuevz||cg/ (t—s)g_le_/\(t_s)ds}.
2 v Jo

Since (po,qo) € K implies %‘i‘%

large enough A > 0 increasing in [|£,2|| .5, we obtain
b

< 1, and since 1 — g < 1, by taking

doo)\(gx‘,lﬁl , Eszﬂz) < ”ng — K,yz ||oo

1 (3.7.48)

+ Z {doo,)\(g)(plwl 7£X021"r2) + dOO,)\(p17 02)}-

Taking 7! = 72 = 7, we see that the map p + fx,~ is contractive on
the complete metric space (’Pﬁ;f’T, dso,2), so that it has a unique fixed point.
Therefore, (3.7.1) is well-posed. Estimate (3.7.37) follows from Lemma 3.7.6
for p; = lx, for the solution to (3.7.1), while (3.7.38) follows from (3.7.48)
for pt := EXg,’yi = EXé,i =1,2.

3.8 Notes and further results

There exist many other results on DDSDEs and related topics, see for in-
stance [Wang (2018)], [Hammersley et al (2021)], [Huang and Wang (2019)],
[Huang and Wang (2021a)], [Huang and Wang (2022)], [Rockner and Zhang
(2021)], [Chaudru de Raynal (2017)], [Chaudru de Raynal (2019)], [Zhao
(2020)] and references within. In the following, we introduce some further
results on singular DDSDEs and path-distribution dependent models. See
[Hong et al (2024)] for distribution dependent SDEs/SPDEs under local
monotone conditions.

3.8.1 DDSDEs with linear functional derivative of noise

coefficients

Let f be a function on P, 9, f(p) € By(R?) is called the linear functional
derivative of f at u € P, if for any v € P we have
i =L [ g e - w1
el0 IS Rd
If 0, f(1)(y) has linear functional derivative in u, we say that f has second
order linear functional derivative, and denote

Tpf (Y. 2) = 0, {0uf (1) (1) }(2). (3.8.2)
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(A%%) [Iblloc + llolloe + 1(00™) oo + [[Vollos < 00, bi(x, ") and ay(w,) =
(or07)(x, ) have linear functional derivatives, and there exist con-
stants K > 0 and o € (0,1] such that for any t € [0,T),v,u € P
and z,x',y,y, 2,2 € R,
[b1(2, 1) = be(, V)| < Kl[p = vllvar,
la¢(@, 1) — ar(a’, || < Ko — a'|*,
18t (. 1) (y) — Opar(z’, W) ()| < K (o —2'|* + |y — y/'|).
The following result is due to Theorem 3.4 and Corollary 3.5 in [Chaudru
de Raynal and Frikha (2022)]. See also [Zhao (2020)] for further result

where [b] € L} for some (p, q) € K and b;(x, -) is Lipschitz continuous in a
weighted variation distance.

Theorem 3.8.1. Assume (A%®). Then (3.1.1) is weak well-posed, and it
is well-posed if in addition that o¢(-, u) is Lispchitz continuous uniformly in

(t,p) €10, T) x P.

3.8.2 Singular DDSDEs with integral type, Kato class and
critical drifts

Consider
X, = / b(Xo,y) L, (dy) + dWs, € [0, T, (3.8.3)
Rd

where b satisfies |l~)t(x, y)| < fi(x—y) for some f € f/g with (p,q) € K,p > 2.
The well-posedness of (3.8.3) is proved in [Réckner and Zhang (2021)] for
initial values with E[|X|¥] < oo for some k > 2.
Next, consider
AX; = by(Xy, Ly, )dt +dW,, ¢ € [0,T). (3.8.4)
Combining Theorem 1.7.4 with Theorem 3.5.2 for Kk = 0 and f being a
constant, we have the following result.

Theorem 3.8.2. Assume that there exists a constant K > 0 such that

|be(z, 1) — by (z, V)| < K||pt — Vllvar, t€[0,T],z€R: u,veP. (3.85)
If for any p € C*([0,T);P), |*|? € Kan holds for some o > 0, where
b (z) := be(x, pt), then (3.8.4) is well-posed. If |b*| € Kq1 for any p €
C*([0,T];P), then (3.8.4) is weakly well-posed, and for some constants
c1,c0 >0

Pl.v)(dx colz—y|?
(o) )§ a d/ e 2= v(dy), 0<s<t<T,zeR%veP.
dz (t—5)§ R4
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Moreover, Theorem 1.7.5 and Theorem 3.5.2 imply the following result.

Theorem 3.8.3. Assume that (3.8.5) holds for some constant K > 0. Let
by (z) := by(w, pe) for p € C([0,T);P). If for any p € C*([0,T];P) we
have either b* € C([0,T); LYRY)) or [b] € LE(T) for some (po,qo) €
(2,00) with % + q% =1, then (3.8.4) is well-posed. If |W*| € L (T) holds
for any p € C*(]0,T]; P), then (3.8.4) is weakly well-posed.

3.8.3 Singular distribution dependent semilinear SPDEs

Let H,U be two separable Hilbert spaces, and let £(U;H) be the space of
bounded linear operators from U to H. Consider the following distribution
dependent semilinear SPDE on H:

dX; = {bi( Xy, Lx,) + AX }dt + 04( Xy, Lx,)dW, t€[0,T], (3.8.6)
where W is the cylindrical Brownian motion on U, (A4, D(A)) is a negative
definite self-adjoint operator on H, and

b:[0,T] x Hx Py(H) - H, o:[0,7] x Hx Pe(H) — L(U; H)
are measurable, for P(H) being the class of probability measures on H
having finite second moment.

The following result is due to [Huang and Song (2021)] extending the
corresponding result of [Wang (2016)] for singular semilinear SPDEs, see
also [Criens (2023)] for the weak existence under a growth condition and
further study on propagation of chaos.

Theorem 3.8.4. (3.8.6) is well-posed for distributions in Py(H) provided
the following conditions hold.

(1) A has discrete spectrum with eigenvalues {—A,}n>0 satisfying

oo
Z A, S < o0
n=1

for some € € (0,1).

(2) There exists a constant K > 0 and an increasing ¢ : [0,00) — [0, 00)
with ¢ concave and fol @ds < oo such that

1(00™) Hloo + lolloc + Valloo + [IV20 |0 < o0,
nh_}ngo llot(x, 1) — oe(mpz, p1)lgs =0, t€[0,T],x € H,p € Po(H),

”Ut(irnu) - Gt(xﬂy)”HS < KW?(ny)v te [O,T],x € H»va € PQ(H)’

be(z, 1) — be(y, V)| < (|2 —y|) + KWa(p,v),
te[0,T),z,y € H, u,v € Po(H),
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where m, is the projection onto the eigenspace corresponding to the first
n eigenvalues of —A.

See also [Hong and Liu (2021)] for distribution dependent quasi-linear
SPDEs.

3.8.4 Path-distribution dependent SDEs

The well-posedness has been studied in [Huang et al (2019)] for the follow-
ing path-dependent DDSDEs on R¢:

dX; = bt(XT07t7£X7‘0‘t)dt + O—t(X7’07t’£Xr0,t,)th’ Xro’o eC,te [O,T],
(3.8.7)
where ro > 0 is a fixed constant, C := C([-70,0;R?), X,,: € C with
Xro,t(0) := Xy_g for 0 € [—10,0], and
b:[0,T] xCxPEC) =R ¢:]0,T] xCxP(C)—RI@R™

satisfy some monotone conditions.

3.8.5 Singular path-distribution dependent nonlinear
SPDEs

Let H,U be two separable Hilbert spaces, and let £o(U; H) be the space
of Hilbert-Schmidt operators from U to H with Hilbert-Schmidt norm
| - o). For a Banach space M, let Pryy be the set of probability
measures on the path space Cry = C([0,T];M). We also consider the
weakly continuous path space

Cry :=1{£:[0,T] — M is weak continuous} .
Both Cr v and CqT”M are Banach spaces under the uniform norm

[€llmp == sup [|€(8)lm.
t€[0,T]

Let Py, be the space of all probability measures on C7); equipped with
the weak topology. Denote Pr = {i € Py : p(Crm) = 1}
For any map £ : [0,7] — M and ¢ € [0,T], the path () of £ before
time t is given by
'/Tt(g) =& [OvT] — M, gt(s) = f(t/\s)a s € [OvT]
Then the marginal distribution before time ¢ of a probability measure u €

Py reads

pu = pom .
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The well-posedness is studied in [Ren et al (2020)] for the following
distribution-path dependent nonlinear SPDE on H:

dX; = {B(t,Xt) ert(X.At,EX_M)}dt+0t(XA,\t,£X_M)dW(t), t e 0,77,

where X ,; is a random variable on C%,H with X A¢(s) := X for s € [0, 77,
and for some separable Hilbert space B with H << B (“ << ” means
the embedding is compact),

B:[0,T] xHx Q — B,
b:[0,T] x Cry x Pry x Q — H, (3.8.8)
0:[0,T] x Cfy X Pry x Q — Lo(U; H)
are progressively measurable maps.
In applications, B(t,-) is a singular nonlinear term which may not take
values in the state space H. For instance, for the stochastic transport
SPDE, we take B(t,X) = —(X - V)X for X in a functional space over a

Riemannian manifold, while b and o are regular terms which are locally
Lipschitz continuous in the variables (&, ).

3.8.6 Singular degenerate DDSDEs

As extensions to (1.7.5) and (1.7.6), consider the following distribution
dependent degenerate SDE for (X;,Y;) € R%¢:

dX; = Z,( Xy, Yy )dt
{ t t( ty t) ) (389)

d}/t = bt<Xt,Y;g,£(Xt’yt)>dt + O't(Xt,Y;/)th, te [O,T]

Combining Theorems 1.7.2 and 1.7.3 with Theorem 3.5.2 for kK = 0 and f
being a constant, we have the following results.

Theorem 3.8.5. The SDE (3.8.9) is well-posed, if for any p € C([0,T);
P(R?4)), the conditions in Theorem 1.7.2 holds for bi(x,y,u:) replacing
bi(z,y), and there exists a constant K > 0 such that

[b:(2, 1) = b (2, v) < K| = vllvar,

3.8.10
t€[0,T),z € R p,v € P(R*). | !

Theorem 3.8.6. The SDE (3.8.9) with Zi(z,y) = y is well-posed if the
conditions in Theorem 1.7.8 holds for bi(xz,y, u) replacing bi(x,y), and
there exists a constant K > 0 such that (3.8.10) holds.
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Next, we consider the weak existence for the following degenerate SDE
with distribution dependent noise:

dX, = Ydt,
(3.8.11)
dY; = by( Xy, Yy, Lix, v,))dt + o (X, l:(Xt,Yt))th
for t € [0, T, where for p,(z) := “(ddzz) and pp, () := [ga pu(z, y)dy,

e = [ Bt<z,pu<z>,z’>u<dz'>,

o= (2 [ oulepalo) ) )

For any ¢ > 1 and p € (1,00)2%, we write f € f/qp(T) if f is a measurable
function on [0, 7] x R2? such that

T
/O e D oty 2201 sy - - o1 )l < 0.
The following result is taken from Theorem 1.3 in [Zhang (2021)].

Theorem 3.8.7. For any initial distribution, (3.8.11) has at least one weak
solution if a(x,r, z) is continuous in r, ||allec + |a™ oo < 00,

lim sup 16.(-y7, ) = b.Co 7 M ae) = 0

el0 r,r’€[0,n],|r—r'|<e

for any compact set K C [0,T] x R?4 x R?? and there exists f € f/qp(T) for
some q € (2,4) and p € (1, 00)%¢ with

Z3pl —|—Zp —|— < 00,

i=d+1
by (2,7, 2)| < fi(z — 2'), te[0,T],r >0,z 2 R

Theorem 1.5 in [Zhang (2021)] also presents the existence and unique-
ness of the “generalized martingale solution” of (3.8.11) when the initial
distribution density is in C}, a;(x,7,2) = a;(z) and by(2, -, 2') is Lipschitz
continuous uniformly in (¢, z, 2’). See also [Hao et al (2021b)] for the study
of martingale solutions to the SDE

dX; = Y,dt,
dY; = {b(X:, V) + (K*,Cxt)(Xt)}dt—i—th, te [O,T],

where b and K are singular functions and (K  p)(z) := [pa K Yu(dy).
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Chapter 4

DDSDEs: Harnack Inequality and
Derivative Estimates

In this chapter we study the regularity of the maps
w— Pru, te(0,T],

where Pfu := Lx, for X; solving (3.1.1) with Lx, = p. Since a probability
measure is determined by integrals of f € By(R?), it suffices to study the
regularity of the functionals

js Pf() = / AP p), € BB, 1 € (0,T] (4.0.1)

We will establish dimension-free Harnack inequalities and Bismut formu-
las for P, f when the noise is distribution free. For distribution dependent
noise, these inequalities and formulas are still open except for a very spe-
cial situation considered in [Bai and Huang (2023)] and [Huang and Wang
(2022b)], where the noise only depends on the time and distribution vari-
ables. Derivative estimates are derived in Subsections 4.5.2 and 4.5.3 for
the case with distribution dependent noise.

4.1 Log-Harnack inequality

In this part, we study the following type of log-Harnack inequality for P;
defined in (4.0.1):

Plog f(v) <log Pif(p) + c(t)Wa(u,v)?, f € B (RY), u,v € Pa,t € (0,7

for some function ¢ : (0,7] — (0, 00). This is equivalent to the entropy-cost
inequality

Ent(P; | Py v) < c(t)Wa(p,v)?,  p,v € Pa, t € (0,T].

163
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4.1.1 Monotone and non-degenerate case

(A*1) o,b are bounded on bounded subsets of [0, T] xR x Py, oo™ is invert-
ible, and there exists a constant L > 0 such that ||[o*(c0*)7!|oo < L
and

o, 12) = oe(y, V) 1* + (e, 1) = be(y, ),z — )™

SL{\alc—y|2—|—W/Vg(u,V)2}7 te[0,T], z,y e R pu,vePy.

By Theorem 3.3.1, (A*1!) implies that (3.1.1) is well-posed for distribu-
tions in Ps, and there exists a constant ¢ > 0 such that

Wo (P, Pv) < cWa(u,v), pe€ Pa. (4.1.1)
The following result is due to [Wang (2018)].

Theorem 4.1.1. Assume (A*1). Then there exists a constant C > 0 such
that the following inequalities hold for all t € (0,T] and p,v € Pa:

Pylog f(v) < log P f(u) + %Wz(uw)27 f € Bf (RY), (4.1.2)
1 * * 112 * * ¢ 2
§HPt p— Pvle, < Ent(Pfv|Pfp) < ?W2(H7V) ) (4.1.3)
Pt - P < M ), pem®m. @)

Proof. Noting that (4.1.3) and (4.1.4) are simple consequences of (4.1.2)
and Pinsker’s inequality (3.2.3), we only prove (4.1.2).
(a) For ug, vy € P, let (Xo,Yy) be Fp-measurable such that

Lx, = o, Ly, =vo, E|Xo— Ye]* = Wa(uo,vo)?. (4.1.5)
Denote
we == Pl o, v = Plyy, t>0.
Let X; solve (3.4.1) with initial value Xy. We have
dX; = b(Xy, p)dt + oy (Xy)dW,, t€[0,T). (4.1.6)

Next, we use the coupling as in the proof of Theorem 1.5.2. For any ty €
(0, T] consider the SDE

oi(Yi){of (or07) " H(X) (X — Y2) }dt

dY; = {bt(Yt;Vt)+ ¢
t

(4.1.7)
+O’t(}/t)th, te [O,to).
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For the constant L > 0 in (A*1), let
1
&= (1 - eL<t—t°>), t € [0,t0). (4.1.8)
By (A*1), (4.1.7) has a unique solution up to times

ton .
Tnk 1= nj—l Ainf {t € [0,%9) : [V3| >k}, n,k> 1.

By Itd’s formula and (A*1), for any n > 1 we find a constant ¢(n) > 0 such
that

d|Y;]? < e(n)(1 +|Yi?)dt +dM;, t€[0,71], n k> 1

holds for some martingale M;. This implies
ton

lim lim 7, % = lim to,

n—00 k—00 noont+1
and hence (4.1.7) has a unique solution up to time &.
(b) For any n > 1, let

ton .
Tn = ni o Anf{t € [0,10) 1 [ X, — Vi > n}. (4.1.9)

By (A™1),
ns = {03 (050%) " HX) (X, — Ys)
satisfies |ns| < L| X5 — Y5|. By Girsanov’s theorem,

t
W, =W, —|—/ ?ds7 t € [0, 7,]
0 Ss

is an m-dimensional Brownian motion under the probability Q,, := R,P,
where
2
R, i o 0" & AW = [ el (4.1.10)
Then (4.1.6) and (4.1.7) imply
Xi =Yy =
dX:{b Xy 1) — }dt+aXdW,
t ¢ (Xt, 1) 3 +(X¢)dWy (4.1.11)

AY; = by (Yy, v)dt + 0 (Y;)dWy, t € [0,7,],n > 1.
Combining this with (A*1), (4.1.1), (4.1.8) and It6’s formula, we obtain

X, — V|2
dX=YE gy
&t
- {L|Xt Y324+ LI X — Vi Wa(pue,ve) | Xe — Yi2(2+ &) }dt
B a 2
gt é’t
LPWs(p,m)? | Xe—YiPP(2+ & — L& — §)
= { o 2 }dt
2 &
L2e2L'Wo (g, 11)? | Xy — Vi |?
< Y _
- { 2 2§t2 }dt; te [O,TnL

(4.1.12)
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where dM; = E%(Xt =Y, {o:(Xy) —Ut(Yt)}th> is a Q,-martingale. Com-

bining this with (4.1.1) and (A*!), we derive

2 e2
L2 Tn Xs _ Ys 2
< 7EQH/ %ds < £W2(,UO7VO)27 n>1
2 0 gs to

for some constant ¢ > 0 uniformly in ¢ € (0,7T]. Therefore, by the martin-

B 1 ™ |ns|?
E[R,log R,] = Eq, [log R,] = -Eq, ——ds
0 (4.1.13)

gale convergence theorem, R, := lim,_,, R, exists, and

_ t Ins|
Nt — ¢ fo s (ns,dWs) fg ‘2 ‘2 te [O,t()]

is a P-martingale.

(c) Finally, let Q := Ny,P. By Girsanov’s theorem, (Wt)te[o,to] is an
m-dimensional Brownian motion under the probability Q, and (X¢):e[o,4]
solves the SDE

X; - N
dx, = {bt(Xt,ut) _ t}dt+at(Xt)th, te0,t].  (4.1.14)
t
Let (Y)ie[o,t) SOlVE
dY, = b, (Yy, v)dt 4 o,(Y,)dW,, t € [0, o). (4.1.15)

By the well-posedness of (3.4.1), this extends the second equation in (4.1.11)
with Ly, @ = 4,- Moreover, (4.1.13) and Fatou’s lemma imply

1 fo s0 Xs - Y; 2
,EQ/ {os(os08) ' HX g s)( )l ds
2 €] . (4.1.16)
= E[Ny, log Ny, ] < 1inl>ianE[Rn log R,] < ;WQ(MO, )2,
n o0 O

which in particular implies Q(Xy, = Y;,) = 1 as explained in the proof of
Theorem 1.5.2. Combining this with the Young inequality (see Lemma 2.4
in [Arnaudon et al (2009)])

u(fg) < p(flog f) +logu(e?), f,g>0,u(f)=1peP,  (41.17)
we arrive at

Ptg log f(l/O) = E[Nto log f(}/to)]
< E[N¢, log Nyo] + log E[f (X4, )]

C
<log Py, f(1o) + %W2(Mo, )%, to € (0,77

E[Nto log f(Xto)]

Hence, (4.1.2) holds. O



July 27, 2024 9:20 ws-book9x6 13512-main page 167

DDSDEs: Harnack Inequality and Derivative Estimates 167

4.1.2 Degenerate case

Consider the following distribution dependent stochastic Hamiltonian sys-
tem for (X;,Y;) € RY := R4 x R% :

dX, = (AX, + BY;)dt,
dY; = Z(t, (Xt, }Q),L(tht))dt + O'tth, te [O,T],

where A is a dy X di-matrix, B is a d; X de-matrix, o is a do X do-matrix, W,

(4.1.18)

is the ds-dimensional Brownian motion on a complete filtration probability
space (Q, {F;}+>0,P), and

Z :0,00) xR x Py = R%2, 5 :[0,00) — R @ R%"

are measurable. We assume

(A*2) o, is invertible, there exists a constant K > 0 such that
lo@®) M < K, |Z(t,x, 1) — Z(t,y,v)| < K{]z —y| + Wa(u,v)}
holds for all t > 0,p,v € Py and x,y € RY, and A, B satisfy the
following Kalman’s rank condition for some k > 1:
Rank[A°B, ..., A" 'B] =d;, A°:=1I4 xq,.
This assumption implies (A3!) for k = 2. By Theorem 3.3.1, (4.1.18)
is well-posed for distributions in Py and
Wy (P, Prv) < X "Wy (u,v), t>0,p1,v € Py (4.1.19)

holds for some constant K’ > 0. The following result is due to [Ren and
Wang (2021b)].

Theorem 4.1.2. Assume (A*?) and let P, be associated with (4.1.18).

Then there exists a constant ¢ > 0 such that for any t € (0,77,
c

Pilog f(v) < Pylog (1) + = Wa(p, v)*,

(4.1.20)
t € (0,T), pu,v € Pa, f € B (RY).

Proof. By the Kalman rank condition in (A*?2), for any t, € (0, 7],
to
Qi = / t(to — t)elto =D A BB*elto=DA" gy
0

is invertible and there exists a constant ¢; > 0 such that

Clec1t0

QI < R to € (0,77, (4.1.21)
0

see for instance Theorem 4.2(1) in [Wang and Zhang (2013)].
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Let (Xo,Y0),(Xo,Ys) € L?(Q — R% Fy,P) such that L (x0,v0)
ps L£(x4,7,) = v and

E(|Xo — Xo* + |Yo — Yo|?) = Wa(u,v)>. (4.1.22)

Next, let (X;,Y;) solve (4.1.18). Then Lx, y,) = P;u. Consider the modi-
fied equation with initial value (X, Yp):

dX, = (AX, + BY;)dt,
av, = {Z(t, (X, ), Pr ) + Yoo (4.1.23)
+ [kt — t)B* (0=04%y] bt + o d W,

where
to
- t—1to
v = Qt_ol{etOA(Xo — Xo) +/O 0 0 AB(Y, — Yo)dt} (4.1.24)
Then
Y, - Y,

L
_ Yo-Y, d A

Yo — Y. — Ir(tg — r)B*elto—mA d

Yot [ R b 0B ()
t

—t _ .
= Oto (YO — }/(]) + t(to - t)B*e(tO_t)A v, t e [O,t(]}.

Consequently, Y;, = Y;,, and combining with Duhamel’s formula, we obtain
Xt - Xt = etA(X'O - XQ)
¢ . (4.1.26)
+/ (¢ T)AB{ " (YO —Yy) 4 r(tg — r)B*elto™m4 v}dr
0 0
for ¢t € [0, to]. This and (4.1.24) imply
- > ot r
Xy — X1 = ¢4 (Xo = Xo) + / 0 T b0 A BT, — Yy)dr + Quyv =0,
0 0
which together with Y;, = Y;, observed above yields
(Xtur)/to) = (Xtovﬁo)' (4127)
On the other hand, let
Sl Y d * (to—t)A*
& = { (Yo — Yo) + = [tlt — ) Bell0 =470
to dt

+ Z(t, (X0, V), Prn) — Z(t, (X0, Vi), P;y)}, t € [0,to).
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By (4%*2), (4.1.19), (4.1.21), (4.1.24), (4.1.25), and (4.1.26), we find a con-
stant co > 0 such that

C2 = —
&) < té—kec2t°{|X0 — Xo|? + Yo = Yo|* + Wa(u, )%}, t€[0,t0). (4.1.28)
So, the Girsanov theorem implies that

t
Wt = W; +/ gst, te [O,to]
0

is a do-dimensional Brownian motion under the probability measure Q :=
RP, where

R = e Jo* (€dWi) =5 [0 [€ |2, (4.1.29)
Reformulating (4.1.23) as

dX; = (AX, + BY,)dt,
dY; = Z(t, (X, Y2), Pfv)dt + o dWy, ¢ € [0, 0],
by the weak uniqueness of (4.1.18) and that the distribution of (X, Yp)
under Q coincides with L%, v,y = v, we obtain L%, y,)jo = P/v for ¢ €
[0, T']. Combining this with (4.1.27) and using the Young inequality (4.1.17),
for any f € B;f (R?) we have
(Pto IOg f)(]/) = E[R IOg f(Xto’ Y;fo)] = E[R log f(Xto’ Y;fo)]

(4.1.30)
< log E[f (X, Y3,)] + E[Rlog R] = log(P4, f) (1) + Eg[log R].

By (4.1.28), and (4.1.29), W, is a Brownian motion under Q, and noting
that Q| £, = P|x, and (4.1.22) imply
E@(|X0 - X0|2 + ‘Yb - YO|2) = WQ(:“’» l/)27

we find a constant ¢ > 0 such that

1 [ o cetto )
Eg[log R] = §EQ €¢7dt < mWQ(NyV) .
0 to
Therefore, (4.1.20) follows from (4.1.30). O

4.1.3 Singular case

Let [Jull2 :== /(] - |?) for p € Pa. We make the following assumption.
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(A%3) (o4(z),bi(z,00)) satisfies (A13), and there exist a constant a > 0
and a function 1 < f € LLo(T) such that

[be(z, 12) = e (2, )] < min { fo(2)Wa (1, v), fi(2) + allpllz + oy},

w,v € Po, (t,z) € [0,T] x RY.
According to Theorem 3.5.1, (A*3) implies the well-posedness of (3.4.1)
for distributions in Ps. Let Pfu = Lx, for the solution to (3.4.1) with

Lx, = p € P2 and let P.f(u) be in (4.0.1). The following result is due to
[Wang (2023b)].

Theorem 4.1.3. Assume (A*3). For any N > 0, let Po n(RY) := {u €
Pa: lpllz < N}

(1) For any N > 0, there exists a constant C(N) > 0 such that for any
p,v € Pon(RY) and any t € [0,T), the following inequalities hold:

W (P, Pw)? < C(N)Wa(yi,0)?, (4.1.31)
Ent(P/v|P]p) < @Wg(u, v)?, (4.1.32)
2C(N)

|Pg(v) — Prg(p)| < N lgllaeWa(p,v), g€ By(RY). (4.1.33)

(2) If (A*3) holds for a = 0, then there exists a constant C > 0 such that
Wy (P}, Pfv)? < CWy(u,v)?, v € Po. (4.1.34)
Moreover, if || f|looc < 00, then (4.1.32)-(4.1.33) hold for some constant

C replacing C(N) and all p,v € Ps.

Proof. (1) By Pinsker’s inequality (3.2.3), we only need to prove (4.1.31)
and (4.1.32). For any u, v € Po, let X; solve (3.4.1) for Lx, = p1, and denote
pe i=Pip=~Lx,, vi:=PFv, [ :=Lx, tel0,T],

where X; solves
dX; = by (X, vp)dt + oo (Xe)dWy, t€10,T], Xo = Xo.

Let o and b := b(-,8y) = bV + b(© satisfy (A'3). Consider the decomposi-
tion

bty = bt(',l/t) = [A)El) + b?)o.
By (A*3), there exists a constant K(N) > 0 such that
0% < B0+ K(N)fi. w2 < N, 1€ (0.7, (4.1.35)



July 27, 2024 9:20 ws-book9x6 13512-main page 171

DDSDEs: Harnack Inequality and Derivative Estimates 171

So, by Theorem 1.3.1(3) and Theorem 1.5.1, there exists a constant ¢; (N) >
0 such that
WQ(:L_"t’ l/t)2 < Cl(N)WQ(Na V)2> te [OvT]vﬂ € ,PQ, (4136)

N
Ent(v|fi) < Cl(t :
Moreover, repeating step (d) in the proof of Theorem 3.5.1 for & = 2 and
(X¢, X;) replacing (X7, X;"7), and using (A*3), instead of (3.5.25) where
|65 = Vsl1% var disappears in the present case, we derive

Wy (u,v)?, t€(0,T], u€ Pa. (4.1.37)

t
Walpe,i)! < (B0 = X0 < o) [ W) 'ds, ¢ [0.7)
0
for some constant co(N) > 0. This together with (4.1.36) yields
Wo (e, ve)* < 8Wo (g, fir)* + 8Wa(fae, vie)?

t
< 8er(N)2Wy (1, 1) + Sca(N) / Wa(us, s)*ds, ¢ € [0,T].
0

By Gronwall’s inequality, (4.1.31) holds for some constant C'(N) > 0.
On the other hand, let ||u|l2 < N and define

t 1 t
R; :=exp l:_/ <’787dWs> - 5/ |73|2d8:|a
0 0

Vs = {0': (0'30':)71 }(Xs) [bs (Xs, ps) — bs(Xs, Vs)] :
By Girsanov’s theorem, we obtain

E[( izt)(xo} - szt duy

- / fd = E[f (X)) = E[RS (X)), [ € Bo(RY).

This implies 3 d“‘ t(X:) = E[R¢|Xy], so that by Jensen’s inequality,

. (jﬁ) i = B{(Px0) } = B{ (BIRix) } < BIR)

By combining this with the Young inequality (4.1.17), we derive

dv, dv, di
Ent =/ 1 d log 3, *loe d
nt (ve|pie ) /Rd 08 <dﬂ ) Y= /Rd { dut * dﬂt} "

dy, dji
= Ent(l/t|ﬁt) +/ (%) 1 Mt d,LLt
Rd

) % dp (4.1.38)

djiy
< 2Ent(1/t|ﬂt) + 10g/ d d/Jt
Mt

dfig\ 2
= 2Ent(v¢| i) + 1og/ (d—> dps < 2Ent(v4)fi¢) + log E[R?].
RrRd NAft



July 27, 2024 9:20 ws-book9x6 13512-main page 172

172 Distribution Dependent Stochastic Differential Equations

By (A*3), (4.1.31), |[o*(00*)"!||ec < oo and (1.2.17), we find constants
c3(N), ca(N) > 0 such that

E[Rf] 1< (E[Rf]f < ]EeCs(N)WM#W)z J§ fo(Xo)2ds _ 1

t
SJE{cg(N)Wz(u,u)2e63(N)W2(“’”)2f5 fs(Xs)st/ fs(Xs)2d5:|
0

1

< cx st [ fs(Xs)zds>2] : (1139

1
% |:E6203(N)W2(p,,y)2 N fs(XS)st} 2

< ca(N)Wa(p,v)>.

Combining this with (4.1.37) and (4.1.38), we derive (4.1.32) for some con-
stant C(N) > 0.

(2) When « = 0, (4.1.35) holds for K(N) = K independent of N,
so that (4.1.36) and (4.1.37) hold for some constant C;(N) = C; > 0
independent of N and all u, v € Pa, and in (4.1.39) the constant C5(N) =
Cj3 is independent of N as well. Consequently, when || f||e < oo we find a
constant C’ > 0 such that

E[R?} < EeC%Wz(th)z Jy £s(Xs)?ds < eclwz(lhu)Q.

Combining this with (4.1.37) and (4.1.38) we derive (4.1.32) for some con-
stant C'(N) = C independent of N. O

4.2 Power Harnack inequality

The power Harnack inequality was established in [Wang (2018)] for the
monotone case by using the coupling constructed in the proof of Theo-
rem 4.1.1. In this section we only consider the singular case.

Let k > 0. For any p € C([0,T]; Py) let b (z) := by, pe), (t,z) €
[0,T] x RY.

(A*4) Let k > 0. Assumption (A'3) holds for (o,b") uniformly in u €
C([0,T); Py). Moreover, there exist constants K > 0 and k > 0
such that

|be (2, ) = bi(z, V)| < KW (1, v),
(t,x, 1, v) € [0,T] x RY X P x Py.
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By Theorem 3.5.1, (A*%) implies the well-posedness of (3.4.1) for dis-
tributions in Py, and

Theorem 4.2.1. Assume (A**). Let kg, k1 and p* be in Theorem 1.5.2.
Then for any p > p* there exists a constant ¢ > 0 such that

(PP () < {PLFIP () o0
x ﬂeg(lﬁ,V) /]Rd xR et n(da, dy), (42.1)
te (0,7, p,v € Py.
When k € [1,2], the term eWr(1)” can be dropped.

Proof. By Theorem 3.6.1, (A**) implies (3.6.3) for Cj x = C} indepen-
dent of N, i.e.

Wi (P, Piv) < CpWi(p,v), t€[0,T],p,v € Py (4.2.2)
Next, let P!* be the Markov semigroup associated to the SDE
dX}" = by(X[P", PP p)dt + oy (X[07)dWy, XEF =z,
ie. Pl'f(x) :=E[f(X}"")]. We have

P f(p) = /]Rd Ptuf(x):u(dx)? tel0,T],f € Bb(Rd)uu € Pk. (4.2.3)

By Theorem 1.5.2, for any p > p*, there exists a constant ¢; = ¢;(p) > 0,
which is independent of p since (A!-3) holds for (o, b*) uniformly in u, such
that for p’ := ZEE- > p*,

|PEf(2)[P < (PEIFIP (y)ett 1=t € (0,T], 2,y € R, f € By(RY),

(4.2.4)
On the other hand, for fixed ¢ € (0, 7], let
& = {03(0507) T [bs (-, PI ) = bs (-, Prv)] H(XPY),
R = efot<£s’dws>7% Ot|§5|2d‘s'
By (A*%) and (4.2.2), we find a constant cq > 0 such that
€| < coWr(p,v), s €0,t]. (4.2.5)

By Girsanov’s theorem,

W, =W, — / &.dr, s e 0,4]
0
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is an m-dimensional Brownian motion under Q := RIP. Moreover, the SDE
for XY can be formulated as

dXVY = b(XVY, Pv)dt + o (X2V)dW,
= by (XYY, Py p)dt + o (XL)AWs, Xg¥ =y, s€[0,4],

so that by the uniqueness, Lxvv)g = Lxuvp. Consequently, by (4.2.5), we
find a constant ¢y > 0 such that

’ ’
P P p—p

PEIFIP (y) = B[R (X7¥)) < (BIFP(X7)]) 7 (B[R

2 2
< e (PP (y)) 7

Combining this with (4.2.4), we obtain
[P f(2)[P < (PYIfIP(y))ec?®D lemylPeap®) ™ W wn)® 4 e (0, 7], 2, y € RY.

By (4.2.3), integrating both sides with respect to 7 € C(u,v) and applying
Jensen’s inequality, we derive

P ()7 < (Pl f 1P (v))ec2p @) Wlin)®

x inf / D o=l (g dy).
el (p,v) JRd xRd

Thus, (4.2.1) holds. When k € [1,2], we have W, < Wj, so that for any

m € C(u,v), by the definition of Wy, and Jensen’s inequality, we obtain

Wi (1) < oW (nv)? §/ e°|””’y|27r(dx,dy)
R x R4
for any constant ¢ > 0, so that the term W) can be dropped from
(4.2.1) by taking a large constant in the other term. d

4.3 Chain rule for intrinsic/L-derivatives

The intrinsic derivative for measures was introduced in [Albeverio et al
(1996)] to construct diffusion processes on configuration spaces over a Rie-
mannian manifold, and was used in [Otto (2001)] to study the geometry
of dissipative evolution equations, see [Ambrosio et al (2005)] for analysis
and geometry on the Wasserstein space over a metric measure space.

In this part, we introduce the intrinsic and L-derivatives for probability
measures on a separable Banach space, and establish the chain rule.

Let (B, || - |ls) be a separable Banach space, and let (B*, || - ||p+) be its

dual space. For any k € [1,00), denote k* = ﬁ when £ > 1 and £* = o0
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for k = 1. Let P(B) be the class of all probability measures on B equipped
with the weak topology. Then

1
Pu(B) = {n € P(B) : lullx := {ull - [I)}* < oo}
is a Polish space under the LF-Wasserstein distance
1
%
o) = ot ([ e ylftaan)
m€C(p1,p2) BxB

where C(u1, p2) is the set of all couplings of pq and puo.
For any p € Pi(B), the tangent space at u is given by

Tk = LFB — B p) := {(f) : B — B is measurable with u(||¢[%) < oo},

which is a Banach space under the norm |[|¢[r, , = {u(||6]%)}*, and its
dual space is

k= LF' (B — B*; )
:= {¢ : B — B* is measurable with ¥l , = |l

B || Lk () < OO}

The following definitions and chain rule are taken from [Bao et al (2021)].

Definition 4.3.1. Let f : Py(B) — R be a continuous function for some
p € [1,00), and let id be the identity map on B.

(1) f is called intrinsically differentiable at u € Py (B), if

. —1y
g LU 6 <017 500
€.

3

T D ¢+ Df(p) = eR

is a well-defined bounded linear functional. In this case, the unique
element D! f(u) € T}, ;. such that

1 DV 1), 901, = [ o (D! F) 0. 6(0))an(do)
B

=Dif(n), ¢€Tpup

is called the intrinsic derivative of f at pu.
If moreover

|f(o(id+¢)~") — f(u) — DLf(1)]

lim
6]z, 0 [¢llT,, .

:O7

f is called L-differentiable at p with the L-derivative DT f(u) :=
D' f(u).
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(2) We write f € CY(Pr(B)) if f is L-differentiable at any pu € Px(B),
and the L-derivative has a version DL f(u)(x) jointly continuous in
(z, 1) € B x Pip(B). If moreover DL f(u)(z) is bounded, we denote

f € Cy(Pe(B)).

Definition 4.3.2. A probability space (€2, F,P) is called Polish, if F is the
P-completeness of the Borel o-field induced by a Polish metric on Q. P is
called atomless if P(A) = 0 holds for any atom A € F.

Noting that when B = R? and k = 2, the L-derivative D* f (1) named af-
ter Lions is defined as the unique element in T}, » such that for any atomless
probability space (2, F,P) and any random variables X,Y with Lx = p,

[f(Ly) — [(Lx) —E[(D" f(1)(X),Y — X)]|

=0.
Y =Xl 12540 1Y = X||L2(p)

Since DT f(u) does not depend on the choice of probability space, when
 is atomless we may choose (2, F,P) = (R B¢, 1) such that DX f(u) =
D! f(11), see for instance Chapter 5 in [Carmona and Delarue (2019)]. Since
by approximations one may drop the atomless condition, the above notion
of L-derivative coincides with the Lions’ derivative.

Example 4.3.1. Let B =R We denote f € FC}(Py) if

f(w) = g(p(ha), .. u(hn))
for some n > 1,9 € C?(R™) and h; € C}(R?),1 <4 < n. Then it is easy to
see that f € C}(Py) with
d

D f(p) =Y (9ig)(p(ha), .., p(hn)) V.

i=1

We call FC}(Py) the class of C}-cylindrical functions on Pg.

To establish the chain rule for functions of distributions of random vari-
ables, we need the following lemma, which extends Lemma A.2 in [Ham-
mersley et al (2021)] for B = R%.

Lemma 4.3.1. Let {(Q, Fi,P;) }iz1,2 be two atomless, Polish probability
spaces, and let X;,i = 1,2, be B-valued random wvariables on these two
probability spaces respectively such that Lx p, = Lx,p,- Then for any
€ > 0, there exist measurable maps

TZQl—>QQ, T_1292—>Ql
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such that
Pi(r tor =idg,) =Po(r o7t =idg,) =1,
P, =Pyor, Po=Pior7 1,
X1 = Xo 07| pocpy) + 1 X2 — X1 077 [ poo(ry) < ¢,
where idq, stands for the identity map on §;,i=1,2.
Proof. Since B is separable, there is a measurable partition (A,),>1 of B
such that diam(A,) <&, n > 1. Let AL, ={X; € A,},n > 1,i=1,2. Then

(A!)p>1 forms a measurable partition of €; so that Y- -, AL = Q;,i=1,2,
and, due to Lx, |P; = Lx,|Pa,
Since the probabilities (P;);=1,2 are atomless, according to Theorem C in

Section 41 of [Halmos (1950)], for any n > 1 there exist measurable sets
Al C Al with P; (AL \ AY) = 0,i = 1,2, and a measurable bijective map

ot AL — A2
such that
Pllfii =P, OTn|A71L, ]P)2|Ai =P OT;1|A$L.
By diam(A,) < ¢ and P;(A% \ A%) =0, we have
(X1 = X2 0m)1 31 [lpoe ey V I(X2 = X1 0771 g2 || oo ey < e
Then the proof is finished by taking, for fixed points w; € Q;,7 =1, 2,
() = {Tn(wl), if w; € AL for some n > 1,

wa, otherwise,

-1 7 Mwa),  if wy € A2 for some n > 1,
T (we) =

w1, otherwise. 0

The following chain rule is taken from Theorem 2.1 in [Bao et al (2021)],
which extends the corresponding formulas for functions on Py presented
in [Carmona and Delarue (2019); Hammersley et al (2021)] and references
therein.

Theorem 4.3.2. Let f : Pr(B) — R be continuous for some k € [1,00),
and let (&)eepo,1] be a family of B-valued random variables on a complete
probability space (Q, F,P) such that & = lim, o 55%50 exists in LF(Q —
B,P). We assume that either & is continuous in e € [0, 1], or the probability
space is Polish.
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(1) Let o = Le, be atomless. If f is L-differentiable such that D* f(uq)
has a continuous version satisfying

ID" f (o) (@)l < C(L + |l2llz™), = €B (4.3.1)

for some constant C > 0, then

lim M = E[p- <DLf(N0)(§0)a éO>IB}~ (4.3.2)

el0 g

(2) If f is L-differentiable in a neighborhood O of ug such that D* f has a
version jointly continuous in (x,p) € B x O satisfying

IDEf(1) (@)l < C(L+ |lzllz™"), (2,0) €BxO (4.3.3)
for some constant C' > 0, then (4.3.2) holds.

Proof. Without loss of generality, we may and do assume that P is atom-
less. Otherwise, by taking

(Q, F,P) := (2x[0,1], FxB([0,1]), Pxds), (&) (w, s) := & (w) for (w, s) € Q,

where B([0,1]) is the completion of the Borel o-algebra on [0,1] w.r.t. the
Lebesgue measure ds, we have

L:p=Lep, Elp (D" f(10)(€), €o)s] = Els- (D" f(10)(€0), o))
In this way, we go back to the atomless situation. Moreover, it suffices to
prove for the Polish probability space case. Indeed, when &, is continuous in
e, we may take Q = C([0, 1]; R9), let P be the distribution of £., let F be the
P-complete Borel o-field on € induced by the uniform norm, and consider
the coordinate random variable & (w) := w,w € Q. Then Eé\]f” = L¢ |p, 50
that L¢ p = Le p for any € € [0,1] and Lgp = Lgp. Hence we have
reduced the situation to the Polish setting.

(1) Let L¢, = po € Pr(B) be atomless. In this case, (B, B(B), uo) is an
atomless Polish complete probability space, where B(B) is the ug-complete
Borel o-algebra of B. By Lemma 3.6.2, for any n > 1 we find measurable

maps
T:Q—=B, 7,0 :B—=>Q
such that
P(r, o1, =idg) = po(tp o7, =id) =1,
P=jig07Tn, po=Por, ", (4.3.4)
160 = Tallzoeey + i = & 0 ey <

where idg is the identity map on (.
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Since f is L-differentiable at pg, there exists a decreasing function h :
[0,1] — [0,00) with h(r) | 0 as r | 0 such that

sup | f(uo o (id+¢)") = f(uo) — Dg f(ho))]
ol Lk gy <7 (4.3.5)
<rh(r), relo,1].
By Le.—¢, € Pr(B) and (4.3.4), we have
Gnye = (gs - 50) © 7_7?1 € Tyk, H(bn,s”Tu,k - ||£€ - §0HL’C(]P’)~ (436)
Next, (4.3.4) implies
‘CTn"l‘gs_gD = ]P) © (Tn + 58 - 60)_1
= (/~L0 o Tn) o (Tn + 56 - 50)_1 = o © (Zd + ¢n,s)_1'

Moreover, by % — & in LE(P) as € | 0, we find a constant ¢ > 1 such
that

(4.3.7)

€ — ollLrpy < e, € €10,1]. (4.3.8)
Combining (4.3.4)—(4.3.8) leads to
|F(Lrve—g0) = F(Ley) = Elp- (D f)(10) (), (€ — &0))e]|
= |f(po o (id+ ¢ne)™") — fpo) — D, fo)|
< ||¢n75||Tu,kh(”¢n,a| T#,k)
= |1& = &l @hlée — &llreey), €€ [0,¢71.
Since f(p) is continuous in g and D¥ f (o) () is continuous in z, by (4.3.1)

and (4.3.4), we may apply the dominated convergence theorem to deduce
from (4.3.9) with n — oo that

|F(Le.) = F(Ley) = Els= (D ) (10) (€0), (& — &o))z]]

< 1€ = ollLr@ & — Sollre@)), € €[0,¢71].
Combining this with (4.3.8) and h(r) — 0 as r — 0, we derive (4.3.2).

(2) When pi has an atom, we take a B-valued bounded random variable

X which is independent of ({.).¢[o,1) and L£x does not have an atom. Then
LeytsXtr(e.—o) € Pr(B) does not have an atom for any s > 0,¢ € [0,1].
By conditions in Theorem 4.3.2(2), there exists a small constant so € (0,1)
such that for any s,e € (0,sp], we may apply (4.3.2) to the family &, +
sX + (r+9)(& — &) for small 6 > 0 to conclude

1
d
J(Leoysx) = f(Legysx) :/0 ﬁf(ﬁswsm(r%)(ff&o))|5:odT

(4.3.9)

1
= /0 Elp+ (D" f(Leotsxtr(e.—e0)) (0 + 85X +7(& — &), & — &o)p] dr.
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By conditions in Theorem 4.3.2(2), we may let s | 0 to derive
f(Le.) = f(Le,)
1
= / Els- (D" f(Legrr(e.—e0)) (€0 + (& = €0)), & — Eo)ml dr, & € (0, 50).
0

Multiplying both sides by ¢~! and letting € | 0, we finish the proof. O

As a consequence of the chain rule, we have the following Lipschitz
estimate for L-differentiable functions on Py (B).

Corollary 4.3.3. Let f be L-differentiable on Pr(B) such that for any
€ Pr(B), DL f(u)(-) has a continuous version satisfying

DY () (@)] < e(u)(1+ o), @€ B, (4.3.10)

which holds for some constant c¢(u) > 0, and

Koi= sup [DEF()llge g < oo (43.11)
nEP(B)
Then
|f(p1) — flu2)| < KoWg(pr, p), pe1, po € Pr(B). (4.3.12)

Proof. Let £1,& be two random variables with

Le, =, Le=pz, Wilu, pz) = [E[lE — &|F])F.

Let 1 be a normal random variable independent of (&1, &2) such that £, is
atomless. Then

Ye(r):=en+r1é& + (1 —1)&, 7€]0,1],€ € (0,1]

are absolutely continuous with respect to the Lebesgue measure and hence
atomless. By Theorem 4.3.2, (4.3.10) and the continuity of D f(u)(-) imply

|f(Ly.y) = F(Lo )] = ’/0 E[(D"f(L,. ) (1)), & — &)]dr

1 1
< (Elle - &l)? / IDE £ (L)l oyl
SKW’C(M17M2)? €€ (Oa 1]

Letting € — 0 we derive (4.3.12). O
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4.4 Bismut formula for singular DDSDEs

Let k € [1,00). We aim to establish Bismut formula for the intrinsic/L
derivative of P.f(u) for p € Pj, where P, is defined in (4.0.1) for the
singular DDSDE (3.4.1). To this end, we will assume that b;(x, 1) includes
a singular term in i{l’g (T') and a regular term in the following class Dy, such
that the chain rule in Theorem 4.3.2 applies. This part is organized from
[Wang (2023d)].

Definition 4.4.1. Dy, is the class of continuous functions g on R? x P}, such
that g(z,u) is differentiable in x, L-differentiable in u, and D g(z, u)(y)
has a version jointly continuous in (z,y, 1) € R? x R? x Py, such that

D g(, 1) (y)] < ez, )L+ [y[*~), 2,y €R%pe Py

holds for some positive function ¢ on R? x P,.

According to Example 4.3.1, we have g € Dy, for

g(xmu“) = F(I,‘u(hl), e 7.u(hn))7
where F € C1(R? x R™) and {h; }1<i<n C C*(R?) such that

sup |Vhi(y)| < c(1+y/*"), yeR?
1<i<n

holds for some constant ¢ > 0.

(A%5) by(z, ) = bgo)(x) +b§1)(a¢, w) such that the following conditions hold.
(1) (AY2)(1) holds; i.e. a := oo™ is invertible with ||al|co +||a™||e < o0,

lim sup lac(z) — ar(y)l| =0,
e—=0 lz—y|<e,t€[0,T]

and there exist | € N, {(ps, ¢;) }o<i<i C K with p; > 2, and 0 < f; €
LE(T) such that

l
B0 < fo, Vol <D fi
1=1

(2) bgl) € Dy such that sup,c(o 1 \bgl)(0,50)| < 0o and
1 1
sup {196 (@, W)l + 1 DEB (@, )| e oy + < 00
(t,2,1)€[0, T XREX Py,

where &y is the Dirac measure at 0 € R?, V is the gradient in the
space variable x € R?, and D* is the L-derivative in the distribution
variable p € P.
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We will show that (A*®) implies the well-posedness of the DDS-
DE (3.4.1) for distributions in Py. To calculate the intrinsic derivative
DIP,f(p), for any € € [0,1] and ¢ € T, i, we consider the following DDS-

DE:
dX/0 = by (X159, Lyneo)dt + o (X122 aw, )
tef0,T), X=Xl +ep(X).
We will prove that the derivative process
VX = lim M te0,T] (4.4.2)

exists in L*(Q — C([0,T];R9),P). We also need the derivative of the
decoupled SDE

AX{" = by (X(", Py p)dt + oo (X" )dW,

4.4.3
te[0,T], X" = 2,2 € R pu € Py. ( )

By Theorem 1.4.2, (A*5) implies the well-posedness of (4.4.3) and that for
any v € R%,

wyz+ev(w) T
X - X

VX" = lim

T 4.4.4
i . Ctefo 1] (a4d)

exists in L*¥(Q — C([0, T]; RY), P).

4.4.1 Main results

Theorem 4.4.1. Assume (A*%). Then (3.4.1) is well-posed for distribu-
tions in Py and the following assertions hold for P, defined in (4.0.1).

1) For any pn € P, ¢ € Ty and v,z € R, Vo X' and V, X" exist
H K, oAt ¢
in L¥(Q — C([0,T);R%),P). Moreover, for any j > 1 there erists a
constant ¢ > 0 such that

E{ sup |V X[

Fo| < e{l9ltu,y + 60X,

telo.7) (4.4.5)
ne Pka¢ € T,u,ka
IE{ sup |VUX£””|J} <clof, pe Py, xR (4.4.6)

t€[0,T
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(2) Denote ¢ = o(oo*)~t. For any t € (0,T] and f € By(RY), P.f is
intrinsically differentiable on Pr. Moreover, for any ¢ € T, and
B € CH[0,t]) with By =0 and B; = 1,

DLPS) = [ BLAKEDMS ulde) + BIAXEINE]  (44.7)

holds for
t
Mg:tz = o 6;<CS(X57;E)V¢($)X5’$3dWS>a
t

Nt = [ {GOEEDHD (o P ) (X2), T X2 e VL)
0
The following is a direct consequence of Theorem 4.4.1.

Corollary 4.4.2. Assume (A*5). Then for any p > 1 there evists a con-
stant ¢ > 0 such that

1D P90y < | BUAP (X2

t€(0,T),f € By(RY), pu € Py.

L+ (®)’

In particular, there exists a constant ¢ > 0 such that
c
”DIPtf(M)HLk*(p) < %Hf(Xf)HL’C*(]P’)’ te (OvT]vf € Bb(Rd)’u € Pr.

For the L-differentiability of P;f, we need the uniform continuity of
o), Vb (@, p) and DVby(a, 1) (y) in (., p):

tim sup {[lo2(2) — o) + [ V3" (. p0) = V(o)
+[|D oY (2, ) (y) = DPHV (@ ) ) - tefo,T),  (448)
o= 2/| V Wi(u,0) V Iy~ y/| <} =0,

Under this condition and (A*®), the following result ensures the L-
differentiability of P.f in Py for k > 1. See also [Huang et al (2021)] for
the case that k = 2, oy is Lipschitz continuous and b; ’ is Dini continuous.

Theorem 4.4.3. Assume (A*®) and (4.4.8) for k € (1,00). Then for any
t € (0,T] and f € By(R?Y), P,f is L-differentiable on Py,.
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4.4.2 Some lemmas
Lemma 4.4.4. Assume (A*®). Then the following assertions hold.

(1) (3.4.1) is well-posed for distributions in Py, and for any j > 1 there
exists a constant ¢ > 0 such that any solution X, satisfies

E[ sup_ X} fo] <e{l+ @IXIDE+XoP ). (4a9)
t€[0,T)
In particular, there exists a constant ¢ > 0 such that
E[ sup |Xt|’“} < c(1+E[|Xo["]). (4.4.10)
t€[0,T]

(2) For any j > 1 there exists a constant ¢ > 0 such that for any two
solutions (X}, X}?) of (3.4.1) with initial distributions in Py,

E[ sup_ X} — X2

7] < of eI - X3+ 10§ - X3

te[0,T)
(4.4.11)
In particular, there exists a constant ¢ > 0 such that
E{ sup | X} — XE|’“] < cE[X3 - Xx21%). (4.4.12)
t€[0,T]

(3) There exists a constant ¢ > 0 such that

* * c
|1 P — Pivpar < %Wk(u,u), te (0,T],p,vePy.  (4.4.13)

Proof. (1) By (A*%), we have b{") € Dy with | DEb{" (2, )| 1o+ () < K
for some constant K > 0. Then Corollary 4.3.3 implies
b7 (@, 1) = b (2, 0)| < KW (u,v), (4.4.14)

so that the well-posedness of (3.4.1) follows from Theorem 3.5.1.
To prove (4.4.9) and (4.4.10), we use Zvonkin’s transform. Consider the
differential operator

1
LY =1L, = §tr{atat*V2} + Vi, (pe)» t€[0,T]. (4.4.15)

By Lemma 1.2.2, (A%%) implies that for some constant A\g > 0 uniformly
in pg, when A > Ao, the PDE

(0 + LYuy = dug — b, ¢ €[0,T),ur =0 (4.4.16)

has a unique solution u € H, 2P0 (T) such that

(4.4.17)

N |

fo = V2l + 19 + Vo )ul € LES(T), lullsc + |Vt <
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Let ©; := id + us. By 1td’s formula,
Y = 04(Xy) = Xy + ug(Xy)
solves the SDE
aY; = {b (X, ) + Mg (X)) Yt + { (V) } (X)AW,

(4.4.18)
Yy = 00(Xo), te[0,T].
By (4.4.17), there exists a constant ¢; > 1 such that
Xl < (14 %) < 31+ X, te [0,7]. (4.4.19)

For any n > 1, let

Yen = sup Y|, 7 =inf{s>0:|Y;| >n}, t€]0,T].
SE[0,tAT,]

By BDG'’s inequality in Lemma 1.3.5, (A*%) and (4.4.17), for any j > 1
there exists a constant c(j) > 0 such that

B(a|0) < 2l + (i) [ (B(0d 1 Fo) + BV )+ 1)ds + (),
n>1,tel0,T).
By Gronwall’s inequality, we obtain
E (7 0| Fo)
< (2wl +<t) [ @IV 4 1)ds + ), a0

n>1,te[0,T].

Taking expectations with j = k and letting n — oo, we find a constant
co > 0 such that

¢

E[y] ::E[ s?p]w] SCQ(1+E[|Y0|k]>+c2/ E[|Y;|*]ds, t € [0,T].
s€|0,t 0

Noting that suptE[O)T]EHXﬂk] < oo as X is the solution of (3.4.1) for

distributions in Py, by combining this with (4.4.19) and E[y}] > E[|Y;|¥]

we obtain

t
Elyf] := IE[ :ﬁpt] IYS’“} <ecot 02/0 E[y¥]ds < 0o, t € [0,T],

so that by Gronwall’s inequality and (4.4.19), we derive (4.4.10) for some
constant ¢ > 0. Substituting this into (4.4.66) and letting n — oo, we prove
(4.4.9).
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(2) Denote pj := Lx;i,i = 1,2,t € [0,T]. Let u solve (4.4.16) for L,’fl
replacing L} such that (4.4.17) holds. Let ©; = id + u; and

Y =0,(X}), t€[0,T],i=1,2.
By (4.4.16) and It6’s formula we obtain
Ay}t = {6 (X pd) + A (X))}t + {(VO,)oy (X)W,
AV = (b (X7, 153) + Mte(X7) + Vo0 ez oy (2,1t
+ {(VOy)o }(X7)dW,, t€[0,T].

(7)}a

So, by It6’s formula, the process
ve=Y2 Y, tel0,T]
satisfies the SDE
dup = {67 (X2, 123) + e (XP) = oV (X} )
= M (X8 + V0 ag xzpy e OX0) el
+{ (Voo (x}) — [(VO)o] (x}) }aws,
vo = O0(X3) — O0(Xp)-
By (4.4.17) and (4.4.14), we obtain
16 (1) = 1) () |* < KPE[X7 — X)) < (2K)PE(Y? = V' [*).

Combining this with (A%%), (4.4.17), Lemma 1.3.4, and applying It&’s for-
mula, for any j > k we find a constant ¢; > 0 such that

t 1
|vg | % §|U0|2j+cl/ |US‘2j{1+ZMf3(S,XS)}dS
° i=0 (4.4.21)
t )
+Cl/<IE[|vs|’“]>%"ds+Mt, t€0,7]
0

holds for some local martingale M; with My = 0. Since (4.4.17) implies
ool < 2|Xg — X3,

by stochastic Gronwall’s inequality in Lemma 1.3.3 and Khasminskii’s es-
timate in Theorem 1.2.4, we find a constant ¢y > 0 such that

v = sup |vs|, t€[0,T]
s€0,t]
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satisfies

t ) 2
E[jl’| 7o) < c2(|X3 - x| <E[|vs|'“1>éds)
0

. 1 i
< el X§ — X2V + 5 sup (Eljvs|*]) * (4.4.22)
s€0,t]
g [ i
+ 52 (E[|vs|*]) *ds < o0, t € [0,T].
0

Noting that supc(o 4 E[|vs|*] < E[J7:|*], by taking expectation in (4.4.22)
with j = k, we derive
t

E[ll] < 26, E[ X3 — X2F] + 2 / Elly,[*lds, t € [0,

Since E[|7:|¥] < oo due to (4.4.10), by Gronwall’s inequality we find a
constant ¢ > 0 such that
sup E[lv,"] < E[lyr|*] < B[ Xy — X3*].
t€[0,T]

Substituting this into (4.4.22) implies (4.4.11).
(3) Let v € Py, and take Fy-measurable random variables X, X, such
that

Lx,=p, Lg =v, E[|Xo— Xol*] = Wi(u,v)". (4.4.23)

Let X; and X, solve (3.4.1) with initial values X, and X, respectively, and
denote

Wt = Pt*/-//:LX” Vy 1= Pt*l/:[’f(t? tE [O,T]

Let P} be the semigroup associated with X}"*. According to Remark 1.4.1,
(1.4.3) holds for P/* replacing P; and some constant ¢ > 0 independent of
. Then

c

1P 1= (PE) Vllwar = [(PE) "1 = (P) ¥ lvar < 7

Wi (p,v). (4.4.24)

On the other hand, let

Ry = oo (€ (X {ba (Xa o) =ba (Xe,va) }dWa) = 5[5 1¢a (Xa) {ba (Ko ve) =ba(Xa,pis) }?ds

By (A*%) and Girsanov’s theorem, Q; := R;P is a probability measure
under which

W, m W, — /0 Co(X) {bs (Ko, 1) — bs (Ko, ve)}ds, 7 € [0,1]
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is a Brownian motion. Reformulating the SDE for X, as
AX, = by(X,, ps)ds + 0o(X,) AWy, Ly, =v,

by the uniqueness we obtain L %00 = (P}/')*v, so that by Pinsker’s inequal-
ity (3.2.3) and (A*®), we find a constant ¢; > 0 such that

1P;v = (P |5y = Sup [E[f(Xe)(Re — 1)]* < 2E[R; log Ry]
<1

t t
< c1Eg, / Wi (s, vs)?ds = ¢ / Wi (s, vs)2ds.
0 0

Combining this with (4.4.25) and (4.4.24), we derive (4.4.13) for some con-
stant ¢ > 0. O

Remark 4.4.1. By taking X} and X2 such that
ﬁxé = M Exg =, ]EHX(% - Xglk] = Wk(#:”)k7
we deduce from (4.4.12) that
Wi (P, Pfv) < cWi(p,v), te€[0,T],u,ve Py (4.4.25)
holds for some constant ¢ > 0.
Next, we calculate Vs X/*. In general, let X{* solve (3.4.1) for Lyp =

1 € Py, and for any € € [0,1] and Fp-measurable random variable n with
L, € Py, let X{ solve (3.4.1) with X = X}' + en. We intend to calculate

X: - X!
V,X{ =lim ———% t€[0,7] (4.4.26)
el0 IS
in Lk(Q2 — C([0,T); RY),P). In particular, taking n := ¢(X{') for ¢ € T}, k.,
we have
VX! =V, XE, telo,T]. (4.4.27)

Choosing general 7 instead of ¢(X(') is useful in the proof of Theorem 4.4.3.
Let u solve (4.4.16) such that (4.4.17) and (1.4.9) hold as explained in
the proof of Theorem 1.4.2. Let ©; = id + u; and

Y7 = 04(XT) = XT +u(X7), tel0,T], rel01]. (4.4.28)
By (4.4.16) and It6’s formula, for any r € [0, 1] we have
avy = {oi) (X7 ) + M (X7)

+V, w(X]) bt + {(VO o }(X[)aw,, (4:429)

(X7 uy) =6 (X7 )
Yy = 00(Xg) = Xy +rn +uo(Xg +11).
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For any t € [0,7T] and v € L*(Q — R%, P), let

i(v) == (D" (2, ) (XE), (VOLXE) )] | _ype (44.30)
By (A*%)(2), there exists a constant K > 0 such that for any v, o € L* (2 —
R?, P),
Ui(0) =0, |e(v) = (D) < K(E[lo—8*])%, t€[0,T].  (4.4.31)
If
v =V,Y = 151%1 Yt&%yto (4.4.32)

exists in L¥(Q — C([0, T]; RY),P), by (4.4.17), (1.4.9) and (4.4.28) we see
that V, X/ exists in the same sense and

VX = (VO,(X[)) 'V, Y = (VO (X)) vy (4.4.33)

Combining this with (4*®), applying the chain rule Theorem 4.3.2, and
noting that p; is absolutely continuous due to Theorem 6.3.1 in [Bogachev
et al (2015)], we obtain that for ¢, :=rX{ + (1 —r) X},

1 1
o O XE 1) — 0 (X )

Y14
= lim / = bV (XE Lo )dr

e—0 £ e=0 Jg € dr
1 £ ’
- o X; - Xt (4434)
— 611_1)1%) ) ]E |:<D bt (Za E{r)(cr)7 5 >dT:| Z:XtE
= Pi(vy),

which together with (4.4.33) yields

) b(l) Xs“us 71)(1) X'uhu,
lim (X ) = b (X o) =¢t(vg)+V(vet(xgb))flv;'bgl)(Xf,ut)7

e—0 I

) VO o HXE) — {(VO)o H X}

gg% {(VOy)o: } (XF) - {(VO)o }(XY) = Vive.xty) -1 1 (VO)a H(XY),
w(XE) —w(XE) \

lim 5 = V(ve,(xr)-1uru(X3).

Thus, if vy in (4.4.32) exists, by (4.4.29) it should solve the SDE
dvf = {1 (v]) + Vve,cxey -1 (XL 1)
+ Vo, (o] +A(vO, (x1)—1op e (X]) pdt
+ Vive,xi)-1o 1 (VO } (X[ )dWy,
vy =1+ (Vyuo)(Xo)-

Therefore, in terms of (4.4.33), to study V, X[ we first consider the SDE
(4.4.35).

(4.4.35)
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Lemma 4.4.5. Assume (A*%). For any n € L*(Q — R%, Fy, P), the SDE
(4.4.35) has a unique solution, and for any j > 1 there exists a constant
¢ > 0 such that

£ s o
te[0,T]

fo} < {E[nl*)F + [}, (4.4.36)

i€ Pr,n € LF(Q — RY, Fy, P).
Proof. Let Xi(= X}') solve (3.4.1) with Lx, = p.
(1) Well-posedness of (4.4.35). Consider the space

Cy = {(Ut)te[o,T] is continuous adapted, vg = v{, IE[ sup |vt|k] < oo},
te[0,7]

which is complete under the metric

1

*

pa(vl,v?) = (E[ s[up]e_’\t|vt1 - vt2|k]> , vt ey
te[0,T

for A > 0. By (A*?), (4.4.17) and (4.4.31), there exist a constant K > 0
and a function 1 < fo € L1 such that for any random variable v,

{V(V@t(Xt))*lviU(Xta 116) + Vo, (0)+A(VOu (X0)) -1t (Xt |
< K|,
!
(4.4.37)
IV ve.x-1o{(VO)a (X0 || < Kol Y filt, Xa),

i (v)] < K (E[[o[*))*, € 0,T].

Let f = Zé:o fi- Let 0 > 1 such that (6~ 'p;,071¢;) € K,0 <i < [. By
Krylov’s estimate Theorem 1.2.3(2), we find a constant ¢ > 0 such that

T l l
E/ fe(X)*dt < e Hf?ﬂ\i,,,.,;g =c) |l 2 <00,
0 =0 % =0 '
So,
t
Tn =T Ainf {t >0: / | fe(X1)|?0ds > n} —Tasn—oo. (4.4.38)
0

Thus,
t
Hy(v) == vy +/ {ws(vs) + V(ve.(x.) 10,05 (X, 1)
0
+ sz(vgu(ves(xsn—lvsUs(Xs)}ds (4.4.39)

t
+/ V(vgs(xs))—lvs{(V@S)US}(XS)dWS7 tE[(LT]
0
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is an adapted continuous process on R¢, and for any n > 1,
Hpr i Chn = Chm, Cim = {(v./wn) NS Ck}.

So, it remains to prove that H has a unique fixed point v" € Cj satisfying
(4.4.36), which is then the unique solution of (4.4.35). In the following we
explain that it suffices to prove

H A-, has a unique fixed point in Cy,, n > 1. (4.4.40)
Indeed, if (4.4.40) holds, then the unique fixed point v’} = satisfies
vl = v,n/(ﬁjk, n,k>1,
so that
vy = nlgr;o vy
is a continuous adapted process on R?, and
Hopr (0") =0, €Crp, n>1.
By this and (4.4.37), for any j > k we find a constant ¢ > 0 such that
dof | < (B[l [FIFE + [0 [¥)(1 + FR(X))dE +dIT,, t€ (0,7,

holds for some local martingale M;. By the stochastic Gronwall inequality
in Lemma 1.3.3, we find constants ki, ko > 0 such that
5] sup i ]]
te0,T]

2

K Nk < o112
§k1< / (Efleln,, 1} ¥ ds + E[Jof) |fo1) (4.4.41)

t 25 %
<t + ([ (Bl 1) Fas)
0

Choosing j = k we obtain

E { sup |vfn,. ¥ ‘]—‘0}
te[0,T]

k2 [t 1
< alnl* + —1/ Ellofs, ds + SB[ swp o, F], te0.7].
2 Jo 2 Liep,m
Taking expectation and applying Gronwall’s inequality, we find a constant

k3 > 0 such that

sup]E{ sup |van|k} < ksE[n|"],
n>1 t€[0,T]
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so that (4.4.41) with n — oo implies (4.4.36), and v{ is the unique solution
of (4.4.35) in Cy, since for each n > 1, v/, is the unique fixed point of
H./\T" in Ck,n-

(2) We now verify (4.4.40). By (4.4.31), (4.4.37) and (4.4.38), we find
constants ¢y, co > 0 such that

oA (H o, (6, Hop (02))F = E[ ¢ (1) - Ht<v2>|’€]
te[0,m,

) k
gclE[ sup e~ t{</ {|v *U2|+(E|’U )’“}ds)
t€[0,75]

([ e eene )}]

§201Tk_1p,\,n(v1,v2) sup /e_k(t_s)ds
tel0, 7] Jo

t aages 3
coal g (o) [ )]
te[0,7,] 0

<p)\(’l)1 U2){ b\

t 36 t 20% A(t—s) 20
+ cisup sup (/ fs(Xs)20d5> (/ e Kk ds) }
Q tel0,7,] 0 0

< {C)\Q +C1n%(2)\9*)20 }PA(Ulavz)a 0171}2 € Crn, 0" = _1

Therefore, when A > 0 is large enough, H.A,, is contractive in py for large
A > 0, and hence has a unique fixed point on Cj, . (]

4.4.3 Proof of Theorem 4.4.1(1)
Theorem 4.4.1(1) is implied by the following result for n = ¢(X(').

Proposition 4.4.6. Assume (A*®). For any v € R? and n € L*(Q —
RY, Fo,P), V,X{' in (4.4.26) and V,X["" in (4.4.4) exist in LF(Q —
C([0,T];R?),P), and for any j > 1 there exists a constant ¢ > 0 such
that

E[ sup [V, X} |Fo] < ABInITH +clnl,
te[0,T]

ne Pkﬂ? € Lk(Q — Rd7f07p)7

(4.4.42)
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E| sup |vatu,Z|j] <cl, xz,veRY uE Py (4.4.43)
te[0,T

Proof. The existence of V,X["" and (4.4.43) follow from Theo-
rem 1.4.2(1) for by(x) := bs(x, p1r) where the constant in (1.4.1) is uniformly
in u; according to Remark 1.4.1. So, it suffices to prove the existence of
V, X! and to verify (4.4.42). We simply denote

Xt:Xéu, Ut:U?, tG[O,T]
For any r € (0,1] let Y;" be in (4.4.28). We have Y; := Y;? = ©,(X;). Let
v

3 = =", 1€[0,T].c € (0,1). (4.4.44)
By Lemma 4.4.4(2) and (4.4.17), for any j > 1 there exists ¢(j) > 0 such
that
E[ sup |5V |Fo] < cG)({EMIE + ), =€ (0,1).  (44.45)
t€[0,77
We claim that it suffices to prove
limE{ sup |of —utk} =0. (4.4.46)
€0 | ¢ef0,7)

Indeed, this implies that

V,Y; :=1limof =wv
net el0 t ¢

exists in LX(Q — C([0, T]; RY), P), so that (4.4.17), (1.4.9) and ©; := id+uy
yield
Xy

X —
VX = 1lim -t ¢

_ —1
210 - = (V@t(Xt)) V¢

exists in the same space, and (4.4.42) follows from (4.4.36).
Recall that pui = Lxe,e € [0,1]. By (4.4.16) and It6’s formula, we
obtain
dog = l{bg1><xg 15) — bV (X, 1) + Y, 00 o ut(XE)}dt
€ ’ ’ by (X E,ug)—by 7 (X, pt) t

©0(X§) — ©0(Xo)
13

+ %{ [(V@t)dt] (X7) - [(V@t)at] (Xt)}th, o5 =
Then

t
it =i+ | {Viweon raebl (Ko
0

+ 1, () + Vo, (o) s (X) }ds (4.4.47)

t
+ [ Vivo.00 10:((V0)0 (X)W, + o, t€ [0.7),
0
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where ;(v) is in (4.4.30), and for ¢ € [0, T,

t t
af ::/ fids—i—/ ns dW,
0 0

&= é{bgl)(Xg’“i) = bV (X 1) + Vbi”(Xs,ui)—bg”(xs,us)“t(Xg)}
- {V(VG)S(XS))_lflgbgl)(Xsa,us) + s (05) + sz(f)g)us(Xs)}a
0 = {(VOs)os H(X5) ; {(VOs)os}(Xs) _ V(VQS(XS))—lf)i{(VQS)US}(XS)’
We claim
gii%E[ sup |as|" ]—'0] =0, n>1. (4.4.48)

t€[0,T]
This can be proved by the argument leading to (1.4.13), but with the con-
ditional expectation E[-|Fp] replacing the expectation.

Firstly, by (4.4.45), Y = X{ +u:(X$) and (4.4.17), for any j > 1 there
exists ¢(j) > 0 such that

X:— X . i P
sup B[ sup [ |7 < ) GBI + 1), (2409
€€(0,1] t€[0,T €

Since {(V@S)as},bgl)(-,us) and Vu, are a.e. differentiable, by the same
reason leading to (1.4.14), (4.4.49) implies that for any s € (0,77, P-a.s.
lim {‘ {(VO,)as}(X7) — {(VO,)os}(Xs)

e—0 g

- V(VGS(XS))*W@{(VGS)US}(XS)

bgl)(XgaMs) - bgl)(XwMS)
g

+

- V(VQS(XS))*lf)gb(l)(Xsa Is)

b-o

Next, as in (4.4.34), by the chain rule in Theorem 4.3.2 and bgl) € Dy, we

obtain
b(l) XE g\ __ b(l) XE s
lim | X8 =0 (XS ) eyl o) s e (0,71,
e—0 IS
Thus, for any s € (0,7,
: € £ _ _
lim {[¢5] + [[n3]|} = 0, P-as. (4.4.50)

Moreover, by (A*%) and Lemma 1.3.4, we find a constant ¢ > 0 such that

l
€61+ gl < elof (14 S0 {MU(s ) (X0) + Mfils, J(XD)} ), s € 0,7

=0
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Finally, let @ > 1 be in the proof of (1.4.13) such that (1.4.15) holds for X7
replacing X7 *Y. By (1.4.15) for X7, (4.4.45), and Lemma 1.3.4, for any
n > 1 there exist constants ¢1(n), ca(n) > 0 such that

T n
£120 1120
E[(/ (P + e }ds)

< am|( sup [727)
s€|0,

x (/OT (1+ > {Mff%s,xs)+Mffe<s,X§>})ds)n

=0l

.

.

< e¢i(n) (E{SES}(I)I?T] |f)§|49n ]_-OD%

x <]EK/OT (1 +§ {M (s, Xs) +Mf39(s,X§)})ds>

< ea(n)(1+ \77|29") < 0.

2n

A])

By BDG’s inequality in Lemma 1.3.5 and the dominated convergence the-
orem, this and (4.4.50) imply (4.4.48).
Now, by (4.4.35) and (4.4.47), the argument leading to (4.4.21) gives

[or — 05 [** < |vo — T5|** + /Ot {Jvs = By + (Ellos — 951%) "}t
+ K sup |oS|?* + M, te0,T],
relf0,t]
where K > 0 is a constant and -, is a positive process satisfying
E[eN o 7] < 00, N > 0.
Therefore, by the stochastic Gronwall inequality in Lemma 1.3.3, we find a

constant ¢ > 0 such that for any ¢ € [0, T,

IE{ sup |05 fvs|k‘f0}
s€0,t]

F‘)Dé +C</Ot (Ello5 - vs|k])2d5>2

Combining this with (4.4.48) and lim._,o |vg — ¥5| = 0, we obtain

< clvg — T5|* + C<]E|: sup |ag|?
s€0,t]

limsupE[ sup |05 —vs|k‘]:0]
e—0 s€[0,t]
(4.4.51)

Nl

< climsup (/Ot (B[ — vsk])2ds>

e—0
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Taking j = k, by (4.4.36), (4.4.45) and (4.4.49), we conclude that
{E[ sup {[5]" + |Ut‘k}‘fo} L e e (0, 1]}
t€[0,T]

is uniformly integrable with respect to P, so that by Fatou’s lemma, (4.4.51)
implies

hy = limsupE[ sup ’L~}§1}S|k:| _limsupE{E[ sup |'(~)§'Us|k‘./—"0:|}

e—0 s€[0,t] e—0 s€[0,t]
t 3
< E{limsupE{ sup |0 — v,|F ]-'0]} < c(/ h?ds) , te€]0,T]
e—0 s€[0,t] 0

and hy < 0o, so that hy = 0 for all ¢ € [0, T|. Therefore, (4.4.46) holds and
hence the proof is finished. (I

4.4.4 Proof of Theorem 4.4.1(2)

For any n € L*(Q — R, Fy,P), u € Py, and € € [0, 1], let X7 solve (3.4.1)
for X§ = X{ +en, where Lxp = p. Then X = X/'. Consider
E[f(X) — f(XF
el0 g
Theorem 4.4.1(2) is implied by the following result for n = ¢(X).

, t€(0,7T], f € By(R?).

Proposition 4.4.7. Assume (A*5). D]P,f(u) exists for any t € (0,T],
f € By(RY), n € L*(Q — R4 Fo,P) and p € Px. Moreover, for any
B e CH[0,t]) with Bo =0 and B; = 1, the formula

LUK = [ EOEMET W] £ 00 (4.452)
+E[J(XINE ()],

holds for

t
Mg (v) = ; B (XYY, X B dW,),
t

NE@) = [ (GBI o, P ) (X2 VX2 gy AW, ).
Consequently, there exists a constant ¢ > 0 such that
k—1
&

T, (F(X1)| < %(mﬂ%(u» Elln*])*,
t € (0,T], f € By(RY), pn € Pr,n € LF(Q — R?, Fy, P).

(4.4.53)
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Proof. Let X{"" solve (4.4.3). Since X} solves the same SDE with initial
value X/ replacing x, the pathwise uniqueness implies
Xt = x50t e o, 7). (4.4.54)
Let (PY,)o<s<i<r be the semigroup associated with (4.4.3), ie. for
(XE )eers,m solving (4.4.3) from time s with X% =,
Pl f(x) = E[f (X)), t€[s,T],x € R (4.4.55)
Simply denote P = PJ;. Then (4.4.54) implies
Puf(0) =B (X)) = [ Pf@uldo), € 0.7)f € B(RY. (4.4.56)
By Theorem 1.4.2, (A*%) implies that for any t € (0,7] and 8 € C([0,1])
with 5o = 0 and gy = 1,

VPl f(x) = B[f(X["")M}5 (v)], veR? f e By(RY). (4.4.57)
Next, denote py = Py = Lxp and let X¢ solve (4.4.3) for X§ = X§, i.e.

dXE = bs(XE, ps)ds + o5(X5)dW,, s € [0,t], X5 = X§. (4.4.58)
We have

E[f(X5)] = / (P )(@)]L gy o)

Ra
= / Pl f(z+ev)Lixp p(do,dv), f€ By(R%).
R4 xR4

Combining this with (4.4.56) and (4.4.57), and applying the dominated
convergence theorem, we obtain

1o EFCRD)] = P ()
e—0 £

_ / E[£(XP) MY (0)] £ s oy (da, dv),
R4 x R4

On the other hand, denote p; = Lx: and let

= /d dVth“f(J:)E(Xgm)(dx,dv)
xR (4.4.59)

RS = eJo (€ dWa)=3 [§ [¢:1%ds

& = G(XDM (XE, ps) — 0V (X2, D)}
By (A%9), (s = 0¥(0s07)~! and Girsanov’s theorem, Qf := R{P is a prob-
ability measure under which

We =W, - / G (X2 BV (X2, ) — b (XZ, ) }ds, 7 € [0,1]
0
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is a Brownian motion, and

RS — 1)

sup E [ =~

rel0,T],e€(0,1]

Reformulate the SDE for X¢ as

} <oo, j>1 (4.4.60)

AXE = by (X5, pus) + 0,(XE)AWE, X§ = X§.

By the well-posedness we obtain Lx¢|g: = Lz p, so that

E[f(X)] = E[R{ f(X])], f € By(RY).

Thus,
E[f(X{)] - E[f(XF)] _ E[f(X5)(1-R)] _ L&)+ )
€ €
o= E[f (X >1R] I(e) = E[{f(Xf) =yt R}

By (4.4.14), (4.4.34) and the dominated convergence theorem, we obtain

¢
iy 1(6) = E|FOX2) [ (GOOBIDP (o) VX e, a0V,
& 0
So, to prove (4.4.52) it suffices to verify
lim I2() = 0. (4.4.61)
By (4.4.14), we obtain

lim sup E

rTt £€(0,1]
Since (A*®) holds for [r,T] replacing [0,7], we have (4.4.13) for (r,T)
replacing (0, 7). Similarly, (1.4.3) holds for P} , and P}, replacing P;_,
where Pr’f: and P/, are defined in (4.4.55). Therefore, by the Markov
property,

[ELF(XF) = FXOIF = (Bl X)) = (PLF)XE)]
< (P F)OGE) = (Bl DX+ (P ) = (PEDXI] (4.4.63)

{IRi—Ri\

- } = 0. (4.4.62)

< el (BEZH ) 0 ) - PG

On the other hand, let (X7 ,)ery solve the SDE

deéj,s = bS(Xf,sﬂ :u’i)ds + US(Xais)dW& X:f,r = lejV s € ['I’, t]
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We have
Pl f(XE) =E[f(X5)|F], PLA(XE) =E[f(X!)|F].
Noting that (4.4.14) and (4.4.25) imply
b, 1) — ba(, 10)| < 1 Wi (s, o) < ers(Ellnl) (4.4.64)
for some constant ¢; > 0, by Girsanov’s theorem, for any r € [0,t),

RE i oHEdW) — 4 [P lePas _ BT
7t Ri

is a probability density such that under Q,: := R} P,

W= W= [ GO0 B0 1) — blXf o)), s € [
is a Brownian motion. Reformulating the SDE for (X%).c[rs as
AXE = by(XE, p)ds +og(XE)AW,, X¥ = X7, s € [nt],
by the weak uniqueness, we obtain
Pl f(XE) = B[RS S (XE)| 7,

so that by Pinsker’s inequality (3.2.3) and (4.4.64), we find a constant
co > 0 such that

(P D(XE) = (PENXEP < (Sl BN = BE | 7]
< 2| fllcEq,, [log R ;| Fo]

= 1l / Eg, . [ICOXE) (b (X2, 1) — by(XE, 1)} 2| 7. ds

< cal| Flloo(t = 7)E2 (M| 2k oy -

Combining this with (4.4.12), (4.4.60), (4.4.63) and that (s A 1)? < s for
s > 0, we find constants c3, cq > 0 such that

E[{7(x7) - f(x)) 1]
) ()

| 2

(4.4.65)

< (E‘]E[f(Xf) — F(X))|F]

E[| Xz — X1\ ?
S e =

< c5ﬁ||f||m(é)§, ce (0,1, € [0, 7).



July 27, 2024 9:20 ws-book9x6 13512-main  page 200

200 Distribution Dependent Stochastic Differential Equations

Combining this with (4.4.62) we obtain
1611{)1 IQ(E)

< limlim{’E[{f(XtE) - f(Xt)}l - Ri}

r1Tt €0

Therefore, (4.4.62) holds.
It remains to prove (4.4.53). By Jensen’s inequality, we only need to
consider p € (1,2]. By (4.4.52), we have

+ 2B ] o

Ty (f(XED] < E(T1(Xg s 0)]) + |2, (4.4.66)
where
Ji(z,v) = [ F(X7) //3 C(X VX“’”dW)} z,v € RY,

5= rxt) [ (G0 [<D%S><z,P:M(Xs),vnxmz:)@,dmﬂ.

Taking Bs = 7, by [|{]Jec < 00, (4.4.6) and Hoélder’s inequality, we find
constants c1, co > 0 such that

1

s S o [ wae) )

< Cf}%"(gﬂﬂp(x))i, te (0,7, z,ve R

Combining this with (4.4.56) and P}'| f|P(X}) = E[|f(X}")[P|Fo], we derive
C

B[l (X8, )l < B |l (P1/17(XE)) 7|

o
ca|nll L ) 1
=@ | gt € O.T1

On the other hand, by (A4*?), Holder’s inequality and (4.4.42) for j = k,
we find constants cs, ¢4 > 0 such that

1,(2) = |G (XOB[(D D (2, P ) (XE), V, X2)] |

< 3|V X pe ey < callnllor e,

A

=

(4.4.67)

IN

so that

l\’)"t}*

1

1) < 2 sz (ef [

B
*"‘
[E—

< oVt ooy B[ (BLF (XL |pfo1)5}
This and (4.4.67) imply (4.4.53). O
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4.4.5 Proof of Theorem 4.4.3

Let X;(= X{") solve (3.4.1) with Lx, = pu. For any ¢ € [0,1], let X solve
(3.4.1) with X§ = Xo +e¢(Xo), u° := Lx,4ep(x,) and pf := Pfu® = Lx:.
We have

Pif(po (id+e¢™") = E[f (X)),
It suffices to prove
E[f(XF) = f(X1)]

3

lim  sup
S0 161l Lk (<1

By applying (4.4.52) with 3, = £ for (4", ¢(Xo)) replacing (1, 7), we obtain
d E[f(X;71¢) — f(X]) -
S 2Ty (1)

— DLP, f(u)‘ =0. (4.4.68)

B = lim :

1 " ad4r ¢ T ad4r T ad4r
=< /R dE[f(Xt“ ) /0 (Go(XL o) v XLt ¢,dWs>]du

¢

B F00) [ {GODBIDAD (i (XD, Ve X2 oo 72|
Combining this with (4.4.7) for 8, = 7, we derive

E[f(XF) = f(X)]

sup - Déptf(ﬂ)’

”‘b”[}c@wgl €

= sw | [ {Ssrog) - pies ] < £ [ S
ol (<t 1€ Jo Ldr te Jo

for some constant ¢ > 0, where letting

t
Golr) = [ (CXDBLDM (2 )X Ty X2 AW, ),

t
Fy(r,x) := / (Go(Xpmtre@yg o XEerrel) qw), v e [0,1], 2 € RY,
0

we set
arr)i= sw | [ B[AE O Fylra) - Fof0.0)}|u(do)
”¢HLk(u)§1 Rd
as(r) = sup E[{F(XI700) (X }Fy(0,0) | (da)],
Il <L | JRE
aalr)i= sw _ [E|FXD{GH() - Ga0)} ]|
Lk St
asln) = sw [E[{S0X]) — 10}
IR
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Since || f]loo < 00, by (A*®), (4.4.5) and (4.4.6), we conclude that {a; }1<i<4
are bounded on [0,1]. So, (4.4.68) follows if

lima;(r) =0, 1<i<4.
rl0
To prove these limits, we need the following two lemmas.

Lemma 4.4.8. Assume (A*5). For any j > 1 there exists a constant ¢ > 0
such that for any p € Py, and ¢ € Ty, with [P preuy <1,
E[ sup | X700 —xprp] < ard (14 lo(@)l), e (0,1,
t€[0,T]
Proof. By (4.4.6), we have
B|X{ T - X < edllo@)f, v e [0.1],x € RY
Combining this with Wy (u", p) < 7||¢|| L (uy < 7, we need only to prove

sup E[| X* — X7V < eWe(p,v)?, pv € Py (4.4.69)
z€ER4
for some constant ¢ > 0, where X;"* solves (4.4.3) for 14 := P}v replacing
pe = Pfp. Let u solve (4.4.16) such that (4.4.17) holds. Let O; = id +

and
YT = 0 XT), VT = 04X0T), tel0,T].
By It6’s formula we obtain

A/ =y = <{(V@t)0t}(Xt“’I) - {(V@t)at}(Xt”),th>
(DK )+ M (X = W (X0 1) = A (X7)

V40 (0 xpm y X) f

By (A*%), (4.4.17), Lemma 1.3.4 and Itd’s formula, for any j > 1 we find
a constant ¢ > 0 such that

% v,z |2j
Y=Y

t l
<c / YT =YY {14 M, XE7) + MfE(x, X07) s
0

i=0
¢
+C/ Wi, (ps, vs)*ds + My, t€0,T]
0

holds for some local martingale M; with My = 0. Since Wy (us,vs) <
Wi (p,v) due to (4.4.25), (4.4.69) follows from the stochastic Gronwall
inequality in Lemma 1.3.3, the maximal inequalities in Lemma 1.3.4, and
Khasminskii’s estimate in Theorem 1.2.4 for X** and X" replacing X,
respectively. O



July 27, 2024 9:20 ws-book9x6 13512-main page 203

DDSDEs: Harnack Inequality and Derivative Estimates 203

Lemma 4.4.9. Assume (A*®) and (4.4.8). For any j > 1 there exist a
constant ¢ > 0 and a positive function (-) on [0,1] with (r) L 0 asr | 0,
such that for any ¢ € T}, with ||¢[[pxy <1 and r € [0,1],

sup ]E{ sup |vaéﬂ',a:+r¢(;c) — VUX{"IV]

lo]<1  Ltefo,T] (4.4.70)
< min {e,(r)(1 +16(a)l)}, @ € RY,

E| sup |V X! —V X“j‘fo}

|:t€[0,T]| o Xi = Vouxn X (4.4.71)

< |9(Xo)? min {c, e(r)(L + |¢(Xo) )}

Proof. We only prove (4.4.70), since (4.4.71) can be proved in the same
way by using (4.4.42) and (4.4.11) replacing (4.4.6) and Lemma 4.4.8 re-
spectively. We simply denote

XP =X, X]T = X

T = Vo X[, 0 = VX[ T,
Let u solve (4.4.16) such that (4.4.17) holds. We may also assume that u
satisfies (1.4.9) as explained before. Let ©; = id + u; and denote

V= 04(XY), YT = 0(X]),
Vg = (V@t(Xf))_lf)t, U; = (v@t(X:’m))_l’lN);‘

By (4.4.6) and (4.4.17), to prove (4.4.70) it suffices to find e(r) L O as r | 0
such that

(4.4.72)

(4.4.73)

sup E{ sup v} — vt‘j} <e(r)(A+ o)), re0,1],zc R (4.4.74)
[v|<1 te[0,T]

By Jensen’s inequality, we only need to prove for j > 4.
To calculate vy and vy, for any € € [0, 1] we let

Y (e) 1= XY T Y (e) 1= @y (X THE).
Then the argument leading to (1.4.8) implies that

Y= _Y® Yy _yre
vy = lim 24—t (e) t v; = lim o b (e) t

(4.4.75)
el0 £ el0 3

By (4.4.16) and It6’s formula, we obtain
Qv (e) = {BV (X0 ) + g (Xf0)
+ {(VO)o }(X[ T dW,, Y (e) = o +ew,
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4y (e) = b (X1 ) v (X
(XKL

+{(VO) o, J (XL OO aw, Y () = @ + re(x) + ex.

Combining this with (4.4.72) and (4.4.75), we conclude that (v, v}) solves
the SDEs

dv; = {Vvtb(l (vaut) + )‘Vvtut(Xx)}dt + Vvt{ V@t Ut} th’
vy = (VOq(z)) 1w,

+ vbgl)(Xéﬂ‘,mi»rrb(m)#»eu7Nf)_b§1)(Xéﬂ‘,w+r¢(z)+av

dvy = {Vagbgl)(Xf’xv i) + AVaru (X77°) + Vﬁz‘—mut(Xf’x)}dt

+ Vi {(VO)o JXI™)AW,, v = {VOo(x + r(x))} v.

Therefore, by (4.4.73),
zi =) —v, t€10,T]
solves the SDE
dzf = {V(vo,oxpn-1op (067 (o o) + M) (X7)

+ V(V@(Xﬂv))—lzrut(Xr’w)}dt (4.4.76)
+v(v@t(m {(VO)a, (X)W, — 7d fggdwt,
— {(VOu(a + r(a)) " — (VO0)(@)) v,
where for any ¢ € [0, T,
g = V(et(xpr))flv;bgl)(XfaMt) - V(e,(xw )flv;bgl)(XtT’I’ 1)
— AV, (7t U (X]) + AV (0 (x02y) g s (XF)
+ Ve xpy- (vomxr’z))fl}v:“t(xt'w)’
& = Vie.xp) 1oy { (VO HXT) = Vie, (xpo))-1up { (VO o (X]7).
By (4.4.17), (A* 5) and Lemma 1.3.4, we find a constant ¢; > 0 such that
]+ 1671 < eaof { VB2 (X7 ) = VB2 (X7 )|
I

X = X7 DD (14 M XF) + M X)) |
=0
By the boundedness of Vb)) and (4.4.8), we have
IV (XF ) = OO (XD )]
Lo Lo el (4.4.77)
<n{| X7 — X7+ Wi(pe, pf) } ¥ + 8ny n 21,
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where for @(r) = SUB{s g (uy<r IVO (@ 1) — 6 (@, 0)]
Sp = sup {ga(r) — m’%} J0asntoo.
r>0
Using the notation (4.4.72), by combining this with Lemma 4.4.8, (4.4.25)

and (1.4.15) for the processes X and X;*, for any j > 4 we find positive
function 1 with e1(r) L 0 as r | 0 such that for ||@|pr,) <1,

E{(/OT {|nz|* + |£§II2}dS)J} (4.4.78)

<e(r)(1+e@)[¥), rel0,1,z R
Combining this with (4.4.76), (A%5) and BDG’s inequality in Lemma 1.3.5,
we find a constant ¢; > 0 such that

v == sup |z|, t€[0,T]
s€[0,t]
satisfies

E{] < ex(r) + 1 / {78+ 227 il + 22 P b, ¢ e (0,7, (4.4.79)
0

where by (1.4.9), 2(r) := E[|25/] — 0 as r — 0. Since st < sw-1 + "
holds for s,£ > 0 and n > 1, by taking n = £ and j for j > 4 respectively,
we obtain

t
|tz s
0
t _ 1 t z
< ( / |z§|2<“>ds) ( / n:2ds)
0 0
t ‘ 3 t 3
w ([ rmponas) ([ iepas)
0 0
t ) o) t ) e}
- </ |Z:|2(J1)d8) N </ |Z;‘|2(J2)d5) Lo,
0 0

T 2 T J
o = (/ |n§|2ds) + (/ |§§|2d8> .
0 0

So, there exists a constant ¢, > 0 such that

t o t st
1 P . L 3=2) . 2(-1)
e [ttt + g2 s < a8 ([ 1ias)
0 0
. i
J(i—4) . 2(5—-2)
+ ey [0 (/ Z§Jd8> + e
0

1 . t .
< Shil ven [ prids+ e
0

where
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Since (4.4.6) implies E[|7/|"] < oo, combining this with (4.4.78), (4.4.79)
and applying Gronwall’s inequality, we derive (4.4.74) for some positive
function € with e(r) | 0 as r | 0. O

We are now ready to prove «;(r) — 0 as r — 0 for i = 1,2, 3,4 respec-
tively and hence finish the proof of Theorem 4.4.3.

(a) ai(r) — 0. Asin (4.4.77), by (A*®) and (4.4.8) we find a sequence of
positive numbers s,, | 0 as n 1 co such that

sup [|Ga(2) = CG)I* < nfo—yPP Y 5, n>1, (4.4.80)
s€[0,T]
sup || DFbY (2, 1) (y) — DPOM (2, v) (y) |
s€l0.7] (4.4.81)
1
<n{le = 2|+ ]y —y'| + Wi(p,v)} ¥ + 50, n>1.
By (4.4.80), Lemma 4.4.8, Lemma 4.4.9 and (4.4.43), we find a constant
c1 > 0 such that for any ¢ € T}, ;, with [|¢[|Lx(,) < 1,
E[|Fy(r, z) — Fy (0, 2)]]

1
2

t
< E(/ |€S(X5T’I+T¢(I)) o CS(XéL,z)|2 . V¢(I)X5T’I+T¢(I)|2d5>
0

2

t
n |§|OOE( [ 9o x5 roe - w(z)stdes)

< (E{ sup |V¢(m)Xﬁr’w+T¢(x)|2]
s€[0,T)

1
2

t
/ E[n|X§LT’1+T¢(m) _ Xéu’z|2(k71) + sn]ds)
0

+ erlg(@) min {1,2(r) (1 + o(a)))}
< (@) (Valr + rlo@))* =" + v, +min {1Le(r) (1 + |o(@))} )0 2 1.

Integrating with respect to p(dz) and letting first » — 0 then n — oo, we
derive aq(r) — 0 as r — 0.

(b) aa(r) + as(r) — 0. Let

6
Roi= [ GO0V XE2,AWL), 0 € (0.1
0

By (4.4.6), we find a constant ¢; > 0 such that
E[|R; — Ro|] < e1vt — 0|o(x)], 6 € [0,],z € R%. (4.4.82)
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On the other hand, as in (4.4.63) and (4.4.65), we find a constant ¢y > 0
such that for [[¢[| k() < 1,

(X)) (X | Fo | = (P 1) (X)) — (B (X))
<[(Bgy XN (B X+ (B (X — (P X))
X X

0

Vt—10
Combining this with (4.4.82) and Lemma 4.4.8, and using the Markov prop-
erty, we find constants c3, ¢4 > 0 such that

[E[{f(Xf "0 = fXP)}F(0,2)] |
< 2|\ f|El|Re — Rol] + [E[E(f(X{ "W — £(X["")|Fo) Ro] |

< call o { VA= Blot)] + (o LTI gy

gc2||f||oo[m +r}, 9 e,

Vi—0

nrk—1 )N + s, o (z
<C4||f||m{M|¢(x)|+r|¢(x)+{ (1+|¢(t)90 + s} 8( )},
where

$p =sup{s A1 —ns""1} | 0asn T oo.
s>0

Therefore, there exists a constant c5 > 0 such that

k—1
as(r) < |f||oo{cwt R +r}7 6 (0,1).

Vit—10
By letting first » — 0 then n — oo and finally 8 — ¢, we derive ay(r) — 0
as r — 0.

The proof of ay(r) — 0 is completely similar.

(c) as(r) — 0. Write
E[|G4(r) — G4(0)]] < er(9) + B[ (X5, XE)],

where

0 (6) = E[( [ 16080 = GBIV K21

1

)

k[N

t
32 i= ([ [BUD (o) 6D, T X2

2 2
_ <Dngl)(zs,us)(Xs),V¢(X0)X§‘>]‘ ds) , Y,z € C’([O,t];Rd).
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By (4.4.42) for j = k, we obtain

St[gpl]E[IVas(xo)Xﬁrlk] <c |Bllrp <1 (4.4.83)
re|0,

for some constant ¢ > 0, so that by (4.4.12) and (4.4.80), we find constants
c1,co > 0 such that

sup  &r(¢) < E| sup n|X§—XS|k_1+sn < conr* " '4eys,, n> 1.
Hd’HLk(“)Sl s€[0,t]

Then SUD|[g]|, 1,y <1 er(¢) = 0 as r — 0. It remains to prove
<

lim sup E[J.(X",X)]=0. (4.4.84)
O]l iy <1

By (A*9), (4.4.12), (4.4.25), Lemma 4.4.9, (4.4.81) and (4.4.83), we find
constants cs, ¢4, ¢5 > 0 and positive function £(+) on [0, 1] with £(r) — 0 as

r — 0, such that when ||@]|pr¢,) <1,
E[[(DFb (ys, 1) (XD), Vox) X4 ) = (DFBD (2, 115) (Xs), Vx00) XE) ]
< ca (B[ Voo X2 — Vo X2[)
(Bl a0 X 1) (EIDM o, 0) (X.) = DI e ) (X)) P
< &)+ ea (Bl {20 — sl + X7 = X, + 7} + 55 )
< &(r) + es{nlzs — ys
Combining this with (4.4.12) we find a constant ¢ > 0 such that

sup  E[J, (X", X)] < ce{e(r) + nree + Sn}, m>1.
”‘M‘Lk(u)gl

BN 1
kX 4 nrE* +sn}, n > 1.

By letting first 7 — 0 then n — oo we derive (4.4.84).

4.5 Notes and further results

The power/log-Harnack inequalities and Bismut formulas have been estab-
lished in [Huang et al (2019)] and [Bao et al (2021)] respectively for the
path-distribution dependent SDE (3.8.7) when the noise coefficient is path-
distribution independent. Moreover, when the noise coefficient o;(x, )
depends on both z and p, then the log-Harnack inequality has been de-
rived in recent papers [Ren and Wang (2023); Huang et al (2023); Qian
et al (2023)]. See also [Huang and Song (2021)] for the study on singular
distribution dependent SPDEs.
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In the following, we introduce Bismut formula for degenerate DDSDEs,
two results on derivative estimates for distribution dependent noise, log-
Harnack inequality and Bismut formula for DDSDEs with drifts singular in
distribution.

4.5.1 Bismut formula for degenerate DDSDEs

Consider the following distribution dependent stochastic Hamiltonian sys-
tem for X; = (Xt(l),Xt(z)) on R = R% x RYz:

{dXt(l) = vV (Xy)dt,

4.5.1
Adx? = b (X, Lx,)dt + o d W, (451)

where (W¢)¢>0 is a da-dimensional Brownian motion as before, and for each
t > 0, o4 is an invertible do X ds-matrix,

by = (b)Y, 07) : RE x Py — R,
which is measurable with bgl)(x, w) = bgl)(x) independent of the distribu-
tion p. Let V = (V1) V(2)) be the gradient operator on RY = R4 x R,

where V() is the gradient in the i-th component, i = 1,2. Let V2 = VV
denote the Hessian operator on R?. We assume

(A%5) For every t € [0,T), b{") € C2(R? — R™), bi? € CLI(RE x Py —
R?). Moreover:
(1) There exists a constant K > 0 such that

190, @)+ D767 ) ()] + V25 @)]] < K,
t € 10,7, (z, 1) € R? x Py.
(2) There exist B € By([0,T] — R4 ®@ R%), an increasing function

0 € C([0,7];(0,00)) with 8; > 0 fort € (0,T], and € € (0,1) such
that

(VWY — B)Biv,v) > —¢|Bfv|?, veR™,
t
/ S(T - S)KT,SBSB:K;,SdS Z otjdlxdl, t e (O,T],
0

where for any s > 0, {Ky s }i>s is the unique solution of the following
linear random ODE on R4 @ R% :
d

g = (VOB X)) Krs, t> 8 Kew = Liyxa,-
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According to the proof of Theorem 1.1 in [Wang and Zhang (2013)],

(A*6) implies that the matrices
¢

Q= / s(T — s)Kr, VP (X,)Bi K7 (ds, te€(0,T)

0
are invertible with )
”Qt || — (1 _e)eta
For (X¢)iepo,) solving (4.5.1) with Lx, = p € Py and ¢ = (¢M),9?) €
L2(RY — RY, 1), let

€ (0,7). (4.5.2)

Tt HT —t)Bi Ky
a§2) = ¢®(X,) - fﬁQth/ 02Q; " K100 (Xo)ds
S
L (TT - 2) 1
— (T —t)B{ K3.,Qp /O 5V (x0) D8 (X5)ds,

t
of!) = Kuoo (X0) + | K900 (X.(@)ds, te [0.7)
0 s
and define

= [ o { DI ) Ex ) ()0,
0

+Va b (- Lx,)(X,) — (@) fds, 1€ [0,7].
Let (D*,D(D*)) be the Malliavin divergence operator associated with the

Brownian motion (W;).e[0,1), see Theorem 1.4.1. The following result is
due to Theorem 2.3 in [Ren and Wang (2019)].

(4.5.3)

Theorem 4.5.1. Assume (A*%). Then h® € D(D*) with E|D*(h®)|P < oo
for all p € [1,00). Moreover, for any f € By(R?) and T > 0, Prf is
L-differentiable such that

Dg(Prf)(n) = E[f(Xr) D*(h®)]
holds for u € Pa, ¢ € L>(R? — R, 1) and h® in (4.5.3). Consequently:

(1) Let ¢ € L>(RY — R, Pyu) be such that (Xrt) = E(D*(h)|X1). Then

Pipo(Id+ep)~! — Pz .
exists in the total variational norm.

(2) There exists a constant ¢ > 0 such that for any T > 0,

DLpPiy =1
otTH Elg)l

2
IDE(Prf) ()| < ex/PrifP0) = <PTf>2<u>W, F € By(RY,
o Ys
2
|Prp — Prv|rv < CWz(M,V)M, v € Po.

7 62ds
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4.5.2 L-derivative estimate for distribution dependent
noise

Consider the DDSDE (3.1.1) with coefficients satisfying the following as-
sumption which, by Theorem 3.3.1, implies the well-posedness.

(A*7) For anyt >0, by, 0y € CH1(R? x Py), and there exists an increasing
function K : [0,00) — [1,00) such that for any t > 0,2,y € R% and
ne P27

K, asa < (0107) (2, 1) < Kilaxa,

[be (2, )] + (V02 (-, ) (@) |+ [1DF {be (2, )} (w)
+V{oe(, w}H@)|* + 1D {ou(@, ) )

IDE{be(, )} (1) = DE{be(y, ) }u) |
+ID {oe(z, ) }(n) = D {oe(y, ()|l < Kilz —yl.
Let Py f(n) := E[f(Xs¢)] for f € By(R?) and (Xg)i>s>0 solving
(3.1.1) with Lx,, = p € Pa. The following result is due to Theorem 1.1
in [Huang and Wang (2021b)].

Theorem 4.5.2. Assume (A*7). Then for anyt > s >0 and f € By(R%),
Ps+f is L-differentiable, and there exists an increasing function C :
[0,00) — (0,00) such that

Cill.floo d
DEP < . t> s, f e By(RY).
Consequently, for any t > 0 and p,v € Pa,
2C;

P,u— Prv =2 sup |Ps — P f(v)] < Wa(u,v).

P = Piapliry =2 sup [P (1) = Puaf 0] £ 7= Wa(poy)
4.5.3 Derivative estimates for the transition density
Consider the decoupled SDE associated with (3.1.1):

dX" = b (XF, Prp)dt + o (X0, PP p)dWy, (4.5.5)

Xé“m =uz,t€[0,7T).
We have

Pl'f(x) :==E[f(X}')] = g F)pl (z,y)dy, te(0,T],x R’ f € By(RY).
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Derivative estimates on p}'(z,y) have been studied in [Crisan and E. Mc-
Murray, (2018)] and [Chaudru de Raynal and Frikha (2022)] under (A3#%)
and the following assumption involving the linear functional derivatives 0,
and 97, introduced in (3.8.1) and (3.8.2).

(A%8) by(z,-) and ay(z,-) = (0y07)(x,") have second order linear func-
tional derivatives, such that for constants K > 0 and o € (0,1],
the following conditions hold for any t € [0,T],v,u € P and
z,z Y,y 2 2 € Re:

lo¢(x, 1) — oey, w)|| < Klw -yl

|0, (2, 1) (y) — Obi(, 1) (y")| + |07be (2, 1) (y, 2) — Dpabe (2, 1) (y, 2')|
+ [be(, 1) = e’ )| + !62at (2, 1) (y, 2) = Opas(, 1) (y, 2")|
SK(lo =2+ |y —y/|* + ]2 = 2']%).

The following result is included in Theorem 3.6 in [Chaudru de Raynal
and Frikha (2022)].

Theorem 4.5.3. Assume (A>®).

(1) For any p € Py and t € (0,T], the density p}'(z,y) exists. Moreover,
there exists a constant ¢ > 1 such that for any t € (0,T],x,y € R% and
weP,

itd _ Jz—y|?

|prf asy)|§ct7 ze e, 1=0,1,2,

and for any B € [0,a) there exists a constant ¢(8) > 0 such that for
any ' € RY,

1_B+d _ |z —y|?

V2D (,y) = Vo) (@ y)| < c(B)|z — /|t 772 e w@r,

(2) If (A*®) holds, then there exists a constant ¢ > 0 such that for any
Bel0,1],te (0,T),z,2",y,2 € R and p € Pa,

1+itd—a lz—y|2

(VDI (2, )} ()| <et™ 2 e Tw o, i=0,1,
o —y|24+ |z —y|2
{D pf (@, y) YD Pl (o, )} (2)] < o — &P o
_itft+d _ |z—y|?
Vi (x,y) = Vipt (z,9)| < c(B)Walp,v)'t~ "2 e,



July 27, 2024 9:20 ws-book9x6 13512-main page 213

DDSDEs: Harnack Inequality and Derivative Estimates 213

and for any B € [0,a) there exists a constant c(f) > 0 such that for
any 2" € R and v € Py,

[VAD pl (2, 9)}2) = VoA D) (2, 9)} ()]

148td—a _ |z—y|?

< c(B)(|lz — $/|5 + |z — z’\ﬁ)t_fe—77

(V2D (2, y) — Vapt (z,y)] < c(B)Wa(u,v)
|V AD Pl (2, y)}z) — VAD"pY (z,9)}(2)|

Jz—y|?

< (B Wa(pu,v) Pt 1= e

d _Jz—y|?
2 e ct

We remark that the above derivative estimates imply the derivative
formula for D P, f. Indeed, since

P = [ o) )y,
Rd xRd
for any f € By(R?) and ¢ € T}, 2, we have

d o(id+ep)™!
DPtw) = 3|y [ A @t eota) ) e dy

de
= /]Rded <DLpt J? y ¢>L2(;¢)f ( ) Y

+ / Vool () (@) f () p(d)dy.
R? x R4

4.5.4 Log-Harnack inequality and Bismut formula for
DDSDEs with drifts singular in distributions

This part is taken from [Huang and Wang (2022b)] where Theorem 4.1.1 for
log-Harnack inequality and Theorem 4.4.1 for Bismut formula are extended
to the case that by(x, u) is only Lipschitz continuous in p with respect to
the distance induced by the square root of Dini functions, so that it may
be discontinuous in the distance induced by Dini functions.

4.5.4.1 Log-Harnack inequality
Let a be in the following class

A= {a :[0,00) — [0, 00) is increasing and concave,

a(0) = 0, /01 o)y, (o,oo)},

r
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where fol @dr < oo is the Dini condition for a?. For a (real or Banach
valued) function f, let

f(@) = fy)

1o 1= sup L =W
oy a(lz —yl)

be its continuity modulus in «. Define the Wasserstein distance induced by

a:

Walpov)i= sup [0(5) = VDl v € Pai= (€ P pla 1) < oo},

where f are real functions and p(f) := [pa fdpu.
By the concavity of a, W,, is a complete distance on P,, and Py C P,
for k > 1.

(A%9) There exist a € A, k € (1,00),k € [0,00), K € (0,00),] € N, and
1< fie LP(T), (piyqi) €K,pi>2, 0<i<l
such that the following conditions hold.

(1) (o¢07)(x) is invertible and o¢(x) is weakly differentiable in x such
that

l
loo™llo + l(00™) Moo < 00, Vol <D fi,
i=1

lim sup [(o107)(2) — (or07)(z")]| = 0.
el0 te[0,T],|z—x'|<e

(2) by(z,pu) = bgo)(z) + bgl)(os,,u), where for any t € [0,T],z,y €
RY, p, v € Py,
0 (@)1 < fot2). [0 (@, )] < K + slal + wlulle,
08 () = 0 ()] < K { = ]+ W (1 v) + Wie(s, )}
By Theorem 3.5.1, (4*?) implies the well-posedness of (3.4.1) for dis-

tributions in Pj, and for any n > 1 there exists a constant ¢, > 0 such
that

E[ sup |Xt|”‘]-'0} < en(1+|Xo|™).
€[0T

The following result due to [Huang and Wang (2022b)] extends Theo-
rem 4.1.1.
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Theorem 4.5.4. Assume (A*°) with k = 2, let

a(r) == (/OT a(?rzdtf, r> 0.

Then there exists a constant ¢ > 0 such that for anyt € (0,T] and v,5 € Pa,
Ent(P;y|P/7)

< Wa(3, {5 + (1Lt rllrlla + sl o) 2ece bl telita)),
If in particular k = 0 (i.e. b s bounded), there exists a constant ¢ > 0

such that
~ & - ~
Ent(Pt*’Y|Pt*7) S ¥W2(7a7)2a te (O7T]77a’7 € PZ-

4.5.4.2  Bismut formula

In this part, we establish the Bismut formula for the intrinsic derivative of
P, f(~) for v € Pg. To this end, we assume

be(w, ) = b (@) + By, p(V)), te[0, T,z eRLpeP,  (45.6)
where for a Banach space (B, || - ||s),
V:R' =B, B:[0,T]xR*xP,xB—R?

are measurable such that [V], < 1 for some o € A, i.e. V is only square
root Dini continuous and hence p — By(z, g, 1(V)) may be not intrinsically
differentiable.

Recall that a real function f on a Banach space B is called Gateaux
differentiable, if for any z € B,

is a well-defined bounded linear functional. In this case we denote

IVEf(2) e := sup [V5f(2)l-

llolls<1

Moreover, f is called Fréchet differentiable if it is Gateaux differentiable
and
[f(z +v) = f(z) = Vi f(2)]
l[vlis Lo vl
It is well-known that a Gateaux differentiable function f is Fréchet differ-
entiable provided VB f(2) is continuous in (v, z) € B x B. When B = R/ for
some [ > 1, we simply denote VB = V.

=0, z€B.
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(A*10) Let k € (1,00) and let b in (4.5.6).

(1) b© and o satisfy the corresponding conditions in (A*°).

(2) There exists o € A such that ay(s) := a(sﬁ) is concave in s > 0,
and

[V]a ;= sup HV(‘T) — V(y)”B
oty oz —yl)

(3) Foranyt € [0,T), B; € C(RYx Py, xB), Be(x, 1, 2) is differentiable
in x, L-differentiable in p € Py, and Fréchet differentiable in z € B,
such that VEBy(z, u, z) is continuous in (v, z) € B x B. Next, there
exist constants K > 0 and k > 0 such that

|Be(z, 1, 2)] < K + w(|z] + |ulle + [[2]e).
IVBi(-, 1, 2)(@)| + | D By(, -, 2) (1) | Lo+ oy + VP B, 1, ) (2) |-
<K, (tx,pz2)€[0,T] xR x Py xB.
Moreover, for any (t,z,pn) € [0,T] x R4 x Py, there exists a constant
c(t, p, z) > 0 such that
{D By, 2) (1) (y)] < et s, 2)(1 + [y/F=), y € R

Since « is concave, the concavity of ay, holds for & > 2. When a(s) = ¢
for some € € (0,1), ay is concave for k > 1 +¢e. Since (A*19) implies
(A%9), as explained above that under this assumption (3.4.1) is well-posed
for distributions in P.

For 11 € Py, consider the decoupled SDE

X = (B (XEH)  BUXEY P i, PV () bt o+ o (X)W,

Xt =x,t€[0,T).
According to Theorem 1.3.1, (A%19) implies that this SDE is well-posed,
T4ev,pu T,
Vo X7 = lim Xt—_th
el0 g
exists in LP(Q — C([0, T]; R9); P) for any p > 1, and there exists a constant
¢p > 0 such that

E[ sup \VUXZC’“V’} <cplvfP, veRY pe Py € RY
te[0,T]

<1

, t€l0,T

To state the Bismut formula for P;f, we introduce the following Iif
which comes from the Bismut formula Theorem 1.4.2: for any t € (0,71,
B € C([0,t]) with By = 0 and B; = 1, let

t
o) i= [ B[ [ (6T X ) | (),

*

(=0 (os00)Y, se€[0,t,p€Pr,dET, e
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Then there exists a constant ¢ > 0 such that

1 (1, 8)| < el B oo VEPFIE (1)) ™ [ ll e )y 1€ Prod € Ty

Next, let X} be Fp-measurable such that Lyr = p, and let X} solve
(3.4.1) with initial value X{'. For any £ > 0, denote

pe i=po (id+eg)™t, Xb< = XK +ep(XE).
Let X}'= solve (3.4.1) with initial value X}". So,
X{'=X{"°, Plpe=Lxpe, t€[0,T],e>0.

Recall that
Xt — Xt

XF=lim 2t — 2t 7. 45.
Vo Xi 1= lim ———, €10,7] (4.5.7)

Theorem 4.5.5. Assume (A*1°). Then the following assertions hold.

(1) For anyt € (0,T], P,V is intrinsically differentiable on Py, and there
ezists a constant ¢ > 0 such that

1 t2) .4
1D PV ()i ) < cal(( +\l;¥ﬂ|k) z)ecauwml)g,t € (0.T].pc P
(2) The limit in (4.5.7) ezists in LF(Q — C([0,T],R%),P), and there exists
a constant ¢ > 0 such that

E[ sup [VoXf["] < elllfng, t€ (0.7 e Py
t€[0,T]

(3) For any t € (0,T] and f € By(RY), Pif is intrinsically differentiable
on Py.. Moreover, for any pn € Py, and ¢ € T}, ,

DLP,f (1) =If(ﬂ,¢>)+lE{f(Xé‘)/ot <CS(X§‘){NS+NS}, dWs>],

Ns = {vgéPSV(H)BS(Xgaua )}(PSV(IU’))’
N, := (E[{D" By, -, PV (1) }(P ) (X2)]

¢ y=XH V¢X4L>a
where X! solves (3.4.1) with initial distribution Lx, = p, and (s =

ot (007) "

By taking 3 = £, we find a constant ¢ > 0 such that for any ¢ € (0, T,
f € By(R?), pu € Py,

{P]f

* 1
M ()} e a(tnuli)?
Vit

||D1Ptf(M)HLk*(H) <
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Chapter 5

DDSDESs: Long Time Behaviors

In this chapter, we study the exponential ergodicity for the time-
homogeneous DDSDE:
dX; = o(Xy, Lx,)dW; + b( X+, Lx,)dt, (5.0.1)
where W; is the m-dimensional Brownian motion and
oc:RIxPRIEQR™, b:RYx P — R?
are measurable.

We first present a general result with application to the W-exponential
ergodicity, then consider the exponential ergodicity in variation distance
for singular DDSDEs, investigate the exponential ergodicity in entropy and
W, for the dissipative case, and finally derive the exponential ergodici-
ty in weighted Wasserstein distance for the partially dissipative and non-
dissipative cases.

5.1 A general result with application to Wg-exponential
ergodicity

Let P C P be equipped with a complete metric W. When (5.0.1) is well-
posed for distributions in P, for any ¢t > 0, let P}y := Lx, for the solution
X; with initial distribution Lx, = u € P. The well-posedness implies the
semigroup property

P/P; =P/, t,s>0. (5.1.1)
A point p € P is called Pf-invariant, if Pfu = p for all ¢t > 0.
Theorem 5.1.1. If there exist constants ¢ > 1, A > 0, ¢y > lofc and a point
o € P such that

sup W(P; o, f0) < 00, (5.1.2)

te[0,to]

219
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WP, Pyv) < e MW(p,v), pv e P, (5.1.3)
then there exists a unique Pj-invariant point i € 75, and

WP, i) < ce MW (p, i), t>0,u€cP. (5.1.4)

Proof. Since (5.1.4) follows from (5.1.3) if @ is P;*-invariant, it suffices
to prove that P, has an invariant probability measure.
Simply denote pu; = P g, t > 0. By (5.1.2), we have

co = sup W(uy, po) < oo.
te[0,to]

Moreover, by (5.1.1), (5.1.3) and € := ce=** € (0, 1), we obtain

sup W(,unto—l-&,umtg) < 005n7 n > 1.
s€[0,to]

By this and the triangle inequality, we obtain

sup W (s, o) < co + Z W(th(n+1)to> Hnto)

s>0 n—0

o
§00+ZE"::01 < 0.
n=0

Thus,

lim sup W(p, pie4s) < lim ce M sup W(po, s) = 0.
t—o0 >0 t—o00 >0

Therefore, {{1}i>0 is a W-Cauchy family as ¢ — oo, hence there exists a
unique i € P such that

tli)m W(:u’ta /7’) =0.
This together with (5.1.1) yields that g is P;-invariant. O

Next, we consider the exponential ergodicity in Wy, for k& € [1, 00) under
the condition
k _
Sl = yI" 2 (lo (@, 1) = oy, )% + 2(b(x, 1) = by, v), x — y)
+ (k= 2w, 1) = oy, ¥)1P) < KoWi(,0)* = Kz —f, (15)
z,y € RY, pve Py,
for some constants Ky > K> > 0, where for k € [1,2), we assume that

o(x, ) = o(x) does not depend on p.

Theorem 5.1.2. Assume that (o,b) satisfies (A>1). If (5.1.5) holds for
some constants K1 > Ko > 0, then P has a unique invariant probability
measure [ in Py, and

Wi(P;p, )b < e K, (0, p)F, ¢ >0, € Py
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Proof. By Theorem 3.3.1, (3.1.1) is well-posed for distributions in Py,
and (5.1.2) holds for ug = dp and any to > 0. Next, for any u,v € Py, let
X; and Y; solve (3.1.1) with

EXU = W, »CYO =V, Wk(/l,,l/)k = EHXO - Y0|k] (516)
We have

dIX, ~ Yo =2(X, — Yo, (o( X0, P pr) — oY, Brv))dWs)
+ o (X, P 1) = o (Y, Brv)[3rsdt
+2(b(Xy, Prp) — b(Yy, Prv), X, — Yy)dt.

Combining this with It6’s formula and applying (5.1.5), we derive
A1 X; = Yi|* < { KWy (P p, Piv)* — Ki| X, = Yi|* }dt + dM,
for some martingale M;. This and (5.1.6) imply
Wi (P}, Pv)* < B[ X, — YilF] < Wy (p, v)beFr=EK2t ¢ > g,

Then the proof is finished by Theorem 5.1.1. O

5.2 Ergodicity in variation distance: singular case

The following result extends Theorem 1.6.1 to the distribution dependent
setting. See [Wang (2023c)] for a result with weaker integral condition
replacing (5.2.1).

Theorem 5.2.1. Let o(z, ) = o(x) not depend on p. Assume that for
any v € P, (0,b(-,v)) satisfies (A'*), and that

|b(z, 1) — bz, p2)| < Kllpr — p2llvars zE€RY € P (5.2.1)

holds for some constant k > 0. Then (5.0.1) is well-posed, and when k >0
is small enough and ® is conver with fooo % < o0, Py has a unique
invariant probability measure fi, f(®(g0V)) < oo holds for some constant
€o > 0, and there exist constants ¢, A > 0 such that

| P v — filloar < ce ||t — V||var, t>0,v€P. (5.2.2)
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5.2.1 Two lemmas

For any v € P, consider the following SDE with fixed distribution param-
eter:

AX] = b(X], ) + o(X])dW,. (5.2.3)

The following result says that if (5.2.3) is exponentially ergodic with respect
t0 || - |lvar uniformly in -, and if the dependence of b(x,u) on p is weak
enough, then (5.0.1) is exponentially ergodic in || - [|lyar-

Lemma 5.2.2. Assume (5.2.1) and that for each v € P the SDE (5.2.3) is
well-posed. Then (5.0.1) is well-posed. If the associated Markov semigroup
P} of (5.2.3) satisfies

||(P£Y)*/L1*(Pg)*,u2”var S CeiAt”,u'l*ﬂZ”var’ t Z OaV?va:U'Z eP (524)

for some constants ¢, A > 0, then P} associated with (5.0.1) has a unique

: . . _ NN .
invariant probability measure i when k < W renk If moreover k € (0, %),

where

5,2
L _ (05)2(20)% 1}
H.—Sup{li>0. N2 <2 >0,

then there exists a constant ¢’ > 0 such that

1Py = illvar < e v = fillvar, t>0,0EP (5.2.5)
holds for
22
A 1 (cr)2(20)%
PUFSSIE 1 (f 7)>0.
log(2¢) & \3 + A+ K2

Proof. By Theorem 3.4.1, the well-posedness of (5.0.1) follows from that
of (5.2.3) and (5.2.1).

(a) Existence and uniqueness of fi. For any v € P, (5.2.4) implies that
P, has a unique invariant probability measure p.,. It suffices to prove that
the map v +— p., has a unique fixed point fi, which is the unique invariant
probability measure of F;.

For 1,72 € P, (5.2.3) implies

1(P7)" s = by llwar < Cei)\t”,ufyg = Moy llvars 2> 0. (5.2.6)
On the other hand, let (X}, X?) solve the SDEs
dX; = b(XZsz) + O—(th)thv 1=1,2
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with X} = X2 having distribution f.,. Since p, is (P?)*-invariant, we
have

EX? = (P) iy = fys ‘Cth = (P") s, t>0. (5.2.7)
Let

= {0 (00™) 7 b(-,72) — b(-, ) HXL),
Ry = eJomedWa) =3 [§Ins1%ds 4 >

By (5.2.1), R; is a martingale, and by Girsanov’s theorem, for any ¢t > 0,

=W, — / nsds, r € [0,¢]
is a Brownian motion under Q; := R;P. Reformulating the SDE for Xr1 as
dX} = b(X}, y2)dr + o(X})dW,, 7€ [0,1],
by X} = X? and the weak uniqueness, the law of X} under Q; satisfies
Lxijg, = Lxz = (P*) prs.
Combining this with (5.2.7) and Pinsker’s inequality (3.2.3), we obtain
1P )* s = oo [Rar = 1P 1 = (P*) s [P

= sup [B{F(X})] - E[f(X)R/|" < (EIR, - 1])°

< 2E[R; log R;] = 2Eq, [log R]

= o, [ {0 (0r") )~ o KD s

Thus, (5.2.1) implies

(5.2.8)

||(P’Yl) Hryy — /u"Yszar = / ||71 72||vard$ =K t||71 72”1)(17”
Combining this with (5.2.6) and taking t = %, we derive

||,u71 — Hys lvar < ||(Pt’h)*ﬂ'h = My llvar + ”(Pt’h)* - /v"yz”var

_ 1 ky/log(2¢)
’i\/i—i_ ce /\t} - var — { + = - var
{ ||W1 Y2l 9 N ||W’1 ’)’2“

IA

= 6”71 - '72||'uar~

RS . ..
When « < kg := 2108 we have § < 1 so that p., is contractive in 7,

hence it has a unique fixed point.
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(b) Exponential ergodicity in variation distance. Let i be the unique
invariant probability measure of P, and for any v € P, let (X, Xo) be
Fo-measurable such that

S 1
P(Xo # Xo) = EHI_/J — V|lvars £X0 =p, Lx,=v.
Let X; and X, solve the following SDEs with initial values Xy and X
respectively:
dXt = b(Xt, /])dt + O'(Xt)th,
dXt = b(Xt, Pt*l/)dt + O'(Xt)th.
Since fi is P;*-invariant, we have
Lk, =(P)'i=Pp=p. (5.2.9)
Moreover, Lx, = P;v by the definition of P. Let
i 1= {0 (00™) b i) — b, P HXe),
Ry = elo (e dWa) =5 [ 17:1%ds
Similarly to (5.2.8), by (5.2.1), Girsanov’s theorem and Pinsker’s inequality
(3.2.3), we obtain

1(PF)*v = Pyu||2,, = sup |E[f(X,)R] — E[f(X,)]|?

[fl<1

<ﬁt/Hu Pv|2,ds, ¢>0.

This together with (5.2.6) for v; = p and (5.2.9) gives
HP*V - :U’Hvar < QHP*V - (PM) V”var + 2||(PM) V= :u’Hvar

VHvar

<m</|m Prv|,ds + 2¢% My — a2, 30,

By Gronwall’s inequality we obtain

t
1Py = ill3ar < 1A= v (2026_2)\t + 2k2c? / e_z)‘sw"z(t_s)ds)
0

2
< {2026—2)\t + (65)2’3% i
A+ K2

Taking ¢ = 7 := 18 (20)

Hii = V)2, =0,
, We arrive at

HP{ V- /a”'l%ar < 5,€||ﬁ - VH?}(M" veP
for

2
1 (cr)2(20)% R
5RI:(§+W)<1, K< K.

So, (5.2.5) holds for some constant ¢’ > 0 due to the semigroup property
(5.1.1). O
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To verify condition (5.2.4), we present below a Harris type theorem
on the exponential ergodicity in variation distance for a family of Markov
processes.

Lemma 5.2.3. Let (E, p) be a metric space and let {(P})i>0 :1 € I} be a
family of Markov semigroups on By(E). If there exist tg > 0 and measurable
set B C E such that

o= ie}%feEPtolg(x) >0, (5.2.10)
Bi= sup ||(P})" s — (P/)*6yllvar <2, (5.2.11)
iel,x,yeB

then there exists ¢ > 0 such that

sup  |[(P})*0x — (PY)*0yllvar < ce™, t>0 (5.2.12)
i€l x,ye k&

1 2
holds for A := S log a?(2=F) > 0.
Proof. By the semigroup property, we have
(P e0) 00 = (Pye,) Oy llvar

/E . (P, f(") = PLFO)(P,) 0a 3 (da"){(Pf,) "6, }(dy)

= sup
If1<1

S/ 1(P;,)* 0 — (P,) "8y lloar {(Pr,)* 02} (da){(Pf, )"0, } (dy)
BxB

Y RN ARSTHITARALY
(BxB)e
< B{P1p(@)} P 1p(y) +2[1 — {P15()} P 1p(y)] <2 —a*(2 - f).
Noting that [|0; — dylvar = 2 for x # y and 6 := M < 1, we derive
||(Ptio+t1)*5x - (Ptio-i-tl)*‘Svaar <46z — 6y||var, r,y € b

Combining this with the semigroup property, we find constants ¢ > 0 such
that (5.2.12) holds for the claimed A > 0. O

5.2.2 Proof of Theorem 5.2.1

According to Theorems 1.6.1 and Lemma 3.7.7, it suffices to verify (5.2.4).
By Lemma 5.2.3, we only need to prove (5.2.10) and (5.2.11) for the family
{(P)ez0 1 v € P}
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(a) Proof of (5.2.11). Let us fix v € P, and let X;"7 solve (5.2.3) with
X{ = z. For any v € P, by Girsanov’s theorem we have

Py f(z) =E[f(X{7)Ry™Y], >0,

where
RPVY = oo I AW =3V s
e = {o"(00™) THb(, v) = bl )IHXDT).
So, (5.2.1) and Pinsker’s inequality (3.2.3) imply
I(P7)* 6z = (Py)*8:lar < (EIRY” = 1)? < K2ty — v,
< 4/<;2t, t>0,z € Rd,u ep.
Taking t; = 16%, we obtain

1
sup [[(PY)*0. — (P2)*0x||lvar < 5 2€ R v e P. (5.2.13)
veP
On the other hand, by (1.3.4), there exists g € D and a constant € > 0
such that B(xg,e) C D and

H(qu)*6$ - (PtZ)*évaar <-, v,y€E B(37075)~

| =

Combining this with (5.2.13) we derive
v\ ¥ U\ * 3
sup 1(P) 00 = (P) dylloar < 5 <2, 2,y € Blao,e).
ve

So, (5.2.11) holds for B = B(zo,¢).

(b) Let u solve (5.5.16) for f = —b(®) and large A > 0 such that (1.3.16)
holds, and let ©(z) = x + u(x). Since (o,b(-,7)) satisfies (A14), (1.6.20)
holds for Y;"" := ©(X["") replacing Y; for all v € P. So, by H(c0) < oo
and the argument leading to (1.6.23), we obtain

sup  E[V(YV") <07 'k, t>kH(co) =:t,.
veP,xeRE

This together with (1.6.18) implies

sup  E[V(X[")] <072k, t>t,.
veP, xR

Letting K := {V < 2072k}, we derive

inf Py lk(z) >

5.2.14
veP,zeR? ( )

|~
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On the other hand, by Girsanov’s theorem and Schwarz’s inequality, we
find a constant ¢y > 0 such that

PY1B(2g.e) () = E[1p(a,e) (X7 7)RTT]

> {ElB(xo,E)(Xf7’y)}2

=T R
Since K is bounded, combining this with Lemma 3.7.6 for P}, we find a

constant ¢; > 0 such that

inf U > .
vePreK PiLp(ae(@) 2

> co(P{ 1 p(a0,e) (%))

This together with (5.2.14) and the semigroup property yields
17 17 17 17 c
P 11B(ag,0) (€) 2 PL{IKPY 1B (e ) }(2) > 1 P lx(2) > 51 >0

for all 2 € R4, v € P. Therefore, (5.2.10) holds for ty = t5 + 1.

5.3 Exponential ergodicity in relative entropy and Wy: dis-
sipative case

We first present a criterion on the exponential convergence in entropy by
using the log-Harnack and Talagrand inequalities, then apply to (5.0.1)
with non-degenerate and degenerate noises respectively.

5.3.1 A criterion with application to Granular media type
equations

Theorem 5.3.1. Assume that (5.0.1) is well-posed for distributions in Pa,
P} has a unique invariant probability measure i € Po such that for some
constants tg, co, C > 0 we have the log-Harnack inequality

Py (log f)(v) < log Py f (1) + coWa(p, v)?, p,v € Pa, (5.3.1)
and the Talagrand inequality
Wo(u, 1)* < CEnt(p|f), p € Po. (5.3.2)
(1) If there exist constants c1, A\, t1 > 0 such that
Wy (P, i)? < cre” MWy (u, 1)%, t>t1, 1 € Po, (5.3.3)

then for any t > tg + tq,
max {cy ' Ent(P; u|j), Wa (P} i, 1)* }

5.3.4
< e MEt0) in {Wa(u, 0)*, CEnt(pu|p)}, p € Po. ( )
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(2) If for some constants A, ca,ts > 0,
Ent(P; i) < coe MEnt(u|a), t>ty,v € Py, (5.3.5)
then for any t > tg +ty and p € Pa,
max {Ent(P} 1, i), C~"Wa(Prp, 1)}

< cpe M) in {coWo(p, 1)?, Ent(p|f) }. (5:86)

Proof. (1) Since
Ent (P} v|Pipu) = sup P, (log f)(v),
F20,(Pry £)(n)=1
(5.3.1) implies
Ent (P v| Py ) < coWa(p, v)2.

This together with Pj i = i gives

Ent(P;; ulfp) < coWa(p, )%, p € P (5.3.7)

Combining (5.3.3) with (5.3.2) and (5.3.7), we obtain
Wa (P, i)? < cre” N Wa(u, 1)
< cre™ M min {Wa(p, 1)?, CEnt(ul@) }, >t
and for any t > tg + t1,
Ent (P} plp) = Ent(Py Py plji)
< coWa( Py 1, 11)? < coere MO Wy (u, 1)
= {cocre™ e min {Wy(p, )%, CEnt(p|f) }.

Therefore, (5.3.4) holds.
(2) Similarly, if (5.3.5) holds, then (5.3.2) and (5.3.7) imply

Ent (P} p|fi) < coe™ %) min {Ent(P}; p|fa), Ent(u| i) }
< cpe” M) mip {coWa(p, i), Ent(p|m) }, t>to+to,
and
C™ Wy (P p, 1)? < Ent(Piy, Py pli)
< comin {eMEnt(p|n),e O Ent (P plin) }
< g™ M) min {Ent(pu|n), coWa(p, p)?}, t>to+ta.
Then (5.3.6) holds, and the proof is finished. O
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When oo* is invertible and does not depend on the distribution, the
log-Harnack inequality (5.3.1) has been established in Theorem 4.1.1. The
Talagrand inequality was first found in [Talagrand (1996)] for & being
the Gaussian measure, and extended in [Bobkov et al (2001)] to i sat-
isfying the log-Sobolev inequality

A(f*log ) < CR(IV ), f € Cy(RY), i(f*) =1, (5.3.8)
see [Otto and Villani (2000)] for an earlier result under a curvature condi-
tion, and see [Wang (2004)] for further extensions.

To illustrate this result, we consider the granular media type equation
for probability density functions (p¢)¢>0 on R<:

Orpy = div{ant +paVV +W® pt)}, (5.3.9)

where
W ® p; = /Rd W, y)pe(y)dy, (5.3.10)
and the functions
a:R*5RI@RY, VRIS R, W:RIxR? SR

satisfy the following assumptions.

(A5'1)
(1) a == (ay)i<ij<a € CEFRY — R @ RY), and a > A\,Iq for some
constant A, > 0.
(2) V e C2(R?),W € C?(R? x RY) with W (z,y) = W(y, ), and there
exist constants ko € R and k1, ka, kj > 0 such that

Hessy > kolg, k(laq > Hessw > kolad, (5.3.11)

(x,VV(z)) > k1|z|* — ko, =€ R4 (5.3.12)
Moreover, for any A > 0,

/ eV @-VO)-AWEY) qrdy < oo. (5.3.13)
Re x R4

(3) There exists a function by € L}, .([0,00)) with

loc

ro = HHGSZW”OO /OO of Jo bo()ds gy < 1
0

such that
(y =2, VV(z) = VV(y) + VW (-, 2)(x) = VW (-, 2)(y))
<z —ylbo(|z —yl), w,y,2€R™
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For any N > 2, consider the Hamiltonian for the system of N particles:

N N
1
i=1

1<i<j<N

and the corresponding finite-dimensional Gibbs measure
1
M(N) (dzq,...,xN) = — e HnG@LaN) gy dzy,

where Zy = [puv e V@ dz < oo due to (5.3.13) in (A%®). For any
1 <i < N, the conditional marginal of (™) given z € RUN-1) ig
1 — xZ|z
1) (dz) = e Hy(@l2) g
where

Zn(2) = /Rd e Hn@l2) gy

Hy(z|z) :=V(x) — log/ e T VE W@ gy L day_y.
RA(N—-1)

The following result allows V' and W to be non-convex. For instance,
let V=V + Vi € C%(R?) such that ||[Vi]loo A [[VVi]lee < o0, Hessy, > Ay
for some A > 0 (recall that I, is the d x d identity matrix), and W €
C?(R? x RY) with [W||eo A [[VW]|eo < o0. Then the uniform log-Sobolev
inequality (5.3.14) holds for some constant 8 > 0. Indeed, by the Bakry-
Emery criterion, ug(dx) := me_‘@(z)dx satisfies the log-Sobolev
inequality,

pal 2108 £2) < S a1V ), T € CL(RY, ol f2) = 1.

Then (5.3.14) with some constant S > 0 follows by the stability of the
log-Sobolev inequality under bounded perturbations (see [Chen and Wang
(1997)]), as well as Lipschitz perturbations (see [Aida (1998)]) for the po-
tential V5. Moreover, assumptions (A%!) holds provided ||Hessy||oo is s-
mall enough such that 7y < 1. So, the following Theorem 5.3.2 applies.
See [Guillin et al (2022)] for more concrete examples satisfying (A1) and
(5.3.14).

Theorem 5.3.2. Assume (A>1). If there is a constant a > 0 such that the
uniform log-Sobolev inequality
1
(N)(£2 2 L (N) 2
pz (f7log f7) < Sp ™ (IVFIF),
2 ) < g (IVFF) (5:3.14)
feCRY), uM(f?) =1,N > 2,z e RUN-Y
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holds, then there exists a unique i € Py and a constant ¢ > 0 such that
Wo (g, 1)* + Ent(pe|2)
< ceMeB1=T0)* 1in {Wa(po, p)* + Ent(pol)}, t>1

holds for any probability density functions (p¢)i>0 solving (5.3.9), where
pe(da) := pe(x)da, t > 0.

(5.3.15)

Proof. By Theorem 10 in [Guillin et al (2022)], there exists a unique
i1 € Py such that

Ent""W (1) = 0. (5.3.16)
Let po = podx € Pe. As in (5.3.10), let

Wep:= /Rd W (-, y)u(dy).

We first note that p; = Puo := Lx, for X; solving the distribution depen-
dent SDE (5.0.1) with

d
bz, 1) = ; 0ja.(x) = aV{V + W & p}(2), (5.3.17)

o(z,p) = /2a(z), zeRYpePs.
Obviously, for this choice of (o,b), conditions (A51)(1)—(2) imply condition
(A31) for any k > 1, so that (5.0.1) SDE is well-posed for distributions in
Pr, k > 1. Below we only consider k = 2. For any N > 2, let u,gN) =L
for the mean field particle system Xt(N) = (XtN’k)lgiSN:
dxMF = V2o (X" dBf

d 5.3.18
{300, — XNy (X a0, O
j=1

where Vi denotes the gradient in the k-th component, and {th)v’k}lgiSN
are i.i.d. with distribution pg € P2. According to the propagation of chaos,
see [Sznitman (1991)], (A%1) implies

]\}i_l}noo Wg(ﬁxzv,l,Pt*uo) =0. (5.3.19)

Next, our conditions imply conditions (25) and (26) in [Guillin et al
(2022)] for prs = B(1 —19)2. So, by Theorem 8(2) in [Guillin et al (2022)],
we have the log-Sobolev inequality

)QM(N)(|Vf|2)»

(N)( p2 2 2
p (f* log f )giﬁ(l—ro

feCy®R™N), M (f2) =1.

(5.3.20)
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By [Bobkov et al (2001)], this implies the Talagrand inequality

W™, uM)? < o= B ),

~ B —=ro)? (5.3.21)
t>0,N >2vM e P(RW).
On the other hand, by It&’s formula we see that the generator of the diffu-
sion process Xt(N) is
d

L @) =37 {ai (090,00, + 0jais (274)0,
i,7,k=1
=y (@) [0, Hy (N))] 0, n0 }7
for 20V = (N1 ... 2NN) € RV, where xin is the i-th component of

2V'F € R?. Using the integration by parts formula, we see that this operator
is symmetric in L2(uN)), i.e. for any f,g € Cg°(RN),

£ (f,9) = / @™V, Vg™ = - / (FL™) g)du ™),
RaN R4AN
where
a™ (M) = diag{a(z™"), ..., a(z""N)}.

So, the closure of the pre-Dirichlet form (€M), C5°(RY)) in L2(u™)) is
the Dirichlet form for the Markov semigroup Pt(N) of Xt(N). By (A5%1) we
have a™) > X\, Iy, so that (5.3.20) implies

B 108 1) € s €S, € R A () = 1

It is well known that this log-Sobolev inequality implies the exponential
convergence
N _ —ro)? N

Ent (™)) < =B R (M) (M) 5.3.22)
_ ef)\aﬁ(lfro)%Ent(N@N|M(N)), t> O,N > 2’ .0,
see for instance Theorem 5.2.1 in [Bakry et al (2014)]. Moreover, since
Hessy and Hessy, are bounded from below, (A%1) implies that the Bakry-
Emery curvature of the generator of Xt(N) is bounded by a constant. Then
according to [Wang (2010)], there exists a constant K > 0 such that the
Markov semigroup Pt(N) of Xt(N) satisfies the log-Harnack inequality

Kp™N (2,y)
2(1 — e2Kt)’ (5.3.23)
0< feBy(R™N),t>0,z,ycRWY,

P log f(z) < log PN f(y) +
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where p(™) is the intrinsic distance induced by the Dirichlet form W),
Since a'™) > A\, Iqn, we have p™) (2, )% < A\, |z —y|2. So, (5.3.23) implies
(5.3.1) for Pt(N) replacing P;, and ¢y = W :

KW?(M7V)2
22X, (1 — e—2Kt)”
0< feBy(RWM),t>0,pu,veP(RWV).

PN (1og £)(v) < log PN f(u) +

Thus, by Theorem 5.3.1, (5.3.22) implies
Cle*)\aﬁ(lfﬁ))%

N
Wa (™ )2 < T

t>0,N>2

WZ(HJ®N7H(N))2a (5324)

for some constant ¢; > 0. Moreover, (5.3.21), (5.3.16) and Lemma 17
in [Guillin et al (2022)] yield

lim NWQ( 2N N2 < limsup ]\[Ent(ﬂ‘X’N\,u(N))2

N—o00 i~
- v Bl =ro) (5.3.25)
= —Ent"W () =0.
B —ro)? ()=
Combining this with (5.3.24) we derive
. 1 _ . 1
lim sup Nwz(uﬁm, poN)? = limsup = W; (™), )2
e el — 00
—Xaf(1-r0)%t 1
< limsup =Wy (ugN, uM)>
IA Noveo NV (5.3.26)
—XaB(1—r0)*t o
e N —®N
e — W N =®
T s Waleg T A

—XaB(1—r0)%t
cie _
= ll—MWQ(N();N)2 , t>0.

Now, let £ = (&)1<i<ny and 7 = (1;)1<i<n be random variables on RV
such that L¢ = ugN), L, = i®N and

N
STEIE - mif? = Elg - nf? = Wa (™, 5®V)2.

We have L¢, = EXNJ,E,% = for any 1 < i < N, so that

2

NW>(L oy, 1) Z & — mil? = Wa(u{™, 5®N)2. (5.3.27)
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Substituting this into (5.3.26), we arrive at

—XaB(1—10)t
. _ cie
limsup Wo (L w1, )2 < —————
N—)oop 2( XtN ' /J/) - 1 At

This and (5.3.19) imply

WQ(/’[H IEL)Q ’ t>0.

cre—raB(1=r0)%t

Wy (P i, 1)? < o Wawp)®, >0, (5.3.28)
Since (A51)(1)—(2) imply (A*!), by Theorem 4.1.1 we have the log-Harnack
inequality
c
Pi(log f)(v) <log P, f (1) + 1—/itW2(,u, V)2, v €Pot >0 (5.3.29)

for some constant ¢y > 0. Similarly to the proof of (5.3.27) we have
NWa (i, p D)% < Wy (g®N, )2,
where (N1 = p(N) (- x RUN=1)) is the first marginal distribution of p(V).
This together with (5.3.25) implies
lim Wy (™Y 1) = 0.
N—o0

Therefore, applying (5.3.20) to f(x) depending only on the first component
x1, and letting N — oo, we derive the log-Sobolev inequality
2
pf*log f%) < gr— sy IV IP). f € R, A(f) = 1.

By [Bobkov et al (2001)], this implies (5.3.2) for C' = ﬁ Combining
this with the log-Harnack inequality and (5.3.28), by Theorem 5.3.1 we
prove (5.3.15) for some constant ¢ > 0 and pu; = Lx, = P o for solutions
to (5.0.1) with b,0 in (5.3.17).

According to Example 3.1.3, for any probability density functions p;
solving (5.3.9), we have pdx = Pfug for g = podr € Pa. So, we have
proved (5.3.15) for p; solving (5.3.9) with po € P2. When po ¢ Po, it is
easy to see that Ent(uo, i) = Wa(u, i) = 0o, so that (5.3.15) holds. O

5.3.2 The non-degenerate case

(42)
(1) b is continuous on RY x Py and there exists a constant K > 0 such
that

(b, 1) = by, v),  — ) + |0 (@, 1) — oy, v)|> < K {|z — yP+Wa(p, v)2},
b0, ] < c(1+ Vo)), @y €R: v ePy.
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(2) oo™ is invertible with X\ := ||(00*) 7} ||c < o0, and there exist con-
stants Ky > K1 > 0 such that for any z,y € R? and p,v € Pa,
lo(@)—o (y) 75 +2(b(x, 1) =y, v), x—y) < K1Wa(p, v)*~Ka|z—y|*.

According to Theorem 3.3.1, if (A5-2)(1) holds and b(z, 11) is continuous
on R% x Py, then for any initial value Xo € L?(Q — R4, Fy, P), (5.0.1) has
a unique solution which satisfies

E[ sup |Xt|2} < o0, T € (0,00). (5.3.30)
t€[0,T]

Let P;p = Lx, for the solution with £Lx, = p. We have the following result.

Theorem 5.3.3. Assume (A%2). Then P} has a unique invariant proba-
bility measure i such that

max {Wa(P; 1, )%, Ent(P; ulji)}

< e WKL (1 ), > 0, € Py

holds for some constant ¢; > 0. If moreover o € CZ(R? — R? @ R™), then
there exists a constant ca > 0 such that for any p € Pa,t > 1,
max {Wa (P}, i)?, Ent(P; p|i) }
< cpe” KK min {Wy (1, 1)?, Ent(pl 1) }-

(5.3.31)

(5.3.32)

Proof. TFor any p,v € Pa, let Xy, Y; solve (5.0.1) for initial values satis-

fying

Lx,=p, Ly,=rv, E[Xo— Y]’ =Wa(u,v). (5.3.33)
Then py := Lx, = Pfp and v, := Ly, = Pfv. By (A%?) and 1t6’s formula,
we obtain

X, = Yil? < { K Wa (g, v4)? — Kol X, — Yil?}dt + dM,

for some martingale M;. Combining this with W (¢, 14)? < E[| Xy — Y3|?],
we obtain

W (e, 11)? < E[1X, — V] < o~ (e KOUE[| X, — Yo )
= e~ (Ke= KOy, (1, 1)2, ¢ > 0.

By Theorem 5.1.1, this and (5.3.30) imply that P; has a unique invariant
probability measure fi and

Wao (P, i) < e 2 F2=KOtyw, (1 i), ¢ >0, € Po. (5.3.34)
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Next, since (A%2) implies (A*!), by Theorem 4.1.1, there exists a constant
co > 0 such that

* | = Co

Ent(P, < —
nt (P plp) < Y

Then for any p > 1, combining these with P} = Pl*MP(*t_l)Jr, we obtain

Wa(p, )2, t>0,u€ Py (5.3.35)

* - * * - Co
Ent (P} plp) = Ent(Pl/\tP(tfl)Jmum) < N
Ko—

Wao (PG_1y+ ks f)°

—(K2—K1)(t—1)T
Cp€ _\2 Cp€
< W =
= LAt 2 1) LAt

This together with (5.3.34) implies (5.3.31) for some constant ¢; > 0.
Now, let 0 € C2(RY — R? @ R™). To deduce (5.3.32) from (5.3.31),

it remains to find a constant ¢ > 0 such that the following Talagrand
inequality holds:

K kK 2
ei( 2 l)tWQ(N’a/a) .

Wg(u,ﬁ)2 < CEnt(NLL_L)v ne Ps.

According to [Bobkov et al (2001)], this inequality follows from the log-
Sobolev inequality

a(f?log £2) < ci(IVF*), f € Cy(RY), a(f*) =1. (5.3.36)
To prove this inequality, we consider the diffusion process X; on R% gener-
ated by
B 1 d )
L := B Z (UU*)ijaiaj + Z bl(,/j)&
ij=1 i=1

which can be constructed by solving the SDE

Let P; be the associated Markov semigroup. Since P;ji = ji, when Lx, = [i,
the SDE (5.3.37) coincides with (5.0.1) so that by the uniqueness, we see
that 7 is an invariant probability measure of P,. Combining this with
(A52)(2) and Ito’s formula, we obtain

Wa(Lx,, 1) < e ™'Wy(Lx,, 0)% t>0. (5.3.38)

To prove the log-Sobolev inequality (5.3.36), we first verify the hyperbound-
edness of P,, i.e. for large t > 0 we have

||pt||L2(ﬂ)ﬁL4(ﬁ) < 0. (5.3.39)

Since (A%?) implies that o and b(-, i) satisfy conditions (A1)-(A3) in [Wang
(2011)] for K = —(Ks — K1),A? = X and §; = ||o||oo, by Theorem 1.1(3)
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in [Wang (2011)], we find a constant C' > 0 such that the following Harnack
inequality holds:

2 b Clz —yP?
2 2
(Pif(x))” < P f*(y) exp [m], t > 0.
<

Then for any f with fi(f?) < 1, we have

So,

Cla—y

2
R(f3H)<1 (fRd Q—Wﬂ(dy))z
1 (5.3.40)
- _ Clz—y|2
)

< Cjexp [C’le*(K2*K1)t|:c|2}, t>1,2¢eR

A

Next, by [|o]|e < 00, (4%2)(2) and 1td’s formula, for any k € (0, K3) there
exists a constant ¢, > 0 such that
d|Xt|2 S 2<Xt,O'<Xt)th> + {Ck — let|2}dt
Then for any € > 0,
|2

des\)_(t|2 < 25e5‘)_{t <Xta U(Xt)th> (5.3.41)
+Ees\xt‘2{ck+2€||0’||go|Xt|2_k|Xt‘2}dt' B

When € > 0 is small enough such that 2¢||c||%, < Kb, there exist constants
c1(€), ca(€) > 0 such that

e X Loy 4 2e|o |12 | X2 — K| X 2) < er(e) — eae)es Xl
Combining this with (5.3.41) we obtain

A ” < ey (e) — cale)e”Xe  dt + 261X

(X, 0(Xe)dWr).
Taking for instance X, = 0, we get
t
027(5)/ Eesl X" s < Ll(e)t’ t>0.
t Jo t
This together with (5.3.38) yields

t
ﬂ<ea(|~\2/\N)) — lim 1 Ees(IX:I*AN) 46 < ci(e)

. N>0.
et o &s(c)
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By letting N — oo we derive ji(el'1") < 0o. Obviously, this and (5.3.40)
imply (5.4.4) for large ¢ > 0. Moreover, since ||(co*)7 o < 00, 0 €
CZ(R? — R? ® R™) and noting that (4°2)(2) for 4 = v = [i implies

<Ua va(,ﬂ» < 7K2|'U|2, CAS Rda
we find a constant K, € R such that for any f € C>(R%),

Da(f) = 5 Lo VAP — (0°Vf,0" VL) 2 Kolo V4P,

i.e. the Bakry-Emery curvature of L is bounded below by a constant K.
According to Theorem 2.1 in [Rockner and Wang (2003)], this and the
hyperboundedness (5.4.4) imply the defective log-Sobolev inequality

i f*log ) < Cria(|lo*V f[?) + Co
< Cl|o|Za(VF?) + Cay f e CpRY), a(f?) =1
for some constants c1,cy > 0. Since L is elliptic, the invariant probability

measure [i is equivalent to the Lebesgue measure, see for instance Theo-
rem 1.1(ii) in [Bogachev et al (2001b)], so that the Dirichlet form

E(f.9) = u((Vf.Vg)), f.g€W"(u)
is irreducible, i.e. f € WbH2(u) and E(f, f) = 0 imply that f is constant.
Therefore, by Corollary 1.3 in [Wang (2014a)], the defective log-Sobolev
inequality (5.3.42) implies the desired log-Sobolev inequality (5.3.36) for
some constant ¢ > 0. Hence, the proof is finished. ([l

(5.3.42)

To illustrate this result, we consider the following example which is not
included by Theorem 5.3.2 since the function W may be non-symmetric.

Example 5.2.1 (Granular media equation). Let a = Iy, let V €
C?(R9) and W € C?(R? x RY) such that
Hessy > Al;, Hessw > 0114, |Hessw|| < 92 (5.3.43)

holds for some constants Ay, ds > 0 and §; € R. If A+J; —d2 > 0, then there
exists a unique i € Py and a constant ¢ > 0 such that for any probability
density functions (p;)¢>o solving (5.3.9), pi(dz) = pi(x)dx satisfies

max {Wa (jue, ), Ent(jul i)}

< ce” 070 min {Wy (o, ), Ent(polp) }, > 1.
Proof. Let b(z,p) := =V{V +W ® p}(x). It is easy to see that (5.5.20)
implies (A4%2)(1) and

(b, ) = by, v), z — y) < —(A1 + 00| — y|* + Salz — y[Wi (, v),

(5.3.44)
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where we have used the formula

Wi p, v) = sup{u(f) —v(f) : [V/lleo <1}

So, by taking o = %2 and noting that W; < Wy, we obtain

62
(bz, 1) = by, v),x —y) < =(A+ 61 — @)z —y|* + 2 Wi (p,v)?

1) 1)
< —(>\+(51 —52)|1'—y|2+52W2(,U,,I/)2, x?@/ERdauvlePI

Therefore, if (5.5.20) holds for A + §; — d2 > 0, Theorem 5.3.3 implies that
P} has a unique invariant probability measure fi € Ps, such that (5.3.44)
holds for pg € Pa. When pg ¢ Pa, we have Wy (uo, ji)? = oo since ji € Ps.
Combining this with the Talagrand inequality

Wa(po, 1)? < CEnt(po| )

for some constant C' > 0, see the proof of Theorem 5.3.3, we have
Ent(uo|f) = oo for pg ¢ Pa, so that (5.3.44) holds for all ug € P. O

5.3.3 The degenerate case

When R* with some k € N is considered, to emphasize the space, we use
P(RF) (P2(R¥)) to denote the class of probability measures (with finite
second moment) on R*. Consider the following McKean-Vlasov stochastic
Hamiltonian system for (X;,Y;) € Ré1+d2 .= R4 x Rdz:

dX, = BY,dt,
dY, = V24w, — Y,dt (5.3.45)
—{B'VV (. L£ix,v0)(X0) + BB*(BB) 7 X, Jat,

where 8 > 0 is a constant, B is a d; X do-matrix such that BB* is invertible,
and

Vi RM x Py(RIH2) — R
is measurable. Let

LZJB((.I, y)> (jvg)) = \/|.T - ‘T|2 + |B(y - g)|27 (xvy)v (ja Z,_I) € Rd1+d27

1

3

WY (u,v) = inf {/ w32d77} . v € Py(RAT2),
m€C(p,v) Rd1+d2 x Rd1+d2

We assume
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(A33) V(x,p) is differentiable in x such that V'V (-, u)(x) is Lipschitz con-
tinuous in (z, 1) € R4 xPy(R:+92). Moreover, there evist constants
01, 0> € R with
0, + 0> < 3, (5346)
such that for any (z,y), (2',y") € RU+d2 and p, p' € Py(RU+d2),
(BBH{VV(,p)(2) = VV(, 1)@} e — a2’ + (1+ B)By —y))
> —0:95((2,9), («',5) = W5 (u, ).
(5.3.47)

Obviously, (A%3) implies (A%1)(1) with k = 2 for d = m = d; + da,
o = diag{0,v/21,,}, and
So, by Theorem 3.3.1, (5.3.45) is well-posed for distributions in Py(R%1+42)
and

sup (FE)(|- 1) < oo p €PaRITTEO.00) (3349
telo,

Let P i = L(x, v;) for the solution with initial distribution p € P (R%1+92).
In this case, (5.3.45) becomes
dX, = BY,dt,
{dYt = V2dW, + Zy(Xy, Y1)dt,
where Z;(z,y) == —B*{VV (-, Pfu)}(z) + BB*(BB*) 'z +y. According to
Theorems 2.4 and 3.1 in [Wang (2014b)], when Hessy (-, P/u) is bounded,

_ (Prp)(d2)  d(Lix,,vi)(d2)
pul2) = dz B dz

exists and is differentiable in z € R% 92 Moreover, since (A°3) implies
that the class

{ayj7 [&yw (By)zam] 1<i<d 1<5< d2}
spans the tangent space at any point (i.e. the Hormander condition of rank
1 holds), according to the Héormander theorem, p; € C°°(R%+42) for ¢ > 0
provided Z; € C>®(R%4+42) for t > 0.

Theorem 5.3.4. Assume (A53). Then P; has a unique invariant proba-
bility measure fi such that for any t > 0 and p € Py(R4+dz)
max {Wa(P; 1, )2, Ent (P, plji)}

ce 2Rt _ ~ (5.3.49)
< (A min {Ent(ul), Wa(p, 1)}
holds for some constant ¢ > 0 and
28— 61 —07)

K= (5.3.50)
2428+ B2+ /144
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Proof. (a) We first prove the exponential convergence of P;* in Ws: there
exists a constant ¢; > 0 such that

Wy (P i, Pfv)? < cre "Wy (u,v)?, ¢ >0, u,v € Po(RUTE) (5.3.51)

By Theorem 5.1.1, this and (5.3.48) imply that P has a unique invariant
probability measure fi € Py(R4+42),
Let

a._(1+5+ﬂ2)% . 1
SN B ST A+ R+ 8+ 5

and consider the distance
U5((2,9), (2,9))
= Va?|z — z[> + |B(y — §)? + 2ralz — 7, B(y - 9))
for (z,y), (%,9) € R%T492, Then there exists a constant C' > 1 such that
CH(z — 2,y —9)l < ¥p((2,9). (2,9) < Cl(z —z,y —y)|.  (5.3.54)
Moreover, we claim that

2
¥p((z,y), (2,9))° < 2+25 ;(f :ﬂ) i +4¢B((x,y), (z,7))%  (5.3.55)

Indeed, by (5.3.52) and (5.3.53), for any € > 0 we have
&B((xay% (jvg))z
<d (1 +e)|z—z|* + (1 + -

€(0,1), (5.3.52)

(5.3.53)

1
(1+8)(1+5+5%)

(5.3.56)

)IBw -9
Obviously, by (5.3.52),
L1+ (@ 1P+ A1+ B) 15+ F) T VA A B

2a2 21+ B+ p6?2)
satisfies
) - 1 24284624 /B +4
R Y (R o 21+ 9) |

Thus, (5.3.55) follows from (5.3.56).
Now, let (X;,Y;) and (X, Y;) solve (5.3.45) with Lix,v,) = i
L (x,v,) = v such that
Wy (i, v)? = E|(Xo — Xo, Yo — Y0)|?. (5.3.57)
Simply denote p; = L(x,v,), it = L(x, v, By (A>?) and It¢’s formula,
and noting that (5.3.52) implies

2 5
— P = = 0, 1-— = = —,
a B ra ra TGB 1
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we obtain

 {In((X0,Y2), (X, 7))
= (a*(Xy — X;) +raB(Y; - Y;), B(Y; - V}))
+(B*B(Y; = Y;) + raB*(X; — X;), BB*(BB*) ' (X, — X;) + Y, - Y3)
+ (B*B(Y; = Yy) +raB*(Xy — Xy), B{VV(Xy, fie) — VV(X¢, 1) })
< —(1-ra)|B(Y; - Y
— 6 — ra)(Xt — XhB(}/t — Y/t)> — ra6|Xt — Xt|2

B*(Xt —Xt)

1+p

- ., B-6
< B , _
_1+ﬁW2 (125 fit) 175

By (5.3.55) and the fact that

WY (e, 1) < E[p((Xe, Y2), (X, ¥2))2),
for £ > 0 in (5.3.50), we obtain

+ (a2
+(B'B(Y, - Y)) + L BH{YV(Xiju) = VV (X0 )} )

wB((Xtvn)v (Xtvift))z'

t
<_/3—91—92

= 1+ 3 . E[wB((Xr,Yr)v(XraY;))z]dr

t
< - [ B0, (5. TP, £z 520
Therefore, Gronwall’s inequality implies
E[p((Xe, Y2), (X4, Y))?] < e 2*E[Yp((Xo, Y0), (X0, ¥0))?], > 0.

Combining this with (5.3.54) and (5.3.57), we derive (5.3.51) for some con-
stant ¢ > 0.

(b) By Theorem 5.3.1, (a) and the log-Harnack inequality in Theo-
rem 4.1.2, we only need to verify the Talagrand inequality. As shown in
the beginning of Section 3 in [Grothause and Wang (2019)] that i has the
representation

- B 1
i(dz,dy) = Z7 V@YW dzdy, V(z,y) :=V(z,5)+ §|(BB*)_%{E|2 + §|y|2,

where Z = fRd1+d2 e_V(I’y)dxdy is the normalization constant. Since
(5.3.47) implies

BB*Hessy (. py > —0114,,
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we deduce from (5.3.46) that

Bg—0
HeSSV Z ’YId1+d27 Y= 1A ”TH; > 0.

So, by the Bakry-Emery criterion [Bakry and Emery (1984)], we have the
log-Sobolev inequality

_ 2 _ _

A(f*log f*) < ZE(VIP). f € CpRETE), A(f%) = 1.
According to [Bobkov et al (2001)], this implies the Talagrand inequality

_ 2 _
Wo(p, j1)? < - Ent(ulm).
Then the proof is finished. O

Example 5.2.2 (Degenerate granular media equation). Let m € N
and W € C®(R™ x R?™). Consider the following PDE for probability
density functions (p;);>0 on R2™:

Orpe(w,y) = Aypi(w,y) — (Vapi(z,9),v)
+(Vype(2, ), Vo (W ® p)(z) + B + ),

where 8 > 0 is a constant, Ay, V, V,, stand for the Laplacian in y and the
gradient operators in x,y respectively, and W ® p; is in (5.3.10). If there

exists a constant 6 € (0, — 28 ) such that
x ( 1+3\/2+23+ﬁ2)

VW (-, 2)(z) = VW (-, 2)(@)|
<0(lz —z|+|2—2]), z,2€R™ 2,z R,

(5.3.58)

(5.3.59)

then there exists a unique probability measure i € P2(R?*™) and a con-
stant ¢ > 0 such that for any probability density functions (p;);>0 solving
(5.3.58), pt(dz) := p(x)dx satisfies

max {WQ(,Uta ), Ent(utlﬂ)}

5.3.60
< ce”" min {Wa (o, )%, Ent(pol@)}, t>1, ( :
which holds for k = 2-0(1+3y/21207 77) > 0.
242B+B2+4/B+4

Proof. Let d; =ds =m and (X4, Y}:) solve (5.3.45) for

B:=1,, V(z,u):= W (z, z)pu(dz). (5.3.61)
R2m

We first observe that p; solves (5.3.58) if and only if p(z) = % for

u(dz) = po(z)dz, where Pyu:= Lx, v,)-
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c d . . . .
L@ gk exists and is smooth as explained

dz

Firstly, let pi(z) =
before Theorem 5.6.3. By Itd’s formula and the integration by parts for-
mula, for any f € CZ(R?™) we have

d d
& [ e = Seen v

- /]R pe(, y>{Ayf (,9) + (Vo f(z,y),y)
— (Vyf (@), VoV (@, p1(2)d2) + B + ) pdady

R2m f($7y>{Aypt(£L’, y) - <Vzpt($,y),y>
+ <Vyﬂt($a Y)y Ve (Wi, ) + px + y>}dxdy.

Then p; solves (5.3.58).
On the other hand, let p; solve (5.3.58) with po(dz) := po(2)dz €
By the integration by parts formula, pu;(dz) := pi(2)dz solves

Py (R?2m),
the nonlinear Fokker-Planck equation

Oppir = Ly, e
in the sense that for any f € C5°(R¥192) we have

t
Mn:mm+éuﬂ%ﬁMtzm

where L, := Ay+y-Vo—{Vou(W(z,-))+pr—y}-V,. By the superposition
principle, see Section 2 in [Barbu and Rockner (2020)], we have pu; = P/ .
Now, as explained in the proof of Example 5.2.1, by Theorem 5.6.3 we

only need to verify (4°3) for B,V in (5.3.61) and

91:9(%+ 2+2ﬁ+ﬁ2), 62:2\/2+25+ﬁ27 (5.3.62)

so that the desired assertion holds for
28 —-0(1+3/2+23+ j3?)

o 2(8 =01 — 62)
2428482+ /B4 2428+ B2+ /B +4

By (5.3.59) and V(z, p) := pu(W(x,-)), for any constants oy, az, ag > 0 we
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have
1= (VV(,pu)(x) = VV(, @) (@), -7+ 1+ B)(y—17)
:/RM (VW (-, 2)(x) = VW (-, 2)(Z),z — T+ (1 + B)(y — §))p(dz)

+ (VW (Z,-) = (VaW (Z,-)), 2 — 2+ (14 B)(y — 9))
> —0{|z — 2| + Wi (u,p)} - (Iw—ﬂc\ﬂL 1+ By —1l)
Z 9(()[2+(13)W2( )

9{(1+a1+—)|x—ml2 (1+8) (1 ! +i)\y—ﬂl2}~

4&1 40(3
Take
V2+28+6%2-1 1 (1+ B)?
= y g = —F————e, A3 = —F————.
2 2\/2+ 28+ B2 22+ 28+ B2
We have
1
1+a1+— S+ V2+268+ 52,
dag 2
(1+8)° (i+i)—1+ 2426 + 52
4041 40[3 _2 ’
1
a2+a3:§\/2+26+ﬁ2.
Therefore,

1> 528 P~ 0(5 + V2T 20 ) () — (2.0

i.e. (A°3) holds for B and V in (5.3.61) where B = I,,, implies that g is
the Euclidean distance on R*™, and for 61,65 in (5.3.62). O

5.4 Exponential ergodicity: non-dissipative case

For any t > 0 and p € P, consider the second-order differential operator
1
L, = §tr{at0fv2} +bi(-, 1) - V. (5.4.1)
For any positive measurable function V on R, let

Py :={peP:uV)<oo}.

We assume the following Lyapunov condition.
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(A%%) (Lyapunov) There ezxists a function 0 < V € C*(V) with

ot (2)VV ()]

sup 00, 5.4.2
t>0,zere 1+ V(2) ( )
such that for some Ko, K1 € L}, .([0,00); R),

LV < Ko(t) — Ki(H)V, ¢>0,u€ Py. (5.4.3)

For any ! > 0, consider the class

U= {¢ € C*([0,1];[0,00)) : 9(0) = ¢'(1) = 0,9 |0,y > O}.
For each v € ¥;, we extend it to the half line by setting 1 (r) = ¥(r A l),

so that v’ is nonnegative and Lipschitz continuous with compact support.
Then

ri'(r)
Cyy i= Sup < 0. 5.4.4
v r>0 'L/}(T) ( )
When ¢ <0, we have ||¢)/||oo := sup [¢)'| =4(0) and ¢, = lim, o T:f;ig) =

1.
For any constant 8 > 0, the weighted Wasserstein distance is given by
Wopn(uw)i= dnt [ dlle = yl) (14 BV () + AV(0)) rldn,dy)
meC(p,v) JrRd xR
for p,v € Py. In general, Wy, gy is only a quasi-distance on Py as the
triangle inequality may not hold. But it is complete in the sense that
any Wy, gy-Cauchy sequence in Py is convergent. For any u,v € Py, we
introduce
. Jraxga (|7 —y))(1 + BV (2) + BV (y))m(dz, dy)
#eCli) Ja g /(7 — g (1 + BV (@) + BV (y))7(da, dy)’
(5.4.5)

Wy, av (1, v) =

which will come naturally from It6’s formula for the process
([ Xe = Vi) (1 + BV(Xy) + BV (Y2))
for a coupling (X3, Y:) of the SDE. We observe that

sup / ¥ (le—y) (14+8V (2)+BV (y)) 7 (dz, dy) < 1+Bu(V)+Bv(V),
meC(p,v) JRIxR

5 Wy sv (1,v)
so that Wy sv > 15300y 50 vy -

Moreover, let ||V f||s be the Lipschitz constant of a real function f on
R?. We need the following non-degenerate and monotone conditions.
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(A5%5) (Non-degeneracy) There exist a € L}, ([0,00);(0,00)) and mea-
surable
5 :]0,00) x R = R? ® R?
with fOT V6 ¢]|oodt < 0o for T € (0,00), such that
ai(x) = (op07)(x) = auly + (6:67)(z), t>0,2 € R (5.4.6)

(A%-6) (Monotonicity) b is bounded on bounded set in [0,00) x R? x Py .
Moreover, there exist | > 0, K,0,q € L}, .([0,00);[0,00)) and ¢ €
W,;, such that

209" (r) + K’ (r) < —q(®)¥(r), r€[0,0,t>0,  (5.4.7)

1. .
{be(, ) = buly, v), & —y) + 5 [160() — 5:(y)l7rs
< Kilx — y|2 + 0|z — y|W¢,5v(u,l/), z,y e R pv e Py, t>0.
(5.4.8)

Remark 5.3.1. (1) Since V > 0 with V(z) — oo as |z] — oo, we have

oy BOV(@) + KV (y) — 2Ko(1)
wal0= L BT+ V() + V() €R, 1>0, (549

and 7,5(t) > 0 for large enough [ > 0 and K;(¢) > 0.

(2) Consider the one-dimensional differential operator L = 2)\% +K %
on [0,1]. In (5.4.7) one may take ¢ to be the first eigenfunction of L with
Dirichlet boundary at 0 and Neumann boundary at [. In this case, ¢ > 0
is the first mixed eigenvalue.

(3) (5.4.2) and (A®®) imply that

V@) - YVG)
ap(t) = ey |x_yé’<o,l>{ eyl (F T V(@) + V()
{61(2) — 610} [(6: () TV)(@) + (G:()* TV ) @) } <o
g1+ V(@) + V()

for any 8,1 > 0. In many cases, we have a; g | 0 as 8 | 0. For instance,
it is the case when V(z) = el®l” for p € (0,1) and large |z|, and & is
Lipschitz continuous with [|6(z)|| < ¢(1 + |z|?) for some constants ¢ > 0
and q € (0,1 —p), or V() = |z|* for some k > 0 and large |z|.

(5.4.10)
_|_
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For Ko, qi, k1,5 and agg given in (A4%), (A59), (5.4.9) and (5.4.10)
respectively, let

)\lﬁ(t) := min {Iil’g(t), ql(t) —2K,(t)p — al’ﬁ(t)}. (5.4.11)

Since a; 5(t) — 0 as 8 — 0, and since k; g(t) > 0 for K7(¢t) > 0 and large
I >0, when Kj(t) > 0 we may take large [ > 0 and small 8 > 0 such that
A,g(t) > 0. The main result in this part is the following.

Theorem 5.4.1. Assume (A>*)~(A%C), with ¢" < 0 when 64(-) is non-
constant for some t > 0. Then the SDE (5.0.1) is well-posed in Py, and
Py = Py, satisfies

Wy v (P p, Piv) < e JoDusl=0addeyy, oy (4, 0),

(5.4.12)
t>0,u,v e Py.

Consequently, if (a,b) does not depend on t and A.g > 0, then P has a
untque tnvariant probability measure i € Py such that

Wy pv (P, ) < e” Qo'W gy (i), t>0,p€Py. (54.13)

Example 5.3.1. Let a = I; + 66* for some Lipschitz continuous matrix
valued function &, V(z) = e +171)"" for some p € (0,1], and
b(z, ) = bo(x) + e®(x,log u(V))

for some £ € [0,1), by € CH(R?) with by(z) = —|z| Pz for |z| > 1, and
® € CL(R? x [0,00); RY). Let
Wy (uv) =  inf / (A2 —yl}- {1+ V(@) + V(y))r(de, dy).
T€C(1,v) JRd xR

Then when € > 0 is small enough, P/ has a unique invariant probability
measure i € Py, and there exist constants c¢,q > 0 such that

Wy (P p, 1) < ce” "Wy (u, 1), t>0,p € Py,

Proof. It is easy to see that (A°%) holds for some constants Ko, K1 > 0,
(A55) holds for a = 1. Since V(z) — oo as |z| — oo, we take [ > 0 such
that
inf {K1V(z)+KV(y) —2Ko} > 1.
le—y|=1
So, in (5.4.9) the constant x; 3 > 0 for all 5 > 0. Next, take ¢ € ¥
such that (5.4.7) holds for some ¢ > 0, for instance v is the first mixed
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eigenfunction of 2% + K& on [0,1] with Dirichlet condition at 0 and
Neumann condition at {. Then there exists a constant ¢y > 0 such that

V(@) = V()| < covollz = y)(V(2) + V(y), z,y€R™ (5.4.14)

Next, since for any 7 € C(u, v) we have
[ o= g1+ 5V (@) + BV () (e, dy)
R4 xR

< oo / {1+ (1+)BV(x) AV (y)]}n(dz, dy)
{lz—y|<I}
<@+ o)u(V) Av(V)], e (0,1]

(5.4.5) implies

T Ww,ﬂv(ﬂal/)
Wypv (1 v) > 2T V) A B e (0,1].

Combining this with ® € C} and noting that (5.4.14) implies

(V)—v(V)| < inf / V()=V(y)|n(dz, dy) < cof ™ Wy, pv (1,v)
T€C(p,v) JRd xR

for some constant ¢y > 0, we find a constant ¢; > 0 such that
b(x, 1) — b(z,v)| < el|[Ve(x,)]|oo| log u(V') —log v(V)]

EHV@(xv')”ooLu(V) _V(V)| 1A
= w(V)yAv(V) < e Wy pv(p,v), Be€(0,1].

Noting that | Vbol|eo + || V®]|oo + || V6| < 00, this implies (A%°) holds for
some constant K > 0 and § = c;e371, 8 € (0,1].

Finally, as observed in Remark 5.3.1(3) that for the present V' we have
a4 0as $10. Then in (5.4.11), A; g > 0 for small 5 € (0,1]. Therefore,
by Theorem 5.4.1, when € > 0 is small enough, P, has a unique invariant
probability measure i € Py, such that

Wy, pv (P, 1) < e” "Wy gy (u, i), >0
holds for some constant ¢ > 0. This completes the proof since
CT'Wy < Wy gy < CWy

holds for some constant C' > 1. O
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5.4.1 Proof of Theorem 5.4.1

Since ¥(r) := (r Al) for ¢ € ¥; is not second order differentiable at I,
we introduce the following lemma ensuring It6’s formula for ¢ of a semi-
martingale which will be used frequently in the sequence.

Lemma 5.4.2. Let & be a nonnegative continuous semi-martingale satis-
Jying

dé, < Aydt + dM,

for a local martingale My and an integrable adapted process A;. Then for
any ¥ € C1([0,00)) with v’ nonnegative and Lipschitz continuous, we have

Q&) < W/ (€) At + S0 (€)M, + 4/ (E)AM,,

where

! !
Y" (r) := lim sup lim sup Y(ste) =9 (S)’ >0
sir €10 €

is a bounded measurable function on [0, 00).

Proof. By choosing stopping times 7 such that &, fOAT tA,ds and M,
are bounded, we may and do assume that these processes with ¢ replacing
t A 7 are bounded.

For any n > 1, let

Un(r) = n/ooo P(r+ s)e”™ds, r>0.

Then each 1, is C*°-smooth, with ¢/, > 0, (¥,,¥]) — (¢¥,¢’) locally
uniformly, {||¢}/||sc }n>1 uniformly bounded, and by Fatou’s lemma,

oo ’ o
limsup ¢! (r) < lim sup/ lim sup Yirts+e)—y'(r+s) ne” "°ds
0

n— 00 n— 00 el0 3

/ Y
§limsuplimsupw(r+8+6) Y(r + ) =" (r), r>0.
s10 €l0 €

Therefore, by applying It6’s formula to 1, (&) and letting n — oo, we finish
the proof. O
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A. The well-posedness. For any 7" > 0 and a subspace P c P, let
Cw([0,T]; P) be the class of all continuous maps from [0, 7] to P under the
weak topology.

Lemma 5.4.3. Let Ly, be in (5.4.1). Assume that for some K € L}, ([0,
00); (0, 00)),

Li V(o) < KL+ p(V)+V(z)), t>0,z€R pePy, (54.15)
|o:VV ()| < Ki(1+V(z)), t>0,2€RY (5.4.16)

2(be(w, 1) = be(y, v), 2 — )+ + [low(z) — oe ()| Frs
SKt|x_y|{|w_y|+W¢,V(/1'7V)}v (5417)
t> 073779 ERd"u,’IJ € Py.

Then (5.0.1) is well-posed for distributions in Py with
T T T
E[V(X,)] < e*Jo KSdSE[V(XO)/ K,e2Jo Krdrgg)| (5.4.18)
0

Proof. Tt is easy to see that (5.4.18) follows from (5.4.15) and 1t6’s for-
mula. To prove the well-posedness for distributions in Py, we adopt a fixed
point theorem in distributions. For any T' > 0, v := Lx, € Py, and

pePhy = {pneCu(l0,T];Py): po=r},
consider the following SDE

It is well known that the monotone condition (5.4.8) in (A°°) implies the
well-posedness of this SDE up to life time, while the Lyapunov condition
(5.4.15) implies

sup E[V(X})] < oo.
t€[0,T)

Then by the continuity of X' in ¢ we conclude that
V= Lxr € Cu([0,T]; Py).

It remains to prove that ®” has a unique fixed point i € Py r, so that
X" is the unique solution of (5.0.1) up to time T, and by the modified
Yamada-Watanabe principle Theorem 3.2.3, this also implies the weak well-
posedness of (5.0.1) up to time T.
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To prove the existence and uniqueness of the fixed point of H, for any
N > 1 let

Py = {n € Cull, T Py) s o=, sup e Muy(V) < N(1+7(V))}.
’ te[0,T]

Then as N 1 oo, we have P/ N T PVT as N 1 oo. So, it suffices to find
Ny > 1 such that for any NV > NO, <I>”’PTV C P%g and ®7 has a unique

fixed point in PT’V. We prove this in the following two steps.

(a) Construction of Ny. Let
ci=elo Keds Ny = 3ec.
By It6’s formula and (5.4.15), for any N > Ny and p € ’P%:g, we have

e NE[V (X[)] < y(V)elo Kedem e

t
+/ Ks{l+N(1+7(V))}ef:Krdr—N(t,S)dS
0

<ey(V)+2eN(1+~(V)) sup /t e Nt=s)qs
te[0,T] J0
< ey(V) 4+ 2e(1+~(V)) < N1 +~(V)).
So, CIWP%Zg C ’P%g for N > Ny.
(b) Let N > Ny. It remains to prove that H is contractive in P%g

under

Wdi,V,)\(/‘a V) ‘= sup eiAthJ,V(,u't, Vt)a M,V € ’P%:g
te[0,T]
for large A > 0.

For pu,v € P%Zg, by (5.4.17) and the It6-Tanaka formula, we find Cy €

Llloc([07 00)7 (07 OO)) such that
dIXY = XY < Co(t)(Wy gy (e, ve) + | XT — Xy[)dt
Xt — Xy ,
<W {Ut — o (X¢ )}th>-

Since ¢ € ¥, by extending to the half-line with ¢ (r) := ¥(rAl), we see that
)’ is nonnegative and Lipschitz continuous. By Lemma 5.4.2, u,v € PVT,

and noting that ¢¥” < 0 when o; is non-constant for some ¢ > 0, we find
Cy € LY([0,T7; (0 00)) such that

A (Xt = X7)) < G {(IXE - X:|>+Ww,ﬂv<ut,m>}dt
, XP— XV (5.4.20)
(XY - X:|><W {ou(XP) = u(X7)}aW,)

holds for ¢ € [0, 7.
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On the other hand, by (5.4.15) and u,v € P&]TV, we find a constant
K(N) > 1 such that

VX)) + V(X)) } < K {1+ (V) +u(V) + V(XE) + V(XY) bt
+ (o (X )VV(XE) + 0y (X))VV (XY ), dWy)
<SK(N)K A1+ V(X)) +V(Xy)}dt
+ (ou(X[)VV(XE) 4 0o (XP)VV(XY), dWy).

Combining this with (5.4.4), (5.4.16), and (5.4.20), we find Cy € L([0,T];
(0,00)) such that

& = V(XY — XY (1+ V(XS) + V(X))
satisfies
dé < Co(t)[& + (L + V(X[) + V(XY) Wy v (pe, v1)| dt + dM,
for some local martingale My, t € [0,T]. Since ®7p, Vv € P‘V/)’:,]Y, we have
EV(X}/') +EV(XY) < N(1+~(V))eNT = D(N) < 00, t€[0,T],
which together with £y = 0 yields that for any ¢ € [0,T], A > 0,

t
MEE < (14 DIV Wval) [ Calspell €109
0

Noting that limy—oc Sup,e(o, 1 fot Cy(s)el(C20=Ndrqg — 0 we conclude
that when A > 0 is large enough,

1
e MWy v (B, ®v) < e MEE < SWy v a(u,v), tE0,T]

Therefore, ®7 : P‘V,ITV — P‘V/]TV is contractive in Wy, 7 for large enough
A > 0. O

B. Construction of coupling. Simply denote

vav(@,y) = (e —y)(1+ BV (2) + BV (), =,y €R™

For s > 0 and u,v € Py, let X, and Y be Fs-measurable random variables
such that

LXS = PS*,U,’ ‘ch = PS*V7 E¢BV(X5a YS) = W’Lb”@‘/(Ps*/J'a PS*V) (5421)

Let Wt(l) and Wt(2) be two independent d-dimensional Brownian motions
and consider the following SDE:

AX, = by(Xy, Prp)dt + VoagdW P + 6,(X)aw | t>s.  (5.4.22)
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By (A°9), this SDE is well-posed. Indeed, since b is locally bounded, by
Girsanov’s transform to the regular SDE
AX, = adW ) + 6,(X,)dW®, t > s

up to the exit time of a large ball, we construct a weak solution to (5.4.22) up
to the same stopping time. On the other hand, the monotone condition in
(A56) implies the pathwise uniqueness of (5.4.22), then the well-posedness
is implied by the Yamada-Watanabe principle. Moreover, the Lyapunov
condition in (A°%) ensures the non-explosion. By (A%%), we have

* *\ — A Ak *\ — * *\— 2
oy (or0]) l{ozt + 046 }(O’tO't) Loy + {Im —of(o10}) lﬂt}
=0} (0r0}) Loy + I, — of (0007) Loy = I,
So, for an m-dimensional Brownian motion W) independent of (W(l),
1/[/(2))7

W= [ (oot )00 [y
0

t
+ 65(Xs)dW D} + / {I, — 03 (0502) Lo H( X )aW®
0
is an m-dimensional Brownian motion such that
o (X)dW; = ardW ) + 64(X,)dw P,
So, the solution to (5.4.22) is a weak solution to (5.0.1), the weak uniqueness
of (5.4.22) implies that Lx, = Pfu,t > s.

To construct the coupling with reflection, let

r—yY
U(CE,y): |$—y" Z#yGRd.

We consider the SDE:
AY; = by(Yz, Py v)dt + 64(Y;)dW >

(5.4.23)
+ar{ I — 2u(Xs, V) @ w(Xy, i)l ey AW 1>,
where
T:=inf{t >s:Y; = X}

is the coupling time. Since the coefficients in noises are Lipschitz continuous
in Y; # X, by the same argument leading to the well-posedness of (5.4.22),
we conclude that (5.4.23) has a unique solution up to the coupling time 7.
When ¢ > 7, the equation of Y; becomes

AY; = by (Y, Prv)dt + Jagdw,V

+ 6 (Y)W,
which is well-posed as explained above. Therefore, (5.4.23) has a unique
solution up to life time. On the other hand, the Lyapunov condition in
(A54) implies that the solution is non-explosive, and by the same reason
leading to Lx, = P/, we have Ly, = Pjv.

(5.4.24)
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Remark 5.3.2 The operator Iy —2u(Xy,Y;) @ u(X,Y:) in (5.4.23) is the
reflection operator with respect to the vertical mirror at the middle of the
line from X; to Y%, so that the term for Wt(l) in (5.4.23) together with that
in (5.4.22) is called the coupling by reflection, while that for Wt@) without
change is called the coupling by parallel displacement. The construction of
coupling by reflection is due to Lindvall and Rogers [Lindvall and Rogers
(1986)], and has been extended by Chen and Li [Chen and Li (1989)] to
diffusion processes on R?. The construction of (5.4.23) with split couplings
by reflection for Wt(l) and by parallel displacement for Wt(z) is due to [Priola
and Wang (2006)].

C. Proof of (5.4.12). By (A%) and the It6-Tanaka formula for (5.4.22)
and (5.4.23), we obtain

d|X; — Vi < {0:Wy sy (P, Piv) + Ki| Xy — Yy bdt
+ 2/ (u(Xe, Y), dWY) + (X0, Y2), (60(X0) = 6, (Y))dW;™), & <.
By Lemma 5.4.2 and noting that 1" < 0 when & is non-constant, we derive
dep(|X: — Vi)
< 0/ (1X = i)Wy pv (P, Pfv)dt
+ { K| X = Vil (1X; = Yal) + 2040" (| X, — Vi) Jt
+ /(1 - Yi2var (u(Xe, o), aw)
0 (X = Vi) (u(X0, YD), (64(X0) = 6 (V)W ), e [0,7),
Therefore, (5.4.7) yields
dv(1Xe = Yil) < 0,0/ (1Xe = i)Wy pv (P p, P v)dt
— OV X = Y1 x,—v,|<iydt
+ /(X = Yil) [2v/ar (u(X, Yo), aw)

n <u(Xt,Yt)7 (60(X,) — &t(}ft))dwt(2>>]7 t<T.

(5.4.25)

By (A%%) and 1t&’s formula, we obtain
V(X)) + V(Y)} < {2Ko(t) — Ky ()V(X,) — K1 (H)V (Vo) }dt
+Va (VV(X,) + VV(Y;) = 2(u(X,, Y7), VV (Y))u(X,, V), W)

+{(64(X,)*VV (X)) + 6:(Y2) VV(Yy), dW ).
(5.4.26)
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This together with (5.4.25) yields that
G = Vv (X1, Y1) = (| Xy = Yi[){1 + BV (Xy) + BV (Y1)}

satisfies

dgu < {00 (1X0 = Vil Wy pv (P, Piv)[1 4 BV(X) + BV (V7))

+ 80 (1Xe = Yil) (aul VV (2X0) = VV(Y0) | = ai()én1 1x,-vi <ty

+ BY(|1X; — i) [2Ko(t) — Ky ()V(X,) — K1 (8)V (V)] (5.4.27)
 [{00(X0) = (YOG (X0) TV (Xe) + 60(¥) TV (V)] ) fat
+dM;, t<T

for some martingale M;. Combining (5.4.4), (5.4.9) and (5.4.10), we derive
BY(I1X: — Vi) {2Ko(t) — Ki()V (Xy) — Kx () V(Ye) }
<2Ko(1)Boil(x,—v, <1y — K1.5(#)Pel{1x,—v,|>1}

B/ (12: = Vi) { aul WV (x0) = VY (¥3)]

+ [{60(X0) — 6 (V) Hou(X0) 9V (X,) + 30(¥i) YV (V)] |}

< a1 p(t)oel{x,—vi|<i}-
Hence, it follows from (5.4.27) that for ¢ € [0, 7),
dee — dM, < 0,0 (| Xy = Vi) )Wy g (P, Prv){1 + BV (Xy) + BV (V) bt
— {[au(t) — arp(t) — 2Ko(t) Blde {1 x,—vi )<ty + F1,8(E)del{x, —v; >0y
{0 (1Xe = Y)Wy ov (P} i PYv) {1+ BV (Xe) + BV (Ye)} = Aup () bt
Since ¢iar = 0 for t > 7, this implies

efot )‘lﬁ(s)dSEQgt/\T — E[¢tATe~fl)tAT )\l,[}(S)dS] < ef; /\l’ﬂ(r)dTE(Zﬁs
tAT - R
B [ el MO0, — Y)W (P Prv)

x {1+ BV(X,)+ BV(Y,)}dr, t>s.
Therefore, for any ¢ > s, we have

Epinr <e” Ji s (T)dr]Eng
tAT
el sl [ 0y (P P (X - W) (5:428)

x {1+ BV(X,) + BV (Y,) }dr.
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On the other hand, for ¢t > 7, by It&’s formula for (5.4.22) and (5.4.24),
and applying (5.4.8), we find C; € L}, ([0, 00); (0,00)) such that

A (|X; = Yi]) <{C1 01X, — Yal) + 0,0 (|1 X — Vi)W sv (P, Prv) bt
F O (1 X, = Vi) ({60(X0) — 60 (Vo) Fu(Xe, Vo), AW,

Combining this with (5.4.26), we find Cy € L}, .([0,00); (0,00)) such that
for some martingale M; and ¢ € [0, 7),

deoy — dM;
< { Calt)n + 0W o0 (P PLv)! (10 = Vi) [+ BV(X0) + BV ()] .
Therefore, for any ¢t > s, we have t A 7 > s so that
E[1gtsry(fr — denr)]
=k /t:T el =WYoo (P, PIv)d (1X, = Y )
x {14 8V(X,) + BV (Y,)}dr

t
< efsl C2(p)dpE HTWw,ﬁV(P:/l, P:V)wlﬂX’F - Y;“l)

AT

x {14 8V(X,) + BV (Y,)}dr.
This together with (5.4.28), (5.4.21) and (5.4.5) yields
Eér = Edenr +E[Lisry (¢ — dinr)] < e o 2o E,

t
4 e.fst(‘xlﬁl‘i‘CZ)(r)dTE/ 0. Wy gy (Pru, Prv)y' (|1 X, — Yy))

S

x {1+ BV(X,) + BV (Y,)}dr
< e Jo s Mdryy, oy (P, Prv)

t
4 oSt Ca () / 0,0 M WIEG Ay £ > s
where the last step follows from the definition of Wm gv which implies
X E(br
W Py, Prv) < .
vy BE i) S R =V + BV (%) + BV

By Gronwall’s lemma, we obtain

ef: AI’B(T)dT]E¢t

< Wy oy (Pl Prv)exp |l (ZAaml+Cam)ar / 6, dr}
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for t > s. Thus, for a.e. s > 0,

d+
—Wy gv (Pyp, Piv)

ds
:= limsup vw.5v (B 1, B v) = Wy gy (PEp, PYv)
tls t—s
E¢r — W Py, P;
S thup ¢t w,ﬁV( E My s V)
tls t—s

< —(Mp(s) = 0s)Wy gv (PSp, PIv).
This implies (5.4.12).
D. Proof of (5.4.13). Let a,b be independent of the time parameter and
I{::/\l7/370>0.

According to Theorem 5.1.1, (5.4.13) implies that P;* has a unique invariant
probability measure i in Py, and (5.4.13) holds.

5.5 Exponential ergodicity in W,,: partially dissipative case

In this part, we do not assume the Lyapunov condition in (A%%) but use
the following (A%7) to replace (A°F).
For any ¢ € ¥, where
U= {1 € C*([0,00)) : ¥(0) = 0,9’ > 0,7/ (r) +r*(" ) (r) < er
for some constant ¢ > 0},

the quasi-distance
W)= _nt [ we-uhededy)  (650)
TeC(1,v) JRd xRE

on the space

Py = {n€P:|plly = pn(-]) < oo}
is complete, i.e. a Wy-Cauchy sequence in P, converges with respect to

Wy,. When ¢ is concave, Wy, satisfies the triangle inequality and is hence
a metric on Py,.

(A>T) (y-Monotonicity) Let ¢ € ¥, g € C([0,00)) with g(r) < Kr for
some constant K > 0 and all r > 0, such that

20" (1) + (g¢") () < —quip(r), >0 (5.5.2)
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holds for some q € L}, .([0,00); (0,00)). Moreover, b is locally bound-

loc

ed on [0,00) xR% x Py, and there exists § € L}, ([0, 00); (0,00)) such
that

1. .
(be(@, 1) = bely, v), 2 —y) + S [|6e(2) — +(y)ll7rs
< Jz = y{O W () + g(lz — y)}, (5:5.3)
t>0,z,y R v € Py.
When a = I; and
b ) = fa) + [ Z(r9)(ay)
for a drift by and a Lipschitz continuous map Z : R? x R? — R¢, the
exponential convergence of (5.0.1) is presented in Theorems 2.3 and 2.4
in [Eberle et al (2019)] under the condition that
(bo(x) = bo(y),z —y) < w(lz —ylz -y, =,y eR?

for some function x € C((0,00)) with fol ret(r)dr < oo and
limsup,_,, k(r) < 0, and that the Lipschitz constant of Z is small enough.
It is clear that in this case (5.5.3) holds for g(r) := r&(r) and ¥(r) com-
parable with r, for which we may choose 1) € ¥ as in (5.5.15) below such
that (5.5.2) holds for & = 1 and some ¢ > 0. Therefore, this situation is
included in Theorem 5.5.1 below.

5.5.1 Main results and example

Theorem 5.5.1. Assume (A%®) and (A>7), with " < 0 if 64(-) is non-
constant for some t > 0. Then (5.0.1) is well-posed in Py, and P} satisfies
W (P i, Piv) < e Jolas =0l lddowy (1), 1> 0, 1,0 € Py. (5.5.4)

Consequently, (by,0,) = (b,0) does not depend on t and g > 6||9'| o, then
P} has a unique invariant probability measure ji € Py, such that

W (P g, ) < e @O0t (1, 1), >0, € Py (5.5.5)

Proof. By (A®?) and (A7), the well-posedness follows from the proof
of Lemma 3.6.2 with W, replacing W, /, and the solution satisfies

sup ||P/plly < oo, p€ Py, T >0. (5.5.6)
t€[0,T]

It remains to prove (5.5.4) and the existence of the invariant probability
measure [ in the time homogeneous case.
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(1) Proof of (5.5.4). Let s > 0 and p,v € Py. We make use of the
coupling constructed by (5.4.22) and (5.4.23) for initial values (X, Y;) sat-
isfying

Lx.=Piu, Ly =Plv, Wy(Pip,Piv) =Ep(X,,Ys).  (5.5.7)
By the same reason leading to (5.4.25), by (A%7) for ¢ € ¥ with ¢ <0

when & is non-constant, we derive
dv(|Xe = Ya]) < {00 (1 Xe — YiDWy (P, Piv) — qo(| X — Vi) fdt

+ ' (|1 X — Vi) {2\f)\<u(Xt, Y,), th(1)>

+ <U(Xt, Yi), (64(Xe) — &t(Yt))th(z)ﬂv t<T.
(5.5.8)
By the same argument leading to (5.4.28), this implies
EY(|Xinr — Yinrl) < e 1TIEY(1X, — Vi)
tAT (5.5.9)
+9H1//Hoo/ Wy (Prp, Prv)dr, t>s.
On the other hand, when ¢ > ST, by (A%7) and applying It6’s formula for
(5.4.22) and (5.4.24), we find a constant C' > 0 such that
dy(1X; = Vi) <{CY(| X, = Yil)dt + 0] | oWy (P/ i, Pv) bt

+ ' (1X — V) ({80(X) — 60(Ya) Y u(X,, V), dW ).
Thus,

E[Lipsry (X = V)] < 09| E [ Wy (Pfp, Prv)dr, t>s.
tAT

Combining this with (5.5.9) and (5.5.7), we derive
Wy (P, Piv)

< E¢(|Xe — Vi]) = B (| Xinr — Yinrl) + E[1ps 0 (1X: — Vi)

t
< e IR (|X, — Yal) + 019 [ ooe” ) / Wy (P, Prv)dr

t
— e_Q(t_S)W¢(P;u,P;V) + e‘lleooeC(t_S) / Wy (Prw, Prv)dr, t>s.

Therefore,
d” Wy (P p, Pfv) — Wy (Pip, P}
7Ww(PS*M7PS*Z/> = limsup d)( t M ty) 111( s My SV)
ds tls t—s

< —(q = OllYlloe) Wy (P, PIv), s 2 0.
This implies (5.5.4).
(2) Existence of i € Py. According to Theorem 5.1.1, (5.5.4) and (5.5.6)

imply that P has a unique invariant probability measure ji € Py, so that
(5.5.5) follows from (5.5.4). O
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As a consequence of Theorem 5.5.1, we consider the non-dissipative case
where Vb, (-, 1) (z) is positive definite in a possibly unbounded set but with
bounded “one-dimensional puncture mass” in the sense of (5.5.12) below.
Let Pr ={peP:u(- ]) <oco}and

Sp(z) = sup {(Vobe (-, p)(z),0) : t>0,|v| <L, pePi}, z€ RY.

(A>®) There exist constants 0, 01,02, 3 > 0 such that

1. .
§||at(x) —i()||4s < bolz —yl?, t>0,2,y € R (5.5.10)

Sb(x) < 017 ‘bt(xnu) - bt(xﬂy)l < ﬁW1(/l, V)7

p (5.5.11)
t>0,z € R u,v e P
K= sup / L{5, (a+sv)>—0,3ds < 00. (5.5.12)
z,vERY |v|=1JR
Let Wy = Wy, and Py = Py, for ¢(r) =r.
Corollary 5.5.2. Assume (A%5) and (A>®). Let
g(r) :== (6, + 92){(m“_1) /\T} — (02 —bp)r, r>0,
b 2/\,: B0z —bo) /OO tors Ji o(u)dugy (5.5.13)
[ tesx Jo 9twduqy 2A 0
Then there exists a constant ¢ > 0 such that
Wl(Pt*Ma Pt*y) < ce_kt WI(M7 V)7 t> Oa,“? Ve 7)1-
If 6 > 6y and
4)2
B < (5.5.14)

(02— 02)( [y~ tezs Jy atwdugg)2’
then k > 0 and P; has a unique invariant probability measure i € Py
satisfying

Wy (P p, i) < ce™™ Wy (p, i), t>0,pu€Pr.

Proof. For g in (5.5.13), let

= 2): 6= ﬂ(92 — 00) /OO tei I g(u)dudt,
2 teas Jy otwdugy 22 Jo
and take
P(r) = / e 3% fosé?(“)d“/ tezx Joos(wdugy >, (5.5.15)
0 s

By Theorem 5.5.1, it suffices to verify
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(a) ¢ € ¥ and " < 0;
(b) there exists a constant C' > 1 such that C7'W,, <W; < CW,;
(¢) (5.5.2) and (5.5.3) hold.

(a) We have ¥(0) = 0,¢'(r) > 0 and

2A
To prove 9 € U, it suffices to show 1" < 0. To this end, take
m(&l + 92)
Vs =0y
It is easy to see that g in (5.5.13) satisfies
g|[0,r0] >0, g|(ro,oo) <0. (5517)

Combining this with (5.5.16), we have " (r) < 0 for r < rg. On the other
hand, for r > rg, we have g(r) < 0 and
r 1

—g(r) (02— Oo)r1—P — (01 + O2)kr—(1+P)

is decreasing in r > 7q, so that

/ tezx Jo 9(wdugy / 2x (iei Jo g(w)du) g4

V'(r) = _90) -k fJ9<“>d“/ terx Joos(wduqy _p p >0, (5.5.16)

To =

r e \dt

_ 2Ar ezx Jo 9(wdu 4 9y /°° d 2Xt )e% Jo 9w)du gy
g(r) rooNdt—g(t)

< A eax Jo g(wdu s

9(r)
This together with (5.5.16) yields ¥”(r) < 0 for r > rg. In conclusion,
P e v,
(b) Since ¢ € W with ¢ < 0 implies that 1 (r) < ¢/(0)r and 27 s
decreasing in r > 0, we have W,, < 9'(0)W; and

i £ = i 5 = im0

~ lm frootexp[i fot g(u)du]dt
rooeexplgy fo 9(u)du]

= lim LM = 2\
r—o0 —g(r) 0> — 69

(5.5.18)

€ (0, 00).

Thus,

1 02 — b
—_— < <
w/(o) Ww —_ Wl (,LL7 V) _ 2)\

W,
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(¢) By (5.5.13) we have
20" (r) + g(r)'(r) = =2Xr, 7> 0.
Since 1 (r) < 4'(0)r, this implies

20" (1) + g(r)y'(r) < —

Therefore, (5.5.2) holds.

Next, for x # y, let v = é:z‘. Then (5.5.11) implies

2\r

Wﬂ’@") = —q(r), 7>0.

<bt(x’:u) - bt(%”)vx - y>
= |z —yl(be(z, 1) — be(y, ), v) + |z — yl(be (y, 1) — be(y,v), v)

lz—yl
< Blo —y[Wi(u, v) + |z -yl /O Sp(y + s(x — y))ds (5.5.19)

le—yl?
:5|$_y|W1(MaV)+/ Sp(y + sv)ds, p,v e Pr.
0

On the other hand, by (5.5.11) and (5.5.12) we obtain

lz—y|
/ Sp(y + sv)ds
0
lz—y|? lz—y/?
< 91/ LS, (z4sv)>—0,)dS — 92/ L{s,(z4sv)<—0,}dS
0 0

lz—y|?
= (01 + 92)/ L8, (v+s0)>—0,} 5 — b2]z — y|?
0

< (01 + 02)(k Ao — y[*) — balz — .
Combining this with (5.5.10) and (5.5.19), we derive (5.5.3). O
Example 5.4.1. Let a satisfy (A%5) with & satisfying (5.5.10). Consider
(5.3.9) with G € C?(R?) and W € C?(R? x R?) such that
VHG +W(,2)} > 0215503 — 11 1<re}> 2 € RY,
V.V, W,y <0, z,yeR’
holds for some constants \g, 01,02 > 0. Then the assertion in Corollary 5.5.2

holds for k = 4Xg and (P;*p)(dx) := pi(x)dz, where p; solves (5.3.9) with
po(z)dx € P;.

(5.5.20)

Proof. Tt is easy to see that (5.5.20) implies (5.5.11). So, it remains to
verify that s in (5.5.12) satisfies k < 4)\g. By the second inequality in
(5.5.20) we have

Sp(x) < =O21{jsi5x01 + 01 1{jz|<re}> ¥ € RE
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For z,v € R? with |v| = 1, if there exists s € R? such that |z + sov| < Ao,
then

|z + sv| > |s — so| — |x + sov| > |s — so| — Ao,
so that

{seR:|z+sv| <A} C (s0— 2N, S0+ 2X0),

which implies

K= sup / ds < sup / ds < 4)g.
z,vER, |v|=1J{Sp(z+sv)>—02} z,vER, |v|=1J {|z+sv|<Ao} O

5.6 Donsker-Varadhan large deviations

The LDP (large deviation principle) is a fundamental tool characterizing
asymptotic behaviours of probability measures {u.}.>0 on a topological
space F, see [Dembo and Zeitouni (1998)] and references within. Recall
that . for small e > 0 is said to satisfy the LDP with speed A(g) — +o0
(as ¢ — 0) and rate function I : E — [0, +0o0], if T has compact level sets
(i.e. {I < r} is compact for r € R"), and for any Borel subset A of E,
_ 11{115[ < hgl’l_)iélf ﬁ log - (4) < lirenj(l)lp ﬁ log pe(A) < — i%fI,
where A° and A stand for the interior and the closure of A in F respectively.
In this part, we consider the Donsker-Varadhan type long time LDP
[Donsker and Varadhan (1975)] for p. := Lr__,, where

1t
L; .= ;/O 0x,ds, t>0
is the empirical measure for a path-distribution dependent SPDE.
We first introduce the main results and illustrate them by concrete ex-
amples, then recall some facts on LDP for Markov processes due to Liming
Wu [Wu (2000)] and [Wu (2000b)], and finally present the proof of the main

result.

5.6.1 Main result and examples

Consider

dX; = b(Xy, Lx,)dt + o(Lx,)dW, (5.6.1)
where b: R? x Py — Rd, o : Py — R*@R™ and W; is the m-dimensional
Brownian motion. We assume
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(A59) b is continuous, o is bounded and continuous such that

2(b(x, 1) — b(y, ),z — y) + lo () — o(v)|l3rs
< —ki|lz — y|2 + kaWa(u, 1/)2

holds for some constants Ky > kg > 0 and all x,y € R, p,v € Ps.

According to Theorem 5.1.2 for k = 2, (A%?) implies that (5.6.1) is well-
posed for distributions in Pa, and P;* has a unique invariant probability
measure fi € Py such that

Wy (Prv, i) < e~ F=r2tW, (v, 1)%, t>0,v € Ps. (5.6.2)

Let X} be the solution of (5.6.1) with initial distribution v. We study the
long time LDP for the empirical measure

1 t
LY ;:f/ Sxvds, t>0.
t 0 s

Definition 5.6.1. Let P be equipped with the weak topology, let A C P,
and let J : P — [0, 00] have compact level sets, i.e. {J < r} is compact in
P for any r > 0.

(1) {L¥},cA is said to satisfy the upper bound uniform LDP with rate
function J, denoted by {LY},ca € LDP,(J), if for any closed A C P,

1
limsup — sup logP(LY € A) < —inf J.
t—o00 veA A
(2) {LY}vea is said to satisfy the lower bound uniform LDP with rate
function J, denoted by {L}},c4 € LDP(J), if for any open A C P,

1
liminf — inf logP(LY € A) > —inf J.
t—oo { veA A
(3) {LY}ea is said to satisfy the uniform LDP with rate function J, de-
noted by {LY},c4 € LDP(J), if {LY},ca € LDP,(J) and {LY{},c4 €
LDP(J).

Let P be a sub-Markov operator on By(R?), i.e. it is a positivity-
preserving linear operator with P1 < 1. P is called strong Feller if
PBy(R?) C Cy(R?), is called Feller if PCy(R?) C Cy(R?), and is called pu-
irreducible for some 1 € P(R%) if (14 P15) > 0 holds for any A, B € B(R?)
with p(A)u(B) > 0.

Recall that the strong Feller property has been introduced in Defini-
tion 1.6.1, where the irreducibility is stronger than p-irreducibility.
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Consider the reference SDE

It is standard that under (A°?) the equation (5.6.3) has a unique solution
X7 for any starting point € R?, and fi is the unique invariant probability
measure of the associated Markov semigroup

Pif(z) :== E[f(XF)], t>0,2 € R: f € By(RY).

Consequently, P; uniquely extends to L>(ji). If f € L*(ji) satisfies

t
P f = f—|—/ P,gds, [i-a.e.
0

for some g € L*(i1) and all ¢ > 0, we write f € D(A) and denote
Af = g. Obviously, we have D(A) D CX(R?) := {f € C°(RY) : Vf
has compact support} and

d

d
Af() = 5 S oo Y100, 1) + D bile )OS (2), [ € CR(RY.

i,j=1 i=1

The Donsker-Varadhan level 2 entropy function J for the diffusion pro-
cess generated by A has compact level sets in P under the 7 and weak
topologies, and

) = sup { [pa _ijdu : 1< feDA)}, if g—z exists,
0, otherwise.

Theorem 5.6.1. Assume (A>®). For any r,R >0, let B,p = {v € P :
v(ell") < R}.

(1) We have {LY},eB, , € LDP,(J) for all v, R > 0. If P, is strong Feller
and fi-irreducible for some t > 0, then {L}},ep, , € LDP(J) for all
r, R > 0.

(2) If there exist constants €, c1,co > 0 such that

(z,b(z,v)) < c1 —colz)?te, 2z e R v e Py, (5.6.4)

then {LY},ep, € LDP,(J). If moreover P; is strong Feller and [i-
irreducible for some t > 0, then {L{},ep, € LDP(J).

To apply this result, we first recall some facts on the strong Feller prop-
erty and the fi-irreducibility of diffusion semigroups.
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Remark 5.6.1. (1) Let P; be the (sub-)Markov semigroup generated by
the second order differential operator

A= Z U? + U,
i=1
where {U;}, are Cl-vector fields and Uj is a continuous vector field.
According to Theorem 5.1 in [Lanconelli and Polidoro (1994)], if {U; : 1 <
i < m} together with their Lie brackets with Uy span R? at any point (i.e.
the Hérmander condition holds), then the Harnack inequality
Pif(x) <o(t,s,2,y)Piysf(y), t,5>0,2,y eRY, feBT(RY)
holds for some map ¢ : (0, 00)% x (R4)2 — (0, 00). Consequently, if moreover
P, has an invariant probability measure [i, then P; is fi-irreducible for any
t > 0. Finally, if {U;}o<i<m are smooth with bounded derivatives of all
orders, then the above Hérmander condition implies that P, has smooth
heat kernel with respect to the Lebesgue measure, in particular it is strong
Feller for any ¢t > 0.
(2) Let P; be the Markov semigroup generated by

d d
A= Z Zlijaiaj + ZEiaj,
ij=1 i=1
where (@;;(x)) is strictly positive definite for any z, a;; € Hlpo’i (dz) and
b; € LY (dz) for some p > d and all 1 < i,j < d. Moreover, let fi be an
invariant probability measure of P;. Then by Theorem 4.1 in [Bogachev
et al (2001)], P; is strong Feller for all ¢ > 0. Moreover, as indicated
in (1) that Theorem 5.1 in [Lanconelli and Polidoro (1994)] ensures the

fi-irreducibility of P; for t > 0.

We present below two examples to illustrate this result, where the first

is a distribution dependent perturbation of the Ornstein-Ulenbeck process,
and the second is the distribution dependent stochastic Hamiltonian sys-
tem.
Example 5.6.1. Let o(v) = I+e0o(v) and b(z,v) = —1(00*)(v)z, where
I is the identity matrix, € > 0 and o¢ is a bounded Lipschitz continuous
map from Py to R? ® R, When ¢ > 0 is small enough, assumption (A°4)
holds and P; satisfies conditions in Remark 5.6.1(2). So, Theorem 5.6.1(1)
implies {L{ },eB, , € LDP(J) for all 7, R > 0.

If we take b(z,v) = —x — c|lz|%2 for some constants ¢,§ > 0, then
when € > 0 is small enough such that (A5%) and (5.6.4) are satisfied,
Theorem 5.6.1(2) and Remark 5.6.1(2) imply {L¥},ep, € LDP(J).



July 27, 2024 9:20 ws-book9x6 13512-main page 268

268 Distribution Dependent Stochastic Differential Equations

Example 5.6.2. Let d = 2m and consider the following distribution de-
pendent SDE for X; = (X", X*) on R™ x R™:

axM = (xP - axMyar
X = {Z2(X,, Lx,) — AXP}dt + odW,

where A > 0 is a constant, ¢ is an invertible m x m-matrix, W; is the
m-dimensional Brownian motion, and Z : R?™ x Py(R?*™) — R™ satisfies

|Z(@1,01) = Z(wa,0)| < |2l — 25| + aafal® — 2P| + asWa(v1, 1)

for some constants ai,as, 3 > 0 and all x; = (xz(l),x§2)) e R, y, €
Py(R¥™m), 1 < i < 2. If

4\ > ir>1% {2a3s + azs™" + 205 + VA + a1)? + (200 + agzs—1)?}, (5.6.5)

then {L{},eB, n € LDP(J) for all r, R > 0.
Indeed, b(z,v) := (@ — Xz Z(z,v) — Az?)) satisfies
2(b(w1,11) — b(w2,12), 71 — T2)
< —2\af — 2P - 200 — )| — 23
+ 20t — 237 [{(1+ an)lat” - 2l + asWa (v, 1)}
< agsWa(vy,v2)” — (20 = 0(1 + an)}faf) — ol
—{2X\ =203 -6 (1 +a1) — a3871}|x§2) - xg2)|2, 5,6 >0

for all x1, 79 € R?™ and vy, vy € Po(R?*™). Taking

209+ azsT 4+ A0+ 1)? + (20 + agr1)?
2(1 +Ck1)

such that §(1 + a1) = 2a9 + 6 (1 + 1) + azs™ !, we see that (A4°?)
holds for some k1 > ko provided 2\ — §(1 + 1) > ags for some s >
0, i.e. (5.6.5) implies (A%Y). Moreover, it is easy to see that conditions
in Remark 5.6.1(1) hold, see also [Guillin and Wang (2012); Wang and
Zhang (2013)] for Harnack inequalities and gradient estimates on stochastic

o

Hamiltonian systems which also imply the strong Feller and ji-irreducibility
of P;. Therefore, the claimed assertion follows from Theorem 5.6.1(1).

5.6.2 LDP for Markov processes

We first introduce the rate function, i.e. the Donsker-Varadhan level 2 en-
tropy function for continuous Markov processes on a Polish space E.
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Consider the path space
Cp:=C(0,0) = E) ={w:[0,00) >t — w; € E is continuous}.
Let P(Cg) be the set of all probability measures on Cg, and P*(Cg)
the set of all stationary (i.e. time-shift-invariant) elements in P(Cg). For
any Q € P*(Cg), let Q be the unique stationary probability measure on
Cg := C(R — E) such that
Q({w €Cp:w(t) e A;,1<i< n})
:Q({wGCE:w(ti—i-s) EAZ‘,ISZ'SR})
holds for any n > 1,—0c0 < t] < tg3 < ... < t, < 00,8 > —t1, and
{Ai}1<i<n C B(E). We call Q the stationary extension of @ to Cg. For
any s < t, let 77 := 0(Cg > w ~ w(u) : s < u < t). For a probability
measure Q on Cg, let Q,_ be the regular conditional distribution of Q
given F; . Moreover, let Ent Fo be the Kullback-Leibler divergence (i.e.
relative entropy) on the o-field F7; that is, for any two probability measures
p1, p2 on Cg,

Ent zo (pi1|p2) == {

Now, for a standard Markov process on F with {P* : z € E} C P(Cg),
where P* stands for the distribution of the process starting at x, the process
level entropy function of Donsker-Varadhan is given by

H(Q) := {fCE Ent 5o (Qu—|P*)Q(dw), if @ € P*(Cp),

0, otherwise.
Then the Donsker-Varadhan level 2 entropy function is defined as
J(v):=inf {H(Q): Q € P*(Cg),Qw(0) € ) =v}, vePE). (5.6.6)
This function has compact level sets in P(E) under the 7- (hence the weak)
topology, see for instance [Wu (2000)] and [Wu (2000b)]. For any v € P(E),
let (X7 )i>0 be the Markov process with initial distribution v. Consider its
empirical measure

fCE (h log h)d,ug, if du1|;? = hdu2|}-§),
0, otherwise.

1t
L;’ = */ dxvds, t>0.
tJo s
When v = §,, we denote X; = X} and LY = L}. Let p be an invariant
probability measure of P;, where P; is the Markov semigroup given by
Pif(z) =E[f(X])], z€ E,t>0,f € By(F).

We write f € D, (A) if f € L>(u) and there exists g € L>(u) such that
Pf—f= fg P,gds holds p-a.e. for all ¢ > 0. In this case, we denote
Af = g. We have the following formula for J.
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Theorem 5.6.2 ([Wu (2000b)], Proposition B.10, Corollary B.11).
Assume that Py has a unique invariant probability measure p. Then

J(v) = {sup{fE %Adei 1< feD(A}, ifvin,

(5.6.7)
0, otherwise.

In particular, if the Markov process is associated with a symmetric Dirichlet

form (£,D(E)) in L*(p), then

) = {é’(h%,h%), if v=hu,h* € D(E),

) (5.6.8)
0, otherwise.

We now recall another result due to [Wu (2000b)] on the LDP for uni-
formly integrable Markov semigroups. Let p > 1 and let P be a bounded
linear operator on L?(u). We call P uniformly integrable in LP(u) if

lim  sup wu(|PfIPlyps>ry) = 0.
R=roo () flp)<t { '
This LDP is established under the 7-topology induced by f € B,(E), and

hence also holds under the weak topology. Let v € I, := {v = hy :
Hh”Lq(M) < L} for ¢, L € (1,00).

Theorem 5.6.3 ([Wu (2000b)], Theorem 5.1). Let u be the unique in-
variant probability measure of Py. If there exists T € (1,00) and p € (1,00)
such that Pr is p-irreducible and wuniformly integrable in LP(u), then
{L{}ver, . € LDP(J) under the T-topology for all q, L € (1,00).

The next result due to [Wu (2000)] provides criteria on the LDP using
the hitting time to compact sets. For any set K C F and any x € F, let

T =inf{t > 0: X7 € K},

where X[’ is the Markov process starting at . We will use the following
conditions where (D1) is weaker than (D2):

(D1) For any A > 0 there exist a constant s > 0 and a compact set K C E
such that for any compact set K/ C E,

x¥ -
sup E[e*x" ] < 0o, sup E[e}k] < o0. (5.6.9)
reEK ze K’

(D2) For any A > 0 there exists a compact set K C E such that

sup E[e*¥] < oo. (5.6.10)

z€E
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Theorem 5.6.4 ([Wu (2000)], Theorems 1.1,1.2). Assume that P; is
a Feller Markov semigroup.

(1) (D1) implies {Lf}yep € LDP,(J) for any compact set D C E, and
the inverse holds provided E is locally compact. If P, is strong Feller
and p-irreducible for somet > 0, then {L7 }zep € LDP(J) for compact
D C E if and only if (D1) holds.

(2) (D2) implies {L{},eppy € LDP,(J), and the inverse holds when E
is locally compact. If moreover Py is strong Feller and p-irreducible for
some t >0, then {LY},eppy € LDP(J) if and only if (D2) holds.

Moreover, we introduce the following approximation lemma which is
easy to prove and useful in applications, see for instance Theorem 3.2
in [Rockner et al (2006)] for a stronger version called generalized contrac-
tion principle.

Lemma 5.6.5 (Approximation Lemma for LDP). Let

{(LY)¢>0, (LY)¢s0 = v € I} be two families of stochastic processes on a
Polish space (E, p) for an index set T. If (LY),ex € LDP,(J) (respectively
LDP/(J)) and

: 1 v TV
tlggo Ol iléglOg]p(p(Lt JLY) > 0) = —oc0, 0 >0,

then (LY)yez € LDP,(J) (respectively LDP)(J)).

5.6.3 Proof of Theorem 5.6.1

Proof of Theorem 5.6.1(1). Let XZ denote the solution of (5.6.3)
starting at z. According to Theorem 5.6.4 and Lemma 5.6.5, we only need
to prove the following assertions:

(1,) For any A > 0, there exist a constant s > 0 and compact set K C R?,
such that (5.6.9) holds for any compact set K’ C R% and

e =1inf{t >0: XF € K}, = ecR%
(1,) For any N > 1,

N [P 1A XY =X0|?}ds

sup [Ee < 00.

I/EBRR
Indeed, by Theorem 5.6.4(1), (1,) implies the upper LDP (LDP if P; is
strong Feller and ji-irreducible) for L¥ locally uniformly in z, in particular,
LY satisfies the upper LDP (LDP if P; is strong Feller and ji-irreducible).



July 27, 2024 9:20 ws-book9x6 13512-main page 272

272 Distribution Dependent Stochastic Differential Equations

On the other hand, by Lemma 5.6.5, (1,) implies the equivalence of LY and
LY in LDP,(J) and LDP;(J). Then we prove the desired assertion for LY
with v € B, g.

Verify (1,). By (A%?), there exist constants «, 8 > 0 such that
d| X2 < 2{a — BI1X¢|?}dt + 2(Xy, o()dW). (5.6.11)

Let @ = ||o||%,. Then for any ¢ € (0,/3/6), there exist constants c;,ca > 0
such that

desl¥eI” < 2e{a— (8- 69)\Xt|2}e5|)m2dt + dM,
< {cl — czeelelz }dt + dM;
for some martingale M;. So,

]Eef\xf\z < e€|ﬂ7\2 + ﬁ, r € Re, (5.6.12)
C2

To estimate 73 for K := By(N), we take N > Ny := (20/B8)z. Then
(5.6.11) implies
d|Xe|? < —BIX 2t + 2(X7, o(R)dWy), t < 1.
For any 0 > 0, we obtain
EATE

tATE S _ _ oz o
Eed Jo K 1X®|%ds L 1"”‘2]Ee255 N (X2 ,0(XE,pn)dWs)

TE S
< e&ﬁ’l\azlz(EQSﬁB’% [Tk |X;”|2ds)%.

Thus, taking § < 2 ® we arrive at

86
EeéNz(t/\T;é) < E€6 JAT‘}'( |X§\2d5 < ezgﬂflmz.
Letting ¢ 1 oo implies
EeSN'7k < o287 121”4 e RY N > N, (5.6.13)

Combining this with the Markov property and (5.6.12), when ¢ < %, we

have

2 X7 —1| a2 2 c
Ee®N' k" < Ee2P I <efl#l” L 2L e R 5> 0, N > N,.
¢

Therefore, for any A > 0 there exists compact K C R? such that (5.6.9)
holds.
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Verify (15). Simply denote X; = X7, X; = X and v, = Lx» = Pv for
v € B, g. By (A%9), (5.6.2) and It0’s formula, we obtain
Al X — Xe|? <{ = k1| Xy — Xio|? + koo™ 1R PW, (5, )2 }dt
+2(X; — X, {o () — o () }dW;).

|X:—X:|?

Lettlng gt = m, we derive
dlog(1+ |X; — )_(t|2) < { — K1g; + Kae —(k1— “2)tW }dt
2 _
—(X; — X —o(p) }dWy).
+ 1+ |Xt _Xt|2< t t7{0-<1/t) O'(/U,)} t>

We deduce from this and (5.6.2) that for any A > 0,

e~ 7~jji-2 W2(l7wy)2E I:e)\f-il fof gsds]

t 2 Xs—Xg {o(vs)— a(;L)}dW&
<E[(1+[Xo*)* HRE R
roA2 [t ve,ji)ds %
E|:(]. + |X0|2))\(]E[68 2A? [y 9sWa(vs,i)?d ] fo) :| (5614)
1
< (U] ) (Rl e e

< C(\R) (E[e’\'ﬁ I gsds])? t>0

holds for some constant C'(\, R) > 0, where the last step is due to g5 < 1
and v € B, . Therefore,

Ay [ Ixy-x9|2

1 v_x02

sup ]E{e 0 Xy -X7I < oo, A>0,
vEB, R

which implies (1;). O

Proof of Theorem 5.6.1(2). Assume (5.6.4). For any A > 0, it suffices
to find a compact set K C R? such that (5.6.10) holds for X, and

sup EelN Jom OAIXY-XTPhds o N > 1,

vEP2
Indeed, by Theorem 5.6.4(2), (1) and Lemma 5.6.5, this implies the upper
LDP (LDP if P, is strong Feller and ji-irreducible) for LY uniformly in
v e P,

By (5.6.4), there exist constants c1, ¢y > 0 such that

del X" < {e) — oo Xy reel X Y ae

e (5.6.15)
+ 2e (X, o () dWy).
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This implies
ho(t) :=Ee X < et + el < 00, t>0,2 R

Moreover, by Jensen’s inequality and the convexity of [1,00) > r +—
rlog'*¥/? 1, we deduce from (5.6.15) that

t
he(t) < by (0) + et — 02/ ha(s)log t/% hy(s)ds, t>0.
0

This and the comparison theorem imply h,(t) < 9(t), where ¢(¢) solves
the ODE

W () = c1 — cath(£) log /2 (), ¥(0) = hy(0) = el*l”.
So,

sup hg(t) < sup () =: ¢(t) < oo. (5.6.16)
R ¥(0)>1

On the other hand, by (5.6.15), there exist constants Ny, 3 > 0 such that
for any N > Ny and K = By(N), we have
del X7 <26l X1 (X7 o(p)dWy)
. v (5.6.17)
— BIX7Preel Xl at, ¢ <7y

Combining this with (5.6.13) and using the Markov property, when 2§ < 32,
we find a constant ¢ > 0 such that
Ele’"" ] < N 4 B[ 11 51y
2 2014 X7
< &N —I—IE[e‘W (1475 )1{7;21}]
< e5N2(1 —i—]EeleF) < e‘wz(l +¢) <oo, ze€RYN>N,.
Therefore, for any A > 0, there exists compact set K such that (5.6.10)

holds.
Finally, repeating the proof of (6.3.3) using X} replacing X¢, we derive

sup E[eIle‘Q] < 0.

vEP2

This together with (6.3.3) yields

sup IE[e‘XlV|2 + e‘XlVlQ] < 00. (5.6.18)
veP2
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On the other hand, as in (5.6.14) but integrating from time 1, we obtain

XY -XV|2

_ _Ano iv)? ey [ =S5 s d
o~ g Ml g [N I e ]

<oy A "t 2<X;’—X§'»{U(Vs)i—f’(ﬂ)}dws)
SE[(1+|X7 - XyPPST T e

<{E[(1 +|XV - X{/|2)2>\]}%
t |X:*)7(;’|2c*("017m2)3

* N2 1
« (]E I:eAHIWZ(Pl V:H') 1 1‘HX§'*X§\2 S]) 2 t> 1.

b

Combining this with (5.6.18), we derive

XV _xVv|2
)"‘Qlffo | Xg sl

—s s __-d
sup Ee XX <00, A > 1.

vEP2

Therefore, the desired assertion holds. [

5.7 Notes

The condition (5.1.2) in Theorem 5.1.1 is new, in references one uses the
following stronger condition:

sup W(F; o, pto) < 00,

>0
see for instance [Wang (2018)] for W = W.

Theorem 5.6.4 is taken from [Wang (2023c)] where the exponential er-
godicity is derived for a weighted variation norm || - ||y replacing | - [[vars
see also Theorem 6.5.1 in Chapter 6 for the case with reflection.

Section 5.3 is organized from [Ren and Wang (2021b)], while Section-
s 5.4-5.5 are due to [Wang (2023a)], where a result for order-preserving
McKean-Vlasov SDEs is also presented, see also [Ren et al (2021)] for ex-
tensions to the time periodic setting.

There are a number of papers studying the Freidlin-Wentzell type large
deviations for DDSDEs with small noise, see for instance [Fan et al (2023)]
and references therein, where fractional noise is considered.

Finally, Section 5.6 is taken from [Ren and Wang (2021a)], where the
Donsker-Varadhan large deviations are derived for more general models,
including path-distribution dependent SDEs in Hilbert space.
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Chapter 6

DDSDEs with Reflecting Boundary

In this chapter, we study reflected DDSDEs, i.e. DDSDEs in a domain D C
R? with reflecting boundary. We first introduce the link of reflected DDSDE
and nonlinear Neumann problem, then study this type of DDSDEs for the
well-posedness, regularity estimates and exponential ergodicity respectively.

6.1 Reflected DDSDE for nonlinear Neumann problem

Let P(D) be the space of all probability measures on the closure D of
D, equipped with the weak topology. We regard P(D) C P by letting
w(R¥\ D) =0 for u € P(D). For any k > 0, let
Consider the following reflected DDSDE on D for fixed T' > 0:
dXt = bt(Xt, [,Xt)dt + Jt(Xtv EXt)th + H(Xt)dlt, te [07 TL (6].].)
where
b:[0,T] x D x P(D) - R o:[0,T] x D x P(D) - R?@R™

are measurable, and Wy, n(X;) and [, are as in (2.0.1).

For a subspace P of P(D) equipped with a complete metric cf, let
C*([0,T];P) and C([0,T]; P) be in (3.1.2).
Definition 6.1.1. (1) A pair (Xy,lt):e[o,1) is called a solution of (6.1.1),
if X; is an adapted continuous process on D, [; is an adapted continuous
increasing process with dl; supported on {¢ > 0 : X; € 9D}, such that
P-a.s.

|*}dr < oo, t€[0,T],

/t {|br(XT»£XTv)
0

+ low (X, Lx,.)

277
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and for some measurable map 0D 3 z +— n(x) € N, P-as.

t t
X :X0+/ bT(XT7£XT)dT+/
0 0

In this case, I; is called the local time of X; on dD. We call (6.1.1) strong-
ly well-posed for distributions in a subspace P C P(D), if for any Fo-
measurable variable Xy with Lx, € 75, the equation has a unique solution
with Lx. € C([0,T];P); if this is true for P = P(D), we call it strongly
well-posed.

(2) A triple (X¢,lt, Wi)iepo,r) is called a weak solution of (6.1.1), if
W; is an m-dimensional Brownian motion under a probability space and
(Xt,1t)tefo,m solves (6.1.1). (6.1.1) is called weakly unique (resp. jointly
weakly unique), if for any two weak solutions (X, l, Wi)tejo,r) under prob-
ability P and (X, Iy, Wt)te[o 7] under probability P, Lx,p = Lg,p implies
LX) 1) es0lP = E(Xt,zt)te[oﬂ |P (resp. L(x, 1., Wo)iepor P = L(Xt,z,,,wt)te[oﬂ |]P’)
We call (6.1.1) weakly well-posed for distributions in P C P(D), if it has a
unique weak solution for initial distributions in P with £x_ € Cy(10,T7; P);
it is called weakly well-posed if moreover P = P(D).

(3) We call (6.1.1) well-posed (for distributions in P), if it is both strong-
ly and weakly well-posed (for distributions in P).

t
ar(XT,LZXT)dWT—i—/ n(X,)dl,, te0,T).
0

To characterize the nonlinear Fokker-Planck equation associated with
(6.1.1), consider the following time-distribution dependent second order
differential operator:

1 _
L, : tr{ 0107) (V2 + Vi, t€[0, T, u€P(D).  (6.1.2)
Assume that for any p € C*([0,00); P(D)), see (3.1.2),
ol (x) == op(x, ), b (x) := be(w, py) (6.1.3)
satisfy ||<7”||2 + 6] € L ([0, T] x D;dt py(dz)).
Let C%(D) be the class of C?-functions on D with compact support
satisfying the Neumann boundary condition V,, f|sp = 0. By Itd’s formula,

for any (weak) solution X; to (6.1.1), ut := Lx, solves the nonlinear Fokker-
Planck equation

Oy = Ly, i With respect to C%(D), te€[0,T] (6.1.4)
for probability measures on D, in the sense that . € C([0,00); P(D)) and
t
)= [ =)+ [ oL £,
D 0
€[0,7], f € CX(D).

(6.1.5)
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To understand (6.1.4) as a nonlinear Neumann problem on D, let L}
be the adjoint operator of L ,,: for any
9 € Lioe(D; (lloe (@, 1) |* + [br (2, )] )dz),
L} ,,9 is the linear functional on C§(D) (the class of C*-functions on D
with compact support) given by

C2(D)5 f s / (fL;,, 0} (2)da = /D (Lop fH@)de.  (6.1.6)
Assume that Lx, has a density function py, i.e. py := Lx, = pi(x)dz. It is
the case under a general non-degenerate or Hérmander condition (see for
instance [Bogachev et al (2015)]), and Krylov’s estimate (2.2.3) or (2.2.34)
implies that p, exists for a.e. t € (0,7]. When D € C?, (6.1.4) implies
that p; solves the following nonlinear Neumann problem on D:

opt = Ly ,,pt, Vinpilop =0, t €[0,T] (6.1.7)
in the weak sense, where L; ,, := Ly ,,(+)d2, and for a function g on 9D

tue

Ving = Ve,orng +divap(groioin)
for the divergence divgp on 0D and the projection 7 to the tangent space
of OD:
T.v :=v — (v,n(z))n(z), veR zecID.
If in particular co*n = An holds on [0,00) x 9D for a function A # 0 a.e.,
Vinptlop = 0 is equivalent to the standard Neumann boundary condition

vnpt‘@D =0.
We now deduce (6.1.7) from (6.1.5). Firstly, by (6.1.6), (6.1.5) implies

| (oo = [ (o)epte+ / ds [ (FL, 0@

f € CO( )7t € [OvT]a
so that dyp; = Ly , pr- Next, by the integration by parts formula, (6.1.5)
implies

1= [ Unwas— [ Gm@ar= [ @ [ Guep s
/t (/ (fL% ,.ps) x)da:+/8D {fvgs(,;npspsvascf;nf}(x)dx>ds
/f dx/ B.ps)(z)ds

—|—/ ds/ {fvgsg;nps—i—fdivaD(pswaSa:n)}(x)dx
0 oD

—1+/ AI(Vawp)}@)e, [ € CR(D).t € 0.T]
Thus, Vinptlop —0
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6.2 Well-posedness: singular case

By (3.5.1), |lullx := u(| - [F)* for k > 0, and ||ufo := 1. We make the
following assumption.

(ASY) Letk > 0. o* = o does not depend on u, and there exists ji € Py(D)
such that at least one of the following two conditions holds.

(1) (A23) holds for b := b(-, i) replacing b, and there exists a constant
a > 0 such that for any t € [0,T], x € D, and p,v € Pp(D),

bz, 1) — b ()] < folt,x) + |k, (6.2.1)

1
k,var +Wk (,ua V)} Z fi (ta 17) (622)
i=0
(2) (A%2) holds for b := b(-, i) replacing b, and (6.2.1)~(6.2.2) hold for
Vfi replacing f;,0 <i <.
Since B,El) is regular, (6.2.1) gives a control for the singular term of b*.

Moreover, (6.2.2) is a Lipschitz condition on by(x,-) in || - |k,var + Wi with
Lipschitz coefficient singular in (¢, x).

[be(2, 1) = bi (2, v)| < {[lp—v|

Theorem 6.2.1. Assume (A%1).

(1) (6.1.1) is weakly well-posed for distributions in Py(D). Moreover, for
any v € Pr(D), and any n > 0, there exists a constant ¢ > 0, such that

E[ sup [X]"|Xo] < e(1+]Xol"), Be'r <c (6.2.3)
te[0,T]
holds for the solution with Lx, = .
(2) (6.1.1) is well-posed for distributions in Py(D) in each of the following
situations:
(i) d =1 and (A%1)(2) holds.
(i1) (AS1)(1) holds with py > 2 in (A%3) for b replacing b.

To prove Theorem 6.2.1, we first present a general result on the well-
posedness of the reflected DDSDE (6.1.1) by using that of the reflected
SDE (3.1.5).

For any k > 0,v € Pr, N > 2, let

PLN(D) = {1 e Ci(0, T Pe(D)) : o = 7, sup_ e~ (1 (|-5)) < N }.
t€[0,T)



July 27, 2024 9:20 ws-book9x6 13512-main page 281

DDSDEs with Reflecting Boundary 281

Then as N 1 oo,
TN 7 T (7 w *
P (D) 1Py, (D) = {we Cy(0,T); Pr(D)) : po =} (6.2.4)
For any p € PkTﬁ(D), we will assume that the reflected SDE
AXIT = by (X7, ) dt + oo (X)) AW, + n(XP7) I,
t€[0,T), Lysn =
has a unique weak solution with

D) 1= [:X{wr € Pu(D), te [0,T7.

(6.2.5)

(A%2) Let k > 0. For any v € Pp(D) and p € P/ (D), (6.2.5) has a
unique weak solution, and there exist constants ! € N, {p;, ¢ }o<i<i C
(1,00),Ng > 2 and increasing maps C : [Ng,00) — (0,00) and
F : [Ng,00) x [0,00) — (0,00), such that for any N > Ny and
we ’PkT”,fV(D), the (weak) solution satisfies

7 = ,C(X_uxv) S P]Zjﬁv, (626)

(E[(1+\X;W|k)2|xgﬁ])% < C(N)(A+|XEF), te0,T], (6.2.7)
t 2
B [ a(xeas) < C ol
Eelo 9+ X509 < PN, |lgllz2: o7, py)s
te0,T], ge LPi(t,D), 0<i <L
Obviously, when k = 0, conditions (6.2.6) and (6.2.7) hold for Ny = 2.

(6.2.8)

Theorem 6.2.2. Assume (A%?) and let oy(x, ) = o4(x) not depend on
p. Let 1 < f; with |f;]* € LP{(T,D),0 < i <. Assume that there exist a
measurable map T : [0, T] x D x P(D) — R™ such that

be(z,v) = be(x, p) = or(x)le(z, v, 1),

h - (6.2.9)
x € D,t €0, T],v,p € Pr(D).
(1) If for any x € D,t € [0,T), and v, u € Py(D),
1

|Ft(x7’/nu)| S “I/*/L||k7var2fi(t,$), (6210)

i=0
then (6.1.1) is weakly well-posed for distributions in Py(D). If, fur-
thermore, in (A%?) the SDE (6.2.5) is strongly well-posed for any
v € Pe(D) and p € ngW(D), s0 is (6.1.1) for distributions in Py(D).
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(2) Let k> 1. If for any p,v € Pr(D) and (t,x) € [0,T] x D,
1
ITe(z,v, 1) < {HV =tk var + Wi (p, V)} Z fi(t, @), (6.2.11)
i=0
and for any v € Pi(D) and N > Ny, there ezists a constant C(N) > 0
such that for any u,v € PkT’;fV(D),

Wi ((I)z,u'v ‘I’z’/)%

t o o (6.2.12)
SC(N)/0 {llies = vsll&oar + Wips, vs)** }ds, ¢ € [0,T1,

then assertions in (1) holds.

Proof. Let v € Pr(D). Then the weak solution to (6.2.5) is a weak
solution to (6.1.1) if and only if  is a fixed point of the map ®7 in PEV(D).
So, if &7 on ’P,Z:W(D) has a unique fixed point in P,Zjv(D), then the (weak)
well-posedness of (6.2.5) implies that of (6.1.1). Thus, by (6.2.4), it suffices
to show that for any N > Ny, &7 has a unique fixed point in ”PkTéV(D)
By (6.2.6) and the fixed point theorem, we only need to prove that for any
N > Ny, ®7 is contractive with respect to a complete metric on ’P,?,jV(D)
(1) For any A > 0, consider the metric
Wi var(pt, ) = sup e s — villkwars 1V € P,Z;V(D)
te[0,T]
Let (X;"7,1}"") solve (6.2.5) for some Brownian motion W; on a complete
probability filtration space (2, {F:},P). By (6.2.8), (6.2.10) or (6.2.11) with
If|? € f/’q’, (T, D), we find a constant ¢; > 0 depending on N such that

T o 2
sup E(eQ fO |F5(Xs ,l/,;,#s)‘ d9|.7:0) S C%,
M,VE'PZ:’WN(D)

T 2
sup E((/ gs(Xf;‘”)ds>
pePL N (D) 0

geLP(T),0<i<I.

(6.2.13)

72) < Aol .oy

Then by Girsanov’s theorem,
t
Wt = Wt - / Fs(Xg”Yst,,u's)dSa te [O7T]
0

is a Brownian motion under the probability Q := RpP, where

Rt = efot<FS(X5’77stU8))dWS>_% fot ‘FS(X?Y’Y’VS’MS)FdSy te [OyT]
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is a P-martingale. By (6.2.9), we may formulate (6.2.5) as
AXP7 = by(XI, v dt4-o (XY AW +n(X P, t e [0, T, Lxp~r = 1.

By the weak uniqueness due to (A%2), the definition of || - ||k var, (6.2.7)

and (6.2.9), we obtain

197 1 — 2} lkyvar = sup  [E[(Re = 1) f(X{7)]]
[FIS1+]-|*

<E[(1+ [X79)|R, — 1]
< E[{E((l +1XET2 E) VB (R, — 1|2|fo)}%}

< CO(N)E [(1 + X k){E(efJ IDa (X5 g pe)[2ds _ 1|]:0)}%].

(6.2.14)

Moreover, (6.2.13) implies
E(efs (X7 wena)Pds _q) 7y

t
SIE(efotFs(X;"‘”,Vuus)IQdS / DL (X7, vy, i) |2ds
0

7)
l t 2 1
a2 {E<(/ [ Fills, XET) P s — us||i,wd5> fo)}
=0 0

l ‘ )
<a Ze2Ath,A,var(u,u)2E<</() |fi(S7X577)|262A(ts)dS)

i=0

(NI

1
2
]:0>

l
<&M e P o oy Wiawar (), € [0, T,
1=0

Combining this with (6.2.14) and the definition of Wy, x ver, We obtain
Wk,)\,var (I)’Y/h v
( i (6.2.15)
< CIN)A+~(-1"))eavVeN)Wg x wars A >0,

where

l
e(A) := sup |fi2€_2>\(t_')| =p; 0 L0 as AT oo.
(N) te[O,T];l 70

So, ®7 is contractive on (PkTVN (D),WkWUM) for large enough A > 0.
(2) Let £ > 1. We consider the metric Wk,,\ww = Wi xvar + Wgoa,
where

Wi (i, v) == s[up}e’”Wk(um), p,v € P (D).
te[0,T



July 27, 2024 9:20 ws-book9x6 13512-main  page 284

284 Distribution Dependent Stochastic Differential Equations

By using (6.2.11) replacing (6.2.10), instead of (6.2.15) we find constants
{C(N, ) > 0} x>0 with C(N,\) — 0 as A — oo such that
Wk,/\,var(q)’yﬂ7 (I)’YV)
i —— (6.2.16)
S C(N7 )\)Wk,)\,var(ﬂ'a V)a A > 0, [N S ,Pk,"y (D)
On the other hand, (6.2.12) yields

W}a)\(q)v/yl,, @71/)

t 5%
< sup (C(N)e‘”“/ {Ilus—vslli’fvm-+Wk(us,vs)2’“}ds>
t€[0,T] 0

5 t 25
< Wi xvar (1, V) sup (C(N)/ e_2’\k(t_s)ds)
te[0,T] 0

C(N)3* -
< 1 W var\Hy V), A> 0.
OV R ()

Combining this with (6.2.16), we conclude that ®7 is contractive in
P,?AYN(D) under the metric Wy x yqr when A is large enough, and hence
finish the proof. O

Proof of Theorem 6.2.1. Let v € Py(D) be fixed. By (6.2.1), for any
i=2,3and u € C([0, T); Px(D)), condition (A7) for b replacing b implies
the same condition for p. So, by Theorem 6.2.2, (A%!) implies the weak
well-posedness of (6.2.5) for distributions in Py (D) with

)y € Pr(D), EeMNT' < oo,

_ _ (6.2.17)
A > 0,7 € Pr(D),p € C([0,00); P(D)),

and also implies the strong well-posedness of (6.2.5) in each situation of
Theorem 6.2.1(2). Moreover, by Lemma 2.2.1 and Lemma 2.2.3, (A%!) im-
plies that (6.2.8) holds for any (p, q) € K, as well as for (p,q) = (p2/2, q2/2)
under (A%3) for b replacing b, (6.2.9) with (6.2.10) holds for k < 1 due
to (3.7.19), and (6.2.9) with (6.2.11) holds for k > 1. Therefore, by The-
orem 6.2.2, it remains to verify (6.2.3), (6.2.6), (6.2.7), and (6.2.12) for
k > 1. Since (6.2.7) and (6.2.6) are trivial for k¥ = 0, we only need to prove:

(6.2.3);

(6.2.7) and (6.2.6) for k > 0;
(6.2.12) for k > 1 for case (i);
(6.2.12) for k > 1 for case (ii).
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In the following we simply denote

l
=0

(a) Let X} solve (6.2.5). We first prove that under (A%!), there exist
a constant ¢ > 0 and an increasing function ¢ : [1,00) — (0, 00) such that
for any m > 1, ,uEPkW( ), and t € [0, T,

E( / (X st) < efm) + clm) /Otnusnids)m,
Eexp [m / |fs<X::ﬂ>2ds} < c(m) exp [ / t ||us||ids}

We will prove these estimates by Lemmas 2.2.1 and 2.2.3 for the following
reflected SDE:

AdX, = bs(X,)ds + 04 (X )dW, + n(X,)dl,, Xo= X4, s € [0,1].

By (2.2.35) under (A%1)(1), and (2.2.4) under (A%1)(2), for any m > 1 we
find a constant ¢1(m) > 0 such that

B Jo (B 1P +1£: %) (X0 M)ds ci(m), telo,T). (6.2.19)
Let v = {[07(050%) "1](b% — bs) }(X,), and

(6.2.18)

Ry = ef;(ws,dW,q)—% 0t|'ys\2ds’ Ws = Wi _/ ’yrd'l", S € [O7t]

By Girsanov theorem, (W )sclo,4] is @ Brownian motion under R;P, and the
SDE for X, becomes

dX, = " (X,)ds + 0,(X)dW, + n(X,)dl,, Xo= X", s € [0,1].
So, by (6.2.1), (6.2.19) and Hoélder’s inequality, we find constants c;, ¢,
¢(m) > 0 such that

2 7357 t % 1
Eom i - (XEMPds Z B[R om Ji 1(R0Pa5] < (Re2m fi 1= (Ke)Pasy ([ R2))
< /o1 (2m) (e fJ{lB.im|2+<fs+oznusuk>2}<xs>ds)5 < e(m)ec o Insliids,

Next, taking ca(m) > 0 large enough such that the function r — [log(r +
c2(m))]™ is concave for r > 0, this and Jensen’s inequality imply

(/ [fs(XET) d5> SE([log(CQ(m)—|—efot\fs(Xi"”)I2dS)]m)
< [log(ca(m) + Eelo 1-(XEMPAs)™ < o, (/ ||Ms|kd8)

holds for some constant ¢(m) > 0. Therefore, (6.2.18) holds.
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(b) Proof of (6.2.6). Simply denote X; = X/"7. By (6.2.1), the bound-
edness of o and the condition on b(*) in (A1) which follows from (A23)

due to Lemma 2.2.2, we find a constant ¢; > 0 such that
Ly = %tr{athVQ} + Ve, 1ob" %tr{otofvz} + vi?il)
satisfy
Loy 2 PP 5= 10 = B0 V5] 2 —ea(fi + el
Since (n, p)|op > 1, by It&’s formula we obtain

dp(Xy) > —er{ fo(Xe) + |lpelle }dt + M, + dl, (6.2.20)

for some martingale M; with (M); < ct for some constant ¢ > 0. This
together with (6.2.18) yields that for some constant ko > 0,

t k
E¢§%+Mﬁ(A{MXJ+MAM®)-

Combining this with (2.2.3), (6.2.2), (6.2.18) and |0]lcc < 00, and using
the formula

¢ t
X: = X, —|—/ b (Xs)ds —l—/ 0s(Xs)dWs + n(Xy)dly, Lx, =7,
0 0

we find constants ki, ks > 0 such that
E(1+ |X,|%)

¢ k
< kl(l + ||’}/H£) + k1E</O {|Xa| + |fs(Xs)| + ﬂs”k}ds) (6.2.21)

t 3
<k2+k2E(/ {|XS|2+||/,LS||§}ds> , t€][0,T].
0

(b1) When k > 2, by (6.2.21) we find a constant k3 > 0 such that
¢
E(1+|X|") < ko + kg/ {EIX,|" + ||pslli }ds, te[0,T].
0

By Gronwall’s lemma, and noting that u € P,Z;fv(D), we find constant
k4 > 0 such that

t
EUH&WSM+M/G+MMNS
0

t
< ky + kaNeNT / e NU=9)ds < 2k4eNt, ¢ € [0,T].
0
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Taking Ny = 2k, we derive

sup e~ (1 4+ [|®] pl|})
te[0,7]

= sup e NE(1+|X,[F) < No <N, N> No,pue PN (D),
t€[0,T ’

so that (6.2.6) holds.
(b2) When k € (0,2), by BDG’s inequality, and by the same reason
leading to (6.2.21), we find constants ks, kg, k7 > 0 such that

t 5
Uy ;:]E[ sup (1+|XS|’“)] < k5+k5E(/ {1X.* + |us||i}ds)
s€0,t] 0

¢ 5
<o+ [ hnlfas)
0
1-& t 5
s [ sup (0 )] ([ 1)
s€0,t] 0
k

1 t t b
§K6+§Ut—|—k7/ Usds—s—kG(/ ||uszds) . tefo.T).
0 0
By Gronwall’s lemma, we find constants kg, kg > 0 such that for any u €
T,N /7
Pk;,fy (D)3

t
E(1+|X,|*) < U, < kg + ks</ IIMSids)
0

t 5
< kg +k8NeNt</ e_ZN(t_S)/kds> < kg—l—k‘gNl_geM, t €10,T].
0

Thus, there exists Ny > 0 such that for any N > Ny,

sup e V(14 [ @7 ullp) = sup e VE(L + | X, ")
+€[0,T] +€[0,T]

<ks+hoN'"2 <N, pePN(D),
which implies (6.2.6).
(c) Proofs of (6.2.7) and (6.2.3). Simply denote (X¢,1;) = (X7, 11"7)
in (6.2.5) for py = fi,t € [0, T); that is,
dXt = Bt(Xt)dt + O'(Xt)th + H(Xt)dit, [’Xo =. (6222)
By (A%1) and Theorem 6.2.2, this SDE has a unique weak solution, and
for any n > 1 there exists a constant ¢ > 0 such that

E[ sup |Xt|”‘)20} <1+ |Xo|"), Eer <e. (6.2.23)
t€[0,T]
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So, by (6.2.2), Lemma 2.2.1, Lemma 2.2.3 under (A4%3) for b replacing b,
and Girsanov’s theorem,

t
W= W, _/ (07 (000%)  HX ) [B(X,) — ba(X0)}ds, ¢ € [0,T]
0
is a Q-Brownian motion for Q := Ry P, where
RT = efoT<7157dWs>_% fOT ‘77s|2d$7
ns = {07 (0:50%) T HE) L (X) — bs(X0)}-
By (A%1), (6.2.23), Lemma 2.2.1 when |f|? € E{;(T) for some (p,q) € K,

and Lemma 2.2.3 when (A2-?) holds for b replacing b, we find an increasing
function F such that

T o ~ N
E(|Rr|?|Fo) < E(elo \fs(Xs)\2{Hus—u|\k,W+Wk(u37u)}2ds|]:0) < Fluller).
where [|pl|, 1 = sup,eqo 7y (] - |¥). Reformulating (6.2.22) as
dXt = bf(Xt)dt + O't(Xt)th + n(Xt)dit, EXO =7,

by the weak uniqueness we have L = Lxn, so that (6.2.23) with 2n
replacing n implies

B s X7
te[0,T]

Fi] = Eo| sup 1%["|7)

< (B s 1%P|7]) @RAE < 1+ o)

te[0,T]
Since SUD,epT¥ (D) l|pell ke, 7 is a finite increasing function of IV, this implies
(6.2.7).

Finally, since X; := X}"7 solves (6.1.1) with initial distribution v and
e = Lx, (i-e. p is the fixed point of ®7), and since &7 has a unique fixed
point in Pg,ﬁv (D) for some N > 0 depending on 7 as proved in the proof
of Theorem 6.2.2 using (6.2.8) and (6.2.6), we have Lx € PZ?;:V(D), and
hence (6.2.3) follows from (2.3.1).

(d) Proof of (6.2.12) for k > 1 in case (i). Let u;* and ©; be constructed
for b replacing b in the proof of Theorem 2.4.1 under (A2%2) for d = 1. Let
X(()l) = X(gz) be Fo-measurable with £, ) = ~,4=1,2. As explained in the
beginning of the present proof, the follo%ving reflected SDEs are well-posed:

X = b (XY, py)dt + oy (X)dW, + n(X a1,
AX? = b (X, 1)dt + o, (X AW, + n(X A1, ¢ e 0,7).
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Then instead of (2.4.15), the pI‘OCbeeb
v =eMx®), i=1,2
satisfy
v, = B,(v;")dt + 2,(v,"M)dw, + {1 + v (X)) n(xMary,
av,? = B, (v, ?)dt + £,(v,? )th + {1+ V) (X nx Py
+{bt(Xt(2)th) bs (X, ’Mt ) }dt.

By (6.2.2), Yo(l) = YO(Q)7 It6’s formula to |Y; W _ Yt(2)|2’C with this formula
replacing (2.4.15), the calculations in the proof of Theorem 2.4.1 under
(A22) for d = 1 yield that when ) is large enough,

t
YO YR <o [ Y0 - vPL,
0
t
to / Y Y ORET LX)y — valkwar + Wi(jis, ) b

<cl/ YD — Y@ PPk, +Cl/ (s = vellivar + Wi (s, vs) " ds

holds for all t € [0, 7] and some constant ¢; > 0 depending on N uniformly
inpe Pk s N(D), some martingale M;, £; in (2.4.19), and

oy / (XD 7T ds < £+ / [£(X@)[2ds.
0 0

By the stochastic Gronwall lemma, Lemma 2.2.1, we find a constant co > 0
depending on N such that

2 t
<]E|: sup |Yg(1) — }/3(2)|k:|) S 02/ {Hﬂs - Vs”k,var +Wk(,uf57ys)}2kd57
s€0,t] 0

which implies (6.2.12), since by (2.4.14) and the definition of ®7, there
exists a constant ¢ > 0 depending on N such that

EY,Y Y21 = o(BIX — X0 = W@, 27 0)*
(¢) Proof of (6.2.12) for k > 1 in case (ii). Let u;™ solve (2.4.20)
for L; = Ltw,b(o) = bio)(-,ut) and the mollifying approximation %" =
b2 (-, ;). Then in (2.4.24) the equation for & becomes

ag = {2 (x(V) = 2 (xP) + 0 - M)
= 0 = X)X ) = bu(X ) fat
+{[(VOr")od(X{V) = (VO ™o (X)) }aw
+axM)art — n(xP)a?.
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So, as shown in step (d) by (6.2.2), instead of (2.4.33), we have

XV x@

|2k
NTm tATm

tATm 5 5
<Gult)ter [ X, - X3, AL+ I,
0
for some local martingale M;,
5 t
Li:=L, +/ |fs(XP))2ds, te[0,T]
0

for £; in (2.4.32), and due to Xél) = XéQ) = X in the present setting,

t 2
G (t) := / {02m2(k—1) Z |bgO) _ b(s),n|2(X8(2))
0 i=1

2k
+ (”/is - Vs”k,var + Wk(,ufm Vs)) }ds

By the stochastic Gronwall inequality, Lemma 2.2.3 and (6.2.18), we find a
constant ¢ > 0 such that

Wi (0] 1, @))% < (BIXY — XD [Fy2

< climinf lim inf EG,, (¢
< el iRl EGn (1) (6.2.24)

t
B c/ {HMS - Vs”i]fvar + Wk(ﬂsv VS)Qk}dS'
0

Thus, (6.2.12) holds.

6.3 Well-posedness: monotone case

For any k > 0, P.(D) is a complete metric space under the L*-Wasserstein
distance Wy, where Wy (u,v) := %H,u — Vl|yar and

E _
Wi (p,v) ;== inf / |z —y|*n(dz, dy) , v €Pr(D), k>0.
TeC(p,v) DxD

In the following, we first study the well-posedness of (6.1.1) for distributions
in Py(D) with k > 1, then extend to a setting including k = 1.

(A%3) Let k > 1. (D) holds, b and o are bounded on bounded subsets of
[0,T] x D x Py(D), and the following two conditions hold.
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(1) There exists 0 < K € L'([0,T]) such that

oz, 1) = 02 (y, ) IErs + 202 =y, be(w, ) = be(y,v))*

< Ke{lz —yl? + o — y Wi, v) + Lipsoy Wi (i, )},
t€[0,T),z,y € D,u,v € Pp(D).

(2) There exists a subset dD C dD such that
(y —z,n(x)) >0, 2€dD\dD, ye D, (6.3.1)

and when dD # 0, there exists p € CZ(D) such that plap = 0,
<Vﬁ, n>\3D > 15p and
sup  {[[{oe( 1) VAN 4 (be (- 1), V) ™ } ()
(t:2)€[0,7]x D (6.3.2)
<oo, peCy([0,T];Pr(D)).

(A53)(1) is a monotone condition, when k > 2 it allows o¢(z, u) de-
pending on p, but when k € [1,2) it implies that o¢(x, ) = o¢(z) does not
depend on p.

(A53)(2) holds for 9D = () when D is convex, and it holds for 9D = D
if 9D € C? and for some 1y > 0

sup {1y Vpll*(2)+(bf, Vo)~ () } < oo, u € C'([0,T]; Pr(D)),
(£,2)€[0,T] x By D
where in the second case we may take p = hop for 0 < h € C*([0,0))
with h(r) = r for r < r9/2 and h(r) = ro for r > ro. In general, (A453)(2)
includes the case where dD is partly convex and partly C7.

Theorem 6.3.1. Assume (A%3). Then (6.1.1) is well-posed for distribu-
tions in Py(D), and there exist a constant C > 0 and a map c : [1,00) —
(0,00) such that for any solution (Xy,1;) of (6.1.1) with Lx, € Pr(D),

IE[ sup |Xt|k} < O(1+E|Xo["), (6.3.3)
t€[0,T]
- - T
Ee™7™ < ¢(n), n>1,lp ;:/0 L5 (Xe)dly. (6.3.4)

Proof. Let Xy be Fy-measurable with v := Lx, € Px(D). Then
Pin(D) = {p € CY'([0,T]; Pr(D)) : po =}
is a complete space under the following metric for any A > 0:

WQ,T(/“L? V) = S[up | eiAth(/uta Vt)a v e PIZ-:’)/(D)
tel0,T
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By Lemma 2.3.4, (A%3) implies the well-posedness of the following reflected
SDE for any p € P,Z:W (D):

dX{ = b (XY, pe)dt + oo (X{, pe)dW, + m(X7)dlY, Xy = Xo,  (6.3.5)
and the solution satisfies

]E[ sup |Xf|’“} < . (6.3.6)
t€[0,T]

So, as explained in the proof of Theorem 6.2.2, for the well-posedness of
(6.1.1), it suffices to prove the contraction of the map

P (D)3 ps ®.pi=Lxr € P (D)

under the metric WQ’T for large enough A > 0.
Denote

t t
i ::/ Loy (X, B ;:/ Ly (XYY, £ > 0.
0 0

By (2.1.2), (4%3) and Itd’s formula, for any k£ > 1 we find a constant ¢; > 0
such that

X} = X7 |F <erKo{1X) = X7 1"+ Wi, )"}t

k - - (6.3.7)
+ %|X{‘ — XYMl +dly) + dM
for some martingale M; with
A(M)y < et K {|XF = X7 PP+ Wi (e, 1) R}t
To estimate fg | X# — XY|F(dI + dIY), we take
0 < h e C;°([0,00)) such that A" <0, (6.38)

R'(0) = —(1+2ry k), h(0) =1,
where 79 > 0 is in (2.1.2). Let
F(z,y) = |z —y[*{(hop)(z) + (hop)(y)}, w,ye D.

By (A%3)(2), we have plop = 0 and Vyuplap > 155, so that (6.3.8) and
(2.1.2) imply

VaF (-, XP) (XA + VaF(XE, (XAl < — X[ = X7 F(dl} + dIy).

Therefore, by (A%3) and applying Ito’s formula, we find a constant co > 0
such that

dF (X}, X)) <c{| X} — bedl +Wk(.ut7’/t)k}dt
— | X — XTI+ dIY) + dM
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for some martingale M. This and F(X},XY¥) = F(Xo,Xo) =0 imply
t
E/ XE — XYRAE 4 diY)
o (6.3.9)
< cg/ KABIXE — XY|F + Wi (s, vs)" Hds.
0

Substituting (6.3.9) into (6.3.7) and applying BDG’s inequality, we find a
constant cg > 0 such that

G o= sup |X4 — XIF, te[0,T]
s€[0,t]
satisfies

t
E¢ < 03/ K {EC + Wi (s, vs)*}ds, t € 0,7, (6.3.10)
0
so that for any A > 0,
t
E¢ < 63/ e J. Krdrwk(ﬂa Vs)kds
0

t
SCSGk/\tWQ,T(’%V)k/ ef;{cTK%—kA}dr)dS (6.3.11)
0

< e3P MENWI T (u,0)*, e (0,7,
where ,
d(A) := sup / efilerKr—kA}dr g g J0as A1 oo.
t€[0,T]J0
Therefore, ® is contractive in WQ’T for large A\ > 0 as desired.
It remains to prove (6.3.3) and (6.3.4). Let X, be the unique solution
to (6.1.1). By (A%3), for any k£ > 1, we find a constant c(k) > 0 such that
A X <e(k) K {1+ X" + E|X,|" }de+
kI X "Xy, 00 (X, L, )AWE) + K| X, [P dl,
where dl; := 15, (X;)dl;. By applying Itd’s formula to (14| X,[*)(hop)(X,),
similarly to (6.3.9) we obtain

t t
IE/ (1 + | X,|F)di, < E(k)/ KE{1+|X,|*}ds (6.3.13)
0 0

for some constant é¢(k) > 0. Combining (6.3.13) with (6.3.12) and using
Gronwall’s lemma, we derive
E[ sup X" < ¢/(1+E|Xo /)
te[0,T
for some constant ¢’ > 0. Substituting this into (6.3.12) and using BDG’s
inequality, we derive (6.3.3) for some constant ¢ > 0.
Finally, by (A%3)(2) and applying Itd’s formula to 5(X;), we derive
(6.3.4). O

(6.3.12)
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We now solve (6.1.1) for distributions in

Py(D) :={n € P(D) : [lully == n(¥( - ])) < oo},
where 1 belongs to the following class for some x > 0:
U, = {y € C*((0,00)) N CH([0,00)) : ¥(0) =0, ¥'[(9,00) > 0,
, , or (6.3.14)
10 |oo < 00, 7' (1) + r2{p"} T (r) < Kap(r) for r > O}.

Let

Wy (p,v) ;= inf Y(jx — y)m(de,dy), p,v € Py(D). (6.3.15)
7eC(u,v) JDx D

If ¢ < 0 then W, is a complete metric on Py. In general, it is only a
complete quasi-metric since the triangle inequality not necessarily holds.

(AS%) (D) holds, o(x,p) = o¢(x) does not depend on p, b and o are
bounded on bounded subsets of [0,00) x D x Py(D) for some 1) € ¥,
and > 0. Moreover, there exists 0 < K € L'([0,T)) such that

loe(z) = oe(W)llirs + 2(x =y, be(x, 1) — be(y,v)) "

< Kilo —yl{lz =yl + Wy (,v) },t € [0,T), 2,y € D, p1,v € Pi(D).
Theorem 6.3.2. Assume (A%*) and (A%3)(2). Then (6.1.1) is well-posed
for distributions in Py (D), and

]E[ sup ¢(|Xt\)} <00, T>0,Lx, €Py(D). (6.3.16)
t€[0,T]

Proof. Let Xy be Fy-measurable with Et(]Xy|) < oo, and consider the
path space

P (D) = {p € C([0,T);Py(D)) : pro = Lx, }-
For any A > 0, the quasi-metric

Wy, v) == sup e MWy (ue, 1), p,v € Py (D)
t€[0,T)

is complete. By Lemma 2.3.4, (A%%) implies the well-posedness of the
SDE (6.3.5) for any p € Pg(l_)). By (A4%3)(2) and Itd’s formula for g; :=

V1+ | X} — Xo|2, we find a constant ¢; > 0 such that

dge < e1 Ke{||pelly + ge}dt + g7 H(X} — Xo, o0 (XJ)dAW) + di,
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where dif' := 15, (X})dl{'. Combining this with ¢ € ¥, and the linear
growth of ||o|| implied by (A%%), we find a constant ¢ > 0 such that

dyp(ge) < caK{llpelly + 10(ge) pdt

, 1 on " , - (6.3.17)
+ (gt)gt <Xt — Xo, Ut(Xt )AW:) + 9 (Qt)dlt .

Next, by (A%3)(2), v € ¥,, which implies ¥’ (g;) < kt)(g¢) since g; > 1, and
applying It6’s formula to 1(g:){||pllc — p(X}")}, we find a constant ¢ > 0
such that similarly to (6.3.9),

E / t W' (g5)di" < KE / tw<gs>di§
0 0 (6.3.18)

t
g@,E/ K1+ lpally + $(X2)}Yds, ¢ € [0,T).
0

Combining this with (6.3.17), 7' (r) < ki (r), the linear growth of o, en-
sured by (A%4), and applying BDG’s inequality, we obtain

E[ sup w(X})] <.
te[0,7]

Consequently, (6.3.16) holds for solutions of (6.1.1) with Lx € Pg(D).
So, as explained in the proof of Theorem 6.2.2, it remains to prove the
contraction of the map

Pi(D) > prs .= Lxr € Py (D)
under the metric Wy , for large enough A > 0.
By (2.1.2), (A%3)(2), |||l < 00 and r¢)/(r) < kth(r), we obtain

vn{wuo—y\)}(x)3%15D<x>w<\x—yn, zr€dD,yeD. (63.19)

Combining this with (A4%%) and It6’s formula, we find a constant ¢4 > 0
such that

dy(IX7 = X7|) < cal{ o (IX] = X7 [) + Wy (e, ) fdt

L N (6.3.20)
+ eap(|1X{ = X7 )l + dly) + dM;

for some martingale M;.
On the other hand, let ¢ = 52 and take h € C°°([0,00)) with A" > 0,
h(r) =r for r <e/2 and h(r) = € for r > e. Consider

me = WXL — XY[){22 — ho p(XL) — ho p(XY)}.
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By (6.3.19), (A53)(2), e = 22 and It6’s formula, we find a constant ¢5 > 0
such that
dn, + dM,
< es K {y (|1 X = X7[) + Wy (e, v) bt
2ekK

(5 —L)ellxr - Xp)(i + i)

1o o
= es Ko {w(1X} = XY[) + W (e, v0) bt = So(IX] = XY [)(dlf + dIf).
Since X} = X} = Xy, this implies

¢ ¢
B [ (XX (@) < 205 [ KABBOXE XD+ (resv) s
0 0
Substituting this into (6.3.20), we find a constant ¢g > 0 such that
¢
W (®ups, ®y) < Eob(|XF — XY|) < cﬁ/ KWy (s, vs)ds, ¢ € [0,T),
0

so that as in (6.3.11), we conclude that ®” is contractive in W) , for large
A > 0. Therefore, the proof is finished. O

6.4 Log-Harnack inequality and applications
6.4.1 Singular case

(AS5) Let OD € C2", let oy (2, ) = o1 (x) be distribution free. There exists
fi € P2(D) such that (A%3) for b replacing b holds with p; > 2, where
b= b(-, ft) with regular term b . Moreover, there exist a constant
a >0 and a function 1 < fy € Dgg (T, D) for some (po, qo) € K,po >
2, such that for any (t,z) € [0,T] x D,

b, 1) — b (2)] < folt.w) + allullz, pePaD),  (64.1)
l

[be (2, 1) = be(, )] < Wa(u, ) Y filt,x), p,v € Po(D). (6.4.2)
=1

According to Theorem 6.2.1, (A%®) implies the well-posedness of (6.1.1)
for distributions in Py(D). Let
Pfu= Lx, for X; solving (6.1.1) with Lx, = u € P2(D), t>0.
We consider
Pf(0)= [ FAER), 12 0.0€ P(D). S € Bi(D)
b

where By (D) is the class of all bounded measurable functions on D.
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Theorem 6.4.1. Assume (A%®). For any N > 0, let P> n(D) := {u €
Pa(D) : [lullz < N}

(1) For any N > 0, there exists a constant C(N) > 0 such that for any
v € Pon(D) and any t € (0,T), the following inequalities hold:

W (P, Pfv)? < C(N)Wy(u,v)?, e Po(D), (6.4.3)
C(N
Plog f(0) < log Puf) + S
0< f c Bb(D),,u c P27N(D),
1 * * 2 * *
§||PtH*PtVHvarSEnt(PtV|PtU) ( )
6.4.5
C(N _
< ¥W2(M,V)27 1 € Po,n (D),
. P f(v)— P,
IVPf(v)|w, = hm_sugv | tf%/V)g(u Vt)f(ﬂ)|
ety pom ’ (6.4.6)
<Y flloes f € By(D).
<7 [fllocs S € By(D)
(2) If (6.4.2) holds for o =0, then there exists a constant C' > 0 such that
Wy (P}, Pfv)? < CWo(u,v)?, p,v € Po(D). (6.4.7)

Moreover, if either 22:1 lfilloo < 00 or D is bounded, then (6.4.4)-
(6.4.6) hold for some constant C replacing C(N) and all p,v € Po(D).

Proof. (1) Since the relative entropy of p with respect to v is given by

Ent(vlg) = s wllogg),
geBt(D),u(g)=1

(6.4.4) is equivalent to
CN)
4
By Pinsker’s inequality (3.2.3), we conclude that (6.4.8) implies (6.4.5),

which further yield (6.4.6). So, we only need to prove (6.4.3) and (6.4.8).
For any p,v € Po(D), let X; solve (6.1.1) for Lx, = i, and denote

Ent(P;v|Pfu) < Wo(u,v)?, t€(0,T],u,v € Pon(D). (6.4.8)

He -= Pt*ﬂ =Lx,, v:= Pt*l/v g = ﬁf(p te [OaT]a
where X; solves

dXt = bt(Xt7 I/t)dt + O't(Xt)th7 te [O,T],Xo = Xp.
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Let o and b := b(-, i) = b1 4 b(O) satisfy (423) for b replacing b. Consider
the decomposition

B 1= i) = b b0, B0 = by — B,

Denote fi(z) := 22:1 fi(t,x). By (6.2.3) and (6.4.2), there exists a constant
K(N) > 0 such that

B < B0+ K(N) fir vl < N, t € [0,T). (6:4.9)

So, by Theorem 2.4.1, the estimate (2.4.1) and the log-Harnack inequality
(2.4.5) hold for solutions of (3.1.5) with b” replacing b with a constant
depending on N; that is, there exists a constant ¢;(N) > 0 such that

Wa(fie, v)* < e1(N)Wa(p,v)?, t € [0,T], p € Po(D), (6.4.10)
EIlt(l/t|ﬂt) = f>0511(1f}) 1(Ptf)(y)
B(f)=
(6.4.11)
S 01<tN>w2<u, v)’, t€(0,T], nePyD).

Moreover, repeating step (e) in the proof of Theorem 2.4.1 for k = 2 and
(X, X;) replacing (X X(Z)) and using (6.4.2) replacing (6.2.2), instead
of (6.2.24) where ||ps — 1/s||,C var disappears in the present case, we derive

Wa (pe, i)' < (B[Xy = Xif*)? < eo(N / Wa(ps,v5) ds, ¢ €[0,T]
for some constant co(N) > 0. This together with (6.4.10) yields
Wo (e, ve)* < 8Wo (g, fir)* + 8Wa(fae, vie)?
< 8er(N)2Wa (1, 1) + Sca(N) /0 Wa(ue, o) ids, t e [0,7].

Therefore, Gronwall’s inequality implies (6.4.3) for some constant C(N) >
0.
On the other hand, let ||u|l2 < N and define

R :=exp[—/t (g0, W) / 194 ds}
g0 = {03020 I CX) — B

By Girsanov’s theorem, we obtain

/ (jﬁi) e = [ (3 t<Xt)) | =E[(E[rIx))] <ER.



July 27, 2024 9:20 ws-book9x6 13512-main  page 299

DDSDEs with Reflecting Boundary 299

By the same argument leading to (4.1.38), we derive
Ent(ve|pe) < 2Ent(v|fis) + log ERZ. (6.4.12)

By (6.4.2), (6.4.3), ||[c*(00*)7}|se < 00 and (2.2.35) due to (A23) for b*
replacing b, we find constants c3(N), c4(IN) > 0 such that

E[Rf] < (E[R?])Q < Fe ea(N)Wa(p,v)? [§ fs(Xs)%ds

s1+E[c3( YW (1, ) (/f ) )

o3 (N)Wa(u)? [ fs<Xs)2ds]

vl [ s

X [Eezcsuwwz(u,u) Js fs<xs>2ds}

(6.4.13)

Nl=

<14 ey (N)Wy(p, v)%
Combining this with (6.4.11) and (6.4.12), we derive (6.4.8) for some con-
stant C'(N) > 0.

(2) When a = 0, (6.4.9) holds for K(N) = K independent of N, so that
(6.4.10) and (6.4.11) hold for some constant Cy(N) = C; > 0 independent
of N and all y,v € Py(D), and in (6.4.13) the constant C3(N) = Cj is
independent of N as well. Consequently, (6.4.7) holds and

E[Rf] < EeC3W2(/L,l))2f(]t fs(Xs)%ds < eCWQ(,L,uF
if [|f|leoc < o0, and when D is bounded we conclude that Cy(N) = C4 in

(6.4.13) is uniform in N > 0. Therefore, (6.4.4) and hence its consequent
inequalities hold for some constant independent of N. (I

6.4.2 Monotone case

(A56) (D) and (A%3)(2) hold, o¢(z,u) = o(z) does not depend on u and
is locally bounded on [0,00) X D, oo* is invertible, b is bounded on
bounded subsets of [0,00) x R? x Py(D), and there exists a constant
L > 0 such that

low(x) — or(y)IEs + 2(z — y, be(w, ) — be(y,v))*
< Llz —y* + Llar — y[Wa(p, v),
llow(z)(orof)™ || <L, te[0,T],z,y € D,u,v € Pyo(D).
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By Theorem 6.3.1, (A%°) implies that (6.1.1) is well-posed for distribu-
tions in Pa(D).

Theorem 6.4.2. Assume (A%S). Then there exists a constant C > 0 such
that the following inequalities hold for all t € (0,T] and v € Pa(D):

Wy (P 1, Pfv)? < CWy(u,v)?, € Pa(D), (6.4.14)

Pilog f(v) <log Pif(u) + %WQ(/J,V)Q, 0< fe€By(D),uc€ PaoD),
(6.4.15)

1 * * * * C B
S 1= Pivif,, < Ent(PyvIP;p) < < Wa(u,v)?, € Po(D), (6.4.16)

VP ), = Timsup L0 = D)

p—v in We WQ(H? V)
(6.4.17)
< “Tcﬁf”m f € By(D).

Proof. As explained in the proof of Theorem 6.4.1, it suffices to prove
(6.4.14) and (6.4.15).
Firstly, for pg, o € Po(D), let (Xo,Yy) be Fo-measurable such that

Lx, = o, Ly, =y, E|Xo— Yy|* = Wa(po, o). (6.4.18)
Denote
pe = P o, v = Plvg, t>0.
Let X, solve (6.1.1). We have
dX; = by (X, pe)dt + 04 (X )dW, + n(X,)dlX, t€[0,T], (6.4.19)

where ¥ is the local time of X; on D. Next, for any ty € (0,7 consider
the SDE

o1 (Y ){of (o107) ' HX) (X, — V) }dt
&
+ oy (Y)dW, +n(Y,)dl), t€[0,t0),

av, =46, (i, m) +
! {t( o) (6.4.20)

where [} is the local time of Y; on dD. For the constant L > 0 in (A%9),
let

1
b= (1-e0), v e 0,to). (6.4.21)
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The construction of Y; goes back to [Wang (2011)] for the classical SDEs,
see also [Wang (2018)] for the extension to DDSDEs. According to Theo-

rem 2.3.2, (A%®) implies that (6.4.20) has a unique solution up to times
T
Tnom = ninl Ainf {t € [0,%0) : |Y;| = m}, n,m>1.

Let h be in (6.3.8) for k = 2. By (2.1.2) and (A%3)(2), we have
(V{A+hop)l =z} (Vi) n(¥Yi)dly <0, o€ D,

so that (A%C), for any n > 1 we find a constant ¢(n) > 0 such that

d{(1+hop)(Yy)[Yi—z0|*} < c(n)(1+[Y3|?)dt+dMy, t € [0, Tnm], n,m > 1
holds for some martingale M;. This implies lim, o0 Tn,m = %, and hence
(6.4.20) has a unique solution up to time tg.

Next, let Y; solve the SDE
AY; = by(Vy, v3)dt + o0 (Y,)dW, + n(Y;)dlY, Yo = Yo,t € [0,7], (6.4.22)

where 1Y is the local time of ¥; on D. By (A%), (2.1.2) and Ito’s formula,
we find a constant co > 0 such that

E|X; — Yi|> — Wa(uo, 10)?
t
<c /0 {E|Xs - }/s|2 + WQ(Msv 1/3)2}(18 (6423)
t ~
+ z1E/ |X, = YV [2(dIX +diY), telo,T)
To 0
For h in (6.3.8) with k = 2, we deduce from (A%3)(2) that
(V{1X¢ — PP(ho p(Xe) + ho p)} (Vi) n(V:))dlY
S *|Xt - Y/;&|2dl~§/7
(V{|V, = (o p(V2) + h o p) H(X2), n(X) )i
< | X, — V[ 2diY.

(6.4.24)

So, applying It6’s formula to
e = 1Xe = Yi?(h o p(Xy) + ho p(Yy)),
and using (A%%) and (2.1.2), we find a constant c3 > 0 such that
dn; + dM;
< 3 {1 X0 — Yal? + Wa (e, 1) bt + dM, — | X, — Yo2(dIX + )
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holds for some martingale M;. This together with (6.4.23) yields

E|X; - V|2

t
< Wa(po, 1) + Eno + (c2 + CS)/ {E|X, — Yo + Wa(us,vs)? }ds
0

t

< 3Wo (1o, v0)* + 2(ca + 03)/ E|X, — Y,|?ds, te[0,T],
0

where we have used the fact that Wo(us, v)? < E| X, — ffs|2 by definition.
By Gronwall’s lemma, this and W (114, 74)? < E|X;—Y;|?, we find a constant
c4 > 0 such that

Wa (e, ve)? < E|X; — V3|2 < caWa(po, v0)%, t € (0,77, (6.4.25)

so that (6.4.14) holds.
Moreover, for any n > 1, let

ton .
T = n0+1 Ainf{t € [0,0) : |X; — Y| > n},

. (6.4.26)
Bs = *{02(030;)71}(X3)(X8 —Y), s€[0,7].
By Girsanov’s theorem,
~ t
Wy =W, —|—/ Bsds, t€10,7,]
0
is an m-dimensional Brownian motion under the probability Q,, := R,P,
where
R, = e Jo" (BedWe) =% [T 6.1 (6.4.27)
Then (6.4.19) and (6.4.20) imply
X Y, ~
dX; = {bt(XtaMt) - tft ' }dt + 04(X¢)dW; + n(X,)dlY, (6.4.28)

dY; = b(Yy, v)dt 4 o4 (Y) AW, + n(Y,)dlY, t € [0,7,]),n > 1.
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Combining this with (A56), (2.1.2), (6.4.25) and Itd’s formula, we obtain
(X — Y[?
&t
< LIX; — Yy |> + L| Xy — Vi [Wo (e, v4)

- &
X - Y22+ ¢ X - Yi|?
X t|2( 5t)dt+| t2t|
& &
{szz(utﬂ/t)z ‘Xt—YtP(Q'F&/:—Lft—%)}
- dt
2 &
| X — Y
&
S {LQBQLtWQ(/J/o, VO)2 B |Xt _ Y;|2 }dt
2 2£2
| X — Yi[?
&
where dM; = §%<Xt —Y:, {oe(Xs) — Ut(Y})}th> is a Q,-martingale. By
(6.4.24) for (Yt,l?/) replacing (f@,l?/), and applying Itd’s formula to gy :=

|X*gitytlz(h o p(X¢) + hop(Y:)), we find a constant ¢5 > 0 such that

d — dM;

dt

(AIX +dI))

IN

(6.4.29)

+ (diX +di))

+ (letX +dl~ty)7 te [Oan]v

d < v ‘Xt _)/t‘Z 7X 7Y
gt < esgedt +dM; — T(dlt +di}), te0,7),n>1

holds for some Q,-martingale M,. This and (6.4.18) imply that for some
constants cg, c7 > 0,

c
Eg, ginr, < e“"Egg < tEWz(Mo,Vo)Q, t >0,
0

LD AL
s, [ I @ i) < W), 1
0 & to
Combining this with (6.4.25), (6.4.29) and (A%6), we derive
E[R,, log R,] = Eq, [log R,,]

1 ™" |{U:(USU:)_1}(XS)(XS - YS)|2
- §E@n/ AE ds (6.4.30)

< tEWQ(Mo,Vo)27 n>1
0

for some constant ¢ > 0 uniformly in ¢y € (0,7T]. Therefore, by the martin-
gale convergence theorem, R, := lim,,_,o R, exists, and
Ny = e~ Jo BedWa) =3 [T 1B:Pds 4 < [0, ¢,]

is a P-martingale.
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Finally, let Q := N;,P. By Girsanov’s theorem, (Wt)te[o,to] is an m-
dimensional Brownian motion under the probability Q, and (X¢):ejo.t,]
solves the SDE

XY,
dXt = {bt(Xt,,ut) — té_ t}dt

¢ (6.4.31)
+ 04 (X)dW; 4+ n(X,)dEY, ¢ € [0,t).
Let (Y:)te[o,40) Solve
Yy = by (Y, v4)dt + oo (Y2)dW; + n(Y)dlY, ¢ € [0,4)- (6.4.32)

By the well-posedness of (6.1.1), this extends the second equation in (6.4.28)
with Ly, 1o = v4,- Moreover, (6.4.30) and Fatou’s lemma implies

1 fo s0 Xs - }/s 2
,E@/ {oi(os00) HX g s)( ) 4
2" Jo sl . (6.4.33)
= E[Ny, log Ny, | < liminf E[R,, log R,,] < Twz(uo, v0)?,
n—oo 0

which in particular implies Q(X;, = Y;,) = 1. Indeed, by (A%), if
X, (w) # Yy, (w) then there exists a small constant € > 0 such that
05 (w) = {3 (0507) T HX)(Xs = Yo)P(w) 2 &, s € [to — &, ),

which implies to Ins 7 s(w)ds = oo. So, (6.4.33) implies Q(X;, = Y;,) =1
[€s] o o

Combining this Wlth the Young’s inequality, we arrive at
Ptg lOg f(VO) - E[Nto log f(}/to)]
S E[Nto IOg Nto] + lOgE[ (Xto)]
c
< log P, f (ko) + %W2(Ho, w)?, to € (0,T).

]E[Nto log f(Xto)]

Hence, (6.4.15) holds. O

6.5 Exponential ergodicity

Let (bs,0¢) = (b,0) not depend on ¢t. The SDE (6.1.1) becomes
dX, = b(X;, Lx,)dt + o(Xy, L, )W, + n(X)dl, t>0.  (6.5.1)

In this case, a probability measure i is called P -invariant, if P/n = [
holds for all ¢ > 0, where P;"p := Lx, for the solution with Lx, = p.
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6.5.1 Singular case

The following result can be proved by repeating the proof of Theorem 5.2.1,
see [Wang (2023c)] for a result under a weaker integral condition replacing
the following condition (6.5.2).

Theorem 6.5.1. Assume (A%3) for b(-,v) replacing b for any v € P(D),
and that

b(x, 1) = bz, p2)| < Kllpn — p2llvars * € Dy, po € P (6.5.2)

holds for some constant k > 0. Then (6.1.1) is well-posed, and when k> 0
is small enough and ® is conver with fooo % < o0, P} has a unique
invariant probability measure i such that for some constants g, c, A > 0,
W(®(epV)) < 00 and

HPt*V - ,L_’f”var < cei)\tHﬂ - V||1)(17"7 t> Oa vePp.

6.5.2 Dissipative case

In this part, we study the exponential ergodicity of P} in entropy and Wy,
such that Theorem 5.6.2 is extended to the reflected case.

Theorem 6.5.2. Let D be convex and (o,b) satisfy (A%3) with k = 2. Let
K1, Ky € L}, ([0,00);R) such that

loc

2(be(, 1) = bi(y, ), @ = y) + low(@, 1) — ooy, v)|irs

) ) (6.5.3)
< Ki(t)|z —yl* + Ko (t)Wa(u,v)?, t>0.

Then (6.1.1) with t € [0,00) is well-posed for distributions in Pa(D), and
P} satisfies
W (P, Piv)? < efot(KﬁKg)(T)dTWg(u, V)2, w,v € Py(D), t > 0. (6.5.4)

Consequently, the following assertions hold for (b, 0:) = (b, o) independent
of t provided \ := —(K; + Ks) > 0.

as a unique tnvariant probability measure p such that
1) PF h ) ) ; babili m h th
WQ(Pt*ﬂvﬂ)2 < eiAtWQ(ﬂvﬁ)Qa e P2(D)7 t>0. (6'5'5)

If moreover o(x, u) = o(x) does not depend on p and oo* is invertible
with ||o]| s + || (c0*) 7o < 00, then there exists a constant ¢ > 0 such
that

Ent(P; puljp) < ce MWy(u, 1)?, ¢ > 1,1 € Py(D). (6.5.6)
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(2) Ifo(x,pu) = o(u) does not depend on x, then there exists a constant ¢ >
0 such that i satisfies the following log-Sobolev inequality and Talagrand
inequality:

i(f2log f2) < ca(|Vf?), f € Cy(RY), a(f%) =1, (6.5.7)

Wa(p, 1) < cEnt(pli), p€ Po. (6.5.8)

If furthermore o(x, ) = o is constant with oo™ invertible, then there
ezists a constant ¢ > 0 such that

Wa (P 1, )” + Ent(P; ul1)

_ 6.5.9
< ce” M min {Wa(p, 1)*, Ent(p|)}, ¢ > 1,1 € Po(D). (659)

Proof. The well-posedness is ensured by Theorem 6.3.1. Since D is con-
vex, (2.1.3) holds. For any p,v € Py(D), let X' and X} be Fp-measurable
such that

Lxp=p, Lxy=v, EX{—X{?=Wy(p,v)? (6.5.10)

By (6.5.3), (2.1.3), and applying Ito’s formula to | X} — X} |2, where (X}')i>0
and (X} )¢>o solve (6.1.1), we obtain

dIXf = XY P < {K1(t)| X} — X7 1P+ Ko ()W (P, Pfv)? }dt + dM,

for some martingale M;. Combining this with (6.5.10), Wy (P}, Pfv)? <
E|X}" — X7 |?, and Gronwall’s lemma, we derive (6.5.4).

(1) Let (bt, 0¢) not depend on t and A := —(K; + K2) > 0. Then (6.5.4)
implies the uniqueness of P;-invariant probability measure i € P2(D) and
(6.5.5).

Next, by Theorem 5.1.1, the existence of i follows from a standard
argument by showing that for g € D, {P[ 0, }+>0 is a Wo-Cauchy family
as t — oo. Since the term of local time does not make trouble due to
(2.1.3), the proof is completely similar to that of Theorem 5.3.3.

Finally, when oy(z,u) = oy(z) and oo* is invertible with |||l +
|[(00*) " < 00, by Theorem 6.4.2, (A53) with k = 2 implies the log-
Harnack inequality

Ent(Pyuli) < cWa(u, i)?, u € Pa(D)

for some constant ¢ > 0. So, (6.5.6) follows from (6.5.5) and P} = PP}
for ¢t > 1.
(2) Let o(x, ) = o(p) be independent of z. Consider the SDE

AXT = b(XZ, p)dt + o(@)dW; + n(X2)dly, t>s, X2 =z€D. (6.5.11)
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The associated Markov semigroup { P, };>0 is given by
Pf(x) :=Ef(X}), t>0,f¢€By(D),r € D.
Let P} be given by
(BFp)(f) = u(Pef), weP(D),t=0,f€ByD).
Since (6.5.3) with x = y implies K5 > 0, we have
K; < —A<0. (6.5.12)

As explained in the above proofs of (6.5.4) and (6.5.5), this implies that
P has a unique invariant probability measure ji such that

tli>nolo Pf(x) = i(f), f€Cy(D),r € D. (6.5.13)

Since [ is the unique invariant probability measure of P}, and when the
initial distribution is fi, the SDE (6.5.11) coincides with (6.1.1), we conclude
that i = fi. Hence, (6.5.13) yields

a(f) = Jim Pif(x0), [ € Cy(D),z0 € D. (6.5.14)

Now, by It6’s formula, (2.1.3) and (6.5.3) with (b, 0¢) independent of ¢, we
obtain

X - XV <tz —y|?, z,yeD,t>0.
t t

This and (6.5.12) imply

|Pef(z) — Pof(y)|

|VP,f(x)| := limsup

Yy lz -yl
< Jimsup E|f(X¥) — f(X))]
T oy |z =yl (6.5.15)
[f(XF) = F(XY)]

At
<e 2 limsupE = —
y—w | X7 — XY

= e M2P|Vf|(z), t>0,feCLD).

On the other hand, we have

61;Ptf:iptf, (n,thfHaD :O, tEO,fEC?V(D),
where C%(D) is the set of f € CZ(D) satisfying (n, Vf)|sp = 0, and

_ 1
L:= 5tr{(&&*)VQ} + Voipys 0:=o0(fi), s>0.
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So, by 1t&’s formula, for any € > 0 and f € C%(D),

A (Pr—s(e+ ?))1og Pr—s(e + f2) }(X,)
_ { |6*th73f2|2

— dt +dM?Z, € |0,t
e+ P_sf? } - s 7 [ ]

holds for some martingale (M:)cjo4. Combining this with (6.5.15), we
find a constant ¢ > 0 such that for any f € C%(R?),

P{(c+ f*)log(e + f*)} — (e + P f?)log(e + Pf?)

t — %7 D 212 t
= |0*V P f? _ 2/ —“A(t=5) P B
= [ PR g < ey ||| o e NP B |V f[2ds
| P s < sl [ PalV ]

t
= 4(cl||5||00)2(]5t\Vf|2)/0 e M=9ds < cB|VS2, t>0,e>0.

By letting first € | 0 then ¢ — oo, we deduce from this and (6.5.14) that

a(f*log ) < e2f(IVFI?), fe CX(D),al(f*) =1

holds for some constant co > 0. This implies (6.5.7) by an approximation
argument. Indeed the inequality holds for f € HY2(jii) with i(f?) = 1.
According to Lemma 6.5.3 below, (6.5.8) holds.

Finally, let o be constant with oo* invertible. Then (6.5.9) follows from
(6.5.5), (6.5.6) and (6.5.8). |

Note that under the log-Sobolev inequality, the Talagrand inequality
has been derived in [Bobkov et al (2001)] for a probability measure & of
type V@) dz for some V € C (RY). Below we extend assertion to general
probability measures and such that g supported in the domain D can be
applied.

Lemma 6.5.3. Let ¢ > 0 be a constant and i € Po(R?). Then the log-
Sobolev inequality (6.5.7) implies (6.5.8).

Proof. By an approximation argument, we only need to prove for u = gp
for some density o € Cp(RY). Let Pt(o) be the Ornstein-Uhlenbeck semi-
group generated by A —z -V on R?. We have

VPO s < POVl PO (f log )

<tPOIVIP + (PO ) og P2, f € CHRY).
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Combining this with (6.5.7), we see that i, := (P{”)*[i satisfies
fn(f210g £2) = a(P” (f? log f2))
<t (|IVf1?) + A((P £2) log PV £2)
<t (V1) + e ([T PO 2 ) 4 ) log ()
< (t+m (V) + () log i(f?), feCLRY, >0,

where the last step follows from the gradient estimate |VPt(O) fl < Pt(o) IV fl,
which the Schwarz inequality imply

2 VP(O) 2|12 P(O) \V4 2
4P f? P f?
Therefore, j1; satisfies the log-Sobolev inequality with constant ¢ + ¢ and

has smooth strictly positive density. According to [Bobkov et al (2001)],
we have

Wa(p, fir)? < (t+ e)Ent(plie), p € Pa(R?).
Since Wy (fig, i) — 0 as t — 0, and u = ofi with o € C(R?), this implies
SN2 s =2 Ent _
Wa(p, B)° = lim Wa (i, ) < lim(t + ) Ent(ulRe)
=lim(t + )n((P" 0)log P") o) = ci(elog o).

Therefore, (6.5.8) holds. O

6.5.3 Partially dissipative case

In this part, we consider the partially dissipative case such that Theo-
rem 5.5.1 is extended to the reflected setting. Let ¢ € ¥,; and Wy, be given
in (5.5.1) for D replacing R%. Then W,, is a complete quasi-metric on the
space

Py(D) = {1 € P(D) : u(¥(|-])) < oo}

(ASTY oy(x, 1) = o¢(x) does not depend on pu.
(1) (Ellipticity) There exist o € C([0,00);(0,00)) and & € B([0,00) X
D; R @ R?) such that

oi(x)oi(x)* = aply + 6¢(2)6¢(2)*, t>0,2 € D.
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(2) (Partial dissipativity) Let ¢ € U, in (6.3.14) for some k > 0, g €
C([0,00)) with g(r) < Kr for some constant K > 0 and all v > 0,
such that

200" () + (g ) (r) < —quip(r), 7>0,t>0 (6.5.16)

holds for some q € C(]0,00);R). Moreover, b € C([0,00) x D x
Py(D);RY), and there exists 0 € C([0,00);[0,00)) such that

(e ) = b)) + 3 160(2) — 5200 s

< lo = yl{0: W, (n,v) + glla — y)}, (6.5.17)
t>0,2,y € D, pu,v € Py(D).
Theorem 6.5.4. Let D be convex and assume (A%7), where ¢" < 0 if &
is non-constant. Then (6.1.1) with t € [0,00) is well-posed for distributions
in Py(D), and P} satisfies
Wy (P, Prv) < e Jolas=0allllcddsyy () ), (6518
t>0,pu,v € Py(D). o

Consequently, if (b, ot,qr, 0¢) do not depend on t and q¢ > 0|t ||o, then Py
has a unique invariant probability measure fi € Py (D) such that

W (P i) < e~ @01 I=)tW (0 ), £ >0, € Py(D).  (6.5.19)

Proof. Since D is convex, the proof is similar to that of Theorem 5.5.1.
We outline it below for completeness.

By Theorem 6.3.2, the well-posedness follows from (A%7)(1) and
(A%7)(2). Next, according to the proof of Theorem 6.5.2(2) with Wy, re-
placing Wy, the second assertion follows from the first. So, in the following
we only prove (6.5.18).

For any s > 0, let (X, Ys) be Fs-measurable such that

Lx,=Pip, Ly, =Plv, Wy(Pip, Piv) =Ep(|Xs - Ys[).  (6.5.20)

Let Wt(l) and Wt(Q) be two independent d-dimensional Brownian motions
and consider the following SDE for ¢ > s:

AX, = by(Xy, Prp)dt + JardW, P + 64(X)dW,? + n(X)di¥, (6.5.21)

where ;¥ is the local time of X; on D. By Theorem 6.5.2, (A%7)(1) and
(A5T)(2) imply that this SDE is well-posed and

VardW 4 6,(X)dWP = o0, (X,)dW,
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for the m-dimensional Brownian motion
t
Wy = / {a,’f(oraﬁ)_l}(X,.){,/oszWT(l) + rAf,.()(,.)dWr(z)}7 t> s,

so that the weak uniqueness of (6.1.1) implies Lx, = P;,Pfu = Pfu,t > s,
where for v € P, we denote P;,y = Lx, for X; solving (6.5.21) with
Lx, ="7.
To construct the coupling with reflection, let
u(z,y) = u, x#yeR
[z =yl
We consider the SDE for ¢ > s:
dY; =b(Yy, Piv)dt + at{Id —2u(X4,Y;) ® u( Xy, Yt)l{t<r}}th(1)
+ 6, (Y AW + iy,
(6.5.22)
where
Ti:=inf{t >s:Y, = X;}
is the coupling time. Since the coefficients in noises are Lipschitz contin-
uous outside a neighborhood of the diagonal, according to Theorem 2.3.2,

(6.5.22) has a unique solution up to the coupling time 7. When ¢ > 7, the
equation of Y; becomes

AY; = by(Ys, Pyv)dt + JoardW M + 6,(v)dw? + i), (6.5.23)
which is well-posed under (A%7)(1) and (A%7)(2) according to Theo-
rem 6.3.2. So, (6.5.22) is well-posed and Ly, = P;v by the same reason
leading to Lx, = P;u. Since D is convex, (2.1.3) holds. So, by (A%7)(1)
and (A% 7)(2) for ¢ € ¥ with /" < 0 when 6, is non-constant, and applying
1t6’s formula, we obtain

)
{000 (1 X = Vi)W (P 10, Py v) = a1 — i bt
(X = i) [2van(u(Xe, o), aw i)

+ <u(Xt,Yt), (64(X,) — &t(Yt))th@)H, s<t<r.

(6.5.24)

By a standard argument and noting that (| X¢ar, Yiar|)1{r<¢p = 0, this
implies
els PR [(| Xinr — Yinrl)] = E[els"" #PEY(| Xinr — Yine|)]

tAT
<Ey(|Xs —Ys]) + ||1//||oo/ 0,¢l wIPW , (Pru, Prv)dr, t>s.
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Consequently,

E¢(|Xenr — Yins|) < e o U Eyp(|X, - Y5))

AT ‘ (6.5.25)
Wl [ b (P P, 22 s

On the other hand, when ¢t > 7, by (A4%7)(2) and applying It6’s formula for
(6.5.21) and (6.5.23), we find a constant C' > 0 such that

dp(|X, — Yi]) <{CP(1 X, — Yol)dt + 0|19 | oo W (P, Pv) bt
F U (1X, = Vi) ({60(X0) — 60 (Vo) Fu(Xe, Vo), AW,
Noting that (| X, — Y;|) = 0, we obtain

t
E[1psnv(1Xe = Yi))] < [0/ E [ 0, Wy (Pip, Piv)dr, t>s.

tAT

Combining this with (6.5.25) and (6.5.20), we derive

W (P, Plv) < Eg(|X: — Vi)
= EY(| Xiar — Yinrl) + ]E[l{t>7—}w(|Xt - Yt|)]

t
< e S IVBY(X, = Vo) + ) [ 0P P

t
— S (Pl Pw) [0 o™ [0 (P P, b2,

Therefore,
dt Wy (P} i, Piv) — Wy (P, P
——Wy (P} p, P{v) := limsup w(Pf s Prv) — Wy (P, Piv)
ds tls t—s
S _(QS - GS”w/”OO)Wl/J(P:Ma P:V)a S Z 0.
This implies (6.5.18). O

As a consequence of Theorem 6.5.4, we consider the non-dissipative case
where Vb (-, u)(z) is positive definite in a possibly unbounded set but with
bounded “one-dimensional puncture mass” in the sense of (6.5.28) below.

Let Wy = Wy, and Py (D) = Py (D) for ¢(r) = r, and define

Sp(z) = sup {(Vobe (-, p)(z),v) : t>0,v| <1,pePi(D)}, z€D.
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: ere exist constants 0y, 01,02, 8 > 0 such that
ASTY (3) Th 0o,01,02,5 >0 h th
1 _
slloe(@) = o)lfs < Oole —yl*, t>0,2,y€ D5 (6.5.26)

Sb(‘r) < 917 ‘bt(xwu) - bt(xal/” < ﬁwl(ﬂa V)v

_ _ (6.5.27)
tZ O,Z‘ € Dhu'aVEPl(D);
K= sup / 1S, (2+s0)>—05)d8 < 00. (6.5.28)
z,v€D,|v|=1JR

According to the proof of Corollary 5.5.2, the following result follows
from Theorem 6.5.4.
Corollary 6.5.5. Let D be conver. Assume (A%7)(1) and (A%7)(3). Let
g(r) = (01 + 92){(ﬁr_1) A r} — (02 —Op)r, >0,

L 20 ~ B(62 — o) /mtei i oty (6.5.29)
S tema Jo glwdugy 220 Jo

Then there exists a constant ¢ > 0 such that

W1 (P}, Pfv) < ce ™ Wy (u,v), t>0,u,v€Pi(D).
If (by, 04) does not depend on t and 63 > 6y with

402
B < = T ;

(02— 60)(Jy~ tes Jo 9tmduqy)2
then k > 0 and P} has a unique invariant probability measure fi € Py(D)
satisfying

(6.5.30)

Wy (P p, i) < ce™™ Wy (p, i), t>0,u € Pi(D).

6.5.4 Non-dissipative case

Finally, we consider the fully non-dissipative case such that Theorem 5.4.1
is extended to the reflected setting. Let Ly, be in (6.1.2) for any ¢ > 0 and
u € P(D). We assume the following Lyapunov condition.

(A%®) (Lyapunov Condition) There exists a function 0 <V € C?(D) with
(VV,n)|op <0, lim|g|—,0c V() = 00 and
{17V TV)
[z —y{1+V(2) +V(y)}
L Na@IP - [V @) + o) |9V ()] } < oo,
14+ V(x)+V(y)

tzo;a:,yeD

(6.5.31)
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such that for some Ko, K1 € L}, ([0,00); R) and any
pw€ Py(D):={uePD): V) < oo}, (6.5.32)
we have

Li,V < Ko(t) — K1 (£)V, t>0. (6.5.33)

Next, we introduce the monotone condition with respect to a weighted
Wasserstein distance induced by V' and a function 1 in the following class
for some [ > 0:

Uy = { € C*([0,1];[0,00)) = $(0) =¢'(1) = 0,¢'j0,) > O}

For each ¢ € ¥}, we extend it to the half line by setting ¢ (r) = 9(r Al),
so that 1)’ is nonnegative, Lipschitz continuous with compact support, and
satisfies

[9"lloc := sup [¢'(r)] = sup ¢'(r) € (0, 00).
r>0 re(0,l)

For any constant 3 > 0, define the quasi-distance on Py (D):

Wy (uw)i= _nt [ lla=y)(1+8V(@) + BV ) (e, dy),

Wosv(uv) = in Jowp ¥z =y + BV (z) + BV (y))r(dz, dy)
v,pv (1, V) 1= reCuw) [5. 5 (|2 —y))(1 + BV (z) + BV (y))m(dz,dy)’

Wy sv (1,v)
A+Bu(V)+pr(V)) "

Obviously, Wy, gv (i, v) > o=

(A59) (Local monotonicity) o satisfies (A57)(1), b is bounded on bound-
ed set in [0,00) x D x Py(D). Moreover, there exist K,0,q €
L}, ([0,00);]0,00)) and a function 1) € ¥; for some | > 0 satisfying

loc
20‘t"/}//(r) + Kﬂﬁ/(?“) < _th(r)a re [07”7
such that

1, . .
(be(z, 1) = be(y,v), v —y) + §||gt(:g) =6l
< Kilw —y[* + 0i]x — y|Wy v (1, v), 2,y € D,u,v € Py(D).
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By (A58), V(z) — oo as |¥| — oo, when K;(t) > 0 and [ is large
enough, we have
o Ki(O)V(z) + Ki(t)V(y) — 2Ko(t)
t) := inf > 0. 6.5.34
“olt) jo—y|>1 B+ V(z)+V(y) ( )
Moreover, (A%7)(1) and (A%®) imply
VV(z) = VV(y)|
)= [ sup {
? lz—yleo) LIz —y[{B~ +V(z) +V(y)}
L Hou@) = 6 HEFVV) (@) + (6?VV)(y)]} <o
[z —y{B~1 + V(z)+ V(y)}
for any 3,1 > 0. For constants Ky, (; 5, a;p and ¢ given in (A58), (A59),
(6.5.34) and (6.5.35) respectively, let

)\lﬂ(t) = min {Cl,ﬁ(t)a qt — 2K0(t)ﬂ — alﬁ(t)}.

Theorem 6.5.6. Let D be convexr. Assume (A%®) and (ASY), where ¢" <
0 if 64(-) is non-constant. Then (6.1.1) with t € [0,00) is well-posed for
distributions in Py (D), and P} satisfies

(6.5.35)

Ww,ﬁV(Pt*ﬂa Pt*l/) <e” Jo {AZ,B(S)*Qs}dsWd)’BV(M, V), (6 . 36)
t> O,M,V € PV(D)

Consequently, if (o.,b;) does not depend on t and \g > 6, then P has a
unique invariant probability measure i € Py (D) such that

W av (P p 1) < e Xue =Wy, oy (u, 1), >0, € Py(D).  (6.5.37)
Proof. We ﬁrs:c prove the well-posedness. Let Xy be Fp-measurable with
Lx, =:7v € Py(D). For any T > 0 and

pe€PyL(D) = {peC(0, T Pv(D)) : o =},
consider the following reflected SDE on D:
dX} = b (X}, ) + o (X[)AWs + n(Xy)d Ly, X§ = Xo,t € (0,77

According to Theorem 2.3.2, (A%?) implies that this SDE is well-posed up
to life time. By (VV,n)|sp < 0 and (6.5.26) in (A%®), and applying Ito’s
formula, we obtain

dvV(X})

= Ly, V(XP)dt + (VV(X]), 00 (X[)dWy) + (VV(X]), n(XY))d Ly

< {Ko(t) = Ki()V(XP)}dt + (VV(X]), 00 (X])dWy).
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By Gronwall’s lemma and lim|;|_ V(2) = oo, this implies the non-
explosion of X/, and

®.p:=Lyn € PL (D).

So, as shown in the proof of Theorem 6.2.2, it suffices to verify the contrac-
tion of ® on P&V(D) under the metric
W@Z’»V,)\(ﬂv V) = sup ei/\twqu(lu‘ta Vt)v JORAS ’P\Y/:'y(D)
t€[0,T]
for large A > 0. Let p,v € P&W(D). By (A%9), (n,VV)|ap < 0, (2.1.3),
and applying It6-Tanaka formula, we find a constant C; > 0 such that

dIX} = X7 | <CLWy gy (e, ve) + | X — X7 |)dt
< X} - Xy

XF= Xy {ou(X}) - Ut(Xé')}th>.

Then the remainder of the proof is the same as that of Lemma 5.4.3.
Next, we prove (6.5.36) which implies (6.5.37) in the time homogenous

case. For any u,v € Py (D), let Xg, Yy be Fo-measurable such that £Lx, =
w, Ly, =v, and

E[¢(|Xo — Yo)(1 + BV (Xo) + BV (Y0))] = Wy pv (1, v).

Let (X¢,Y:) be the coupling constructed in the proof of Theorem 6.5.2.
By (n,VV)|sp < 0 and (2.1.3), the local time terms does not make any
trouble when we apply 1t6’s formula to (| X; — Y;|) or V(X)) + V(Y3). So,
by repeating step C in the proof of Theorem 5.4.1, we derive (6.5.36). O

6.6 Notes

The study of reflected DDSDEs goes back to [Sznitman (1984)] where the
coefficients are Lipschitz continuous and the dependence of distribution is
of integral type. In a more general framework but with convex domain
D, the propagation of chaos and large deviation principle for small noise
have been investigated in [Adams et al (2022)] where more references on
reflected DDSDEs can be found.

In this chapter, most results in Chapters 3—5 have been extended to
the reflected case, except Bismut formula and the Donsker-Varadhan large
deviations. Noting that Bismut formulas have been established for reflected
diffusion processes, see for instance [Wang (2014)], this type of formulas
should also be valid for the reflected DDSDEs. When D is convex, it
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should be easy to extend the Donsker-Varadhan LDP in Theorem 5.6.1 to
the reflected setting.

It is interesting to study the exponential ergodicity and long time LDP
for non-convex D.
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Chapter 7

Killed DDSDEs

In this chapter, we consider the killed DDSDEs which in turn describe
the nonlinear Dirichlet problems, where the distributions are restricted to
an open domain and thus might be sub-probability measures. We first
introduce the link of killed DDSDE and nonlinear Dirichlet problem with
a general well-posedness result, then study the killed DDSDE for several
different situations. This part is due to [Wang (2023f)].

7.1 Killed DDSDE for nonlinear Dirichlet problem

Let D C R? be a connected open domain with closure D, and let
PP = {w is a measure on D, pu(D) <1}

be the space of sub-probability measures on D equipped with the weak
topology.

Consider the following time-distribution dependent second order differ-
ential operator on D:

Ltaﬂ = tr{(Utgf)(‘aH)VQ} + vbt(-,u)7 te [OvT]vlu € PD;

where T > 0 is a fixed constant, o* is the transposition of o, V? is the
Hessian operator, V; := b-V is the derivative along b, and for some m € N,

b:[0,T] x Dx PP - R? ¢:00,T]x DxPP - RI@R™
are measurable such that
T
e [ Qoo + oo ) P a(ao) < .

p= (1t)refo,r) € ([0, T; PP).

(7.1.1)

319
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To introduce the nonlinear Dirichlet problem for L, , on PP, let C% (D)
be the class of f € CZ(D) with Dirichlet condition f|sp = 0, where f €
C%(D) means that f is a bounded C? function on D with bounded first
and second order derivatives. For any ¢ € [0,7] and u,v € PP such that

[ At + N, ) P(an) < e,

define the linear functional on C% (D):

Lt{):;y: C3(D)> [+ (LE;Z/)(f) = / L, fdv eR.
D
The corresponding nonlinear Dirichlet problem for L, , is the equation
Oupe = L ju, t€[0,7T] (7.1.2)
for p1: [0, 7] — PP. We call u. € C([0,T]; PP) a solution to (7.1.2), if

t
() = po(f) + / ia(Loy f)ds, 1€ [0.T], f € C3(D),

where p(f) := [ fdp for a measure p and f € L'(p).
When p;(dz) = pi(x)de, (7.1.2) reduces to the nonlinear Dirichlet prob-
lem

8tpt = LE;;ptv te [O7T]7

where Ly p, := Ly 5, (2)dz, 0 the sense that

t
[ tootato= [ (rato+ [ s [ (oL f)@),
D D 0 D
t€[0,T), f € CH(D).
To characterize (7.1.2), we consider the following killed DDSDE on D:
AX; = Lger(x)y {0e(Xe, £8,)dt + 00 (X, LR)dWL}, t€[0,T], (7.1.3)

where W, is the m-dimensional Brownian motion on a complete filtration
probability space (Q, {F;}i>0,P),

7(X) :=inf{t € [0,T] : X; € 9D}
with inf ) = oo by convention, and for a D-valued random variable €,
Ly =PEeDn)

is the distribution of £ restricted to D, which we call the D-distribution of
&. When different probability spaces are concerned, we denote L',gD by Eé’ﬂ»
to emphasize the reference probability measure.
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Definition 7.1.1. A continuous adapted process (X¢):e[o,7) on D is called
a solution of (7.1.3), if P-a.s.

TAT(X)
/ {lbe (X, £2)] + lon(X0, £2)|2}dt < oo
0
and
tAT(X)
X, :X0+/ {bs(Xs, LR )ds + 05 (X, £ )dW,}, t €[0,T].
0

We call (X;,W;) a weak solution to (7.1.3), if there exists a complete fil-
tration probability space (€2, {F;}iejo,77, P) such that W; is m-dimensional
Brownian motion and X; solves (7.1.3) for W; replacing W;.

Remark 7.1.1. (1) It is easy to see that for any (weak) solution X; of
(7.1.3), p := LX), solves the nonlinear Dirichlet problem (7.1.2). Indeed,
since dX; = 0 for ¢t > 7(X), we have

X, = X,(x) €0D, t>7(X),
so that
X = Xiar(x), LR, (dz) =P(t <7(X),X; €da), te0,T]
By this and It&’s formula, for any f € C% (D) we have
me(f) =E[(1p f)(Xe)] = E[f(X4)]

t
= E[f(XO)] + EA 1{S<T(X)}L8,ﬂsf(XS)dS

= po(f) + /Ot ps(Lsp, f)ds, ¢ €[0,T].
(2) An alternative model to (7.1.3) is
dX; = 1p(Xe){be(Xe, LR,)dt + 0¢(Xy, LR )W}, t€[0,T].  (7.1.4)
A solution of (7.1.3) also solves (7.1.4); while for a solution X; to (7.1.4),
X = Xipr(x)

solves (7.1.3). In general, a solution of (7.1.4) does not have to solve (7.1.3).
For instance, let d = m = 1 and D = (0,00), consider o(z, ) = 2z,
bi(x, 1) = 24/z. Let Y; solve the SDE

1
aY; = Y,dW; + (1 - §Yt)dt, Yo = 0.

Then X, := (Y;)? solves (7.1.4) but does not solve (7.1.3), since 7(X) = 0
and X; >0 (i.e. Xy ¢ 0D) for t > 0.
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(3) The SDE (7.1.4) can be formulated as the usual DDSDE on R<,
so that the superposition principle in [Barbu and Réckner (2020)] applies.
More precisely, let P be the space of probability measures on R?, and define

be(x, 1) := 1p(@)by(z, (D N-)), Gu(, p) == 1p(x)o(a, p(D N -))

for (t,z,p) € [0,T] x R? x P. Then (7.1.4) becomes the following DDSDE
on R%:

dXt = Bt(Xt,ﬁxt)dt + 5't(Xt7£Xt)tha te [O,T]

We often solve (7.1.3) for D-distributions in a non-empty sub-space PP
of PP, which is equipped with a complete metric d. Let C* ([0, T]; PP) and
C([0,T]; PP) be defined as in (3.1.2).

Definition 7.1.2. (1) If for any Fy-measurable random variable X, on D
with EQO € pr7 (7.1.3) has a unique solution starting at X, such that
LY = (LY e € C([0,T); PP), we call the SDE strongly well-posed
for D-distributions in PP.

(2) We call the SDE weakly unique for D-distributions in P2, if for
any two weak solutions (X7, W}) w.r.t. (Q), {F }epo,r),P)) (i = 1,2) with

ﬁgé\ﬂ”l = ngl]pz e 75D, we have £§1|P1 = nglpz. We call (7.1.3) weakly
well-posed for D-distributions in PP, if for any initial D-distribution pg €
PP it has a unique weak solution for D-distributions in PP.

(3) The SDE (7.1.3) is called well-posed for D-distributions in P2, if it

is both strongly and weakly well-posed for D-distributions in PP,

When (7.1.3) is well-posed for D-distributions in PP, for any pu € PP
and ¢ € [0,77, let

PtD*.u = ﬁ)l?',,a te [OvT]v ‘C)D(O = p-

We will study the well-posedness under the following assumption.

(ATY) For any pu € C([0,T); PP), the killed SDE

AX} = Tperxmp {0e(XF, p)dt + oy (XY ) AW}, ¢ €00,
(7.1.5)
is well-posed for initial value X} with E)%; = o, and LR, € C¥ ([0,

T); PP).
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Under this assumption, we define a map
Cr([0,T); PP) 5 pvs @ = LR € G ([0, T); PP). (7.1.6)

It is clear that a solution of (7.1.5) solves (7.1.3) if and only if y is a fixed
point of ®. So, we have the following result.

Theorem 7.1.1. Assume (ATY). If for any v € PP & has a unique
fized point in {u € C¥([0,T);PP), uo = ~}, then (7.1.3) is well-posed for
D-distributions in PP.

7.2 Monotone case

In this part, we solve (7.1.3) under monotone conditions with respect to
the L' or truncated L' Wasserstein distances:

W (p,v) = 7)inf / | — y|m(dz, dy),
IS D(/"'a”) DxD (7.2.1)
Wiy = _int [ ale - yl)m(dedy), v e P,
WG'PD(,U,,V) DxD

where 7 € Pp (i1, v) means that 7 is a probability measure on D x D such
that

7({-ND} x D) =pu, 7(Dx{-ND})=uw.
7.2.1 Monotonicity in Wl

(A™2) For any p € C([0,T); PP), bi(z, ) and o(z,ps) are continuous
in x € D such that for any N > 1 and Dy :={z € D : || < N},

T
/ sup {|bt(',ut)| + ||Jt(~,ut)||2}dt < 00.
0 Dn

Moreover, there exists K € L'([0,T7]; (0,00)) such that for any x,y €
D and p,v € PP,

2<bt(x7ﬂ) - bt(y7y)=x - y> + ”O—t(xaﬂ) - Jt(:%”)”%{S
< K®){lz — y* + Wi (u,0)?},
2(be(x, ), 2) + lloe(z, w)llErs < K(6)(1+[2?), t€[0,T].
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(AT3) There exists mo € (0,1] such that the distance function py to D is
C?-smooth in

oD :={z€D: py(x) <ro},
and there exists a constant o > 0 such that
‘O—t(xaﬂ)*vpa(xNiQ § Q, Lt,#pa(x) § a, HARS aToDat € [OvT}

Theorem 7.2.1. Assume (A72) and (A73). Then the following assertions
hold.

(1) (7.1.3) is well-posed for D-distributions in PP . Moreover, for anyp > 1
there exists a constant ¢ > 0 such that for any solution X; to (7.1.3)
for D-distributions in PP,

IE[ sup | X, [P ]-"0] < c(1+Xo?). (7.2.2)
t€[0,T)
(2) There exists a constant ¢ > 0 such that
sup Wy (PP*p, PP*v) < éW, (u,v), p,v e PP. (7.2.3)
t€[0,T]

Under assumption (A7-2), for any u € C*([0,T]; PP), the SDE (7.1.5)
satisfies the semi-Lipschitz condition before the hitting time 7(X*), hence
it is well-posed, and for any p > 1 there exists a constant ¢ > 0 uniformly
in p such that

IE[ sup |Xt”/\%|p’]-"o] = ]E{ sup |XfAT(Xu)/\%|p’}—0}
te[0,T] te[0,T)

< (1 +[X517)

(7.2.4)

holds for any solution X}' of (7.1.5) and any stopping time 7.

By Theorem 7.1.1, to prove the well-posedness of (7.1.3) for D-
distributions in PP, it remains to show that for any v € PP, the map
® in (7.1.6) for PP = PP has a unique fixed point in

PI(D) 1= { € C¥([0.T):PP) : o = 7). (7.2.5)
To this end, for i = 1,2, let u* € C*([0,T); PP), and let X} solve (7.1.5)
for u' replacing p with £§i =, ie.
0
de = 1{t<T(Xi)}{bt(sz /‘i)dt + Jt(XZa “i)th}» (7.2.6)
D _ i 2.
Simply denote

T = T(Xi) fori=1,2, T:=71 ATa.
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Since
.= {(:B,y) cxe€DyedD, |z —y|l= Pa(x)}

is a measurable subset of D x 9D and ', := {y € 9D : (z,y) € T} #
() for any z € D, by the measurable selection theorem, see Theorem 1
in [Evstigneev (1988)], there exists a measurable map Py : D — 9D such
that

|Pox — x| = po(z), x € D. (7.2.7)
We will use the following coupling by projection.
Definition 7.2.1. The coupling by projection (X}, X?) for (X}, X?) =
(X{arys XPnp,) is defined as
(X3, X7), it <7,
(X1 XD = (XL, PoX)), ifm <tAT, (7.2.8)
(PyX2,X2), otherwise.
It is easy to see that ﬁQ; = /3)% = &, for i = 1,2; i.e. the distribution
Lx: x2y of the coupling by projection (X}, X?) satisfies
Lixi x2) € Pp(Pipt, @)
Thus, by (7.2.1) and Definition 7.2.1,
W (@', ®p°) <E[1A X} — X7]]
SE[LA X, = X2, l] + 70 B0 A po (XD L pnnizmy] (7.2
+ 7 El{ro A pa(X) H finry>my -

Lemma 7.2.2. Assume (A72). Then there exists a constant ¢ > 1 such
that for any t € [0,T] and pt, u? € C¥([0,T); PP),

]E I:‘th/\Tl,Z - Xt2/\7'1,2 |2 |FO:|

t ) (7.2.10)
< el = XEP e [ K (il 2,
0
Consequently, for any t € [0,T],
E[l A |Xt1/\‘l'1,2 - Xt2/\’l’1’2 |]
3 (7.2.11)

< VaEi A g X300+ (o [ Rk aas)
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Proof. Tt suffices to prove (7.2.10), which implies (7.2.11) due to Jensen’s
inequality.
By (A7-2?) and Ito’s formula, we obtain

dIX} = X717 < K@O{IX) = X2+ Wi (ud, 17)? Jdt +dMy, ¢ € [0,T A7 2]
for some local martingale M;. This and (7.2.4) imply that
Bt = EUth/\TLQ - Xt2/\7'1,2|2|]:0}

is bounded in ¢ € [0, T] and satisfies

t
Bt < Bo +/ K(5){Bs + Wi(us,u3)*}ds, t€[0,T].
0
By Gronwall’s inequality, we prove (7.2.10). O

Lemma 7.2.3. Assume (A"3). Then there exists a constant ¢ > 1 inde-
pendent of p such that for any solution X}' to (7.1.5) and any stopping time

T?
Liinr(xmyz7yE[ro A pa(X{)| Fz] < lpnr(xmzrypa(Xfhz), t€[0,T].

Proof. By the strong Markov property of X} which is implied by the
well-posedness of (7.1.5), we may and do assume that 7 =0 and z = X/ €
D, such that the desired estimate becomes

E*[ro A pa(X}")] < cpa(z), t€[0,T], (7.2.12)

where E? is the expectation under the probability P* for X} starting at z.
If po(x) > 72, this inequality holds for ¢ := 4. So, it suffices to prove for

pa(x) < 3
Let h € C*°([0, 00)) such that

' >0, k" <0, h(r)=rforre[0,r9/2], W (r)=0 for r > ro.
By (A™?),
dh(pa(X!)) < adt +dM;, te[0,T AT(XH)], (7.2.13)
where M; is a martingale with
d(M); > a~tdt, t <7 :=inf{t >0: pa(X}) > ro/2}). (7.2.14)
By (7.2.13) we obtain
E”[ro A po(X{)] < 2E"[h(po(X{), (xm)))]

(7.2.15)
< 2pg(x) + 2aE"[t A T(XH)].
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On the other hand, let

po(X{) 2 roo .,
m ::/ e 2 Sds/ e2%40, te [0, T AT(XH)AT].
0

S

Since h(r) = r for r < 7, by (7.2.13), (7.2.14) and It0’s formula, we find a
martingale M, such that
dn, < —dt +dM,, te[0,T AT(X") AT
Consequently,
E*[t AT(X*) AT] <mo < crpa() (7.2.16)

holds for some constant ¢; > 0. Therefore,

E°[t AT(XH)] < E*[t AT(XH) A7)+ TE” [1pnr(xn)>7}) (7.2.17)

<cipop(z) + TP*(tAT(XH) >7), te€[0,T].
To estimate the second term, let

po(Xt") )
& ::/ e 2 5ds, te[0,T AT(XH") AT
0

By h(r) =r for r € [0, 2], (7.2.13), (7.2.14) and It6’s formula, we see that
&; is a sup-martingale, so that

po(x) > &o > BT [Enr(xmni]

T0/2 ) (7.2.18)
>Pr(tAT(XH) > 7) / e 2 ds.
0

Combining this with (7.2.15) and (7.2.17), we prove (7.2.12) for some con-
stant ¢ > 0. g

Proof of Theorem 7.2.1. (a) Well-posedness. Let v := EQO, and con-
sider PT(D) in (7.2.5). We intend to prove that ® is contractive in P (D)
under the complete metric
Wog(u', p?) = sup e "W (py, 1)
t€[0,T]

for large enough 6 > 0. Then & has a unique fixed point in P?;(D), so that
the well-posedness follows from Theorem 7.1.1.

To this end, let u® € C7 and let X} solve (7.1.5) with u = u* and
Xi = Xo,i=1,2. By rg <1, Lemma 7.2.3, and noting that

1{15/\72271}:06()(152/\71,2) < 1{t/\T22T1}|Xt2/\T1,2 - th/\7'1,2|’
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we obtain

E[l{t/\mz‘rl}{ro A pa(Xt2/\T2)}i|
= ]E(l{t/\TQZTl}E[{TO A p(XtQ/\Tg)}‘]:ﬁ])

<c E[l{t/\TQZTl}{TO A pa(Xt%\Tlv?)}}
B[N X — X ]

(7.2.19)

By symmetry, the same estimate holds for E[l{ngQ}{ro A pa(th/\Tz)}}.

Combining these with X} = X2 = X,, (7.2.9) and (7.2.11), we find a
constant ¢; > 0 such that

1
2

t
Wy (Dt ®ep?) < c1</ K(S)Wl(ui,ug)st) , t€]0,T).
0

This implies that ® is contractive in Wl)e for large enough 6 > 0.

(b) Estimate (7.2.2). Let py = L&, for the unique solution of (7.1.3),
we have X; = X! since u is a fixed point of ®. So, (7.2.2) follows from
(7.2.4).

(c) Estimate (7.2.3). Take X}, X2 such that

L% =u, LR =v, E[LA|Xg - X5l = Wi(p,v). (7.2.20)
Let X} and X7 solve (7.1.3). Then they solve (7.2.6) with
pp = E)%l = PPy, ul= EQE = PPy,

so that pi = ®u', t € [0,7], i = 1,2. Thus, by (7.2.9), (7.2.10) and
Lemma 7.2.3, we find a constant ce > 0 such that

Wiy (PP*p, PP*v) = Wy (@t ®4p0)

1
2

t
< oWy (p,v) + <CQ/ K(S)Wl(PSD*‘u,PSD*V)2dS> , t€]0,T].
0
By Gronwall’s inequality, we prove (7.2.3) for some constant ¢ > 0. [
7.2.2 Monotonicity in W,

Let PP = {p € PP, |l := (] - |) < oo} Define

Il = sup |lpellr, e CP(0,T;PP).
te[0,T]
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(A™%) For any p € CF([0,T); PP), bi(z, pue) and oy(z,pue) are continuous
in x € D such that for any N > 1 and Dy :={x € D : || < N},

T
/ sup {|bt(',ut)| + ||Jt(',ﬂt)||2}dt < 00.
0 Dn

Moreover, there exists K € L'([0,T7]; (0,00)) such that for any z,y €
D and p,v € PP,

2<bt($7ﬂ) - bt(y,u),m - y> + ||Ut(33vﬂ) - Ut(yay)H%IS
< K(O){lz = yI* + Wi (u,v)?},
2(be(z, ), 2) + lloe(@, w)llErs < K@O{1+ |2 + lull},  t €0, T].

(AT3) There exists 1o > 0 such that psp € C*(d,,D), and there exists an
increasing function « : [0,00) = [1,00) such that

loe (2, 12)*Vpo| 7 < a(lullv),

(7.2.21)
Liupo(x) < all|pll), = € 0p,D,

2(by(z, 1),z — y) + |loe(@, 1) | 3rs
< K@allul)(1+lo—yP), te[0.T)yedD,zeD,
(7.2.22)

Theorem 7.2.4. Assume (A™*) and (A"5). Then the following assertions
hold.

(1) (7.1.3) is well-posed for D-distributions in PP. Moreover, for anyp > 1
there exists a constant ¢ > 0 such that for any solution X; to (7.1.3)
for D-distributions in PP,

E[ swp |X.J7
te[0,T)

Fo| < e(1+ 1Xol + E[lp(Xo)| o))" (7:2:23)

(2) If o is bounded, then there exists a constant ¢ > 0 such that

sup Wy (PP*p, PP*v) < cWi(u,v), p,vePP. (7.2.24)
t€[0,T]
It is standard that (A"*) and (A7-%) imply the well-posedness of (7.1.5)
for p € CP([0,T); PP), and instead of (7.2.4), for any p > 1 there exists a
constant ¢ > 0 such that

t
B[ sup [XUP|R] < cL+ [XEP) e [ K)nelids,
] 0

tefo,T (7.2.25)

t€10,7), 1 € C([0,T]; P).
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Let ' € C([0,T); PP),i = 1,2, let X} solve (7.1.5) for p¢ replacing p with
EQS = pf, and denote as before
1= 1(XY) fori =1,2, Ti9:=7 ATo.
Using (A"™4) replacing (A"2), the proof of (7.2.10) leads to
E[|Xinr, , = Xinr, " Fo]

¢ (7.2.26)
<Xy - X3P e [ KWk p2Pds, te 0.T)
0
and instead of (7.2.9), ® defined in (7.1.6) for PP = PP satisfies
Wy (@', @) <E[|X} — XP|] <E[| X[, , — XA
1(Pep, @ep”) < U t t|] > U tATL 2 tA 1,2” (7.2.27)

+ E[pa(th)l{t/\leTg}} + E[pﬁ(XE)l{t/\ﬁZTl}]'

The following lemma is analogous to Lemma 7.2.3.

Lemma 7.2.5. Assume (A7-%). Then there exists an increasing function
¥ @ [0,00) = (0,00) which is bounded if so is a, such that for any p €
Cr([0,T); PP), any solution X|' to (7.1.5), and any stopping time 7,

1.7)pa(X%).

Proof. By the strong Markov property, we may assume that 7 = 0 and

Lignr(xmy>7 E[pa (X1 | Fz] < Liarxmys730(Jlul

x = X}' € D, so that it suffices to prove
Fy(z) = Epo(XP)] < o(llullir)po(e), =€ Dte(0,T).  (7.2.28)

(a) Let pp(x) > 2 and y € D such that py(x) = |y — z|. By (7.2.22), we

have
dIXf —y? < KOa(pllr) (1 + X —y?)dt +dMy, t€[0,T AT(X")]

for some martingale M;. Combining this with |z — y| = pa(x), we obtain
t
E°[| X} — yf*] < po(2)* + a(||#||1)/0 K(s)ds

+ [ Kallul. B X2 - yds, t€ 0.7)
0

By Gronwall’s inequality and ps(z) > %, we find an increasing function

11 : [0,00) = (0,00) which is bounded if so is a, such that
T
ET(IXY =yl < {pa<x>2 +a(||ull.r) / K<s>ds}ea<nmw>f: K(s)ds
0

< {1(lulh.r)pe(@)}?, te0,T).
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Combining this with Jensen’s inequality, we prove (7.2.28) with ¢ = 1y for
po(x) = 3.
(b) Let ps(x) < 2. Simply denote a = o(||p|[1,7) and define

7i=1inf{t > 0: ps(XL') > ro}.
By (A7) and 1t&’s formula, we obtain
dps(X}') < adt +dM;, te€[0,TAT(X")AT]
for some martingale satisfying (7.2.14). So,
B pal( XL une)] < E7[E A T(X) A,

Combining this with step (a) and the strong Markov property, we obtain
E7[po(X1)] = E” [po (X (x0y)]
< E7po (X (xmpns)) + E7 [ Lenrxmzs Dir (X2)]
< aE [t AT(XH) AR+ P (EAT(XH) > F)br (|l ) ro.

Combining this with (7.2.16) and (7.2.18), we prove (7.2.28) for some in-
creasing function v : [0,00) — (0, 00), which is bounded if so is a. O

Proof of Theorem 7.2.4. Let X; solve (7.1.3) for D-distributions in P{.
Then X; = X}' for py := L')%, so that

ltslly = E[1p (X)Xl = E[lgr<rxy [ Xsll, s €[0,77.

Combining this with (7.2.25), we obtain

2
el < (Eq/ElLparoon 1 Xol21F0))

< Q(E\/c(l + 1D(X0)|X0|2))2 + 20/0 K(s)||us\|%ds

t
< 2¢(1 4 E[1p(Xo)|Xo[])? + 20/ K(s)|lpsllids, ¢ 0,T].
0
By Gronwall’s inequality, we find a constant ¢; > 0 such that

sup ||pe[f < e1(1+E[1p(Xo)| Xo[])*.
te[0,T]

This together with (7.2.25) yields (7.2.23) for some different constant ¢ > 0.
It remains to prove the well-posedness and (7.2.24).
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(a) Well-posedness. Let v := LE € PP. For any N > 0, let

PLY (D) = {u eGP (0, T PP) s po =7, sup e V' ull < N}.
t€[0,T]
(7.2.29)
We first observe that for some constant Ny > 0,
oP{ (D) c P{;N(D), N> N, (7.2.30)
where @ is defined in (7.1.6) for PP = PP. Let u € P|:V(D) and let X/'

solve (7.1.5) for X! = Xo. Then ®;p = LQ#. By (7.2.25) and

[@eplly < E/EILD (Xo)| Xonrxm 21 Fo],

we find a constant ¢; > 0 such that

t 2
[y <t i) e[ lfas) s te o
0

Then for any N > Ny := ¢ + 2¢1(1 + ||7]]1), we have

sup e N[ ®ply
te[0,7]

t 2
<altt ) +e s ([ ot 2¥0as)
t€[0,T] 0

t 2
<er(1+ nfy) + N sup (/ ems)ds)
t€[0,T] 0

< Cl(l—|— ||’}/H1) —|—Cl\/N§ N.

Next, for any N > Ny, we intend to prove that ® is contractive in 731T7 LYN (D)
under the complete metric

Wig(u', p?) = sup e ®"Wi(ug, 17)
t€[0,T]

for large enough 6 > 0, so that ® has a unique fixed point in PlTﬁ(D) =
UN> NOP1T7 ;YN(D). Hence the well-posedness follows from Theorem 7.1.1.
To this end, let u® € PlTVLYN(D) and X, solve (7.1.5) for p = p® and

Xt = Xo,i = 1,2. By Lemma 7.2.5 and noting that ps(z) < |x — y| for
x € Dandy € 0D, we find a constant c; > 0 depending on N but uniformly
in p?, such that

E[P@(th)l{mnzm} + Pa(Xf)l{t/\rzznﬂ

< & [po(Xinr ) Lparzmy + Po(Xinr, ) (tars>m))

< 20B[| Xipr, , = Xinr, Ll t€[0,T].
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Combining this with (7.2.26) and (7.2.27), we find a constant ¢z > 0 de-
pending on N such that
W1 (@opt, @oi®) < 3B X5 — X3]
¢ 3 — (7.2.31)
+03</ K(S)Wl(,ui,,ui)st) , utpte Py, (D), t€[0,T].
0

Since X§ = XZ = Xy, this implies the contraction of ® in Wy g for large
enough 6 > 0.
(b) Estimate (7.2.24). Now, for pl,pu3 € PP, let X}, X3 be Fo-
measurable random variables on D such that
L0y = uh, LR =3, EIX) - X =Wi(uh,pd).  (1.2.32)
Letting X} solve (7.1.3) with initial value X¢, then pu* := (PP* i) e, is
the unique fixed point of ® in C*0, so that
py =LY = ;=P g, i=1,2,t€[0,T). (7.2.33)
When « is bounded, (7.2.31) holds for some constant ¢ > 0 independent
of N, which together with (7.2.32) yields

Wi (puf, p17) = Wi(yp', Byp®)

t 2

< &;El|X) - X2] + ( K(s>w1<u;,u§>2ds)

0

= cs Wy (ud, u) + c;;(/t K(S)Wl(u;,uz)st) 27 t e [0,77.
By Gronwall’s inequality and ($.2.Z’)Z">)7 we obtain
Wi (PP o, PP 13)* = W (i, if)?
< 23Wy (u, )23 Jo K= ¢ e [0, 7).
Then the proof is finished. [

7.3 Singular case with distribution dependent noise

In this part, we assume that ¢ and b are extended to [0, 7] x R x PP but
may be singular in the space variable. For any u € C*([0,T]; PP), let
b () = bl ) = 0 () + b1 (),

U#(z) = Ut(x7llt), (t7x) c [O,T] x Rd, (731)

where b%(-) is singular and bgl)(~) is Lipschitz continuous. As in the last
section, we consider (7.1.3) for D-distributions in PP and PP respectively.
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7.3.1 For D-distributions in PP

(AT5) There ezist K € (0,00), 1 € N, {(ps,q;) : 0 < i <1} C K with p; > 2,
and 1 < f; € L% (T) for 0 < i <1, such that o* and b* in (7.3.1)
satisfy the following conditions.

(1) For any p € C¥([0,T);PP), a* = ot (o")* is invertible with
la*[loo + [[(a#) " Hloo < K and
lm  sup swp [l (x) — k()] =0.
V0 pecw ((0,11:PP) te[0,T], |z —y|<e
(2) b™M(0) is bounded on [0,T), o is weakly differentiable for u €
cv([0,T); PP), and

l
b1 (@)] < folt,@), [IVof (@) < filt,w),
i=1

b0 (@) — oV ()] < Kla —yl, te0,T),z,ycRL

(3) For anyt € [0,T),x € R? and p,v € PP,
1
loe(a, 1) = (@, v)|| + |be(w, 1) = be(w,v)| < Wi, v) Y filt, @)
i=0
Theorem 7.3.1. Assume (A7%) and (A73). Then the following assertions
hold.

(1) (7.1.3) is well-posed for D-distributions in PP.
(2) For anyp > 1, there exists a constant ¢, > 0 such that for any solution
X to (7.1.3) for D-distributions in PP,

E{ sup | X,[?
t€[0,7)

.FO:| S Cp(l + ‘X0|p)
(7.3.2)

fo} —]E[ sup | Xyar(x)l?
t€(0,T]

(3) There exists a constant ¢ > 0 such that (7.2.3) holds.

For any p € C{([0,T); PP), instead of (7.1.5) we consider the following
SDE on R%:

AXF = b XYt + o (XI)AW;, t e [0,T). (7.3.3)

Noting that X/ := Xf/\‘r(X“) solves (7.1.5), the map ® in (7.1.6) is given
by
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So, (7.2.9) and (7.2.27) remain true for X; solving (7.3.3) with u = u* €
cv([0,T);PP),i=1,2.

By Theorem 1.3.1, (A76)(1) and (A7-®)(2) imply that this SDE is well-
posed, and for any p > 1 there exists a constant ¢, > 0 such that

E[ sup |X[P
t€[0,T]

]—"0] < (14 |XKP), wecv([0,T];PP). (7.3.4)

We have the following lemma.

Lemma 7.3.2. Assume (A7-%). Then for any j > 1 there exists a constant
¢ >0 and a function € : [1,00) — (0,00) with £(0) L 0 as 6 1 oo, such that
for any pt, u? € C([0,T); PP) and any X; solving (7.3.3) with pu = p',i =
1,2,

]E[ sup | X} — Xfljffo] < e|Xg — X5 +e(0)e "Wy (', 1), 6> 1.
s€0,t]

Proof. By Lemma 1.2.2, (A7%)(1) and (A7%)(2) imply that for large
enough A > 1, the PDE

(at + %tr{aglw} o ~V)ut = — b0, te[0,T)ur =0 (7.3.5)
for u: [0,7] x RY — R? has a unique solution such that
IVl ) < €0 Tl + Vo < 5. (736)
Let Y} := @t(Xti),i =1,2,0; :=id + u;. By It6’s formula we obtain

= (" + M Y (XAt + ({VO, 1ol ) (X)) AW,
dY2 = {{b 4 Mg + (VO (B — b )H(X2)
+ g lorf(a” — af )W) (X7) Jat + ((VO,}o}" ) (XP) AW,

Let n; := | X} — X?| and

l
gr ‘= Zfz(TaXf)v Gr = ngvZur(Xf)”v

2 l
gr.onv ul (XD + D0 filr, XP), v €0,T).
=1

j=1i=0
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Since b{") 4+ Auy is Lipschitz continuous uniformly in ¢ € [0, T], by (A™6) and

the maximal functional inequality in Lemma 1.3.4, there exists a constant
c1 > 0 such that

{0+ du } () = {0V + du J(XD)] < ey,
2 1 A
[[tr{(a)” = al)VPur )} (XD)] < eadie Wi (uh, ),
Vl 2

{(Verar (X0 = {(ve,)ar }XD)|

< gy + g, Wa(pg, i), 7€ [0,7).
So, by It6’s formula, for any j > k we find a constant co > 1 such that

AV = Y21¥ < eoni? dAs + co(g? + G)Wa(uf, pf) ¥ dt + dM, - (7.3.7)

holds for some martingale M; with My = 0 and

¢
Ay = / {1+¢2+§s+g2}ds, te[0,T]
0
Since ||Vullo < 2 implies |V, — V2| > Ln,, this implies
¢
ny < 29 M, + 2% 4+ 2% ¢y / nFdA,
0
o A | (7.3.8)
’ 22]02/ (92 + 3s) Wi (g, p2)*ds, t€[0,7]
0

for some constant co > 0. By (7.3.6), f; € f/gb (T) for (pi,q;) € K, Krylov’s
estimate in Theorem 1.2.3 and Khasminskii’s estimate in Theorem 1.2.4, we
find an increasing function v : (0,00) — (0,00) and a decreasing function
£:(0,00) = (0,00) with £(f) | 0 as 6 1 oo, such that

Ele™T|Fo] < 4b(r), >0,

t
sup E(/ e 2RO (g2 4 G, )dr
t€[0,T] 0

By the stochastic Gronwall inequality in Lemma 1.3.3 and the maximal

fo) < 5(0), 0 > 0.

inequality in Lemma 1.3.4, we find a constant c¢3 > 0 depending on N such
that (7.3.8) yields
2
7o)}

{E( sup ng
s€[0,t]
t
< (i + [ 2+ 00k as| )
0
< 0377(2)j + c3eX (YW, (1t 1>)¥, t€0,T],6 > 0.
This finishes the proof. O
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Proof of Theorem 7.83.1. Let X; solve (7.1.3). We have X; = Xf/\r(xu)
for X!' solving (7.3.3) with

XY =Xo, p:=LR, tel0,T]

So, (7.3.2) follows from (7.3.4). It remains to prove the well-posedness and
estimate (7.2.3).

(a) Well-posedness. Let X, be an Fp-measurable random variable on
D, and let PT(D) be in (7.2.5) for v = LY . By Theorem 7.1.1, it suffices

to prove that ® is contractive in 7 (D) under Wy ¢ for large enough 6 > 0.
By (7.2.9), (7.2.19) and Lemma 7.3.2 for X} = X2 = X,, we find a
constant ¢; > 0 such that

Wi (Dot Dopi®) < cre()Wi (ph, pi?), ' u” €C.

Since £() — 0 as 6 — oo, ® is W, g-contractive for large enough 6 > 0.
(b) Estimate (7.2.3). Let X}, X7 solve (7.1.3) with X}, X2 satisfying
(7.2.20). Then

Oyt = py = LR = PPy, i=1,2,
so that (7.2.9), (7.2.19) and Lemma 7.3.2 imply
W', 1?) = Wi (@', @4ps°)
< ClWl(/u'(l)a /1'(2)) + 615(9)W1(M1,M2), (&S [OvT]

for some constant ¢; > 0. Taking 6 > 0 large enough such that e(9) <
we derive (7.2.3) for some constant ¢ > 0. O

1
2cy?

7.3.2 For D-distributions in ’PlD

(A™T) There exist an increasing function « : [0,00) — (0,00), constants
K>0,1eN, {(pig;):0<1i<I} CK with p; > 2, and functions
1<fie Egi (T') for 0 <i <1 such that o and b* in (7.3.1) satisfy
the following conditions.

(1) For any p € C([0,T); PP), a* := o*(o™)* is invertible with

la*]loe + 1(@") oo < a(llullrz),
gk

lim sup sup ||af($) ay (y)|l = 0.
&0 yecw ((0,T);PP) te[0,T), |z —y|<e
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(2) bM(0) is bounded on [0,T), ol is weakly differentiable for u €
([0, T PP), and

l
60@)] < folt,2) +allullr). Vot @) < D fitt. @) + allulla.r),
i=1

b () = bV ()| < Klo —y|, t€[0,T],z,y € R

(3) For anyt € [0,T],z € R* and p,v € PP,
!

e (2, 1) = o, V)| + b, 1) = e, v)] < Wiu,v) Y filt, ).
=0

(4) There exists ro € (0,1] such that ps € CZ(0y,D), and for any pu €
(0. T PP),

(b7 (), Vpa(z)) < a(llullr), = € 0D, (7.3.9)

(b (@), 2 =) < allullir)(folt,2)* + |z — yf?),

(7.3.10)
ze€D,yedD, t€]0,T).

Note that when (") = 0, (7.3.9) is implied by the first condition in

(A7)(2).
Theorem 7.3.3. Assume (A™7). Then the following assertions hold.

(1) (7.1.3) is well-posed for D-distributions in PP.
(2) For anyp > 1, there exists a constant ¢, > 0 such that for any solution
X to (7.1.3) for D-distributions in PP,

E[mm|xw
te[0,7]

Fo] < {1+ [XoP + €L () ])) . (73.1)

(3) If « is bounded, then there exists a constant ¢ > 0 such that (7.2.24)
holds.

By Theorem 1.3.1, (A™7) implies that for any u € C*([0,T); PP), the
SDE (7.3.3) is well-posed, and for any p > 1 there exists a constant ¢, > 0
such that for any pu € C([0,T); PP),

E{ sup |X}'|*P
te[0,7)

T
fo] gcp{1+|Xg|2p+/ |u5||§”ds}. (7.3.12)
0

For any u', u? € C([0,T]; PP), let X} solve (7.3.3) for u = pt,i=1,2.
For any N > 0 and v € PP, let PlT,’WN (D) be in (7.2.29). Since restricting
to p,v € P;‘CL/N(D), the conditions in (A™7) hold for a constant v replacing
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the function «, by repeating the proof of Lemma 7.3.2 with W replacing
W, we prove that the following results.

Lemma 7.3.4. Assume (A™7). For any N > 0 and j > 1, there exists a
constant ¢ > 0 and a function € : [1,00) — (0,00) with €(0) L 0 as 6 1 oo,

such that for any pt, u? € PlT’;/N(D) and any X} solving (7.3.3) with p = u*,
i=1,2,

E| sup | X! = X2|Fo| < el X3 — X3V +e(0)e Wy o (!, 12y, 02 1.
s€[0,t]

When « s bounded, the constant ¢ does not depend on N.
Moreover, we need the following result analogous to Lemma 7.2.5.
Lemma 7.3.5. Assume (A"7). Then the assertion in Lemma 7.2.5 holds.

Proof. Tt suffices to prove (7.2.28) for some increasing function 1 which
is bounded if so is «a.

(a) Let pp(xz) > 3 and y € 9D such that ps(z) = |y — z|. By (7.3.10)

and (A”7)(2), we find an increasing function v; : [0, 00) — (0, 00) which is
bounded if so is «, such that

1
dIXf =y < b (lelhr) (D0 filt, X2+ |XE = yf?)dt + dM,
i=0
holds for some martingale My, t € [0,T A 7(X*)]. Next, by Theorem 1.2.3,

(A7) implies that for some increasing function vy : [0, 00) — (0, 00) which
is bounded if so is «, the following Krylov’s estimate holds:

T
B( [ 50207 ) < oallilh g oy 051
0 :

Combining these with |z — y| = ps(x), we derive

l
l,T)Z ||fi\|%g;(T)

=0

t
+ () / E[|XF — 2| Folds, ¢ € [0,T].
0

E[I X" = yI?|Fo] < pa(x)? +¢1(]lul

1,7)%2(/|p]

By Gronwall’s inequality and ps(z) > 7, we find an increasing function
1 1 [0,00) — (0, 00) which is bounded if so is «, such that

E[| X} — y|*|Fo) < (|l r)po(w).
Since pa(X{') < | X} —y|, we prove (7.2.28) for py(x) > =2.
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(b) Let pa(x) < 2. By (A™7)(1), (7.3.9) and py € CZ(0,, D), (7.2.21)
holds for some different increasing function o which is bounded if so is the
original one. Then step (b) in proof of Lemma 7.2.5 implies the desired
estimate. (]

Proof of Theorem 7.3.3. Let X, solve (7.1.3) for D-distributions in P{.

We have X; = X#/\T(X“) for X} solving (7.3.3) with

XY =Xo, me=LY, t€0,T).
So, as explained in the beginning of the proof of Theorem 7.2.4 that (7.3.11)
follows from (7.3.12), it suffices to prove the well-posedness and estimate
(7.2.24).

Let Xy be an Fy-measurable random variable with E)%) € PP, and let
PlT}’WN(D) be in (7.2.29) for N > 0. By the proof of Lemma 3.6.4(1), there
exists Ny > 0 such that @Pf’wN(D) C P1T7;YN(D) for any N > Ny. For the
well-posedness, it suffices to prove that for any N > Ny, ® is contractive in
7317: lyN (D) under the metric Wy 4 for large enough 6 > 0. This follows from
(7.2.27), Lemma 7.3.4 and Lemma 7.3.5.

Finally, by using W; replacing W, in step (b) in the proof of Theorem
7.3.1, (7.2.24) follows from Lemma 7.3.4 with ¢ independent of N. O

7.4 Singular case with distribution independent noise

In this part, we let o4 (x, 1) = o¢(z) not depend on p, so that (7.1.3) becomes
dX; = 1ger (0 {be(Xe, £8,)dE + 00 (X,)dW, ), t € [0,T]. (7.4.1)

In this case, we are able to study the well-posedness of the equation on an
arbitrary connected open domain D, for which we only need b;(x,-) to be
Lipschitz continuous with respect to a weighted variation distance.

For a measurable function V' : D — [1,00), let

PP = {u e PP w(v) ::/ Vdu < oo}.
D
This is a Polish space under the weighted variation distance

lu—vllv == sup [u(f) = v(f)l, uvePP. (7.4.2)
ISV

When V =1, || - ||v reduces to the total variation norm. We will take V
from the class V defined as follows.
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Definition 7.4.1. We denote V € V, if 1 < V € C?(R?) such that the
level set {V < r} for r > 0 is compact, and there exist constants K,e > 0
such that for any x € D,

sup {|VV(y)|+[VV()[} < KV(2),
yEB(z,e)

where B(z,¢) :={y € R : |y — 2| < e}
7.4.1 Main result

(A™®) & has an extension to [0,T] x R? which is weakly differentiable in
x € R, and b has a decomposition by(z,p) = bEO)(x) + bgl)(x,,u),
such that the following conditions hold.

(1) a:= oo™ is invertible with ||aljec + |Ja™ e < 00 and

lim sup lai(z) — at(y)|| = 0.
€70 |z—y|<e,te(0,T)

(2) There exist I € N, {(pi,qi)}o<i<i C K with p; > 2, and 1 < f; €
LPi(T), such that

l
116 < fo, Vol <D fie
i=1

(3) There exists V € V such that for any p € Py = C¥([0,T]; PF),

lp(x)bgl)(x,ut) is locally bounded in (t,z) € [0,T] x R%. Moreover,
there exist constants K,e > 0 such that

O (2, 1), VV (2)) + e[ (2, )| sup {|VV]+ |V2V|}
B(z,e)

<K{V(z)+uV)}, z€D,uePy.
(4) There exists a constant k > 0 such that

sup [bu(@, 1) — bu(w,v)| < Bllp - vllv, v ePR.  (7.43)
xeD

Theorem 7.4.1. Assume (A"8). Then (7.4.1) is well-posed for D-

distributions in P{?, and for any p > 1, there exists a constant c, > 0

such that any solution X; of (7.4.1) for D-distributions in P¥ satisfies

IE[ sup V(Xt)p‘]:o} < ¢, V(Xo)P. (7.4.4)
te[0,T]
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Proof. Let Py (D) be the space of all probability measures x on D with
w(V) < oo, see (6.5.32), which is a Polish space under the weighted variation
distance defined in (7.4.2) for u,v € Py (D). We extend by(x,-) from PE
to Py (D) by setting

b, 1) = bo(w, 1(DO-)), € Py(D).

Then (A7®) implies the same assumption for Py (D) replacing P{?. So, the
desired assertions follow from Theorem 7.4.2 presented in the next subsec-
tion. (]

7.4.2 An extension of Theorem 7.4.1

Consider the following SDE on D:
dXt = ]-{t(T(X)}{bt(Xt; EXt)dt + O't(Xt)th}, te [0, T], (745)

where 7(X) :=inf{t > 0: X, € 9D} as before, and Lx, is the distribution
of X;.

The strong/weak solution of (7.4.5) is defined as in Definition 7.1.1
with £ replacing £P. We call this equation well-posed for distribution-
s in Py (D), if for any Fp-measurable random variable X, on D with
Lx, € Pyv(D) (respectively, any o € Py (D)), (7.4.5) has a unique solution
starting at X (respectively, a unique weak solution with initial distribution
po) such that Lx = (Lx,)seo.r] € C([0,T]; Py (D)).

Theorem 7.4.2. Assume that (A™®) holds for Py (D) replacing PY. Then
(7.4.5) is well-posed for distributions in Py (D) and (7.4.4) holds.

Proof. Let Xy be an Fy-measurable random variable on D with
= LXO € Pv(D)
Let
Py (D) = {p € Cy([0,T); Py (D)) : po =}
For any p € P{; (D), let X/ solve (7.4.1) with X§ = X, i.e.
dXtH = 1{t<T(X#)}{bt(X#7//ft)dt + O't(X#)th},
X! = Xo,t €[0,T].

Let @i := L'th,t € [0,T]. Then it suffices to prove that ® has a unique
fixed point in ’P‘T;N(D). To this end, for any N > 1, let

(7.4.6)

PUN (D) = {ne Pl (D): sup e M (V)< Ny(V)}.
t€[0,T]
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It suffices to find a constant Ny > 0 such that for any N > Ny, ® has a
unique fixed point in Pg,ﬁv (D). We finish the proof by three steps.

(a) The ®-invariance of Pg,ﬁv(D) for large N. Forany A > 0and NV > 1,

P‘%V (D) is a complete space under the metric
p)\(ﬂa V) ‘= sup e_)\tHMt - Vt”V» w,v e 'P‘j;”,iv(D)
t€[0,T]

Let 1 € Py (D). By (7.4.6), (A™#) with V € V and It¢s formula, for any
p > 1 we find a constant ¢;(p) > 0 such that

dV(X)P < 1pperxon {dMy + et {V(X})? + pne(V)P}dt}, t€[0,7],
where M; is a martingale with

d(M); < V(XE)Pde.

By using BDG’s and Gronwall’s inequality, we find a constant co(p) > 0
such that

E[ sup V(X;‘)p} :E{ sup V(X£#)P
s€[0,t] SE0,EAT(XH)] (7 4 7)

< ea(p)V(Xo)? +02(p)/0 us(V)Pds, te0,T).

Consequently, for p =1 and ¢y = c2(1) we derive

(@1p) (V) = E[V(X})] < ev(V) + Cz(/ot us(V)2d8> B

so that by p € P;’Aiv(D), we obtain

t 2
sup e V(@y)(V) < e2y(V) + ez sup ( / e-2N<t-S>N27<v>2ds) :
t€[0,T] te[0,T) 0

o (L+VN)A(V) < Ny(V),

provided N > Ny for a large enough constant Ny > 1. By the continuity of
X} in t, ®;p is weakly continuous in ¢. Therefore,

Py (D) € Py’ (D), N> No.
(b) Let N > Ny. It remains to show that ® has a unique fixed point in

Pg,ﬁv(D) By (7.4.7) with p = 2 and V' > 1, there exists a constant ¢z > 0
such that

E[tes[tépT] V(X,f‘)Q‘]-"o] < AV(Xo)?, nePLN(D). (7.4.8)
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For any u' € Cy(D),i = 1,2, we estimate ||®;u' — ®;u2||y by using Gir-
sanov’s theorem. Let X} be the unique solution for the SDE

dX] = 1percon {b(XE, py)dt + oo (X))dW, ), X5 = Xo.  (7.4.9)
By the definition of ®, we have
Ot =Lxy, t€0,T]. (7.4.10)
To construct ®;u? using Girsanov’s theorem, let
Et = 1{t<T(X1)}{J:(O—tO—Z<)71}(th){bt(Xt17 .UJ?) - bt(Xt17 H%)}? te [07 T}
By (A"-®), there exists a constant k > 0 such that
&l < klluk = 12llv, te 0,7, (7.4.11)

So, by Girsanov’s theorem,
t
W, =W, —/ ¢ds, t€[0,T]
0

is an m~dimensional Brownian motion under the probability measure Q :=
R P, where

R, = efo (& dWe)—3 OSI&‘th, s €10,7).
Reformulate (7.4.9) as
AX} = Ty {0u(X}, 1)dt + o (XHAW, ), X¢ = Xo.
By the weak uniqueness of (7.4.6), we obtain
Op® = Q(Xjnr(x1) € do) = Ly g
Combining this with (7.4.8) and (7.4.10), we derive
[®ept — @ups®|lv < E[V(X])[R, — 1]
< E[{E(V(X})?1F0)}* {E(1R — 17170)} ] (7.4.12)
< esB[V(Xo){E(R, — 1P| F0)}7].

On the other hand, by u!, u? € Pa’y(D), (7.4.11), and noting that " —1 <
re” for r > 0, we find a constant ¢ > 0 such that

E[|R; — 12| Fo] = E[e2 /o €-dWa) =[5 [€:*ds _ 1) 71

< B[ J3 6 aWa)=2 [ 16t 1ok ] k=il ds _

t
K2 [P\t —p?))3 ds E2 [T pt—p2||% ds 2 1 2112
=e fo H s sHV _1Se f() ” s bHV k ||I’LS_MS||VdS
0

t
sé/ﬂ@—@%ﬁ,temn
0
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Combining this with (7.4.12) and letting C' = cc3 E[V (X))], we arrive at

¢ 3
pA(Ppt, dp?) < Cts[%pT]eM</O (17 —uilI\Z/dS)
€10,
3

t
< Cpx(ul,u2)</ e_”(t_s)d8>
0

Thus, when A > 0 is large enough, ® is contractive in p) and hence has a
unique fixed point in ng/\/ (D).

(c) Note that for any (weak) solution X, of (7.4.5) for distributions in
Py (D), u == Lx, is a fixed point of ® in P (D). Since ® has a unique
fixed point, (7.4.1) has the (weak) uniqueness. Moreover, by Gronwall’s
inequality, (7.4.4) follows from (7.4.8) for X} = X; and u; := Lx,, where
1 is the unique fixed point of ®. O
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