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Preface

As an extension to Itô’s stochastic differential equations (SDEs) describing

linear parabolic equations, distribution dependent SDEs (DDSDEs) charac-

terize nonlinear Fokker-Planck equations. This type SDEs are named after

McKean-Vlasov due to the pioneering work of H. P. McKean (1966) where

an expectation dependent SDE is proposed to study nonlinear PDEs for

Maxwellian gas. Moreover, according to the propagation of chaos, a DDS-

DE is characterized as the limit of the equation for a single particle in the

corresponding mean field particle systems, when the number of particles

goes to infinity. So, DDSDEs are also called mean-field SDEs. To restrict a

DDSDE in a domain, we consider the reflection boundary by following the

line of A. V. Skorohod (1961), or kill the solution at the hitting time of the

boundary. This book aims to provide a self-contained account on singular

SDEs and DDSDEs in Rd, and the reflected or killed equations in a domain

which might be unbounded and non-convex.

In Chapter 1, we study singular SDEs with coefficients satisfying local

integrability conditions, which allow the drift to be unbounded in bounded

domains. The main idea is to kill the singular drift using a strong enough

noise, for which Krylov’s and Khasminskii’s estimates as well as Girsanov’s

and Zvonkin’s transforms are used. The study goes back to A. J. Vereten-

nikov(1979) who proved the well-posedness of non-degenerate SDEs with

bounded drifts, and by now has led to a relatively complete theory on

singular SDEs. Besides the well-posedness, we also characterize the regu-

larity (Harnack inequalities, gradient estimates, Bismut formulas) and the

exponential ergodicity.

In Chapter 2, we investigate singular reflected SDEs in a domain. A

key point is to construct Zvonkin’s transform in the domain, for which we

extend a PDE from the domain to the whole space such that estimates

v
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presented in Chapter 1 apply to the reflecting setting.

Chapter 3 presents criteria on the well-posedness of DDSDEs in several

different situations including the monotone case, the time-spatially singular

case with distribution independent noise, and the time-spatial singular case

with distribution dependent noise.

Chapter 4 devotes to derivative estimates on the law of singular DDS-

DEs with respect to the initial distribution. We first establish the log-

Harnack and power Harnack inequalities, then introduce the intrinsic and

L derivatives for functions of probability measures, and finally present Bis-

mut type formulas for these derivatives of the DDSDEs in the initial dis-

tribution.

Chapter 5 focuses on long time behaviors of DDSDEs. The unifor-

m ergodicity is proved for a class of singular equations, the exponential

convergence in entropy and Wasserstein distance is derived for the dissipa-

tive case, the exponential ergodicity in weighted Wasserstein distances is

presented for non-dissipative equations, and the Donsker-Varadhan large

deviation principle is established by comparing DDSDEs with the corre-

sponding stationary SDEs.

In Chapters 6 and 7 we study reflected and killed DDSDEs in a domain

which may be unbounded and non-convex, such that results presented in

Chapters 3-5 are extended to the domain case.

For readers’ references, some remarks and further results are presented

in the end of most chapters. Results and techniques introduced in the book

are mainly organized from recent papers worked out by the authors and

collaborators. We have to indicate that due to the limitation of space and

our own interests, many related results and references are not included.
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Chapter 1

Singular Stochastic Differential
Equations

Let ∆ be the Laplace operator on the d-dimensional Euclidean space Rd. It

was observed by A. Einstein (1905) that the distribution density function

pt(x, ·) of the d-dimensional Brownian motion starting at point x is the

fundamental solution of the heat equation

∂tut =
1

2
∆ut, t ≥ 0.

To characterize the Fokker-Planck equation where ∆ is replaced by a second

order differential operator, K. Itô (1944) developed his stochastic calculus

and then established the chain rule (Itô’s formula) of stochastic differentials

in 1951, which settled the foundation of stochastic differential equations

(SDEs). There are plentiful references concerning SDEs and applications,

which include, among many others, the books [Ikeda and Watanabe (1977)],

[Oksendal (2014)] and [Situ (2005)].

In this chapter, we summarize some recent progress made to singular

SDEs with non-degenerate noise, where the drift only satisfies an integra-

bility condition and thus can be unbounded on bounded domains. We first

introduce the link between SDEs and Fokker-Planck equations, then study

properties of singular SDEs: well-posedness, Harnack inequalities, Bismut

formula, and the exponential ergodicity.

1.1 Itô’s SDE and linear Fokker-Planck equation

Let Wt be the m-dimensional Brownian motion on a complete filtration

probability space (Ω, {Ft}t≥0,P), and let Rd⊗m be the space of d × m-

matrices. Consider the following Itô’s SDE on Rd for a fixed time T > 0:

dXt = bt(Xt)dt+ σt(Xt)dWt, t ∈ [0, T ], (1.1.1)

1
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where

b : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd⊗m

are measurable.

To define solutions of (1.1.1), let | · | and 〈·, ·〉 be the norm and inner

product in Rd, let ‖ · ‖ and ‖ · ‖HS be the operator norm and the Hilbert-

Schmidt norm of matrices, and denote by Lξ the distribution of a random

variable ξ. When different probabilities are concerned, we denote Lξ = Lξ|P
to emphasize the distribution under the probability measure P.

Without loss of generality, we assume that (Ω,F0,P) is atomless, such

that for any probability measure µ on a Polish space E, there exists an

F0-measurable E-valued random variable ξ such that Lξ = µ. In case

(Ω,F0,P) has an atom, i.e. there exists A ∈ F0 with P(A) > 0 such that

F0 3 B ⊂ A implies B = ∅ or B = A, we may use (Ω× R,Ft × B,P× µ0)

to replace (Ω,Ft,P), where (R,B, µ0) is an atomless complete probability

space such that (Ω×R,Ft ×B,P× µ0) is atomless and Wt(ω, x) := Wt(ω)

for (ω, x) ∈ Ω× R is m-dimensional Brownian motion.

Definition 1.1.1.

(1) A stochastic process (Xt)t∈[0,T ] on Rd is called a (strong) solution of

(1.1.1), if it is continuous (i.e. P-a.s. Xt is continuous in t ∈ [0, T ]),

adapted (i.e. Xt is Ft-measurable for t ∈ [0, T ]), and P-a.s.∫ t

0

|bs(Xs)|ds+

∫ t

0

‖σs(Xs)‖2ds <∞,

Xt = X0 +

∫ t

0

bs(Xs)ds+

∫ t

0

σs(Xs)dWs, t ∈ [0, T ].

(2) (1.1.1) is said to have pathwise (strong) uniqueness, if Xt = Yt(t ∈
[0, T ]) holds for any two solutions (Xt)t∈[0,T ] and (Yt)t∈[0,T ] of the SDE

with X0 = Y0.

(3) We call (1.1.1) (strongly) well-posed, if for any initial value it has a

unique solution.

(4) A couple (Xt,Wt)t∈[0,T ] is called a weak solution of (1.1.1), if there

exists a complete filtration probability space such that Wt is an m-

dimensional Brownian motion and Xt solves (1.1.1).

(5) (1.1.1) is said to have weak uniqueness (joint weak uniqueness), if

for any two weak solutions (Xi
t ,W

i
t )i=1,2 under probabilities (Pi)i=1,2,

LX1
0 |P1 = LX2

0 |P2 implies LX1
· |P1 = LX2

· |P2 (L(X1
· ,W

1
· )|P1 = L(X2

· ,W
2
· )|P2).

The SDE is called weakly well-posed, if for any initial distribution it

has a unique weak solution.
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By Yamada-Watanabe principle [Yamada and Watanabe (1971)] (see

Lemma 1.3.2 below for a general version), the weak existence together with

the pathwise uniqueness implies the strong and weak well-posedness. In

particular, the strong well-posedness implies the weak one.

Let P be the space of all probability measures on Rd equipped with the

weak topology. Let (Xt)t∈[0,T ] be a (weak) solution of (1.1.1). By Itô’s

formula,

df(Xt) = Ltf(Xt)dt+ 〈∇f(Xt), σt(Xt)dWt〉, t ∈ [0, T ], f ∈ C2(Rd)

holds for

Lt :=
1

2
tr(σtσ

∗
t∇2) +∇bt , t ∈ [0, T ],

where ∇bt := bt · ∇ = 〈bt,∇〉 is the directional derivative along bt, ∇ and

∇2 are the gradient and Hessian operators on Rd respectively, and for any

k ∈ Z+ (the set of nonnegative integers), Ck(Rd) denotes the space of real

functions on Rd with continuous derivatives up to order k. When k = 0 we

simply denote C(Rd) = C0(Rd). Then for any solution Xt to (1.1.1) with

µt := LXt satisfying∫ t

0

ds

∫
B(0,r)

(|bs|+ ‖σs‖2)dµs <∞, r > 0, (1.1.2)

where B(0, r) := {x ∈ Rd : |x| ≤ r}, µt solves the linear Fokker-Planck

equation

∂tµt = L∗tµt, t ∈ [0, T ] (1.1.3)

in the sense that µ ∈ C([0,∞);P) satisfying (1.1.2) and

µt(f) :=

∫
Rd
fdµt = µ0(f) +

∫ t

0

µs(Lsf)ds, t ∈ [0, T ], f ∈ C2
0 (Rd),

where for any k ∈ Z+ ∪ {∞}, Ck0 (Rd) is the space of functions in Ck(Rd)
with compact supports.

On the other hand, by the superposition principle presented in [Trevisan

(2016)], a solution of (1.1.3) is the time-marginal of the distribution of a

weak solution to (1.1.1). So, we have the following correspondence between

SDEs and linear Fokker-Planck equations.

Theorem 1.1.1 ([Trevisan (2016)]). For any weak solution (Xt,Wt) of

(1.1.1) with µt := LXt satisfying (1.1.2), µt solves (1.1.3). On the other

hand, if µ is a solution of (1.1.3), then (1.1.1) has a weak solution such that

µt = LXt , t ∈ [0, T ].
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1.2 Krylov’s and Khasminskii’s estimates

As a crucial tool in the study of singular SDEs, Krylov’s estimate [Krylov

(1980)] bounds the conditional expectation for time-integrals of (unbound-

ed) singular functions of a solution to the SDEs. To understand this type

estimate, let us simply consider the d-dimensional Brownian motion Wt

(i.e. m = d). For any p, q ≥ 1, 0 ≤ s < t, and a measurable function f on

[s, t]× Rd with

‖f‖Lpq(s,t) :=

(∫ t

s

‖fr‖qLp(Rd)
dr

) 1
q

<∞,

where ‖fr‖Lp :=
( ∫

Rd |fr|
p(x)dx

) 1
p , we have∣∣E(fr(Wr)|Fs)

∣∣ =

∣∣∣∣(2π(r − s))− d2
∫
Rd
fr(x)e−

|Ws−x|2
2(r−s) dx

∣∣∣∣
≤ (2π(r − s))−

d
2p ‖fr‖Lp , r ∈ (s, t].

Consequently,∣∣∣∣E(∫ t

s

fr(Wr)dr

∣∣∣∣Fs)∣∣∣∣ ≤ ∫ t

s

(2π(r − s))−
d
2p ‖fr‖Lpdr

≤
(∫ t

s

(2π(r − s))−
dq

2p(q−1) dr

) q−1
q

‖f‖Lpq(s,t).

When d
p + 2

q < 2, we have dq
2p(q−1) < 1 so that

cp,q := sup
0≤s≤t≤T

(∫ t

s

(2π(r − s))−
dq

2p(q−1) dr

) q−1
q

<∞.

Therefore,∣∣∣∣E(∫ t

s

fr(Wr)dr

∣∣∣∣Fs)∣∣∣∣ ≤ cp,q‖f‖Lpq(s,t), 0 ≤ s ≤ t ≤ T.

Krylov’s estimate extends this inequality to solutions of singular SDEs,

which also implies an exponential estimate which is called Khasminskii’s

estimate. In the spirit of [Xia et al (2020)], we will establish these estimates

using the local norm L̃pq replacing Lpq , see (1.2.7) and (1.2.17) below for

details.

For any p ≥ 1, let Lp(Rd) be the class of measurable functions f on Rd
such that ‖f‖Lp(Rd) <∞. For any ε > 0 and p ≥ 1, let

‖f‖Hε,p(Rd) := ‖(1−∆)
ε
2 f‖Lp(Rd) <∞, f ∈ Hε,p(Rd) := (1−∆)−

ε
2Lp(Rd),
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where (1 − ∆)−
ε
2 is defined by spectral representations of ∆. In general,

letting

et∆f(x) :=

∫
Rd

(4πt)−
d
2 e−

|x−y|2
4t f(y)dy,

for any λ ≥ 0 we have

(λ−∆)−
ε
2 :=

1∫∞
0
t
ε
2−1e−λtdt

∫ ∞
0

t
ε
2−1e−tet∆dt,

(λ−∆)
ε
2 := (λ−∆)n(λ−∆)

ε
2−n, n ∈ N, n ≥ ε

2
.

(1.2.1)

For any z ∈ Rd and r > 0, let B(z, r) := {x ∈ Rd : |x − z| ≤ r}. For any

p, q > 1 and t0 < t1, let L̃pq(t0, t1) denote the class of measurable functions

f on [t0, t1]× Rd such that

‖f‖L̃pq(t0,t1) := sup
z∈Rd

(∫ t1

t0

‖1B(z,1)ft‖qLp(Rd)
dt

) 1
q

<∞.

Let g ∈ C∞0 (Rd) satisfy g|B(0,1) = 1, where C∞0 (Rd) is the class of C∞

functions on Rd with compact support. For any ε > 0, let H̃ε,p
q (t0, t1) be

the space of f ∈ L̃pq(t0, t1) with

‖f‖H̃ε,pq (t0,t1) := sup
z∈Rd

(∫ t1

t0

‖g(z + ·)ft‖qHε,p(Rd)
dt

) 1
q

<∞.

We remark that the space H̃ε,p
q (t0, t1) does not depend on the choice of g.

When t0 = 0, we simply denote

L̃pq(t1) := L̃pq(0, t1), H̃ε,p
q (t1) := H̃ε,p

q (0, t1), t1 > 0.

Finally, let L̃p (resp. H̃ε,p) denote the set of functions in L̃p1(T ) (resp.

H̃ε,p(T )) which are independent of the time parameter t.

A vector or matrix valued function is said in one of the above introduced

spaces, if so are its components.

We will take (p, q) from the class

K :=
{

(p, q) : p, q ∈ (1,∞),
d

p
+

2

q
< 1
}
,

and use the following assumptions on the coefficients b and σ, where ‖ · ‖∞
denotes the uniform norm for real (or vector/matrix) valued functions. Let

∇i be the i-th order gradient in the spatial variable x ∈ Rd, and for a

Lipschitz continuous function f on Rd,

‖∇f‖∞ := sup
x 6=y

|f(x)− f(y)|
|x− y|

is its Lipschitz constant.
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(A1.1) Let T > 0. There exist a constant K > 0 and (p0, q0) ∈ K such that

σ and b satisfy the following conditions on [0, T ]× Rd.

(1) a := σσ∗ is invertible with ‖a‖∞ + ‖a−1‖∞ ≤ K, where σ∗ is the

transposition of σ, and

lim
ε→0

sup
|x−y|≤ε,t∈[0,T ]

‖at(x)− at(y)‖ = 0.

(2) b = b(0) + b(1), b(1) is locally bounded and

‖b(0)‖L̃p0
q0

(T ) ∨ ‖∇b
(1)‖∞ ≤ K. (1.2.2)

To establish Krylov’s estimate, we first introduce two lemmas, where

the first is taken from [Chapter III, Theorem 2.4] in [Krylov (1985)], and

the second follows from Theorem 2.1 in [Zhang and Yuan (2021)] which

extends Theorem 3.2 in [Xia et al (2020)] for b(1) = 0, see also [Zhang

(2011)] and references therein.

Lemma 1.2.1. For any 0 ≤ f ∈ C∞([0,∞)× Rd) and λ > 0, there exists

0 ≤ u ∈ C∞([0,∞)× Rd) satisfying

β∂tut + tr
{
at∇2ut

}
− λ
(
β + trat

)
ut + (βdetat)

1
d+1 ft ≤ 0, β ≥ 0, t ≥ 0,

|∇ut| ≤
√
λut, ut ≤ Kdλ

− d
2(d+1) ‖f‖Ld+1([0,∞)×Rd),

for any measurable symmetric nonnegative definite matrix valued function

a, and some constant Kd > 0 depending only on d.

Lemma 1.2.2. Assume (A1.1) and let p, q > 1.

(1) For any 0 ≤ t0 < t1 ≤ T and f ∈ L̃pq(t0, t1), the PDE

(∂t + Lt)u
λ
t = λuλt + ft, t ∈ [t0, t1], ut1 = 0, (1.2.3)

has a unique solution in H̃2,p
q (t0, t1) with ‖wuλ‖L̃pq(t0,t1) < ∞, where

wt(x) = w(x) = (1 + |x|)−1.

(2) If (2p, 2q) ∈ K, then for any θ ∈ [0, 2), p′ ∈ [p,∞] and q′ ∈ [q,∞] with

d

p
+

2

q
< 2− θ +

d

p′
+

2

q′
,

there exist constants λ0, c > 0 depending only on T, d, p, q, p′, q′, θ,K

and the continuity modulus of a, such that for any 0 ≤ t0 < t1 ≤ T and

f ∈ L̃pq(t0, t1),

λ
1
2 (2−θ+ d

p′+
1
q′−

d
p−

2
q )‖u‖

H̃θ,p
′

q′ (t0,t1)
+ ‖(∂t +∇b(1))uλ‖L̃pq(t0,t1)

+ ‖uλ‖H̃2,p
q (t0,t1) ≤ c‖f‖L̃pq(t0,t1), λ ≥ λ0.
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According to Theorem 2.1 in [Zhang and Yuan (2021)], (1.2.3) has a

unique solution in W̃ 2,p,w
1,q (t0, t1), which consists of f ∈ H̃2,p

q (t0, t1) such

that for w(x) := (1 + |x|)−1 (note that w(x) therein should be (1 + |x|2)−
p
2

according to Lemma 2.3 in [Yang and Zhang (2023)]),

|wf |+ |w∇f |+ |w∇2f |+ |w∂tf | ∈ L̃pq(t0, t1).

Since w ≤ 1 and f ∈ H̃2,p
q (t0, t1), the condition |wf | + |w∇f | + |w∇2f | ∈

L̃pq(t0, t1) can be dropped. When (2p, 2q) ∈ K, by Lemma 1.2.2(2) we have

‖(∂t + ∇b(1))uλ‖L̃pq(t0,t1) < ∞, since ∇uλ is bounded and (A1.1) implies

|b(1)
t (x)| ≤ k(1+ |x|) for some constant k > 0, we derive |w∂tf | ∈ L̃pq(t0, t1),

so that in this case we have W̃ 2,p,w
1,q (t0, t1) = H̃2,p

q (t0, t1).

We also need the following mollifying approximations of functions. Let

0 ≤ S ∈ C∞0 (Rd+1) with
∫
Rd+1 S(s, x)dsdx = 1. For a bounded measurable

function g on [t0, t1] × Rd, its mollifying approximations {Sn(g)}n≥1 ⊂
C∞b (Rd+1) are defined by

{Sn(g)}t(x) := nd+1

∫
Rd+1

g[(t+s)∨t0]∧t1(x+ y)S(ns, ny)dsdy. (1.2.4)

Moreover, for a topological space E, let C(E) (respectively Cb(E)) be

the space of all continuous (respectively bounded continuous) functions on

E.

Theorem 1.2.3 (Krylov’s estimate). Assume (A1.1). Let (Xt)t∈[0,T ] be

a continuous adapted process on Rd satisfying

Xt = X0 +

∫ t

0

bs(Xs)ds+

∫ t

0

σs(Xs)dWs +

∫ t

0

βsdAs, t ∈ [0, T ] (1.2.5)

for some continuous adapted increasing process At and a bounded adapted

process βt.

(1) For any (p, q) ∈ K and any ε ∈ (0, 1), there exists a constant c > 0

depending only on T, d, p, q,K and the continuity modulus of a, such

that for any Xt satisfying (1.2.5),

E
(∫ t1

t0

|fs(Xs)|ds
∣∣∣∣Ft0)

≤
{
c+ εE

(
At1 −At0

∣∣Ft0)}‖f‖L̃pq(t0,t1)

(1.2.6)

holds for 0 ≤ t0 ≤ t1 ≤ T, and f ∈ L̃pq(t0, t1).
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(2) Let dAt = Btdt. For any p, q > 1 with (2p, 2q) ∈ K and any ε ∈ (0, 1),

there exists a constant c > 0 such that for any Xt satisfying (1.2.5),

E
(∫ t1

t0

|fs(Xs)|ds
∣∣∣∣Ft0)

≤
{
c+ ε

[
E
(∫ t1

t0

|Bs|2ds

∣∣∣∣Ft0)] 1
2
}
‖f‖L̃pq(t0,t1)

(1.2.7)

holds for all 0 ≤ t0 ≤ t1 ≤ T and f ∈ L̃pq(t0, t1).

(3) For any u ∈ C([0, T ]× Rd) with

‖u‖∞ + ‖∇u‖∞ + ‖∇2u‖L̃pq(T ) + ‖(∂t +∇b(1))u‖L̃pq(T ) <∞,

{ut(Xt)}t∈[0,T ] is a semimartingale satisfying

dut(Xt) = (∂t + Lt)ut(Xt)dt+
〈
∇ut(Xt), σt(Xt)dWt + dAt

〉
. (1.2.8)

Proof. By Jensen’s inequality, for assertions (1) and (2) we only need to

consider f ≥ 0.

(a) By (A1.1) and conditions on βs and As, (1.2.5) implies that

[t0, T ] 3 t 7→ |Xt|+
∫ t

t0

|bs(Xs)|ds+At −At0

is a continuous adapted process. For any k > 0, let

τk := inf

{
t ∈ [t0, T ] : |Xt|+

∫ t

t0

|bs(Xs)|ds+At −At0 ≥ k
}
.

Then τk → T as k →∞. We claim that for some constant c(k) > 0

E
(∫ t1∧τk

t0

fs(Xs)ds

∣∣∣∣Ft0) ≤ c(k)‖f‖Ld+1
d+1(t0,t1),

f ∈ Ld+1([t0, t1]× Rd).
(1.2.9)

Let ν be the (random) finite measure on [0,∞)× Rd given by

νk(A) := E
(∫ t1∧τk

t0

1A(s,Xs)ds

∣∣∣∣Ft0), A ∈ B([0,∞)× Rd),

where B(E) is the Borel σ-algebra of a measurable space E. Since

C∞0 ([0,∞)×Rd) is dense in Ld+1(νk + dsdx), it suffices to prove (1.2.9) for

0 ≤ f ∈ C∞0 ([0,∞)× Rd).
Let u ≥ 0 be given in Lemma 1.2.1 for at := 1

2σtσ
∗
t , β = λ = 1. By Itô’s

formula, we find constants c1, c2 > 0 such that

dut(Xt) = (∂t + Lt)ut(Xt)dt+ 〈βt,∇ut(Xt)〉dAt + dMt

≤
{

(∇btut)(Xt) + c2ut(Xt)
}

dt+∇βtut(Xt)dAt − c1ft(Xt)dt+ dMt
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for some martingale Mt. Combining this with the definition of τk, the

boundedness of βt, and using estimates on |u| and |∇u| in Lemma 1.2.1,

we derive (1.2.9) for some constant c(k) > 0.

(b) Proofs of (1.2.6) and (1.2.7). Let {xn}n≥1 ⊂ Rd such that

‖f‖L̃pq(t0,t1) ≤ ‖1B(xn,1)f‖Lpq(t0,t1) +
1

n
, n ≥ 1.

Let

ν(A) := E
(∫ t1

t0

1A(s,Xs)ds

∣∣∣∣Ft0), A ∈ B([0,∞)× Rd).

Since C∞0 ([0,∞) × Rd) is dense in Lp∨q(ν + 1[t0,t1]×B(xn,1)(s, x)dsdx) for

each n ≥ 1, it suffices to prove for 0 ≤ f ∈ C∞0 ([0,∞)× Rd).
Let u solve (1.2.3). By Lemma 1.2.2 with θ = 1 and p′, q′ =∞, we find

constants c, ε0 > 0 such that

λε0
(
‖u‖∞ + ‖∇u‖∞

)
≤ c‖f‖L̃pq(t0,t1). (1.2.10)

Since ‖f‖∞ < ∞, we have |∇2u| + |(∂t + ∇b(1))u| ∈ Lmm(t0, t1) for any

m > 1. To apply Itô’s formula, we consider the mollifying approximation

uλ,n := Sn(u) of u, see (1.2.4). Then (1.2.10) and |∇2u|+ |(∂t +∇b(1))u| ∈
Ld+1
d+1(t0, t1) imply

λε0
(
‖uλ,n‖∞ + ‖∇uλ,n‖∞

)
≤ c‖f‖L̃pq(t0,t1), (1.2.11)

lim
n→∞

{
‖u− uλ,n‖∞ + ‖∇(u− uλ,n)‖∞

}
+ lim
n→∞

‖(∂t + Lt −∇b(0))(u− uλ,n)‖L̃d+1
d+1(t0,t1) = 0.

(1.2.12)

Moreover, by Itô’s formula and (1.2.3), we obtain

duλ,nt (Xt) = (∂t + Lt)u
λ,n
t (Xt)dt+

{
∇βtu

λ,n
t (Xt)

}
dAt + dM

(n)
t

=
{
ft + λuλt + (∂t + Lt −∇b(0)

t
)(uλ,nt − uλt ) +∇

b
(0)
t

(uλ,nt − uλt )
}

(Xt)dt

+
{
∇βtu

λ,n
t (Xt)

}
dAt + dM

(n)
t , n ≥ 1, t ∈ [t0, t1],

where dM
(n)
t := 〈∇uλ,nt (Xt), σt(Xt)dWt〉 is a martingale. Let h ∈ C∞0 (Rd)

with h|B(0,1) = 1 and 0 ≤ h ≤ 1, and take hm(x) := h(m−1x) for m ≥ 1.

By the above formula for duλ,nt (Xt) and applying (A1.1), we find a constant

c1 > 0 such that up to a martingale,

d(hmu
λ,n
t )(Xt) ≥ (hmft)(Xt)dt

−
{
hm
[
|λuλt + (∂t + Lt −∇b(0)

t
)(uλ,nt − uλt ) +∇

b
(0)
t

(uλ,nt − uλt )|
]}

(Xt)dt

− c1m−1
{(
|uλ,nt |+ |b

(0)
t | · |∇u

λ,n
t |
)
(Xt) + |∇uλ,nt (Xt)|1{|Xt|>m}

}
dt

− c1
{
|∇uλ,nt (Xt)|+ c1m

−1|uλ,nt |(Xt)
}

dAt.
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Combining this with (1.2.9), (1.2.11), and using the definition of τk, we find

constants c2, c(k), c(k,m) > 0 such that for any n,m, k ≥ 1,

E
(∫ t1∧τk

t0

(hmfs)(Xs)ds

∣∣∣∣Ft0)
≤ c2

{
1 + λ+ λ−ε0E(At1 −At0 |Ft0) + c(k)m−1

}
‖f‖L̃pq(t0,t1)

+ c2E
(∫ t1∧τk

t0

{
1{|Xs|>m}ds+m−1dAs

}∣∣∣∣Ft0)‖f‖L̃pq(t0,t1)

+ c(k)‖∇(uλ − uλ,n)‖∞ + c(k,m)‖(∂t + Lt −∇b(0))(uλ − uλ,n)‖L̃d+1
d+1(t0,t1).

By (1.2.12), letting first n → ∞, then m → ∞ and finally k → ∞, and

taking large enough λ such that c2λ
−ε0 ≤ ε, we derive (1.2.6).

In the situation of (2), we find a constant c3 > 0 such that

E
(∫ t1

t0

|∇βsuλ,ns (Xs)|dAs
∣∣∣∣Ft0)

≤ c3E
(∫ t1

t0

|Bs| · |∇uλ,ns (Xs)|ds
∣∣∣∣Ft0)

≤ c3
{
E
(∫ t1

t0

|Bs|2ds

∣∣∣∣Ft0)} 1
2
{
E
(∫ t1

t0

|∇uλ,ns (Xs)|2ds

∣∣∣∣Ft0)} 1
2

.

On the other hand, by Lemma 1.2.2 with θ = 0 and p′, q′ = ∞, as well as

θ = 1 and (p′, q′) = (2p, 2q), we find constants c, ε0 > 0 such that

λε0
{
‖uλ‖∞ + ‖∇uλ‖L̃2p

2q(t0,t1)

}
≤ c‖f‖L̃pq(t0,t1). (1.2.13)

Combining these with (1.2.6) and taking large enough λ, we obtain

E
(∫ t1

t0

|∇βsuλ,ns (Xs)|dAs
∣∣∣∣Ft0) ≤ ε[E(∫ t1

t0

|Bs|2ds

∣∣∣∣Ft0)] 1
2

‖f‖L̃pq(t0,t1).

Substituting into the above lower bound estimate on d(hmu
λ,n
t )(Xt) and

applying (1.2.13), as in above we find a constant c > 0 such that

E
(∫ t1∧τk

t0

(hmfs)(Xs)ds

∣∣∣∣Ft0)
≤
{
c+ ε

[
E
(∫ t1

t0

|Bs|2ds

∣∣∣∣Ft0)] 1
2
}
‖f‖L̃pq(t0,t1) + ξk,m,n

holds for random variables {ξk,m,n} satisfying

lim
k→∞

lim
m→∞

lim
n→∞

ξk,m,n = 0.

Then (1.2.7) holds.
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(c) Proof of (3). Let u satisfy

‖u‖∞ + ‖∇u‖∞ + ‖∇2u‖L̃pq(T ) + ‖(∂t +∇b(1))u‖L̃pq(T ) <∞.

Then the mollifying approximations {u(n)}n≥1 satisfy the same estimate

and

lim
n→∞

{
‖u− u(n)‖∞ + ‖∇(u− u(n))‖∞

}
+ lim
n→∞

‖(∂t + Lt)(u− u(n))‖L̃pq(T ) = 0.
(1.2.14)

By Itô’s formula we have

u
(n)
t (Xt) =u0(X0) +

∫ t

0

(∂s + Ls)u
(n)
s (Xs)ds+

∫ t

0

〈βs,∇u(n)
s (Xs)〉dAs

+

∫ t

0

〈∇u(n)
s (Xs), σs(Xs)dWs〉, t ∈ [0, T ], n ≥ 1.

By (1.2.6) and (1.2.14), we may let n→∞ to derive (1.2.8). �

Since Krylov’s estimate is uniform in 0 ≤ t0 < t1 ≤ T , we have the

following exponential estimate (1.2.17) due to [Khasminskii (1959)].

Theorem 1.2.4 (Khasminskii’s estimate). Let K̃ be a non-empty open

subset of {(p, q) : p, q > 1}. Let Xt be a continuous adapted process on Rd
satisfying the Krylov estimate for some map c : K̃ → (0,∞) :

E
(∫ t1

t0

|fs(Xs)|ds
∣∣∣∣Ft0) ≤ c(p, q)‖f‖L̃pq(t0,t1),

0 ≤ t0 ≤ t1 ≤ T, (p, q) ∈ K̃, f ∈ L̃pq(t0, t1).

(1.2.15)

Then for any (p, q) ∈ K̃ and j ∈ N (the set of natural numbers),

E
([∫ t1

t0

|fs(Xs)|ds
]j∣∣∣∣Ft0) ≤ c(p, q)j(j!)‖f‖jL̃pq(t0,t1)

,

0 ≤ t0 ≤ t1 ≤ T, (p, q) ∈ K̃, f ∈ L̃pq(t0, t1),

(1.2.16)

and for any (p, q) ∈ K̃, there exist constants c′, k ≥ 1 such that

E
(

e
∫ t1
t0
|fs(Xs)|ds

∣∣∣Ft0) ≤ e
c′+c′‖f‖k

L̃
p
q (t0,t1) , f ∈ L̃pq(t0, t1) (1.2.17)

holds for all 0 ≤ t0 ≤ t1 ≤ T.
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Proof. We first prove (1.2.16) by induction. By (1.2.15), (1.2.16) holds

for j = 1. Assume that it holds for m = k for some k ∈ N, then

E
([∫ t1

t0

|fs(Xs)|ds
]k+1∣∣∣∣Ft0)

= (k + 1)E
{∫ t1

t0

|fs1(Xs1)|ds1E
([∫ t1

s1

|fs(Xs)|ds
]k∣∣∣∣Fs1)∣∣∣∣Ft0}

≤ ck(k + 1)!E
{∫ t1

t0

‖f‖k
L̃pq(s1,t1)

|fs1(Xs1)|ds1

∣∣∣∣Ft0}
≤ ck+1(k + 1)!‖f‖k+1

L̃pq(t0,t1)
.

Next, since K̃ is open, there exists a map

k : K̃ → (1,∞], kp,q < q, (p, kp,q) ∈ K̃,
such that (1.2.15) with q′ := kp,q replacing q yields

E
(∫ t1

t0

|fs(Xs)|ds
∣∣∣∣Ft0) ≤ c(p, q′)‖f‖L̃p

q′ (t0,t1) ≤ c1(t1 − t0)
q−q′
qq′ ‖f‖L̃pq(t0,t1)

for some constant c1 = c1(p, q) > 0. Let

n := inf
{
N ∈ N : c1(T/N)

q−q′
qq′ ‖f‖L̃pq(t0,t1) ≤ 2−1

}
,

δi := t0 +
i(t1 − t0)

n
, 0 ≤ i ≤ n,

Di,j
n :=

{
(s1, . . . , sj) : δi ≤ s1 < s2 < . . . < sj ≤ δi+1

}
, j ≥ 1.

We find constants c2 = c2(p, q) > 0 and k := qq′

q−q′ > 1 such that

n ≤ c2 + c2‖f‖kL̃pq(t0,t1)
, (1.2.18)

E
(∫ δi+1

δi

fs(Xs)ds

∣∣∣∣Fr) ≤ 1

2
, 0 ≤ i ≤ n− 1. (1.2.19)

By (1.2.19), for any 0 ≤ i ≤ n− 1 and j ≥ 1, we have

1

j!
E
[(∫ δi+1

δi

fs(Xs)ds

)j∣∣∣∣Fδi] = E
[ ∫

Di,jn

j∏
j=1

fsj (Xsj )dsj

∣∣∣∣Fδi]

= E
[ ∫

Di,j−1
n

E
(∫ δi+1

sj−1

fsj (Xsj )dsj

∣∣∣∣Fsj−1

) j−1∏
j=1

fsj (Xsj )dsj

∣∣∣∣Fδi]

≤ 2−1E
[ ∫

Di,j−1
n

j−1∏
j′=1

fsj′ (Xsj′ )dsj′

∣∣∣∣Fδi]

=
2−1

(j − 1)!
E
[(∫ δi+1

δi

fs(Xs)ds

)j−1∣∣∣∣Fδi], j ≥ 1.
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By induction we obtain

1

j!
E
[(∫ δi+1

δi

fs(Xs)ds

)j∣∣∣∣Fδi] ≤ 2−j . j ≥ 1,

so that

E
[
e
∫ δi+1
δi

fs(Xs)ds
∣∣∣Fδi] ≤ ∞∑

j=0

2−j = 2, 0 ≤ i ≤ n− 1.

Combining with (1.2.18) we obtain

E
[
e
∫ δi
t0
fs(Xs)ds

∣∣∣Ft0] = E
[
e
∫ δi−1
t0

fs(Xs)ds · e
∫ δi
δi−1

fs(Xs)ds
∣∣∣Ft0]

= E
[
e
∫ δi−1
t0

fs(Xs)dsE
(

e
∫ δi
δi−1

fs(Xs)ds
∣∣∣Fδi−1

)∣∣∣Ft0]
≤ 2E

[
e
∫ δi−1
t0

fs(Xs)ds
∣∣∣Ft0], 1 ≤ i ≤ n.

By induction, t1 = δn and the definition of n, we derive

E
[
e
∫ t1
t0
fs(Xs)ds

∣∣∣Ft0] ≤ 2n ≤ 2
c2+c2‖f‖kL̃pq (t0,t1) .

Taking c′ = c2 log 2, we obtain

E
[
e
∫ t1
t0
fs(Xs)ds

∣∣∣Ft0] ≤ e
c′+c′‖f‖k

L̃
p
q (t0,t1) , 0 ≤ t0 < t1 ≤ T,

and hence finish the proof. �

1.3 Well-posedness

We first state the main result on the well-posedness of singular SDEs;

then introduce some lemmas including a general version of the Yamada-

Watanabe principle, the stochastic Gronwall’s inequality, estimates on the

maximal functionals, the BDG (Burkholder-Davis-Gundy) inequality and

the Girsanov theorem; and finally prove the main result.

1.3.1 The main result

When (1.1.1) is well-posed, let Xx
t be the solution starting from x. We

consider the associated semigroup Pt given by

Ptf(x) := E[f(Xx
t )], t ∈ [0, T ], f ∈ Bb(Rd), x ∈ Rd, (1.3.1)

where Bb(Rd) is the set of all bounded measurable functions on Rd. We

call Pt strong Feller if PtBb(Rd) ⊂ Cb(Rd).
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Let

Φ :=

{
φ : [0,∞)→ [1,∞) is increasing,

∫ ∞
0

ds

s+ φ(s)
<∞

}
.

(A1.2) σ and b = b(0) + b(1) satisfy the following conditions on [0, T ]× Rd.

(1) σ satisfies (A1.1)(1), and there exist {(pi, qi)}0≤i≤l ⊂ K with pi > 2,

and 0 ≤ fi ∈ L̃piqi (T ), 1 ≤ i ≤ l, such that

|b(0)| ∈ L̃p0
q0 (T ), ‖∇σ‖ ≤

l∑
i=1

fi.

(2) b(1) is locally bounded, and there exist constants K, ε > 0, increasing

φ ∈ C1([0,∞); [1,∞)) with
∫∞

1
ds

s+φ(s) =∞, and V ∈ C2(Rd; [1,∞))

with lim|x|→∞ V (x) =∞, such that

〈b(1)
t (x),∇V (x)〉+ ε|b(1)

t (x)| sup
B(x,ε)

{
|∇V |+ ‖∇2V ‖

}
≤ Kφ(V (x)),

sup
B(x,ε)

{
|∇V |+ ‖∇2V ‖

}
≤ KV (x), x ∈ Rd, t ∈ [0, T ].

(A1.3) (A1.2) holds with (A1.2)(2) strengthened as (1.2.2).

When |b(1)
t (x)| ≤ c{1 + |x| log(1 + |x|)} for some constant c > 0, then

(A1.2)(2) holds for V (x) := 1 + |x|2, φ(r) := 1 + r log(1 + r) and some

constant K > 0. In particular, (1.2.2) is stronger than (A1.2)(2).

For a signed measure ϕ, let |ϕ| be its total variation, and define the

variation norm as

‖ϕ‖var := |ϕ|(Rd).
In general, for a positive measurable function V on Rd, let

‖ϕ‖V := |ϕ(V )| =
∫
Rd
V d|ϕ|.

Theorem 1.3.1.

(1) Assume (A1.1). Then (1.1.1) is weakly well-posed, and for any k ∈
R there exists a constant c(k) > 0 such that the (weak) solution Xx

t

starting at x satisfies

E
[

sup
t∈[0,T ]

(1 + |Xx
t |)k

]
≤ c(k)(1 + |x|)k, x ∈ Rd. (1.3.2)
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(2) Assume (A1.2). Then (1.1.1) is well-posed and

lim
ε↓0

sup
x,y∈B(0,k),|x−y|≤ε

E
[

sup
t∈[0,T ]

|Xx
t −X

y
t | ∧ 1

]
= 0, k ≥ 1. (1.3.3)

Moreover, for any t ∈ (0, T ],

lim
y→x
‖P ∗t δx − P ∗t δy‖var = 0, t ∈ (0, T ], x ∈ Rd, (1.3.4)

and Pt has a transition density pt(x, y) satisfying

inf
|x|∨|y|≤r

pt(x, y) > 0, t ∈ (0, T ], r ∈ (0,∞). (1.3.5)

If φ(r) = r, then for any k ≥ 1 there exists a constant c(k) > 0 such

that

E
[

sup
t∈[0,T ]

V (Xx
t )k
]
≤ c(k)V (x)k, x ∈ Rd. (1.3.6)

(3) Assume (A1.3). Then (1.1.1) is well-posed, and for any k ∈ R there

exists a constant c(k) > 0 such that

E
[

sup
t∈[0,T ]

|Xx
t −X

y
t |k
]
≤ c(k)|x− y|k, x 6= y ∈ Rd. (1.3.7)

Consequently, for any p > 1,

|∇Ptf |(x) := lim sup
y→x

|Ptf(x)− Ptf(y)|
|x− y|

≤ c(p/(p− 1))
p−1
p
(
Pt|∇f |p(x)

) 1
p ,

f ∈ C1
b (Rd), x ∈ Rd, t ∈ [0, T ].

(1.3.8)

(4) Assume (A1.3). Then for P-a.e. ω ∈ Ω and all t ∈ [0, T ], x 7→ Xx
t is a

homeomorphism on Rd.

Assertions in this result are taken from [Ren (2023)] and [Wang (2023c)],

and will be proved by using Zvonkin’s transform [Zvonkin (1974)] and the

above introduced Krylov’s and Khasminskii’s estimates. The main idea

of the proof goes back to [Veretennikov (1981)] where the well-posedness

is proved for (1.1.1) with d = m,σ = Id (the d × d identity matrix) and

bounded b, which is then improved in [Krylov and Röckner (2005)] for

σ = Id and |b| ∈ Lpq(T ) := Lq([0, T ] → Lp(Rd); dt) for some (p, q) ∈ K,

in [Zhang (2011)] with |∇σ| ∈ Lpq(T ) for some (p, q) ∈ K, and in [Xia

et al (2020)] under some local integrability conditions. In recent years, this

method has been applied to various different models. For readers’ reference

we summarize below some related studies.
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Remark 1.3.1.

(1) Consider the critical case that p, q ∈ [2,∞) with d
p + 2

q = 1. When

σ = Id, the existence and uniqueness of (1.1.1) for a.e. starting points

have been proved in [Beck et al (2019)] for |b| ∈ Lpq(T ); the weak

existence is proved in [Kinzebulatov and Semenov (2020)], and the well-

posedness is proved in [Nam (2020)] for |b| in the Lorentz space Lpq,1(T ),

i.e. ∫ ∞
0

(∫ T

0

1{‖bt‖Lp(Rd)
≥r}dt

) 1
q

dr <∞.

Moreover, the weak well-posedness has been proved in [Xia et al (2020)]

for the case that σ satisfies (A1.1)(1) and |b| ∈ L̃d;uni
∞ (T ) in the sense

that |b| ∈ L̃d∞(T ) and

lim
n→∞

sup
t∈[0,T ]

‖Sn(|b|)(t, ·)− |bt|‖L̃d(Rd) = 0,

where Sn(|b|) is the mollifying approximation of |b|, see (1.2.4).

(2) The well-posedness is proved in [Yang and Zhang (2020b)] for σ = Id
and |b|2 belonging to the Kato class Kd,α for some α ∈ (0, 2), see

Subsection 1.7.3 for details. Moreover, in the early paper [Yan (1988)]

the weak existence is proved for (σt, bt) = (σ, b) independent of t, σσ∗

is bounded, uniformly invertible and Hörlder continuous, and b satisfies

sup
x∈Rd

∫
B(x, 12 )

{
1+1{d=2} log |x−y|−1 +1{d≥3}|x−y|2−d

}
|b(y)|2dy <∞.

(3) Concerning singular degenerate SDEs, the stochastic Hamiltonian sys-

tems have been investigated in [Chaudru de Raynal (2017)], [Huang

and Lv (2020)], [Wang and Zhang (2016)], [Zhang (2018)], the sin-

gular SDEs on Heisenberg groups are studied in [Huang and Wang

(2018)], and the Gruchin type singular SDEs are considered in [Wang

and Zhang (2018)]. See Subsections 1.7.1 and 1.7.2 for concrete results.

(4) Singular SDEs with jumps are studied in [Chen et al (2021)] and [X-

ie and Zhang (2020)], the singular semilinear SPDEs are investigated

in [Da Prato et al (2013)], [Da Prato et al (2015)] and [Wang (2016)],

and the singular functional (i.e. path dependent) SPDEs are considered

in [Huang and Wang (2017)] and [Lv and Huang (2021)].

1.3.2 Some lemmas

A. Yamada-Watanabe principle. This principle goes back to [Yamada

and Watanabe (1971)] which says that the weak existence and pathwise
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uniqueness for an SDE imply the well-posedness. Furthermore, [Cherny

(2003)] proved a stronger statement: the weak existence together with the

pathwise uniqueness is equivalent to the strong existence together with joint

weak uniqueness. In the following we state a general version of this principle

due to [Kurtz (2014)].

Let S1 and S2 be two Polish spaces. For a measurable space E, let

P(E) denote the set of all probability measures on E. Let ν ∈ P(S2) and

Γ be a collection of constraints for random variables on S1 × S2. We write

(X,Y ) ∈ Γ if (X,Y ) is a random variable on S1 × S2 under a probability

space satisfying all constraints in Γ. In the SDE set up, S1 and S2 stand for

the path spaces of the solution and the noise respectively, and we denote

(X,Y ) ∈ Γ if X solves the equation with noise Y .

Definition 1.3.1. Let ν ∈ P(S2) and Γ be a set of constraints for random

variables on S1 × S2.

(1) A weak solution for (Γ, ν) is a random variable (X,Y ) on S1×S2 under

a probability space such that (X,Y ) ∈ Γ and LY = ν. (Γ, ν) is said to

have joint weak uniqueness if for any two weak solutions (Xi, Y i)i=1,2

under probabilities (Pi)i=1,2, we have L(X1,Y 1)|P1 = L(X2,Y 2)|P2 .

(2) A random variable (X,Y ) on S1 × S2 is called a strong solution for

(Γ, ν) if it is a weak solution and there exists a measurable function

F : S2 → S1 such that X = F (Y ) a.s.

(3) (Γ, ν) is said to have pointwise (pathwise for stochastic processes) u-

niqueness, if for any random variables {X1, X2, Y } under the same

probability space such that (X1, Y ), (X2, Y ) ∈ Γ and LY = ν, we have

X1 = X2 a.s.

Lemma 1.3.2 (Yamada-Watanabe Principle [Kurtz (2014)]). Let

ν ∈ P(S2) and Γ be a set of constraints for random variables on S1 × S2.

The following statements are equivalent:

(1) (Γ, ν) has a weak solution and the pointwise uniqueness.

(2) (Γ, ν) has a strong solution and the joint weak uniqueness.

B. Stochastic Gronwall inequality. This inequality was first found by

[Scheutzow (2013)] for continuous martingales. The following version is

taken from [Xie and Zhang (2020)].

Lemma 1.3.3 (Stochastic Gronwall Inequality). Let ξt and ηt be

nonnegative progressively measurable processes under a complete filtration



July 27, 2024 9:20 ws-book9x6 13512-main page 18

18 Distribution Dependent Stochastic Differential Equations

probability space such that ξt is cádlág (i.e. right continuous with left limit),

let At be a continuous adapted increasing process with A0 = 0, and let Mt

be a local martingale with M0 = 0. If

ξt ≤ ξ0 +

∫ t

0

ηsds+

∫ t

0

ξsdAs +Mt, t ≥ 0,

then for any 0 < q < p < 1 and t ≥ 0,(
E
[

sup
s∈[0,t]

ξqs

]) 1
q ≤

( p

p− q

) 1
q
(
E
[
e
pAt
1−p
]) 1−p

p E
(
ξ0 +

∫ t

0

ηsds

)
.

C. Maximal functional. Consider the local Hardy-Littlewood maximal

function for a nonnegative function f on Rd:

Mf(x) := sup
r∈(0,1)

1

|B(0, r)|

∫
B(0,r)

f(x+ y)dy, x ∈ Rd.

The following result is taken from Lemma 2.1 in [Xia et al (2020)], which

goes back to [Stein (1970)].

Lemma 1.3.4 (Maximal function estimates). There exists a constant

c > 0 such that

(1) For any nonnegative function f on Rd with |∇f | ∈ L1
loc(Rd),

|f(x)−f(y)| ≤ c|x−y|
(
M|∇f |(x)+M|∇f |(y)+‖f‖∞

)
, a.e. x, y ∈ Rd.

(2) For any nonnegative measurable function f on [0, T ]× Rd,

‖Mf‖L̃pq(T ) ≤ c‖f‖L̃pq(T ), p, q ≥ 1.

D. BDG (Burkholder-Davis-Gundy) inequality. This inequality

goes back to [Burkholder and Gundy (1970)] and [Davis (1970)].

Lemma 1.3.5 (BDG inequality). For any p > 0 there exist constants

Cp > cp > 0 such that for any continuous local martingale Mt with M0 = 0,

and any stopping time τ ,

cpE[〈M〉pt∧τ ] ≤ E
[

sup
s∈[0,t∧τ ]

|Ms|2p
]
≤ CpE[〈M〉pt∧τ ], t ≥ 0,

where 〈M〉t is the quadratic variational of Mt, i.e. the unique continuous

increasing process such that M2
t − 〈M〉t is a local martingale.
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E. Girsanov theorem. The following result is initiated in [Girsanov

(1960)].

Lemma 1.3.6 (Girsanov theorem). Let (ξs)s∈[0,T ] be an adapted pro-

cess on Rm such that P-a.s.
∫ T

0
|ξs|2ds <∞. If

Rt := e−
∫ t
0
〈ξs,dWs〉− 1

2

∫ t
0
|ξs|2ds, t ∈ [0, T ]

is a martingale, then

W̃t :=

∫ t

0

ξsds+Wt, t ∈ [0, T ]

is an m-dimensional Brownian motion under the probability Q := RTP (i.e.

dQ = RTdP).

The proof is straightforward by verifying that under Q, (W̃t)t∈[0,T ] is

a local martingale with 〈W̃ 〉t = t. In general, (Rt)t∈[0,T ] is only a local

martingale, and it becomes a martingale if and only if the following uniform

integrability condition hold:

lim
n→∞

sup
t∈[0,T ]

E[(Rt − n)+] = 0.

It is in particular the case under Novikov’s condition:

E[e
1
2

∫ T
0
|ξs|2ds] <∞.

1.3.3 Proof of Theorem 1.3.1

Proof of Theorem 1.3.1(1).

(a) The weak existence and (1.3.2). We first consider b(0) = 0. In

this case, b = b(1) is locally bounded and Lipschitz continuous in x ∈ Rd
uniformly in t ∈ [0, T ]. Since σ is bounded and |bt(x)| has linear growth in

x uniformly in t ∈ [0, T ], it is easy to prove (1.3.2) by applying Itô’s formula

to (1 + |Xt|2)
k
2 and the BDG inequality in Lemma 1.3.5. Let

b(n) = 1B(0,n)b, n ≥ 1.

Since b(n) is bounded, (1.1.1) with b(n) replacing b is weakly well-posed, see

for instance Theorem 1.4 in [Xia et al (2020)]. Let P (x,n) be the distribution

of the weak solution (Xn
t ,W

n
t )t∈[0,T ] starting from (x, 0) ∈ Rd×Rm, which

is a probability measure on the path space C([0, T ];Rd × Rm). By the

boundedness of σ, the linear growth of supt∈[0,T ] |bt| and (1.3.2), we find a

constant K > 0 such that for any n ≥ 1,

E
[

sup
0≤s≤t≤T,|t−s|≤ε

{|Xn
t −Xn

s |+ |Wn
t −Wn

s |}
]
≤ K(1 + |x|)ε 1

2 , ε ∈ (0, 1),
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so that by the Arzelá-Ascoli theorem, {P (x,n)}n≥1 is tight. By the conti-

nuity of the coefficients in the space variable, the weak limit for a con-

vergent subsequence of {P (x,n)}n≥1 gives to the distribution of a weak

solution (Xt,Wt)t∈[0,T ] of (1.1.1) with b(0) = 0; that is, Wt is an m-

dimensional Brownian motion under a complete filtration probability space

(Ω, {Ft}t≥0,P), and Xt solves the SDE

dXt = b
(1)
t (Xt)dt+ σt(Xt)dWt, X0 = x, t ∈ [0, T ]. (1.3.9)

Next, when b(0) 6= 0, we reformulate (1.3.9) as

dXt = bt(Xt)dt+ σt(Xt)dW̃t, X0 = x, t ∈ [0, T ],

where W̃t := Wt −
∫ t

0
{σ∗s (σsσ

∗
s )−1b

(0)
s }(Xs)ds. By (A1.1) and (1.2.17) for

(p, q) = (p0/2, q0/2) due to (1.2.7),

Rt := e
∫ t
0
〈{(σsσ∗s )−1b(0)

s }(Xs),σs(Xs)dWs〉− 1
2

∫ t
0
|σ∗s (σsσ

∗
s )−1b(0)

s |
2(Xs)ds, t ∈ [0, T ]

is a martingale with E[|RT |2] ≤ c1 for some constants c1 > 0 independent

of x. By Girsanov’s theorem, W̃t is an m-dimensional Brownian motion

under the probability Q := RTP. Consequently, (Xt, W̃t) under Q is a weak

solution of (1.1.1), and by (1.3.2) for the SDE (1.3.9) implied by (A1.1), we

find a constant c2 > 0 such that

EQ

[
sup
t∈[0,T ]

(1 + |Xt|)k
]
≤
(
E
[

sup
t∈[0,T ]

(1 + |Xt|)2k
]) 1

2

(ER2
T )

1
2 ≤ c2(1 + |x|)k.

(b) To prove the weak uniqueness, let (Xi
t ,W

i
t )i=1,2 under probabilities

(Pi)i=1,2 be two weak solutions of (1.1.1) starting from x, i.e.

dXi
t = bt(X

i
t)dt+ σt(X

i
t)dW

i
t , t ∈ [0, T ], Xi

0 = x. (1.3.10)

It suffices to show

L(X1
t )t∈[0,T ]|P1 = L(X2

t )t∈[0,T ]|P2 . (1.3.11)

To this end, let

τ in := inf{t ∈ [0, T ] : |Xi
t | ≥ N}, i = 1, 2, n ≥ 1,

where we set inf ∅ = T by convention. By (A1.1), (1.2.17) and Girsanov’s

theorem, for each i = 1, 2,

Rin,t := e−
∫ t∧τin
0 〈{(σsσ∗s )−1bs}(Xis),σs(Xs)dW

i
s〉− 1

2

∫ t∧τin
0 |σ∗s (σsσ

∗
s )−1bs|2(Xis)ds

for t ∈ [0, T ] is a Pi-martingale, and

W̃ i
t := W i

t +

∫ t∧τ in

0

{σ∗s (σsσ
∗
s )−1bs}(Xi

s)ds, t ∈ [0, T ]
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is an m-dimensional Brownian motion under the probability Qin := Rin,TPi.
Consequently, (Xi

t , W̃
i
t )i=1,2 under (Qin)i=1,2 are weak solutions of the ref-

erence SDE

dYt = σt(Yt)dWt, Y0 = x, t ∈ [0, T ], (1.3.12)

which has weak uniqueness according to Theorem 1.4 in [Xia et al

(2020)]. Since (1.3.10) implies σs(Xs)dW
i
s = dXi

s − bs(Xi
s)ds, and Rin,T =

Gn(Xi), τ in = Hn(Xi) hold for some measurable functions Gn and Hn,

the weak uniqueness of (1.3.12) implies that for any bounded measurable

function F on C([0, T ];Rd),

EP1 [1{τ1
n>T}F (X1)] = EQ1

n
[1{Hn(X1)>T}Gn(X1)−1F (X1)]

= EQ2
n
[1{Hn(X2)>T}Gn(X2)−1F (X2)] = EP2 [1{τ2

n>T}F (X2)], n ≥ 1.

Since τ in → T as n → ∞, by letting n → ∞ we obtain (1.3.11) since F is

an arbitrary bounded measurable function on C([0, T ];Rd). �

Proof of Theorem 1.3.1(2).

(a) For any n ≥ 1, let

bn := 1B(0,n)b
(1) + b(0).

By Theorem 1.1 in [Xia et al (2020)], for any x ∈ Rd, the following SDE is

well-posed:

dXn
t = bn(Xn

t )dt+ σ(Xn
t )dWt, Xn

0 = x,

and

sup
x6=y

E
[

sup
t∈[0,T ]

|Xx,n
t −Xy,n

t |
|x− y|

]
<∞, (1.3.13)

where Xx,n
t is the solution starting at x.

Let τxn := inf{t ∈ [0, T ] : |Xx,n
t | ≥ n}. Then Xx,n

t solves (1.1.1) up to

time τxn , and by the uniqueness we have

Xx,n
t = Xx,m

t , t ≤ τxn ∧ τxm, n,m ≥ 1.

So, it suffices to prove that τxn → T as n→ T .

By Lemma 1.2.2 and (A1.1), for any λ ≥ 0, the PDE

(∂t + Lt −∇b(1)
t

)ut = λut − b(0)
t , t ∈ [0, T ], uT = 0 (1.3.14)

has a unique solution u ∈ H̃p0
q0 (T ), and there exist constants λ0, c, θ > 0

such that

λθ(‖u‖∞ + ‖∇u‖∞) + ‖∂tu‖L̃p0
q0

(T ) + ‖∇2u‖L̃p0
q0

(T ) ≤ c, λ ≥ λ0. (1.3.15)
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So, we may take λ ≥ λ0 such that

‖u‖∞ + ‖∇u‖∞ ≤ ε. (1.3.16)

Let Θt(x) = x+ ut(x). By Itô’s formula (1.2.8), Y nt := Θt(X
n
t ) satisfies

dY nt =
{

1B(0,n)b
(1) + λut + 1B(0,n)∇b(1)ut

}
(Xn

t )dt

+ {(∇Θt)σ}(Xn
t )dWt.

(1.3.17)

By (1.3.16) and (A1.2)(2), there exist constants c0, c1, c1 > 0 such that for

some martingale Mt,

d{V (Y nt ) +Mt} ≤
[〈

1B(0,n){b(1) +∇b(1)ut}(Xn
t ),∇V (Y nt )

〉
+ c0(|∇V (Y nt )|+ ‖∇2V (Y nt )‖)

]
dt

≤
{
1B(0,n)

[
〈b(1),∇V 〉+ε|b(1)| sup

B(·,ε)
(|∇V |+ ‖∇2V ‖)

]
(Xn

t )+c0KV (Y nt )
}

dt

≤
{
Kφ(V (Xn

t )) + c0KV (Y nt )
}

dt

≤ K
{
φ((1 + εK)V (Y nt )) + c0V (Y nt )

}
dt, t ≤ τn.

Let H(r) :=
∫ r

1
ds

s+φ((1+εK)s) . Then
∫∞

1
ds

s+φ(s) =∞ implies

H(∞) := lim
r→∞

H(r) =∞. (1.3.18)

Since φ ∈ C1([0,∞); [1,∞)) is increasing, we have H ′′ ≤ 0, so that by Itô’s

formula we obtain

dH(V (Y nt )) ≤ c3dt+ dM̃t, t ∈ [0, τn]

for some constant c3 > 0 and some martingale M̃t. Thus,

E[(H ◦ V )(Y nt∧τn)] ≤ V (x+ u(x)) + c3t, t ∈ [0, T ], n ≥ 1.

Since (1.3.16) and |z| ≥ n imply |Θt(z)| ≥ |z| − |u(z)| ≥ n− ε, we derive

P(τxn < t) ≤ V (x+ Θ0(x)) + c3t

inf |y|≥n−εH(V (y))
=: εt,n(x), t ∈ [0, T ]. (1.3.19)

By lim|x|→∞H(V )(x) =∞, we have limn→∞ εt,n(x) = 0. Therefore, τxn →
T when n→∞ as desired.

(b) Let Xx
t and Xy

t solve (1.1.1) with initial values x, y respectively.

Then

Xx,n
t = Xx

t , Xy,n
t = Xy

t , t ∈ [0, T ∧ τxn ∧ τyn ].
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Combining this with (1.3.13) and (1.3.19), we obtain

sup
x,y∈B(0,k),|x−y|≤ε

E
[

sup
t∈[0,T ]

|Xx
t −X

y
t | ∧ 1

]
≤ sup
x,y∈B(0,k),|x−y|≤ε

{
E
[

sup
t∈[0,T ]

|Xx,n
t −Xy,n

t | ∧ 1
]

+ P(τxn ∧ τyn < T )
}

≤ c(n)ε+ εT,n(x) + εT,n(y), n ≥ k ≥ 1.

By letting first ε ↓ 0 then n→∞, we derive (1.3.3).

(c) Let Pnt and (Pnt )∗ be defined as Pt and P ∗t for Xn
t solving (1.1.1).

By Theorem 1.4.2 below, (1.4.3) holds for Pnt such that for some constant

cn > 0,

‖(Pnt )∗δx − (Pnt )∗δy‖var ≤
cn√
t
|x− y|, x, y ∈ Rd, t ∈ (0, T ].

Next, by (1.3.19) and Xt = Xn
t for t ≤ τn, we obtain

sup
|f |≤1

|Ptf(x)− Pnt f(x)| ≤ 2P(τn ≤ t) ≤ εt,n(x)→ 0 as n→∞.

Then

lim sup
y→x

‖P ∗t δx − P ∗t δy‖var

≤ lim sup
n→∞

lim sup
y→x

sup
|f |≤1

{
|Pnt f(x)− Pnt f(y)|+ εt,n(x) + εt,n(y)

}
= 0, t ∈ (0, T ].

So, (1.3.4) holds.

(d) By Theorem 6.2.7(ii)–(iii) in [Bogachev et al (2015)], Pt has a heat

kernel pt(x, y) continuous in y such that for some c : (0, T ]× N→ (0,∞),

inf
|y|≤n

pt(x, y) ≥ c(t, n) sup
|y|≤n

pt/2(x, ·) > 0, t ∈ (0, T ], x ∈ Rd, n ≥ 1.

Combining this with (1.3.4) implies (1.3.5).

(e) When φ(r) = r, by (A1.2)(2), (1.3.17) and Itô’s formula, for any

k ≥ 1 we find a constant c1(k) > 0 such that

d{V (Y nt )k} ≤ c1(k)V (Y nt )kdt+ dMk
t

holds for some martingale Mk
t with d〈Mk〉t ≤ {c1(k)V (Y nt )k}2dt. Com-

bining this with |Xn
t − Y nt | ≤ ‖u‖∞ ≤ ε due to (1.3.16) and Y nt :=

Xn
t + ut(X

n
t ), BDG’s inequality, (1.3.16) and (A1.2)(2), we find constants

c2(k), c3(k), c4(k) > 0 such that

E
[

sup
t∈[0,T ]

V (Xn
t )k
]
≤ c2(k)E

[
sup
t∈[0,T ]

V (Y nt )k
]

≤ c3(k)V (x+ u0(x))k ≤ c4(k)V (x)k, n ≥ 1.

By Fatou’s lemma with n→∞, we derive (1.3.6). �
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Proof of Theorem 1.3.1(3). By Theorem 1.3.1(1) and the Yamada-

Watanabe principle, it suffices to prove (1.3.7), which implies the pathwise

uniqueness as well as (1.3.8).

To prove (1.3.7), we use Zvonkin’s transform. By Lemma 1.2.2, there

exists λ0 > 0 such that for any λ ≥ λ0, the PDE

(∂t + Lt − λ)ut = −b(0)
t , uT = 0, (1.3.20)

for ut : Rd → Rd has a unique solution in H̃2,p
q (T ), and there exist constants

ε, c > 0 such that

λε
(
‖u‖∞ + ‖∇u‖∞

)
+ ‖(∂t +∇b(1))u‖L̃p0

q0
(T ) + ‖∇2u‖L̃p0

q0
(T )

≤ c, λ ≥ λ0.
(1.3.21)

Then for large enough λ0 > 0, Θt := id+ ut satisfies

1

2
|x− y|2 ≤ |Θt(x)−Θt(y)|2 ≤ 2|x− y|2, λ ≥ λ0, x, y ∈ Rd. (1.3.22)

For (Xi
t)i=1,2 solving (1.1.1) starting at (xi)i=1,2 respectively, by

(1.3.20) and Itô’s formula in Theorem 1.2.3(3), we obtain

dΘt(X
i
t) =

{
b
(1)
t +λut

}
(Xi

t)dt+{(∇Θt)
∗σt}(Xi

t)dWt, t ∈ [0, T ]. (1.3.23)

So, by (A1.1), (1.3.21), (1.3.22) and Lemma 1.3.4,

Ht := |Θt(X
x
t )−Θt(X

y
t )|2k, t ∈ [0, T ]

satisfies

dHt ≤ AtHtdt+ dMt, (1.3.24)

where Mt is a local martingale and for some constant K > 0

At := K
{

1 +

2∑
i=1

M
( l∑
j=1

|fi(t, ·)|2 + ‖∇2ut‖2
)

(Xi
t)
}
. (1.3.25)

By (1.2.7) and (1.2.17) for (p, q) = 1
2 (pi, qi), 0 ≤ i ≤ l, and (1.3.21), we see

that

E
[
eλAT

]
<∞, λ > 0.

So, applying the stochastic Gronwall inequality in Lemma 1.3.7 for q = 1
2 ,

p = 3
4 , we find a constant c > 0 such that(
E
[

sup
t∈[0,T ]

|X1
t −X2

t |2k
])2

≤
(
3Ee3AT

) 1
3 |x1 − x2|2k ≤ c|x1 − x2|2k.
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Therefore, (1.3.7) holds for some constant c(k) > 0, and for p > 1, (1.3.8)

follows by noting that

|∇Ptf |(x) ≤ lim sup
y→x

E
[
|∇f(Xx

t )| |X
x
t − Y

y
t |

|x− y|

]
≤ (Pt|∇f |p)

1
p (x) lim sup

y→x

(E[|Xx
t − Y

y
t |

p
p−1 ])

p−1
p

|x− y|

≤ c(p/(p− 1))
p−1
p (Pt|∇f |p)

1
p (x).

Proof of Theorem 1.3.1(4). As in (1.3.23), we have

dΘt(X
x
t ) = {b(1)

t + λut}(Xx
t )dt+ {(∇Θt)

∗σt}(Xx
t )dWt, Xx

0 = x.

Since |u| + ‖(∇Θ)∗σ‖ is bounded and supt∈[0,T ] |b
(1)
t (x)| has linear growth

in |x|, for any p ≥ 1 we find a constant Cp > 0 such that

E
[
|Θt(X

x
t )−Θs(X

x
s )|2p

]
≤ Cp(1 + |x|)2p|t− s|p, 0 ≤ s ≤ t ≤ T, x ∈ Rd.

(1.3.26)

Next, by (1.3.2) and (1.3.22), we find a function c : R→ (0,∞) such that

sup
t∈[0,T ]

E
[
|Θt(X

x
t )−Θt(X

y
t )|2p

]
≤ c(p)|x− y|2p, x, y ∈ Rd, p ≥ 1,

sup
t∈[0,T ]

E
[
(1 + |Θt(X

x
t )|)k

]
≤ c(k)(1 + |x|)k, x ∈ Rd, k ∈ R.

By a standard argument with Kolmogorov’s continuity theorem, this to-

gether with (1.6.14) yields that for P-a.s. ω and all t ∈ [0, T ], x 7→ Xx
t (ω) is

a homeomorphism in Rd, see the proof of Theorem 4.5.1 in [Kutani (1990)]

or Theorem 3.4 in [Zhang (2011)]. �

1.4 Bismut formula

The following type of derivative formula

∇PMt f = E
[
f(Xt)Mt

]
, t > 0, f ∈ Bb(Rd)

for some random variable Mt was first established by [Bismut (1984)] for the

heat semigroup PMt on a Riemannian manifold M using Malliavin calculus,

then by [Elworthy and Li (1994)] using martingale argument, and has been

intensively developed for many different models including SDEs and SPDEs.

In the following we first recall the integration by parts formula in Malli-

avin calculus, then establish Bismut formula for Pt associated with (1.1.1).
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1.4.1 Malliavin calculus

Malliavin calculus, also known as Stochastic Calculus of Variations, was

developed by Malliavin [Malliavin (1978)] to study hypoelliptic operators

using stochastic analysis. Roughly speaking, Malliavin calculus is analysis

on the Wienner space for functionals of the Brownian motion. There are

many articles and books on Malliavin calculus and applications, see for

instance [Fang (2004)] and references therein.

For fixed T > 0, let ΛT be the Wiener measure on the path s-

pace CT := C([0, T ];Rm), which is the distribution of the m-dimensional

Brownian motion (Wt)t∈[0,T ]. To develop analysis on the Wiener space

(CT ,B(CT ),ΛT ), we first define the directional derivative of a nice func-

tion f ∈ L2(ΛT ) along a direction h ∈ CT :

Dhf(γ) := lim
ε↓0

f(γ + εh)− f(γ)

ε
, γ ∈ CT .

Noting that each f ∈ L2(ΛT ) is an equivalent class, i.e. f = g in L2(ΛT ) if

f = g ΛT -a.s., to ensure that Dhf is well-defined in L2(ΛT ), one needs to

show that the limit does not depend on the choice of f from its equivalent

class, i.e. f = g ΛT -a.s. should imply f(· + εh) = g(· + εh) ΛT -a.s.. This

property is called the quasi-invariance of ΛT under shift by εh. According

to the Carmon-Martin theorem, this property holds if and only if h belongs

to the Carmon-Martin space

H :=

{
h ∈ CT : ‖h‖H :=

(∫ T

0

|ḣt|2dt

) 1
2

<∞
}
,

where ḣt := d
dtht is the derivative of ht in the weak (i.e. integration by

parts) sense. Observe that H is a separable Hilbert space under the inner

product

〈h, φ〉H :=

∫ T

0

〈ḣt, φ̇t〉dt, h, φ ∈ H.

Definition 1.4.1. (1) A function f ∈ L2(ΛT ) is called Malliavin differen-

tiable, denoted by f ∈ D1,2, if

H 3 h 7→ Dhf := lim
ε↓0

f(·+ εh)− f
ε

∈ L2(ΛT )

is a well-defined bounded linear functional. In this case, there exists a

unique bounded linear operator Df from H to L2(CT → H,ΛT ) such that

〈Df, h〉H = Dhf.

We call Df the Malliavin derivative (or gradient) of f .
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(2) A measurable map h : CT → H is called a vector field. We denote

h ∈ D(D∗) if there exists a unique D∗h ∈ L2(ΛT ) such that∫
CT

(Dhf)dΛT =

∫
CT

(fD∗h)dΛT , f ∈ D1,2.

In this case, D∗h is called the Malliavin divergence of h.

Theorem 1.4.1 (Integration by parts formula). Let W[0,T ] : Ω → CT
be the m-dimensional Brownian motion. Then

E
[
(Dhf)(W[0,T ])

]
= E

[
(fD∗h)(W[0,T ])

]
, f ∈ D1,2, h ∈ D(D∗).

In particular, if ht(W[0,T ]) is adapted in the natural filtration of Wt, then

(D∗h)(W[0,T ]) =

∫ T

0

〈
ḣt(W[0,T ]),dWt〉.

In applications we may simply take (Ω,P) = (CT ,ΛT ) such that the

Brownian motion becomes the coordinate process Wt(γ) = γt, γ ∈ Ω = CT .
In this case, a vector field h coincides with h(W[0,T ]), hence the composition

of W[0,T ] can be dropped from Theorem 1.4.1.

1.4.2 The main result

The following result is taken from [Wang (2023d)], which establishes such

a formula for (1.1.1) under assumption (A1.3). See Theorem 1.1(ii) in [Xia

et al (2020)] for the case with b(1) = 0, βs = s
t and f ∈ C1

b (Rd).

Theorem 1.4.2. Assume (A1.3), and let Pt be given in (1.3.1) for Xx
t

solving (1.1.1) with X0 = x. Then for any v, x ∈ Rd,

∇vXx
s := lim

ε↓0

Xx+εv
s −Xx

s

ε
, s ∈ [0, T ]

exists in Lj(Ω→ C([0, T ];Rd),P) for any j ≥ 1, and

sup
x∈Rd

E
[

sup
t∈[0,T ]

|∇vXx
t |j
]
≤ c(j)|v|j , x, v ∈ Rd (1.4.1)

holds for some constant c(j) > 0. Moreover, for any β ∈ C1([0, t]) with

β0 = 0 and βt = 1, and any f ∈ B1
b (Rd),

∇vPtf(x) = E
[
f(Xx

t )

∫ t

0

β′s
〈{
σ∗s (σsσ

∗
s )−1

}
(Xx

s )∇vXx
s ,dWs

〉]
. (1.4.2)

Consequently, for any p > 1 there exists a constant c(p) > 0 such that

|∇Ptf | ≤
c(p)√
t

(
Pt|f |p

) 1
p , t > 0, f ∈ Bb(Rd). (1.4.3)
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Proof.

(a) Let λ > 0 be large enough such that the unique solution of (1.3.20)

satisfies (1.3.21) and

‖u‖∞ + ‖∇u‖∞ ≤
1

2
.

Let Θt := id+ ut and

b̃ := {λu+ b(1)} ◦Θ−1, σ̃ :=
(
{Id +∇u}σ

)
◦Θ−1.

Then (A1.3) implies

‖∇b̃‖∞ + ‖σ̃‖∞ + ‖∇σ̃‖L̃p0
q0

(T ) + ‖(σ̃σ̃∗)−1‖∞ <∞. (1.4.4)

By (1.3.20), (1.3.21) and Theorem 1.2.3(iii), Y xt := Θt(X
x
t ) solves

dY xt = b̃t(Y
x
t )dt+ σ̃t(Y

x
t )dWt, Y x0 = Θ0(x). (1.4.5)

By (1.4.4), (1.2.7) and (1.2.17), the increasing process

At :=

∫ t

0

(‖∇b̃s‖+ ‖∇σ̃s‖2)(Y xs )ds, t ∈ [0, T ]

satisfies

E[eαAT ] <∞, α > 0.

So, for any v, x ∈ Rd, the linear SDE

dvt = (∇vt b̃t)(Y xt ) + (∇vt σ̃t)(Y xt )dWt, v0 = v +∇vu0(x) (1.4.6)

has a unique solution, and by Itô’s formula and the stochastic Gronwall

inequality, for any j ≥ 1 there exists a constant c(j) > 0 such that

sup
x∈Rd

E
[

sup
t∈[0,T ]

|vt|j
]
≤ c(j)|v|j , j ≥ 1. (1.4.7)

(b) Proof of assertion (1). Let Y x+εv
t := Θt(X

x+εv
t ). By (1.4.7), for the

first assertion it suffices to prove

lim
ε→0

E
[

sup
t∈[0,T ]

∣∣∣Y x+εv
t − Y xt

ε
− vxt

∣∣∣j] = 0, j ≥ 1. (1.4.8)

Indeed, by an approximation argument indicated in Remark 1.4.1 below,

see also Remark 2.1 in [Zhang and Yuan (2021)], we may assume that∇2b
(1)
t

is bounded so that by Lemma 2.3(3) in [Zhang and Yuan (2021)],

|∇Θt(x)−∇Θt(y)| ≤ c|x− y|α, t ∈ [0, T ], x, y ∈ Rd (1.4.9)
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holds for some constants c > 0 and α ∈ (0, 1). Since Xx
t = Θ−1

t (Y xt ), (1.4.8)

implies that ∇vXx
t exists in Lj(Ω→ C([0, T ];Rd),P) with

∇vXx
t = (∇Θt(X

x
t ))−1∇vY xt = (∇Θt(X

x
t ))−1vxt , t ∈ [0, T ].

To prove (1.4.8), let

vεs :=
Y x+εv
s − Y xs

ε
, s ∈ [0, T ], ε ∈ (0, 1].

By (1.4.4), (1.2.17), Lemma 1.3.4, and the stochastic Gronwall inequality

in Lemma 1.3.3, we have

sup
ε∈(0,1]

E
[

sup
t∈[0,T ]

|vεt |j
]
<∞, j ≥ 1. (1.4.10)

Write

vεr =

∫ r

0

(∇vεs b̃s)(Y
x
s )ds+

∫ r

0

(∇vεs σ̃s)(Y
x
s )dWs + αεr, r ∈ [0, t], (1.4.11)

where

αεr :=

∫ r

0

ξεsds+

∫ t

0

ηεs dWs (1.4.12)

for

ξεs :=
b̃s(Y

x+εv
s )− b̃s(Y xs )

ε
− (∇vεs b̃s)(Y

x
s ),

ηεs :=
σ̃s(Y

x+εv
s )− σ̃s(Y xs )

ε
− (∇vεs σ̃s)(Y

x
s ).

We aim to prove

lim
ε→0

E
[

sup
t∈[0,T ]

|αεt |n
]

= 0, n ≥ 1. (1.4.13)

Firstly, since ∇b̃s and ∇σ̃s exists a.e., for a.e. x ∈ Rd we have

lim
ε↓0

sup
|v|≤1

{∣∣∣ b̃s(x+ εv)− b̃s(x)

ε
−∇v b̃s(x)

∣∣∣
+
∥∥∥ σ̃s(x+ εv)− σ̃s(x)

ε
−∇vσ̃s(x)

∥∥∥} = 0.

Combining this with (1.4.10) and noting that LY xs (s ∈ (0, T ]) is absolutely

continuous with respect to the Lebesgue measure, see for instance Theo-

rem 6.3.1 in [Bogachev et al (2015)], we obtain

lim
ε→0

{
|ξεs |+ ‖ηεs‖

}
= 0, P-a.s., s ∈ (0, T ]. (1.4.14)
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Next, let θ > 1 such that (θ−1pi, θ
−1qi) ∈ K, 0 ≤ i ≤ l. By fi ∈ L̃piqi (T ),

Lemma 1.3.4 and (1.2.17) with f = fθi and (p, q) = (θ−1pi, θ
−1qi), we

obtain

sup
ε∈[0,1]

E
[(∫ T

0

(Mf2θ
i )(Xx+εv

t )dt

∣∣∣∣F0

)n]
≤ Kn, 0 ≤ i ≤ l (1.4.15)

for some constant Kn > 0. By (A1.3) and Lemma 1.3.4, there exists a

constant c1 > 0 such that

|ξεs |2θ+‖ηεs‖2θ ≤ c1|ṽεt |2
(

1+

l∑
i=0

{
(Mf2θ

i (s, ·))(Xx
s )+(Mf2θ

i (s, ·))(Xx+εv
s )

})
.

Combining this with (1.4.10) and (1.4.15), for any n ≥ 1 we find constants

c1(n), c2(n) > 0 such that

E
[(∫ T

0

{
|ξεs |2θ + ‖ηεs‖2θ

}
ds

)n]
≤ c1(n)E

[(
sup

s∈[0,T ]

|vεs |2n
)

×
(∫ T

0

{
1 +

l∑
i=0

(Mf2θ
i (s, ·))(Xx

s ) + (Mf2θ
i (s, ·))(Xx+εv

s )
}

ds

)n]

≤ c1(n)

(
E
[(

sup
s∈[0,T ]

|vεs |4n
)]) 1

2

×
(
E
[(∫ T

0

{
1 +

l∑
i=0

(Mf2θ
i (s, ·))(Xx

s ) + (Mf2θ
i (s, ·))(Xx+εv

s )
}

ds

)2n]) 1
2

≤ c2(n) <∞, ε ∈ (0, 1].

Thus, by (1.4.14) and the dominated convergence theorem, we derive

lim
ε→0

E
[(∫ T

0

{
|ξεs |2 + ‖ηεs‖2

}
ds

)n]
= 0, n ≥ 1.

Therefore, (3.7.17) and BDG’s inequality in Lemma 1.3.5 imply (1.4.13).

Finally, by (1.4.4), (1.4.6), (1.4.11), and Lemma 1.3.4, for any j ≥ 1,

we find a constant c(j) > 0 such that

d|vs − vεs |2j ≤ c(j)
{

1 +

l∑
i=0

f2
i (s, Y xs )

}
|vs − vεs |2jds

+ c(j) sup
r∈[0,s]

|αεr|2j + dMs, s ∈ [0, t]
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holds for some local martingale Ms. Since limε→0 |v0 − vε0| = 0, by com-

bining this with (1.2.17), (1.4.13), and the stochastic Gronwall inequality

in Lemma 1.3.3, we derive (1.4.8).

(c) Proof of (1.4.2) for f ∈ CLip(Rd), the space of Lipschitz continuous

functions on Rd. Let t ∈ (0, T ] be fixed, and consider

hs :=

∫ s

0

β′r
[
σ̃∗r{σrσ∗r}−1

]
(Y xr )vrdr, s ∈ [0, t]. (1.4.16)

By the same reason leading to (1.4.7), the SDE

dws =
{
∇ws b̃s(Y xs ) + σ̃s(Y

x
s )h′s

}
ds+ (∇ws σ̃s)(Y xs )dWs,

w0 = 0, s ∈ [0, t]
(1.4.17)

has a unique solution satisfying

sup
x∈Rd

E
[

sup
t∈[0,T ]

|ws|j
]
<∞, j ≥ 1. (1.4.18)

We aim to prove that the Malliavin derivative DhY
x
t of Y xt along h exists

and

DhY
x
t = wt. (1.4.19)

By Theorem 1.3.1, for any ε > 0 the following SDE is well-posed:

dY x,εs =
{
b̃t(Y

x,ε
s ) + εσ̃s(Y

x,ε
s )h′s

}
ds+ σ̃s(Y

x,ε
s )dWs,

s ∈ [0, t], Y x,ε0 = Y x0 .
(1.4.20)

By (1.4.4), (1.4.16), Lemma 1.3.4 and Itô’s formula, for any j ≥ 1 we find

a constant c1(j) > 0 such that

d|Y x,εs −Y xs |2j ≤ c1(j)|Y x,εs − Y xs |2j
l∑
i=0

{
1 +M{fi(s, ·)}2(Y xs )

+ {Mfi(s, ·)}2(Y x,εs )
}

ds+ c1(j)ε2j |vs|2jds+ dMs, s ∈ [0, t]

holds for some local martingale Ms. Noting that Y x,ε0 − Y x0 = 0, by com-

bining this with Lemma 1.3.3 and Lemma 1.3.4, we obtain

sup
ε∈(0,1]

E
[

sup
t∈[0,T ]

|Y x,εs − Y xs |j

εj

]
<∞, j ≥ 1. (1.4.21)

Let wεs =
Y x,εs −Y xs

ε . Then

wεr =

∫ r

0

{
(∇wεs b̃s)(Y

x
s ) + σ̃s(Y

x
s )h′s

}
ds

+

∫ r

0

(∇wεs σ̃s)(Y
x
s )dWs + α̃εr, r ∈ [0, t]

(1.4.22)
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holds for

α̃εr :=

∫ r

0

{ b̃s(Y x,εs )− b̃s(Y xs )

ε
− (∇wεs b̃s)(Y

x
s )
}

ds

+

∫ r

0

{
σs(Y

x,ε
s )− σ̃s(Y xs )

}
h′s ds

+

∫ r

0

{ σ̃s(Y x,εs )− σ̃s(Y xs )

ε
− (∇wεs σ̃s)(Y

x
s )
}

dWs.

Combining this with (1.4.17) and using the same argument leading to

(1.4.8), we derive (1.4.19).

By (1.4.16) and the SDE (1.4.6) for vs, we see that βsvs solves (1.4.17),

so that by the uniqueness we obtain

∇vY xt = vt = wt = DhY
x
t .

For f ∈ CLip(Rd), ∇f exists a.e. and ‖∇f‖∞ <∞. Since LXxt is absolutely

continuous, see for instance Theorem 6.3.1 in [Bogachev et al (2015)], we

conclude that (∇f)(Xx
t ) is a bounded random variable. By Theorem 1.4.1,

∇vY xt = DhY
x
t implies

∇vPtf(x) = ∇vE[{f ◦ (Θt)
−1}(Y xt )] = E

[
〈∇(f ◦Θ−1

t )(Y xt ),∇vY xt 〉
]

= E
[
Dh{(f ◦Θ−1

t )(Y xt )}
]

= E
[
f(Xx

t )

∫ t

0

〈h′s,dWs〉
]

= E
[
f(Xx

t )

∫ t

0

β′s
〈{
σ̃∗s (σ̃sσ̃

∗
s )−1

}
(Y xs )vs,dWs

〉]
, f ∈ CLip(Rd).

By vt = ∇Y xt , Y xt = Θt(X
x
t ) and σ̃t = {(∇Θt)σt} ◦Θ−1

t , we obtain

{σ̃∗s (σ̃sσ̃
∗
s )−1

}
(Y xs )vs

=
[
σ∗s (σsσ

∗
s )−1

{
(∇Θs)σsσ

∗
s (∇Θs)

∗}−1
]
(Xx

s )
{
∇Θs(X

x
s )
}
∇Xx

s

= {σ∗s (σsσ
∗
s )−1

}
(Xx

s )∇Xx
s , s ∈ [0, T ],

so that the previous formula implies

∇vPtf(x) = E
[
f(Xx

t )

∫ t

0

β′s
〈{
σ∗s (σsσ

∗
s )−1

}
(Xx

s )∇Xx
s ,dWs

〉]
,

f ∈ CLip(Rd).
(1.4.23)

(d) Proof of (1.4.3) and (1.4.2). Let P ∗t δx = LXxt and let νε be the finite

signed measure defined by

νε(A)

:=

∫ ε

0

E
[
1A(Xx+rv

t )

∫ t

0

β′s
〈{
σ∗s (σs(σs)

∗)−1
}

(Xx+rv
s )∇Xx+rv

s ,dWs

〉]
dr
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for A ∈ B(Rd), the Borel σ-algebra on Rd. Then (1.4.23) implies

(P ∗t δx+εv − P ∗t δx)(f) = νε(f), f ∈ CLip(Rd),

where ν(f) :=
∫
fdν for a (signed) measure ν and f ∈ L1(|ν|). Since

CLip(Rd) determines measures, we obtain

P ∗t δx+εv − P ∗t δx = νε,

so that for any f ∈ Bb(Rd),

Ptf(x+ εv)− Ptf(x)

=

∫ ε

0

E
[
f(Xx+rv

t )

∫ t

0

β′s
〈{
σ∗s (σs(σs)

∗)−1
}

(Xx+rv
s )∇Xx+rv

s x, dWs

〉]
dr.

Combining this with (1.4.1) and the boundedness of σ∗(σσ∗)−1, we derive

(1.4.3).

Next, let f ∈ Bb(Rd). For any r ∈ (0, T ), let (Xx
r,t)t∈[r,T ] solve (1.1.1)

from time r with Xx
r,r = x. Let

Pr,tf(x) := E[f(Xx
r,t)], f ∈ Bb(Rd), x ∈ Rd. (1.4.24)

Then the well-posedness implies

Pt = PrPr,t, 0 < r < t ≤ T.

Moreover, considering the SDE from time r replacing 0, (1.4.3) implies

‖∇Pr,tf‖∞ <∞, f ∈ Bb(Rd), 0 < r < t ≤ T.

So, by (1.4.23) for (Pr, βs/βr) replacing (Pt, βs), we obtain

∇vPtf(x) = ∇vPr(Pr,tf)(x)

=
1

βr
E
[
Pr,tf(Xx

r )

∫ r

0

β′s
〈{
σ∗s (σs(σs)

∗)−1
}

(Xx
s )∇Xx

s ,dWs

〉]
for all f ∈ Bb(Rd) and r ∈ (0, t) such that βr > 0. Since the Markov

property implies

E[f(Xx
t )|Fr] = Pr,tf(Xx

r ),

we obtain

∇vPtf(x) =
1

βr
E
[
f(Xx

t )

∫ r

0

β′s
〈{
σ∗s (σs(σs)

∗)−1
}

(Xx
s )∇Xx

s ,dWs

〉]
,

so that letting r ↑ t gives (1.4.2). �

To conclude this section, we make the following remark which will be

used to study distribution dependent SDEs in Chapter 3.
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Remark 1.4.1. For fixed σ but may be variable b, the constants c(·) in

Theorem 1.4.2 are uniformly in b = b(0) + b(1) satisfying

‖b(0)‖L̃p0
q0

+ ‖∇b(1)‖∞ ≤ N (1.4.25)

for a given constant N > 0. Indeed, letting γ be the standard Gaussian

measure and taking

b̃
(1)
t (x) :=

∫
Rd
b
(1)
t (x+ y)γ(dy), x ∈ Rd, t ∈ [0, T ],

we find constant c > 0 only depending on N such that (1.4.25) implies

‖∇b̃(1)‖∞ + ‖∇2b̃(1)‖∞ + ‖b(1)
t − b̃

(1)
t ‖∞ ≤ c.

Then b̃(0) := b(0) + b̃(1) − b(1) satisfies

‖b̃(0)‖L̃p0
q0
≤ ‖b(0)‖L̃p0

q0
+ c‖1‖L̃p0

q0
=: c′.

According to the proofs of Theorem 2.1 in [Zhang and Yuan (2021)] as well

as Theorems 1.2.3 and 1.2.4 for b = b̃(0) + b̃(1), the constant λ0 > 0 before

(1.3.20), upper bounds on ‖u‖∞ + ‖∇u‖∞‖∇2u‖L̃p0
q0

, and the constants in

Krylov’s and Khasminskii’s estimates (1.2.7) and (1.2.17), are uniformly in

b satisfying (1.4.25).

1.5 Dimension-free Harnack inequality

Let P be a Markov operator on Bb(Rd), i.e. P is a bounded linear operator

on Bb(Rd) with P1 = 1 and Pf ≥ 0 for f ≥ 0. We consider the following

type of Harnack inequality:

Φ(Pf(x)) ≤ (PΦ(f)(y))eΨ(x,y), x, y ∈ E, f ∈ B+
b (Rd), (1.5.1)

where Φ is a nonnegative convex function on [0,∞), Ψ is a nonnegative

function on Rd×Rd, and B+
b (Rd) is the set of bounded positive measurable

functions on Rd.
This type of inequality was first found in [Wang (1997)] for diffusion

semigroups on Riemannian manifolds where Φ(r) := rp for p > 1, Ψ(x, y) =

cρ(x, y)2 for some constant c > 0 and the Riemannian distance ρ (we call it

power Hanarck inequality), and was extended in [Wang (2010)] to Φ(r) = er

for which (1.5.1) reduces to the log-Harnack inequality

P log f(x) ≤ logPf(y) + cρ(x, y)2.
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For any µ ∈ P, the space of probability measures on Rd, let P ∗µ ∈ P be

defined as

(P ∗µ)(A) := µ(P1A) =

∫
Rd
P1Adµ, A ∈ B(Rd).

Then the above log-Harnack inequality is equivalent to

Ent(P ∗µ1|P ∗µ2) ≤ cW2(µ1, µ2)2, µ1, µ2 ∈ P,
where

Ent(µ1|µ2) := sup
f>0,µ2(f)≤1

µ1(log f) =

{
µ2(f log f), if µ1 = fµ2,

∞, otherwise

is the relative entropy, and for any p ≥ 1,

Wp(µ1, µ2) := inf
π∈C(µ1,µ2)

(∫
Rd×Rd

|x− y|pπ(dx,dy)

) 1
p

for C(µ1, µ2) being the set of couplings for µ1 and µ2.

Comparing with classical Harnack inequalities, a crucial feature of

(1.5.1) is dimension-free so that it applies to infinite-dimensional model-

s. Due to this essential difference, in references this type of inequality is

called Wang’s Harnack inequality. The dimension-free Harnack inequali-

ty has been developed and applied to many different models of Markov

processes and SDEs/SPDEs, see [Wang (2013)] for a general theory on

dimension-free Harnack inequality and applications.

In this section, we establish the log-Harnack inequality and the power

Harnack inequality for the singular SDE (1.1.1).

1.5.1 Log-Harnack inequality

The following result was presented in [Zhang and Yuan (2021)] using an

approximation argument due to [Xia et al (2020)] and the log-Harnack

inequality proved in [Li et al (2015)]. Below we give a simple proof using

the idea of [Röckner and Wang (2010)].

Theorem 1.5.1. Assume (A1.3). Then there exists a constant c > 0 such

that for any f ∈ B+
b (Rd), the class of nonnegative bounded measurable

functions on Rd,

Pt log f(x) ≤ logPtf(y) +
c|x− y|2

t
, t ∈ (0, T ], x, y ∈ Rd. (1.5.2)

Equivalently,

Ent(P ∗t µ1|P ∗t µ2) ≤ cW2(µ1, µ2)2

t
, t ∈ (0, T ], µ1, µ2 ∈ P. (1.5.3)
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Proof. Let Pr,t be given in (1.4.24). For any f ∈ C∞c (Rd) := R+C∞0 (Rd),
by Itô’s formula we have

Ps,tf(x) = f(x) +

∫ t

s

Ps,r(Lrf)(x)dr, 0 ≤ s ≤ t ≤ T.

This implies the Kolmogorov forward equation

∂tPs,tf = Ps,t(Ltf), a.e. t ∈ [s, T ]. (1.5.4)

On the other hand, by Lemma 1.2.2, for any t ∈ (0, T ], the PDE

(∂s + Ls)us = −Lsf, s ∈ [0, t], ut = 0 (1.5.5)

has a unique solution, such that by Itô’s formula in Theorem 1.2.3(3),

dus(Xs) = −Lsf(Xs) + 〈∇f(Xs), σs(Xs)dWs〉, s ∈ [0, t].

This and (1.5.4) yield

0 = ut(x) = us(x)−
∫ t

s

(Ps,rLrf)dr

= us(x)−
∫ t

s

d

dr
(Ps,rf)dr = us(x)− Ps,tf + f, 0 ≤ s ≤ t ≤ T.

Combining this with (1.5.5) we derive the Kolmogorov backward equation

∂sPs,tf = ∂sus = −Ls(us + f) = −LsPs,tf, 0 ≤ s ≤ t ≤ T. (1.5.6)

Let γs = x + s(y − x)/t for s ∈ [0, t]. By (1.5.6) and Itô’s formula in

Theorem 1.2.3(3), for any 0 < f ∈ C∞c (Rd), we have

d logPs,tf(Xγs
s ) =

{
Ls(logPs,tf)− LsPs,tf

Ps,tf

}
(Xγs

s )ds

+
〈
∇γ′sX

γs
r ,∇ logPs,tf

〉
(Xγs)ds+ dMs, s ∈ [0, t]

for some martingale Ms. Since σσ∗ ≥ λId for some constant λ > 0, this

implies

d logPs,tf(Xγs
s )

≤
{
− λ
∣∣∇ logPs,tf

∣∣2 +
|y − x|
t

∣∣∇ logPs,tf
∣∣}(Xγs

s )ds+ dMs

≤ |x− y|
2

4λt2
∣∣∇Xγs

s

∣∣2ds+ dMs, s ∈ [0, t].

Combining this with (1.4.1), we find a constant c > 0 such that

Pt log f(y)− logPtf(x) = E
[

log f(Xy
t )− logP0,tf(Xx

0 )
]

≤ |x− y|
2

4λt2

∫ t

0

E
[
|∇Xγs

s |2
]
ds ≤ c|x− y|2

t
, t ∈ (0, T ].

By an approximation argument, this implies (1.5.2) for f ∈ B+
b (Rd). �
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1.5.2 Power Harnack inequality

By constructing a new coupling to force two marginal processes to meet

before a fixed time, under the monotone condition

2〈bt(x)− bt(y), x− y〉+ ‖σt(x)− σt(y)‖2HS ≤ K|x− y|2,
|{σt(x)− σt(y)}∗(x− y)| ≤ K|x− y|, x, y ∈ Rd, t ∈ [0, T ]

for some constant K ≥ 0, the power Harnack inequality was established in

[Wang (2011)]: there exist constants c, p∗ > 1 such that for any p > p∗,

|Ptf(y)|p ≤ e
c|x−y|2

t Pt|f |p(x), x, y ∈ Rd, t ∈ (0, T ], f ∈ Bb(Rd). (1.5.7)

This result has been extended to singular SDEs.

Under (A1.3) and that σt is Lipshitzi continuous uniformly in t ∈ [0, T ],

the following inequality was established in [Shao (2013)] for p > p∗:

|Ptf(y)|p ≤ ec+
c|x−y|2

t Pt|f |p(x), x, y ∈ Rd, t ∈ (0, T ], f ∈ Bb(Rd). (1.5.8)

This inequality is less sharp for small |x − y|. To make the exponential

term sharp for x = y, when d
p0

+ 2
q0
< 1

2 and σt is α-Hölder continuous with

α ∈ ( 1
2 , 1−

d
p0
− 2

q0
), Theorem 4.3(2) in [Zhang and Yuan (2021)] gives

|Ptf(y)|p ≤ ect
−1(|x−y|2∨|x−y|2α)Pt|f |p(x), x, y ∈ Rd, t ∈ (0, T ].

The following result is due to [Ren (2023)], which establishes the sharp

inequality (1.5.7) under (A1.3) without any additional conditions.

Theorem 1.5.2. Assume (A1.3) and let

κ0 := sup
t∈[0,T ],x,y∈Rd

‖σt(x)− σt(y)‖2, κ1 := ‖σ∗(σσ∗)−1‖2∞.

Then for any

p > p∗ :=
3 +

√
1 + (8κ0κ)−1√

1 + (8κ0κ1)−1 − 1
,

there exists a constant c > 0 such that (1.5.7) holds.

To prove this result, we present the following lemma which gives the

less sharp Harnack inequality (1.5.8).

Lemma 1.5.3. Assume (A1.3). Then for any p > p∗, there exists a con-

stant c > 0 such that (1.5.8) holds.
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Proof. (a) We first observe that it suffices to prove for b(0) = 0. Indeed,

let P̂t be the semigroup associated with the SDE

dXx
t = b

(1)
t (Xx

t )dt+ σt(X
x
t )dWt, t ∈ [0, T ].

Let

Rx := e
∫ T
0
〈{σ∗t (σtσ

∗
t )−1b

(0)
t }(X

x
t ),dWt〉− 1

2

∫ T
0
|{σ∗t (σtσ

∗
t )−1b

(0)
t }(X

x
t )|2dt.

By (A1.3), (1.2.7) with (p, q) = (p0/2, q0/2) and Khasminskii’s estimate in

Theorem 1.2.4, we obtain

sup
x∈Rd

E[|Rx|q] <∞, q > 1.

Then by Girsanov’s theorem, for any p > 1 there exists c(p) > 0 such that

|Ptf |p(x) =
∣∣E[Rxf(Xx

t )]
∣∣p

≤
(
E
[
|Rx|

p
p−1
])p−1E[|f |p(Xx

t )] ≤ c(p)P̂t|f |p(x), p > 1.

Similarly, the same inequality holds by exchanging positions of Pt and P̂t,

so that

|Ptf |p ≤ c(p)P̂t|f |p, |P̂tf |p ≤ c(p)Pt|f |p, p > 1, t ∈ [0, T ]. (1.5.9)

Thus, if the desired assertion holds for P̂t, it also holds for Pt. Indeed,

assuming{
P̂tf(x)

}p ≤ (P̂tf
p)ec1(p)+c1(p)t−1|x−y|2 , x, y ∈ Rd, t ∈ (0, T ], p > p∗

for some c1 : (p∗,∞)→ (0,∞), then for any p > p∗ we have

p1 :=
( 2p

p+ p∗

) 1
2

> 1, p2 :=
p+ p∗

2
> p∗, p2

1p2 = p,

so that this inequality and (1.5.9) yield

(Ptf(x))p ≤ c(p1)
p
p1

{
P̂tf

p1(x)
} p
p1

≤ c(p1)
p
p1

{
ec1(p2)+c1(p2)t−1|x−y|2 P̂tf

p1p2(y)
}p1

≤ c(p1)
p
p1

+1ep1c1(p2)+p1c1(p2)t−1|x−y|2Ptf
p(y) ≤ ec+ct

−1|x−y|2Ptf
p(y)

for some constant c > 0.

(b) Now, we consider the regular case that b = b(1). In this case, by

(A1.3) and Lemma 1.3.4, there exists a constant c0 > 0 such that

‖σt(x)− σt(y)‖2HS ≤ d(1 + κ0)‖σt(x)− σt(y)‖HS

≤ c0|x− y|
l∑
i=1

(
1 +Mfi(t, x) +Mfi(t, y)

)
.
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Combining this with b = b(1), we find a constant c1 > 0 such that

2〈x− y, bt(x)− bt(y)〉+ ‖σt(x)− σt(y)‖2HS

≤ c1|x− y|2 + c1|x− y|
l∑
i=1

(
1 +Mfi(t, x) +Mfi(t, y)

)
.

(1.5.10)

For fixed t ∈ (0, T ], let

γs =
1− ec1(s−t)

c1
, s ∈ [0, t],

so that for some constant K0 > 0 such that

c1γs − 2− γ′s = −1, γs ≥ K0(t− s), s ∈ [0, t]. (1.5.11)

Since the coefficients of the following SDE are continuous and of linear

growth in x locally uniformly in s ∈ [0, t), it has a weak solution:{
dXs = bs(Xs)ds+ σs(Xs)dWs, X0 = x,

dYs =
{
bs(Ys) + σs(Ys)ξs

}
ds+ σs(Ys)dWs, Y0 = y,

(1.5.12)

where

ξs :=
{σ∗s (σsσ

∗
s )−1}(Xs)(Xs − Ys)

γs
, s ∈ [0, t]. (1.5.13)

This construction of coupling is due to [Wang (2011)].

For any n ≥ 1, let

τn =
nt

n+ 1
∧ inf

{
s ≥ 0 : |Xs| ∨ |Ys| ≥ n

}
,

Rr := e−
∫ r
0
〈ξs,dWs〉− 1

2

∫ τn
0
|ξs|2ds, r ∈ [0, t].

(1.5.14)

By Girsanov’s theorem,

W̃s := Ws +

∫ s∧τn

0

ξrdr, s ∈ [0, t]

is an m-dimensional Brownian motion under the probability Qn := RτnP.

So, before time τn, (1.5.12) is reformulated as{
dXs =

{
bs(Xs)− Xs−Ys

γs

}
ds+ σs(Xs)dW̃s, X0 = x,

dYs = bs(Ys)ds+ σs(Ys)dW̃s, Y0 = y, s ∈ [0, τn].

By (1.5.10) and Itô’s formula, we obtain

d|Xs − Ys|2 − dMs

≤
{
c1|Xs − Ys|2 + c1|Xs − Ys|

l∑
i=1

[
1 +Mfi(s,Xs) +Mfi(s, Ys)

]}
ds,
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where Ms is a Qn-martingale with

d〈M〉s ≤ 4κ0|Xs − Ys|2. (1.5.15)

Combining this with (1.5.11) and applying Itô’s formula, we obtain

d
{ |Xs − Ys|2

γs

}
− dMs

γs

≤ c1|Xs − Ys|
γs

l∑
i=1

(
1 +Mfi(s,Xs) +Mfi(s, Ys)

)
ds

+
(c1γs − 2− γ′s)|Xs − Ys|2

γ2
s

ds

=
c1|Xs − Ys|

γs

l∑
i=1

(
1 +Mfi(s,Xs) +Mfi(s, Ys)

)
ds

− |Xs − Ys|2

γ2
s

ds

≤ c21
2

[ l∑
i=1

(
1 +Mfi(s,Xs) +Mfi(s, Ys)

)]2
ds

− |Xs − Ys|2

2γ2
s

ds, s ∈ [0, τn].

(1.5.16)

Thus, by γ0 ≥ K0t in (1.5.11), we derive

EQn

[
e
λ
∫ τn
0
|Xs−Ys|2

γ2
s

ds
]
− 2λ|x− y|2

K0t

≤ EQn

[
eλc

2
1

∫ τn
0

[
∑l
i=1(1+Mfi(s,Xs)+Mfi(s,Ys))]

2ds+2λ
∫ τn
0

dMs
γs

]
≤
(
EQn

[
e
λc21r

r−1

∫ τn
0

[
∑l
i=1(1+Mfi(s,Xs)+Mfi(s,Ys))]

2ds
]) r−1

r

×
(
EQn

[
e2λr

∫ τn
0

dMs
γs

]) 1
r

, λ > 0, r > 1.

(1.5.17)

By (A1.3) and Lemma 1.3.8, there exists a constant c2 > 0 such that
l∑
i=1

‖Mfi‖L̃piqi ≤ c2.

Noting that Xs solves (1.1.1) under probability P while Ys solves the same

equation under Qn, combining this with (1.2.7) for (p, q) = (pi/2, qi/2)

and Khasminskii’s inequality in Theorem 1.2.4, we find an increasing map

δ : (0,∞)→ (0,∞) such that

E
[
eλ

∫ τn
0

∑l
i=1 |Mfi(s,Xs)|2ds

]
+ EQn

[
eλ

∫ τn
0

∑l
i=1 |Mfi(s,Ys)|2ds

]
≤ δ(λ), λ > 0, n ≥ 1.
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Consequently,

EQn
[
eλ

∫ τn
0

∑l
i=1 |Mfi(s,Xs)|2ds

]
= E

[
Rτne

λ
∫ τn
0

∑l
i=1 |Mfi(s,Xs)|2ds

]
≤
(
E[Rqτn ]

) 1
q
(
E
[
e
λq
q−1

∫ τn
0

∑l
i=1 |Mfi(s,Xs)|2ds

]) q−1
q

≤ δ(λq/(q − 1))
q−1
q
(
E[Rqτn ]

) 1
q , q > 1.

Therefore, for any λ > 0, r, q > 1, there exists a constant c(λ, r, q) > 0 such

that

sup
n≥1

(
EQn

[
e
λc21r

r−1

∫ τn
0
{
∑l
i=1(1+|Mfi(s,Xs)|2+|Mfi(s,Ys)|2)}ds]) q−1

q

≤ c(λ, r, q)
(
E[Rqτn ]

) r−1
rq , q, r > 1, λ > 0.

Thus, by (1.5.17), (1.5.15) and EQn [eNt ] ≤ (EQn [e2〈N〉t ])
1
2 for a continuous

Qn-martingale Nt, we arrive at

EQn

[
e
λ
∫ τn
0
|Xs−Ys|2

γ2
s

ds
]
− 2λ|x− y|2

K0t

≤ c(λ, r, q)
(
E[Rqτn ]

) r−1
rq

(
EQn

[
e
8λ2r2

∫ τn
0

d〈M〉s
γ2
s

ds
]) 1

2q

≤ c(λ, r, q)
(
E[Rqτn ]

) r−1
rq

(
EQn

[
e
32λ2r2κ0

∫ τn
0
|Xs−Ys|2

γ2
s

ds
]) 1

2r

(1.5.18)

for any λ > 0, q, r > 1. For any q > 1 and λ ∈ [0, 1
32κ0

), we take r = 1
32λκ0

>

1 such that for some constant β(λ, q) > 0,

sup
n≥1

EQn

[
e
λ
∫ τn
0
|Xs−Ys|2

γ2
s

ds
]

≤
(
E[Rqτn ]

) 2−64λκ0
q(2−32λκ0) eβ(λ,q)+β(λ,q)t−1|x−y|2

≤
(
E[Rqτn ]

) 1
q eβ(λ,q)+β(λ,q)t−1|x−y|2 , q > 1, λ ∈

[
0,

1

32κ0

)
.

(1.5.19)

Noting that for any

1 ≤ q < q∗ :=
p∗

p∗ − 1
=

3 +
√

1 + (8κ0κ1)−1

4
,

we have 0 ≤ (2q2 − 3q + 1)κ1 <
1

32κ0
, by (1.5.19) and

|ξs|2 ≤
κ1|Xs − Ys|2

γ2
s

,
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we find an increasing function k : (1, q∗)→ (0,∞) such that(
E
[
|Rτn |q

]) 1
q =

(
EQne−(q−1)

∫ τn
0
〈ξs,dW̃s〉+ q−1

2

∫ τn
0
|ξs|sds

) 1
q

≤
(
EQne−2(q−1)

∫ τn
0
〈ξs,dW̃s〉−2(q−1)2

∫ t
0
|ξs|sds

) 1
2q

×
(
EQne(2q2−3q+1)

∫ τn
0
|ξs|2ds

) 1
2q

≤
(
EQne

(2q2−3q+1)κ1

∫ τn
0
|Xs−Ys|2

γ2
s

ds
) 1

2q

≤
(
E
[
|Rτn |q

]) 1
2q2 ekq+kqt

−1|x−y|2 , q ∈ (1, q∗).

Consequently,

sup
n≥1

(
E
[
|Rτn |q

]) 1
q ≤ e2kq+2kqt

−1|x−y|2 , q ∈ (1, q∗).

By the martingale convergence theorem with n → ∞, this implies that

(Rs)s∈[0,t] is a martingale with(
E[Rqt ]

) 1
q ≤ e2kq+2kqt

−1|x−y|2 , q ∈ (1, q∗), (1.5.20)

such that Girsanov’s theorem implies that (W̃s)s∈[0,t] is an m-dimensional

Brownian motion under Q := RtP, and Ys solves the SDE

dYs = bs(Ys)ds+ σs(Ys)dW̃s, Y0 = y, s ∈ [0, t].

By the weak uniqueness we obtain

Ptf(y) = EQ[f(Yt)]. (1.5.21)

Moreover, (1.5.19) ensures

EQ

[
e
λ
∫ t
0
|Xs−Ys|2

γ2
s

ds
]
<∞

for some constant λ > 0, together with the continuity of |Xs−Ys| in s ∈ [0, t]

and
∫ t

0
1
γ2
s
ds = ∞ imply Q(Xt = Yt) = 1. Therefore, by (1.5.20), (1.5.21)

and Hölder’s inequality, for any p > p∗ = q∗

q∗−1 so that q := p
p−1 ∈ [1, q∗),

we find a constant c > 0 such that for any t ∈ (0, T ]

|Ptf(y)|p = |E[Rtf(Yt)]|p = |E[Rtf(Xt)]|p

≤ (ER
p
p−1

t )
p−1
p E[|f |p(Xt)] ≤ (Pt|f |p)(x)ec+ct

−1|x−y|2 , f ∈ Bb(Rd).
�
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Proof of Theorem 1.5.2. By an approximation argument, it suffices to

prove for 0 ≤ f ∈ C∞c (Rd) := R + C∞0 (Rd).
By (1.4.1), for any q > 1 there exists a constant k(q) > 0 such that

|∇Ptg| ≤ k(q)(Pt|∇g|q)
1
q , g ∈ C1

b (Rd), t ∈ (0, T ]. (1.5.22)

Below we show that this and the Harnack inequality in Lemma 1.6.5 imply

the desired inequality.

For p > p∗, we have

p1 :=

√
5p2 + 4pp∗ − p

p+ p∗
∈ (1, 2), p2 :=

p+ p∗

2
> p∗,

p2
1p2

2− p1
= p.

(1.5.23)

By Kolmogorov equations (1.5.4) and (1.5.6), for 0 ≤ f ∈ C2
c (Rd),

∂s{Pst(Pst,tf)p1} = tPst{|σ∗st∇Pst,tf |2(Pst,tf)p1−2}
≥ c1tPst{|∇Pst,tf |2(Pst,tf)p1−2}, s ∈ [0, 1].

(1.5.24)

Next, by (1.5.22) and Hölder’s inequality,

∣∣∇Pst(Pst,tf)p1
∣∣ ≤ k(p1)

(
Pst|∇(Pst,tf)p1 |p1

) 1
p1

= p1k(p1)
(
Pst
{
|∇Pst,tf |p1(Pst,tf)(p1−1)p1

}) 1
p1

≤ p1k(p1)
(
Pst
{
|∇Pst,tf |2(Pst,tf)p1−2}

) 1
2
(
Pst{Pst,tf}

p2
1

2−p1

) 2−p1
2p1 , s ∈ [0, 1].

Combining this with (1.5.24), and letting zs := sx+ (1− s)y, s ∈ [0, 1], we

find a constant c1 = c1(p) > 0 such that

d

ds

{
Pst(Pst,tf)p1(zs)

}
=
{ d

ds
Pst(Pst,tf)p1

}
(zs) +

〈
x− y,∇Pst(Pst,tf)p1(zs)

〉
≥ c1tPst

{
|∇Pst,tf |2(Pst,tf)p1−2

}
(zs)

− p1|x− y|
{
Pst
(
|∇Pst,tf |2(Pst,tf)p1−2

)} 1
2

(zs)

×
{
Pst
(
Pst,tf

) p2
1

2−p1

} 2−p1
2p1

(zs)

≥ −p
2
1|x− y|2

4c1t

{
Pst(Pst,tf)

p2
1

2−p1

} 2−p1
p1

(zs), s ∈ [0, 1], x, y ∈ Rd.

(1.5.25)
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By Jensen’s inequality and Lemma 1.6.5, we find a constant c2 = c2(p) > 0

such that{
Pst(Pst,tf)

p2
1

2−p1

} 2−p1
p1

(zs) ≤
{
PstPst,tf

p2
1

2−p1

} 2−p1
p1

(zs)

=
(
Ptf

p2
1

2−p1

) 2−p1
p1

(zs) ≤
(
Ptf

p2
1p2

2−p1

) 2−p1
p1p2

(x)ec2+c2t
−1|x−y|2

=
(
Ptf

p(x)
) p1
p ec2+c2t

−1|x−y|2 , x, y ∈ Rd.

Combining this with (1.5.25) we derive

(Ptf)p1(y) ≤ Ptfp1(x) +
p2

1|x− y|2

4c1t
(Ptf

p)
p1
p (x)ec2+c2t

−1|x−y|2

≤
(
Ptf

p(x)
) p1
p

(
1 +

p2
1ec2 |x− y|2

4c1t

)
ec2t

−1|x−y|2

≤ (Ptf
p)

p1
p (x)ect

−1|x−y|2 , x, y ∈ Rd, t ∈ (0, T ],

where c := c2 +
p2

1ec2

4c1
. Then the proof is finished. �

1.6 Exponential ergodicity

There are many results on the ergodicity of diffusion processes under dissi-

pative or Lyapunov conditions. In this section we investigate the ergodicity

of the following time-homogeneous singular SDE:

dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0, (1.6.1)

for which dissipative or Lyapunov conditions are not available.

We first state the main results in this part, then recall two ergodic

theorems and present a lemma on elliptic equations, and finally prove the

main results.

1.6.1 Main results

(A1.4) σ is weakly differentiable, σσ∗ is invertible, and b = b(0) + b(1) such

that the following conditions hold.

(1) There exists p > d ∨ 2 such that

‖σ‖∞ + ‖(σσ∗)−1‖∞ + ‖b(0)‖L̃p + ‖∇σ‖L̃p <∞.
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(2) b(1) is locally bounded, there exist constants K > 0, ε ∈ (0, 1), some

compact function V ∈ C2(Rd; [1,∞)), and a continuous increasing

function Φ : [1,∞)→ [1,∞) with Φ(n)→∞ as n→∞, such that

〈b(1),∇V 〉(x) + ε|b(1)(x)| sup
B(x,ε)

{|∇V |+ ‖∇2V ‖}

≤ K − ε(Φ ◦ V )(x),

lim
|x|→∞

sup
B(x,ε)

‖∇2V ‖+ |∇V |
V (x) ∧ (Φ ◦ V )(x)

= 0.

(1.6.2)

Theorem 1.6.1. Assume (A1.4). Then (1.1.1) is well-posed, and the asso-

ciated Markov semigroup Pt has a unique invariant probability measure µ̄

such that µ̄(Φ(ε0V )) <∞ for some ε0 ∈ (0, 1), and

lim
t→∞

(P ∗t ν)(f) = µ̄(f), ν ∈ P, f ∈ Bb(Rd). (1.6.3)

Moreover:

(1) If Φ(r) ≥ δr for some constant δ > 0 and all r ≥ 0, then there exist

constants c > 1, λ > 0 such that

‖P ∗t µ1 − P ∗t µ1‖V ≤ ce−λt‖µ1 − µ2‖V , µ1, µ2 ∈ P, t ≥ 0. (1.6.4)

In particular,

‖P ∗t ν − µ̄‖V ≤ ce−λt‖ν − µ̄‖V , ν ∈ P, t ≥ 0.

(2) Let H(r) :=
∫ r

0
ds

Φ(s) for r ≥ 0. If Φ is convex, then there exist constants

k > 1, λ > 0 such that for any x ∈ Rd, t ≥ 0,

‖P ∗t δx − µ̄‖V ≤ k
{

1 +H−1(H(V (x))− k−1t)
}

e−λt, (1.6.5)

where H−1 is the inverse of H with H−1(r) := 0 for r ≤ 0. Con-

sequently, if H(∞) < ∞ then there exist constants c, λ, t∗ > 0 such

that

‖P ∗t µ1 − µ2‖V ≤ ce−λt‖µ1 − µ2‖var, t ≥ t∗, µ1, µ2 ∈ P. (1.6.6)

The above result is taken from [Wang (2023c)]. To illustrate this result, we

present below a consequence which covers the situation that

〈b(1)(x), x〉 ≤ c1 − c2|x|1+p, |b(1)(x)| ≤ c1(1 + |x|)q+1

for some constants c1, c2 > 0 and q > 1
2 , since (1.6.7) and (1.6.8) hold for

φ(r) := (1 + r)
1+q

2 , and (1.6.9) holds for ψ(r) := (1 + r2)k for any k > 0

when q ≥ 1. See also [Xie and Zhang (2020)] for the case with jumps.
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Corollary 1.6.2. Assume (A1.4)(1) and let b(1) satisfy

〈b(1)(x), x〉 ≤ c1 − c2φ(|x|2), |b(1)(x)| ≤ c1φ(|x|2), x ∈ Rd (1.6.7)

for some constants c1, c2 > 0 and increasing function φ : [0,∞) → [1,∞)

with

α := lim inf
r→∞

log φ(r)

log r
>

1

2
. (1.6.8)

Then

(1) (1.6.1) is well-posed, Pt has a unique invariant probability measure µ̄

such that µ̄(V ) <∞ and (1.6.4) hold for V := e(1+|·|2)θ with θ ∈ ((1−
α)+, 1

2 ). In general, for any increasing function 1 ≤ ψ ∈ C2([1,∞))

satisfying

lim inf
r→∞

ψ′(r)φ(r)

ψ(r)
> 0, lim

r→∞

ψ′′(r)r

ψ(r)
= 0, (1.6.9)

µ̄(V ) <∞ and (1.6.4) hold for V := ψ(| · |2).

(2) If
∫∞

0
ds
φ(s) < ∞, then (1.6.6) holds for V := (1 + | · |2)q(q > 0) and

some constants c, λ, t∗ > 0.

Remark 1.6.1. We have the following assertions on the invariant prob-

ability measure µ̄ and the ergodicity in Wasserstein distance and relative

entropy.

(1) According to Corollary 1.6.7 and Theorem 3.4.2 in [Bogachev et al

(2015)], (A1.4) implies that µ̄ has a strictly positive density function

ρ ∈ H1,p
loc , the space of functions f such that fg ∈ H1,p(Rd) for all g ∈

C∞0 (Rd). Moreover, by Theorem 3.1.2 in [Bogachev et al (2015)], when

σ is Lipschitz continuous and µ̄(|b|2) < ∞, we have
√
ρ ∈ H1,2(Rd).

So, when (1.6.7) holds for φ(r) ∼ rq for some q > 1
2 and large r > 0,

Corollary 1.6.2(1) implies that µ̄ has density with
√
ρ ∈ H1,2(Rd).

See also [Wang (2017)] and [Wang (2018b)] for different type of global

regularity estimates on ρ under integrability conditions.

(2) Let V := (1 + | · |2)
k
2 for some k ≥ 1. By Theorem 6.15 in [Villani

(2009)], there exists a constant c(k) > 0 such that

Wk(µ, ν)k ≤ c(k)‖µ− ν‖V .
So, by Corollary 1.6.2, if (A1.4) holds with Φ(r) ≥ δr for some δ > 0,

then there exist constants c, λ > 0 such that

Wk(P ∗t ν, µ̄)q ≤ c(1 + ν(| · |k))e−λt, t ≥ 0, ν ∈ P;

and if moreover Φ is convex with
∫∞

0
ds

Φ(s) < ∞, then there exist con-

stants c, λ, t∗ > 0 such that

Wk(P ∗t ν, µ̄)k ≤ ce−λt, t ≥ t∗, ν ∈ Pk.
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(3) When b(1) is Lipschitz continuous, the log-Harnack inequality in The-

orem 1.5.1 implies

Ent(P ∗t ν|µ̄) ≤ c′

1 ∧ t
W2(ν, µ̄)2, ν ∈ P, t > 0

for some constant c′ > 0, where Ent(ν|µ̄) is the relative entropy. Thus,

by Corollary 1.6.2, if (A1.4) holds for V (x) := 1 + |x|2 and Φ(r) ≥ δr

for some constant δ > 0, then there exist constants c, λ > 0 such that

Ent(P ∗t ν|µ̄) ≤ c(1 + ν(| · |2))e−λt, t ≥ 1, ν ∈ P;

and if moreover Φ is convex with
∫∞

0
ds

Φ(s) < ∞, then there exist

c, λ, t∗ > 0 such that

Ent(P ∗t ν|µ̄) ≤ c(1 + ν(| · |2))e−λt, t ≥ t∗, ν ∈ P.

1.6.2 Ergodic theorems

In this part we recall two ergodic theorems. To this end, we first introduce

the following notions. For a topological space E, let Bb(E) (respective-

ly Cb(E)) be the classes of bounded measurable (respectively continuous)

functions on E.

A family {Pt(x, ·)}t≥0,x∈Rd is called a Markov transition kernel, if

Pt(x,A) is measurable in x for any t ≥ 0 and measurable A ⊂ Rd, Pt(x, ·) is

a probability measure on Rd for any (t, x) ∈ [0,∞)×Rd, and the Chapman-

Kolmogorov equation

Pt+s(x, ·) =

∫
Rd
Ps(y, ·)Pt(x,dz), t, s ≥ 0, x ∈ Ed

holds. In this case,

Ptf(x) :=

∫
Rd
f(y)Pt(x,dy), t ≥ 0, f ∈ Bb(Rd)

gives rise to a Markov semigroup Pt on Bb(Rd). We call the transition kernel

stochastically continuous, if for any x ∈ Rd, Pt(x, ·) is weakly continuous

in t.

Definition 1.6.1. Let Pt be a Markov semigroup with stochastically con-

tinuous transition kernel Pt(x, ·) on a Polish space E.

(1) Pt is called t0-regular for some t0 > 0 if the transition probabilities

{Pt0(x, ·)}x∈E are mutually equivalent.

(2) Pt is called strong Feller if PtBb(E) ⊂ Cb(E).
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(3) Pt is called irreducible if for any non-empty open set G ⊂ E,

Pt(x,G) > 0, x ∈ E.
(4) A set K ⊂ E is called petite (or small) if there exists nontrivial measure

ν such that for some t > 0

inf
x∈K

Pt(x, ·) ≥ ν.

Theorem 1.6.3. Let Pt be a Markov semigroup with stochastically contin-

uous transition kernel Pt(x, ·) on a Polish space E.

(1) If Pt1 is strong Feller and Pt2 is irreducible, then Pt is (t1 + t2)-regular.

(2) If Pt has an invariant probability measure µ̄ and is t0-regular for some

t0 > 0, then µ̄ is equivalent to Pt(x, ·) for all t > t0 and x ∈ E, and

lim
t→∞

Ptf(x) = µ̄(f), x ∈ E, f ∈ Bb(E).

(3) Let V ≥ 1 be measurable such that the level sets {V ≤ r}r>0 of V are

petite and

PtV ≤ c1 + e−c2tV, t ≥ 0 (1.6.10)

holds for some constant c1, c2 > 0. Then Pt has a unique invariant

probability measure such that for some c, λ > 0

‖Ptδx − µ̄‖V ≤ ce−λtV (x), t ≥ 0, x ∈ Rd.

The first result is due to Khasminskii [Khasminskii (1980)], the second

is due to Doob [Doob (1948)], and the third is called Harris theorem (see

Theorem 4.2.1 in [Da Prato and Zabczyk (1996)]), see also [Hairer et al

(2011)] for a weaker version of Harris theorem.

The condition (1.6.10) holds if V is in the weak domain of L, i.e.

V (Xt)−
∫ t

0

LV (Xs)ds

is a locally martingale for the associated Markov process Xt, such that

LV ≤ c1c2 − c2V.
Finally, we present a result on the exponential ergodicity in a probability

distance. Let (E,B) be a measurable space and let P̂ be a non-empty convex

set of probability measures on E equipped with a complete metric W. A

family (P ∗t )t≥0 is called a semigroup on P̂, if P ∗0 is identity, P ∗t+s = P ∗t P
∗
s

for s, t ≥ 0, and

[0,∞)× P̂ 3 (t, µ) 7→ P ∗t µ ∈ P̂
is measurable.
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Theorem 1.6.4. Let (P ∗t )t≥0 be a semigroup on P̂, a convex subspace

of P equipped with a complete metric W. If for any µ ∈ P̂, the family

{P ∗t µ : t ≥ 0} is locally bounded in t with respect to W, and there exist

constants t0 > 0 and ε ∈ (0, 1) such that

W(P ∗t0µ, P
∗
t0ν) ≤ εW(µ, ν), µ, ν ∈ P̂, (1.6.11)

then P ∗t has a unique invariant probability measure µ̄ ∈ P̂, and

W(P ∗t µ, µ̄) ≤ ε(t/t0−1)+

sup
s∈[0,t0∧t]

W(Psµ, µ̄), t ≥ 0, µ ∈ P̂. (1.6.12)

Proof. By (1.6.11), P ∗t0 is contractive in the complete metric space

(P̂,W), so it has a unique fixed point µ̄ ∈ P̂. To prove that µ̄ is the u-

nique invariant probability measure, let

µ∗ :=
1

t0

∫ t0

0

P ∗s µ̄ds,

which is in P̂ by the boundedness of {P ∗s µ̄}s∈[0,t0] as well as the convexity

and completeness of (P̂,W). Then for any t ∈ [0, t0], P ∗t0 µ̄ = µ̄ and the

semigroup property imply

P ∗t µ
∗ =

1

t0

∫ t+t0

t

P ∗s µ̄ds =
1

t0

∫ t0

t

P ∗s µ̄ds+
1

t0

∫ t

0

P ∗s+t0 µ̄ds

=
1

t0

∫ t0

t

P ∗s µ̄ds+
1

t0

∫ t

0

P ∗s µ̄ds =
1

t0

∫ t0

0

P ∗s µ̄ds = µ∗.

Thus, µ∗ is an invariant probability measure of P ∗t . In particular, µ∗ ∈ P̂
is a fixed point of P ∗t0 . By the uniqueness of the fixed point we conclude

that µ∗ = µ̄. It remains to prove estimate (1.6.12).

(1.6.12) is obvious for t ∈ [0, t0]. For any t > t0, there exist n ∈ N and

s ∈ [0, t0) such that t = nt0 + s. By (1.6.11) and the semigroup property,

W(P ∗t µ, µ̄) = W(P ∗nt0(P ∗s µ), P ∗nt0 µ̄) ≤ εn sup
s∈[0,t0]

W(P ∗s µ, µ̄),

so that (1.6.12) holds for t > t0. �

1.6.3 Elliptic equations

(A1.5) a := σσ∗ and b = b(0) + b(1) satisfy the following conditions.

(1) a is invertible, uniformly continuous, and ‖a‖∞ + ‖a−1‖∞ <∞.

(2) |b(0)| ∈ L̃p0 for some p0 > d, and b(1) is Lipschitz continuous.
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When b(1) = 0, the following lemma follows from [Xie and Zhang (2020)]

where a jump term is also considered.

Lemma 1.6.5. Assume (A1.5) and let p ∈ (1,∞). There exist constants

λ0 > 0 increasing in ‖b(0)‖L̃p0 such that for any λ ≥ λ0 and any f ∈ L̃p,
the elliptic equation

(L− λ)u = f (1.6.13)

has a unique solution u ∈ H̃2,p. Moreover, for any p′ ∈ [p,∞] and θ ∈
[0, 2 − d

p + d
p′ ), there exists a constant c > 0 increasing in ‖b(0)‖L̃p0 such

that

λ
1
2 (2−θ+ d

p′−
d
p )‖u‖H̃θ,p′ + ‖u‖H̃2,p ≤ c‖f‖L̃p , f ∈ L̃p. (1.6.14)

Proof. (a) Let us verify the priori estimate (1.6.14) for a solution u to

(1.6.13), which in particular implies the uniqueness, since the difference of

two solutions solves the equation with f = 0.

For u solving (1.6.13), let

ūt = u(1− t), t ∈ [0, 1].

By (1.6.13) we have

(∂t + L− λ)ūt = f(1− t)− u, t ∈ [0, 1], ū1 = 0.

By Lemma 1.2.2, there exist constants λ1, c1 > 1 increasing in ‖b(0)‖L̃p0

and sufficient large q > 2 such that

λ
1
2 (2−θ+ d

p′−
d
p )‖ū‖

H̃θ,p
′

q
+ ‖ū‖H̃2,p

q

≤ c1‖f(1− t)− u‖L̃pq ≤ c1‖f‖L̃p + c1‖u‖L̃p .
(1.6.15)

Taking θ = 0, p = p′ and c2 = ‖1− ·‖Lq([0,1]), we obtain

λ‖u‖L̃p ≤
c1
c2

(
‖f‖L̃p + ‖u‖L̃p

)
, λ ≥ λ1.

Letting λ0 > λ1 such that

λ0 ≥ 2
c1
c2
,

we obtain

‖u‖L̃p ≤ ‖f‖L̃p , λ ≥ λ0.

Combining this with (1.6.15) implies (1.6.14) for some constant c > 0.
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(b) Existence of solution for f ∈ L̃p. Let {fn}n≥1 ⊂ C∞b (Rd) such that

‖fn − f‖L̃p → 0 as n→∞. Let

un =

∫ ∞
0

e−λtPtfndt.

By Kolmogorov equations, see (1.5.4) and (1.5.6) with Ps,t = Pt−s for the

present setting, we have

∂tPtfn = LPtfn = PtLfn

so that

Lun =

∫ ∞
0

e−λtLPtfndt =

∫ ∞
0

e−λt∂tPtfndt = λun − fn.

Then

(L− λ)(un − um) = fn − fm, n,m ≥ 1.

By (1.6.14),

lim
n,m→∞

{
‖un − um‖H̃θ,p′ + ‖∇2(un − um)‖L̃p

}
= 0,

so that u := limn→∞ un exists in H̃θ,p′ ∩ H̃2,p, which solves (1.6.13). �

1.6.4 Proofs of Theorem 1.6.1 and Corollary 1.6.2

Proof of Theorem 1.6.1. By (A1.4), conditions in Theorem 1.3.1 hold

for φ(r) = 1, so that we have the well-posedness, strong Feller property and

irreducibility of (1.6.1). According to Theorem 1.6.3(1)–(2), it remains to

prove the existence of the invariant probability measure µ̄ and the claimed

assertions on the ergodicity.

(a) Let u solve (1.6.13) for b(1) = 0 and f = −b(0) for large enough

λ > 0, i.e.

(L−∇b(1) − λ)u = f, (1.6.16)

such that (1.6.14) implies (1.3.16). Moreover, for Θ(x) := x + u(x), let P̂t
be the Markov semigroup associated with Yt := Θ(Xt), so that

P̂tf(x) = {Pt(f ◦Θ)}(Θ−1(x)), t ≥ 0, x ∈ Rd, f ∈ Bb(Rd). (1.6.17)

Since lim|x|→∞ sup|y−x|≤ε
|∇V (y)|
V (x) = 0, by (1.3.16) and V ≥ 1, we find a

constant θ ∈ (0, 1) such that

‖∇u(x)‖ ∨ |x−Θ(x)| ≤ ε,
θV (Θ(x)) ≤ V (x) ≤ θ−1V (Θ(x)), x ∈ Rd.

(1.6.18)
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Thus, it suffices to prove the desired assertions for P̂t replacing Pt, where

the unique invariant probability measure µ̂ of P̂t and that µ̄ of Pt satisfies

µ̂ = µ̄ ◦Θ−1. (1.6.19)

(b) Let Xn
t , Y

n
t and τn be given in the proof of Theorem 1.3.1(2) for the

present time-homogeneous setting. Since Y nt = Yt and 1B(0,n)(X
n
t ) = 1 for

t ≤ τn, and since τn → ∞ as n → ∞, (1.6.16) implies that Yt := Θ(Xt)

solves the SDE

dYt =
{
b(1) + λu+∇b(1)u

}
(Xt)dt+ {(∇Θ)σ}(Xt)dWt,

so that for any ε ∈ (0, 1∧r0), by Itô’s formula and (2.4.8), we find a constant

cε > 0 such that

d{V (Yt) +Mt}

≤
[〈
{b(1) +∇b(1)u}(Xt),∇V (Yt)

〉
+ cε(|∇V (Yt)|+ ‖∇2V (Yt)‖)

]
dt

≤
{
〈b(1)(Xt),∇V (Xt)〉

+ ε|b(1)(Xt)| sup
B(Xt,ε)

{|∇V |+ ‖∇2V ‖}+ cε sup
B(Xt,ε)

(|∇V |+ ‖∇2V ‖)
}

dt.

Combining this with (1.6.2), when ε > 0 is small enough we find constants

c1, c2 > 0 such that

d{V (Yt) +Mt} ≤ {c1 − c2Φ(V (Xt))}dt.

By (1.6.18), this implies that for some constant c4 > 0,

dV (Yt) ≤
{
c4 − c2Φ(θV (Yt))

}
dt− dMt. (1.6.20)

Thus, ∫ t

0

EΦ(θV (Ys))ds ≤
c4 + V (x)

c2
<∞, t > 0, Y0 = x ∈ Rd.

Since Φ(θV ) is a compact function, this implies the existence of invariant

probability µ̂ according to the standard Bogoliubov-Krylov’s tightness ar-

gument. Moreover, (1.6.20) implies µ̂(Φ(θV )) <∞, so that by (1.6.18) and

(1.6.19), µ̄(Φ(ε0V )) <∞ holds for ε0 = θ2.

(c) By (1.3.5) and (1.6.17), P̂t is t-regular for any t > 0, and any compact

set K ⊂ Rd is a petite set of P̂t, i.e. there exist t > 0 and a nontrivial

measure ν such that

inf
x∈K

P ∗t δx ≥ ν.
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By Theorem 1.6.3(2), (1.6.3) holds. Let L̂ be the generator of P̂t. When

Φ(r) ≥ kr for some constant k > 0, (1.6.20) implies

L̂V (x) ≤ k1 − k2V (x), t ≥ 0, x ∈ Rd (1.6.21)

for some constants k1, k2 > 0. Since lim|x|→∞ V (x) = ∞ and as observed

above that any compact set is a petite set for P̂t, by Theorem 1.6.3(3), we

obtain

‖P̂ ∗t δx − µ̂‖V ≤ ce−λtV (x), x ∈ Rd, t ≥ 0

for some constants c, λ > 0. Thus,

‖P̂ ∗t δx − P̂ ∗t δy‖V ≤ ce−λt(V (x) + V (y)), t ≥ 0, x, y ∈ Rd.

Therefore, for any µ1, µ2 ∈ P,

‖P̂ ∗t µ1 − P̂ ∗t µ2‖V = ‖P̂ ∗t (µ1 − µ2)+ − P̂ ∗t (µ1 − µ2)−‖V

=
1

2
‖µ1 − µ2‖var

∥∥∥P̂ ∗t 2(µ1 − µ2)+

‖µ1 − µ2‖var
− P̂ ∗t

2(µ1 − µ2)−

‖µ1 − µ2‖var

∥∥∥
V

≤ c

2
e−λt‖µ1 − µ2‖var

( 2(µ1 − µ2)+

‖µ1 − µ2‖var
+

2(µ1 − µ2)−

‖µ1 − µ2‖var

)
(V )

≤ ce−λt‖µ1 − µ2‖V .

This together with (1.6.17) and (1.6.18) implies (1.6.4) for some constants

c, λ > 0.

(d) Let Φ be convex. By Jensen’s inequality and (1.6.20), γt :=

θE[V (Yt)] satisfies

d

dt
γt ≤ θc4 − θc2Φ(γt), t ≥ 0. (1.6.22)

Let

H(r) :=

∫ r

0

ds

Φ(s)
, r ≥ 0.

We aim to prove that for some constant k > 1

γt ≤ k +H−1(H(γ0)− tk−1), t ≥ 0, (1.6.23)

where H−1(r) := 0 for r ≤ 0. We prove this estimate by considering three

situations.

(1) Let Φ(γ0) ≤ c4
c2
. Since (1.6.22) implies γ′t ≤ 0 for γt ≥ Φ−1( c4c2 ), so

γt ≤ Φ−1(c4/c2), t ≥ 0. (1.6.24)
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(2) Let c4
c2
< Φ(γ0) ≤ 2c4

c2
. Then (1.6.22) implies γ′t ≤ 0 for all t ≥ 0 so that

γt ≤ Φ−1(2c4/c2), t ≥ 0. (1.6.25)

(3) Let Φ(γ0) > 2c4
c2
. If

t ≤ t0 := inf
{
t ≥ 0 : Φ(γt) ≤

2c4
c2

}
,

then (1.6.22) implies

dH(γt)

dt
=

γ′t
Φ(γt)

≤ −θc2
2
,

so that

H(γt) ≤ H(γ0)− θc2
2
t, t ∈ [0, t0], (1.6.26)

which implies

γt ≤ H−1(H(γ0)− θc2t/2), t ∈ [0, t0].

Note that when t > t0, (γt)t≥t0 satisfies (1.6.22) with γt0 satisfying
c4
c2
< Φ(γt0) ≤ 2c4

c2
, so that (1.6.24) holds, i.e.

γt ≤ Φ−1(2c4/c2).

In conclusion, we obtain

γt ≤ Φ−1(2c4/c2) +H−1(H(γ0)− θc2t/2), t ≥ 0.

Combining this with (1) and (2), we derive (1.6.23) for some constant

k > 1.

(e) Since 1 ≤ Φ(r) → ∞ as r → ∞, we find a constant δ > 0 such

that Φ(r) ≥ δr, r ≥ 0. So, by step (b), (1.6.4) holds. Combining this with

(1.6.23) we derive

‖P̂ ∗t+sδx − µ̂‖V = sup
|f |≤V

|P̂s(P̂tf − µ̂(f))(x)|

≤ ce−λtP̂sV (x) ≤ c
{
k +H−1(H(θV (x))− k−1s)

}
e−λt.

Combining this with (1.6.17), (1.6.18) and (1.6.19), we derive (1.6.5) for

some constants k, λ > 0.

Finally, if H(∞) <∞, we take t∗ = kH(∞) in (1.6.5) to derive

sup
x∈D̄
‖Ptδx − µ̄‖V ≤ ce−λt, t ≥ t∗

for some constants c, λ > 0, which implies (1.6.6) by the argument leading

to (1.6.4) in step (c). �
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Proof of Corollary 1.6.2. By (1.6.8), for any θ ∈ ((1 − α)+, 1
2 ) there

exists a constant c3 > 0 such that

φ(r) ≥ c3(1 + r)1−θ, r ≥ 0.

Then (1.6.2) holds for V := e(1+|·|2)θ and Φ(r) = r. So the first assertion

in (1) follows from Theorem 1.6.1(1).

Next, (1.6.7) and (1.6.9) imply (1.6.2) for V := ψ(| · |2) and Φ(r) = r,

so that the second assertion in (1) holds by Theorem 1.6.1(1).

Finally, if
∫∞

0
ds
φ(s) < ∞, then for any q > 0, (1.6.2) holds for V :=

(1 + | · |2)q and Φ(r) = (1 + r)1− 1
q φ(r

1
q ), so that

∫∞
0

ds
Φ(s) < ∞. Then the

proof is finished by Theorem 1.6.1(2). �

1.7 Notes and further results

In the previous sections we studied singular SDEs using Zvonkin’s transform

such that the non-degenerate noise kills the singular drift.

Intuitively, a degenerate noise should be able to kill a singular drift

taking values in the image of the noise coefficients. In this spirit, the

following SDE where σσ∗ may be non-invertible has been studied in [Huang

and Wang (2018)]:

dXt =
{
b
(1)
t + σtb

(0)
t

}
(Xt)dt+ σt(Xt)dWt, t ∈ [0, T ],

where ‖∇b(1)‖∞ <∞ and |σtb(0)
t | ≥ λ|b(0)

t | holds for some constant λ > 0.

This model contains two typical degenerate singular SDEs:

(1) singular SDEs on Heisenberg groups;

(2) singular stochastic Hamiltonian systems.

In the following we introduce some results on these two typical degener-

ate models. We will also introduce a result of [Yang and Zhang (2020b)] for

the well-posedness of SDEs with a Kato class drift which is not included

in assumption (A1.3). See also [Wang (2016)] and references therein for

the study of singular SDEs on Hilbert space as well as [Huang and Wang

(2018)] for path-dependent singular SDEs.
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1.7.1 Singular SDEs on Heisenberg groups

Consider the following vector fields on Rm+d, where m ≥ 2, d ≥ 1:

Ui(x, y) =

m∑
k=1

θki∂xk +

d∑
l=1

(Alx)i∂yl , 1 ≤ i ≤ m, (1.7.1)

where (x, y) = (x1, . . . , xm, y1, . . . , yd) ∈ Rm+d, Θ := (θij) and Al(1 ≤ l ≤
d) are m×m-matrices satisfying the following assumption:

(A1.6) Θ is invertible, Gl := AlΘ−Θ∗A∗l 6= 0(1 ≤ l ≤ d), and there exists

ε ∈ [0, 1) such that

ε

d∑
l=1

a2
l |Glu|2 ≥

∑
1≤l 6=k≤d

|alak〈Glu,Gku〉|, a ∈ Rd, u ∈ Rm.

Under this condition, the operator

L :=
1

2

m∑
i=1

U2
i

is hypoelliptic and symmetric in L2(Rm+d), and the associated diffusion

process solves the SDE for (Xt, Yt) ∈ Rm+d:

d(Xt, Yt) =

m∑
i=1

Ui(Xt) ◦ dW i
t = Zdt+ σ(Xt)dWt, t ∈ [0, T ], (1.7.2)

where Wt := (W i
t )1≤i≤m is the m-dimensional Brownian motion, and

σ(x) := (Θ, A1x, . . . , Adx), Z · ∇ :=

m∑
i=1

∇UiUi =

d∑
l=1

tr(ΘAl)∂yl .

We now consider the following SDE with a singular drift b : [0, T ]×Rm+d →
Rm:

d(X̃t, Ỹt) =
{
σ(X̃t)bt(X̃t, Ỹt) + Z

}
dt+ σ(X̃t)dWt. (1.7.3)

A typical example is d = m − 1,Θ = Im×m and for some constants

al 6= βl,

(Al)ij =


al, if i = 1, j = l + 1,

βl, if i = l + 1, j = 1,

0, otherwise.
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Then G∗lGk = 0 for l 6= k, so that (A1.6) holds with ε = 0. In particular,

for al = −βl = 1
2 , L is the Kohn-Laplacian operator on the (2m − 1)-

dimensional Heisenberg group. In general, Rm+d is a group under the

action

(x, y) • (x′, y′) := (x+ x′, y + y′ + 〈(Θ∗)−1A·x, x
′〉),

(x, y), (x′, y′) ∈ Rm+d,
(1.7.4)

and Ui, 1 ≤ i ≤ m are left-invariant vector fields. So, we call (1.7.3) a

singular SDE on the generalized Heisenberg group.

Let ∆y =
∑d
l=1 ∂

2
yl

. Then (∆y,W
2,2(Rd)) is a negative definite operator

in L2(Rd). For any α > 0 and λ ≥ 0, we consider the operator (λ −∆y)α

defined on domain D((−∆y)α) := H2α,2(Rd), see (1.2.1). This operator

extends naturally to a measurable function f on the product space Rm+d

such that f(x, ·) ∈ D((−∆y)α) for x ∈ Rm:

(λ−∆y)αf(x, y) := (λ−∆)αf(x, ·)(y).

For any β > 0, p ≥ 1, let Hα,p
y be the space of measurable functions on

Rm+d such that

‖f‖Hβ,py
:= ‖(1−∆y)

β
2 f‖p � ‖f‖p + ‖(−∆y)

β
2 f‖p <∞,

where f � g for two positive functions means that c−1f ≤ g ≤ cf holds for

some constant c > 1. Recall that for β ∈ (0, 2) and z ∈ Rm+d,

−(−∆y)
β
2 f(z) = c(β)

∫
Rd

(f(z + (0, y′))− f(z))|y′|−(m+β)dy′

holds for some constant c(β) > 0.

For any β > 0, p, q ≥ 1, let Hβ,p,q
y be the completion of C∞0 ([0, T ] ×

Rm+d) with respect to the norm

‖f‖Hβ,p,qy
:= ‖(1−∆y)

β
2 f‖Lqp � ‖f‖Lqp + ‖(−∆y)

β
2 f‖Lqp .

The following result is taken from Theorem 3.1 in [Huang and Wang (2018)].

Theorem 1.7.1. Assume (A1.6) and let p, q ≥ 1 satisfy 2
q + m+2d

p < 1.

(1) If |b| ∈ Lqp([0, T ] × Rm+d), then for any initial value x ∈ Rm+d,

the SDE (1.7.3) has a weak solution (Xt)t∈[0,T ] starting at x with

E[eλ
∫ T
0
|bt(Xt)|2dt] <∞ for all λ > 0.

(2) If (hb) ∈ H
1
2 ,p,q
y holds for any h ∈ C∞0 (Rm+d), then for any initial

value x ∈ Rm+d, the SDE (1.7.3) has a unique strong solution up to

life time.
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1.7.2 Singular stochastic Hamiltonian systems

As a probability model characterizing Langevin kinetic equations, the fol-

lowing degenerate SDE for (Xt, Yt) ∈ R2d is known as stochastic Hamilto-

nian equation system:{
dXt = Zt(Xt, Yt)dt,

dYt = bt(Xt, Yt)dt+ σt(Xt, Yt)dWt, t ∈ [0, T ],
(1.7.5)

where Wt is the d-dimensional Brownian motion and

σ : [0, T ]× R2d → Rd ⊗ Rd, Z, b : [0, T ]× R2d → Rd

are measurable. A typical model is that Zt(x, y) = y, for which the SDE

becomes{
dXt = Ytdt,

dYt = bt(Xt, Yt)dt+ σt(Xt, Yt)dWt, t ∈ [0, T ],
(1.7.6)

where Xt stands for the position at time t of a moving random particle

while Yt is the speed of Xt, so that the noise perturbs the speed variable.

Let ∇(i) be the gradient in the i-th component of (x, y) ∈ Rd ×Rd, i =

1, 2. The following well-posedness result of (1.7.5) is taken from [Wang and

Zhang (2016)] where moments and continuity estimates are also presented.

Theorem 1.7.2. The SDE (1.7.5) is well-posed if there exist a closed

convex subspace Miv of invertible d × d-matrices, an increasing function

φ : [0,∞)→ [0,∞) with∫ 1

0

φ(t)

t
dt <∞, lim

t↓0

φ(λt)

φ(t)
= 1, λ > 0,

and a function γ ∈ C1([0,∞); [0,∞)) with∫ 1

0

dt

tγ(t)
=∞, lim inf

t↓0

{γ(t)

4
+ tγ′(t)

}
> 0,

such that

(1) ∇(2)Zt(x, y) ∈Miv and σt(x) is invertible such that

‖∇(2)Z‖∞ + ‖σ‖∞ + ‖σ−1‖∞ <∞.

(2) For any t ∈ [0, T ] and x, y, x′, y′ ∈ Rd,

|Zt(x, y)− Zt(x′, y)| ≤ |x− x′| 23φ(|x− x′|),

‖∇(2)Zt(x, y)−∇(2)Zt(x, y
′)‖ ≤ φ(|y − y′|).
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(3) Either

|bt(x, y)− bt(x′, y′)| ≤
{
|x− x′| 23φ(|x− x′|) + φ

7
2 (|y − y′|)

}
,

‖σt(x)− σt(y)‖ ≤ |x− y|
√
γ(|x− y|), t ∈ [0, T ], x, x′, y, y′ ∈ Rd;

or ‖∇(2)σ‖∞ <∞ and

|bt(x, y)− bt(x′, y′)| ≤
{
|x− x′| 23φ(|x− x′|) + φ(|y − y′|)

}
,

‖∇(2)σt(x, y)−∇(2)σt(x
′, y)‖ ≤ |x− x′|

√
γ(|x− x′|) ,

‖σt(x, y)− σt(x′, y)‖ ≤ |x− x′|
√
γ(|x− x′|), t ∈ [0, T ], x, x′, y, y′ ∈ Rd.

By a standard truncation argument, if conditions in Theorem 1.7.2 hold

for x, x′, y, y′ in any compact set of Rd, then the SDE is locally well-posed;

i.e. it is well-posed up to life time. The weak well-posedness of (1.7.5) is

also derived in [Wang and Zhang (2016)] under slightly weaker conditions.

The following result for (1.7.6) is modified from [Zhang (2018)], where

by a localization argument, we have replaced Lp by L̃p, see [Zhang (2021)]

for the weak existence of (1.7.6) where the drift b only satisfies a locally

integrable condition and may depend on the distribution density of the

solution (see Subsection 3.6.3).

Theorem 1.7.3. The SDE (1.7.6) is well-posed if ‖σ‖∞ + ‖σ−1‖∞ < ∞
and there exists p > 2(2d+ 1) such that

sup
t∈[0,T ]

{
‖∇σ‖L̃p +

∫ T

0

‖(1−∆x)
1
3 bs‖pL̃pds

}
<∞,

where ∆x is the Laplacian for the first variable x and L̃p is with respect to

the Lebesgue measure on R2d.

For other references on the SDE (1.7.6), see [Chaudru de Raynal (2017)]

and [Wang and Zhang (2018)] for a stronger situation where the drift is

Hölder continuous, [Wang and Zhang (2013)] for Bismut formula for this

type of degenerate SDEs, [Wang (2017b)] and [Wang and Zhang (2014)]

for the hypercontractivity and dimension-free Harnack inequalities for finite

and infinite-dimensional stochastic Hamiltonian systems, and [Grothause

and Stigenbauer (2014)], [Grothause and Wang (2019)], [Baudoin et al

(2021)] and references therein for the ergodicity of stochastic Hamiltoni-

an systems.
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1.7.3 Singular SDEs with Kato and critical drifts

Consider the following SDE on Rd with additive noise:

dXt = bt(Xt)dt+ dWt, t ∈ [0, T ], (1.7.7)

i.e. in (1.1.1) we set m = d and σ = Id. A measurable function f on

[0, T ]× Rd is said in the Kato class Kd,α for α > 0, if

lim
ε↓0

sup
t∈[0,T+ε],x∈Rd

∫ ε

−ε
1[−t,T−t](s)|s|−

d+2−α
2 ds

∫
Rd

e−
λ|x−y|2

2|s| |ft+s(y)|dy = 0.

The following result is due to Theorems 2.2 and 5.1 in [Yang and Zhang

(2020b)].

Theorem 1.7.4. (1) If |b|2 ∈ Kd,α for some α > 0, then (1.7.7) is well-

posed.

(2) If |b| ∈ Kd,1 then (1.7.7) is weakly well-posed, and the solution has a

transition density satisfying the following Gaussian upper bounded estimate

for some constants c1, c2 > 0:

ps,t(x, y) ≤ c1

(t− s) d2
e−

c2|x−y|
2

t−s , 0 ≤ s < t ≤ T, x, y ∈ Rd.

Finally, the following well-posedness result has been proved in [Röckner

and Zhao (2023)] and [Röckner and Zhao (2020b)] for b satisfying the critical

integrability condition |b| ∈ Lp0
q0 with d

p0
+ 2

q0
= 1.

Theorem 1.7.5. If either b ∈ C([0, T ];Ld(Rd)) or |b| ∈ Lp0
q0 for some

(p0, q0) ∈ (2,∞) with d
p0

+ 2
q0

= 1, then (1.7.7) is well-posed. If |b| ∈ Ld∞
then (1.7.7) is weakly well-posed.
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Chapter 2

Singular Reflected SDEs

When the SDE (1.1.1) is restricted to a domain D ⊂ Rd, a natural model

is the following reflected SDE:

dXt = bt(Xt)dt+ σt(Xt)dWt + n(Xt)dlt, t ∈ [0, T ], (2.0.1)

where n is the inward normal vector field of the boundary ∂D (see Def-

inition 2.1.1), and lt is a continuous adapted increasing process with dlt
supported on {t ∈ [0, T ] : Xt ∈ ∂D}.

The problem of confining a stochastic process to a domain goes back to

[Skorohod (1961, 1962)], and has been well developed under monotone (or

locally semi-Lipschitz) conditions, see the recent work of [Hino et al (2021)]

and references therein. In this chapter, we study (2.0.1) with singular

coefficients based on [Wang (2023b)].

2.1 Reflected SDE and Neumann problem

Let D ⊂ Rd be a connected open domain with boundary ∂D. For any

x ∈ ∂D and r > 0, let

Nx,r :=
{
n ∈ Rd : |n| = 1, B(x− rn, r) ∩D = ∅

}
,

where B(x, r) := {y ∈ Rd : |x− y| < r}. Since Nx,r is decreasing in r > 0,

we have

Nx := ∪r>0Nx,r = lim
r↓0
Nx,r, x ∈ ∂D.

We call Nx the set of inward unit normal vectors of ∂D at point x. When

∂D is differentiable at x, Nx is a singleton set. Otherwise Nx may be empty

or contain more than one vector. For instance, letting D be the interior of a

triangle in R2, at each vertex x, the set Nx contains infinite many vectors,

61
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whereas for D being the exterior of the triangle, Nx is empty at each vertex

point x.

Definition 2.1.1. A measurable map n : ∂D → Rd with n(x) ∈ Nx(x ∈
∂D) is called an inward normal vector field of ∂D.

The following assumption on D goes back to [Lions and Sznitman

(1984); Saisho (1987)]. Recall that D is called convex, if rx+ (1− r)y ∈ D
for x, y ∈ D and r ∈ [0, 1].

(D) Either D is convex, or there exists a constant r0 > 0 such that Nx =

Nx,r0 6= ∅ for x ∈ ∂M , and

sup
v∈Rd,|v|=1

inf
{
〈v,n(y)〉 : y ∈ B(x, r0) ∩ ∂D,n(y) ∈ Ny

}
≥ r0, x ∈ ∂D.

(2.1.1)

Remark 2.1.1. We present below some facts on assumption (D).

(1) According to Remark 1.1 in [Saisho (1987)], for any x ∈ ∂D and r > 0,

n ∈ Nx,r if and only if

〈y − x,n〉 ≥ −|y − x|
2

2r
, y ∈ D̄,

so that the condition Nx = Nx,r0 in (D) implies

〈y − x,n(x)〉 ≥ −|y − x|
2

2r0
, y ∈ D̄, x ∈ ∂D,n(x) ∈ Nx. (2.1.2)

When D is convex, Nx = Nx,r0 holds for all x ∈ ∂D and r0 > 0,

〈y − x,n(x)〉 ≥ 0, y ∈ D̄, x ∈ ∂D,n(x) ∈ Nx, (2.1.3)

and (2.1.1) holds if d = 2 or D is bounded, see [Tanaka (1979)].

(2) When ∂D is C1-smooth, for each x ∈ ∂D the set Nx is singleton. If

n(x) ∈ Nx is uniformly continuous in x ∈ ∂D, then (2.1.1) holds for

small r0 > 0. In particular, (D) holds when ∂D ∈ C2
b in the following

sense.

Definition 2.1.2. For any r > 0, let

∂rD :=
{
x ∈ D̄ : dist(x, ∂D) ≤ r

}
, ∂−rD :=

{
x ∈ Dc : dist(x, ∂D) ≤ r

}
,

Dr := D ∪ (∂−rD) = {x ∈ Rd : dist(x,D) ≤ r
}
.
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For any k ∈ N, we write ∂D ∈ Ck (respectively, ∂D ∈ Ckb ) if there exists a

constant r0 > 0 such that the polar coordinate map

I : ∂D × [−r0, r0] 3 (θ, ρ∂) 7→ θ + ρ∂n(θ) ∈ (∂r0D) ∪ ∂−r0D

is a Ck-diffeomorphism, such that (θ(x), ρ∂(x)) := I−1(x) having contin-

uous (respectively, bounded and continuous) derivatives in x ∈ (∂r0D) ∪
∂−r0D up to the k-th order, where θ(x) is the projection of x to ∂D and

ρ∂(x) = dist(x, ∂D)1{∂r0D}(x)− dist(x, ∂D)1{∂−r0D}(x),

x ∈ (∂r0D) ∪ ∂−r0D.
(2.1.4)

Moreover, for ε ∈ (0, 1), we denote ∂D ∈ Ck+ε
b if it is in Ckb with ∇kρ∂

and ∇kθ being ε-Hölder continuous on ∂r0D. Finally, we write ∂D ∈ Ck,Lb
if it is Ckb with ∇kρ∂ being Lipschitz continuous on ∂r0D.

Note that ∂D ∈ Ckb does not imply the boundedness of D or ∂D, but

any bounded Ck domain satisfies ∂D ∈ Ckb .

(A2.1) (D) holds, a := σσ∗ and b are measurable functions on [0, T ]× Rd,

b has decomposition b = b(0) + b(1) with b
(0)
t |D̄c = 0, such that the

following conditions hold:

(1) at is invertible with ‖a‖∞ + ‖a−1‖∞ <∞, and

lim
ε→0

sup
|x−y|≤ε,t∈[0,T ]

‖at(x)− at(y)‖ = 0. (2.1.5)

(2) There exists (p0, q0) ∈ K such that |b(0)| ∈ L̃p0
q0 (T ). Moreover, b(1) is

locally bounded on [0, T ]×Rd, and there exist a constant L > 1 and

a function ρ̃∂ ∈ C2
b (D̄) such that

‖∇b(1)‖∞ := sup
t∈[0,T ],x 6=y

|b(1)
t (x)− b(1)

t (y)|
|x− y|

≤ L, (2.1.6)

〈b(1)
t ,∇ρ̃∂〉|D̄ ≥ −L, 〈∇ρ̃∂ ,n〉|∂D ≥ 1, t ∈ [0, T ]. (2.1.7)

(A2.2) (A2.1) holds, and there exist l ∈ N, {(pi, qi)}0≤i≤l ⊂ K and {fi ∈
L̃piqi (T )}1≤i≤l such that

|b(0)|2 ∈ L̃p0
q0 (T ), ‖∇σ‖2 ≤

l∑
i=1

fi.
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Remark 2.1.2. Each of the following two conditions implies the existence

of ρ̃∂ in (2.1.7):

(a) ∂D ∈ C2
b and there exists a constantK > 0 such that 〈b(1)

t ,n〉|∂D ≥ −K
for t ∈ [0, T ];

(b) D is bounded and there exist ε ∈ (0, 1) and x0 ∈ D such that

〈x0 − x,n(x)〉 ≥ ε|x− x0|, x ∈ ∂D. (2.1.8)

Indeed, if (a) holds then there exists r0 > 0 such that ρ∂ ∈ C2
b (∂r0D).

Let h ∈ C∞([0,∞)) with h(r) = r for r ∈ [0, r0/4] and h(r) = r0/2 for

r ≥ r0/2. By taking ρ̃∂ = h◦ρ∂ we have ρ̃∂ ∈ C2
b (D̄), 〈∇ρ̃∂ ,n〉|∂D = 1, and

for any x ∈ D letting x̄ ∈ ∂D such that |x − x̄| = ρ∂(x), we deduce from

(2.1.6) that

〈b(1)
t (x),∇ρ̃∂(x)〉 = h′(ρ∂(x))

{
〈b(1)
t (x̄),n(x̄)〉+ 〈b(1)

t (x)− b(1)
t (x̄),n(x̄)〉

}
≥ −(1 + r0)L‖h′‖∞.

Therefore, (2.1.7) holds for some (different) constant L. Next, if (b) holds,

by (2.1.8) we may take ρ̃∂(x) = N
√

1 + |x− x0|2 for large enough N ≥
1 such that 〈∇ρ̃∂ ,n〉|∂D ≥ 1. So, by the boundedness of D and b(1) ∈
C([0, T ]× Rd), (2.1.7) holds for some constant L > 0.

Assumption (A2.1) will be used to establish Krylov’s estimate for func-

tions f ∈ ∩(p,q)∈KL̃
p
q(T ), see Lemma 2.2.1 below. To improve this estimate

for (p, q) satisfying d
p + 2

q < 2 as in Theorem 1.2.3(2), we introduce one

more assumption.

Consider the following differential operators on D̄:

Lσ,b
(1)

t :=
1

2
tr
(
σtσ
∗
t∇2

)
+∇

b
(1)
t
, t ∈ [0, T ]. (2.1.9)

Let {Pσ,b
(1)

s,t }T≥t1≥t≥s≥0 be the Neumann semigroup on D̄ generated by

Lσ,b
(1)

t , that is, for any φ ∈ C2
b (D̄), and any t ∈ (0, T ], (Pσ,b

(1)

s,t φ)s∈[0,t] is

the unique solution of the PDE

∂sus = −Lσ,b
(1)

s us, ∇nus|∂D = 0 for s ∈ [0, t), ut = φ. (2.1.10)

For any t > 0, let C1,2([0, t)× D̄) be the set of functions f ∈ Cb([0, t)× D̄)

with continuous derivatives ∂tf,∇f and ∇2f .

For any p, q ≥ 1, any 0 ≤ s < t ≤ T , let L̃pq(s, t,D) be the class of

measurable functions on [s, t]× D̄ such that 1D̄f ∈ L̃pq(s, t). Moreover, we

denote L̃pq(t,D) := L̃pq(0, t,D), t ∈ (0, T ].
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(A2.3) ∂D ∈ C2,L
b and the following conditions hold for σ and b on [0, T ]×

D̄:

(1) at := σtσ
∗
t is invertible, (2.1.5) holds for x, y ∈ D̄, and for some

{fi ∈ L̃piqi (T,D), (pi, qi) ∈ K}1≤i≤l,

‖a‖∞ + ‖a−1‖∞ <∞, ‖∇σ‖ ≤
l∑
i=1

fi

holds on [0, T ]× D̄.

(2) b = b(1) +b(0) with ∇nb
(1)
t |∂D = 0, ‖∇b(1)‖∞+‖1∂D〈b(1),n〉‖∞ <∞

and |b(0)| ∈ L̃p0
q0 (T,D) for some (p0, q0) ∈ K with p0 > 2.

(3) For any φ ∈ C2
b (D̄) and t ∈ (0, T ], the PDE (2.1.10) has a unique

solution Pσ,b
(1)

·,t φ ∈ C1,2([0, t)×D̄), such that for ∇0φ := φ and some

constant c > 0, we have

‖∇iPσ,b
(1)

s,t φ‖∞ ≤ c(t− s)−
1
2 ‖∇i−1φ‖∞,

‖∂sPσ,b
(1)

s,t φ‖∞ ≤ c(t− s)−
1
2 ‖∇φ‖∞,

0 ≤ s < t ≤ T, i = 1, 2, φ ∈ C2
b (D̄).

(2.1.11)

Remark 2.1.3. (1) Let ρ∂ ∈ C2
b (∂r0D) for some r0 > 0. Since ∇ρ∂ |∂D =

n, ‖∇b(1)‖∞ + ‖1∂D〈b(1),n〉‖∞ < ∞ implies ‖1∂r0D〈b
(1),∇ρ∂〉‖∞ < ∞,

which will be used in the proof of Lemma 2.2.2 below.

(2) (A2.3)(3) holds if D is bounded with ∂D ∈ C2+α for some α ∈ (0, 1),

and there exists c > 0 such that{
|b(1)
t (x)− b(1)

s (y)|+ ‖at(x)− as(y)‖
}
≤ c(|t− s|α + |x− y|α2 ),

s, t ∈ [0, T ], x, y ∈ D̄.
(2.1.12)

Indeed, ∂D ∈ C2+α implies n ∈ C1+α(∂D), so that (2.1.12) implies esti-

mates (3.4) and (3.6) in Theorem VI.3.1 in [Carroni and Menaldi (1992)]

with % = ∞ for the Neumann heat kernel pσ,b
(1)

s,t (x, y) of Pσ,b
(1)

s,t . We note

that according to its proof, the condition (3.3) therein is assumed for some

α ∈ (0, 1) rather than all α ∈ (0, 1). In particular, ∇2pσ,b
(1)

s,t (·, y)(x) and

∂sp
σ,b(1)

s,t (x, y) are continuous in (s, x) ∈ [0, t] × D̄, and there exists a con-

stant c > 1 such that

|∂spσ,b
(1)

s,t (x, y)| = |Lσ,b
(1)

s pσ,b
(1)

s,t (·, y)(x)| ≤ c|t− s|−
d+2

2 e−
|x−y|2
c(t−s) ,

|∇ipσ,b
(1)

s,t (·, y)(x)| ≤ c|t− s|−
d+i

2 e−
|x−y|2
c(t−s) ,

0 ≤ s < t ≤ T, x, y ∈ D̄, i = 0, 1, 2.
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These properties imply (2.1.11). For instance, by
∫
D
ps,t(x, y)dy = 1, the

second estimate implies that for some constant c′ > 0,

|∂sPσ,b
(1)

s,t φ(x)| =
∣∣∣∣∂s ∫

D

pσ,b
(1)

s,t (x, y)φ(y)dy

∣∣∣∣
=

∣∣∣∣∂s ∫
D

pσ,b
(1)

s,t (x, y)
{
φ(y)− φ(x)

}
dy

∣∣∣∣
≤ c‖∇φ‖∞

∫
D

|x− y| · |t− s|−
d+2

2 e−
|x−y|2
c(t−s) dy

≤ c′(t− s)− 1
2 , 0 ≤ s < t ≤ T, x ∈ D̄.

When D = Rd, these estimates (hence (2.1.11)) hold for more general σ

and b(1), see [Menozzi et al (2021)].

Definition 2.1.3. (1) A pair (Xt, lt)t∈[0,T ] is called a solution of (2.0.1),

if Xt is an adapted continuous process on D̄, lt is an adapted continuous

increasing process with dlt supported on {t ∈ [0, T ] : Xt ∈ ∂D}, such that

P-a.s. ∫ t

0

{
|br(Xr)|+ ‖σr(Xr)‖2}dr <∞, t ∈ [0, T ],

and for an inward normal vector field n of ∂D, P-a.s.

Xt = X0+

∫ t

0

br(Xr,LXr )dr+
∫ t

0

σr(Xr,LXr )dWr+

∫ t

0

n(Xr)dlr, t ∈ [0, T ].

In this case, lt is called the local time of Xt on ∂D. We call (2.0.1) strongly

well-posed if for any X0 ∈ D̄, the equation has a unique solution.

(2) A triple (Xt, lt,Wt)t∈[0,T ] is called a weak solution of (2.0.1), if

Wt is an m-dimensional Brownian motion under a probability space and

(Xt, lt)t∈[0,T ] solves (2.0.1). (2.0.1) is said to have weak uniqueness (resp.

jointly weak uniqueness), if for any two weak solutions (Xt, lt,Wt)t∈[0,T ]

under probability P and (X̃t, l̃t, W̃t)t∈[0,T ] under probability P̃, LX0|P =

LX̃0|P̃ implies L(Xt,lt)t∈[0,T ]|P = L(X̃t,l̃t)t∈[0,T ]|P̃ (resp. L(Xt,lt,Wt)t∈[0,T ]|P =

L(X̃t,l̃t,W̃t)t∈[0,T ]|P̃). We call (2.0.1) weakly well-posed, if it has a unique

weak solution for any initial value.

To characterize the linear Fokker-Planck equation associated with

(2.0.1), consider the time-distribution dependent second order differential

operator on D:

Lt :=
1

2
tr
{
σtσ
∗
t∇2

}
+∇bt , t ∈ [0, T ]. (2.1.13)
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Let C2
N (D̄) be the class of C2

0 -functions on D̄ satisfying the Neumann

boundary condition ∇nf |∂D = 0. By Itô’s formula, for any (weak) solution

Xt to (2.0.1), µt := LXt solves the nonlinear Fokker-Planck equation

∂tµt = L∗tµt with respect to C2
N (D̄), t ∈ [0, T ] (2.1.14)

for probability measures on D̄, in the sense that µ· ∈ C([0,∞);P(D̄)) and

µt(f) :=

∫
D̄

fdµt = µ0(f) +

∫ t

0

µs(Lsf)ds,

t ∈ [0, T ], f ∈ C2
N (D̄).

(2.1.15)

To understand (2.1.14) as a linear Neumann problem on D, let L∗t be

the adjoint operator of Lt: for any g ∈ L1
loc(D, (‖σt(x)‖2 + |bt(x)|)dx), L∗t g

is the linear functional on C2
0 (D) given by

C2
0 (D) 3 f 7→

∫
D

{fL∗t g}(x)dx :=

∫
D

{gLtf}(x)dx. (2.1.16)

Assume that LXt has a density function ρt, i.e. µt := LXt = ρt(x)dx. It is

the case under a general non-degenerate or Hörmander condition (see for

instance [Bogachev et al (2015)]). When ∂D ∈ C2, (2.1.14) implies that ρt
solves the following linear Neumann problem on D̄:

∂tρt = L∗t ρt, ∇t,nρt|∂D = 0, t ∈ [0, T ] (2.1.17)

in the weak sense, where for a function g on ∂D

∇t,ng := ∇σtσ∗t ng + div∂D(gπσtσ
∗
t n)

for the divergence div∂D on ∂D and the projection π to the tangent space

of ∂D:

πxv := v − 〈v,n(x)〉n(x), v ∈ Rd, x ∈ ∂D.

If in particular σσ∗n = λn holds on [0,∞)× ∂D for a function λ 6= 0 a.e.,

∇t,nρt|∂D = 0 is equivalent to the standard Neumann boundary condition

∇nρt|∂D = 0.

We now deduce (2.1.17) from (2.1.15). Firstly, by (2.1.16), (2.1.15)

implies ∫
D

(fρt)(x)dx =

∫
D

(fρ0)(x)dx+

∫ t

0

ds

∫
D

(fL∗sρs)(x)dx,

f ∈ C2
0 (D), t ∈ [0, T ],
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so that ∂tρt = L∗t ρt. Next, by the integration by parts formula, (2.1.15)

implies∫
D

(fρt)(x)dx =

∫
D

(fρ0)(x)dx+

∫ t

0

ds

∫
D

(ρsLsf)(x)dx

=

∫
D

(fρ0)(x)dx+

∫ t

0

ds

∫
D

(fL∗sρs)(x)dx

+

∫ t

0

ds

∫
∂D

{
f∇σsσ∗snρs − ρs∇σsσ∗snf

}
(x)dx

=

∫
D

(fρ0)(x)dx+

∫ t

0

ds

∫
D

(f∂sρs)(x)dx

+

∫ t

0

ds

∫
∂D

{
f∇σsσ∗snρs + fdiv∂D(ρsπσsσ

∗
sn)
}

(x)dx

=

∫
D

(fρt)(x)dx+

∫ t

0

ds

∫
∂D

{
f(∇t,nρt)

}
(x)dx, f ∈ C2

N (D̄), t ∈ [0, T ].

Thus, ∇t,nρt|∂D = 0.

2.2 Krylov’s and Khasminskii’s estimates

Let us first explain the main difficulty in the study of singular reflected

SDEs using Zvonkin’s transform. Consider the following simple reflected

SDE on D̄:

dXt = bt(Xt)dt+
√

2dWt + n(Xt)dlt, t ∈ [0, T ], (2.2.1)

where Wt is the d-dimensional Brownian motion and
∫ T

0
‖bt‖qLp(Rd)

dt <∞
for some p, q > 2 with d

p + 2
q < 1. By Lemma 1.2.2, when λ > 0 is large

enough, the unique solution of the PDE

(∂t + ∆ +∇bt)ut = λut − bt, t ∈ [0, T ], uT = 0

satisfies

‖u‖∞ + ‖∇u‖∞ ≤
1

2
, ‖∇2u‖Lpq :=

(∫ T

0

‖∇2ut‖qLp(Rd)
dt

) 1
q

<∞.

Thus, for any t ∈ [0, T ], Θt := id+ ut is a homeomorphism on Rd, and by

Itô’s formula, Yt := Θt(Xt) solves

dYt = λ{ut ◦Θ−1
t }(Yt)dt+ dWt

+ {(∇ut) ◦Θ−1
t }(Yt)dWt + {n(Xt) +∇nut(Xt)}dlt.
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To prove the pathwise uniqueness of Yt by applying Itô’s formula to |Yt −
Ỹt|2, where Ỹt := Θt(X̃t) for another solution X̃t of (2.2.1) with local time

l̃t, one needs to find a constant c > 0 such that

〈Θt(Xt)−Θt(X̃t), (n +∇nut)(Xt)〉dlt
+ 〈Θt(X̃t)−Θt(Xt), (n +∇nut)(X̃t)〉dl̃t
≤ c|Xt − X̃t|2(dlt + dl̃t).

(2.2.2)

This is not implied by (2.1.2) except for d = 1, since only in this case the

vectors Θt(x)−Θt(y) and (n+∇nut)(x) are in the same directions of x−y
and n(x) respectively for large λ > 0.

To overcome this difficulty, we will construct a Zvokin’s transform by

solving the associated Neumann problem on D̄, for which ∇nut|∂D = 0.

Even in this case, Θt may also map a point from D̄ to D̄c such that (2.1.2)

does not apply. To this end, we will construct a modified process of |Xt −
X̃t|2 by using a function from [Dupuis and Ishii (1990)], see [Yang and

Zhang (2023)] for the study of bounded b and bounded C3 domain D.

In the following we first deduce Krylov’s estimate and Khasminskii’s

estimate by using Lemma 1.2.2, then make improvements by solving a Neu-

mann problem on D.

Lemma 2.2.1. Assume (A2.1). Let (p, q) ∈ K.

(1) There exist a constant i ≥ 1 depending only on (p, q), and a constan-

t c ≥ 1 increasing in ‖b(0)‖L̃p0
q0

(T ), such that for any solution Xt of

(2.0.1), any 0 ≤ t0 ≤ t1 ≤ T, and any f ∈ L̃pq(t0, t1),

E
[(∫ t1

t0

|fs(Xs)|
)j

ds

∣∣∣∣Ft0] ≤ cj(j!)‖f‖jL̃pq(t0,t1)
, j ≥ 1, (2.2.3)

E
(
e
∫ t1
t0
|ft(Xt)|dt

∣∣Ft0) ≤ exp
[
c+ c‖f‖i

L̃pq(t0,t1)

]
, (2.2.4)

sup
t0∈[0,T ]

E
(
eλ(lT−lt0 )

∣∣Ft0) < ec(1+λ2), λ > 0. (2.2.5)

(2) For any u ∈ C([0, T ]× Rd) with continuous ∇u and

‖u‖∞ + ‖∇u‖∞ + ‖(∂t +∇b(1))u‖L̃pq(T ) + ‖∇2u‖L̃pq(T ) <∞, (2.2.6)

we have the following Itô’s formula for a solution Xt to (2.0.1):

dut(Xt) = (∂t + Lt)ut(Xt)dt+ 〈∇ut(Xt), σt(Xt)dWt〉
+ (∇nut)(Xt)dlt, t ∈ [0, T ].

(2.2.7)
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Proof. (1) We first prove (2.2.3) for j = 1. By Theorem 1.2.3(1), for any

ε ∈ (0, 1) there exists a constant c > 0 such that

E
(∫ t1

t0

fs(Xs)ds

∣∣∣∣Ft0) ≤ {c+ εE(lt1 − lt0 |Ft0)
}
‖f‖L̃pq(t0,t1). (2.2.8)

On the other hand, by (2.1.7) and the boundedness of σ, we find a constant

c1 > 0 such that

dρ̃∂(Xt) ≥ −c1dt− c1|b(0)
t (Xt)|dt+ dlt + 〈∇ρ̃∂(Xt), σt(Xt)dWt〉. (2.2.9)

So, (2.2.8) with (p, q) = (p0, q0) implies that

E(lt1 − lt0 |Ft0) ≤ c1(t1 − t0) + c1E
(∫ t1

t0

|b(0)
s (Xs)|ds

∣∣∣∣Ft0)+ ‖ρ̃∂‖∞

≤ c2 + c1εE(lt1 − lt0 |Ft0), t ∈ [t0, T ]

holds for some constant c2 > 0 increasing in ‖b(0)‖L̃pq(T ). By an approxi-

mation argument we may assume that ElT < ∞, so that by taking ε > 0

small enough such that c1ε ≤ 1
2 , we arrive at

E(lt1 − lt0 |Ft0) ≤ c3, t0 ≤ t1 ≤ T (2.2.10)

for some constant c3 > 0 increasing in ‖b(0)‖L̃pq(T ). This and (2.2.8) imply

(2.2.3) for j = 1, which further yields the inequality for any j ≥ 1 as well as

(2.2.4) according to the proof of Theorem 1.2.4. Finally, combining (2.2.4)

with (2.2.9), b(0) ∈ L̃p0
q0 (T ) and ‖σ∗∇ρ̃∂‖∞ <∞, we derive (2.2.5).

(2) We first extend u to Rd+1 by letting ut = ut+∧T for t ∈ R, and

consider its mollifying approximation u{n} := Sn(u) in (1.2.4). Then

‖σ‖∞ <∞ and (2.2.6) imply

lim
n→∞

{
‖u− u{n}‖∞ + ‖∇(u− u{n})‖∞

+ ‖(∂t + Lt)(u− u{n})‖L̃pq(T )

}
= 0.

(2.2.11)

Combining this with ‖σ‖∞ <∞ and (2.2.3), we obtain

lim
n→∞

sup
t∈[0,T ]

|u{n}t (Xt)− ut(Xt)| = 0, P-a.s.

lim
n→∞

∫ t

0

∇nu
{n}
s (Xs)dls =

∫ t

0

∇nus(Xs)dls, P-a.s.

lim
n→∞

E
∫ T

0

∣∣(∂s + Ls)(u
{n}
s − us)

∣∣(Xs)ds = 0, P-a.s.

lim
n→∞

E sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

〈∇(u{n}s − us)(Xs), σs(Xs)dWs〉
∣∣∣∣ = 0.

(2.2.12)
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Therefore, we derive (2.2.7) by letting n→∞ in the following Itô’s formula:

u
{n}
t (Xt) = u

{n}
0 (X0) +

∫ t

0

(∂s + Ls)(u
{n}
s )(Xs)ds

+

∫ t

0

〈∇u{n}s (Xs), σs(Xs)dWs〉+

∫ t

0

(∇nu
{n}
s )(Xs)dls, t ∈ [0, T ].

�

To improve Lemma 2.2.1 for (p, q) ∈ K with d
p + 2

q < 2, we ex-

tend Lemma 1.2.2 to the Neumann boundary case. For any k ∈ N, let

C0,k
b ([t0, t1]× D̄;Rd) be the space of f ∈ Cb([t0, t1]× D̄;Rd) with bounded

and continuous derivatives in x ∈ D̄ up to order k. Let C1,2
b ([t0, t1]×D̄;Rd)

denote the space of f ∈ C0,2
b ([t0, t1]× D̄;Rd) with bounded and continuous

∂tf .

Lemma 2.2.2. Assume (A2.3) but without the condition on ‖∇σ‖. Then

assumption (A2.1) and the following assertions hold.

(1) For any λ ≥ 0, 0 ≤ t0 < t1 ≤ T and b̃, f ∈ C0,2
b ([t0, t1] × D̄;Rd), the

PDE

(∂t+L
σ,b(1)

t +∇b̃t−λ)ũλt = ft, ũλt1 = ∇nũ
λ
t |∂D = 0, t ∈ [t0, t1] (2.2.13)

has a unique solution ũλ ∈ C1,2
b ([t0, t1]× D̄;Rd).

(2) For any (p, q), (p′, q′) ∈ K and b̃ ∈ C0,2
b ([0, T ] × D̄;Rd), there exist

a constant ε > 0 depending only on (p, q) and (p′, q′), and constants

λ0, c > 0 increasing in ‖b̃‖
L̃p
′
q′ (T,D)

, such that for any 0 ≤ t0 < t1 ≤ T

and f ∈ C0,2
b ([t0, t1]× D̄;Rd),
λε(‖ũλ‖∞ + ‖∇ũλ‖L̃pq(t0,t1,D))

≤ c‖f‖
L̃
p/2

q/2
(t0,t1,D)

(when p > 2), λ ≥ λ0,
(2.2.14)

λε‖∇ũλ‖∞ ≤ c‖f‖L̃pq(t0,t1,D), λ ≥ λ0, (2.2.15)

and there exists decomposition ũλ = ũλ,1 + ũλ,2 such that

‖∇2ũλ,1‖L̃pq(t0,t1,D) + ‖(∂t +∇b(1))ũλ,1‖L̃pq(t0,t1,D)

+ ‖∇2ũλ,2‖
L̃p
′
q′ (t0,t1,D)

+ ‖(∂t +∇b(1))ũλ,2‖
L̃p
′
q′ (t0,t1,D)

≤ c‖f‖L̃pq(t0,t1,D), λ ≥ λ0.

(2.2.16)

Proof. (1) Let V := C0,2
b ([t0, t1]× D̄;Rd), which is a Banach space under

the norm

‖u‖V,N := sup
t∈[t0,t1]

e−N(t1−t)
{
‖ut‖∞ + ‖∇ut‖∞ + ‖∇2ut‖∞

}
, u ∈ V
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for N > 0. To solve (2.2.13), for any λ ≥ 0 and u ∈ V, let

Φλs (u) :=

∫ t1

s

e−λ(t−s)Pσ,b
(1)

s,t {∇b̃tut − ft}dt, s ∈ [t0, t1].

Then (A2.3) implies Φλ(u) ∈ C1,2
b ([t0, t1]× D̄) with

(∂s + Lσ,b
(1)

s − λ)Φλs (u) = fs −∇b̃sus,

s ∈ [t0, t1],∇nΦλt (u)|∂D = 0,Φλt1(u) = 0.
(2.2.17)

So, it suffices to prove that Φλ has a unique fixed point ũλ ∈ V:

ũλs =

∫ t1

s

e−λ(t−s)Pσ,b
(1)

s,t

{
∇b̃t ũ

λ
t − ft

}
dt, s ∈ [t0, t1], (2.2.18)

which, according to (2.2.17), is the unique solution of (2.2.13) in

C1,2
b ([t0, t1]× D̄;Rd).

For any u, ū ∈ V, by ‖b̃‖∞ <∞, we find a constant c1 > 0 such that

‖Φλs (u)− Φλs (ū)‖∞ ≤
∫ t1

s

‖b̃t‖∞‖∇(ut − ūt)‖∞dt

≤ c1
∫ t1

s

‖∇(ut − ūt)‖∞dt, s ∈ [t0, t1].

Similarly, (2.1.11) with i = 1 implies

‖∇{Φλ(u)s − Φλ(ū)s}‖∞ ≤ c
∫ t1

s

(t− s)− 1
2 ‖b̃t‖∞‖∇(ut − ūt)‖∞dt

≤ c1
∫ t

s

(t− s)− 1
2 ‖∇(ut − ūt)‖∞dt,

while (2.1.11) with i = 2 and ‖b̃‖∞ + ‖∇b̃t‖∞ <∞ yield

‖∇2{Φλs (u)− Φλs (ū)}‖∞ ≤ c
∫ t1

s

(t− s)− 1
2

∥∥∇{∇b̃t(ut − ūt)}∥∥∞dt

≤ c1
∫ t1

s

(t− s)− 1
2

{
‖∇(ut − ūt)‖∞ + ‖∇2(ut − ūt)‖∞

}
dt.

Combining these with (2.2.17) and the boundedness of a and b̃ ∈
C0,1
b ([t0, t1]× D̄;Rd), we find a constant c2 > 0 such that

‖Φλ(u)− Φλ(ū)‖V,N

≤ c2 sup
s∈[t0,t1]

∫ t1

s

e−N(t1−s)
√
t− s

{ 2∑
i=0

‖∇i(ut − ūt)‖∞
}

dt

≤ c2‖u− ū‖V,N sup
s∈[t0,t1]

∫ t1

s

e−N(t−s)(t− s)− 1
2 dt.
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So, Φλ is contractive under the norm ‖ · ‖V,N for large enough N > 0, and

hence has a unique fixed point ũλ in V.

(2) To prove (2.2.14) and (2.2.16), we extend the PDE (2.2.13) to a

global one such that estimates in Lemma 1.2.2 apply. By (A2.3), there

exists r0 > 0 such that

ϕ : ∂−r0D → ∂r0D; θ − rn(θ) 7→ θ + rn(θ), r ∈ [0, r0], θ ∈ ∂D

is a C1,L
b -diffeomorphism (i.e. it is a homeomorphism with ∇ϕ bounded

and Lipschitz continuous) and ρD := dist(·, D) ∈ C2
b (Dr0 \ ∂D), recall that

Dr0 = {ρD ≤ r0}. For any vector field v on ∂r0D, v? := (ϕ−1)∗v is the

vector field on ∂0
−r0D := ∂−r0D \ ∂D given by

〈v?,∇g〉(x) := 〈v,∇(g ◦ ϕ−1)〉(ϕ(x)), x ∈ ∂0
−r0D, g ∈ C

1(∂0
−r0D).

We then extend b
(1)
t and b̃t to Rd by taking

b
(1)
t := 1D̄b

(1)
t + h(ρD/2)1∂0

−r0
D(b

(1)
t )?, b̃t := 1D̄ b̃t + 1∂0

−r0
D(b̃t)

?, (2.2.19)

where h ∈ C∞(R) such that

0 ≤ h ≤ 1, h|(−∞,r0/4] = 1, h|[r0/2,∞) = 0.

Since (A2.3) implies ‖1D̄∇b(1)‖∞ < ∞ and ∇nb
(1)|∂D = 0, we have

‖∇b(1)‖∞ <∞. Let

ϕ̃(x) := x1D̄(x) + ϕ(x)1∂0
−r0

D(x), x ∈ Dr0 . (2.2.20)

We extend ũλ to [t0, t1]× Rd by setting

uλt = h(ρD)(ũλt ◦ ϕ̃), t ∈ [t0, t1]. (2.2.21)

We claim that

uλt ∈ C
1,L
b (Rd), t ∈ [t0, t1], (2.2.22)

where C1,L
b (Dr0) is the class of C1

b -functions f on Dr0 with Lipschitz con-

tinuous ∇f. Indeed, since ϕ is a C1,L
b -diffeomorphism from ∂−r0D to ∂r0D,

ϕ̃ ∈ C1,L
b (Dr0 \ ∂D) with bounded and continuous first and second order

derivatives, which together with ũλt ∈ C2
b (D̄) yields uλt ∈ C

1,L
b (Rd \ ∂D).

So, we only need to verify that ũλt ◦ ϕ̃ ∈ C
1,L
b (Dr0). To this end, for any

x ∈ ∂−r0D and v ∈ Rd, let

πxv := v − 〈v,n(θ(x))〉n(θ(x))
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be the projection of v ∈ TxRd to the tangent space of ∂D, recall that θ(x)

is the projection of x to ∂D, i.e. x = θ(x) − ρD(x)n(θ(x)) for ρD(x) :=

dist(x,D). We have

∇vϕ̃(x) = ∇〈v,n(θ(x))〉n(θ(x))ϕ̃(x) +∇πxvϕ̃(x)

= 1∂D(x)|〈v,n(θ(x))〉|n(θ(x))

+ {1D − 1∂0
−r0

D}(x)〈v,n(θ(x))〉n(θ(x))

+ πxv + ρD(x)(∇πxvn)(θ(x)).

(2.2.23)

Since ũλt ∈ C2
b (D̄) with ∇nũ

λ
t |∂D = 0, (2.2.23) yields

∇v(ũλt ◦ ϕ̃)(x) = (∇vũλt ) ◦ ϕ̃(x)

− 21∂0
−r0

D(x)〈v,n(θ(x))〉 · 〈n(θ(x)), (∇ũλt ) ◦ ϕ̃(x)〉

+ ρD(x)
(
∇(∇πxvn)(θ(x))ũ

λ
t

)
◦ ϕ̃(x), x ∈ Dr0 .

(2.2.24)

Combining this with ∇ũλt ∈ C1
b (D̄),∇nũ

λ
t |∂D = 0 and that n,∇n are Lip-

schitz continuous on ∂−r0D due to ∂D ∈ C2,L
b , we conclude that ∇(ũλt ◦ ϕ̃)

is Lipschitz continuous on Dr0 .

Next, we construct the PDE satisfied by uλ. By (2.2.23), we see that

(∇ϕ̃)(∇ϕ̃)∗ = Q holds on Dr0 \ ∂D, (2.2.25)

where Q is a d× d symmetric matrix valued function given by

〈Q(x)v1, v2〉 := 〈v1, v2〉+ ρD(x)2
〈
(∇πxv1

n)(θ(x)), (∇πxv2
n)(θ(x))

〉
+ ρD(x)

{〈
v1 − 21∂−r0D(x)〈v1,n(θ(x))〉n(θ(x)), (∇πxv2n)(θ(x))

〉
+ 〈v2 − 21∂−r0D(x)〈v2,n(θ(x))〉n(θ(x)), (∇πxv1n)(θ(x))

〉}
,

x ∈ Dr0 , v1, v2 ∈ Rd.

Then by taking r0 > 0 small enough, on Dr0 the matrix-valued functional

Q is bounded, invertible, Lipchitz continuous, and symmetric with

Q−1(x) ≥ 1

2
Id, x ∈ Dr0 . (2.2.26)

We extend at := 1
2σtσ

∗
t from D̄ to Rd by letting

at := h(ρD/2)(at ◦ ϕ̃)Q−1 + (1− h(ρD/2))Id. (2.2.27)

Since (2.1.5) holds for x, y ∈ D̄, with this extension of a, it holds for all

x, y ∈ Rd. Combining this with (2.2.19), Remark 2.1(a) for the existence

of ρ̃∂ , and noting that bt = b
(1)
t + 1D̄b

(0)
t extends b from D̄ to Rd, we see

that (A2.1) holds.



July 27, 2024 9:20 ws-book9x6 13512-main page 75

Singular Reflected SDEs 75

Since h(ρD/2), h(ρD) ∈ C2
b (Rd) with h(ρD/2) = 1 on {h(ρD) 6= 0}, and

since (∇ϕ̃)2 = Q on Dr0 \ ∂D, by (2.2.13), (2.2.19), (2.2.27) and (2.2.22),

we see that uλt in (2.2.21) solves the PDE

(∂t + tr{at∇2}+∇
b
(1)
t +b̃t

)uλt = λuλt + f
(1)
t + f

(2)
t ,

t ∈ [t0, t1], uλt1 = 0,
(2.2.28)

where outside the null set ∂D,

f
(1)
t := (h ◦ ρD)ft ◦ ϕ̃+ 2

〈
at∇(h ◦ ρD),∇{ũλt ◦ ϕ̃}

〉
,

f
(2)
t := (ũλt ◦ ϕ̃)(Lσ,b

(1)

t +∇b̃t)(h ◦ ρD).

By (2.2.23), h ∈ C∞([0,∞)) with support supph ⊂ [0, r0/2], ‖a‖∞ +

‖1∂r0D∇b(1)ρ∂‖∞ < ∞ according to (A2.3) and Remark 2.2(1), we find

a constant c > 0 such that

|f (1)
t | ≤ 1{ρD≤ r02 }(|ft|+ |∇ũ

λ
t |) ◦ ϕ̃,

|f (2)
t | ≤ c1{ρD≤ r02 }

{
(1 + |b̃t|)|ũλt |

}
◦ ϕ̃.

(2.2.29)

Since |f |+ |b̃|+ |ũλ| is bounded on [0, T ]× D̄, so is |f (1)|+ |f (2)| on [0, T ]×
Rd. Hence, by Lemma 1.2.2, the PDE (2.2.28) has a unique solution in

H̃2,p
q (t0, t1). Moreover, for each i = 1, 2 and λ ≥ 0, the PDE

(∂t + tr{at∇2}+∇
b
(1)
t +b̃t

)uλ,it = λuλ,it + f
(i)
t , t ∈ [t0, t1], uλ,it1 = 0 (2.2.30)

has a unique solution in H̃2,p
q (t0, t1), and there exist constants c1, c2 > 0

increasing in ‖b̃‖
L̃p
′
q′ (T,D)

such that

λ1− dp−
2
q ‖uλ,1‖∞ + λ

1
2 (1− dp−

2
q )‖∇uλ,1‖L̃pq(t0,t1) ≤ c1‖f

(1)‖L̃pq(t0,t1)

≤ c2
(
‖f‖

L̃
p/2

q/2
(t0,t1,D)

+ ‖ũλt ‖L̃pq(t0,t1,D)

)
, p > 2,

(2.2.31)

λ
1
2 (1− dp−

2
q )‖∇uλ,1‖∞ + ‖∇2uλ,1‖L̃pq(t0,t1)

+ ‖(∂t +∇b(1))uλ,1‖L̃pq(t0,t1) ≤ c1‖f
(1)‖L̃pq(t0,t1)

≤ c2(‖f‖L̃pq(t0,t1,D) + ‖ũλ‖L̃pq(t0,t1,D)),

(2.2.32)

and

λ
1
2 (1− d

p′−
2
q′ )(‖uλ,2‖∞ + ‖∇uλ,2‖∞) + ‖∇2uλ,2‖

L̃p
′
q′ (t0,t1)

+ ‖(∂t +∇b(1))uλ,2‖
L̃p
′
q′ (t0,t1)

≤ c1‖f (2)‖
L̃p
′
q′ (t0,t1)

≤ c2(1 + ‖b̃‖
L̃p
′
q′ (t0,t1,D)

)‖ũλ‖∞,

(2.2.33)
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where the last step in these estimates follows from (2.2.29) and the integral

transform

ϕ̃ : Dr0 \ D̄ → D

with ‖(∇ϕ̃)−1‖∞ <∞ due to (2.2.25) and (2.2.26). By taking large enough

λ0 > 0 increasing in ‖b̃‖
L̃p
′
q′ (T,D)

, we derive from (2.2.31) and (2.2.33) that

‖uλ,1‖∞ + ‖∇uλ,1‖L̃pq(t0,t1) ≤
1

2

(
‖f‖

L̃
p/2

q/2
(t0,t1,D)

+ ‖ũλt ‖L̃pq(t0,t1,D)

)
,

‖uλ,2‖∞ + ‖∇uλ,2‖∞ ≤
1

2
‖ũλ‖∞, λ ≥ λ0.

Noting that the uniqueness of (2.2.28) and (2.2.30) implies uλt = uλ,1t +uλ,2t ,

this and the definition of uλt yield

‖ũλ‖∞ + ‖∇ũλ‖L̃pq(t0,t1,D) ≤
2∑
i=1

(‖uλ,it ‖∞ + ‖∇uλ,i‖L̃pq(t0,t1))

≤ 1

2

{
‖ũλ‖∞ + ‖f‖

L̃
p/2

q/2
(t0,t1,D)

+ ‖ũλt ‖L̃pq(t0,t1,D)

}
,

so that

‖ũλ‖∞ + ‖∇ũλ‖L̃pq(t0,t1,D) ≤ ‖f‖L̃p/2
q/2

(t0,t1,D)
, λ ≥ λ0.

This together with (2.2.31)–(2.2.33) imply (2.2.14), (2.2.15) and (2.2.16)

for some c, ε > 0. �

Lemma 2.2.3. Assume (A2.3) but without the condition on ‖∇σ‖. For any

(p, q) ∈ K with p > 2, there exist a constant i ≥ 1 depending only on (p, q),

and a constant c ≥ 1 increasing in ‖b(0)‖L̃p0
q0

(T,D), such that for any solution

(Xt)t∈[0,T ] of (2.0.1), any 0 ≤ t0 ≤ t1 ≤ T, and any f ∈ L̃p/2q/2(t0, t1),

E
[(∫ t1

t0

|fs(Xs)|ds
)j∣∣∣∣Ft0] ≤ cjj!‖f‖jL̃p/2

q/2
(t0,t1)

, j ≥ 1, (2.2.34)

E
(
e
∫ T
t0
|ft(Xt)|dt∣∣Ft0) ≤ exp

[
c+ c‖f‖i

L̃
p/2

q/2
(t0,T )

]
, t0 ∈ [0, T ]. (2.2.35)

Proof. According to the proofs of Theorems 1.2.3 and 1.2.4, for (2.2.34),

it suffices to consider j = 1 and f ∈ C∞0 ([t0, t1]×Rd). In the following, all

constants are increasing in ‖b(0)‖L̃p0
q0

(T ) when b(0) varies.

Let (b0,n)n≥1 be the mollifying approximations of b(0) = 1D̄b
(0). We

have

‖b0,n‖L̃p0
q0

(T ) ≤ ‖b
(0)‖L̃p0

q0
(T ), lim

n→∞
‖b0,n − b(0)‖L̃p0

q0
(T ) = 0. (2.2.36)
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By Lemma 2.2.2 for (f, 0, . . . , 0) replacing f for f ∈ C∞0 ([t0, t1]×Rd), there

exist constants c, λ0 > 0 such that for any λ ≥ λ0, the following PDE on D̄

(∂t + Lσ,b
(1)

t +∇b0,nt − λ)uλ,nt = ft,

t ∈ [t0, t1), ∇nu
λ,n
t |∂D = 0, uλ,nt1 = 0

(2.2.37)

has a unique solution in C1,2([t0, t1] × D̄), and for some constant c1 > 0,

we have

‖uλ,n‖∞ ≤ c1‖f‖L̃p/2

q/2
(t0,t1,D)

,

‖∇uλ,n‖∞ ≤ c1‖f‖∞, λ ≥ λ0, n ≥ 1.
(2.2.38)

Moreover, since (A2.3) implies (A2.1) due to Lemma 2.2.2, by (2.2.3) for

f = |b(0) − b0,n|, we find a constant c2 > 0 such that

E
(∫ t1

t0

|b(0)−b0,n|(Xs)ds

∣∣∣∣Ft0) ≤ c2‖b(0)−b0,n‖L̃p0
q0

(t0,t1), n ≥ 1. (2.2.39)

By (2.2.37) and uλ,n ∈ C1,2
b ([t0, t1]×D̄), we have the following Itô’s formula

duλ,nt (Xt) = (∂t + Lt)u
λ,n
t (Xt)dt+ dMt

= {ft +∇
b
(0)
t −b

0,n
t
uλ,nt }(Xt)dt+ dMt

for some martingale Mt. Combining this with (2.2.38) and (2.2.39), we

obtain

E
(∫ t1

t0

ft(Xt)dt

∣∣∣∣Ft0) ≤ c1‖f‖L̃p/2
q/2

(t0,t1)
+ c1c2‖f‖∞‖b(0)

t − b
0,n
t ‖L̃p0

q0
(t0,t1).

Therefore, by (2.2.36), we may let n→∞ to derive (2.2.34) for j = 1. �

2.3 Weak well-posedness

The following is the main result of this section.

Theorem 2.3.1 (Weak well-posedness). If either (A2.2) or (A2.3)

holds, then (2.0.1) is weakly well-posed. Moreover, for any k ≥ 1 there

exists a constant c > 0 such that

E
[

sup
t∈[0,T ]

|Xx
t |k
]
≤ c(1 + |x|k), Eekl

x
T ≤ c, x ∈ D̄, (2.3.1)

where (Xx
t , l

x
t ) is the (weak) solution of (2.0.1) with Xx

0 = x.

Below we first introduce some results for the reflected SDE with random

coefficients, then present two lemmas which will be used in the proof of

Theorem 2.3.1.
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2.3.1 Preparations

Consider the following reflected SDE with random coefficients:

dXt = Jt(Xt)dt+ St(Xt)dWt + n(Xt)dlt, t ∈ [0, T ], (2.3.2)

where (Wt)t∈[0,T ] is an m-dimensional Brownian motion on a complete fil-

tration probability space (Ω, {Ft}t∈[0,T ],P),

J : [0, T ]× Ω× Rd → Rd, S : [0, T ]× Ω× Rd → Rd ⊗ Rm

are progressively measurable, and lt is the local time of Xt on ∂D. Let Λ

be the set of increasing functions h : (0, 1]→ (0,∞) such that
∫ 1

0
ds
h(s) =∞,

and let Γ be the class of increasing functions γ : [0,∞)→ [1,∞) such that∫∞
0

ds
γ(s) =∞.

A continuous adapted process (Xt, lt)t∈[0,τ) is called a solution of (2.3.2)

with life time τ , if τ is a stopping time, limt↑τ sups∈[0,t] |Xs| =∞ holds on

{τ ≤ T}, lt is an increasing process with dlt supported on {t ∈ [0, τ) : Xt ∈
∂D}, and P-a.s.

Xt = X0 +

∫ t

0

Js(Xs)ds+

∫ t

0

Ss(Xs)dWs +

∫ t

0

n(Xs)dls, t ∈ [0, T ], t < τ.

When P(τ > T ) = 1, we call the solution non-explosive. A weak solution

(Xt, lt,Wt) is defined in the same spirit where Wt is an m-dimensional

Brownian motion under a (not given) complete filtration probability space.

We have the following result.

Theorem 2.3.2. Assume (D).

(1) For any two solutions Xt and Yt of (2.3.2) with X0 = Y0 ∈ D̄, if there

exist h ∈ Λ and a positive L1([0, T ])-valued random variable g such that

P-a.s.

‖St(Xt)− St(Yt)‖2HS + 2〈Xt − Yt, Jt(Xt)− Jt(Yt)〉
≤ gth(|Xt − Yt|2), t ∈ [0, T ],

then Xt = Yt up to life time.

(2) If P-a.s. S and J are continuous and locally bounded on [0,∞) × D̄,

then for any initial value in D̄, (2.3.2) has a weak solution up to life

time. If S and J are bounded and deterministic S and J on [0, T ]× D̄,

(2.3.2) has a non-explosive weak solution.

(3) If either D is bounded, or there exist 1 ≤ V ∈ C1,2([0, T ]× D̄) with

lim
x∈D̄,|x|→∞

inf
t∈[0,T ]

Vt(x) =∞, ∇nVt|∂D ≤ 0,
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and a positive L1([0, T ])-valued random variable g such that P-a.s.

tr{StS∗t∇2Vt}+ 2〈∇V (x), Jt(x)〉+ 2∂tVt(x)

≤ gtγ(V (x)), t ∈ [0, T ], x ∈ D̄
holds for some γ ∈ Γ, then any solution to (2.3.2) is non-explosive.

Remark 2.3.1. When D is convex, this result goes back to [Tanaka

(1979)], and in general it is mainly summarized from Theorem 1, Corol-

lary 1 and Theorem 2 in [Hino et al (2021)].

The condition in the first assertion is modified from that in [Hino et al

(2021)]:

‖St(x)−St(y)‖2HS+2〈x−y, Jt(x)−Jt(y)〉 ≤ gth(|x−y|2), t ∈ [0, T ], x, y ∈ D̄,
since in the proof of this assertion, one only uses the upper bound of

‖St(Xt)− St(Yt)‖2HS + 2〈Xt − Yt, Jt(Xt)− Jt(Yt)〉,
so that the present condition is enough for the pathwise uniqueness. The

present version of the condition is weaker when L(Xt,Yt) does not have full

support Rd × Rd.
In assertion (3), the term tr{StS∗t∇2Vt} was formulated in Theorem 1.1

in [Hino et al (2021)] as ‖St(x)‖2∆Vt(x), which should be changed into the

present one according to Itô’s formula of Vt(Xt).

Moreover, when S and J are bounded and deterministic, the weak ex-

istence is given in Theorem 2.1 in [Rozkosz and Slominski (1997)].

Next, we apply Theorem 2.3.2 to (2.0.1) with coefficients satisfying the

following assumption, where (1b) is known as monotone or semi-Lipschitz

condition, which comparing with (1a) allows σ to be unbounded.

(H) b and σ are locally bounded and satisfy the following conditions.

(1) One of the following conditions hold:

(1a) (A2.1) holds with ‖∇σ‖2 ≤
∑l
i=1 fi for some {fi ∈ L̃piqi (T ), (pi, qi) ∈

K}1≤i≤l, or (A2.3) holds. Moreover, there exists a constant K > 0

such that

〈x− y, bt(x)− bt(y)〉 ≤ K|x− y|2, t ∈ [0, T ], x, y ∈ D̄. (2.3.3)

(1b) There exists an increasing function h : [0,∞) → [0,∞) with∫ 1

0
dr

r+h(r) =∞, such that

2〈x− y, bt(x)− bt(y)〉+ + ‖σt(x)− σt(y)‖2HS
≤ h(|x− y|2), t ∈ [0, T ], x, y ∈ D̄.

(2.3.4)
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(2) ‖σ‖ ≤ c(1 + | · |2) holds for some constant c > 0, there exist x0 ∈ D
and ∂̃D ⊂ ∂D such that

〈x− x0,n(x)〉 ≤ 0, x ∈ ∂D \ ∂̃D, n(x) ∈ Nx; (2.3.5)

and when ∂̃D 6= ∅ there exists a function ρ̃∂ ∈ C2
b (D̄) such that

〈∇ρ̃∂ ,n〉|∂D ≥ 1∂̃D,

sup
[0,T ]×D̄

{
‖σ∗∇ρ̃∂‖+ ‖tr{σσ∗∇2ρ̃∂}‖+ 〈b,∇ρ̃∂〉−

}
≤ K. (2.3.6)

According to (2.1.3) and Remark 2.1.2, (H)(2) holds with ρ̃∂ = 0 if D is

convex, and it holds with ρ̃∂ = ρ∂ in ∂r0/2D for some r0 > 0 when ∂D ∈ C2
b

and ‖σ‖+ 〈b,∇ρ∂〉− is bounded on [0, T ]× ∂r0D.

To estimate |Xt| and lt, we need the following lemma on the maximal

functional for nonnegative functions f on D̄:

MDf(x) := sup
r∈(0,1)

1

|B(0, r)|

∫
B(0,r)

(1Df)(x+ y)dy, x ∈ D̄.

Lemma 2.3.3. Let ∂D ∈ C2
b .

(1) For any real function f on D̄ with |∇f | ∈ L1
loc(D̄),

|f(x)−f(y)| ≤ c|x−y|
(
MD|∇f |(x)+MD|∇f |(y)+‖f‖∞

)
, a.e. x, y ∈ D̄.

(2) There exists a constant c > 0 such that for any nonnegative measurable

function f on [0, T ]× D̄,

‖MDf‖L̃pq(T,D̄) ≤ c‖f‖L̃pq(T,D̄), p, q ≥ 1.

Proof. We only prove (1), since (2) follows from Lemma 1.3.4(2) with

1D̄f replacing f . Let ϕ̃ be in (2.2.20). Take 0 ≤ h ∈ C∞b (R) with h(r) = 1

for r ≤ r0/4 and h(r) = 0 for r ≥ r0/2. We then extend a function f on D̄

to f̃ on Rd by letting

f̃(x) := {h ◦ ρD}f ◦ ϕ̃,
where ρD is the distance function to D. Then there exists a constant c > 0

such that

|∇f̃ | ≤ 1D̄|∇f |+ c1∂−r0/2D(|f ◦ ϕ̃|+ |∇f | ◦ ϕ̃).

By Lemma 1.3.4(1) and the integral transform x 7→ ϕ̃(x) with ‖(∇ϕ̃)−1‖
bounded on ∂−r0D, we find constants c1, c2 > 0 such that for any x, y ∈ D̄,

|f(x)− f(y)| = |f̃(x)− f̃(y)|

≤ c1|x− y|
{
M|∇f̃ |(x) +M|∇f̃ |(y) + ‖f‖∞

}
≤ c2|x− y|

{
MD|∇f |(x) +MD|∇f |(y) + ‖f‖∞

}
,

where M :=MD for D = Rd. �
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We are now able to prove the following result.

Lemma 2.3.4. Assume (D) and (H)(1). Then the reflected SDE (2.0.1)

is well-posed up to life time. If (H)(2) holds, then the solution is non-

explosive, and for any k > 0 there exists a constant c > 0 such that

E
[

sup
t∈[0,T ]

|Xx
t |k
]
≤ c(1 + |x|k), x ∈ D̄, t ∈ [0, T ], (2.3.7)

sup
x∈D̄

E
(
ek(l̃xt1−l̃

x
t0

)|Ft0
)
≤ c, 0 ≤ t0 ≤ t1 ≤ T, (2.3.8)

where (Xx
t , l

x
t ) is the solution with Xx

0 = x, and l̃xt :=
∫ t

0
1∂̃(D)(X

x
s )dlxs .

Proof. (1) We first prove the existence and uniqueness up to life time.

Since σ and b are locally bounded, by a truncation argument we may and

do assume that σ and b are bounded. Indeed, let for any n ≥ 1, we take

σ
{n}
t (x) := σt

(
{1∧ (n/|x|)}x

)
, b
{n}
t (x) := h(|x|/n)bt(x), t ∈ [0, T ], x ∈ D̄,

where h ∈ C∞0 ([0,∞)) with 0 ≤ h ≤ 1 and h|[0,1] = 1. Then σ{n} and b{n}

are bounded on [0, T ]× D̄, and for some constant Kn > 0,

〈b{n}t (x)− b{n}t (y), x− y〉+

≤ h(|x|/n)〈bt(x)− bt(y), x− y〉+ +
∣∣h(|x|/n)− h(|y|/n)

∣∣〈bt(y), x− y〉+

≤ 〈bt(x)− bt(y), x− y〉+ +Kn|x− y|2, t ∈ [0, T ], x, y ∈ D̄, |y| ≤ |x|.

So, by the symmetry of 〈b{n}t (x) − b{n}t (y), x − y〉+ in (x, y), (1a) implies

that σ and b{n} are bounded on [0, T ]× D̄ and satisfy (2.3.3) with K +Kn

replacing K; while (1b) and

|{1 ∧ (n/|x|)}x− {1 ∧ (n/|y|)}y| ≤ |x− y|

yield that σ{n} and b{n} are bounded and satisfy (2.3.4) for 2h(r) + Knr

replacing h(r). Therefore, if the well-posedness is proved under (H) for

bounded b and σ, then the SDE is well-posed up to the hitting time of

∂B(0, n) for any n ≥ 1, i.e. it is well-posed up to life time.

When σ and b are bounded, the weak existence is implied by Theo-

rem 2.3.2(2). By the Yamada-Watanabe principle, it suffices to verify the

pathwise uniqueness. Let Xt and Yt be two solutions starting from x ∈ D̄.

By Lemma 2.3.3(1) and (H)(1),

‖σt(Xt)− σt(Yt)‖2HS + 2〈Xt − Yt, bt(Xt)− bt(Yt)〉

≤

{
gt|Xt − Yt|2, under (1a),

h(|Xt − Yt|2), under (1b),
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where for some constant c > 0,

gt := c
{

1 +MD‖∇σt‖2(Xt) +MD‖∇σt‖2(Yt)
}
.

So, by Theorem 2.3.2(1), it suffices to prove
∫ T

0
gtdt < ∞ under (1a). By

Lemma 2.3.3, this follows from (2.2.3) under condition (A2.1) with ‖∇σ‖2 ≤∑l
i=1 fi, or (2.2.34) under condition (A2.3).

(2) To prove the non-explosion, we simply denote (Xt, lt) = (Xx
t , l

x
t )

and let

τn := inf{t ∈ [0, T ] : |Xt| ≥ n}, n ≥ 1.

By (H)(2), we find a constant c1 > 0 such that

dρ̃∂(Xt) ≥ −Kdt+ dMt + dl̃t, t ∈ [0, T ] (2.3.9)

holds for dMt := 〈σt(Xt)
∗∇ρ̃∂(Xt),dWt〉 satisfying d〈M〉t ≤ K2dt. This

implies (2.3.8). Next, by (H), we find a constant c1 > 0 such that

2〈bt(x), x− x0〉+ ‖σt(x)‖2HS
= 2〈bt(x)− bt(x0), x− x0〉+ ‖σt(x)− σt(x0)‖2HS

+ 2〈bt(x0), x− x0〉+ ‖σt(x0)‖2HS + 2〈σt(x0), σt(x)〉HS
≤ c1(1 + |x− x0|2), x ∈ D̄.

Then by (H)(2) and Itô’s formula, for any k ≥ 2 we find a constant c2 > 0

such that

d|Xt − x0|k ≤ c2(1 + |Xt − x0|k)dt+ dM̃t + k|Xt − x0|k−1dl̃t,

where M̃t is a local martingale with d〈M̃〉t ≤ c2(1 + |Xt − x0|k)2dt. By

BDG’s inequality and (2.3.8), we find constants c3, c4 > 0 such that

η
{n}
t := sup

s∈[0,t∧τn]

(1 + |Xs − x0|k), n ≥ 1, t ∈ [0, T ]

satisfies

Eη{n}t ≤ 1 + |x− x0|k + c3E
∫ t

0

η{n}s ds

+ 2c3Ex
(∫ t

0

|η{n}s |2ds

) 1
2

+ kE
[
|η{n}t |

k−1
k l̃t

]
≤ 1

2
Eη{n}t + c4(1 + |x|k) + c4

∫ t

0

Eη{n}s ds, t ∈ [0, T ].

By Gronwall’s lemma, we obtain

E[η
{n}
t ] ≤ 2c4(1 + |x|k)e2c4t, t ∈ [0, T ], x ∈ D̄, n ≥ 1,

which implies that Xt is non-explosive and (2.3.7) holds for some constant

c > 0. �
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2.3.2 Proof of Theorem 2.3.1

Let X0 = x ∈ D̄. We consider the following two cases respectively.

(a) Let (A2.2) hold. Then (H) holds for b(1) replacing b. By Lem-

ma 2.3.4, the reflected SDE

dXt = b
(1)
t (Xt)dt+ σt(Xt)dWt + n(Xt)dlt (2.3.10)

is well-posed with (2.3.7) holding for all k ≥ 1 and some constant c > 0

depending on k. By Lemmas 2.2.1–2.2.3, (2.3.8) and (A2.1) with |b(0)|2 ∈
L̃p0
q0 (T ), we see that (2.2.4) holds for f := |b(0)|2, so that for some map

c : [1,∞)→ (0,∞) independent of the initial value x,

sup
x∈D̄

Ex|RT |k ≤ c(k), k ≥ 1 (2.3.11)

holds for

Rt := e
∫ t
0
〈{σ∗s (σsσ

∗
s )−1b(0)

s }(Xs),dWs〉− 1
2

∫ t
0
|σ∗s (σsσ

∗
s )−1b(0)

s |
2(Xs)ds, t ∈ [0, T ].

By Girsanov’s theorem,

W̃t := Wt −
∫ t

0

{σ∗s (σsσ
∗
s )−1b(0)

s }(Xs)ds, t ∈ [0, T ]

is an m-dimensional Brownian motion under the probability measure Q :=

RTP. Rewriting (2.3.10) as

dXt = bt(Xt)dt+ σt(Xt)dW̃t + n(Xt)dlt,

we see that (Xt, lt, W̃t)t∈[0,T ] under probability Q is a weak solution of

(2.0.1). Moreover, letting EQ be the expectation under Q, by (2.3.7) and

(2.3.11), for any k ≥ 1 we find a constant c̃(k) > 0 independent of x such

that

EQ

[
sup
t∈[0,T ]

|Xt|k
]

= E
[
RT sup

t∈[0,T ]

|Xt|k
]

≤
(
E
[
R2
T

]) 1
2

([
E sup
t∈[0,T ]

|Xt|2k
]) 1

2 ≤ c̃(k)(1 + |x|k), x ∈ D̄

for some constant c > 0. Similarly, (2.3.8) and (2.3.11) imply

EQ
[
eklT

]
≤ C(k), k ≥ 1

for constants C(k) > 0 independent of x. So, (2.3.1) holds for this weak

solution.

To prove the weak uniqueness, let (X̄t, l̄t, W̄t)t∈[0,T ] under probability P̄
be another weak solution of (2.0.1) with X̄0 = x, i.e.

dX̄t = bt(X̄t)dt+ σt(X̄t)dW̄t + n(X̄t)dl̄t, t ∈ [0, T ], X̄0 = x. (2.3.12)
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It suffices to show

L(X̄t,l̄t)t∈[0,T ]|P̄ = L(Xt,lt)t∈[0,T ]|Q. (2.3.13)

By Lemma 2.2.1 the estimate (2.2.4) holds for X̄t and f = |b(0)|2, so that

EP̄
[
eλ

∫ T
0
|b(0)
t (X̄t)|2dt

]
<∞, λ > 0. (2.3.14)

By Girsanov’s theorem, this and ‖σ∗(σσ∗)−1‖∞ <∞ imply that

Gt(X̄, W̄ ) := W̄t +

∫ t

0

{σ∗s (σsσ
∗
s )−1b(0)

s }(X̄s)ds, t ∈ [0, T ]

is an m-dimensional Brownian motion under the probability Q̄ :=

R(X̄, W̄ )P̄, where

R(X̄, W̄ ) := e−
∫ T
0
〈{σ∗s (σsσ

∗
s )−1b(0)

s }(X̄s),dW̄s〉− 1
2

∫ T
0
|{σ∗s (σsσ

∗
s )−1b(0)

s }(X̄s)|
2ds.

Reformulating (2.3.12) as

dX̄t = b
(1)
t (X̄t)dt+ σt(X̄t)dGt(X̄, W̄ ) + n(X̄t)dl̄t, t ∈ [0, T ],

and applying the well-posedness of (2.3.10) which implies the joint weak

uniqueness, we conclude that

L(X̄t,l̄t,Gt(X̄,W̄ ))t∈[0,T ]|Q̄ = L(Xt,lt,Wt)t∈[0,T ]|P.

Noting that

R(X̄, W̄ )−1 = e−
∫ T
0
|{σ∗s (σsσ

∗
s )−1b(0)

s }(X̄s)|
2dsR(X̄,G(X̄, W̄ ))−1,

this implies that for any bounded continuous function F on C([0, T ];Rd ×
[0,∞)),

EP̄[F (X̄, l̄)] = EQ̄[R(X̄, W̄ )−1F (X̄, l̄)]

= EQ̄[R(X̄,G(X̄, W̄ ))−1e−
∫ T
0
|{σ∗s (σsσ

∗
s )−1b(0)

s }(X̄s)|
2dsF (X̄, l̄)]

= EP[R(X,W )−1e−
∫ T
0
|{σ∗s (σsσ

∗
s )−1b(0)

s }(Xs)|
2dsF (X, l)]

= EP[RTF (X, l)] = EQ[F (X, l)].

Therefore, (2.3.13) holds.

(b) Let (A2.3) hold. By Lemma 2.2.3, (2.3.11) and (2.3.14) hold, so that

the desired assertions follow from Girsanov’s transforms as in step (a).



July 27, 2024 9:20 ws-book9x6 13512-main page 85

Singular Reflected SDEs 85

2.4 Strong well-posedness and gradient estimates

Let B+
b (D̄) be the space of bounded strictly positive measurable functions

on D̄. The first result in this section is the following.

Theorem 2.4.1. Assume that one of the following conditions holds:

(i) d = 1 and (A2.2) holds;

(ii) (A2.3) holds with pi > 2, 1 ≤ i ≤ l.

Then (2.0.1) is well-posed, and for any k ≥ 1, there exists a constant c > 0

such that

E
[

sup
t∈[0,T ]

|Xx
t −X

y
t |k
]
≤ c|x− y|k, x, y ∈ D̄. (2.4.1)

Consequently,

(1) For any p > 1 there exists a constant c(p) > 0 such that

Ptf(x) := E[f(Xx
t )], x ∈ D̄, t ∈ [0, T ], f ∈ Bb(D̄)

satisfies

|∇Ptf | ≤ c(p)(Pt|∇f |p)
1
p , f ∈ C1

b (D̄), t ∈ [0, T ]. (2.4.2)

(2) There exist a constant C > 0 and a map c : (1.∞)→ (0,∞) such that

|∇Ptf | ≤
c(p)√
t

(Pt|f |p)
1
p , t ∈ (0, T ], f ∈ Bb(D̄), p > 1, (2.4.3)

Ptf
2 − (Ptf)2 ≤ tCPt|∇f |2, f ∈ C1

b (D̄), t ∈ [0, T ], (2.4.4)

Pt log f(x) ≤ logPtf(y) +
C|x− y|2

t
,

t ∈ (0, T ], x, y ∈ D̄, f ∈ B+
b (D̄).

(2.4.5)

To relax the condition on b(1) as in (A1.2)(2), we consider the following

time dependent differential operator on D̄:

Lσt :=
1

2
tr
(
σtσ
∗
t∇2

)
, t ∈ [0, T ]. (2.4.6)

Let {Pσs,t}T≥t1≥t≥s≥0 be the Neumann semigroup on D̄ generated by Lσt ;

that is, for any ϕ ∈ C2
b (D̄), and any t ∈ (0, T ], (Pσs,tϕ)s∈[0,t] is the unique

solution of the PDE

∂sus = −Lσsus, ∇nus|∂D = 0 for s ∈ [0, t), ut = ϕ. (2.4.7)
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(A2.4) (A2.3) holds for b(1) = 0. Moreover, there exist constants K, ε >

0, increasing φ ∈ C1([0,∞); [1,∞)) with
∫∞

0
ds

r+φ(s) = ∞, and a

compact function V ∈ C2(Rd; [1,∞)) satisfying

∇n(x)V (y) ≤ 0, x ∈ ∂D, |y − x| ≤ r0 (2.4.8)

for some constant r0 > 0, such that

sup
B(x,ε)

{
|∇V |+ ‖∇2V ‖

}
≤ KV (x),

〈b(1)
t (x),∇V (x)〉+ ε|b(1)

t (x)| sup
B(x,ε)

{|∇V |+ ‖∇2V ‖}

≤ Kφ(V (x)), (t, x) ∈ [0, T ]× Rd.

(2.4.9)

(2.4.8) can be dropped when ∂D is bounded. Indeed, for V satisfying

(2.4.9), when ∂D is bounded, we may take 1 ≤ Ṽ ∈ C2(Rd) such that Ṽ = 1

on ∂r0(∂D) and Ṽ = V outside a compact set, so that (2.4.8) and (2.4.9)

hold for Ṽ replacing V with a different constant K. Similarly, (2.4.8) holds

for V (x1, x2) := V1(x1) + V2(x2) and D = D1 ×Rl where l ∈ N is less than

d, ∂D1 ⊂ Rd−l is bounded, and V1 = 1 in a neighborhood of ∂D1.

Theorem 2.4.2. Assume (A2.4). Then (2.0.1) is well-posed up to time T .

Moreover, for any t ∈ (0, T ],

lim
D̄3y→x

‖P ∗t δx − P ∗t δy‖var = 0, t ∈ (0, T ], x ∈ D̄, (2.4.10)

and Pt has probability density (i.e. heat kernel) pt(x, y) such that

inf
x,y∈D̄∩BN , ρ∂(y)≥N−1

pt(x, y) > 0, N > 1, t ∈ (0, T ], (2.4.11)

where inf ∅ :=∞.

2.4.1 Proof of Theorem 2.4.1

The weak existence is implied by Theorem 2.3.1. By the Yamada-Watanabe

principle in Lemma 1.3.2, it suffices to prove estimate (2.4.1) which in

particular implies the pathwise uniqueness as well as estimate (2.4.2), since

|∇Ptf |(x) := lim sup
D̄3y→x

|Ptf(x)− Ptf(y)|
|x− y|

≤ lim sup
D̄3y→x

E
[
|f(Xx

t )− f(Xy
t )|

|x− y|

]
≤ lim sup

D̄3y→x

(
E
|f(Xx

t )− f(Xy
t )|p

|Xx
t −X

y
t |p

) 1
p
(E[|Xx

t −X
y
t |

p
p−1 ]

|x− y|
p
p−1

) p−1
p

≤ c(p)
(
Pt|∇f |p

) 1
p (x), x ∈ D̄, t ∈ [0, T ], f ∈ C1

b (D̄).
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Let (X
(i)
t , l

(i)
t ) be two solutions of (2.0.1) with X

(i)
0 = x(i) ∈ D̄, i = 1, 2.

Below we prove (2.4.1) in situations (i) and (ii) respectively, and prove

inequalities in Theorem 2.4.1(2).

Proof of Theorem 2.4.1 under (i). In this case, D is an interval or

a half-line. For any λ > 0, let uλt be the unique solution to (1.2.3) with

t0 = 0, t1 = T and f = −b(0), that is,

(∂t + Lt)u
λ
t = λuλt − b

(0)
t , t ∈ [0, T ], uλT = 0. (2.4.12)

By Lemma 1.2.2 with f = −b(0) ∈ L̃2p0

2q0
(T ), we take large enough λ > 0

such that

‖uλ‖∞ + ‖∇uλ‖∞ ≤
1

2
, ‖uλ‖

H̃
2,2p0
2q0

(T )
<∞. (2.4.13)

Then

Θλ
t (x) := x+ uλt (x), x ∈ R

is a diffeomorphism and there exists a constant C > 0 such that

1

2
|x− y| ≤ |Θλ

t (x)−Θλ
t (y)| ≤ 2|x− y|, x, y ∈ R, t ∈ [0, T ]. (2.4.14)

Let (X
(i)
t , l

(i)
t ) solve (2.0.1) for X

(i)
0 = x(i) ∈ D̄, i = 1, 2, and let

Y
(i)
t := Θλ

t (X
(i)
t ) = X

(i)
t + uλt (X

(i)
t ), i = 1, 2.

By Itô’s formula in Lemma 2.2.1(2),

dY
(i)
t = Bt(Y

(i)
t )dt+ Σt(Y

(i)
t )dWt + {1 +∇uλt (X

(i)
t )}n(X

(i)
t )dl

(i)
t (2.4.15)

holds for i = 1, 2 and

Bt(x) := {b(1)
t + λuλt }

(
{Θλ

t }−1(x)
)
,

Σt(x) :=
{

(1 +∇uλt )σt
}(
{Θλ

t }−1(x)
)
.

(2.4.16)

By (2.4.13), (2.4.16) and ‖∇b(1)‖∞ < 1 due to (A2.1), we find nonnegative

functions Fi ∈ L̃piqi (T ), 0 ≤ i ≤ l such that

‖∇B‖∞, ‖∇Σ‖2 ≤
l∑
i=0

Fi. (2.4.17)

Since d = 1, for any x ∈ ∂D and y ∈ D we have y − x = |y − x|n(x), so

that (2.4.13) implies〈
Θλ
t (y)−Θλ

t (x),
{

1+∇uλt (x)
}
n(x)

〉
≥ |y−x|(1−‖∇uλ‖∞)2 ≥ 0. (2.4.18)
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Combining this with (2.4.15) and Itô’s formula, up to a local martingale we

have

d|Y (1)
t − Y (2)

t |2k ≤ 2k|Y (1)
t − Y (2)

t |2k
{
|Bt(Y (1)

t )−Bt(Y (2)
t )|

|Y (1)
t − Y (2)

t |

+
k‖Σt(Y (1)

t )− Σt(Y
(2)
t )‖2HS

|Y (1)
t − Y (2)

t |2

}
dt.

So, by Lemma 2.3.3, we find a constant c1 > 0 and a local martingale Mt

such that

|Y (1)
t − Y (2)

t |2k ≤ |Y
(1)
0 − Y 2

0 |2k + c1

∫ t

0

|Y (1)
s − Y (2)

s |2kdLs + dMt,

where

Lt :=

∫ t

0

{
1+MD

(
‖∇Bs‖+ ‖∇Σs‖2

)
(Y (1)
s )

+MD

(
‖∇Bs‖+ ‖∇Σs‖2

)
(Y (2)
s )

}
ds.

(2.4.19)

Combining this with (2.2.4), (2.4.17), Lemma 2.3.3 and the stochastic Gron-

wall inequality in Lemma 1.3.3, we find constants c2, c3 > 0 such that(
E
[

sup
s∈[0,t]

Θλ
s (X(1)

s )−Θλ
s (X(2)

s )|k
])2

=
(
E sup
s∈[0,t]

|Y (1)
s − Y (2)

s |k
)2

≤ c2|Y (1)
0 − Y (2)

0 |2k
(
Ee

c1p
p−1Lt

) p−1
p ≤ c3|Θλ

0 (x(1))−Θλ
0 (x(2))|2k.

This together with (2.4.14) implies (2.4.1) for some constant c > 0. �
To prove (2.4.1) under (A2.3), we need the following lemma due to

Lemma 5.2 in [Yang and Zhang (2023)], which is contained in the proof of

Lemma 4.4 in [Dupuis and Ishii (1990)]. Let ∇(1) and ∇(2) be the gradient

operators in the first and second variables on Rd × Rd.

Lemma 2.4.3. There exists a function g ∈ C1(Rd×Rd)∩C2((Rd \ {0})×
Rd) having the following properties for some constants k2 > 1 and k1 ∈
(0, 1) :

(1) k1|x|2 ≤ g(x, y) ≤ k2|x|2, x, y ∈ Rd;
(2) 〈∇(1)g(x, y), y〉 ≤ 0, |y| = 1, 〈x, y〉 ≤ k1|x|;
(3)

∣∣(∇(1))i(∇(2))jg(x, y)
∣∣ ≤ k2|x|2−i, i, j ∈ {0, 1, 2}, i+ j ≤ 2, x, y ∈ Rd.
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Proof of Theorem 2.4.1 under (ii). Let b0,n be the mollifying approx-

imation of b(0) = 1D̄b
(0). By Lemma 2.2.2, there exists λ0 > 0 such that

for any λ ≥ λ0 and n ≥ 1, the PDE

(∂t + Lt +∇
b0,nt −b

(0)
t
− λ)uλ,nt = −b0,nt , uλ,nT = ∇nu

λ,n
t |∂D = 0, (2.4.20)

has a unique solution in C1,2
b ([0, T ]× D̄), and there exist constants ε, c > 0

such that

λε
(
‖uλ,n‖∞ + ‖∇uλ,n‖∞

)
+ ‖(∂t +∇b(1))uλ,n‖L̃p0

q0
(T,D)

+ ‖∇2uλ,n‖L̃p0
q0

(T,D) ≤ c‖b
(0)‖L̃p0

q0
(T,D), λ ≥ λ0, n ≥ 1.

(2.4.21)

Then for large enough λ0 > 0, Θλ,n
t := id+ uλ,nt satisfies

1

2
|x− y|2 ≤ |Θλ,n

t (x)−Θλ,n
t (y)|2 ≤ 2|x− y|2, λ ≥ λ0, x, y ∈ D̄. (2.4.22)

Since ∂D ∈ C2,L
b , there exists a constant r0 > 0 such that ρ∂ ∈ C2

b (∂r0D)

with ∇2ρ∂ Lipschitz continuous on ∂r0D. Take h ∈ C∞([0,∞); [0,∞)) such

that h′ ≥ 0, h(r) = r for r ≤ r0/2 and h(r) = r0 for r ≥ r0.

Let (X
(i)
t , l

(i)
t ) solve (2.0.1) starting at x(i) ∈ D̄ for i = 1, 2. Alterna-

tively to |X(1)
t −X

(2)
t |2, we consider the process

Ht := g
(
Θλ,n
t (X

(1)
t )−Θλ,n

t (X
(2)
t ),∇(h ◦ ρ∂)(X

(1)
t )
)
, t ∈ [0, T ],

where g is in Lemma 2.4.3. By Lemma 2.4.3(1) and (2.4.22), we have

k1

2
|X(1)

t −X
(2)
t |2 ≤ Ht ≤ 2k2|X(1)

t −X
(2)
t |2, t ∈ [0, T ]. (2.4.23)

Simply denote

ξt := Θλ,n
t (X

(1)
t )−Θλ,n

t (X
(2)
t ), ηt := ∇(h ◦ ρ∂)(X

(1)
t ).

By Itô’s formula, (2.4.20) and ∇nΘλ,n
t |∂D = n due to ∇nu

λ,n
t |∂D = 0, we

have

dξt =
{
λuλ,nt (X

(1)
t )− λuλ,nt (X

(2)
t )

+ (b
(0)
t − b

0,n
t )(X

(1)
t )− (b

(0)
t − b

0,n
t )(X

(2)
t )
}

dt

+
{

[(∇Θλ,n
t )σt](X

(1)
t )− [(∇Θλ,n

t )σt](X
(2)
t )
}

dWt

+ n(X
(1)
t )dl

(1)
t − n(X

(2)
t )dl

(2)
t ,

dηt = Lt∇(h ◦ ρ∂)(X
(1)
t )dt+

{
[∇2(h ◦ ρ∂)]σt

}
(X

(1)
t )dWt

+ {∇n∇(h ◦ ρ∂)}(X(1)
t )dl

(1)
t .

(2.4.24)
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Hence, Itô’s formula for Ht reads

dHt = Atdt+B
(1)
t dl

(1)
t −B

(2)
t dl

(2)
t + dMt, (2.4.25)

where for Nt :=
{

(∇Θλ,n
t )σt

}
(X

(1)
t )−

{
(∇Θλ,n

t )σt
}

(X
(2)
t ),

At :=
〈
∇(1)g(ξt, ηt), λu

λ,n
t (X

(1)
t )− λuλ,nt (X

(2)
t )
〉

+
〈
∇(1)g(ξt, ηt), ∇b(0)

t −b
0,n
t

Θλ,n
t (X

(1)
t )−∇

b
(0)
t −b

0,n
t

Θλ,n
t (X

(2)
t )
〉

+
〈
∇(2)g(ξt, ηt), Lt∇(h ◦ ρ∂)(X

(1)
t )
〉

+
〈

(∇(1))2g(ξt, ηt), NtN
∗
t

〉
HS

+
〈
∇(1)∇(2)g(ξt, ηt), Ntσt(X

(1)
t )∗∇2(h ◦ ρ∂)(X

(1)
t )
〉
HS

+
〈
(∇(2))2g(ξt, ηt),

{
[∇2(h ◦ ρ∂)]σtσ

∗
t∇2(h ◦ ρ∂)

}
(X

(1)
t )
〉
HS
,

(2.4.26)

B
(1)
t :=

〈
∇(1)g(ξt, ηt),n(X

(1)
t )
〉

+
〈
∇(2)g(ξt, ηt),∇n{∇(h ◦ ρ∂)}(X(1)

t )
〉
,

B
(2)
t :=

〈
∇(1)g(ξt, ηt),n(X

(2)
t )
〉
,

(2.4.27)

dMt :=
〈
∇(2)g(ξt, ηt),

[
{∇2(h ◦ ρ∂)}σt

]
(X

(1)
t )dWt

〉
+
〈
∇(1)g(ξt, ηt),

[
{(∇Θλ,n

t )σt}(X(1)
t )− {(∇Θλ,n

t )σt}(X(2)
t )
]
dWt

〉
.

(2.4.28)

In the following we estimate At, B
(1)
t and B

(2)
t respectively.

Firstly, (2.1.2) implies

〈Θλ,n
t (x)−Θλ,n

t (y),n(x)〉 ≤ |x− y|
2

2r0
+ ‖∇uλ,nt ‖∞|x− y|, x ∈ ∂D, y ∈ D̄.

Combining this with (2.4.21), we find constants ε0, λ1 > 0 such that for

any λ ≥ λ1,

〈Θλ,n
t (x)−Θλ,n

t (y),n(x)〉 ≤ k1|Θλ,n
t (x)−Θλ,n

t (y)|,
x ∈ ∂D, y ∈ D̄, |x− y| ≤ ε0, n ≥ 1, t ∈ [0, T ].

So, Lemma 2.4.3 yields〈
∇(1)g(Θλ,n

t (x)−Θλ,n
t (y),n(x)),n(x)

〉
≤ k21{|x−y|>ε0}|Θ

λ,n
t (x)−Θλ,n

t (y)|

≤ k2ε
−1
0 |Θ

λ,n
t (x)−Θλ,n

t (y)|2, x ∈ ∂D, y ∈ D̄, n ≥ 1, t ∈ [0, T ].

(2.4.29)
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Next, by the same reason leading to (2.4.29), we find a constant c1 > 0

such that〈
∇(1)g(Θλ,n

t (x)−Θλ,n
t (y),∇(h ◦ ρ∂)(x)),n(y)

〉
≥
〈
∇(1)g(Θλ,n

t (x)−Θλ,n
t (y),n(y)),n(y)

〉
−
∣∣∇(1)g(Θλ,n

t (x)−Θλ,n
t (y),∇(h ◦ ρ∂)(y))

−∇(1)g(Θλ,n
t (x)−Θλ,n

t (y),∇(h ◦ ρ∂)(x))
∣∣

≥ −1{|x−y|>ε0}k2ε
−1
0 |Θ

λ,n
t (x)−Θλ,n

t (y)|2

− ‖h′‖∞‖∇(1)∇(2)g(Θλ,n
t (x)−Θλ,n

t (y), ·)‖∞|Θλ,n
t (x)−Θλ,n

t (y)|2

≥ −c1|Θλ,n
t (x)−Θλ,n

t (y)|2, x ∈ D̄, y ∈ ∂D, n ≥ 1, t ∈ [0, T ].

(2.4.30)

Moreover, by (A2.3) and h◦ρ∂ ∈ C2,L
b (D̄), there exists a constant C > 0

such that

|Lt{∇(h ◦ ρ∂)}| ≤ C(1 + |b(0)
t |), t ∈ [0, T ].

Combining this with Lemma 2.4.3, Lemma 2.3.3, (2.4.23), and (2.4.26)–

(2.4.30), we find a constant K > 0 such that

|At| ≤ K
{
|b(0)
t − b

0,n
t |2(X

(1)
t ) + |b(0)

t − b
0,n
t |2(X

(2)
t )
}

+K|X(1)
t −X

(2)
t |2

{
1 + |b(0)

t |(X
(1)
t ) +

2∑
i=1

MD

∥∥∇{(∇Θλ,n
t )σt}

∥∥2
(X

(i)
t )

}
,

d〈M〉t ≤ K|X(1)
t −X

(2)
t |4

{
1 +

2∑
i=1

MD

∥∥∇{(∇Θλ,n
t )σt}

∥∥2
(X

(i)
t )

}
,

B
(1)
t ≤ K|X(1)

t −X
(2)
t |2, −B(2)

t ≤ K|X(1)
t −X

(2)
t |2.

Combining these with (2.4.23) and (2.4.25), for any k ≥ 1, we find a con-

stant c1 > 0 such that

dHk
t ≤ c1|X

(1)
t −X

(2)
t |2(k−1)

×
{
|b(0)
t − b

0,n
t |2(X

(1)
t ) + |b(0)

t − b
0,n
t |2(X

(2)
t )
}

dt

+ c1|X(1)
t −X

(2)
t |2kdLt + kHk−1

t dMt,

(2.4.31)

where

Lt := l
(1)
t + l

(2)
t

+

∫ t

0

{
1 + |b(0)

s |(X(1)
s ) +

2∑
i=1

MD

∥∥∇{(∇Θλ,n
s )σs}

∥∥2
(X(i)

s )
}

ds.
(2.4.32)
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For any m ≥ 1, let

τm := inf
{
t ∈ [0, T ] : |X(1)

t −X
(2)
t | ≥ m

}
.

By (2.4.23) and (2.4.31), we find a constant c2 > 0 such that

|X(1)
t∧τm −X

(2)
t∧τm |

2k ≤ Gm(t) + c2

∫ t∧τm

0

|X(1)
s −X(2)

s |2kdLs + M̃t (2.4.33)

holds for some local martingale M̃t and

Gm(t) := c2|x(1) − x(2)|2k

+ c2m
2(k−1)

∫ t∧τm

0

{
|b(0)
s − b0,ns |2(X(1)

s ) + |b(0)
s − b0,ns |2(X(2)

s )
}

ds.

Since (A2.3) and (2.4.21) imply

sup
n≥1

∥∥∇{(∇Θλ,n)σ}
∥∥ ≤ l∑

i=0

Fi

for some 0 ≤ Fi ∈ L̃p1
qi (T ), 0 ≤ i ≤ l, by (2.2.34), (2.2.35), the stochastic

Gronwall lemma, and Lemma 2.3.3, for any p ∈ ( 1
2 , 1), there exist constants

c3, c4 > 0 such that(
E
[

sup
s∈[0,t∧τm]

|X(1)
s −X(2)

s |k
])2

≤ c3(Ee
c2p
1−pLt)

1−p
p EGm(t)

≤ c4
(
|x(1) − x(2)|2k +m2(k−1)‖b(0) − b0,n‖L̃p0

q0
(T )

)
, n,m ≥ 1.

By first letting n → ∞ then m → ∞ and applying (2.2.36), we derive

(2.4.1) for some constant c > 0. �

Proof of Theorem 2.4.1(2). Let {Ps,t}t≥s≥0 be the Markov semigroup

associated with (2.0.1), i.e.

Ps,tf(x) := E
[
f(Xx

s,t)
]
, t ≥ s, f ∈ Bb(D̄),

where (Xx
s,t)t≥s is the unique solution of (2.0.1) starting from x at time s.

We have

Ptf(x) = E
[
(Ps,tf)(Xx

s )
]
, s ∈ [0, t], f ∈ C1

b (D̄), (2.4.34)

where Xx
s := Xx

0,s. By (2.4.2) for (2.0.1) from time s, for any p > 1, we

have

|∇Ps,tf | ≤ c(p)(Ps,t|∇f |p)
1
p , 0 ≤ s ≤ t ≤ T, f ∈ C1

b (D̄). (2.4.35)

If P·,tf ∈ C1,2([0, t]× D̄) for f ∈ C2
N (D̄) such that

(∂s + Ls)Ps,tf = 0, f ∈ C2
N (D̄),∇nPs,tf |∂D = 0, (2.4.36)
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then the desired inequalities follow from (2.4.35) by taking derivative in s

to the following reference functions respectively:

Ps{Ps,t(ε+f)}p, Ps{Ps,t(ε+f)}2, Ps{logPs,t(ε+f)}(x+s(y−s)/t), s ∈ [0, t],

see for instance the proof of Theorem 3.1 in [Wang and Zhang (2014)].

However, in the present singular setting it is not clear whether (2.4.36)

holds or not. So, below we make an approximation argument.

(a) Proof of (2.4.3). Let {b0,n}n≥1 be the mollifying approximations of

b(0). By (A2.3), for any f ∈ C2
N (D̄) and t ∈ (0, T ], the equation

uns,t = Pσ,b
(1)

s,t f +

∫ t

s

Pσ,b
(1)

s,r (∇b0,nr uns,t)dr, s ∈ [0, t]

has a unique solution in C1,2([0, t]× D̄), and Pns,tf := uns,t satisfies

(∂s + Lσ,b
(1)

s +∇b0,ns )Pns,tf = 0, s ∈ [0, t], f ∈ C2
N (D̄). (2.4.37)

By this and Itô’s formula for the reflected SDE

dXx,n
s,t = (b

(1)
t +b0,nt )(Xx,n

s,t )dt+σt(X
x,n
s,t )dWt+n(Xx,n

t )dlt, t ≥ s,Xx,n
s,s = x,

we obtain

Pns,tf(x) = Ef(Xx,n
s,t ), 0 ≤ s ≤ t.

Let Xt solve (2.0.1) from time s with Xs = x, and define

ξns :=
{
σ∗s (σsσ

∗
s )−1(b(0)

s − b
0,n
t )
}

(Xs),

Rs := e
∫ s
0
〈ξr,dWr〉− 1

2

∫ s
0
|ξr|2dr, s ∈ [0, t].

By Girsanov’s theorem, we obtain

|Ps,tf − Pns,tf |(x) = |E[f(Xt)−Rtf(Xt)]|

≤ ‖f‖∞
(
Eec

∫ t
0
|b(0)
s −b

0,n
s |

2(Xs) − 1) =: ‖f‖∞εn, 0 ≤ s ≤ t ≤ T,

where c > 0 is a constant, and due to (2.2.35), εn → 0 as n → ∞. Conse-

quently,

‖Ps,tf − Pns,tf‖∞ ≤ εn‖f‖∞, n ≥ 1, 0 ≤ s ≤ t ≤ T. (2.4.38)

Moreover, the proof of (2.4.35) implies that it holds for Pns,t replacing Ps,t
uniformly in n ≥ 1, since the constant is increasing in ‖b(0)‖L̃p0

q0
(T ), which

is not less than ‖b0,n‖L̃p0
q0

(T ). Thus,

|∇Pns,tf | ≤ c(p)(Pns,t|∇f |p)
1
p , 0 ≤ s ≤ t ≤ T, f ∈ C1

b (D̄), n ≥ 1. (2.4.39)
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Now, let 0 ≤ f ∈ C2
N (D̄) and t ∈ (0, T ]. For any ε > 0 and p ∈ (1, 2],

by (2.4.39), (2.4.37), (2.4.38), (A2.3) and Itô’s formula, we find constants

c1, c2 > 0 such that

d(ε+ Pns,tf)p(Xs) =
{
p(ε+ Pns,tf)p−1〈b(0)

t − b
0,n
t ,∇Pns,tf〉

+ p(p− 1)(ε+ Pns,tf)p−2|σ∗s∇Pns,tf |2
}

(Xs)ds+ dMs

≥
{
c2(ε+ Pns,tf)p−2|∇Pns,tf |2 − c1‖∇f‖∞|b

(0)
t − b

0,n
t |
}

(Xs)ds+ dMs

holds for s ∈ [0, t], ε > 0 and some martingale Ms. By (2.2.3), Hölder’s

inequality, and ‖b(0)−b0,n‖L̃p0
q0

(T ) → 0 as n→∞, we find a constant c3 > 0

and sequence εn → 0 as n→∞ such that

εn + Pt(ε+ f)p − (Pnt f + ε)p

≥ c2
∫ t

0

Ps
{

(ε+ Pns,tf)p−2|∇Pns,tf |2
}

ds

≥ c2
∫ t

0

(Ps|∇Pns,tf |p)
2
p

{Ps(ε+ Pns,tf)p}
2−p
p

ds

≥ c3
∫ t

0

|∇PsPns,tf |2

{Ps(ε+ Pns,tf)p}
2−p
p

ds, ε ∈ (0, 1).

Thus, for any x ∈ D and x 6= y ∈ B(x, δ) ⊂ D for small δ > 0 such that

xr := x+ r(y − x) ∈ D, r ∈ [0, 1],

this implies

|
∫ t

0
(PsP

n
s,tf(x)− PsPns,t(y))ds|
|x− y|

≤
∫ 1

0

dr

∫ t

0

|∇PsPns,tf |(xr)ds

≤
∫ 1

0

(∫ t

0

|∇PsPns,tf |2

{Ps(ε+ Pns,tf)p}
2−p
p

(xr)ds

) 1
2

×
(∫ t

0

{Ps(ε+ Pns,tf)p)}
2−p
p (xr)ds

) 1
2

dr

≤
∫ 1

0

c
−1/2
3

{
εn + Pt(ε+ f)p

} 1
2 (x+ r(y − x))

×
(∫ t

0

(ε+ PsP
n
s,tf

p)
2−p
p (xr)ds

) 1
2

dr.

Combining this with (2.4.38) and letting n→∞, ε→ 0, we obtain

|Ptf(x)− Ptf(y)|
|x− y|

≤ 1

t

∫ 1

0

(c−1
3 Ptf

p)
1
2 (xr)

(∫ t

0

(Ptf
p)

2−p
p (xr)ds

) 1
2

dr.
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Letting y → x, we derive (2.4.3) for some constant c depending on p for

p ∈ (1, 2] and all f ∈ C2
N (D̄). By Jensen’s inequality the estimate also holds

for p > 2, and by approximation argument, it holds for all f ∈ Bb(D̄).

(b) Proof of (2.4.4). By (2.4.39), Itô’s formula and (A2.3), we find a

constant c4 > 0 and a martingale Ms such that

d(Pns,tf)2(Xs) = 2
{
〈∇Pns,tf, b(0)

s − b0,ns 〉+ |σ∗s∇Pns,tf |2
}

(Xs)ds+ dMs

≤ c4
{
‖∇f‖∞|b(0)

s − b0,ns |+ Pns,t|∇f |2
}

(Xs)ds+ dMs, s ∈ [0, t].

Integrating both sides over s ∈ [0, t], taking expectations and letting n →
∞, and combining with (2.2.3) and (2.4.38), we derive (2.4.4).

(c) Proof of (2.4.5). Let 0 < f ∈ C2
N (D̄). By taking Itô’s formula to

Pns,t(ε+ f)(Xs) for ε > 0 and taking expectation, we derive

d

ds
Ps logPns,t{ε+f} = −Ps|σ∗s∇ logPns,tf |2+Ps〈b(0)

s −b0,ns ,∇ logPns,t(ε+f)〉.

For any x, y ∈ D̄, let γ : [0, 1] → D̄ be a curve linking x and y such that

|γ̇r| ≤ c|x − y| for some constant c > 0 independent of x, y. Combining

these with (A2.3) and (2.4.2), for p = 2 we find a constant c5 > 0 such that

Pt log{ε+ f}(x)− logPnt {ε+ f}(y) =

∫ t

0

d

ds
Ps logPns,tf(γs/t)ds

≤
∫ t

0

{
ct−1|x− y||∇Ps logPns,tf(γs/t)| − Ps|σ∗s∇ logPns,tf |2

}
(γs/t)ds

≤ c5
∫ t

0

|x− y|2

t2
ds =

c5|x− y|2

t
, t ∈ (0, T ].

Therefore, (2.4.5) holds. �

2.4.2 Proof of Theorem 2.4.2

(a) The well-posedness. The proof is similar to that of Theorem 1.3.1(2).

For any n ≥ 1, let

bn := 1Bnb
(1) + b(0).

By Theorem 2.4.1, the following SDE is well-posed:

dXx,n
t = bn(Xx,n

t )dt+ σ(Xx,n
t )dWt + n(Xx,n

t )dlx,nt , Xx,n
0 = x.

Let τxn := inf{t ∈ [0, T ] : |Xx,n
t | ≥ n}. Then Xx,n

t solves (2.0.1) up to time

τxn , and by the uniqueness we have

Xx,n
t = Xx,m

t , t ≤ τxn ∧ τxm, n,m ≥ 1.

So, it suffices to prove that τxn →∞ as n→∞.
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Let L0
t := Lσt +∇

b
(0)
t
. By Lemma 2.2.2, (A2.5) implies that for any λ ≥ 0,

the PDE

(∂t + L0
t )ut = λut − b(0)

t , t ∈ [0, T ], uT = 0,∇nut|∂D = 0 (2.4.40)

has a unique solution u ∈ H̃p0
q0 (T ), and there exist constants λ0, c, θ > 0

such that

λθ(‖u‖∞ + ‖∇u‖∞) + ‖∂tu‖L̃p0
q0

(T ) + ‖∇2u‖L̃p0
q0

(T ) ≤ c, λ ≥ λ0. (2.4.41)

So, we may take λ ≥ λ0 such that

‖u‖∞ + ‖∇u‖∞ ≤ ε, (2.4.42)

where we take ε ≤ r0 when ∂D exists. Let Θt(x) = x + ut(x). By (2.4.8)

and (2.4.42) for ε ≤ r0 when ∂D exists, we have

〈∇V (Y x,nt ),n(Xx,n
t )〉dlx,nt ≤ 0.

So, by Itô’s formula, Y x,nt := Θt(X
x,n
t ) satisfies

dY x,nt =
{

1Bnb
(1)
t + λut + 1Bn∇b(1)

t
ut
}

(Xx,n
t )dt

+ {(∇Θt)σt}(Xx,n
t )dWt + n(Xn

t )dlnt .
(2.4.43)

By (2.4.42) and (A2.4), there exists a constant c0 > 0 such that for some

martingale Mt,

d{V (Y x,nt ) +Mt}

≤
[〈
{b(1) +∇b(1)ut}(Xx,n

t ),∇V (Y x,nt )
〉

+ c0(|∇V (Y x,nt )|+ ‖∇2V (Y x,nt )‖)
]
dt

≤
{
〈b(1)(Xx,n

t ),∇V (Xx,n
t )〉+ c0KV (Y x,nt )

+ ε|b(1)(Xx,n
t )| sup

B(Xx,nt ,ε)

(|∇V |+ ‖∇2V ‖)
}

dt

≤
{
Kφ(V (Xx,n

t )) + c0KV (Y x,nt )
}

dt

≤ K
{
φ((1 + εK)V (Y x,nt )) + c0V (Y x,nt )

}
dt, t ≤ τxn .

Letting H(r) :=
∫ r

0
ds

r+φ((1+εK)s) , by Itô’s formula and noting that φ′ ≥ 0,

we find a constant c1 > 0 such that

dH(V (Y x,nt )) ≤ c1dt+ dM̃t, t ∈ [0, τxn ]

holds for some martingale M̃t. Thus,

E[(H ◦ V )(Y x,nt∧τxn )] ≤ V (x+ u(x)) + c1t, t ∈ [0, T ], n ≥ 1.
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Since (2.4.42) and |z| ≥ n imply |Θt(z)| ≥ |z| − |u(z)| ≥ n− ε, we derive

P(τxn ≤ t) ≤
V (x+ Θ0(x)) + c1t

inf |y|≥n−εH(V (y))
=: εt,n(x), t > 0. (2.4.44)

Since lim|x|→∞H(V )(x) =
∫∞

0
ds

s+φ((1+εK)s) =∞, we obtain τxn →∞(n→
∞) as desired.

(b) Proof of (2.4.10). By Proposition 1.3.8 in [Wang (2013)], the log-

Harnack inequality

Pt log f(y) ≤ logPtf(x) + c|x− y|2, x, y ∈ D̄, 0 < f ∈ Bb(D̄)

for some constant c > 0 implies the gradient estimate

|∇Ptf |2 ≤ 2cPt|f |2, f ∈ Bb(D̄),

and hence

lim
y→x
‖P ∗t δx − P ∗t δy‖var = 0, x ∈ D̄.

Let Pnt be the Markov semigroup associated with Xn
t . Thus, by the log-

Harnack inequality in Theorem 2.4.1(2), we have

lim
y→x
‖(Pnt )∗δx − (Pnt )∗δy‖var = 0, t ∈ (0, T ]. (2.4.45)

On the other hand, by (2.4.44) and Xt = Xn
t for t ≤ τn, we obtain

lim
n→∞

sup
y∈D̄∩B(x,1)

‖P ∗t δy − (Pnt )∗δy‖var

= lim
n→∞

sup
|f |≤1,y∈D̄∩B(x,1)

|Ptf(y)− Pnt f(y)|

≤ 2 lim
n→∞

sup
y∈D̄∩B(x,1)

P(τyn ≤ t) = 0.

Combining this with (2.4.45) and the triangle inequality, we derive (2.4.10).

(c) Finally, let Lt := Lσt + ∇bt . For any f ∈ C2
0 ((0, T ) × D), by Itô’s

formula,

dft(Xt) = (∂t + Lt)ft(Xt)dt+ dMt

holds for some martingale Mt, so that f0 = fT = 0 yields∫ T

0

Pt{(∂t + L)ft}dt = 0, f ∈ C∞0 ((0, T )×D).

By the Harnack inequality as in Theorem 3 in [Aronson and Serrin (1967)]

(see also [Trudinger (1968)]), for any 0 < s < t ≤ T and N > 1 with

B̃N :=
{
x ∈ D̄ ∩BN : ρ∂(x) ≥ N−1

}
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having positive volume, there exists a constant c(s, t,N) > 0 such that the

heat kernel pt(x, y) of Pt satisfies

sup
B̃N

ps(x, ·) ≤ c(s, t,N) inf
B̃N

pt(x, ·), x ∈ D̄. (2.4.46)

Since
∫
B̃N

ps(x, y)dy → 1 as N → ∞, this implies pt(x, y) > 0 for any

(t, x, y) ∈ (0, T ] × D̄ × D. In particular, Pt1B̃N > 0. On the other hand,

(2.4.10) implies that Pt1B̃N is continuous, so that

inf
x∈D̄∩BN

Pt1B̃N (x) > 0, t ∈ (0, T ].

This together with (2.4.46) gives

inf
(D̄∩BN )×B̃N

pt ≥
1

c(s, t,N)
inf

x∈D̄∩B̄N
Ps1B̃N (x) > 0, 0 < s < t ≤ T.

Therefore, (2.4.11) holds.

2.5 Power Harnack inequality

By repeating the proof of Theorem 1.5.2 with coupling in (1.5.12) for the

reflected SDE, and noting that for convex D we have

〈Xs − Ys,n(Xs)〉dlXs ≤ 0, −〈Xs − Ys,n(Ys)〉dlYs ≤ 0,

we obtain the following result.

Theorem 2.5.1. Assume that D is convex and (A2.3) holds with pi > 2.

Let

κ0 := sup
t∈[0,T ],x,y∈Rd

‖σt(x)− σt(y)‖2, κ1 := ‖σ∗(σσ∗)−1‖2∞.

Then for any

p > p∗ :=
3 +

√
1 + (8κ0κ)−1√

1 + (8κ0κ1)−1 − 1
,

there exists a constant c > 0 such that (1.5.7) holds for Pt associated with

(2.0.1).
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2.6 Exponential ergodicity

Consider the following time dependent differential operator on D̄:

Lσt :=
1

2
tr
(
σtσ
∗
t∇2

)
, t ∈ [0, T ]. (2.6.1)

Let {Pσs,t}T≥t1≥t≥s≥0 be the Neumann semigroup on D̄ generated by Lσt ;

that is, for any ϕ ∈ C2
b (D̄), and any t ∈ (0, T ], (Pσs,tϕ)s∈[0,t] is the unique

solution of the PDE

∂sus = −Lσsus, ∇nus|∂D = 0 for s ∈ [0, t), ut = ϕ. (2.6.2)

For any t > 0, let C1,2
b ([0, t]× D̄) be the set of functions f ∈ Cb([0, t]× D̄)

with bounded and continuous derivatives ∂tf,∇f and ∇2f .

(A2.5) ∂D ∈ C2,L
b and the following conditions hold.

(1) (A1.4) holds for D̄ replacing Rd, and there exists r0 > 0 such that

(2.4.8) holds.

(2) For any ϕ ∈ C2
b (D̄), the PDE (2.6.2) has a unique solution Pσt ϕ ∈

C1,2
b (D̄), such that for some constant c > 0 we have

‖∇iPσt ϕ‖∞ ≤ c(1 ∧ t)−
1
2 ‖∇i−1ϕ‖∞, t > 0, i = 1, 2, ϕ ∈ C2

b (D̄),

where ∇0ϕ := ϕ.

By repeating the proof of Theorem 1.6.1 using Theorem 2.4.2 in place

of Theorem 1.3.1, we derive the following result.

Theorem 2.6.1. Assume (A2.5). Then all assertions in Theorem 1.6.1

hold for the reflected SDE (2.0.1).
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Chapter 3

DDSDEs: Well-posedness

To characterize nonlinear PDEs in Vlasov’s kinetic theory, the “propagation

of chaos” using mean field particle systems was proposed by Kac [Kac (1954,

1959)]. To realize this proposal, McKean [McKean (1966)] introduced a

stochastic differential equation with expectation dependent drift, which de-

scribes the evolution of a single particle in the mean field particle systems

as the number of particles goes to infinity. So, in references, distribution de-

pendent SDEs (DDSDEs) are called McKean-Valasov or mean field SDEs,

see [Sznitman (1991)] and [Carmona and Delarue (2019)].

In this chapter, we first describe the correspondence between DDSDEs

and nonlinear Fokker-Planck equations, then introduce a general result to

solve DDSDEs by using SDEs with fixed distribution parameters, and final-

ly present results on the well-posedness for monotone and singular coeffi-

cients respectively. Most results in this part are organized from [Huang et al

(2021)], [Wang (2023b)], [Wang (2023e)] and [Ren (2023)]. Some additional

results are introduced in the last section.

3.1 DDSDE and nonlinear Fokker-Planck equation

For fixed T > 0, we consider the following DDSDE on Rd:

dXt = bt(Xt,LXt)dt+ σt(Xt,LXt)dWt, t ∈ [0, T ], (3.1.1)

where (Wt)t∈[0,T ] is an m-dimensional Brownian motion on a complete fil-

tration probability space (Ω, {Ft}t∈[0,T ],P), Lξ := P◦ξ−1 is the distribution

(i.e. the law) of a random variable ξ, and

b : [0, T ]× Rd × P → Rd,
σ : [0, T ]× Rd × P → Rd ⊗ Rm

101
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are measurable. When different probability measures are concerned, we

denote Lξ by Lξ|P to emphasize the distribution of ξ under P. Recall that P
is the space of probability measures on Rd equipped with the weak topology.

We will solve (3.1.1) for distributions in a sub-space P̂ of P equipped

with a complete metric d̂ whose topology may be different from the weak

topology, such that LX· belongs to the class

Cw([0, T ]; P̂) :=
{
µ : [0, T ]→ P̂ is weakly continuous

}
,

Cwb ([0, T ]; P̂) :=
{
µ ∈ Cw([0, T ]; P̂) : sup

t∈[0,T ]

d̂(µt, µ0) <∞
}
.

(3.1.2)

Without specification, the complete metric on P̂ = P defaults to the total

variation distance which is bounded, so that Cwb ([0, T ];P) = Cw([0, T ];P).

Definition 3.1.1.

(1) A continuous adapted process (Xt)t∈[0,T ] is called a solution of (3.1.1),

if P-a.s. ∫ T

0

[
|br(Xr,LXr )|+ ‖σr(Xr,LXr )‖2

]
dr <∞,

Xt = X0 +

∫ t

0

br(Xr,LXr )dr +

∫ t

0

σr(Xr,LXr )dWr, t ∈ [0, T ].

(2) A couple (X̃t, W̃t)t∈[0,T ] is called a weak solution of (3.1.1), if

(W̃t)t∈[0,T ] is the m-dimensional Brownian motion on a complete fil-

tration probability space (Ω̃, {F̃t}t∈[0,T ], P̃) such that (X̃t)t∈[0,T ] is a

solution of (3.1.1) for (W̃t, P̃) replacing (Wt,P). (3.1.1) is called weak-

ly unique for an initial distribution ν ∈ P, if for any two weak solutions

(Xi
t ,W

i
t ) with LXi0|Pi = ν, we have LX1|P1 = LX2|P2 .

(3) Let P̂ be a subspace of P equipped with a complete metric d̂. (3.1.1)

is called strongly (respectively, weakly) well-posed for distributions in

P̂, if for any F0-measurable X0 with LX0
∈ P̂ (respectively, any initial

distribution ν ∈ P̂), it has a unique strong (respectively, weak) solution

with LX· ∈ Cwb ([0, T ]; P̂). When P̂ = P, we drop “for distributions in

P” and simply call the equation strongly (respectively, weakly) well-

posed.

We call the equation well-posed (for distributions in P̂) if it is both

strongly and weakly well-posed (for distributions in P̂).
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Remark 3.1.1. Assume that for any s ∈ [0, T ), (3.1.1) with t ∈ [s, T ] is

well-posed for distributions in P̂. Let P̂s be the class of Fs-measurable ξ

with Lξ ∈ P̂. For any s ∈ [0, T ) and ξ ∈ P̂s, let (Xξ
s,t)t∈[s,T ] be the unique

solution of (3.1.1) for t ∈ [s, T ] and Xξ
s,s = ξ. Then

P ∗s,tµ := LXξs,t , µ = Lξ ∈ P̂

gives rise to a family of maps

P ∗s,T : P̂ → P̂, 0 ≤ s ≤ t ≤ T,

which satisfy the semigroup property

P ∗s,t = P ∗r,tP
∗
s,r, 0 ≤ s ≤ t ≤ T. (3.1.3)

Moreover, (Xξ
s,t)0≤s≤t≤T,ξ∈P̂s is a Markov process satisfying the flow prop-

erty

Xξ
s,t = X

Xξs,r
r,t , 0 ≤ s ≤ r ≤ t ≤ T, ξ ∈ P̂s. (3.1.4)

Due to the distribution dependence of the SDE, this Markov process is

nonlinear in spatial variable, i.e. the crucial property for linear Markov

process

P ∗s,tµ =

∫
Rd

(P ∗s,tδx)µ(dx), 0 ≤ s < t ≤ T, µ ∈ P̂

is no longer available. The study of nonlinear Markov process goes back to

McKean [McKean (1966)], see [Ren et al (2022)], [Rehmeier and Röckner

(2022)] and references therein.

We also consider the density dependent SDE (also denote by DDSDE),

which is known as Nemytskii-type McKean-Vlasov SDE:

dXt = bt(Xt, `Xt(Xt), `Xt)dt+ σt(Xt, `Xt(Xt), `Xt)dWt, (3.1.5)

where `Xt is the distribution density function of Xt, and for D being the

class of probability density functions,

b : [0, T ]× Rd × [0,∞)×D → Rd,
σ : [0, T ]× Rd × [0,∞)×D → Rd ⊗ Rm

are measurable. When bt(x, r, ρ) = bt(x, ρ) and σt(x, r, ρ) = σt(x, ρ) do not

depend on r, this SDE reduces to (3.1.1).

Next, consider the following nonlinear Fokker-Planck equation on P:

∂tµt = L∗t,µtµt, t ∈ [0, T ], (3.1.6)
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where for any (t, µ) ∈ [0, T ] × P, the Kolmogorov operator Lt,µ on Rd is

given by

Lt,µ :=
1

2
tr
{

(σtσ
∗
t )(·, µ)∇2

}
+∇bt(·,µ).

Definition 3.1.2. µ· ∈ Cwb ([0, T ];P) is called a solution of (3.1.6), if∫ T

0

dr

∫
Rd

{
‖σr(x, µr)‖2 + |br(x, µr)|

}
µr(dx) <∞,

and for any f ∈ C∞0 (Rd),

µt(f) :=

∫
Rd
fdµt = µ0(f) +

∫ t

0

µr(Lr,µrf)dr, t ∈ [0, T ]. (3.1.7)

Assume that (X̃t, W̃t)t∈[0,T ] is a weak solution of (3.1.1) under a com-

plete filtration probability space (Ω̃, {F̃t}t∈[0,T ], P̃) such that∫
[0,T ]×Ω̃

[
|br(X̃r,LX̃r|P̃)|+ ‖σr(X̃r,LX̃r|P̃)‖2

]
drdP̃ <∞. (3.1.8)

By Itô’s formula we have

df(X̃t) =
{
Lt,µtf(X̃t)

}
dt+ 〈∇f(X̃t), σ(t, X̃t, µt)dW̃t〉.

Integrating both sides over [0, t] and taking expectations, we obtain (3.1.7)

for µt := LX̃t|P̃, hence µt solves (3.1.6). On the other hand, by the su-

perposition theorem, a solution of (3.1.6) also provides a weak solution of

(3.1.1), see [Barbu and Röckner (2020)] and [Barbu and Röckner (2018)].

So, we have the following correspondence between (3.1.1) and (3.1.6).

Theorem 3.1.1. Let ν ∈ P. Then the DDSDE (3.1.1) has a weak solution

(X̃t, W̃t)t∈[0,T ] with LX̃0|P̃ = ν satisfying (3.1.8), if and only if (3.1.6) has

a solution (µt)t∈[0,T ] with µ0 = ν. In this case, µt = LX̃t|P̃, t ∈ [0, T ].

Similarly, we may formulate the nonlinear PDE for the density function

ft := `Xt associated with (3.1.5):

∂tft = L∗t,ftft,

where Lt,f := 1
2 tr{(σtσ∗t )(·, f(·), f)∇2}+∇bt(·,f(·),f).

To conclude this section, we introduce some typical nonlinear PDES

and state their corresponding DDSDEs.
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Example 3.1.1 (Landau type equations). Consider the following non-

linear PDE for probability density functions (ft)t∈[0,T ] on Rd:

∂tft =
1

2
div

{∫
Rd
a(· − z)

(
ft(z)∇ft − ft∇ft(z)

)
dz

}
, (3.1.9)

where a : Rd → Rd ⊗Rd has weak derivatives. For the real-world model of

homogeneous Landau equation, we have d = 3 and

a(x) = |x|2+r
(
I − x⊗ x

|x|2
)
, x ∈ R3

for some constant r ∈ [−3, 1]. In this case (3.1.9) is a limit version of Boltz-

mann equation (for thermodynamic system) when all collisions become

grazing. To characterize this equation using SDE, let m = d, b = 1
2diva

and σ =
√
a. Consider the DDSDE

dXt = (b ∗ LXt)(Xt)dt+ (σ ∗ LXt)(Xt)dWt, (3.1.10)

where

(f ∗ µ)(x) :=

∫
Rd
f(x− z)µ(dz).

Then the distribution density ft(x) :=
LXt (dx)

dx solves the Landau type

equation (3.1.9).

There are many references studying Landau type equations, see [Desvil-

lettes and Villani (2000a)], [Desvillettes and Villani (2000b)], [Carrapatoso

(2015)], [Fournier and Guillin (2017)], [Funaki (1985)], [Guérin (2002)] and

references within.

Example 3.1.2 (Porous media equation). Consider the following non-

linear PDE for probability density functions on Rd:
∂tft = ∆f3

t . (3.1.11)

Then for any solution to the (3.1.5) with coefficients

b = 0, σ(x, r) =
√

2rId,

the probability density function solves the porous media equation (3.1.11).

Example 3.1.3 (Granular media equation). Consider the following

nonlinear PDE for probability density functions on Rd:
∂tft = ∆ft + div

{
ft∇V + ft∇(W ∗ ft)

}
. (3.1.12)

Then the associated DDSDE (3.1.1) has coefficients

b(x, µ) = −∇V (x)−∇(W ∗ µ)(x), σ(x, µ) =
√

2Id,

where Id is the d× d identity matrix, and

(W ∗ µ)(x) :=

∫
Rd
W (x− y)µ(dy).
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3.2 Fixed point in distribution and Yamada-Watanabe

principle

To solve (3.1.1), we will fix a subspace P̂ ⊂ P. Typical examples of (P̂, d̂)

include the following Pk for a constant k ∈ (0,∞) and PV for a measurable

function V .

(1) Lk-Wasserstein space for k > 0:

Pk :=
{
µ ∈ P : µ(| · |k) <∞

}
.

It is a Polish space under the Lk-Wasserstein distance

Wk(µ, ν) := inf
π∈C(µ,ν)

(∫
Rd×Rd

|x− y|kπ(dx,dy)

) 1
k∨1

, µ, ν ∈ Pk,

where C(µ, ν) is the set of all couplings for µ and ν.

(2) V -weighted variation space for a measurable function V ≥ 1:

PV :=
{
µ ∈ P : µ(V ) <∞

}
,

which is a complete (but not separable) metric space under the V -

weighted variation distance ‖µ− ν‖V .

When V = 1 + | · |k for some k > 0, we denote ‖ · ‖V by ‖ · ‖k,var, i.e.

‖µ− ν‖k,var := sup
f∈Bb(Rd),|f |≤1+|·|k

|µ(f)− ν(f)| = |µ− ν|(1 + | · |k).

Remark 3.2.1. According to Theorem 6.15 in [Villani (2009)], for any

k > 0 there exists a constant c > 0 such that

‖µ− ν‖var + Wk(µ, ν)1∨k ≤ c‖µ− ν‖k,var, µ, ν ∈ Pk. (3.2.1)

However, when k > 1, for any constant c > 0, Wk(µ, ν) ≤ c‖µ − ν‖k,var
does not hold. Indeed, by taking

µ = δ0, ν = (1− n−1−k)δ0 + n−1−kδne, n ≥ 1, e ∈ Rd with |e| = 1,

we have Wk(µ, ν) = n−
1
k , while

‖µ− ν‖k,var = n−1−k‖δ0 − δne‖k,var

≤ n−1−k{δ0(1 + | · |k) + δne(1 + | · |k)
}
≤ 3

n
, n ≥ 1,

so that limn→∞
Wk(µ,ν)
‖µ−ν‖k,var =∞ for k > 1.
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For any γ ∈ P̂, consider the path space over P̂

Cγ(P̂) :=
{
µ· ∈ Cwb ([0, T ]; P̂) : µ0 = γ

}
.

The following is an easy observation reducing the well-posedness of DDS-

DEs to that of classical SDEs.

Theorem 3.2.1. Assume that for any γ ∈ P̂ and µ ∈ Cγ(P̂), the SDE

dXµ
t = bt(X

µ
t , µt)dt+ σt(X

µ
t , µt)dWt, t ∈ [0, T ] (3.2.2)

with LXµ0 = γ has a unique weak solution, such that the map

Cγ(P̂) 3 µ 7→ Φγµ = (Φγt µ)t∈[0,T ] := (LXµt )t∈[0,T ] ∈ Cγ(P̂)

has a unique fixed point. Then the DDSDE (3.1.1) is weakly well-posed

for distributions in P̂. If moreover (3.2.2) is strongly well-posed, then so is

(3.1.1) for distributions in P̂.

The following is a simple consequence of Theorem 3.2.1, where for in-

vertible σtσ
∗
t , (3.2.4) holds for

Γt(x, µ, ν) :=
{
σ∗t (σtσ

∗
t )−1[bt(·, ν)− bt(·, µ)]

}
(x).

To this end, we recall the Pinsker’s inequality: for any measurable space

(E,B(E)),

‖µ− ν‖2var := sup
A∈B(E)

|µ(A)− ν(B)|2 ≤ 2Ent(µ|ν), µ, ν ∈ P(E), (3.2.3)

where P(E) is the set of all probability measures on W .

Corollary 3.2.2. Let σt(x, µ) = σt(x) for t ∈ [0, T ]. Assume that (3.2.2)

is weak (respectively strong) well-posed for any µ ∈ Cw([0, T ];P). If there

exists a measurable map

Γ : [0, T ]× Rd × P × P → Rm

such that

bt(x, ν)− bt(x, µ) = σt(x)Γt(x, µ, ν),

(t, x, µ, ν) ∈ [0, T ]× Rd × P × P,
(3.2.4)

and there exists a constant K > 0 such that

|Γt(x, µ, ν)| ≤ K‖µ− ν‖var, (t, x, µ, ν) ∈ [0, T ]× Rd × P × P. (3.2.5)

Then (3.1.1) is weakly (respectively strongly) well-posed.
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Proof. Let γ ∈ P and let Φγ be defined in Theorem 3.2.1. Then it suffices

to prove that Φγ has a unique fixed point in Cγ(P). Let µ, ν ∈ Cγ(P), and

let Xµ
t solve (3.2.2). By (3.2.5),

Rt := e
∫ t
0
〈Γt(Xµr ,µr,νr),dWr〉− 1

2

∫ t
0
|Γr(Xµr ,µr,νr)|2dr, t ∈ [0, T ]

is a martingale, such that by Girsanov’s theorem,

W̃t := Wt −
∫ t

0

Γs(X
µ
s , µs, νs)ds, t ∈ [0, T ]

is a Brownian motion under the probability QT := RTP. By (3.2.4), we

may reformulate (3.2.2) as

dXµ
t = bt(X

µ
t , νt)dt+ σt(X

µ
t )dW̃t, t ∈ [0, T ],LXµ0 = γ.

By the weak uniqueness of (3.2.2) we obtain Φγt ν = LXµt |QT , t ∈ [0, T ]. So,

(3.2.3) and (3.2.5) yield∥∥Φγt µ− Φγt ν
∥∥2

var
= sup
|f |≤1

∣∣E[(Rt − 1)f(Xµ
t )]
∣∣2 =

(
E[|Rt − 1|]

)2
≤ 2E[Rt logRt] = 2EQT [logRt] = EQT

∫ t

0

|Γr(Xµ
r , µr, νr)|2dr

≤ K2

∫ t

0

‖µr − νr‖2vardr, t ∈ [0, T ].

Considering the complete metrics

ρλ(µ, ν) := sup
t∈[0,T ]

e−λt‖µt − νt‖var, λ > 0

on Cγ(P), we derive

ρλ(Φγµ,Φγν)2 = sup
t∈[0,T ]

e−2λt
∥∥Φγt µ− Φγt ν

∥∥2

var

≤ K2ρλ(µ, ν)2 sup
t∈[0,T ]

∫ t

0

e−2λ(t−r)dr ≤ K2

2λ
ρλ(µ, ν)2.

Thus, for large enough λ > 0 the map Φγ is contractive in ρλ, so that Φγ

has a unique fixed point on Cγ(P). �

As shown in Chapters 1 and 2, the Yamada-Watanabe principle is a

fundamental tool in the study of well-posedness for SDEs. The following

is a modified version for DDSDEs, see Lemma 3.4 in [Huang and Wang

(2019)].

Theorem 3.2.3. Assume that for any µ ∈ Cwb ([0, T ]; P̂), the classical SDE

(3.2.2) has pathwise uniqueness. If (3.1.1) has weak existence and strong

uniqueness for distributions in P̂, then it is well-posed for distributions in

P̂.
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Proof. Let µ· = LX̄·|P̄ ∈ Cwb ([0, T ]; P̂) for a weak solution (X̄t, W̄t) of

(3.1.1) with distribution µ0 ∈ P̂. Then (X̄t, W̄t) is a weak solution to

(3.2.2). By Yamada-Watanabe principle in Lemma 1.3.2, the strong u-

niqueness of (3.2.2) implies the well-posedness. So, given initial value X0

with distribution µ0, by the weak uniqueness, the strong solution of (3.2.2)

satisfies LXt = LX̄t|P̄ = µt, and hence, Xt is a strong solution to (3.1.1).

Combining this with the strong uniqueness as assumed, we conclude that

(3.1.1) is strongly well-posed for distributions in P̂.
By the same reason, if (3.1.1) has two weak solutions (X̄i

t , W̄
i
t ) under

probabilities P̄i (i = 1, 2) with common initial distribution µ0 ∈ P̂, then

the well-posedness of (3.2.2) for µit := LX̄it |P̄i replacing µt gives two strong

solutions Xi
t of (3.1.1) with the same initial value and with LXit = µit for

t ∈ [0, T ], so that the pathwise uniqueness of (3.1.1) implies µ1
t = µ2

t for

t ∈ [0, T ], and the well-posedness of (3.2.2) yields LX̄1
[0,T ]
|P̄1 = LX̄2

[0,T ]
|P̄2 .

Hence, (3.1.1) also has weak uniqueness, so that the weak well-posedness

holds for distributions in P̂. �

3.3 The monotone case

(A3.1) Let k ∈ [1,∞).

(1) For any µ ∈ Cwb ([0, T ];Pk), the SDE (3.2.2) is well-posed.

(2) There exists K ∈ L1([0, T ]; (0,∞)) such that for any t ∈ [0, T ], x, y ∈
Rd and µ, ν ∈ Pk,

‖σt(x, µ)− σt(y, ν)‖2 + 〈bt(x, µ)− bt(y, ν), x− y〉+

≤ K(t)
{
|x− y|2 + Wk(µ, ν)2

}
.

Theorem 3.3.1. Assume (A3.1) for some k ∈ [1,∞).

(1) The DDSDE (3.1.1) is well-posed for distributions in Pk. Moreover,

for any p ≥ k, there exists a constant c > 0 such that for any solution

Xt of (3.1.1) with LX0 ∈ Pk,

E
[

sup
t∈[0,T ]

|Xt|p
∣∣∣F0

]
≤ c
(
1 + |X0|p + {E[|X0|k]}

p
k

)
. (3.3.1)

(2) For any p ≥ k, there exists a constant c > 0 such that for any two

solutions Xt and Yt of (3.1.1) with LX0 ,LY0 ∈ Pk,

E
[

sup
t∈[0,T ]

|Xt − Yt|p
∣∣∣F0

]
≤ c
(
Wk(LX0

,LY0
) + |X0 − Y0|

)p
. (3.3.2)
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Consequently, there exists a constant c > 0 such that

Wk(P ∗t µ, P
∗
t ν) ≤ cWk(µ, ν), t ∈ [0, T ], µ, ν ∈ Pk. (3.3.3)

Proof. (a) Let X0 be F0-measurable with γ := LX0
∈ Pk. Then

Cγk :=
{
µ ∈ Cwb ([0, T ];Pk) : µ0 = γ

}
is a complete space under the following metric for any λ > 0:

Wk,λ(µ, ν) := sup
t∈[0,T ]

e−λtWk(µt, νt), µ, ν ∈ Cγk . (3.3.4)

Let (Xµ
t )t∈[0,T ] be the unique solution of (3.2.2) with Xµ

0 = X0. By Theo-

rem 3.2.1, for the well-posedness of (3.1.1), it suffices to prove the contrac-

tion of the map

Cγk 3 µ 7→ Φγ· µ := LXµ· ∈ C
γ
k

under the metric Wk,λ for large enough λ > 0, where the continuity of Φγt µ

in t follows from (1.3.1).

By (A3.1) and Itô’s formula, for any p ≥ k ∨ 2 := max{k, 2}, we find a

constant c1 > 0 such that

d|Xµ
t −Xν

t |p ≤ c1K(t)
{
|Xµ

t −Xν
t |p + Wk(µt, νt)

p
}

dt+ dMt

holds for some martingale Mt with

d〈M〉t ≤ c1K(t)
{
|Xµ

t −Xν
t |2p + Wk(µt, νt)

2p
}

dt.

Let

ζt := sup
s∈[0,t]

|Xµ
s −Xν

s |p, t ∈ [0, T ].

By BDG inequality in Lemma 1.3.5, we find constants c2, c3 > 0 such that

E
[
ζt
∣∣F0

]
≤ c2

∫ t

0

K(s)
{
E[ζs|F0] + Wk(µs, νs)

p
}

ds

+ c2E
[(∫ t

0

K(s)
{
ζ2
s + Wk(µs, νs)

2p
}

ds

) 1
2
∣∣∣∣F0

]
≤ 1

2
E
[
ζt
∣∣F0

]
+ c3

∫ t

0

K(s)E[ζs|F0]ds+ c3

(∫ t

0

K(s)Wk(µs, νs)
2pds

) 1
2

for t ∈ [0, T ]. Thus,

E
[
ζt
∣∣F0

]
≤2c3

∫ t

0

K(s)E[ζs|F0]ds

+ 2c3

(∫ t

0

K(s)Wk(µs, νs)
2pds

) 1
2

, t ∈ [0, T ].

(3.3.5)
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By using ζt∧τk for τk := inf{t ≥ 0 : |Xµ
t −Xν

t | ≥ k} replacing ζt and letting

k → ∞, we may and do assume that E[ζt
∣∣F0] < ∞, so that by Gronwall’s

inequality,

E[ζt|F0] ≤ 2c3e2c3
∫ t
0
K(s)ds

(∫ t

0

K(s)Wk(µs, νs)
2pds

) 1
2

≤ c4eλptWk,λ(µ, ν)p
(∫ t

0

K(s)e−2pλ(t−s)ds

) 1
2

, t ∈ [0, T ]

(3.3.6)

holds for some constant c4 > 0. Since p ≥ k, by Jensen’s inequality, this

implies

Wk,λ(Φγµ,Φγν)k ≤ sup
t∈[0,T ]

e−kλtE
[(
E[ζt|F0]

) k
p

]
≤ c4Wk,λ(µ, ν)k

(
sup
t∈[0,T ]

∫ t

0

K(s)e−2pλ(t−s)ds

) k
2p

.

Noting that

lim
λ→∞

sup
t∈[0,T ]

∫ t

0

K(s)e−2pλ(t−s)ds = 0,

we see that Φγ is contractive in Wk,λ for large λ > 0.

(b) Next, for any p ≥ k ∨ 2, let Xt solve (3.1.1) with E[|X0|p] <∞. By

(A3.1) and Itô’s formula, there exists a constant c(p) > 0 such that

d|Xt|p ≤ c(p)K(t)
{

1 + |Xt|p + (E[|Xt|k])
p
k

}
dt+ dMt

for some martingale Mt with

d〈M〉t ≤ c(p)K(t)
{

1 + |Xt|2p + (E[|Xt|k])2p/k
}

dt.

Then (3.3.1) follows from BDG inequality.

(c) By Jensen’s inequality, it suffices to prove (3.3.2) and (3.3.3) for

p ≥ k ∨ 2. Let Xt and Yt be two solutions of (3.1.1), and denote µt =

LXt , νt = LYt . By (A3.1) and Itô’s formula, we find a constant c0 > 0 such

that

d|Xt − Yt|p ≤ c0
{
|Xt −Xt|p + Wk(µt, νt)

p
}

dt+ dMt

for some martingale Mt satisfying

d〈M〉t ≤ c0
{
|Xt − Yt|2p + Wk(µt, νt)

2p
}

dt.

By BDG inequality as in above, we find a constant c1 > 0 such that

E
[

sup
t∈[0,s]

|Xt − Yt|p
∣∣∣∣F0

]
≤ c1|X0 − Y0|p

+ c1

∫ s

0

{
E[|Xt − Yt|p|F0] + Wk(µt, νt)

p
}

dt, t ∈ [0, T ].
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By Gronwall’s inequality, for some constant c2 > 0,

E
[

sup
t∈[0,s]

|Xt − Yt|p
∣∣∣∣F0

]
≤ c2|X0 − Y0|p + c2

∫ t

0

Wk(µs, νs)
pds, t ∈ [0, T ].

(3.3.7)

Thus, (3.3.2) follows from (3.3.3).

To prove (3.3.3), we take X0 and Y0 such that

Wk(µ0, ν0) =
(
E[|X0 − Y0|k]

) 1
k , µ0 := LX0 , ν0 := LY0 .

By (3.7.20), we find some constant c3 > 0 such that

sup
s∈[0,t]

Wk(µs, νs)
k ≤ E

(
E
[

sup
s∈[0,t]

|Xs − Ys|k
∣∣∣∣F0

])

≤ E
[(

E
[

sup
s∈[0,t]

|Xs − Ys|p
∣∣∣∣F0

]) k
p
]
(Jensen’s inequality)

≤ E
{
c2|X0 − Y0|p + c2

∫ t

0

Wk(µs, νs)
pds

} k
p

≤ c
k
p

2 E[|X0 − Y0|k]

+ c
k
p

2

(
sup
s∈[0,t]

Wk(µs, νs)
k

) p−k
p
(∫ t

0

Wk(µs, νs)
kds

) k
p

≤ c3Wk(µ0, ν0)k +
1

2
sup
s∈[0,t]

Wk(µs, νs)
k + c3

∫ t

0

Wk(µs, νs)
kds.

Then

sup
s∈[0,t]

Wk(µs, νs)
k ≤ 2c3Wk(µ0, ν0)k + 2c3

∫ t

0

Wk(µs, νs)
kds, t ∈ [0, T ].

By Gronwall’s lemma we derive (3.3.3). �

3.4 Singular case: ‖ · ‖V -Lipschitz in distribution

We consider the case that b is singular and σt(x, µ) = σt(x) does not depend

on µ, so that (3.1.1) reduces to

dXt = bt(Xt,LXt)dt+ σt(Xt)dWt, t ∈ [0, T ]. (3.4.1)
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(A3.2) Let 1 ≤ V ∈ C2(Rd; [1,∞)) be a compact function, and bt(x, µ) =

b
(0)
t (x) + b

(1)
t (x, µ).

(1) (A1.2)(1) holds for σ and b(0).

(2) For any µ ∈ Cwb ([0, T ];PV ), b
(1)
t (x, µt) is locally bounded in (t, x) ∈

[0, T ]×Rd. Moreover, there exist a constant ε ∈ (0, 1) and a function

0 ≤ K ∈ L1([0, T ]) such that

sup
B(x,ε)

{
|∇V |+ ‖∇2V ‖

}
≤ ε−1V (x),

〈b(1)
t (x, µ),∇V (x)〉+ ε|b(1)

t (x, µ)| sup
B(x,ε)

{
|∇V |+ ‖∇2V ‖

}
≤ Kt

{
V (x) + µ(V )

}
, x ∈ Rd, µ ∈ PV .

The following result is due to [Ren (2023)].

Theorem 3.4.1. Assume (A3.2).

(1) If for any t ∈ [0, T ],

|b(1)
t (x, µ)− b(1)

t (x, ν)|2 ≤ Kt‖µ− ν‖2V , x ∈ Rd, µ, ν ∈ PV , (3.4.2)

then (3.4.1) is well-posed for distributions in PV , and for any k ≥ 1

there exists a constant c > 0 such that for any solution Xt,

E
[

sup
t∈[0,T ]

V (Xt)
k
∣∣∣X0

]
≤ c
{
V (X0)k + (E[V (X0)])k

}
. (3.4.3)

Moreover, for any sequence {γn}n≥1 ⊂ PV with bounded γn(V p) for

some p > 1 such that γn → γ weakly,

lim
n→∞

‖P ∗t γn − P ∗t γ‖V = 0, t ∈ [0, T ]. (3.4.4)

(2) If for any t ∈ [0, T ],

|b(1)
t (x, µ)− b(1)

t (x, ν)|2 ≤ Kt‖µ− ν‖2var, x ∈ Rd, µ, ν ∈ PV , (3.4.5)

then for any {γ, γn}n≥1 ⊂ PV with γn → γ weakly,

lim
n→∞

‖P ∗t γn − P ∗t γ‖var = 0, t ∈ [0, T ]. (3.4.6)

Proof. (1) Let X0 be F0-measurable with γ := LX0 ∈ PV . Simply denote

CγV := {µ ∈ Cwb ([0, T ];PV ) : µ0 = γ}.

For any µ ∈ CγV , by Theorem 1.3.1, (A3.2) implies that the following SDE

is well-posed,

dXµ
t = bt(X

µ
t , µt)dt+ σt(X

µ
t )dWt, Xµ

0 = X0. (3.4.7)
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Recall that Φγt µ := LXµt . By Theorem 3.2.1, for the well-posedness of

(3.4.1), it suffices to prove that Φγ has a unique fixed point in CγV . To

this end, we approximate CγV by bounded subsets

Cγ,NV :=
{
µ ∈ Cγ : sup

t∈[0,T ]

µt(V )e−Nt ≤ N(1 + γ(V ))
}
, N ≥ 1.

(1a) We aim to find a constant N0 ≥ 1, such that ΦγCγ,NV ⊂ Cγ,NV holds

for N ≥ N0. By Lemma 1.2.2, we consider Zvonkin’s transform of Xµ
t :

Y µt = Xµ
t + uλt (Xµ

t ), uλt ∈ H̃p0
q0 (T ),

(∂t + L0
t )u

λ
t = λuλt − b

(0)
t , t ∈ [0, T ], uλT = 0,

(3.4.8)

for large λ > 0 such that ‖uλt ‖∞ + ‖∇uλt ‖∞ ≤ 1
2 , where

L0
t := ∇

b
(0)
t

+
1

2
tr
{
σtσ
∗
t∇2

}
.

By (A3.2) and Itô’s formula, for any k ≥ 1, we find a constant c1 > 0 and

a martingale Mt such that

d{V (Y µt )}k ≤ c1Kt{V (Y µt )k + µt(V )k}dt+ dMt,

d〈M〉t ≤ k1V (Y µt )2(k−1)dt, t ∈ [0, T ].
(3.4.9)

By the condition on V and |Xµ
t − Y

µ
t | ≤ 1

2 , we find a constant C > 1 such

that

C−1V (Xµ
t ) ≤ V (Y µt ) ≤ CV (Xµ

t ), (3.4.10)

so that (3.4.9) implies that for some constant c2 > 0,

E
(
V (Xµ

t )2
∣∣Xµ

0

)
≤ C2ec1

∫ t
0
KsdsV (Xµ

0 )2 + C2c1

∫ t

0

Kse
c1

∫ t
s
Krdrµs(V )2ds

≤ c2V (Xµ
0 )2 + c2{N(1 + γ(V ))}2

∫ t

0

Kse
2Nsds

≤ c2V (Xµ
0 )2 + c2{N(1 + γ(V ))}2e2Nt

∫ t

0

Kse
−2N(t−s)ds,

t ∈ [0, T ], µ ∈ Cγ,NV .

(3.4.11)

Since 0 ≤ K ∈ L1([0, T ]) implies

lim
N→∞

sup
t∈[0,T ]

∫ t

0

Kse
−2N(t−s)ds = 0,
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we find a constant N0 ≥ 1 such that

sup
t∈[0,T ]

{Φγt µ}(V )e−Nt = sup
t∈[0,T ]

e−NtE[V (Xµ
t )]

≤
√
c2γ(V ) +

1

2
N(1 + γ(V )) ≤ N(1 + γ(V )), N ≥ N0.

Thus, ΦγCγ,NV ⊂ Cγ,NV for N ≥ N0, where the continuity of Φγt µ in t is

implied by Theorem 1.3.1.

(1b) Let N ≥ N0. We prove that Φγ has a unique fixed point in Cγ,NV ,

and hence it has a unique fixed point in CγV by the arbitrariness of N ≥ N0.

Consider the following complete metric on Cγ,NV :

ρλ(µ, ν) := sup
t∈[0,T ]

e−λt‖µt − νt‖V .

Let

ξs := {σ∗s (σsσ
∗
s )−1[bs(X

µ
s , νs)− bs(Xµ

s , µs)]}(Xµ
s ), s ∈ [0, T ].

By (3.4.2),

Rt := e
∫ t
0
〈ξs,dWs〉− 1

2

∫ t
0
|ξs|2ds (3.4.12)

is a martingale, such that

W̃r := Wr −
∫ r

0

ξsds, r ∈ [0, t]

is a Brownian motion under the probability Qt := RtP. Reformulate (3.4.7)

as

dXµ
r = br(X

µ
r , νr)dr + σr(X

µ
r )dW̃r, Xµ

0 = X0, r ∈ [0, t].

By the uniqueness we obtain

Φγt ν = LXνt = LXµt |Qt ,

where LXµt |Qt stands for the distribution of Xµ
t under Qt. Then by (3.4.11),

we find a constant c1(N) > 0 such that

‖Φγt µ− Φγt ν‖V = sup
|f |≤V

∣∣E[f(Xµ
t )(1−Rt)

]∣∣
≤ E

[{
E(V (Xµ

t )2|Xµ
0 )
} 1

2
{
E[|Rt − 1|2|Xµ

0 ]
} 1

2

]
≤ c1(N)E

[
V (X0)

{
E[R2

t − 1|X0]
} 1

2

]
.

(3.4.13)

Since µ, ν ∈ Cγ,NV , by ‖σ∗(σσ∗)−1‖∞ < ∞ and (3.4.2), we find a constant

c2(N) > 0 such that

|ξs|2 ≤ c2(N)Ks(1 ∧ ‖µs − νs‖2V ), s ∈ [0, T ],
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so that for some constant c3(N) > 0,

E[R2
t − 1|X0] ≤ E

[
e2

∫ t
0
〈ξs,dWs〉−

∫ t
0
|ξs|2ds − 1

∣∣∣∣X0

]
≤ E

[
e2

∫ t
0
〈ξs,dWs〉−2

∫ t
0
|ξs|2ds+c2(N)

∫ t
0
Ks(1∧‖µs−νs‖2V )ds − 1

∣∣∣∣X0

]
= ec2(N)

∫ t
0
Ks(1∧‖µs−νs‖2V )ds − 1 ≤ c3(N)

∫ t

0

Ks‖µs − νs‖2V ds,

where the last step follows from the fact that er − 1 ≤ rer for r ≥ 0.

Combining this with (3.4.13), we find a constant c4(N) > 0 such that

‖Φγt µ− Φγt ν‖V ≤ c4(N)

∫ t

0

Ks‖µs − νs‖2V ds, t ∈ [0, T ]. (3.4.14)

So,

ρλ(Φγµ,Φγν) = sup
t∈[0,T ]

e−λt‖Φγt µ− Φγt ν‖V

≤ c4(N)ρλ(µ, ν) sup
t∈[0,T ]

(∫ t

0

Kse
−2λ(t−s)ds

) 1
2

, µ, ν ∈ Cγ,NV .

Therefore, when λ > 0 is large enough, Φγ is contractive in Cγ,NV under ρλ,

so that it has a unique fixed point in Cγ,NV .

(1c) By (3.4.9) for k = 1, (3.4.10), (A3.2) and LXµ0 = LX0
= γ, we find

a constant k1 > 0 such that

E[V (Y µt )] ≤ k1γ(V ) + k1

∫ t

0

E[V (Y µs )]ds,

so that Gronwall’s inequality yields

E[V (Y µt )] ≤ k1ek1tγ(V ).

Combining this with (3.4.9), (3.4.10), BDG inequality and Hölder’s inequal-

ity for E[·|X0], we find a constant k2 > 0 such that

ηt := E
[

sup
s∈[0,t]

V (Y µs )k
∣∣∣X0

]
, t ∈ [0, T ]

satisfies

ηt ≤ k2V (X0)k +

∫ t

0

ηsds+ k2E
[(∫ t

0

V (Y µs )2(k−1)ds

) 1
2
∣∣∣∣X0

]
≤ k2V (X0)k + k3

∫ t

0

ηsds+
1

2
ξt, t ∈ [0, T ].

By Gronwall’s inequality and (3.4.10), this implies (3.4.3).
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(1d) It remains to prove (3.4.4). Let P̂t be the Markov semigroup of Xµ
t

for µt := P ∗t γ. Then

P̂ ∗t γ = P ∗t γ, t ∈ [0, T ]. (3.4.15)

By Theorem 1.3.1, we have

lim
y→x
‖P̂ ∗t δx − P̂ ∗t δy‖var = 0, x ∈ Rd.

Since γn → γ weakly, we may construct random variables {ξn} and ξ such

that Lξn = γn,Lξ = γ and ξn → ξ a.s.. Thus, by the dominated conver-

gence theorem we obtain

lim
n→∞

‖P̂ ∗t γn − P̂ ∗t γ‖var = lim
n→∞

‖E[P̂ ∗t δξn − P̂ ∗t δξ]‖var

≤ lim
n→∞

E[‖P̂ ∗t δξn − P̂ ∗t δξ‖var] = 0.
(3.4.16)

Hence,

lim sup
n→∞

‖P̂ ∗t γn − P̂ ∗t γ‖V

≤ k lim sup
n→∞

‖P̂ ∗t γn − P̂ ∗t γ‖var + sup
n≥1

∫
Rd
P̂t(V − k)+d(γn + γ)

= sup
n≥1

{
P̂ ∗t (γn + γ)

}(
(V − k)+

)
, k ≥ 1.

(3.4.17)

Since γn(V p) is bounded for some p ∈ (1, 2], (3.4.11) implies that

sup
n≥1,t∈[0,T ]

(P̂ ∗t γn)(V p) <∞, (3.4.18)

so that letting k →∞ in (3.4.17), we derive

lim sup
n→∞

‖P̂ ∗t γn − P̂ ∗t γ‖V = 0. (3.4.19)

On the other hand, by (3.4.15) and the Girsanov transform in step (1b)

for γn replacing ν, the argument leading to (3.4.14) implies

‖P ∗t γn − P̂ ∗t γn‖2V ≤ c
∫ t

0

Ks‖P ∗s γn − P ∗s γ‖2V ds, t ∈ [0, T ] (3.4.20)

for some constant c > 0. Combining this with (3.4.15), (3.4.19) and Fatou’s

lemma due to (3.4.18), we derive

lim sup
n→∞

‖P ∗t γn − P ∗t γ‖2V ≤ 2 lim sup
n→∞

{
‖P̂ ∗t γn − P̂ ∗t γ‖2V + ‖P ∗t γn − P̂ ∗t γn‖2V

}
≤ 2

∫ t

0

Ks lim sup
n→∞

‖P ∗s γn − P̂ ∗s γ‖2V ds <∞, t ∈ [0, T ].

By Gronwall’s inequality, this implies (3.4.4).

(2) Similarly to eqref*B, by (3.4.5), Girsanov’s theorem and Pinsker’s

inequality (3.2.3), we find a constant c > 0 such that

‖P ∗t γn − P̂ ∗t γn‖2var ≤ c
∫ t

0

Ks‖P ∗s γn − P ∗s γ‖2vards, t ∈ [0, T ].

Combining this with (3.4.15) and (3.4.16), we derive (3.4.6). �
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3.5 Singular case: (‖ · ‖k,var +Wk)-Lipschitz in distribution

Comparing with (A3.2), the following assumption allows bt(x, ·) to be Lip-

schitz in ‖ · ‖k,var + Wk with Lipschitz constant singular in (t, x). By

Remark 3.2.1, when k > 1 this norm is essentially larger than ‖ · ‖V for

V := 1 + | · |k. Let

‖µ‖k := 1{k>0}µ(| · |k)
1
k + 1{k=0}. (3.5.1)

(A3.3) Let k ≥ 0 and bµt := bt(·, µt) for µ ∈ Cwb ([0, T ];P).

(1) There exists µ̂ ∈ Pk such that (A1.1) holds for b̂ := b(·, µ̂) replacing

b.

(2) There exist a constant α ≥ 0 and 1 ≤ f ∈ L̃p0
q0 (T ) such that for any

t ∈ [0, T ], x ∈ Rd, and µ, ν ∈ Pk,

|bµt (x)− b̂(1)
t (x)| ≤ ft(x) + α‖µ‖k, (3.5.2)

|bµt (x)− bνt (x)| ≤ ft(x)
{
‖µ− ν‖k,var + Wk(µ, ν)

}
. (3.5.3)

The following result is due to [Wang (2023b)] for D = Rd.

Theorem 3.5.1. Assume (A3.3).

(1) (3.4.1) is weak well-posed for distributions in Pk. Moreover, for any

γ ∈ Pk, and any n > 0, there exists a constant c > 0, such that

E
[

sup
t∈[0,T ]

|Xt|n
∣∣∣X0

]
≤ c(1 + |X0|n) (3.5.4)

holds for the solution with LX0
= γ.

(2) If moreover σ satisfies (A1.2)(1), then (3.4.1) is well-posed for distribu-

tions in Pk.

To prove Theorem 3.5.1, we first present a more general result extending

Corollary 3.2.2 for k = 0 and p = q = ∞, which may also apply to the

degenerate situation.

For any k ≥ 0, γ ∈ Pk, N ≥ 2, let

Cγ,Nk :=
{
µ ∈ Cwb ([0, T ];Pk) : µ0 = γ, sup

t∈[0,T ]

e−Nt(1 + µt(| · |k)) ≤ N
}
.

(3.5.5)

Then as N ↑ ∞,

Cγ,Nk ↑ Cγk :=
{
µ ∈ Cwb ([0, T ];Pk) : µ0 = γ

}
. (3.5.6)
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For any µ ∈ Cγk , we will assume that the SDE

dXµ
t = bt(X

µ
t , µt)dt+ σt(X

µ
t )dWt, t ∈ [0, T ],LXµ0 = γ (3.5.7)

has a unique weak solution with

Φγt µ := LXµt ∈ Pk, t ∈ [0, T ].

(A3.4) Let k ≥ 0, T > 0. For any γ ∈ Pk and µ ∈ Cγk , (3.5.7) has a

unique weak solution, and there exist constants p, q > 1, N0 ≥ 2 and

increasing maps C : [N0,∞) → (0,∞) and F : [N0,∞) × [0,∞) →
(0,∞) such that for any N ≥ N0 and µ ∈ Cγ,Nk , the (weak) solution

satisfies

Φγµ := L(Xµt )t∈[0,T ]
∈ Cγ,Nk , (3.5.8)(

E
[
(1 + |Xµ

t |k)2
∣∣Xµ

0

]) 1
2 ≤ C(N)(1 + |Xµ

0 |k), t ∈ [0, T ], (3.5.9)

E
(∫ t

0

gs(X
µ
s )ds

)2

≤ C(N)‖g‖2
L̃pq(t)

,

E
[
e
∫ t
0
gs(X

µ
s )ds

]
≤ F (N, ‖g‖L̃pq(t)), t ∈ [0, T ], g ∈ L̃pq(t).

(3.5.10)

Obviously, when k = 0, conditions (3.5.8) and (3.5.9) hold for N0 = 2.

So, Corollary 3.2.2 is a special situation of the following result with k = 0

and p = q =∞.

Theorem 3.5.2. Assume (A3.4) and

bt(x, ν)− bt(x, µ) = σt(x)Γt(x, ν, µ), x ∈ Rd, t ∈ [0, T ], ν, µ ∈ Pk (3.5.11)

for some measurable map Γ : [0, T ]× Rd × P(Rd)→ Rm.

(1) If there exists f ≥ 1 with |f |2 ∈ L̃pq(T ) such that

|Γt(x, ν, µ)| ≤ ft(x)‖ν−µ‖k,var, x ∈ Rd, t ∈ [0, T ], ν, µ ∈ Pk, (3.5.12)

then (3.4.1) is weakly well-posed for distributions in Pk. If, further-

more, in (A3.4) the SDE (3.5.7) is strongly well-posed for any γ ∈ Pk
and µ ∈ Cγk , so is (3.4.1) for distributions in Pk.

(2) Let k > 1 and assume that

|Γt(x, ν, µ)| ≤ ft(x)
{
‖ν − µ‖k,var + Wk(µ, ν)

}
,

(t, x) ∈ [0, T ]× Rd, µ, ν ∈ Pk
(3.5.13)

holds for some f ≥ 1 with |f |2 ∈ L̃pq(T ). If for any γ ∈ Pk and N ≥ N0,

there exists a constant K(N) > 0 such that for any µ, ν ∈ Cγ,Nk ,

Wk(Φγt µ,Φ
γ
t ν)2k

≤ K(N)

∫ t

0

{
‖µs − νs‖2kk,var + Wk(µs, νs)

2k
}

ds, t ∈ [0, T ],
(3.5.14)

then assertions in (1) holds.
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Proof. Let γ ∈ Pk. Then the weak solution to (3.5.7) is a weak solution

to (3.4.1) if and only if µ is a fixed point of the map Φγ in Cγk . So, if Φγ has

a unique fixed point in Cγk , then the (weak) well-posedness of (3.5.7) implies

that of (3.4.1). Thus, by (3.5.6), it suffices to show that for any N ≥ N0,

Φγ has a unique fixed point in Cγ,Nk . By (3.5.8) and the fixed point theorem,

we only need to prove that for any N ≥ N0, Φγ is contractive with respect

to a complete metric on Cγ,Nk .

(1) For any λ > 0, consider the metric

Wk,λ,var(µ, ν) := sup
t∈[0,T ]

e−λt‖µt − νt‖k,var, µ, ν ∈ Cγ,Nk .

Let Xµ
t solve (3.5.7) for some Brownian motion Wt on a complete prob-

ability filtration space (Ω, {Ft},P). By (3.5.10), (3.5.12) or (3.5.13) with

|f |2 ∈ L̃pq(T ), we find a constant c1 > 0 depending on N such that

sup
µ,ν∈Cγ,Nk

E
(
e12

∫ T
0
|Γs(Xµs ,νs,µs)|

2ds|F0

)
≤ c21,

sup
µ∈Cγ,Nk

E
((∫ T

0

gs(X
µ
s )ds

)2∣∣∣∣F0

)
≤ c21‖g‖2L̃pq(T )

, g ∈ L̃pq(T ), µ, ν ∈ Cγ,Nk .

(3.5.15)

Then by Girsanov’s theorem,

W̃t := Wt −
∫ t

0

Γs(X
µ
s , νs, µs)ds, t ∈ [0, T ]

is a Brownian motion under the probability Q := RTP, where

Rt := e
∫ t
0
〈Γs(Xµs ,νs,µs),dWs〉− 1

2

∫ t
0
|Γs(Xµs ,νs,µs)|

2ds, t ∈ [0, T ]

is a P-martingale. By (3.5.11), we may formulate (3.5.7) as

dXµ
t = bt(X

µ
t , νt)dt+ σt(X

µ
t )dW̃t, t ∈ [0, T ],LXµ0 = γ.

By the weak uniqueness due to (A3.4), the definition of ‖ · ‖k,var, (3.5.9)

and (3.5.11), we obtain

‖Φγt µ− Φγt ν‖k,var = sup
|f̃ |≤1+|·|k

∣∣E[(Rt − 1)f̃(Xµ
t )
]∣∣

≤ E
[
(1 + |Xµ

t |k)|Rt − 1|
]

≤ E
[{

E
(
(1 + |Xµ

t |k)2|F0

)} 1
2
{
E
(
|Rt − 1|2|F0

)} 1
2

]
≤ C(N)E

[
(1 + |Xµ

0 |k)
{
E(e6

∫ t
0
|Γs(Xµs ,νs,µs)|

2ds − 1|F0)
} 1

2

]
,

(3.5.16)
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where we have used the facts that E(|Rt − 1|2|F0) = E(R2
t |F0)− 1 and for

ξs := Γs(X
µ
s , νs, µs),

E(R2
t |F0) ≤

(
E
[
e4

∫ t
0
〈ξs,dWs〉−8

∫ t
0
|ξs|2ds

∣∣F0

]) 1
2
(
E
[
e6

∫ t
0
|ξs|2ds

∣∣F0

]) 1
2

≤ E
[
e6

∫ t
0
|ξs|2ds

∣∣F0

]
.

Moreover, by (3.5.15) we find a constant c2 > 0 such that

E(e6
∫ t
0
|Γs(Xµs ,νs,µs)|

2ds − 1|F0)

≤ 6E
(

e6
∫ t
0
|Γs(Xµs ,νs,µs)|

2ds

∫ t

0

|Γs(Xµ
s , νs, µs)|2ds

∣∣∣∣F0

)
≤ c2

{
E
((∫ t

0

|fs(Xµ
s )|2‖µs − νs‖2k,vards

)2∣∣∣∣F0

)} 1
2

≤ c2e2λtWk,λ,var(µ, ν)2

{
E
((∫ t

0

|fs(Xµ
s )|2e−2λ(t−s)ds

)2∣∣∣∣F0

)} 1
2

≤ c22e2λt‖f2e−2λ(t−·)‖L̃pq(t)Wk,λ,var(µ, ν)2, t ∈ [0, T ].

Combining this with (3.5.16) and the definition of Wk,λ,var, we obtain

Wk,λ,var(Φ
γµ,Φγν)

≤ C(N)(1 + γ(| · |k))c2
√
ε(λ)Wk,λ,var(µ, ν), λ > 0,

(3.5.17)

where

ε(λ) := sup
t∈[0,T ]

‖f2e−2λ(t−·)‖L̃pq(t) ↓ 0 as λ ↑ ∞.

So, Φγ is contractive on (Cγ,Nk ,Wk,λ,var) for large enough λ > 0.

(2) Let k > 1. We consider the metric W̃k,λ,var := Wk,λ,var + Wk,λ,

where

Wk,λ(µ, ν) := sup
t∈[0,T ]

e−λtWk(µt, νt), µ, ν ∈ Cγ,Nk .

By using (3.5.13) replacing (3.5.12), instead of (3.5.17) we find constants

{C(N,λ) > 0}λ>0 with C(N,λ)→ 0 as λ→∞ such that

Wk,λ,var(Φ
γµ,Φγν)

≤ C(N,λ)W̃k,λ,var(µ, ν), λ > 0, µ, ν ∈ Cγ,Nk .
(3.5.18)
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On the other hand, (3.5.14) yields

Wk,λ(Φγµ,Φγν)

≤ sup
t∈[0,T ]

(
C(N)e−2λkt

∫ t

0

{
‖µs − νs‖2kk,var + Wk(µs, νs)

2k
}

ds

) 1
2k

≤ W̃k,λ,var(µ, ν) sup
t∈[0,T ]

(
K(N)

∫ t

0

e−2λk(t−s)ds

) 1
2k

≤ K(N)
1
2k

(2λk)
1
2k

W̃k,λ,var(µ, ν), λ > 0.

Combining this with (3.5.18), we conclude that Φγ is contractive in Cγ,Nk
under the metric W̃k,λ,var when λ is large enough, and hence finish the

proof. �

Proof of Theorem 3.5.1. Let γ ∈ Pk be fixed. By Theorem 1.3.1, (A3.3)

implies the weak well-posedness of (3.5.7) for distributions in Pk with

Φγµ := LXµ· ∈ C
γ
k , µ ∈ Cγk ,

and also implies the strong well-posedness of (3.5.7) in the situation of

Theorem 3.5.1(2). Moreover, by Theorem 1.2.3 and (1.2.17), (A3.3) implies

that (3.5.10) holds for (p, q) = (p0/2, q0/2), (3.5.11) with (3.5.12) holds for

k ≤ 1 due to (3.2.1), and (3.5.11) with (3.5.13) holds for k > 1. Therefore,

by Theorem 3.5.2, it remains to verify (3.5.4), (3.5.8), (3.5.9), and (3.5.14)

for k > 1. Since (3.5.9) and (3.5.8) are trivial for k = 0, we only need to

prove:

• (3.5.4);

• (3.5.9) and (3.5.8) for k > 0;

• (3.5.14) for k > 1.

(a) We first prove that for some constant c0 > 0 and increasing function

c : [1,∞)→ (0,∞) such that for any n ≥ 1 and µ ∈ Cγk ,

E
(∫ t

0

|fs(Xµ
s )|2ds

)n
≤ c(n) + c(n)

(∫ t

0

‖µs‖2kds

)n
,

E exp

[
n

∫ t

0

|fs(Xµ
s )|2ds

]
≤ c(n) exp

[
c0

∫ t

0

‖µs‖2kds

] (3.5.19)

for t ∈ [0, T ], where Xµ
t solves (3.5.7). Consider the SDE

dX̂s = b̂s(X̂s)ds+ σs(X̂s)dWs, X̂0 = Xµ
0 , s ∈ [0, t]. (3.5.20)
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By (A3.4), (1.2.17) applies to this SDE, so that for any n ≥ 1 we find a

constant c1(n) > 0 such that

E
[
en

∫ t
0

(|b̂(0)
s |

2+|fs|2)(X̂s)ds
]
≤ c1(n), t ∈ [0, T ]. (3.5.21)

Let ξs =
{

[σ∗s (σsσ
∗
s )−1](bµs − b̂s)

}
(X̂s), and

Rt := e
∫ t
0
〈ξs,dWs〉− 1

2

∫ t
0
|ξs|2ds, W̃s := Ws −

∫ s

0

γrdr, s ∈ [0, t].

By Girsanov’s theorem, (W̃s)s∈[0,t] is a Brownian motion under RtP, and

(3.5.20) becomes

dX̂s = bs(X̂s, µs)ds+ σs(X̂s)dW̃s, X̂0 = Xµ
0 , s ∈ [0, t].

So, by (3.5.2), (3.5.21) and Hölder’s inequality, we find constants c0, c1,

c2(n) > 0 such that

E
[
en

∫ t
0
|fs(Xµs )|2ds

]
= E

[
Rte

n
∫ t
0
|fs(X̂s)|2ds

]
≤
(
Ee2n

∫ t
0
|fs(X̂s)|2ds

) 1
2
(
E[R2

t ]
) 1

2

≤
√
c1(2n)

(
Eec1

∫ t
0
{|b̂(0)

s |
2+(fs+α‖µs‖k)2}(X̂s)ds

) 1
2 ≤ c2(n)ec0

∫ t
0
‖µs‖2kds.

Next, taking c3(n) > 0 large enough such that the function

r 7→ [log(r + c3(n))]n

is concave for r ≥ 0, so that this and Jensen’s inequality imply

E
(∫ t

0

|fs(Xµ
s )|2ds

)n
≤ E

([
log(c3(n) + e

∫ t
0
|fs(Xµs )|2ds)

]n)
≤
[

log(c3(n) + Ee
∫ t
0
|fs(Xµs )|2ds)

]n ≤ c(n) + c(n)

(∫ t

0

‖µs‖2kds

)n
for some constant c(n) > 0. Therefore, (3.5.19) holds.

(b) Proof of (3.5.8). Simply denote Xt = Xµ
t . By (A3.4) and Itô’s

formula, we find constants c1, c2 > 0 such that

E(1 + |Xt|k) ≤ c1(1 + ‖γ‖kk)

+ c1E
(∫ t

0

{
|Xs|+ |fs(Xs)|+ ‖µs‖k

}
ds

)k
≤ c2 + c2E

(∫ t

0

{
|Xs|2 + ‖µs‖2k

}
ds

) k
2

, t ∈ [0, T ].

(3.5.22)

(b1) When k ≥ 2, by (3.5.22) we find a constant k3 > 0 such that

E(1 + |Xt|k) ≤ k2 + k3

∫ t

0

{
E|Xs|k + ‖µs‖kk

}
ds, t ∈ [0, T ].
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By Gronwall’s lemma, and noting that µ ∈ Cγ,Nk , we find a constant k4 > 0

such that

E(1 + |Xt|k) ≤ k4 + k4

∫ t

0

(1 + ‖µs‖kk)ds

≤ k4 + k4NeNt
∫ t

0

e−N(t−s)ds ≤ 2k4eNt, t ∈ [0, T ].

Taking N0 = 2k4 we derive

sup
t∈[0,T ]

e−Nt(1 + ‖Φtµ‖kk) = sup
t∈[0,T ]

e−NtE(1 + |Xt|k)

≤ N0 ≤ N, N ≥ N0, µ ∈ Cγ,Nk ,

so that (3.5.8) holds.

(b2) When k ∈ (0, 2), by BDG inequality, and by the same reason

leading to (3.5.22), we find constants k5, k6, k7 > 0 such that

Ut := E
[

sup
s∈[0,t]

(1 + |Xs|k)
]
≤ k5 + k5E

(∫ t

0

{
|Xs|2 + ‖µs‖2k

}
ds

) k
2

≤ k6 + k6E
{[

sup
s∈[0,t]

|Xs|k
]1− k2(∫ t

0

|Xs|kds

) k
2
}

+ k6

(∫ t

0

‖µs‖2kds

) k
2

≤ k6 +
1

2
Ut + k7

∫ t

0

Usds+ k6

(∫ t

0

‖µs‖2kds

) k
2

, t ∈ [0, T ].

By Gronwall’s lemma, we find constants k8, k9 > 0 such that for any µ ∈
Cγ,Nk ,

E(1 + |Xt|k) ≤ Ut ≤ k8 + k8

(∫ t

0

‖µs‖2kds

) k
2

≤ k8 + k8NeNt
(∫ t

0

e−2N(t−s)/kds

) k
2

≤ k8 + k9N
1− k2 eNt, t ∈ [0, T ].

Thus, there exists N0 > 0 such that for any N ≥ N0,

sup
t∈[0,T ]

e−Nt(1 + ‖Φtµ‖kk) = sup
t∈[0,T ]

e−NtE(1 + |Xt|k)

≤ k8 + k9N
1− k2 ≤ N, µ ∈ Cγ,Nk ,

which implies (3.5.8).

(c) Proofs of (3.5.9) and (3.5.4). By Theorem 1.3.1, (A3.4) implies that

for any n ≥ 1 there exists a constant c > 0 such that

E
[

sup
t∈[0,T ]

|X̂t|n
∣∣∣X̂0

]
≤ c(1 + |X̂0|n). (3.5.23)
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So, by (1.2.17) and Girsanov’s theorem,

W̃t := Wt −
∫ t

0

{σ∗s (σsσ
∗
s )−1}(X̂s)

{
bs(X̂s, µs)− b̂s(X̂s)

}
ds, t ∈ [0, T ]

is a Q-Brownian motion for Q := RTP, where

ηt := {σ∗t (σtσ
∗
t )−1}(X̂t){bt(X̂t, µt)− b̂t(X̂t)},

RT := e
∫ T
0
〈ηt,dWt〉− 1

2

∫ T
0
|ηt|2dt.

By (A3.4) and (1.2.17), we find an increasing function F such that

E(|RT |2|F0) ≤ E(e
∫ T
0
|fs(X̂s)|2{‖µs−µ̂‖k,var+Wk(µs,µ̂)}2ds|F0) ≤ F (‖µ‖k,T ),

where ‖µ‖k,T := supt∈[0,T ] µt(| · |k). Reformulating (3.5.20) as

dX̂t = bµt (X̂t)dt+ σt(X̂t)dW̃t, LX̂0
= γ,

by the weak uniqueness we have LX̂|Q = LXµ , so that (3.5.23) with 2n

replacing n implies

E
[

sup
t∈[0,T ]

|Xµ
t |n
∣∣∣F0

]
= EQ

[
sup
t∈[0,T ]

|X̂t|n
∣∣∣F0

]
≤
(
E
[

sup
t∈[0,T ]

|X̂t|2n
∣∣∣F0

]) 1
2

(ER2
T |F0)

1
2 ≤ c

√
(1 + |X̂0|n)F (‖µ‖k,T ).

Since supµ∈Cγ,Nk
‖µ‖k,T is a finite increasing function of N , this implies

(3.5.9).

Finally, since Xt := Xµ
t solves (3.4.1) with initial distribution γ and

µt = LXt (i.e. µ is the fixed point of Φγ), and since Φγ has a unique fixed

point in Cγ,Nk for some N > 0 depending on γ as shown in the proof of

Theorem 3.5.2 using (3.5.10) and (3.5.8), we have LX· ∈ C
γ,N
k , and hence

(3.5.4) follows from (3.5.9).

(d) Proof of (3.5.14) for k > 1. Let uλt solve (1.2.3) for Lt = Lt,ν with

b(0) = bν − b̂(1) under (A1,1), such that

‖∇uλ‖∞ ≤
1

2
.

Let Θt = uλt + id and

ξt := Θt(X
µ
t )−Θt(X

ν
t ) = Xµ

t + uλt (Xµ
t )−Xν

t − uλt (Xν
t ).

We have

|Xµ
t −Xν

t | ≤ 2|ξt|. (3.5.24)
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By Itô’s formula we obtain

dξt =
{

(λuλt + b̂(1))(Xµ
t )− (λuλt + b̂(1))(Xν

t )
}

dt

+
{

[(∇Θλ
t )σt](X

µ
t )− [(∇Θλ

t )σt](X
ν
t )
}

dWt.

By (A3.4) and Lemma 1.3.4, there exists a constant c1 > 0 such that

|Xµ
t −Xν

t |2k ≤ c1

∫ t

0

(
‖µs − νs‖k,var + Wk(µs, νs)

)2k
ds

+ c1

∫ t∧τm

0

|Xµ
s∧τm −X

ν
s∧τm |

2kdL̃s + M̃t

holds for some local martingale M̃t and

L̃t := At +

∫ t

0

|fs(Xν
s )|2ds, t ∈ [0, T ],

where At is in (1.3.25) for (Xµ, Xν) replacing (X1, X2). By (3.5.24), the

stochastic Gronwall inequality in Lemma 1.3.3 and Kasminskii’s estimate

(1.2.17), we find a constant c > 0 such that

Wk(Φγt µ,Φ
γ
t ν)2k ≤ (E|Xµ

t −Xν
t |k)2

≤ c
∫ t

0

{
‖µs − νs‖2kk,var + Wk(µs, νs)

2k
}

ds.
(3.5.25)

Thus, (3.5.14) holds. �

3.6 Singular case: with distribution dependent noise

In this part, we investigate the well-posedness of (3.1.1) where the noise is

distribution dependent, and the drift is singular in the spatial variable and

Wk-Lipschitzian in the distribution variable.

For any µ ∈ Cwb ([0, T ];Pk), x ∈ Rd and t ∈ [0, T ], denote

σµt (x) := σt(x, µt), bµt (x) := bt(x, µt).

Recall that by (3.5.1), ‖µ‖k := µ(| · |k)
1
k for k > 0.

(A3.5) Let k ≥ 1. There exist constants K > K0 ≥ 0, l ∈ N, {(pi, qi) : 0 ≤
i ≤ l} ⊂ K with pi > 2, and 1 ≤ fi ∈ L̃piqi (T ) for 0 ≤ i ≤ l, such that

σµt (x) and bµt (x) := bµ,1t (x) + bµ,0t (x) satisfy the following conditions

for all µ ∈ Cwb ([0, T ];Pk).
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(1) aµ := σµ(σµ)∗ is invertible with ‖aµ‖∞ + ‖(aµ)−1‖∞ ≤ K and

lim
ε↓0

sup
µ∈Cwb ([0,T ];Pk)

sup
t∈[0,T ],|x−y|≤ε

‖aµt (x)− aµt (y)‖ = 0.

(2) bµ,1 is locally bounded on [0, T ]×Rd, σµt is weakly differentiable such

that

|bµ,0t (x)| ≤ f0(t, x) +K0‖µt‖k, ‖∇σµt (x)‖ ≤
l∑
i=1

fi(t, x),

|bµ,1t (x)− bµ,1t (y)| ≤ K|x− y|, t ∈ [0, T ], x, y ∈ Rd.

(3) For any t ∈ [0, T ], x ∈ Rd and µ, ν ∈ Pk,

‖σt(x, µ)− σt(x, ν)‖+ |bt(x, µ)− bt(x, ν)| ≤Wk(µ, ν)

l∑
i=0

fi(t, x).

Theorem 3.6.1. Assume (A3.5). Then the following assertions hold.

(1) (3.1.1) is well-posed for distributions in Pk. Moreover, for any j ≥ k

there exists a constant c(j) > 0 such that any solution Xt of (3.1.1)

satisfies

E
[

sup
t∈[0,T ]

|Xt|j
∣∣F0

]
≤ c(j)

{
1 + |X0|j + (E[|X0|k])

j
k

}
. (3.6.1)

(2) For any N > 0 and j ≥ k, there exists a constant Cj,N > 0 such that

for any two solutions Xi
t of (3.1.1) with E[|Xi

0|k] ≤ N, i = 1, 2,

E
(

sup
t∈[0,T ]

|X1
t −X2

t |j
∣∣∣F0

)
≤ Cj,N

{
|X1

0 −X2
0 |j + (E[|X1

0 −X2
0 |k])

j
k

}
.

(3.6.2)

Consequently,

sup
t∈[0,T ]

Wk(P ∗t µ
1, P ∗t µ

2) ≤ 2Ck,NWk(µ1, µ2),

µ1, µ2 ∈ Pk, µ1(| · |k), µ2(| · |k) ≤ N.
(3.6.3)

When K0 = 0, this estimate holds for some constant Cj > 0 replacing

Cj,N for any two solutions with distributions in Pk.
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3.6.1 Some lemmas

We first explain the main idea of the two-step fixed point argument.

Let X0 be F0-measurable with γ := LX0
∈ Pk. Let

Cγk :=
{
µ ∈ Cwb ([0, T ];Pk) : µ0 = γ

}
.

We solve (3.1.1) with a fixed distribution parameter µ ∈ Cγk in the drift:

dXµ
t = bt(X

µ
t , µt)dt+ σt(X

µ
t ,LXµt )dWt, t ∈ [0, T ], Xµ

0 = X0, (3.6.4)

such that the well-posedness of this SDE for distributions in Pk provides a

map

Cγk 3 µ 7→ Φγ· µ := LXµ· ∈ C
γ
k . (3.6.5)

Then the well-posedness of (3.1.1) follows if the map Φγ has a unique fixed

point in Cγk .

To solve (3.6.4), we further fix the distribution parameter ν ∈ Cγk in σ

such that the SDE becomes

dXµ,ν
t = bt(X

µ,ν
t , µt)dt+ σt(X

µ,ν
t , νt)dWt, t ∈ [0, T ], Xµ,ν

0 = X0,

which is well-posed under (A3.5) according to Theorem 1.3.1(3). This gives

a map

Cγk 3 ν 7→ Φγ,µ· ν := LXµ,ν· ∈ Cγk . (3.6.6)

So, we first prove that this map has a unique fixed point such that (3.6.4)

is well-posed, then apply the fixed point theorem to Φγ to derive the well-

posedness of the original SDE (3.1.1).

To apply the fixed point theorem, we will use the following complete

metric on Cγk for θ > 0:

Wk,θ(µ, ν) = sup
t∈[0,T ]

e−θtWk(µt, νt), µ, ν ∈ Cγk . (3.6.7)

To prove that Φγ has a unique fixed point in Cγk , we need to restrict the

map to the following bounded subspaces of Cγk :

Cγ,Nk :=
{
µ ∈ Cγk : sup

t∈[0,T ]

e−Nt(1 + µt(| · |k)) ≤ N
}
, N > 0, (3.6.8)

and to prove that these spaces are Φγ-invariant for large N . This enables

us to verify the contraction of Φγ in Cγ,Nk under a suitable complete metric.

For this purpose, we present the following lemmas. The first one ensures

the well-posedness of (3.6.4).

Lemma 3.6.2. Assume (A3.5) and let µ ∈ Cγk . Then (3.6.4) is well-posed

for distributions in Pk. Moreover, there exist θ0 > 0 and decreasing func-

tion β : [θ0,∞) → (0,∞) with β(θ) ↓ 0 as θ ↑ ∞ such that Φγ defined in

(3.6.5) satisfies

Wk,θ(Φ
γµ,Φγν) ≤ β(θ)Wk,θ(µ, ν), µ, ν ∈ Cγ,Nk . (3.6.9)
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Proof. (a) For the well-posedness, it suffices to prove that Φγ,µ defined

in (3.6.6) has a unique fixed point in Cγk .

In general, let µi ∈ Cγ
i,N
k for some N > 0, γi ∈ Pk, i = 1, 2. For νi ∈

Cγ
i,N
k and initial value Xi

0 with LXi0 = γi, i = 1, 2, consider the SDEs

dXi
t = bµ

i

t (Xi
t)dt+ σν

i

t (Xi
t)dWt, t ∈ [0, T ], i = 1, 2. (3.6.10)

According to Theorem 1.3.1(3), under (A3.5) these SDEs are well-posed,

and by Lemma 1.2.2, there exist constants c0, λ0 ≥ 0 depending on N via

µ1 ∈ Cγ,Nk due to

|bµ
1,0
t (x)| ≤ f0(t, x) +K0‖µ1

t‖k,
such that for any λ ≥ λ0, the PDE for(

∂t +
1

2
tr{aν

1

t ∇2}+∇
bµ

1

t

)
ut = λut − bµ

1,0
t , t ∈ [0, T ], uT = 0 (3.6.11)

has a unique solution such that

‖∇2u‖L̃p0
q0

(T ) ≤ c0, ‖u‖∞ + ‖∇u‖∞ ≤
1

2
. (3.6.12)

Let Y it := Θt(X
i
t), i = 1, 2,Θt := id+ ut. By Itô’s formula we obtain

dY 1
t =

{
bµ

1,1
t + λut

}
(X1

t )dt+ ({∇Θt}σν
1

t )(X1
t ) dWt,

dY 2
t =

(
{bµ

1,1
t + λut + (∇Θt)(b

µ2

t − b
µ1

t )
}

(X2
t )

+
1

2
tr
[
{(aν

2

t − aν
1

t )∇2ut}
]
(X2

t )
)

dt+ ({∇Θt}σν
2

t )(X2
t ) dWt.

Let ηt := |X1
t −X2

t | and

gr :=

l∑
i=0

fi(r,X
2
r ), g̃r := gr‖∇2ur(X

2
r )‖,

ḡr :=

2∑
i=1

‖∇2ur‖(Xi
r) +

2∑
j=1

l∑
i=0

fi(r,X
j
r ), r ∈ [0, T ].

Since b
(1)
t +λut is Lipschitz continuous uniformly in t ∈ [0, T ], by (A3.5) and

the maximal functional inequality in Lemma 1.3.4, there exists a constant

c1 > 0 depending on N such that∣∣{bµ1,1
r + λur

}
(X1

r )−
{
bµ

1,1
r + λur

}
(X2

r )
∣∣ ≤ c1ηr,∣∣{(∇Θr)(b

µ2

r − bµ
1

r )
}

(X2
r )
∣∣ ≤ c1grWk(µ1

r, µ
2
r),∣∣[tr{(aν2

r − aν
1

r )∇2ur}
]
(X2

r )
∣∣ ≤ c1g̃rWk(ν1

r , ν
2
r ),∥∥{(∇Θr)σ

ν1

r

}
(X1

r )−
{

(∇Θr)σ
ν2

r

}
(X2

r )
∥∥

≤ c1ḡrηr + c1grWk(ν1
r , ν

2
r ), r ∈ [0, T ].
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So, by Itô’s formula, for any j ≥ k we find a constant c2 > 1 depending on

N such that

d|Y 1
t − Y 2

t |2j ≤ c2(g2
t + g̃t)

{
Wk(µ1

t , µ
2
t )

2j + Wk(ν1
t , ν

2
t )2j

}
dt

+ c2η
2j
t dAt + dMt

(3.6.13)

holds for some martingale Mt with M0 = 0 and

At :=

∫ t

0

{
1 + g2

s + g̃s + ḡ2
s

}
ds.

Since ‖∇u‖∞ ≤ 1
2 implies |Y 1

t − Y 2
t | ≥ 1

2ηt, this implies

η2j
t ≤ 22jMt + 22jη2j

0 + 22jc2

∫ t

0

η2j
r dAr

+ 22jc2

∫ t

0

(g2
s + g̃s)

{
Wk(µ1

s, µ
2
s)

2j + Wk(ν1
s , ν

2
s )2j

}
ds

(3.6.14)

for some constant c2 > 0 and all t ∈ [0, T ]. By (3.6.12), fi ∈ L̃piqi (T ) for

(pi, qi) ∈ K, Krylov’s estimate (1.2.7) and Khasminskii’s estimate (1.2.17)

for (p, q) = (pi/2, qi/2), we find an increasing function α : (0,∞)→ (0,∞)

and a decreasing function ε : (0,∞)→ (0,∞) with εθ → 0 as θ →∞, such

that

E[erAT |F0] ≤ α(r), r > 0,

sup
t∈[0,T ]

E
(∫ t

0

e−2kθ(t−r)(g2
r + g̃r)dr

∣∣∣∣F0

)
≤ εθ, θ > 0.

By the stochastic Gronwall inequality in Lemma 1.3.3 and the maximal

inequality in Lemma 1.3.4, we find a constant c3 > 0 depending on N such

that (3.6.7) and (3.6.14) yield{
E
(

sup
s∈[0,t]

ηjs

∣∣∣F0

)}2

− c3η2j
0

≤ c3E
(∫ t

0

(g2
s + g̃s)

{
Wk(µ1

s, µ
2
s)

2j + Wk(ν1
s , ν

2
s )2j

}
ds

∣∣∣∣F0

)
≤ c3e2kθtεθ

{
Wk,θ(µ

1, µ2)2j + Wk,θ(ν
1, ν2)2j

}
.

(3.6.15)

Noting that

Wk(LX1
t
,LX2

t
)k ≤ E[|X1

t −X2
t |k] = E[ηkt ],

by taking j = k we obtain

Wk,θ(LX1 ,LX2)k

≤
√
c3E[ηk0 ] +

√
c3εθ

{
Wk,θ(µ

1, µ2)k + Wk,θ(ν
1, ν2)k

}
.

(3.6.16)
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By taking X1
0 = X2

0 = X0 and µ1 = µ2 = µ ∈ Cγ,Nk , when θ > 0 is large

enough such that
√
c3εθ ≤ 1

2 , Φγ,µνi = LXi satisfies

Wk,θ(Φ
γ,µν1,Φγ,µν2) ≤ 1

2
Wk,θ(ν

1, ν2), ν1, ν2 ∈ Cγk .

Thus, Φγ,µ has a unique fixed point in Cγk , so that (3.6.4) is well-posed for

distributions in Pk.

(b) Taking νi = Φγµi, we have LXi = Φγµi, so that (3.6.16) becomes

Wk,θ(Φ
γµ1,Φγµ2) ≤ (c3εθ)

1
2k

{
Wk,θ(µ

1, µ2) + Wk,θ(Φ
γµ1,Φγµ2)

}
.

Choosing θ0 > 0 large enough such that c3εθ0 < 1, we derive (3.6.9) for

β(θ) :=
(c3εθ)

1
2k

1− (c3εθ)
1
2k

, θ ≥ θ0.
�

Lemma 3.6.3. Assume (A3.5). For any (p, q) ∈ K, there exist a constant

c0 ≥ 1 and a function c : [1,∞) → (0,∞) such that for any j ≥ 1 and

µ ∈ Cγk , any solution Xt to (3.6.4) satisfies

E
[
e
∫ t
0
|fs(Xµs )|2ds

∣∣F0

]
≤ e

c0+c0
∫ t
0
‖µs‖2kds+c0‖f‖

c0
L̃
p
q (t) , (3.6.17)

E
[(∫ t

0

|fs(Xµ
s )|2ds

)j ∣∣∣∣F0

]
≤ c(j)

(
1 +

∫ t

0

‖µs‖2kds

)j
‖f‖2j

L̃pq(t)
(3.6.18)

for any t ∈ [0, T ] and f ∈ L̃pq(t), t ∈ [0, T ].

Proof. Let Φγ be defined in (3.6.5). Consider the SDE

dX̄t = b
(1)
t (X̄t)dt+ σt(X̄t,Φ

γ
t µ)dWt, X̄0 = X0, t ∈ [0, T ].

By Krylov’s estimate (1.2.7) which implies Khasminskii’s estimate in The-

orem 1.2.4, there exists a constant c1 > 1 depending only on K,T, d, p, q

and the continuity modulus of aµ which is uniform in µ, such that

E
[
e
∫ t
0
|fs(X̄µs )|2ds

∣∣F0

]
≤ e

c1+c1‖f‖
c1
L̃
p
q (t) , f ∈ L̃pq(t), t ∈ [0, T ]. (3.6.19)

By (A3.5),

ξt := σt(X̄t,Φ
γ
t µ)∗{σt(X̄t,Φ

γ
t µ)σt(X̄t,Φ

γ
t µ)∗}−1bµ,0t (X̄t)

satisfies

|ξt| ≤ c2f0(t, X̄t) + c2‖µt‖k, t ∈ [0, T ]

for some constant c2 > 0. Combining this with (3.6.19), we conclude that

Rt := e
∫ t
0
〈ξs,dWs〉− 1

2

∫ t
0
|ξs|2ds, t ∈ [0, T ]
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is a martingale satisfying

E[R2
t |F0] ≤ ec3+c3

∫ t
0
‖µs‖2kds, t ∈ [0, T ] (3.6.20)

for some constant c3 > 0. By Girsanov’s theorem

W̃t := Wt −
∫ t

0

ξsds, t ∈ [0, T ]

ism-dimensional Brownian motion under the probability QT := RTP. Since

bµ = b(1) + bµ,0, we may reformulate the SDE for X̄t as

dX̄t = bµt (X̄t)dt+ σt(X̄t,Φ
γ
t µ)dW̃t, X̄0 = X0, t ∈ [0, T ],

so that the weak uniqueness of (3.6.4) yields LX̄|QT = LXµ . Combining

this with (3.6.19) and (3.6.20), we obtain

E
[
e
∫ t
0
f(s,Xµs )2ds

∣∣F0

]
= E

[
Rte

∫ t
0
f(s,X̄s)

2ds
∣∣F0

]
≤
(
E[|Rt|2|F0]

) 1
2
(
E[e

∫ t
0
f(s,X̄s)

2ds|F0]
) 1

2 ≤ e
c4+c4

∫ t
0
‖µs‖2kds+c4‖f‖

c1
L̃
p
q (t)

for some constant c4 > 0. This implies (3.6.17) for some constant c0 > 1.

By choosing large enough constant Cj > 0 such that h(r) := {log(Cj +

r)}j is concave for r ≥ 0, using Jensen’s inequality and (3.6.17), we find a

constant C̃j > 1 increasing in j ≥ 1 such that

E
[(∫ t

0

|fs(Xµ
s )|2ds

)j∣∣∣∣F0

]
≤ E

([
log
(
Cj + e

∫ t
0
fs(X

µ
s )2ds

)]j∣∣∣∣F0

)
≤
[

log
(
Cj + E[e

∫ t
0
fs(X

µ
s )2ds]

∣∣F0

)]j
≤ C̃j

(
1 +

∫ t

0

‖µs‖2kds+ ‖f‖c1
L̃pq(t)

)j
.

Using f
‖f‖L̃pq (t)

replacing f , we derive

E
[(∫ t

0

|fs(Xµ
s )|2ds

)j∣∣∣∣F0

]
≤ ‖f‖2j

L̃pq(t)
C̃j

(
1 +

∫ t

0

‖µs‖2kds+ 1

)j
which implies (3.6.18). �

Lemma 3.6.4. Assume (A3.5).

(1) There exists a constant N0 > 0 such that ΦγCγ,Nk ⊂ Cγ,Nk holds for

N ≥ N0.

(2) There exists c : [k,∞)→ (0,∞) such that (3.6.1) holds for any solution

Xt to (3.1.1).
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Proof. (1) Simply denote Mt =
∫ t

0
σs(X

µ
s ,LXµs )dWs. Since ‖σ‖∞ < ∞

due to (A3.5), we have

sup
t∈[0,T ]

E[|Mt|k] <∞.

Combining this with Lemma 3.6.3 below, we find some constants c0, c1 > 0

such that

E(1 + |Xµ
t |k)

≤ E(1 + |X0|k) + c0E
∣∣∣∣∫ t

0

(K0‖µs‖k + f0(s,Xµ
s ) + |Xµ

s |+ 1)ds

∣∣∣∣k + E
∣∣Mt

∣∣k
≤ c1 + c1

∣∣∣∣∫ t

0

‖µs‖2kds

∣∣∣∣k/2 + c1

∫ t

0

E(1 + |Xµ
s |k)ds, t ∈ [0, T ].

By Gronwall’s inequality and (3.6.8), we find constants c2, c3 > 0 such that

E(1 + |Xµ
t |k) ≤ c2 + c2

∣∣∣∣∫ t

0

e−
2N
k s‖µs‖2ke

2N
k sds

∣∣∣∣k/2
≤ c3 + c3N

1−k/2eNt, µ ∈ Cγ,Nk , t ∈ [0, T ].

Therefore, we find a constant N0 > 0 such that

sup
t∈[0,T ]

(1 + ‖Φγt µ‖kk)e−Nt ≤ c3 + c3N
1−k/2 ≤ N, N ≥ N0, µ ∈ Cγ,Nk .

That is, ΦγCγ,Nk ⊂ Cγ,Nk for N ≥ N0.

(2) Let Xt solve (3.1.1) with γ := LX0 ∈ Pk, and denote µt := LXt .
Then Xt = Xµ

t . By (A3.5) and Itô’s formula, for any j ≥ 1 we find a

constant c1 > 0 such that

|Xt|2j − |X0|2j

≤ c1
∫ t

0

{
1 + |Xs|2j + |Xs|2j−1f0(s,Xs) + ‖µs‖2jk

}
ds+Mt

(3.6.21)

holds for some martingale Mt with d〈M〉t ≤ c21|Xt|2(2j−1)dt. Noting that

c1

∫ t

0

|Xs|2j−1f0(s,Xs)ds ≤ c1
(

sup
s∈[0,t]

|Xs|2j−1
)∫ t

0

f0(s,Xs)ds

≤ 1

2
sup
s∈[0,t]

|Xs|2j + c2

(∫ t

0

f0(s,Xs)ds

)2j

holds for some constant c2 > 0, we see that ηt := sups∈[0,t] |Xs|2j satisfies

ηt ≤ 2|X0|2j+ 2c1

∫ t

0

{
1 + ηs + ‖µs‖2jk

}
ds

+ 2c2

(∫ t

0

f0(s,Xs)ds

)2j

+ 2 sup
s∈[0,t]

Ms.

(3.6.22)
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By d〈M〉t ≤ c21|Xt|2(2j−1)dt and BDG inequality in Lemma 1.3.5, we find

constants c3, c4 > 0 such that

E
(

sup
s∈[0,t]

Ms

∣∣∣F0

)
≤ c3E

[(∫ t

0

|Xs|2(2j−1)ds

) 1
2
∣∣∣∣F0

]
≤ 1

4
E
(
ηt
∣∣F0

)
+ c4

∫ t

0

{
1 + E(ηs|F0)

}
ds.

Combining this with (3.6.22) and (3.6.18), we find a constant c5 > 0 such

that

E
(
ηt
∣∣F0

)
≤ c5 + c5|X0|2j + c5

∫ t

0

{
E(ηs|F0) + ‖µs‖2jk

}
ds (3.6.23)

holds for t ∈ [0, T ]. By Gronwall’s inequality, there exists a constant c6 > 0

such that

E
(
ηt
∣∣F0

)
≤ c6 + c6|X0|2j + c6

∫ t

0

‖µs‖2jk ds, t ∈ [0, T ]. (3.6.24)

In particular, choosing j = k and applying Jensen’s inequality, we derive

E
[

sup
s∈[0,t]

|Xs|k
∣∣∣F0

)
≤
{
E
(
ηt
∣∣F0

)} 1
2

≤
√
c6
(
1 + |X0|k

)
+
c6
2

∫ t

0

‖µs‖kkds+
1

2
sup
s∈[0,t]

‖µs‖kk.

Noting that ‖µs‖kk = E[|Xs|k], by taking expectation we obtain

‖µt‖kk ≤ E
[

sup
s∈[0,t]

|Xs|k
]
≤ 2
√
c6
(
1 + E[|X0|k]

)
+ c6

∫ t

0

‖µs‖kk, t ∈ [0, T ].

By Gronwall’s inequality, we find a constant c > 0 such that

‖µt‖kk ≤ c(1 + E[|X0|k]), t ∈ [0, T ].

Substituting into (3.6.24) we derive (3.6.1). �

3.6.2 Proof of Theorem 3.6.1

(1) Since (3.6.1) is included in Lemma 3.6.4, it remains to prove that Φγ

has a unique fixed point in Cγ,Nk for N > N0.

Taking large enough θ such that β(θ) < 1, by (3.6.9) we prove the

contraction of Φγ on the complete metric space (Cγ,Nk ,Wk,θ), so that Φγ

has a unique fixed point in Cγ,Nk .
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(2) Let N > 0. For any two solutions Xi
t of (3.1.1) with E[|Xi

0|k] ≤ N ,

they solve (3.6.4) for µit = νit = LXit , i = 1, 2. By (3.6.1), there exists a

constant KN > 0 depending on N such that µ, ν ∈ Cγ,KNk . By (3.6.16) for

large θ such that
√
c3εθ ≤ 1

4 , where θ and c3 depend on N , we obtain

Wk,θ(µ
1
t , µ

2
t )
k ≤ 2

√
c3E[|X1

0 −X2
0 |k].

Substituting into (3.6.15) yields the estimate (3.6.2) for some constant

Cj,N > 0. When K0 = 0 we have |bµ,0| ≤ f0 for any µ ∈ Cwb ([0, T ];Pk),

so that all the above constants are uniformly bounded in N , hence (3.6.2)

holds for some constant Cj,N = Cj independent of N .

Finally, by taking j = k and X1
0 , X

2
0 such that

LX1
0

= µ1, LX2
0

= µ2, E[|X1
0 −X2

0 |k] = Wk(µ1, µ2)k,

we deduce (3.6.3) from (3.6.2).

3.7 Singular density dependent SDEs

In this section, we study the following density dependent SDE on Rd:

dXt = bt(Xt, `Xt(Xt), `Xt)dt+ σt(Xt, `Xt)dWt, t ∈ [0, T ], (3.7.1)

where `ξ is the distribution density function of an absolutely continuous

random variable ξ on Rd,

b : [0, T ]× Rd × [0,∞)×D1
+ → Rd, σ : [0, T ]× Rd × L̃1 → Rd ⊗ Rm

are measurable, and

D1
+ :=

{
f ∈ L1(Rd) : f ≥ 0,

∫
Rd
f(x)dx ≤ 1

}
is a closed subspace of L1(Rd). We take D1

+ as the set of sub-probability

densities rather than probability densities, to ensure the completeness of the

set in Lk and L̃k for k > 1, which is crucial in the proof of well-posedness.

A continuous adapted process (Xt)t∈[0,T ] on Rd is called a (strong)

solution of (3.7.1), if∫ T

0

E
[
|bs(Xs, `Xs(Xs), `Xt)|+ ‖σs(Xs, `Xt)‖2

]
ds <∞

and P-a.s.

Xt = X0 +

∫ t

0

bs(Xs, `Xs(Xs), `Xt)ds+

∫ t

0

σs(Xs, `Xt)dWs, t ∈ [0, T ].
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A pair (Xt,Wt)t∈[0,T ] is called a weak solution of (3.7.1), if (Wt)t∈[0,T ]

is an m-dimensional Brownian under a complete filtration probability s-

pace (Ω, {Ft}t∈[0,T ],P) such that (Xt)t∈[0,T ] solves (3.7.1). We identify any

two weak solutions (Xt,Wt)t∈[0,T ] and (X̄t, W̄t)t∈[0,T ] if (Xt, lt)t∈[0,T ] and

(X̄t, l̄t)t∈[0,T ] have the same distribution under the corresponding probabil-

ity spaces.

When m = d, σ = Id (the d×d identity matrix), and bt(x, r, ρ) = bt(x, r)

does not depend on ρ, the weak solutions are studied in [Hao et al (2021a);

Issoglio and Russo (2023)]. In [Hao et al (2021a)], the initial distribution

is not necessarily absolutely continuous, where the weak existence is proved

for bt(x, r) bounded and continuous in (t, r) locally uniformly in x, and the

weak and strong uniqueness holds when bt(x, r) is furthermore Lipschitz

continuous in r uniformly in (t, x). In [Issoglio and Russo (2023)], the

initial density is in Cβ+ := ∪p>βCp for some β ∈ (0, 1
2 ), the weak well-

posedness is proved for bt(x, r) := F (r)b̃t(x), where b̃ ∈ Cwb ([0, T ];C−β)

and F is bounded and Lipschitz continuous such that rF (r) is Lipschitz

continuous in r ≥ 0. See [Izydorczyk et al (2019)] and references within for

the case with better drift.

In (3.7.1) the noise does not point-wisely depend on the density. It

seems that to solve SDEs with point-wisely density dependent noise, one

needs stronger regularity for the initial density and the coefficients. For

instance, [Jourdain and Méléard (1998)] proved the well-posedness and

studied the propagation of chaos for the following SDE with point-wisely

density dependent noise:

dXt = b(`Xt(Xt))dt+ σ(`Xt(Xt))dWt,

where the initial distribution density is C2+-smooth, b is C2-smooth, and

σ is uniformly elliptic and C3-smooth.

For k > 1 and a signed measure µ with density function `µ(x) := µ(dx)
dx ,

let

‖µ‖Lk := ‖`µ‖Lk , ‖µ‖L̃k := ‖`µ‖L̃k .
When k = 1, we define

‖µ‖L1 := sup
‖f‖∞≤1

|µ(f)|, ‖µ‖L̃1 := sup
z∈Rd

sup
‖f‖∞≤1

|µ(1B(z,1)f)|,

where µ(f) :=
∫
Rd fdµ. Note that ‖ · ‖L1 is the total variation norm.

We will solve (3.7.1) with initial distributions in the classes

Pk :=
{
ν ∈ P : ‖ν‖Lk <∞

}
, P̃k :=

{
ν ∈ P : ‖ν‖L̃k <∞

}
, k ∈ [1,∞],

which are complete metric spaces under distances ‖ν1 − ν2‖Lk and ‖ν1 −
ν2‖L̃k respectively. The main results in this part come from [Wang (2023e)].
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3.7.1 Density free noise

(A3.6) at(x) := (σtσ
∗
t )(x) and bt(x, r, ρ) = b

(1)
t (x) + b

(0)
t (x, r, ρ) satisfy the

following conditions for some k ∈ [1,∞].

(1) at(x) is invertible with ‖a‖∞ + ‖a−1‖∞ < ∞, and there exist con-

stants α ∈ (0, 1) and C > 0 such that

sup
t∈[0,T ]

‖at(x)− at(y)‖ ≤ C|x− y|α, x, y ∈ Rd.

(2) There exist (p0, q0) ∈ K, θ > 2
q0

+ d
p0
− 1, and 1 ≤ f0 ∈ L̃p0

q0 (T ) such

that

|b(0)
t (x, r, ρ)− b(0)

t (x, r̃, ρ̃)| ≤ f0(t, x)tθ
(
|r − r̃|+ ‖ρ− ρ̃‖L̃k

)
,

|b(0)
t (x, r, ρ)| ≤ f0(t, x), (t, x) ∈ (0, T ]× Rd, r, r̃ ∈ [0,∞), ρ, ρ̃ ∈ L̃k ∩ D1

+.

(3) b
(1)
t (0) is bounded in t ∈ [0, T ] and

‖∇b(1)‖∞ := sup
t∈[0,T ]

sup
x 6=y

|b(1)
t (x)− b(1)

t (y)|
|x− y|

<∞.

To ensure `Xt ∈ Lk for `X0
∈ Lk, we replace (A3.6)(2) by the following

condition.

(2′) There exist a constant C > 0, (p0, q0) ∈ K, θ > 2
q0

+ d
p0
− 1, and

0 ≤ f0 ∈ Lp0
q0 (T ) such that

|b(0)
t (x, r, ρ)− b(0)

t (x, s, ρ̃)| ≤
(
C + f0(t, x)

)(
|r − s|+ ‖ρ− ρ̃‖Lk

)
,

|b(0)
t (x, r, ρ)| ≤ f0(t, x), (t, x) ∈ (0, T ]× Rd, r, s ∈ [0,∞), ρ, ρ̃ ∈ Lk ∩ D1

+.

Under the above assumptions, the following result ensures the well-

posedness of (3.7.1) for initial distributions in P̃k or Pk for

k ∈
[ p0

p0 − 1
,∞
]
∩ (k0,∞], k0 :=

d

2θ + 1− 2q−1
0 − dp−1

0

.

This explains the role played by the quantity θ in (A3.6)(2)(2′): for bigger

θ, (2) and (2′) provide stronger conditions on |b(0)
t (x, r, ρ)− b(0)

t (x, r̃, ρ̃)| for

small t, so that the SDE is solvable for initial distributions in larger classes

Pk and P̃k. In particular, when p0 = ∞ and θ is large enough such that

k0 < 1, we may take k = 1 so that the SDE is well-posed for any initial

distribution ν ∈ P.

Theorem 3.7.1. Let k ∈ [ p0

p0−1 ,∞] with k > k0 := d
2θ+1−2q−1

0 −dp
−1
0

.
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(1) Under (A3.6), for any γ ∈ P̃k, (3.7.1) has a unique weak solution with

LX0
= γ satisfying `X· ∈ L̃k∞(T ), and there exists an increasing func-

tion Λ : [0,∞)→ (0,∞) such that for any two weak solutions {Xi
t}i=1,2

of (3.7.1) with `Xi· ∈ L̃
k
∞,

sup
t∈[0,T ]

‖`X1
t
−`X2

t
‖L̃k ≤ Λ

(
‖LX1

0
‖L̃k∧‖LX1

0
‖L̃k
)
‖LX1

0
−LX2

0
‖L̃k . (3.7.2)

If moreover σt is weakly differentiable with

‖∇σ‖ ≤
l∑
i=1

fi for some l ∈ N,

0 ≤ fi ∈ L̃piqi (T ), (pi, qi) ∈ K, 1 ≤ i ≤ l,

(3.7.3)

then for any X0 with LX0
∈ L̃k, (3.7.1) has a unique strong solution

with `X· ∈ L̃k∞(T ).

(2) Under (A3.6) with (2′) replacing (A3.6)(2), assertions in (1) hold for

(Pk, Lk∞, Lk) replacing (P̃k, L̃k∞(T ), L̃k).

For fixed k ≥ 1 and γ ∈ P̃k, let P̃kγ,T be the set of all bounded measur-

able maps

ρ : (0, T ]→ L̃k ∩ D1
+, ρ0 = γ.

When k = 1, the initial value γ may be singular, and if it is absolutely

continuous we regard it as its density function.

Then P̃kγ,T is complete under the metric

d̃k,λ(γ1, γ2) := sup
t∈[0,T ]

e−λt‖ρ1
t − ρ2

t‖L̃k , ρ1, ρ2 ∈ P̃kγ,T

for λ > 0. We define (Pkγ,T , dk,λ) in the same way with (Lk,Pk) replacing

(L̃k, P̃k).

To prove the well-posedness of (3.7.1), we will use the fixed point theo-

rem for the map induced by the SDE for ρ ∈ P̃kγ,T replacing `X· . For any

ρ ∈ P̃kγ,T , let

bρt (x) := bt(x, ρt(x), ρt), σρt (x) := σt(x, ρt), t ∈ [0, T ], x ∈ Rd.
Then for γ := LX0 ∈ L̃k, (3.7.1) has a unique (weak or strong) solution

with `X· ∈ L̃k∞ if we could verify the following two things:

(1) For any ρ ∈ P̃kγ,T , the SDE

dXρ
t = bρt (X

ρ
t )dt+ σρt (Xρ

t )dWt, t ∈ [0, T ], Xρ
0 = X0 (3.7.4)

is (weakly or strongly) well-posed, and

ρ 7→ Φγt ρ := LXρt , t ∈ (0, T ]

provides a map Φγ : P̃kγ,T → P̃kγ,T .
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(2) Φγ has a unique fixed point ρ̄ in P̃kγ,T . Indeed, from these we see

that Xt := X ρ̄
t is the unique (weak or strong) solution of (3.7.1) with

LX· ∈ L̃k∞(T ).

To verify (1) and (2), we recall some heat kernel upper bounds of

[Menozzi et al (2021)], and estimate the L̃pq-L̃
p′

q norm for time inhomo-

geneous semigroups.

We consider heat kernel estimates for the time dependent second order

differential operator

La,bt :=
1

2
tr{at∇2}+∇bt ,

where

a : [0, T ]× Rd → Rd ⊗ Rd, b : [0, T ]× Rd → Rd

satisfy the following conditions.

(Ha,b) at(x) is invertible and there exist constants C > 0 and α ∈ (0, 1)

such that

‖b·(0)‖∞ + ‖a‖∞ + ‖a−1‖∞ ≤ C,
sup
t∈[0,T ]

‖at(x)− at(y)‖ ≤ C|x− y|α,

sup
t∈[0,T ]

|bt(x)− bt(y)| ≤ C
(
|x− y|+ |x− y|α

)
, x, y ∈ Rd.

(Ha) at(x) is differentiable in x, and there exist constants C ∈ (0,∞) and

α ∈ (0, 1) such that

‖∇a‖∞ ≤ C, sup
t∈[0,T ]

‖∇at(x)−∇at(y)‖ ≤ C|x− y|α, x, y ∈ Rd.

Under (Ha,b), for any s ∈ [0, T ), the SDE

dXx
s,t = bs(X

x
s,t)ds+

√
as(X

x
s,t)dWs, t ∈ [s, T ], Xx

s,s = x ∈ Rd

is weakly well-posed with semigroup {P a,bs,t }0≤s<t≤T and transition density

{pa,bs,t }0≤s<t≤T given by

P a,bs,t f(x) =

∫
Rd
pa,bs,t (x, y)f(y)dy = E[f(Xx

s,t)], f ∈ Bb(Rd),

and we have the following Kolmogorov backward equation (see Remark 2.2

in [Menozzi et al (2021)])

∂sP
a,b
s,t f = −LsP a,bs,t f, f ∈ C∞b (Rd), s ∈ [0, t], t ∈ (0, T ]. (3.7.5)
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Next, we denote ψs,t = θ
(1)
t,s presented in [Menozzi et al (2021)]. Then

(ψs,t)0≤s≤t≤T is a family of diffeomorphisms on Rd satisfying

sup
0≤s≤t≤T

{
‖∇ψs,t‖∞ + ‖∇ψ−1

s,t ‖∞
}
≤ δ (3.7.6)

for some constant δ > 0 depending on α,C. For any κ > 0, consider the

Gaussian heat kernel

pκt (x) := (κπt)−
d
2 e−

|x|2
κt , t > 0, x ∈ Rd.

The following result is taken from [Menozzi et al (2021)].

Theorem 3.7.2. Assume (Ha,b). Then there exist constants c, κ > 0 de-

pending on C,α such that

|∇ipa,bs,t (·, y)(x)| ≤ c(t− s)− i
2 pκt−s(ψs,t(x)− y),

i = 0, 1, 2, 0 ≤ s < t ≤ T, x, y ∈ Rd.
(3.7.7)

If moreover (Ha) holds, then

|∇pa,bs,t (x, ·)(y)| ≤ c(t− s)− 1
2 pκt−s(ψs,t(x)− y),

0 ≤ s < t ≤ T, x, y ∈ Rd,
(3.7.8)

and for any β ∈ (0, 1) there exists a constant c′ > 0 depending on C,α, β

such that

|∇pa,bs,t (·, y)(x)−∇pa,bs,t (·, y′)(x)|+ |∇pa,bs,t (x, ·)(y)−∇pa,bs,t (x, ·)(y′)|

≤ c′|y − y′|β(t− s)−
1+β

2

{
pκt−s(ψs,t(x)− y) + pκt−s(ψs,t(x)− y′)

}
,

0 ≤ s < t ≤ T, x, x′, y ∈ Rd.

(3.7.9)

For any f ∈ Bb(Rd), 0 ≤ s < t ≤ T and x ∈ Rd, let

Pκt f(x) :=

∫
Rd
pκt (x− y)f(y)dy,

P̂κs,tf(x) :=

∫
Rd
pκt−s(ψs,t(x)− y)f(y)dy,

P̃κs,tf(x) :=

∫
Rd
pκt−s(ψs,t(y)− x)f(y)dy.

(3.7.10)

It is well known that for some constant c > 0,

‖Pκt ‖Lp→Lp′ := sup
‖f‖p≤1

‖Pκt f‖Lp′ ≤ ct
− d(p′−p)

2pp′ ,

t > 0, 1 ≤ p ≤ p′ ≤ ∞.
(3.7.11)
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Combining this with (3.7.6) we obtain

‖P̂κs,t‖Lp→Lp′ + ‖P̃κs,t‖Lp→Lp′ ≤ c(t− s)
− d(p′−p)

2pp′ ,

0 ≤ s < t ≤ T, 1 ≤ p ≤ p′ ≤ ∞
(3.7.12)

for some different constant c > 0. Below we extend this estimate to the

L̃pq-L̃
p′

q norm.

Lemma 3.7.3. There exists a constant c > 0 such that for any 0 ≤ s <

t ≤ T, 1 ≤ p ≤ p′ ≤ ∞ and q ∈ [1,∞],

‖P̂κ·,tf‖L̃p′q (t)
+ ‖P̃κ·,tf‖L̃p′q (t)

≤ c
∥∥(t− ·)−

d(p′−p)

2pp′ f
∥∥
L̃pq(t)

, f ∈ Bb([0, T ]× Rd),
(3.7.13)

where and in the sequel, (t− ·)(s) := t− s is a function on [0, t], and

sup
z∈Rd

‖gP̂κs,t(1B(z,1)f)‖L1

≤ c(t− s)−
d(p′−p)

2pp′ ‖g‖
L̃

p′
p′−1

‖f‖L̃p , f, g ∈ Bb(Rd).
(3.7.14)

Proof. Let Bn := {v ∈ Zd : |v|1 :=
∑d
i=1 |vi| = n}, n ≥ 0. By (3.7.6), we

find a constant c1 > 1 such that

|ψs,t(x)−y|2 ≥ (c−1
1 n2−c1)+, x ∈ B(ψ−1

s,t (z), 1), y ∈ ∪v∈BnB(z+v, d), z ∈ Rd.
Combining this with (3.7.11), we find constants c2, c3, c4 > 0 such that for

any z ∈ Rd, 0 ≤ s < t ≤ T, and f, g ∈ B+
b (Rd),

‖1B(ψ−1
s,t (z),1)gP̂

κ
s,tf‖L1 ≤

∞∑
n=0

∑
v∈Zd:|v|1=n

‖1B(ψ−1
s,t (z),1)gP̂

κ
s,t(1B(z+v,d)f)‖L1

≤
∞∑
n=0

∑
v∈Bn

∫
Rd×Rd

|1B(ψ−1
s,t (z),1)g|(x)pκt−s(ψs,t(x)− y)|1B(z+v,d)f |(y)dxdy

≤ c2
∞∑
n=0

∑
v∈Bn

e
− n2

c3(t−s)

∫
Rd×Rd

|1B(ψ−1
s,t (z),1)g|(x)pκ2(t−s)(ψs,t(x)− y)

|1B(z+v,d)f |(y)dxdy

≤ c3
∞∑
n=0

∑
v∈Bn

e
− n2

c3(t−s) ‖{Pκ2(t−s)(1B(ψ−1
s,t (z),1)g)}1B(z+v,d)f‖L1

≤ c3
∞∑
n=0

∑
v∈Bn

e
− n2

c3(t−s) ‖Pκ2(t−s)(1B(ψ−1
s,t (z),1)g)‖

L
p
p−1
‖1B(z+v,d)f‖Lp

≤ c4(t− s)−
d(p′−p)

2pp′ ‖g‖
L

p′
p′−1

∞∑
n=0

∑
v∈Bn

e
− n2

c3(t−s) ‖1B(z+v,d)f‖Lp .
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Since

sup
z∈Rd

(∫ t

0

‖1B(z,d)f‖qLpds

) 1
q

≤ c5‖f‖L̃pq(t) (3.7.15)

holds for some constant c5 > 0, we find a constant c6 > 0 such that this

and Hölder’s inequality imply

sup
z∈Rd

(∫ t

0

‖1B(z,1)P̂
κ
s,tfs‖

q

Lp′
ds

) 1
q

= sup
z∈Rd

(∫ t

0

‖1B(ψ−1
s,t (z),1)P̂

κ
s,tfs‖

q

Lp′
ds

) 1
q

≤ sup
z∈Rd

(∫ t

0

{
c4‖1B(z,d)fs‖Lp(t− s)−

d(p′−p)

2pp′
}q

ds

) 1
q

sup
r∈(0,T ]

∞∑
n=0

∑
v∈Bn

e−
n2

c3r

≤ c6
∥∥(t− ·)−

d(p′−p)

2pp′ f
∥∥
L̃pq(t)

∞∑
n=0

∑
v∈Bn

e−
n2

c3T .

This implies the upper bound for P̂κ in (3.7.13), by noting that for some

constant K > 0,

∞∑
n=0

∑
v∈Bn

e−
n2

c3T ≤
∞∑
n=0

K(1 + nd−1)e−
n2

c3T <∞. (3.7.16)

By (3.7.6) and integral transforms, the estimate on P̃s,t follows from that

of P̂κs,t.

Similarly, we find a constant K > 1 such that

‖gP̂κs,t(1B(ψs,t(z),1)f)‖L1 ≤
∞∑
n=0

∑
v∈Zd:|v|1=n

‖1B(z+v,d)gP̂
κ
s,t(1B(ψs,t(z),1)f)‖L1

≤
∞∑
n=0

∑
v∈Bn

∫
Rd×Rd

|1B(z+v,d)g|(x)pκt−s(ψs,t(x)− y)|1B(ψs,t(z),1)f |(y)dxdy

≤ K(t− s)−
d(p′−p)

2pp′

∞∑
n=0

∑
v∈Bn

e−
n2

K(t−s) ‖g‖
L̃

p′
p′−1

‖1B(z,1)f‖Lp .

This together with (3.7.15) and (3.7.16) implies (3.7.14) for some c > 0. �

For ρ ∈ P̃kγ,T , we denote

σρt (x) := σt(x, ρt), bρt (x) := bt(x, ρt(x), ρt) = b
(1)
t (x) + bρ,0t (x),

bρ,0t (x) := b
(0)
t (x, ρt(x), ρt), t ∈ [0, T ], x ∈ Rd.

Lemma 3.7.4. Assume (A3.6) with (A3.6)(1) holding for σρ replacing σ

uniformly in ρ ∈ L̃k ∩ D1
+, where k ∈ [ p0

p0−1 ,∞]. Then (3.7.4) is weakly
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well-posed for any γ ∈ P̃k and ρ ∈ P̃kγ,T , and for any β ∈ (0, 1) there exists

a constant c > 1 independent of γ and ρ such that Φγt ρ := `Xρt satisfies

‖Φγρ‖L̃k∞ ≤ c‖γ‖L̃k . (3.7.17)

Moreover, under (2′) replacing (A3.6)(2), this estimate holds for (Lk, Lk∞)

in place of (L̃k, L̃k∞(T )).

Proof. (a) By (A3.6)(2),

‖bρ,0‖L̃p0
q0

(T ) ≤ ‖f0‖L̃p0
q0

(T ) <∞, ρ ∈ P̃kγ,T . (3.7.18)

According to Theorem 1.3.1, this together with (A3.6) imply the well-

posedness of (3.7.4). Moreover, by Theorem 6.2.7(ii)–(iii) in [Bogachev

et al (2015)], the distribution density function `Xρt exists.

(b) To estimate Φγt ρ for ρ ∈ L̃k∞ ∩ D1
+, consider the SDE

dX̄ρ
s = b(1)

s (X̄ρ
s )ds+ σρs (X̄ρ

s )dWs,

s ∈ [0, t], X̄ρ
0 = Xρ

0 = X0 with LX0 = γ.
(3.7.19)

Let aρ := σρ(σρ)∗. Then

E[f(X̄ρ
t )]=E[(P a

ρ,b(1)

0,t f)(X0)]=

∫
Rd×Rd

pa
ρ,b(1)

0,t (x, y)f(y)γ(dx)dy, f ∈ B+(Rd),

and (3.7.7) holds for pa
ρ,b(1)

s,t with constants c, κ > 0 uniformly in ρ. So, we

find a constant c1 > 0 such that

E[f(X̄ρ
t )] ≤ c1

∫
Rd

(P̂κ0,tf)(x)γ(dx) = c1(P̂κ∗0,tγ)(f), f ∈ B+(Rd), (3.7.20)

where

(P̂κ∗0,tγ)(dy) :=

(∫
Rd
p̂κ0,t(x, y)γ(dx)

)
dy, t ∈ (0, T ], γ ∈ P. (3.7.21)

On the other hand, let

Rt := e
∫ t
0
〈ξs,dWs〉− 1

2

∫ t
0
|ξs|2ds, ξs :=

{
σρs (σs(σ

ρ
s )∗)−1bρ,0s

}
(X̄s).

By (3.7.18), the uniform boundedness of ‖σρ(σρ(σρ)∗)−1‖∞, and Khasmin-

skii’s estimate in Theorem 1.2.4 and the Krylov’s estimate (1.2.7), we find

a map Kρ : [1,∞)→ (0,∞) such that

Kρ(p) := (E[Rpt ])
1
p <∞, p ≥ 1. (3.7.22)

By Girsanov’s theorem,

W̃s := Ws −
∫ s

0

ξrdr, s ∈ [0, t]
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is an m-dimensional Brownian motion under the probability measure Qt :=

RtP, with which the SDE (3.7.19) reduces to

dX̄s = bρs(X̄s)ds+ σρs (X̄s)dW̃s, s ∈ [0, t], X̄0 = Xρ
0 .

By the weak uniqueness, the law of Xρ
t under P coincides with that of X̄t

under Qt. Combining this with (3.7.20), (3.7.22) and (3.7.14), for any p > 1

and k′ ≥ k we find constants c1(p), c2(p) > 0 such that∫
Rd

{
(Φγt ρ)1B(z,1)f

}
(y)dy = E

[
(1B(z,1)f)(Xρ

t )
]

= E
[
Rt(1B(z,1)f)(X̄ρ

t )
]

≤
(
E[R

p
p−1

t ]
) p−1

p
(
E
[
(1B(z,1)f

p)(X̄ρ
t )
]) 1

p

≤ c1(p)

(∫
Rd

{
(P̂κ0,t(1B(z,1)f

p)
}

(x)γ(dx)

) 1
p

≤ c2(p)‖γ‖
1
p

L̃k
t
− d(k′−k)

2kk′p ‖f‖
L̃
pk′
k′−1

, t ∈ (0, T ], f ∈ B+(Rd).

Therefore, for any probability density γ ∈ L̃k,

‖Φγt ρ‖
L̃

pk′
pk′−k′+1

≤ c2(p)‖γ‖
1
p

L̃k
t
− d(k′−k)

2kk′p ,

p > 1, k′ ≥ k, ρ ∈ P̃kγ,T , t ∈ (0, T ],

(3.7.23)

where for k′ = k =∞ we set pk′

pk′−k′+1 := p
p−1 , d(k′−k)

2kk′p := 0. Using (3.7.12)

replacing the estimate in Lemma 3.7.3, we find a map c : (1,∞) → (0,∞)

such that

‖Φγt ρ‖
L

pk′
pk′−k′+1

≤ c(p)‖γ‖
1
p

Lk
t
− d(k′−k)

2kk′p ,

p > 1, k′ ≥ k, ρ ∈ P̃kγ,T , t ∈ (0, T ].

(3.7.24)

(c) By the backward Kolmogorov equation (3.7.5) and Itô’s formula, for

any f ∈ C∞0 (Rd) we have

d
{

(P a
ρ,b(1)

s,t f)(Xρ
s )
}

=
{(
∂s + La

ρ,b(1)

s +∇bρ,0s
)
P a

ρ,b(1)

s,t f
}

(Xρ
s )ds+ dMs

=
{
∇bρ,0s Ps,tf

}
(Xρ

s )ds+ dMs, s ∈ [0, t]

for some martingale Ms. Then

E[f(Xρ
t )] = E[P a

ρ,b(1)

t,t f(Xρ
t )]

= E[P a
ρ,b(1)

0,t f(X0)] +

∫ t

0

E
[
(∇bρ,0s P a

ρ,b(1)

s,t f)(Xρ
s )
]
ds, s ∈ [0, t].

(3.7.25)

We explain that the last term in (3.7.25) exists. Indeed, by (1.4.1), there

exists a constant c2 > 0 such that

‖∇P a
ρ,b(1)

s,t f‖∞ ≤ c2‖∇f‖∞, 0 ≤ s ≤ t, f ∈ C1
b (Rd),
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so that (3.7.18) and Krylov’s estimate (1.2.7) yield

E
∫ t

0

∣∣(∇bρ,0s P a
ρ,b(1)

s,t f
)
(Xρ

s )
∣∣ds ≤ E

∫ t

0

c2‖∇f‖∞|bρ,0s |(Xρ
s )ds <∞.

Noting that Φγsρ := `Xρs and

P a
ρ,b(1)

s,t f(x) =

∫
Rd
pa

ρ,b(1)

s,t (x, y)f(y)dy,

(3.7.25) is equivalent to∫
Rd

{
Φγsf

}
(y)dy =

∫
Rd×Rd

γ(x)pa
ρ,b(1)

0,t (x, y)f(y)dxdy

+

∫ t

0

ds

∫
Rd×Rd

(Φγsρ)(x)
{
∇bρ,0s pa

ρ,b(1)

s,t (·, y)(x)
}
f(y)dy,

f ∈ C∞0 (Rd), s ∈ [0, t].

Thus,

(Φγt ρ)(y) =

∫
Rd
pa

ρ,b(1)

0,t (x, y)γ(dx)

+

∫ t

0

ds

∫
Rd

(Φγsρ)(x)
{
∇bρ,0s pa

ρ,b(1)

s,t (·, y)(x)
}

dx, t ∈ [0, T ].

(3.7.26)

By (3.7.12) for p = p′, ‖P̂κ∗t γ‖L̃l ≤ K‖γ‖L̃l holds for some constant K > 0.

Combining this with (3.7.7), (3.7.18) and (3.7.26), we find a constant c3 > 0

such that for any l ∈ [1,∞],

‖Φγt ρ‖L̃l ≤ c3‖γ‖L̃l

+ c3 sup
z∈Rd

∫ t

0

(t− s)− 1
2

∥∥1B(z,1)P̂
κ
t−s
{

(Φγsρ)f0(s, ·)
}∥∥

Ll
ds.

(3.7.27)

By k > k0 and k ≥ p0

p0−1 , for any l ∈ (k0, k] ∩ [ p0

p0−1 , k] we have

ql :=
p0l

p0 + l
∈ (1, l],

1

ql
=

1

p0
+

1

l
, (3.7.28)

and (p0, q0) ∈ K implies

1

2
+
d(l − ql)

2lql
=

1

2
+

d

2p0
=: δ′ <

q0 − 1

q0
. (3.7.29)

Combining these with (3.7.13) for (p′, p) = (l, ql) and applying Hölder’s

inequality, we find a constant c4 > 0 such that∫ t

0

(t− s)− 1
2

∥∥P̂κt−s{(Φγsρ)f0(s, ·)
}∥∥

L̃l
ds ≤ c4

∥∥(t− ·)−δ
′
f0Φγ· ρ

∥∥
L̃
ql
1 (t)

≤ c4‖f0‖L̃p0
q0

(t)

∥∥(t− ·)−δ
′
Φγ· ρ

∥∥
L̃l q0
q0−1

(t)
, l ∈ (k0, k] ∩

[ p0

p0 − 1
, k
]
,



July 27, 2024 9:20 ws-book9x6 13512-main page 146

146 Distribution Dependent Stochastic Differential Equations

where {(t − ·)−δ′Φγ· }(s, x) := (t − s)−δ′Φγs (x). This together with (3.7.27)

implies that for some constant c5 > 0,

‖Φγt ρ‖L̃l ≤ c5‖γ‖L̃l

+ c5‖f0‖L̃p0
q0

(t)

(∫ t

0

{
(t− s)−δ

′
‖Φγsρ‖L̃l

} q0
q0−1

ds

) q0−1
q0

,

t ∈ [0, T ], l ∈ (k0, k] ∩
[ p0

p0 − 1
, k
]
.

(3.7.30)

Similarly, using (3.7.12) replacing Lemma 3.7.3, we derive

‖Φγt ρ‖Ll ≤ c5‖γ‖Ll

+ c5‖f0‖Lp0
q0

(t)

(∫ t

0

{
(t− s)−δ

′
‖Φγsρ‖L̃l

} q0
q0−1

ds

) q0−1
q0

,

t ∈ [0, T ], l ∈ (k0, k] ∩
[ p0

p0 − 1
, k
]
.

(3.7.31)

Below we prove (3.7.17) by considering two different situations.

(c1) k <∞. For any k′ ∈ (k,∞) we have

pk,k′ :=
k(k′ − 1)

k′(k − 1)
> 1,

pk,k′k
′

pk,k′k′ − k′ + 1
= k.

Noting that

lim
k′↓k

d(k′ − k)

2kk′pk,k′
= 0,

by (3.7.29) we find k′ > k such that

εk,k′ :=
d(k′ − k)

2kk′pk,k′
∈
(

0, 1− δ′q0

q0 − 1

)
.

Combining this with (3.7.23) and (3.7.30) for l = k, we find a constant

K > 0 such that

sup
t∈[0,T ]

‖Φγt ρ‖L̃k ≤ K‖γ‖L̃k

+K sup
t∈[0,T ]

(∫ t

0

(t− s)−
q0δ
′

q0−1 s−εk,k′‖γ‖
q0

p
k,k′ (q0−1)

L̃k
ds

) q0−1
q0

<∞.

Therefore, by the generalized Gronwall inequality [Ye et al (2007)], (3.7.29)

and (3.7.30) implies (3.7.17).

When f0 ∈ Lp0
q0 , by using (3.7.24) and (3.7.31) replacing (3.7.23) and

(3.7.30), we obtain this estimate for L replacing L̃.
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(c2) k =∞. We take k′ = k =∞, so that by (3.7.23), for any p > 1 we

find a constant c(p) > 0 such that

‖Φγt ρ‖L̃
p
p−1
≤ c(p)‖γ‖

1
p

L̃k
.

Combining this with (3.7.30) for l ∈ ( p0

p0−1 ∨ k0,∞) and p := l
l−1 > 1, we

obtain

sup
t∈[0,T ]

‖Φγt ρ‖L̃l <∞,

so that by the generalized Gronwall inequality [Ye et al (2007)], (3.7.30)

implies (3.7.17) for l ∈ ( p0

p0−1 ∨ k0,∞) replacing k = ∞ with a uniform

constant c > 0. By letting l ↑ k =∞, we derive (3.7.17).

Noting that a probability density function ρ ∈ L∞ implies ρ ∈ Ll for

any l ≥ 1, when f0 ∈ Lp0
q0 we derive (3.7.17) for L replacing L̃ by using

(3.7.24) and (3.7.31) replacing (3.7.23) and (3.7.30) respectively. �

Proof of Theorem 3.7.1(1). By Lemma 3.7.3, (3.7.4) is weakly well-

posed. By Theorem 1.3.1, it is also strongly well-posed provided (3.7.3)

holds. Thus, for the weak or strong well-posedness of (3.7.1), it suf-

fices to prove that Φγ has a unique fixed point in P̃kγ,T . In general, for

probability density functions γ1, γ2 ∈ L̃k and ρ1, ρ2 ∈ P̃kγ,T , we estimate

d̃k,λ(Φγ
1

ρ1,Φγ
2

ρ2) for λ > 0.

By (3.7.26) for aρ independent of ρ, (A3.6)(2) and (3.7.7), we find a

constant c1 > 0 such that

‖Φγ1

t ρ
1 − Φγ2

t ρ
2‖L̃k − c1‖γ1 − γ2‖L̃k

≤ c1
∫ t

0

(t− s)− 1
2

∥∥∥P̂κs,t{f0(s, ·)
[
|Φγ1
s ρ

1 − Φγ2
s ρ

2|

+ sθ(Φγ1
s ρ

1)
(
|ρ1
s − ρ2

s|+ ‖ρ1
s − ρ2

s‖L̃k
)]}∥∥∥

L̃k
ds.

(3.7.32)

Letting

Fl(s, x) := (t− s)−
d(k−l)−kl

2kl sθ
[
(Φγ1

s ρ
1)
(
|ρ1
s − ρ2

s|+ ‖ρ1
s − ρ2

s‖L̃k
)]

(x)

+ (t− s)−
d(k−l)−kl

2kl

∣∣Φγ1
s ρ

1 − Φγ2
s ρ

2
∣∣(x), l ∈

[
1,

kp0

k + p0

]
,

by (3.7.13) for q = 1 and (p′, p) = (k, l), and applying Hölder’s inequality,
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we find a constant c2 > 0 such that∫ t

0

(t− s)− 1
2

∥∥∥P̂κs,t{f0(s, ·)
[
|Φγ1
s ρ

1 − Φγ2
s ρ

2|

+ sθ(Φγ1
s ρ

1)
(
|ρ1
s − ρ2

s|+ ‖ρ1
s − ρ2

s‖L̃k
)]}∥∥∥

L̃k
ds

≤ c2‖f0Fl‖L̃l1(t) ≤ c‖f0‖L̃p0
q0

(t)‖Fl‖
L̃

p0l
p0−l
q0
q0−1

(t)

≤ c2‖f0‖L̃p0
q0

(t)

(∫ t

0

{
(t− ·)−

d(k−l)
2kl −

1
2

[∥∥Φγ1ρ1 − Φγ2ρ2
∥∥
L̃

p0l
p0−l

+ sθ
∥∥(Φγ1

s ρ
1
)(
|ρ1
s − ρ2

s|+ ‖ρ1
s − ρ2

s‖L̃k
)∥∥
L̃

p0k
p0−k

]} q0
q0−1

ds

) q0−1
q0

.

Since l ∈ [1, kp0

k+p0
] implies p0l

p0−l ≤ k, combining this with (3.7.32) and

applying Hölder’s inequality, we find a constant c3 > 0 such that

‖Φγ1

t ρ
1 − Φγ2

t ρ
2‖L̃k − c1‖γ1 − γ2‖L̃k

≤ c3
(∫ t

0

{
(t− s)−

d(k−l)
2kl −

1
2

[∥∥Φγ1
s ρ

1 − Φγ2
s ρ

2
∥∥
L̃k

+ sθ
∥∥Φγ1

s ρ
1
∥∥
L̃

kp0l
k(p0−l)−p0l

∥∥ρ1
s − ρ2

s

∥∥
L̃k

]} q0
q0−1

ds

) q0−1
q0

(3.7.33)

holds for l ∈ [1, kp0

k+p0
]. Letting

αl :=
q0

q0 − 1

(d(k − l)
2kl

+
1

2

)
, βl :=

kp0l

k(p0 − l)− p0l
, (3.7.34)

by the definition of d̃k,λ, this implies that for any λ > 0 and l ∈ [1, kp0

k+p0
],

d̃k,λ(Φγ
1

ρ1,Φγ
2

ρ2) ≤ c1‖γ1 − γ2‖L̃k

+ c3
{
d̃k,λ(Φγ

1

ρ1,Φγ
2

ρ2) + d̃k,λ(ρ1, ρ2)
}

× sup
t∈(0,T ]

{(∫ t

0

(t− s)−αle−
λq0
q0−1 (t−s)ds

) q0−1
q0

+

(∫ t

0

(t− s)−αl
(
sθe−λ(t−s)‖Φγ1

s ρ
1‖L̃βl

) q0
q0−1 ds

) q0−1
q0
}
.

(3.7.35)

Below we complete the proof by considering two different situations

respectively.
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(a) Let k < ∞. By (p0, q0) ∈ K and k > k0 := d
2θ+1−dp−1

0 −2q−1
0

, αl in

(3.7.34) satisfies

lim
l↑ kp0
k+p0

αl +
q0

q0 − 1

( d
2k
− θ
)+

=
q0

q0 − 1

{ d

2p0
+

1

2
+
( d

2k
− θ
)+}

< 1.

So, we may take l ∈ (1, kp0

k+p0
) such that

αl +
q0

q0 − 1

( d
2k
− θ
)+

< 1, βl ∈ (1,∞). (3.7.36)

By (3.7.23) for k′ = ∞ and p = βl
βl−1 , there exists a constant c4 > 0 such

that

‖Φγ1
s ρ

1‖Lβl ≤ c4‖γ1‖L̃ks
− d

2k .

Combining this with (3.7.35) and (3.7.36), for large enough λ > 0 which is

increasing in ‖γ1‖L̃k(≤ ‖γ2‖L̃k), we have

d̃k,λ(Φγ
1

ρ1,Φγ
2

ρ2) ≤ c1‖γ1 − γ2‖L̃k +
1

4
d̃k,λ(Φγ

1

ρ1,Φγ
2

ρ2) +
1

4
d̃k,λ(ρ1, ρ2).

Taking γ1 = γ2 = γ we derive the contraction of Φγ on the complete metric

space (P̃kγ,T , d̃k,λ), and hence Φγ has a unique fixed point. This implies

the weak (also strong under (3.7.3)) well-posedness of (3.7.1). Moreover,

for two solutions (Xi)i=1,2 of this SDE with initial distribution densities

(γi)i=1,2, by taking ρi = LXi· so that ρi = Φγ
i

ρi, we deduce (3.7.2) for

some increasing function Λ.

(b) Let k =∞. By taking l = p0, we have βl =∞ and θ > 2
q0

+ d
p0
− 1

in (A3.6)(2) implies

αl +
q0

q0 − 1

( d
2k
− θ
)+

=
q0

q0 − 1

{ d

2p0
+

1

2
+ θ−

}
< 1.

Combining (3.7.35) with (3.7.17) for k = ∞, we derive that for a large

enough λ > 0 increasing in ‖γ1‖L̃∞ (≤ ‖γ2‖L̃∞),

d̃k,λ(Φγ
1

ρ1,Φγ
2

ρ2) ≤ c1‖γ1 − γ2‖L̃∞

+ c3d̃k,λ(Φγ
1

ρ1,Φγ
2

ρ2) sup
t∈(0,T ]

(∫ t

0

(t− s)−αle−
λq0
q0−1 (t−s)ds

) q0−1
q0

+ c3d̃k,λ(ρ1, ρ2) sup
t∈(0,T ]

(∫ t

0

(t− s)−αle−
λq0
q0−1 (t−s)(sθ‖γ1‖L̃∞)

q0
q0−1 ds

) q0−1
q0

≤ c1‖γ1 − γ2‖L̃∞ +
1

4
d̃k,λ(Φγ

1

ρ1,Φγ
2

ρ2) +
1

4
d̃k,λ(ρ1, ρ2).

Then we finish the proof as in step (a). �



July 27, 2024 9:20 ws-book9x6 13512-main page 150

150 Distribution Dependent Stochastic Differential Equations

Proof of Theorem 3.7.1(2). Let (A3.6) hold with condition (2′) re-

placing (A3.6)(2). By (3.7.12) and Hölder’s inequality, we find constants

c1, c2 > 0 such that for any 0 ≤ s < t ≤ T and l ∈ [1, kp0

k+p0
],∥∥∥P̂κs,t{(C + f0(s, ·)

)(
|Φγ1
s ρ

1 − Φγ2
s ρ

2|+ sθ(Φγ1
s ρ

1)|ρ1
s − ρ2

s|
)}∥∥∥

Lk

≤ c1(t− s)−
d(k−l)

2kl

{∥∥Φγ1
s ρ

1 − Φγ2
s ρ

2‖Ll + sθ
∥∥(Φγ1

s ρ
1)|ρ1

s − ρ2
s|
∥∥
Ll

+
∥∥f0(s, ·)(Φγ1

s ρ
1 − Φγ2

s ρ
2)
∥∥
Ll

+ sθ
∥∥f0(s, ·)(Φγ1

s ρ
1)|ρ1

s − ρ2
s|
∥∥
Ll

}
≤ c1(t− s)−

d(k−l)
2kl

{∥∥Φγ1
s ρ

1 − Φγ2
s ρ

2‖Ll + sθ
∥∥Φγ1

s ρ
1
∥∥
L

kl
k−l

∥∥ρ1
s − ρ2

s|
∥∥
Lk

+
∥∥f0(s, ·)

∥∥
Lp0

∥∥Φγ1
s ρ

1 − Φγ2
s ρ

2
∥∥
L

p0l
p0−l

+ sθ
∥∥f0(s, ·)

∥∥
Lp0

∥∥Φγ1
s ρ

1
∥∥
L

p0kl
p0k−kl−p0l

∥∥ρ1
s − ρ2

s

∥∥
Lk

}
.

Noting that l ∈ [1, kp0

k+p0
] implies l ∨ p0l

p0−l ≤ k and kl
k−l ≤

p0kl
p0k−kl−p0l

, by

combining this with (2′), (3.7.7), (3.7.26) and Hölder’s inequality, we find

constants c3, c4 > 0 such that

‖Φγ1

t ρ
1 − Φγ2

t ρ
2‖Lk − c1‖γ1 − γ2‖Lk

≤ c3
∫ t

0

(t− s)− 1
2

∥∥∥P̂κs,t{(C + f0(s, ·)
)

×
(
|Φγ1
s ρ

1 − Φγ2
s ρ

2|+ sθ(Φγ1
s ρ

1)|ρ1
s − ρ2

s|
)}∥∥∥

Lk
ds

≤ c4
(
1 + ‖f0‖L̃p0

q0
(t)
)(∫ t

0

{
(t− s)−

d(k−l)
2kl −

1
2

[
‖Φγ1

s ρ
1 − Φγ2

s ρ
2‖Lk

+ sθ‖Φγ1
s ρ

1‖
L

kp0l
k(p0−l)−p0l

‖ρ1
s − ρ2

s‖Lk
]} q0

q0−1

ds

) q0−1
q0

, l ∈
[
1,

kp0

k + p0

]
.

Then the remainder of the proof is similar to that of Theorem 3.7.1(1) from

(3.7.33) with L replacing L̃. �

3.7.2 Density dependent noise

In this part we allow σ to be density dependent but make stronger assump-

tions for the coefficients in the spatial variable.

(A3.7) There exist 1 ≤ f0 ∈ L̃p0
q0 (T ), C ∈ (0,∞) and α ∈ (0, 1), such that

the following conditions hold for all t ∈ (0, T ], x, y ∈ Rd, r, r̃ ∈
[0,∞) and ρ, ρ̃ ∈ L∞:

|bt(x, r, ρ)| ≤ f0(t, x),
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|bt(x, r, ρ)− bt(x, r̃, ρ̃)| ≤ C(|r − r̃|+ ‖ρ− ρ̃‖∞),

‖σ‖∞ + ‖∇σ‖∞ + ‖(σσ∗)−1‖∞ ≤ C,

‖∇σt(·, ρ)(x)−∇σt(·, ρ)(y)‖ ≤ C|x− y|α,

‖σt(·, ρ)− σt(·, ρ̃)‖Cαb ≤ C‖ρ− ρ̃‖∞.

Theorem 3.7.5. Assume (A3.7) and let β ∈ (0, 1− d
p0
− 2
q0

). For any initial

value (initial density) with `X0 ∈ C
β
b (Rd), (3.7.1) has a unique strong (weak)

solution satisfying `X· ∈ L∞∞, and there exists a constant c > 0 such that

sup
t∈[0,T ]

‖`Xt‖Cβb ≤ c‖`X0‖Cβb . (3.7.37)

Moreover, there exists an increasing function Λ : (0,∞)→ (0,∞) such that

for any two solutions {Xi
t}i=1,2 with `Xi0 ∈ C

β
b (Rd) and `Xi· ∈ L

∞
∞,

sup
t∈[0,T ]

‖`X1
t
− `X2

t
‖∞ ≤ Λ

(
‖`X1

0
‖Cβb ∧ ‖`X1

0
‖Cβb

)
‖`X1

0
− `X2

0
‖∞. (3.7.38)

Let γ ∈ P∞ with `γ ∈ Cβb . By Theorem 3.7.1 and (A3.7), for any

ρ ∈ P∞γ,T , the following density dependent SDE has a unique (weak and

strong) solution with `Xρ,γ· ∈ L∞∞:

dXρ,γ
t = bt(X

ρ,γ
t , `Xρ,γt (Xρ,γ

t ), `Xρ,γt )dt+ σρt (Xρ,γ
t ),

LXρ,γ0
= γ, t ∈ [0, T ],

(3.7.39)

and there exists a constant c > 0 depending on C,α such that

‖`Xρ,γt ‖∞ ≤ c‖`γ‖∞, ρ ∈ P∞γ,T . (3.7.40)

We aim to show that the map

ρ 7→ `Xρ,γ·

has a unique fixed point in P∞γ,T , such that the (weak and strong) well-

posedness of (3.7.39) implies that of (3.7.1). As shown in the proof of

Theorem 3.7.1, we will need heat kernel estimates presented in Section 2

for the operator La
ρ,bρ,γ

t , where

aρt :=
1

2
σρt (σρt )∗, bρ,γt := bt

(
·, `Xρ,γt (·), `Xρ,γt

)
, t ∈ [0, T ].
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To this end, we first prove the Hölder continuity of bρ,γt . By (A3.7), this

follows from the Hölder continuity of `Xρ,γt .

Lemma 3.7.6. Assume (A3.7) and let β ∈ (0, 1 − d
p0
− 2

q0
). Then there

exists a constant c > 0 such that for any ρ ∈ P∞γ,T and γ ∈ P∞ with

`γ ∈ Cβb ,

‖`Xρ,γt ‖Cβb ≤ c‖`γ‖Cβb , t ∈ (0, T ]. (3.7.41)

Proof. Simply denote `t = `Xρ,γt . Let pρs,t be the heat kernel for the

operator

Lρt :=
1

2
div
{
aρt∇

}
= La

ρ,b̄ρ

t ,

where

aρt :=
1

2
σρt (σρt )∗, (b̄ρt )i :=

d∑
j=1

∂j(a
ρ
t )ij .

Then pρs,t(x, y) = pρs,t(y, x), and by Theorem 3.7.2, there exist constants

c, κ > 0 depending on C,α, β such that for some diffeomorphisms ψs,t
satisfying (3.7.6),

|∇ipρs,t(·, y)(x)| ≤ c1(t− s)− i
2 pκt−s(ψs,t(x)− y), i = 0, 1, 2,

|∇pρs,t(x, ·)(y)| ≤ c1(t− s)− 1
2 pκt−s(ψs,t(x)− y),

|∇pρs,t(·, y)(x)−∇pρs,t(·, y′)(x)|

≤ c1|y − y′|β(t− s)−
1+β

2 pκt−s(ψs,t(x)− y)

(3.7.42)

hold for all 0 ≤ s < t ≤ T, x, y ∈ Rd. By the argument leading to (3.7.26),

we obtain

`t(y) =

∫
Rd
pρ0,t(x, y)`γ(x)dx

+

∫ t

0

ds

∫
Rd
`s(x)

{
∇bs(x,`s(x),`s)−b̄ρs(x)p

ρ
s,t(·, y)

}
(x)dx.

(3.7.43)

By the symmetry of pρ0,t(x, y) we have∫
Rd
pρ0,t(x, y)`γ(x)dx =

∫
Rd
pρ0,t(y, x)`γ(x)dx =: (P ρ0,t`γ)(y). (3.7.44)

Let Xx
t solve the SDE

dXx
t = b̄ρt (X

x
t )dt+ σρt (Xt)dWt, t ∈ [0, T ], X0 = x.
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By Theorem 1.3.1(3), we find a constant c1 > 0 depending on C,α in (A3.7)

such that

E
[

sup
t∈[0,T ]

|Xx
t −X

y
t |
]
≤ c1|x− y|, x, y ∈ Rd.

Then (3.7.44) implies

|(P ρ0,t`γ)(y)− (P ρ0,t`γ)(y′)| = |E[`γ(Xy
t )− `γ(Xy′

t )]|

≤ ‖`γ‖Cβb E[|Xy
t −X

y′

t |β ] ≤ ‖`γ‖Cβb (c1|y − y′|)β .

Since (A3.7) implies |b|+ |b̄ρ| ≤ cf0 for some constant c > 0, by combining

this with (3.7.40), the last inequality in (3.7.42), and (3.7.43), we find a

constant c2 > 0 independent of ρ, γ such that

|`t(y)− `t(y′)| − c2|y − y′|β

≤ c2‖`γ‖∞|y − y′|β
∫ t

0

(t− s)−
1+β

2

{
P̃κs,tf0(s, ·)(y) + P̃κs,tf0(s, ·)(y′)

}
ds,

where P̃s,t is in (3.7.10). By (3.7.13) for (p, q) = (p0, q0) and p′ = ∞, we

find a constant c3 > 0 such that this implies

|`t(y)− `t(y′)| − c2|y − y′|β

c2‖`γ‖∞|y − y′|β

≤
∫ t

0

(t− s)−( 1+β
2 + d

2p0
)
(
P̃κs,t

{
(t− s)

d
2p0 f0(s, ·)

}
(y)

+ P̃κs,t
{

(t− s)
d

2p0 f0(s, ·)
}

(y′)
)

ds

≤ 2c2

(∫ t

0

(t− s)−( 1+β
2 + d

2p0
)
q0
q0−1 ds

) q0−1
q0 ∥∥P̃κ·,t{(t− ·) d

2p0 f0}
∥∥
L∞q0

(t)

≤ c3‖f‖L̃p0
q0

(t), y 6= y′, t ∈ (0, T ],

where we have used the fact that ‖·‖L̃∞q0 (t) = ‖·‖L∞q0 (t) and (1+β
2 + d

2p0
) q0
q0−1 <

1 due to β ∈ (0, 1 − 2
q0
− d

p0
). Combining this with (3.7.40), we finish the

proof. �

The next lemma contains two classical estimates on the operator 1−∆

and the heat semigroup Pt = et∆.

Lemma 3.7.7. Let Pt = et∆.

(1) For any β > 0, there exists a constant c > 0 such that

‖(1−∆)
β
2 f‖∞ ≤ c‖f‖Cβb .
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(2) For any α, β, k ≥ 0, there exists a constant c > 0 such that

‖(1−∆)−kPtf‖Cα+β
b
≤ ct−(α2−k)+

‖f‖Cβb , t > 0.

Proof of Theorem 3.7.5. For LXi0 = γi with `γi ∈ Cβb (Rd) and

ρi ∈ P∞γ,T , simply denote

`it = `
Xρ

i,γi

t

, b`
i

t := bt(·, `it(·), `it), t ∈ [0, T ], i = 1, 2.

Without loss of generality, let ‖`γ2‖Cβb ≤ ‖`γ1‖Cβb .
By (3.7.43) with (γ, ρ) = (γ1, ρ1), we obtain

`1t (y) = P ρ
1

0,t`γ1(y) +

∫ t

0

ds

∫
Rd
`1s(x)

{
∇
b`1s (x)−b̄ρ

1
s (x)

pρ
1

s,t(·, y)
}

(x)dx.

By the argument leading to (3.7.26) for (pρ
1

s,t, X
ρ2,γ2

s ) replacing (pa
ρ,b(1)

s,t ,

Xρ
s ), we derive

`2t (y) =P ρ
1

0,t`γ2(y) +

∫ t

0

ds

∫
Rd
`2s(x)

{
∇
b`2s (x)−b̄ρ

1
s (x)

pρ
1

s,t(·, y)
}

(x)dx

+
1

2

d∑
i,j=1

∫ t

0

ds

∫
Rd

{
`2s(a

ρ2

s − aρ
1

s )ij∂i∂jp
ρ1

s,t(·, y)
}

(x)dx.

Thus,

‖`1t − `2t‖∞ ≤ I1 + I2 +

d∑
i,j=1

Iij , (3.7.45)

where

I1 := ‖P ρ
1

0,t`γ1 − P ρ
1

0,t`γ2‖∞ ≤ ‖`γ1 − `γ2‖∞, (3.7.46)

and

I2 :=

∫ t

0

ds

∫
Rd

∣∣∣{[`2s(b`2s − b̄ρ1

s )− `1s(b`
1

s − b̄ρ
1

s )
]
∇pρ

1

s,t(·, y)
}

(x)
∣∣∣dx,

Iij :=
1

2
sup
y∈Rd

∣∣∣∣ ∫ t

0

ds

∫
Rd

{
`2s(a

ρ2

s − aρ
1

s )ij∂i∂jp
ρ1

s,t(·, y)
}

(x)dx

∣∣∣∣.
Below we estimate I2 and Iij respectively.

Firstly, by (A3.7) and (3.7.40), we find a constant c1 > 0 such that∣∣`2s{b`2s (x)− b̄ρ
1

s (x)} − `1s(x){b`
1

s (x)− b̄ρ
1

s (x)}
∣∣

≤ ‖`1s − `2s‖∞|b`
2

s (x)− b̄ρ
1

s (x)|+ ‖`2s‖∞|b`
2

s (x)− b`
1

s (x)|
≤ c1‖`γ2‖∞‖`1s − `2s‖∞f0(s, x), s ∈ [0, T ], x ∈ Rd.
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Combining this with (3.7.42) for i = 1, (3.7.13) for (p, q) = (p0, q0) and

p′ =∞, and applying Hölder’s inequality, we find constant c2, c3 > 0 such

that for any t ∈ [0, T ],

I2 ≤ c2‖`γ2‖∞
∫ t

0

(t− s)− 1
2 ‖`1s − `2s‖∞P̃κs,tf0(s, ·)(y)ds

≤ c2‖`γ2‖∞‖(t− ·)
d

2p0 f0‖L̃∞q0 (t)

×
(∫ t

0

{
(t− s)−( 1

2 + d
2p0

)‖`1s − `2s‖∞
} q0
q0−1 ds

) q0−1
q0

≤ c3‖`γ2‖∞‖f0‖L̃p0
q0

(t)

(∫ t

0

(t− s)−
q0(p0+d)

2p0(q0−1) ‖`1s − `2s‖
q0
q0−1
∞ ds

) q0−1
q0

.

(3.7.47)

Next, by integration by parts formula, (A3.7), (3.7.41), (3.7.42) for i = 1

and Lemma 3.7.7, for any δ := α∧β, we find constants c4, c5 > 0 such that∣∣∣∣ ∫
Rd

{
`2s(a

ρ2

s − aρ
1

s )ij∂i∂jp
ρ1

s,t(·, y)
}

(x)dx

∣∣∣∣
=

∣∣∣∣ ∫
Rd

[
(1−∆)

δ
2

{
`2s(a

ρ2

s − aρ
1

s )ij
}

(x)
]
·
[
∂i∂j(1−∆)−

δ
2 pρ

1

s,t(·, y)(x)
]
dx

∣∣∣∣
≤
∥∥(1−∆)

δ
2

{
`2s(a

ρ2

s − aρ
1

s )ij
}∥∥
∞

∫
Rd

∣∣∂i∂j(1−∆)−
δ
2 pρ

1

s,t(·, y)(x)
∣∣dx

≤ c4
∥∥`2s(aρ2

s − aρ
1

s )ij
∥∥
Cβ∧αb

(t− s) δ2−1

≤ c5‖`γ2‖Cβb (t− s) δ2−1‖ρ1
s − ρ2

s‖∞.

By combining this with (3.7.45), (3.7.46) and (3.7.47), we arrive at

‖`1t − `2t‖∞ ≤ ‖`γ1 − `γ2‖∞

+ c3‖`γ2‖∞
(∫ t

0

(t− s)−
q0(p0+d)

2p0(q0−1) ‖`1s − `2s‖
q0
q0−1
∞ ds

) q0−1
q0

+
d2c5

2
‖`γ2‖Cβb

∫ t

0

(t− s) δ2−1‖ρ1
s − ρ2

s‖∞ds, t ∈ [0, T ].

Consequently, for any λ > 0,

d∞,λ(`Xρ1,γ1 , `Xρ2,γ2 ) := sup
t∈[0,T ]

e−λt‖`1t − `2t‖∞

≤ ‖`γ1 − `γ2‖∞ + ε(λ)
{
d∞,λ(`Xρ1,γ1 , `Xρ2,γ2 ) + d∞,λ(ρ1, ρ2)

}
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holds for

ε(λ) := sup
t∈[0,T ]

{
c3‖`γ2‖∞

(∫ t

0

(t− s)−
q0(p0+d)

2p0(q0−1) e−
q0λ(t−s)
q0−1 ds

) q0−1
q0

+
d2c5

2
‖`γ2‖Cβb

∫ t

0

(t− s) δ2−1e−λ(t−s)ds

}
.

Since (p0, q0) ∈ K implies q0(p0+d)
2p0(q0−1) < 1, and since 1 − δ

2 < 1, by taking

large enough λ > 0 increasing in ‖`γ2‖Cβb , we obtain

d∞,λ(`Xρ1,γ1 , `Xρ2,γ2 ) ≤ ‖`γ1 − `γ2‖∞

+
1

4

{
d∞,λ(`Xρ1,γ1 , `Xρ2,γ2 ) + d∞,λ(ρ1, ρ2)

}
.

(3.7.48)

Taking γ1 = γ2 = γ, we see that the map ρ 7→ `Xρ,γ is contractive on

the complete metric space (P∞γ,T , d∞,λ), so that it has a unique fixed point.

Therefore, (3.7.1) is well-posed. Estimate (3.7.37) follows from Lemma 3.7.6

for ρt = `Xt for the solution to (3.7.1), while (3.7.38) follows from (3.7.48)

for ρit := `Xit , γ
i = LXi0 , i = 1, 2.

3.8 Notes and further results

There exist many other results on DDSDEs and related topics, see for in-

stance [Wang (2018)], [Hammersley et al (2021)], [Huang and Wang (2019)],

[Huang and Wang (2021a)], [Huang and Wang (2022)], [Röckner and Zhang

(2021)], [Chaudru de Raynal (2017)], [Chaudru de Raynal (2019)], [Zhao

(2020)] and references within. In the following, we introduce some further

results on singular DDSDEs and path-distribution dependent models. See

[Hong et al (2024)] for distribution dependent SDEs/SPDEs under local

monotone conditions.

3.8.1 DDSDEs with linear functional derivative of noise

coefficients

Let f be a function on P, ∂µf(µ) ∈ Bb(Rd) is called the linear functional

derivative of f at µ ∈ P, if for any ν ∈ P we have

lim
ε↓0

f((1− ε)µ+ εν)− f(µ)

ε
=

∫
Rd
∂µf(µ)(y)(ν − µ)(dy). (3.8.1)

If ∂µf(µ)(y) has linear functional derivative in µ, we say that f has second

order linear functional derivative, and denote

∂2
µf(µ)(y, z) = ∂µ{∂µf(µ)(y)}(z). (3.8.2)
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(A3.8) ‖b‖∞ + ‖σ‖∞ + ‖(σσ∗)−1‖∞ + ‖∇σ‖∞ <∞, bt(x, ·) and at(x, ·) :=

(σtσ
∗
t )(x, ·) have linear functional derivatives, and there exist con-

stants K > 0 and α ∈ (0, 1] such that for any t ∈ [0, T ], ν, µ ∈ P
and x, x′, y, y′, z, z′ ∈ Rd,

|bt(x, µ)− bt(x, ν)| ≤ K‖µ− ν‖var,
‖at(x, µ)− at(x′, µ)‖ ≤ K|x− x′|α,
‖∂µat(x, µ)(y)− ∂µat(x′, µ)(y′)‖ ≤ K

(
|x− x′|α + |y − y′|α

)
.

The following result is due to Theorem 3.4 and Corollary 3.5 in [Chaudru

de Raynal and Frikha (2022)]. See also [Zhao (2020)] for further result

where |b| ∈ Lpq for some (p, q) ∈ K and bt(x, ·) is Lipschitz continuous in a

weighted variation distance.

Theorem 3.8.1. Assume (A3.8). Then (3.1.1) is weak well-posed, and it

is well-posed if in addition that σt(·, µ) is Lispchitz continuous uniformly in

(t, µ) ∈ [0, T ]× P.

3.8.2 Singular DDSDEs with integral type, Kato class and

critical drifts

Consider

dXt =

∫
Rd
b̃t(Xt, y)LXt(dy) + dWt, t ∈ [0, T ], (3.8.3)

where b̃ satisfies |b̃t(x, y)| ≤ ft(x−y) for some f ∈ L̃pq with (p, q) ∈ K, p > 2.

The well-posedness of (3.8.3) is proved in [Röckner and Zhang (2021)] for

initial values with E[|X0|k] <∞ for some k > 2.

Next, consider

dXt = bt(Xt,LXt)dt+ dWt, t ∈ [0, T ]. (3.8.4)

Combining Theorem 1.7.4 with Theorem 3.5.2 for k = 0 and f being a

constant, we have the following result.

Theorem 3.8.2. Assume that there exists a constant K > 0 such that

|bt(x, µ)− bt(x, ν)| ≤ K‖µ− ν‖var, t ∈ [0, T ], x ∈ Rd, µ, ν ∈ P. (3.8.5)

If for any µ ∈ Cw([0, T ];P), |bµ|2 ∈ Kd,α holds for some α > 0, where

bµt (x) := bt(x, µt), then (3.8.4) is well-posed. If |bµ| ∈ Kd,1 for any µ ∈
Cw([0, T ];P), then (3.8.4) is weakly well-posed, and for some constants

c1, c2 > 0 :
(P ∗s,tν)(dx)

dx
≤ c1

(t− s) d2

∫
Rd

e−
c2|x−y|

2

t−s ν(dy), 0 ≤ s < t ≤ T, x ∈ Rd, ν ∈ P.
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Moreover, Theorem 1.7.5 and Theorem 3.5.2 imply the following result.

Theorem 3.8.3. Assume that (3.8.5) holds for some constant K > 0. Let

bµt (x) := bt(x, µt) for µ ∈ Cw([0, T ];P). If for any µ ∈ Cw([0, T ];P) we

have either bµ ∈ Cwb ([0, T ];Ld(Rd)) or |b| ∈ Lp0
q0 (T ) for some (p0, q0) ∈

(2,∞) with d
p0

+ 2
q0

= 1, then (3.8.4) is well-posed. If |bµ| ∈ Ld∞(T ) holds

for any µ ∈ Cw([0, T ];P), then (3.8.4) is weakly well-posed.

3.8.3 Singular distribution dependent semilinear SPDEs

Let H,U be two separable Hilbert spaces, and let L(U;H) be the space of

bounded linear operators from U to H. Consider the following distribution

dependent semilinear SPDE on H:

dXt = {bt(Xt,LXt) +AXt}dt+ σt(Xt,LXt)dWt, t ∈ [0, T ], (3.8.6)

where Wt is the cylindrical Brownian motion on U, (A,D(A)) is a negative

definite self-adjoint operator on H, and

b : [0, T ]×H× P2(H)→ H, σ : [0, T ]×H× P2(H)→ L(U;H)

are measurable, for P2(H) being the class of probability measures on H
having finite second moment.

The following result is due to [Huang and Song (2021)] extending the

corresponding result of [Wang (2016)] for singular semilinear SPDEs, see

also [Criens (2023)] for the weak existence under a growth condition and

further study on propagation of chaos.

Theorem 3.8.4. (3.8.6) is well-posed for distributions in P2(H) provided

the following conditions hold.

(1) A has discrete spectrum with eigenvalues {−λn}n≥0 satisfying
∞∑
n=1

λ−εn <∞

for some ε ∈ (0, 1).

(2) There exists a constant K > 0 and an increasing φ : [0,∞) → [0,∞)

with φ2 concave and
∫ 1

0
φ(s)
s ds <∞ such that

‖(σσ∗)−1‖∞ + ‖σ‖∞ + ‖∇σ‖∞ + ‖∇2σ‖∞ <∞,
lim
n→∞

‖σt(x, µ)− σt(πnx, µ)‖HS = 0, t ∈ [0, T ], x ∈ H, µ ∈ P2(H),

‖σt(x, µ)− σt(x, ν)‖HS ≤ KW2(µ, ν), t ∈ [0, T ], x ∈ H, µ, ν ∈ P2(H),

|bt(x, µ)− bt(y, ν)| ≤ φ(|x− y|) +KW2(µ, ν),

t ∈ [0, T ], x, y ∈ H, µ, ν ∈ P2(H),
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where πn is the projection onto the eigenspace corresponding to the first

n eigenvalues of −A.

See also [Hong and Liu (2021)] for distribution dependent quasi-linear

SPDEs.

3.8.4 Path-distribution dependent SDEs

The well-posedness has been studied in [Huang et al (2019)] for the follow-

ing path-dependent DDSDEs on Rd:

dXt = bt(Xr0,t,LXr0,t)dt+ σt(Xr0,t,LXr0,t)dWt, Xr0,0 ∈ C, t ∈ [0, T ],

(3.8.7)

where r0 > 0 is a fixed constant, C := C([−r0, 0];Rd), Xr0,t ∈ C with

Xr0,t(θ) := Xt−θ for θ ∈ [−r0, 0], and

b : [0, T ]× C × P(C)→ Rd, σ : [0, T ]× C × P(C)→ Rd ⊗ Rm

satisfy some monotone conditions.

3.8.5 Singular path-distribution dependent nonlinear

SPDEs

Let H,U be two separable Hilbert spaces, and let L2(U;H) be the space

of Hilbert-Schmidt operators from U to H with Hilbert-Schmidt norm

‖ · ‖L2(U;H). For a Banach space M, let PT,M be the set of probability

measures on the path space CT,M := C([0, T ];M). We also consider the

weakly continuous path space

CwT,M := {ξ : [0, T ]→M is weak continuous} .

Both CT,M and CwT,M are Banach spaces under the uniform norm

‖ξ‖T,M := sup
t∈[0,T ]

‖ξ(t)‖M.

Let PwT,M be the space of all probability measures on CwT,M equipped with

the weak topology. Denote PT,M = {µ ∈ PwT,M : µ(CT,M) = 1}.
For any map ξ : [0, T ] → M and t ∈ [0, T ], the path πt(ξ) of ξ before

time t is given by

πt(ξ) := ξt : [0, T ]→M, ξt(s) := ξ(t ∧ s), s ∈ [0, T ].

Then the marginal distribution before time t of a probability measure µ ∈
PwT,M reads

µt := µ ◦ π−1
t .



July 27, 2024 9:20 ws-book9x6 13512-main page 160

160 Distribution Dependent Stochastic Differential Equations

The well-posedness is studied in [Ren et al (2020)] for the following

distribution-path dependent nonlinear SPDE on H:

dXt =
{
B(t,Xt) + bt(X·∧t,LX·∧t)

}
dt+ σt(X·∧t,LX·∧t)dW (t), t ∈ [0, T ],

where X·∧t is a random variable on CwT,H with X·∧t(s) := Xs∧t for s ∈ [0, T ],

and for some separable Hilbert space B with H ↪→↪→ B (“ ↪→↪→ ” means

the embedding is compact),

B : [0, T ]×H× Ω→ B,
b : [0, T ]× CwT,H × PwT,H × Ω→ H,
σ : [0, T ]× CwT,H × PwT,H × Ω→ L2(U;H)

(3.8.8)

are progressively measurable maps.

In applications, B(t, ·) is a singular nonlinear term which may not take

values in the state space H. For instance, for the stochastic transport

SPDE, we take B(t,X) = −(X · ∇)X for X in a functional space over a

Riemannian manifold, while b and σ are regular terms which are locally

Lipschitz continuous in the variables (ξ, µ).

3.8.6 Singular degenerate DDSDEs

As extensions to (1.7.5) and (1.7.6), consider the following distribution

dependent degenerate SDE for (Xt, Yt) ∈ R2d:{
dXt = Zt(Xt, Yt)dt,

dYt = bt(Xt, Yt,L(Xt,Yt))dt+ σt(Xt, Yt)dWt, t ∈ [0, T ].
(3.8.9)

Combining Theorems 1.7.2 and 1.7.3 with Theorem 3.5.2 for k = 0 and f

being a constant, we have the following results.

Theorem 3.8.5. The SDE (3.8.9) is well-posed, if for any µ ∈ Cwb ([0, T ];

P(R2d)), the conditions in Theorem 1.7.2 holds for bt(x, y, µt) replacing

bt(x, y), and there exists a constant K > 0 such that

|bt(z, µ)− bt(z, ν)| ≤ K‖µ− ν‖var,
t ∈ [0, T ], z ∈ R2d, µ, ν ∈ P(R2d).

(3.8.10)

Theorem 3.8.6. The SDE (3.8.9) with Zt(x, y) = y is well-posed if the

conditions in Theorem 1.7.3 holds for bt(x, y, µt) replacing bt(x, y), and

there exists a constant K > 0 such that (3.8.10) holds.
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Next, we consider the weak existence for the following degenerate SDE

with distribution dependent noise:{
dXt = Ytdt,

dYt = bt(Xt, Yt,L(Xt,Yt))dt+ σt(Xt,L(Xt,Yt))dWt

(3.8.11)

for t ∈ [0, T ], where for ρµ(z) := µ(dz)
dz and ρµ1

(x) :=
∫
Rd ρµ(x, y)dy,

bt(z, µ) :=

∫
R2d

b̃t(z, ρµ(z), z′)µ(dz′),

σt(x, µ) :=

(
2

∫
R2d

at(x, ρµ1(x), z′)µ(dz′)

) 1
2

.

For any q > 1 and p ∈ (1,∞)2d, we write f ∈ L̃p
q (T ) if f is a measurable

function on [0, T ]× R2d such that∫ T

0

‖ . . . ‖‖ft‖L̃p2d (dx2d)‖L̃p2d−1 (dx2d−1) . . . ‖Lp1 (dx1)dt <∞.

The following result is taken from Theorem 1.3 in [Zhang (2021)].

Theorem 3.8.7. For any initial distribution, (3.8.11) has at least one weak

solution if at(x, r, z) is continuous in r, ‖a‖∞ + ‖a−1‖∞ <∞,

lim
ε↓0

sup
r,r′∈[0,n],|r−r′|≤ε

‖b̃·(·, r, ·)− b̃·(·, r′, ·)‖L1(K) = 0

for any compact set K ⊂ [0, T ]×R2d×R2d, and there exists f ∈ L̃p
q (T ) for

some q ∈ (2, 4) and p ∈ (1,∞)2d with

d∑
i=1

3p−1
i +

2d∑
i=d+1

p−1
i +

2

q
<∞,

|b̃t(z, r, z′)| ≤ ft(z − z′), t ∈ [0, T ], r ≥ 0, z, z′ ∈ R2d.

Theorem 1.5 in [Zhang (2021)] also presents the existence and unique-

ness of the “generalized martingale solution” of (3.8.11) when the initial

distribution density is in C1
b , at(x, r, z) = at(x) and b̃t(z, ·, z′) is Lipschitz

continuous uniformly in (t, z, z′). See also [Hao et al (2021b)] for the study

of martingale solutions to the SDE{
dXt = Ytdt,

dYt =
{
bt(Xt, Yt) + (K ∗ LXt)(Xt)

}
dt+ dWt, t ∈ [0, T ],

where b and K are singular functions and (K ∗µ)(x) :=
∫
Rd K(x−y)µ(dy).
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Chapter 4

DDSDEs: Harnack Inequality and
Derivative Estimates

In this chapter we study the regularity of the maps

µ 7→ P ∗t µ, t ∈ (0, T ],

where P ∗t µ := LXt for Xt solving (3.1.1) with LX0
= µ. Since a probability

measure is determined by integrals of f ∈ Bb(Rd), it suffices to study the

regularity of the functionals

µ 7→ Ptf(µ) :=

∫
Rd
fd(P ∗t µ), f ∈ Bb(Rd), t ∈ (0, T ]. (4.0.1)

We will establish dimension-free Harnack inequalities and Bismut formu-

las for Ptf when the noise is distribution free. For distribution dependent

noise, these inequalities and formulas are still open except for a very spe-

cial situation considered in [Bai and Huang (2023)] and [Huang and Wang

(2022b)], where the noise only depends on the time and distribution vari-

ables. Derivative estimates are derived in Subsections 4.5.2 and 4.5.3 for

the case with distribution dependent noise.

4.1 Log-Harnack inequality

In this part, we study the following type of log-Harnack inequality for Pt
defined in (4.0.1):

Pt log f(ν) ≤ logPtf(µ) + c(t)W2(µ, ν)2, f ∈ B+
b (Rd), µ, ν ∈ P2, t ∈ (0, T ]

for some function c : (0, T ]→ (0,∞). This is equivalent to the entropy-cost

inequality

Ent(P ∗t µ|P ∗t ν) ≤ c(t)W2(µ, ν)2, µ, ν ∈ P2, t ∈ (0, T ].

163



July 27, 2024 9:20 ws-book9x6 13512-main page 164

164 Distribution Dependent Stochastic Differential Equations

4.1.1 Monotone and non-degenerate case

(A4.1) σ, b are bounded on bounded subsets of [0, T ]×Rd×P2, σσ∗ is invert-

ible, and there exists a constant L > 0 such that ‖σ∗(σσ∗)−1‖∞ ≤ L
and

‖σt(x, µ)− σt(y, ν)‖2 + 〈bt(x, µ)− bt(y, ν), x− y〉+

≤ L
{
|x− y|2 + W2(µ, ν)2

}
, t ∈ [0, T ], x, y ∈ Rd, µ, ν ∈ P2.

By Theorem 3.3.1, (A4.1) implies that (3.1.1) is well-posed for distribu-

tions in P2, and there exists a constant c > 0 such that

W2(P ∗t µ, P
∗
t ν) ≤ cW2(µ, ν), µ ∈ P2. (4.1.1)

The following result is due to [Wang (2018)].

Theorem 4.1.1. Assume (A4.1). Then there exists a constant C > 0 such

that the following inequalities hold for all t ∈ (0, T ] and µ, ν ∈ P2:

Pt log f(ν) ≤ logPtf(µ) +
C

t
W2(µ, ν)2, f ∈ B+

b (Rd), (4.1.2)

1

2
‖P ∗t µ− P ∗t ν‖2var ≤ Ent(P ∗t ν|P ∗t µ) ≤ C

t
W2(µ, ν)2, (4.1.3)

|Ptf(µ)− Ptf(ν)| ≤
√

2C‖f‖∞√
t

W2(µ, ν), f ∈ Bb(Rd). (4.1.4)

Proof. Noting that (4.1.3) and (4.1.4) are simple consequences of (4.1.2)

and Pinsker’s inequality (3.2.3), we only prove (4.1.2).

(a) For µ0, ν0 ∈ P2, let (X0, Y0) be F0-measurable such that

LX0 = µ0, LY0 = ν0, E|X0 − Y0|2 = W2(µ0, ν0)2. (4.1.5)

Denote

µt := P ∗t µ0, νt := P ∗t ν0, t ≥ 0.

Let Xt solve (3.4.1) with initial value X0. We have

dXt = bt(Xt, µt)dt+ σt(Xt)dWt, t ∈ [0, T ]. (4.1.6)

Next, we use the coupling as in the proof of Theorem 1.5.2. For any t0 ∈
(0, T ] consider the SDE

dYt =
{
bt(Yt, νt) +

σt(Yt){σ∗t (σtσ
∗
t )−1}(Xt)(Xt − Yt)
ξt

}
dt

+ σt(Yt)dWt, t ∈ [0, t0).

(4.1.7)
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For the constant L > 0 in (A4.1), let

ξt :=
1

L

(
1− eL(t−t0)

)
, t ∈ [0, t0). (4.1.8)

By (A4.1), (4.1.7) has a unique solution up to times

τn,k :=
t0n

n+ 1
∧ inf

{
t ∈ [0, t0) : |Yt| ≥ k}, n, k ≥ 1.

By Itô’s formula and (A4.1), for any n ≥ 1 we find a constant c(n) > 0 such

that

d|Yt|2 ≤ c(n)(1 + |Yt|2)dt+ dMt, t ∈ [0, τn,k], n, k ≥ 1

holds for some martingale Mt. This implies

lim
n→∞

lim
k→∞

τn,k = lim
n→∞

t0n

n+ 1
= t0,

and hence (4.1.7) has a unique solution up to time t0.

(b) For any n ≥ 1, let

τn :=
t0n

n+ 1
∧ inf{t ∈ [0, t0) : |Xt − Yt| ≥ n}. (4.1.9)

By (A4.1),

ηs := {σ∗s (σsσ
∗
s )−1}(Xs)(Xs − Ys)

satisfies |ηs| ≤ L|Xs − Ys|. By Girsanov’s theorem,

W̃t := Wt +

∫ t

0

ηs
ξs

ds, t ∈ [0, τn]

is an m-dimensional Brownian motion under the probability Qn := RnP,
where

Rn := e
−

∫ τn
0

1
ξs
〈ηs,dWs〉− 1

2

∫ τn
0
|ηs|2

|ξs|2
ds
. (4.1.10)

Then (4.1.6) and (4.1.7) imply

dXt =
{
bt(Xt, µt)−

Xt − Yt
ξt

}
dt+ σt(Xt)dW̃t,

dYt = bt(Yt, νt)dt+ σt(Yt)dW̃t, t ∈ [0, τn], n ≥ 1.

(4.1.11)

Combining this with (A4.1), (4.1.1), (4.1.8) and Itô’s formula, we obtain

d
|Xt − Yt|2

ξt
− dMt

≤
{L|Xt − Yt|2 + L|Xt − Yt|W2(µt, νt)

ξt
− |Xt − Yt|2(2 + ξ′t)

ξ2
t

}
dt

≤
{L2W2(µt, νt)

2

2
−
|Xt − Yt|2(2 + ξ′t − Lξt − 1

2 )

ξ2
t

}
dt

≤
{L2e2LtW2(µ0, ν0)2

2
− |Xt − Yt|2

2ξ2
t

}
dt, t ∈ [0, τn],

(4.1.12)
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where dMt := 2
ξt

〈
Xt−Yt, {σt(Xt)−σt(Yt)}dW̃t

〉
is a Qn-martingale. Com-

bining this with (4.1.1) and (A4.1), we derive

E[Rn logRn] = EQn [logRn] =
1

2
EQn

∫ τn

0

|ηs|2

ξ2
s

ds

≤ L2

2
EQn

∫ τn

0

|Xs − Ys|2

ξ2
s

ds ≤ c

t0
W2(µ0, ν0)2, n ≥ 1

(4.1.13)

for some constant c > 0 uniformly in t0 ∈ (0, T ]. Therefore, by the martin-

gale convergence theorem, R∞ := limn→∞Rn exists, and

Nt := e
−

∫ t
0

1
ξs
〈ηs,dWs〉− 1

2

∫ t
0
|ηs|2

|ξs|2
ds
, t ∈ [0, t0]

is a P-martingale.

(c) Finally, let Q := Nt0P. By Girsanov’s theorem, (W̃t)t∈[0,t0] is an

m-dimensional Brownian motion under the probability Q, and (Xt)t∈[0,t0]

solves the SDE

dXt =
{
bt(Xt, µt)−

Xt − Yt
ξt

}
dt+ σt(Xt)dW̃t, t ∈ [0, t0]. (4.1.14)

Let (Yt)t∈[0,t0] solve

dYt = bt(Yt, νt)dt+ σt(Yt)dW̃t, t ∈ [0, t0]. (4.1.15)

By the well-posedness of (3.4.1), this extends the second equation in (4.1.11)

with LYt0 |Q = νt0 . Moreover, (4.1.13) and Fatou’s lemma imply

1

2
EQ

∫ t0

0

|{σ∗s (σsσ
∗
s )−1}(Xs)(Xs − Ys)|2

|ξs|2
ds

= E[Nt0 logNt0 ] ≤ lim inf
n→∞

E[Rn logRn] ≤ c

t0
W2(µ0, ν0)2,

(4.1.16)

which in particular implies Q(Xt0 = Yt0) = 1 as explained in the proof of

Theorem 1.5.2. Combining this with the Young inequality (see Lemma 2.4

in [Arnaudon et al (2009)])

µ(fg) ≤ µ(f log f) + log µ(eg), f, g ≥ 0, µ(f) = 1, µ ∈ P, (4.1.17)

we arrive at

Pt0 log f(ν0) = E[Nt0 log f(Yt0)] = E[Nt0 log f(Xt0)]

≤ E[Nt0 logNt0 ] + logE[f(Xt0)]

≤ logPt0f(µ0) +
c

t0
W2(µ0, ν0)2, t0 ∈ (0, T ].

Hence, (4.1.2) holds. �
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4.1.2 Degenerate case

Consider the following distribution dependent stochastic Hamiltonian sys-

tem for (Xt, Yt) ∈ Rd := Rd1 × Rd2 :{
dXt =

(
AXt +BYt)dt,

dYt = Z(t, (Xt, Yt),L(Xt,Yt))dt+ σtdWt, t ∈ [0, T ],
(4.1.18)

where A is a d1×d1-matrix, B is a d1×d2-matrix, σ is a d2×d2-matrix, Wt

is the d2-dimensional Brownian motion on a complete filtration probability

space (Ω, {Ft}t≥0,P), and

Z : [0,∞)× Rd × P2 → Rd2 , σ : [0,∞)→ Rd2 ⊗ Rd2

are measurable. We assume

(A4.2) σt is invertible, there exists a constant K > 0 such that

‖σ(t)−1‖ ≤ K, |Z(t, x, µ)− Z(t, y, ν)| ≤ K
{
|x− y|+ W2(µ, ν)

}
holds for all t ≥ 0, µ, ν ∈ P2 and x, y ∈ Rd, and A,B satisfy the

following Kalman’s rank condition for some k ≥ 1:

Rank[A0B, . . . , Ak−1B] = d1, A0 := Id1×d1 .

This assumption implies (A3.1) for k = 2. By Theorem 3.3.1, (4.1.18)

is well-posed for distributions in P2 and

W2(P ∗t µ, P
∗
t ν) ≤ eK

′tW2(µ, ν), t ≥ 0, µ, ν ∈ P2 (4.1.19)

holds for some constant K ′ > 0. The following result is due to [Ren and

Wang (2021b)].

Theorem 4.1.2. Assume (A4.2) and let Pt be associated with (4.1.18).

Then there exists a constant c > 0 such that for any t ∈ (0, T ],

Pt log f(ν) ≤ Pt log f(µ) +
c

t4k−1
W2(µ, ν)2,

t ∈ (0, T ], µ, ν ∈ P2, f ∈ B+
b (Rd).

(4.1.20)

Proof. By the Kalman rank condition in (A4.2), for any t0 ∈ (0, T ],

Qt0 :=

∫ t0

0

t(t0 − t)e(t0−t)ABB∗e(t0−t)A∗dt

is invertible and there exists a constant c1 > 0 such that

‖Q−1
t0 ‖ ≤

c1ec1t0

t2k+1
0

, t0 ∈ (0, T ], (4.1.21)

see for instance Theorem 4.2(1) in [Wang and Zhang (2013)].



July 27, 2024 9:20 ws-book9x6 13512-main page 168

168 Distribution Dependent Stochastic Differential Equations

Let (X0, Y0), (X̄0, Ȳ0) ∈ L2(Ω → Rd,F0,P) such that L(X0,Y0) =

µ,L(X̄0,Ȳ0) = ν and

E
(
|X0 − X̄0|2 + |Y0 − Ȳ0|2

)
= W2(µ, ν)2. (4.1.22)

Next, let (Xt, Yt) solve (4.1.18). Then L(Xt,Yt) = P ∗t µ. Consider the modi-

fied equation with initial value (X̄0, Ȳ0):
dX̄t =

(
AX̄t +BȲt)dt,

dȲt =
{
Z(t, (Xt, Yt), P

∗
t µ) + Y0−Ȳ0

t0

+ d
dt

[
t(t0 − t)B∗e(t0−t)A∗v

]}
dt+ σtdWt,

(4.1.23)

where

v := Q−1
t0

{
et0A(X0 − X̄0) +

∫ t0

0

t− t0
t0

e(t0−t)AB(Ȳ0 − Y0)dt

}
. (4.1.24)

Then

Ȳt − Yt

= Ȳ0 − Y0 +

∫ t

0

{Y0 − Ȳ0

t0
+

d

dr

[
r(t0 − r)B∗e(t0−r)A∗v

]}
dr

=
t0 − t
t0

(Ȳ0 − Y0) + t(t0 − t)B∗e(t0−t)A∗v, t ∈ [0, t0].

(4.1.25)

Consequently, Yt0 = Ȳt0 , and combining with Duhamel’s formula, we obtain

X̄t −Xt = etA(X̄0 −X0)

+

∫ t

0

e(t−r)AB
{ t0 − r

t0
(Ȳ0 − Y0) + r(t0 − r)B∗e(t0−r)A∗v

}
dr

(4.1.26)

for t ∈ [0, t0]. This and (4.1.24) imply

X̄t0 −Xt0 = et0A(X̄0 −X0) +

∫ t0

0

t0 − r
t0

e(t0−r)AB(Ȳ0 − Y0)dr +Qt0v = 0,

which together with Yt0 = Ȳt0 observed above yields

(Xt0 , Yt0) = (X̄t0 , Ȳt0). (4.1.27)

On the other hand, let

ξt =σ−1
{ 1

t0
(Y0 − Ȳ0) +

d

dt

[
t(t0 − t)B∗e(t0−t)A∗v

]
+ Z

(
t, (Xt, Yt), P

∗
t µ
)
− Z

(
t, (X̄t, Ȳt), P

∗
t ν
)}
, t ∈ [0, t0].
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By (A4.2), (4.1.19), (4.1.21), (4.1.24), (4.1.25), and (4.1.26), we find a con-

stant c2 > 0 such that

|ξt|2 ≤
c2
t4k0

ec2t0
{
|X0− X̄0|2 + |Y0− Ȳ0|2 +W2(µ, ν)2

}
, t ∈ [0, t0]. (4.1.28)

So, the Girsanov theorem implies that

W̃t := Wt +

∫ t

0

ξsds, t ∈ [0, t0]

is a d2-dimensional Brownian motion under the probability measure Q :=

RP, where

R := e−
∫ t0
0 〈ξt,dWt〉− 1

2

∫ t0
0 |ξt|

2dt. (4.1.29)

Reformulating (4.1.23) as{
dX̄t =

(
AX̄t +BȲt)dt,

dȲt = Z(t, (X̄t, Ȳt), P
∗
t ν)dt+ σtdW̃t, t ∈ [0, t0],

by the weak uniqueness of (4.1.18) and that the distribution of (X̄0, Ȳ0)

under Q coincides with L(X̄0,Ȳ0) = ν, we obtain L(X̄t,Ȳt)|Q = P ∗t ν for t ∈
[0, T ]. Combining this with (4.1.27) and using the Young inequality (4.1.17),

for any f ∈ B+
b (Rd) we have

(Pt0 log f)(ν) = E[R log f(X̄t0 , Ȳt0)] = E[R log f(Xt0 , Yt0)]

≤ logE[f(Xt0 , Yt0)] + E[R logR] = log(Pt0f)(µ) + EQ[logR].
(4.1.30)

By (4.1.28), and (4.1.29), W̃t is a Brownian motion under Q, and noting

that Q|F0
= P|F0

and (4.1.22) imply

EQ
(
|X0 − X̄0|2 + |Y0 − Ȳ0|2

)
= W2(µ, ν)2,

we find a constant c > 0 such that

EQ[logR] =
1

2
EQ

∫ t0

0

|ξt|2dt ≤ cect0

t4k−1
0

W2(µ, ν)2.

Therefore, (4.1.20) follows from (4.1.30). �

4.1.3 Singular case

Let ‖µ‖2 :=
√
µ(| · |2) for µ ∈ P2. We make the following assumption.
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(A4.3) (σt(x), bt(x, δ0)) satisfies (A1.3), and there exist a constant α ≥ 0

and a function 1 ≤ f ∈ L̃p0
q0 (T ) such that

|bt(x, µ)− bt(x, ν)| ≤ min
{
ft(x)W2(µ, ν), ft(x) + α‖µ‖2 + α‖ν‖2

}
,

µ, ν ∈ P2, (t, x) ∈ [0, T ]× Rd.

According to Theorem 3.5.1, (A4.3) implies the well-posedness of (3.4.1)

for distributions in P2. Let P ∗t µ = LXt for the solution to (3.4.1) with

LX0
= µ ∈ P2 and let Ptf(µ) be in (4.0.1). The following result is due to

[Wang (2023b)].

Theorem 4.1.3. Assume (A4.3). For any N > 0, let P2,N (Rd) := {µ ∈
P2 : ‖µ‖2 ≤ N}.

(1) For any N > 0, there exists a constant C(N) > 0 such that for any

µ, ν ∈ P2,N (Rd) and any t ∈ [0, T ], the following inequalities hold:

W2(P ∗t µ, P
∗
t ν)2 ≤ C(N)W2(µ, ν)2, (4.1.31)

Ent(P ∗t ν|P ∗t µ) ≤ C(N)

t
W2(µ, ν)2, (4.1.32)

|Ptg(ν)− Ptg(µ)| ≤
√

2C(N)√
t
‖g‖∞W2(µ, ν), g ∈ Bb(Rd). (4.1.33)

(2) If (A4.3) holds for α = 0, then there exists a constant C > 0 such that

W2(P ∗t µ, P
∗
t ν)2 ≤ CW2(µ, ν)2, µ, ν ∈ P2. (4.1.34)

Moreover, if ‖f‖∞ <∞, then (4.1.32)-(4.1.33) hold for some constant

C replacing C(N) and all µ, ν ∈ P2.

Proof. (1) By Pinsker’s inequality (3.2.3), we only need to prove (4.1.31)

and (4.1.32). For any µ, ν ∈ P2, let Xt solve (3.4.1) for LX0 = µ, and denote

µt := P ∗t µ = LXt , νt := P ∗t ν, µ̄t := LX̄t , t ∈ [0, T ],

where X̄t solves

dX̄t = bt(X̄t, νt)dt+ σt(X̄t)dWt, t ∈ [0, T ], X̄0 = X0.

Let σ and b̂ := b(·, δ0) = b̂(1) + b̂(0) satisfy (A1.3). Consider the decomposi-

tion

bνt := bt(·, νt) = b̂
(1)
t + bν,0t .

By (A4.3), there exists a constant K(N) > 0 such that

|bν,0t | ≤ |b̂
(0)
t |+K(N)ft, ‖ν‖2 ≤ N, t ∈ [0, T ]. (4.1.35)
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So, by Theorem 1.3.1(3) and Theorem 1.5.1, there exists a constant c1(N) >

0 such that

W2(µ̄t, νt)
2 ≤ c1(N)W2(µ, ν)2, t ∈ [0, T ], µ ∈ P2, (4.1.36)

Ent(νt|µ̄t) ≤
c1(N)

t
W2(µ, ν)2, t ∈ (0, T ], µ ∈ P2. (4.1.37)

Moreover, repeating step (d) in the proof of Theorem 3.5.1 for k = 2 and

(Xt, X̄t) replacing (Xµ,γ
t , Xν,γ

t ), and using (A4.3), instead of (3.5.25) where

‖µs − νs‖2k,var disappears in the present case, we derive

W2(µt, µ̄t)
4 ≤ (E|Xt − X̄t|2)2 ≤ c2(N)

∫ t

0

W2(µs, νs)
4ds, t ∈ [0, T ]

for some constant c2(N) > 0. This together with (4.1.36) yields

W2(µt, νt)
4 ≤ 8W2(µt, µ̄t)

4 + 8W2(µ̄t, νt)
2

≤ 8c1(N)2W2(µ, ν)4 + 8c2(N)

∫ t

0

W2(µs, µs)
4ds, t ∈ [0, T ].

By Gronwall’s inequality, (4.1.31) holds for some constant C(N) > 0.

On the other hand, let ‖µ‖2 ≤ N and define

Rt := exp

[
−
∫ t

0

〈γs,dWs〉 −
1

2

∫ t

0

|γs|2ds

]
,

γs :=
{
σ∗s (σsσ

∗
s )−1

}
(Xs)

[
bs(Xs, µs)− bs(Xs, νs)

]
.

By Girsanov’s theorem, we obtain

E
[(
f

dµ̄t
dµt

)
(Xt)

]
=

∫
Rd
f

dµ̄t
dµt

dµt

=

∫
Rd
fdµ̄t = E[f(X̄t)] = E[Rtf(Xt)], f ∈ Bb(Rd).

This implies dµ̄t
dµt

(Xt) = E[Rt|Xt], so that by Jensen’s inequality,∫
Rd

(dµ̄t
dµt

)2

dµt = E
{(dµ̄t

dµt
(Xt)

)2}
= E

{(
E
[
Rt|Xt]

)2}
≤ E[R2

t ].

By combining this with the Young inequality (4.1.17), we derive

Ent(νt|µt) =

∫
Rd

log
( dνt

dµt

)
dνt =

∫
Rd

{
log

dνt
dµ̄t

+ log
dµ̄t
dµt

}
dνt

= Ent(νt|µ̄t) +

∫
Rd

( dνt
dµ̄t

)
log

dµ̄t
dµt

dµ̄t

≤ 2Ent(νt|µ̄t) + log

∫
Rd

dµ̄t
dµt

dµ̄t

= 2Ent(νt|µ̄t) + log

∫
Rd

(dµ̄t
dµt

)2

dµt ≤ 2Ent(νt|µ̄t) + logE[R2
t ].

(4.1.38)
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By (A4.3), (4.1.31), ‖σ∗(σσ∗)−1‖∞ < ∞ and (1.2.17), we find constants

c3(N), c4(N) > 0 such that

E[R2
t ]− 1 ≤

(
E[R2

t ]
)2 ≤ Eec3(N)W2(µ,ν)2

∫ t
0
fs(Xs)

2ds − 1

≤ E
[
c3(N)W2(µ, ν)2ec3(N)W2(µ,ν)2

∫ t
0
fs(Xs)

2ds

∫ t

0

fs(Xs)
2ds

]
≤ c3(N)W2(µ, ν)2

[
E
(∫ t

0

fs(Xs)
2ds

)2] 1
2

×
[
Ee2c3(N)W2(µ,ν)2

∫ t
0
fs(Xs)

2ds
] 1

2

≤ c4(N)W2(µ, ν)2.

(4.1.39)

Combining this with (4.1.37) and (4.1.38), we derive (4.1.32) for some con-

stant C(N) > 0.

(2) When α = 0, (4.1.35) holds for K(N) = K independent of N ,

so that (4.1.36) and (4.1.37) hold for some constant C1(N) = C1 > 0

independent of N and all µ, ν ∈ P2, and in (4.1.39) the constant C3(N) =

C3 is independent of N as well. Consequently, when ‖f‖∞ < ∞ we find a

constant C ′ > 0 such that

E[R2
t ] ≤ EeC3W2(µ,ν)2

∫ t
0
fs(Xs)

2ds ≤ eC
′W2(µ,ν)2

.

Combining this with (4.1.37) and (4.1.38) we derive (4.1.32) for some con-

stant C(N) = C independent of N . �

4.2 Power Harnack inequality

The power Harnack inequality was established in [Wang (2018)] for the

monotone case by using the coupling constructed in the proof of Theo-

rem 4.1.1. In this section we only consider the singular case.

Let k ≥ 0. For any µ ∈ Cwb ([0, T ];Pk) let bµt (x) := bt(x, µt), (t, x) ∈
[0, T ]× Rd.

(A4.4) Let k ≥ 0. Assumption (A1.3) holds for (σ, bµ) uniformly in µ ∈
Cwb ([0, T ];Pk). Moreover, there exist constants K > 0 and κ ≥ 0

such that

|bt(x, µ)− bt(x, ν)| ≤ KWk(µ, ν),

(t, x, µ, ν) ∈ [0, T ]× Rd × Pk × Pk.
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By Theorem 3.5.1, (A4.4) implies the well-posedness of (3.4.1) for dis-

tributions in Pk, and

Theorem 4.2.1. Assume (A4.4). Let κ0, κ1 and p∗ be in Theorem 1.5.2.

Then for any p > p∗ there exists a constant c > 0 such that

|Ptf |p(µ) ≤{Pt|f |p(ν)}ecWk(µ,ν)2

× inf
π∈C(µ,ν)

∫
Rd×Rd

e
c
t |x−y|

2

π(dx, dy),

t ∈ (0, T ], µ, ν ∈ Pk.

(4.2.1)

When k ∈ [1, 2], the term ecWk(µ,ν)2

can be dropped.

Proof. By Theorem 3.6.1, (A4.4) implies (3.6.3) for Ck,N = Ck indepen-

dent of N , i.e.

Wk(P ∗t µ, P
∗
t ν) ≤ CkWk(µ, ν), t ∈ [0, T ], µ, ν ∈ Pk. (4.2.2)

Next, let Pµt be the Markov semigroup associated to the SDE

dXµ,x
t = bt(X

µ,x
t , P ∗t µ)dt+ σt(X

µ,x
t )dWt, Xµ,x

0 = x,

i.e. Pµt f(x) := E[f(Xµ,x
t )]. We have

Ptf(µ) =

∫
Rd
Pµt f(x)µ(dx), t ∈ [0, T ], f ∈ Bb(Rd), µ ∈ Pk. (4.2.3)

By Theorem 1.5.2, for any p > p∗, there exists a constant c1 = c1(p) > 0,

which is independent of µ since (A1.3) holds for (σ, bµ) uniformly in µ, such

that for p′ := p+p∗

2 > p∗,

|Pµt f(x)|p
′
≤ (Pµt |f |p

′
(y))ec1t

−1|x−y|2 , t ∈ (0, T ], x, y ∈ Rd, f ∈ Bb(Rd).
(4.2.4)

On the other hand, for fixed t ∈ (0, T ], let

ξs :=
{
σ∗s (σsσ

∗
s )−1

[
bs(·, P ∗s µ)− bs(·, P ∗s ν)

]}
(Xν,y

s ),

R := e
∫ t
0
〈ξs,dWs〉− 1

2

∫ t
0
|ξs|2ds.

By (A4.4) and (4.2.2), we find a constant c0 > 0 such that

|ξs| ≤ c0Wk(µ, ν), s ∈ [0, t]. (4.2.5)

By Girsanov’s theorem,

W̃s := Ws −
∫ s

0

ξrdr, s ∈ [0, t]
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is an m-dimensional Brownian motion under Q := RP. Moreover, the SDE

for Xν,y
s can be formulated as

dXν,y
s = bs(X

ν,y
s , P ∗s ν)dt+ σs(X

ν,y
s )dWs

= bs(X
ν,y
s , P ∗s µ)dt+ σs(X

ν,y
s )dW̃s, Xν,y

0 = y, s ∈ [0, t],

so that by the uniqueness, LXν,yt |Q = LXµ,yt |P. Consequently, by (4.2.5), we

find a constant c2 > 0 such that

Pµt |f |p
′
(y) = E[R|f |p

′
(Xν,y

t )] ≤
(
E[|f |p(Xν,y

t )]
) p′
p
(
E[R

p
p−p′ ]

) p−p′
p

≤ ec2Wk(µ,ν)2

(P νt |f |p(y))
p′
p .

Combining this with (4.2.4), we obtain

|Pµt f(x)|p≤(P νt |f |p(y))ec1p(p
′t)−1|x−y|2+c2p(p

′)−1Wk(µ,ν)2

, t∈(0, T ], x, y∈Rd.

By (4.2.3), integrating both sides with respect to π ∈ C(µ, ν) and applying

Jensen’s inequality, we derive

|Ptf(µ)|p ≤ (Pt|f |p(ν))ec2p(p
′)−1Wk(µ,ν)2

× inf
π∈C(µ,ν)

∫
Rd×Rd

ec1p(p
′t)−1|x−y|2π(dx,dy).

Thus, (4.2.1) holds. When k ∈ [1, 2], we have Wk ≤ W2, so that for any

π ∈ C(µ, ν), by the definition of Wk and Jensen’s inequality, we obtain

ecW
2
k(µ,ν)2

≤ ecW2(µ,ν)2

≤
∫
Rd×Rd

ec|x−y|
2

π(dx, dy)

for any constant c > 0, so that the term ecW
2
k(µ,ν)2

can be dropped from

(4.2.1) by taking a large constant in the other term. �

4.3 Chain rule for intrinsic/L-derivatives

The intrinsic derivative for measures was introduced in [Albeverio et al

(1996)] to construct diffusion processes on configuration spaces over a Rie-

mannian manifold, and was used in [Otto (2001)] to study the geometry

of dissipative evolution equations, see [Ambrosio et al (2005)] for analysis

and geometry on the Wasserstein space over a metric measure space.

In this part, we introduce the intrinsic and L-derivatives for probability

measures on a separable Banach space, and establish the chain rule.

Let (B, ‖ · ‖B) be a separable Banach space, and let (B∗, ‖ · ‖B∗) be its

dual space. For any k ∈ [1,∞), denote k∗ = k
k−1 when k > 1 and k∗ =∞
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for k = 1. Let P(B) be the class of all probability measures on B equipped

with the weak topology. Then

Pk(B) :=
{
µ ∈ P(B) : ‖µ‖k := {µ(‖ · ‖kB)} 1

k <∞
}

is a Polish space under the Lk-Wasserstein distance

Wk(µ1, µ2) := inf
π∈C(µ1,µ2)

(∫
B×B
‖x− y‖kBπ(dx, dy)

) 1
k

,

where C(µ1, µ2) is the set of all couplings of µ1 and µ2.

For any µ ∈ Pk(B), the tangent space at µ is given by

Tµ,k = Lk(B→ B;µ) :=
{
φ : B→ B is measurable with µ(‖φ‖kB) <∞

}
,

which is a Banach space under the norm ‖φ‖Tµ,k := {µ(‖φ‖kB)} 1
k , and its

dual space is

T ∗µ,k = Lk
∗
(B→ B∗;µ)

:=
{
ψ : B→ B∗ is measurable with ‖ψ‖T∗µ,k :=

∥∥‖ψ‖B∗∥∥Lk∗ (µ)
<∞

}
.

The following definitions and chain rule are taken from [Bao et al (2021)].

Definition 4.3.1. Let f : Pk(B) → R be a continuous function for some

p ∈ [1,∞), and let id be the identity map on B.

(1) f is called intrinsically differentiable at µ ∈ Pk(B), if

Tµ,k 3 φ 7→ DI
φf(µ) := lim

ε↓0

f(µ ◦ (id+ εφ)−1)− f(µ)

ε
∈ R

is a well-defined bounded linear functional. In this case, the unique

element DIf(µ) ∈ T ∗µ,k such that

T∗µ,k
〈DLf(µ), φ〉Tµ,k :=

∫
B

B∗〈DIf(µ)(x), φ(x)〉Bµ(dx)

= DI
φf(µ), φ ∈ Tµ,k

is called the intrinsic derivative of f at µ.

If moreover

lim
‖φ‖Tµ,k↓0

|f(µ ◦ (id+ φ)−1)− f(µ)−DI
φf(µ)|

‖φ‖Tµ,k
= 0,

f is called L-differentiable at µ with the L-derivative DLf(µ) :=

DIf(µ).
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(2) We write f ∈ C1(Pk(B)) if f is L-differentiable at any µ ∈ Pk(B),

and the L-derivative has a version DLf(µ)(x) jointly continuous in

(x, µ) ∈ B × Pk(B). If moreover DLf(µ)(x) is bounded, we denote

f ∈ C1
b (Pk(B)).

Definition 4.3.2. A probability space (Ω,F ,P) is called Polish, if F is the

P-completeness of the Borel σ-field induced by a Polish metric on Ω. P is

called atomless if P(A) = 0 holds for any atom A ∈ F .

Noting that when B = Rd and k = 2, the L-derivative DLf(µ) named af-

ter Lions is defined as the unique element in Tµ,2 such that for any atomless

probability space (Ω,F ,P) and any random variables X,Y with LX = µ,

lim
‖Y−X‖L2(P)↓0

|f(LY )− f(LX)− E[〈DLf(µ)(X), Y −X〉]|
‖Y −X‖L2(P)

= 0.

Since DLf(µ) does not depend on the choice of probability space, when

µ is atomless we may choose (Ω,F ,P) = (Rd,Bd, µ) such that DLf(µ) =

DIf(µ), see for instance Chapter 5 in [Carmona and Delarue (2019)]. Since

by approximations one may drop the atomless condition, the above notion

of L-derivative coincides with the Lions’ derivative.

Example 4.3.1. Let B = Rd. We denote f ∈ FC1
b (Pk) if

f(µ) = g(µ(h1), . . . , µ(hn))

for some n ≥ 1, g ∈ C2(Rn) and hi ∈ C1
b (Rd), 1 ≤ i ≤ n. Then it is easy to

see that f ∈ C1
b (Pk) with

DLf(µ) =

d∑
i=1

(∂ig)(µ(h1), . . . , µ(hn))∇hi.

We call FC1
b (Pk) the class of C1

b -cylindrical functions on Pk.

To establish the chain rule for functions of distributions of random vari-

ables, we need the following lemma, which extends Lemma A.2 in [Ham-

mersley et al (2021)] for B = Rd.

Lemma 4.3.1. Let {(Ωi,Fi,Pi)}i=1,2 be two atomless, Polish probability

spaces, and let Xi, i = 1, 2, be B-valued random variables on these two

probability spaces respectively such that LX1|P1
= LX2|P2

. Then for any

ε > 0, there exist measurable maps

τ : Ω1 → Ω2, τ−1 : Ω2 → Ω1
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such that

P1(τ−1 ◦ τ = idΩ1) = P2(τ ◦ τ−1 = idΩ2) = 1,

P1 = P2 ◦ τ, P2 = P1 ◦ τ−1,

‖X1 −X2 ◦ τ‖L∞(P1) + ‖X2 −X1 ◦ τ−1‖L∞(P2) ≤ ε,
where idΩi stands for the identity map on Ωi, i = 1, 2.

Proof. Since B is separable, there is a measurable partition (An)n≥1 of B
such that diam(An) < ε, n ≥ 1. Let Ain = {Xi ∈ An}, n ≥ 1, i = 1, 2. Then

(Ain)n≥1 forms a measurable partition of Ωi so that
∑
n≥1A

i
n = Ωi, i = 1, 2,

and, due to LX1 |P1 = LX2 |P2,

P1(A1
n) = P2(A2

n), n ≥ 1.

Since the probabilities (Pi)i=1,2 are atomless, according to Theorem C in

Section 41 of [Halmos (1950)], for any n ≥ 1 there exist measurable sets

Ãin ⊂ Ain with Pi(Ain \ Ãin) = 0, i = 1, 2, and a measurable bijective map

τn : Ã1
n → Ã2

n

such that

P1|Ã1
n

= P2 ◦ τn|Ã1
n
, P2|Ã2

n
= P1 ◦ τ−1

n |Ã2
n
.

By diam(An) < ε and Pi(Ain \ Ãin) = 0, we have

‖(X1 −X2 ◦ τn)1Ã1
n
‖L∞(P1) ∨ ‖(X2 −X1 ◦ τ−1

n )1Ã2
n
‖L∞(P2) ≤ ε.

Then the proof is finished by taking, for fixed points ω̂i ∈ Ωi, i = 1, 2,

τ(ω1) :=

{
τn(ω1), if ω1 ∈ Ã1

n for some n ≥ 1,

ω̂2, otherwise,

τ−1(ω2) :=

{
τ−1
n (ω2), if ω2 ∈ Ã2

n for some n ≥ 1,

ω̂1, otherwise. �

The following chain rule is taken from Theorem 2.1 in [Bao et al (2021)],

which extends the corresponding formulas for functions on P2 presented

in [Carmona and Delarue (2019); Hammersley et al (2021)] and references

therein.

Theorem 4.3.2. Let f : Pk(B) → R be continuous for some k ∈ [1,∞),

and let (ξε)ε∈[0,1] be a family of B-valued random variables on a complete

probability space (Ω,F ,P) such that ξ̇0 := limε↓0
ξε−ξ0
ε exists in Lk(Ω →

B,P). We assume that either ξε is continuous in ε ∈ [0, 1], or the probability

space is Polish.
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(1) Let µ0 = Lξ0 be atomless. If f is L-differentiable such that DLf(µ0)

has a continuous version satisfying

‖DLf(µ0)(x)‖B∗ ≤ C(1 + ‖x‖k−1
B ), x ∈ B (4.3.1)

for some constant C > 0, then

lim
ε↓0

f(Lξε)− f(Lξ0)

ε
= E[B∗〈DLf(µ0)(ξ0), ξ̇0〉B]. (4.3.2)

(2) If f is L-differentiable in a neighborhood O of µ0 such that DLf has a

version jointly continuous in (x, µ) ∈ B×O satisfying

‖DLf(µ)(x)‖B∗ ≤ C(1 + ‖x‖k−1
B ), (x, µ) ∈ B×O (4.3.3)

for some constant C > 0, then (4.3.2) holds.

Proof. Without loss of generality, we may and do assume that P is atom-

less. Otherwise, by taking

(Ω̃, F̃ , P̃) := (Ω×[0, 1],F×B([0, 1]),P×ds), (ξ̃ε)(ω, s) := ξε(ω) for (ω, s) ∈ Ω̃,

where B([0, 1]) is the completion of the Borel σ-algebra on [0, 1] w.r.t. the

Lebesgue measure ds, we have

Lξ̃ε|P̃ = Lξε|P, E[B∗〈DLf(µ0)(ξ0), ξ̇0〉B] = Ẽ[B∗〈DLf(µ0)(ξ̃0),
˙̃
ξ0〉B].

In this way, we go back to the atomless situation. Moreover, it suffices to

prove for the Polish probability space case. Indeed, when ξε is continuous in

ε, we may take Ω̄ = C([0, 1];Rd), let P̄ be the distribution of ξ·, let F̄ be the

P̄-complete Borel σ-field on Ω̄ induced by the uniform norm, and consider

the coordinate random variable ξ̄·(ω) := ω, ω ∈ Ω̄. Then Lξ̄·|P̃ = Lξ·|P, so

that Lξ̄ε|P̄ = Lξε|P for any ε ∈ [0, 1] and Lξ̄′0|P̄ = Lξ′0|P. Hence we have

reduced the situation to the Polish setting.

(1) Let Lξ0 = µ0 ∈ Pk(B) be atomless. In this case, (B,B(B), µ0) is an

atomless Polish complete probability space, where B(B) is the µ0-complete

Borel σ-algebra of B. By Lemma 3.6.2, for any n ≥ 1 we find measurable

maps

τn : Ω→ B, τ−1
n : B→ Ω

such that

P(τ−1
n ◦ τn = idΩ) = µ0(τn ◦ τ−1

n = id) = 1,

P = µ0 ◦ τn, µ0 = P ◦ τ−1
n ,

‖ξ0 − τn‖L∞(P) + ‖id− ξ0 ◦ τ−1
n ‖L∞(µ0) ≤

1

n
,

(4.3.4)

where idΩ is the identity map on Ω.



July 27, 2024 9:20 ws-book9x6 13512-main page 179

DDSDEs: Harnack Inequality and Derivative Estimates 179

Since f is L-differentiable at µ0, there exists a decreasing function h :

[0, 1]→ [0,∞) with h(r) ↓ 0 as r ↓ 0 such that

sup
‖φ‖

Lk(µ0)
≤r

∣∣f(µ0 ◦ (id+ φ)−1)− f(µ0)−DL
φf(µ0)

∣∣
≤ rh(r), r ∈ [0, 1].

(4.3.5)

By Lξε−ξ0 ∈ Pk(B) and (4.3.4), we have

φn,ε := (ξε − ξ0) ◦ τ−1
n ∈ Tµ,k, ‖φn,ε‖Tµ,k = ‖ξε − ξ0‖Lk(P). (4.3.6)

Next, (4.3.4) implies

Lτn+ξε−ξ0 = P ◦ (τn + ξε − ξ0)−1

= (µ0 ◦ τn) ◦ (τn + ξε − ξ0)−1 = µ0 ◦ (id+ φn,ε)
−1.

(4.3.7)

Moreover, by ξε−ξ0
ε → ξ̇0 in Lk(P) as ε ↓ 0, we find a constant c ≥ 1 such

that

‖ξε − ξ0‖Lk(P) ≤ cε, ε ∈ [0, 1]. (4.3.8)

Combining (4.3.4)–(4.3.8) leads to∣∣f(Lτn+ξε−ξ0)− f(Lξ0)− E[B∗〈(DLf)(µ0)(τn), (ξε − ξ0)〉B]
∣∣

=
∣∣f(µ0 ◦ (id+ φn,ε)

−1)− f(µ0)−DL
φn,εf(µ0)

∣∣
≤ ‖φn,ε‖Tµ,kh(‖φn,ε‖Tµ,k)

= ‖ξε − ξ0‖Lk(P)h(‖ξε − ξ0‖Lk(P)), ε ∈ [0, c−1].

(4.3.9)

Since f(µ) is continuous in µ and DLf(µ0)(x) is continuous in x, by (4.3.1)

and (4.3.4), we may apply the dominated convergence theorem to deduce

from (4.3.9) with n→∞ that∣∣f(Lξε)− f(Lξ0)− E[B∗〈(DLf)(µ0)(ξ0), (ξε − ξ0)〉B]
∣∣

≤ ‖ξε − ξ0‖Lk(P)h(‖ξε − ξ0‖Lk(P)), ε ∈ [0, c−1].

Combining this with (4.3.8) and h(r)→ 0 as r → 0, we derive (4.3.2).

(2) When µ0 has an atom, we take a B-valued bounded random variable

X which is independent of (ξε)ε∈[0,1] and LX does not have an atom. Then

Lξ0+sX+r(ξε−ξ0) ∈ Pk(B) does not have an atom for any s > 0, ε ∈ [0, 1].

By conditions in Theorem 4.3.2(2), there exists a small constant s0 ∈ (0, 1)

such that for any s, ε ∈ (0, s0], we may apply (4.3.2) to the family ξ0 +

sX + (r + δ)(ξε − ξ0) for small δ > 0 to conclude

f(Lξε+sX)− f(Lξ0+sX) =

∫ 1

0

d

dδ
f(Lξ0+sX+(r+δ)(ξε−ξ0))

∣∣
δ=0

dr

=

∫ 1

0

E[B∗〈DLf(Lξ0+sX+r(ξε−ξ0))(ξ0 + sX + r(ξε − ξ0)), ξε − ξ0〉B] dr.
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By conditions in Theorem 4.3.2(2), we may let s ↓ 0 to derive

f(Lξε)− f(Lξ0)

=

∫ 1

0

E[B∗〈DLf(Lξ0+r(ξε−ξ0))(ξ0 + r(ξε − ξ0)), ξε − ξ0〉B] dr, ε ∈ (0, s0).

Multiplying both sides by ε−1 and letting ε ↓ 0, we finish the proof. �

As a consequence of the chain rule, we have the following Lipschitz

estimate for L-differentiable functions on Pk(B).

Corollary 4.3.3. Let f be L-differentiable on Pk(B) such that for any

µ ∈ Pk(B), DLf(µ)(·) has a continuous version satisfying

|DLf(µ)(x)| ≤ c(µ)(1 + |x|k−1), x ∈ B, (4.3.10)

which holds for some constant c(µ) > 0, and

K0 := sup
µ∈Pk(B)

‖DLf(µ)‖Lk∗ (µ) <∞. (4.3.11)

Then

|f(µ1)− f(µ2)| ≤ K0Wk(µ1, µ2), µ1, µ2 ∈ Pk(B). (4.3.12)

Proof. Let ξ1, ξ2 be two random variables with

Lξ1 = µ1, Lξ2 = µ2, Wk(µ1, µ2) = (E[|ξ1 − ξ2|k])
1
k .

Let η be a normal random variable independent of (ξ1, ξ2) such that Lη is

atomless. Then

γε(r) := εη + rξ1 + (1− r)ξ2, r ∈ [0, 1], ε ∈ (0, 1]

are absolutely continuous with respect to the Lebesgue measure and hence

atomless. By Theorem 4.3.2, (4.3.10) and the continuity of DLf(µ)(·) imply

|f(Lγε(1))− f(Lγε(0))| =
∣∣∣∣ ∫ 1

0

E
[
〈DLf(Lγε(r))(γε(r)), ξ1 − ξ2〉

]
dr

∣∣∣∣
≤
(
E[|ξ1 − ξ2|k]

) 1
k

∫ 1

0

‖DLf(Lγε(r))‖Lk∗ (Lγε(r))
dr

≤ KWk(µ1, µ2), ε ∈ (0, 1].

Letting ε→ 0 we derive (4.3.12). �
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4.4 Bismut formula for singular DDSDEs

Let k ∈ [1,∞). We aim to establish Bismut formula for the intrinsic/L

derivative of Ptf(µ) for µ ∈ Pk, where Pt is defined in (4.0.1) for the

singular DDSDE (3.4.1). To this end, we will assume that bt(x, µ) includes

a singular term in L̃p0
q0 (T ) and a regular term in the following class Dk, such

that the chain rule in Theorem 4.3.2 applies. This part is organized from

[Wang (2023d)].

Definition 4.4.1. Dk is the class of continuous functions g on Rd×Pk such

that g(x, µ) is differentiable in x, L-differentiable in µ, and DLg(x, µ)(y)

has a version jointly continuous in (x, y, µ) ∈ Rd × Rd × Pk such that

|DLg(x, µ)(y)| ≤ c(x, µ)(1 + |y|k−1), x, y ∈ Rd, µ ∈ Pk
holds for some positive function c on Rd × Pk.

According to Example 4.3.1, we have g ∈ Dk for

g(x, µ) := F (x, µ(h1), . . . , µ(hn)),

where F ∈ C1(Rd × Rn) and {hi}1≤i≤n ⊂ C1(Rd) such that

sup
1≤i≤n

|∇hi(y)| ≤ c(1 + |y|k−1), y ∈ Rd

holds for some constant c > 0.

(A4.5) bt(x, µ) = b
(0)
t (x)+b

(1)
t (x, µ) such that the following conditions hold.

(1) (A1.2)(1) holds; i.e. a := σσ∗ is invertible with ‖a‖∞+‖a−1‖∞ <∞,

lim
ε→0

sup
|x−y|≤ε,t∈[0,T ]

‖at(x)− at(y)‖ = 0,

and there exist l ∈ N, {(pi, qi)}0≤i≤l ⊂ K with pi > 2, and 0 ≤ fi ∈
L̃piqi (T ) such that

|b(0)| ≤ f0, ‖∇σ‖ ≤
l∑
i=1

fi.

(2) b
(1)
t ∈ Dk such that supt∈[0,T ] |b

(1)
t (0, δ0)| <∞ and

sup
(t,x,µ)∈[0,T ]×Rd×Pk

{
‖∇b(1)

t (x, µ)‖+ ‖DLb
(1)
t (x, µ)‖Lk∗ (µ)

}
<∞,

where δ0 is the Dirac measure at 0 ∈ Rd, ∇ is the gradient in the

space variable x ∈ Rd, and DL is the L-derivative in the distribution

variable µ ∈ Pk.
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We will show that (A4.5) implies the well-posedness of the DDS-

DE (3.4.1) for distributions in Pk. To calculate the intrinsic derivative

DIPtf(µ), for any ε ∈ [0, 1] and φ ∈ Tµ,k, we consider the following DDS-

DE:

dXµ,εφ
t = bt(X

µ,εφ
t ,LXµ,εφt

)dt+ σt(X
µ,εφ
t )dWt,

t ∈ [0, T ], Xµ,εφ
0 = Xµ

0 + εφ(Xµ
0 ).

(4.4.1)

We will prove that the derivative process

∇φXµ
t := lim

ε↓0

Xµ,εφ
t −Xµ

t

ε
, t ∈ [0, T ] (4.4.2)

exists in Lk(Ω → C([0, T ];Rd),P). We also need the derivative of the

decoupled SDE

dXµ,x
t = bt(X

µ,x
t , P ∗t µ)dt+ σt(X

µ,x
t )dWt,

t ∈ [0, T ], Xµ,x
0 = x, x ∈ Rd, µ ∈ Pk.

(4.4.3)

By Theorem 1.4.2, (A4.5) implies the well-posedness of (4.4.3) and that for

any v ∈ Rd,

∇vXµ,x
t := lim

ε↓0

X
µ,x+εv(x)
t −Xµ,x

t

ε
, t ∈ [0, T ] (4.4.4)

exists in Lk(Ω→ C([0, T ];Rd),P).

4.4.1 Main results

Theorem 4.4.1. Assume (A4.5). Then (3.4.1) is well-posed for distribu-

tions in Pk and the following assertions hold for Pt defined in (4.0.1).

(1) For any µ ∈ Pk, φ ∈ Tµ,k and v, x ∈ Rd, ∇φXµ
t and ∇vXµ,x

t exist

in Lk(Ω → C([0, T ];Rd),P). Moreover, for any j ≥ 1 there exists a

constant c > 0 such that

E
[

sup
t∈[0,T ]

|∇φXµ
t |j
∣∣∣F0

]
≤ c
{
‖φ‖j

Lk(µ)
+ |φ(Xµ

0 )|j
}
,

µ ∈ Pk, φ ∈ Tµ,k,
(4.4.5)

E
[

sup
t∈[0,T ]

|∇vXµ,x
t |j

]
≤ c|v|j , µ ∈ Pk, x, v ∈ Rd. (4.4.6)
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(2) Denote ζ = σ(σσ∗)−1. For any t ∈ (0, T ] and f ∈ Bb(Rd), Ptf is

intrinsically differentiable on Pk. Moreover, for any φ ∈ Tµ,k and

β ∈ C1([0, t]) with β0 = 0 and βt = 1,

DI
φPtf(µ) =

∫
Rd

E
[
f(Xµ,x

t )Mµ,x
β,t

]
µ(dx) + E

[
f(Xµ

t )Nµ
t

]
(4.4.7)

holds for

Mµ,x
β,t :=

∫ t

0

β′s
〈
ζs(X

µ,x
s )∇φ(x)X

µ,x
s ,dWs

〉
,

Nµ
t :=

∫ t

0

〈
ζs(X

µ
s )E

[
〈DLb(1)

s (z, P ∗s µ)(Xµ
s ),∇φXµ

s 〉
]
|z=Xµs ,dWs

〉
.

The following is a direct consequence of Theorem 4.4.1.

Corollary 4.4.2. Assume (A4.5). Then for any p > 1 there exists a con-

stant c > 0 such that

‖DIPtf(µ)‖Lk∗ (µ) ≤
c√
t

∥∥∥(E[|f |p(Xµ
t )|F0]

) 1
p

∥∥∥
Lk∗ (P)

,

t ∈ (0, T ], f ∈ Bb(Rd), µ ∈ Pk.

In particular, there exists a constant c > 0 such that

‖DIPtf(µ)‖Lk∗ (µ) ≤
c√
t

∥∥f(Xµ
t )
∥∥
Lk∗ (P)

, t ∈ (0, T ], f ∈ Bb(Rd), µ ∈ Pk.

For the L-differentiability of Ptf , we need the uniform continuity of

σt(x), ∇b(1)
t (x, µ) and DLbt(x, µ)(y) in (x, y, µ):

lim
ε↓0

sup
{
‖σt(x)− σt(x′)‖+

∥∥∇b(1)
t (x, µ)−∇b(1)

t (x′, ν)
∥∥

+
∥∥DLb

(1)
t (x, µ)(y)−DLb

(1)
t (x′, ν)(y′)

∥∥ : t ∈ [0, T ],

|x− x′| ∨Wk(µ, ν) ∨ |y − y′| ≤ ε
}

= 0.

(4.4.8)

Under this condition and (A4.5), the following result ensures the L-

differentiability of Ptf in Pk for k > 1. See also [Huang et al (2021)] for

the case that k = 2, σt is Lipschitz continuous and b
(0)
t is Dini continuous.

Theorem 4.4.3. Assume (A4.5) and (4.4.8) for k ∈ (1,∞). Then for any

t ∈ (0, T ] and f ∈ Bb(Rd), Ptf is L-differentiable on Pk.
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4.4.2 Some lemmas

Lemma 4.4.4. Assume (A4.5). Then the following assertions hold.

(1) (3.4.1) is well-posed for distributions in Pk, and for any j ≥ 1 there

exists a constant c > 0 such that any solution Xt satisfies

E
[

sup
t∈[0,T ]

|Xt|j
∣∣∣∣F0

]
≤ c
{

1 + (E[|X0|k])
j
k + |X0|j

}
. (4.4.9)

In particular, there exists a constant c > 0 such that

E
[

sup
t∈[0,T ]

|Xt|k
]
≤ c
(
1 + E[|X0|k]

)
. (4.4.10)

(2) For any j ≥ 1 there exists a constant c > 0 such that for any two

solutions (X1
t , X

2
t ) of (3.4.1) with initial distributions in Pk,

E
[

sup
t∈[0,T ]

|X1
t −X2

t |j
∣∣∣∣F0

]
≤ c
{(

E[|X1
0 −X2

0 |k]
) j
k + |X1

0 −X2
0 |j
}
.

(4.4.11)

In particular, there exists a constant c > 0 such that

E
[

sup
t∈[0,T ]

|X1
t −X2

t |k
]
≤ cE[|X1

0 −X2
0 |k]. (4.4.12)

(3) There exists a constant c > 0 such that

‖P ∗t µ− P ∗t ν‖var ≤
c√
t
Wk(µ, ν), t ∈ (0, T ], µ, ν ∈ Pk. (4.4.13)

Proof. (1) By (A4.5), we have b
(1)
t ∈ Dk with ‖DLb

(1)
t (x, µ)‖Lk∗ (µ) ≤ K

for some constant K > 0. Then Corollary 4.3.3 implies

|b(1)
t (x, µ)− b(1)

t (x, ν)| ≤ KWk(µ, ν), (4.4.14)

so that the well-posedness of (3.4.1) follows from Theorem 3.5.1.

To prove (4.4.9) and (4.4.10), we use Zvonkin’s transform. Consider the

differential operator

Lµt := Lt,µt =
1

2
tr
{
σtσ
∗
t∇2

}
+∇bt(·,µt), t ∈ [0, T ]. (4.4.15)

By Lemma 1.2.2, (A4.5) implies that for some constant λ0 > 0 uniformly

in µ0, when λ ≥ λ0, the PDE

(∂t + Lµt )ut = λut − b(0)
t , t ∈ [0, T ], uT = 0 (4.4.16)

has a unique solution u ∈ H̃2,p0
q0 (T ) such that

f0 := ‖∇2u‖+ |(∂t +∇b(1))u| ∈ L̃p0
q0 (T ), ‖u‖∞ + ‖∇u‖∞ ≤

1

2
. (4.4.17)
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Let Θt := id+ ut. By Itô’s formula,

Yt := Θt(Xt) = Xt + ut(Xt)

solves the SDE

dYt =
{
b
(1)
t (Xt, µt) + λut(Xt)

}
dt+

{
(∇Θt)σt

}
(Xt)dWt,

Y0 = Θ0(X0), t ∈ [0, T ].
(4.4.18)

By (4.4.17), there exists a constant c1 > 1 such that

|Xt| ≤ c1(1 + |Yt|) ≤ c21(1 + |Xt|), t ∈ [0, T ]. (4.4.19)

For any n ≥ 1, let

γt,n := sup
s∈[0,t∧τn]

|Ys|, τn := inf{s ≥ 0 : |Ys| ≥ n}, t ∈ [0, T ].

By BDG’s inequality in Lemma 1.3.5, (A4.5) and (4.4.17), for any j ≥ 1

there exists a constant c(j) > 0 such that

E
(
γjt,n

∣∣F0

)
≤ 2|Y0|j + c(j)

∫ t

0

{
E(γjs,n|F0) + (E[|Ys|k])

j
k + 1

}
ds+ c(j),

n ≥ 1, t ∈ [0, T ].

By Gronwall’s inequality, we obtain

E
(
γjt,n

∣∣F0

)
≤
(

2|Y0|j + c(j)

∫ t

0

{
(E[|Ys|k])

j
k + 1

}
ds+ c(j)

)
ec(j)t,

n ≥ 1, t ∈ [0, T ].

(4.4.20)

Taking expectations with j = k and letting n → ∞, we find a constant

c2 > 0 such that

E[γkt ] := E
[

sup
s∈[0,t]

|Ys|k
]
≤ c2(1 + E[|Y0|k]) + c2

∫ t

0

E[|Ys|k]ds, t ∈ [0, T ].

Noting that supt∈[0,T ] E[|Xt|k] < ∞ as Xt is the solution of (3.4.1) for

distributions in Pk, by combining this with (4.4.19) and E[γkt ] ≥ E[|Ys|k]

we obtain

E[γkt ] := E
[

sup
s∈[0,t]

|Ys|k
]
≤ c2 + c2

∫ t

0

E[γks ]ds <∞, t ∈ [0, T ],

so that by Gronwall’s inequality and (4.4.19), we derive (4.4.10) for some

constant c > 0. Substituting this into (4.4.66) and letting n→∞, we prove

(4.4.9).
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(2) Denote µit := LXit , i = 1, 2, t ∈ [0, T ]. Let u solve (4.4.16) for Lµ
1

t

replacing Lµt such that (4.4.17) holds. Let Θt = id+ ut and

Y it = Θt(X
i
t), t ∈ [0, T ], i = 1, 2.

By (4.4.16) and Itô’s formula we obtain

dY 1
t =

{
b
(1)
t (X1

t , µ
1
t ) + λut(X

1
t )
}

dt+
{

(∇Θt)σt
}

(X1
t )dWt,

dY 2
t =

{
b
(1)
t (X2

t , µ
2
t ) + λut(X

2
t ) +∇

b
(1)
t (X2

t ,µ
2
t )−b

(1)
t (X2

t ,µ
1
t )
ut(X

2
t )
}

dt

+
{

(∇Θt)σt
}

(X2
t )dWt, t ∈ [0, T ].

So, by Itô’s formula, the process

vt := Y 2
t − Y 1

t , t ∈ [0, T ]

satisfies the SDE

dvt =
{
b
(1)
t (X2

t , µ
2
t ) + λut(X

2
t )− b(1)

t (X1
t , µ

1
t )

− λut(X1
t ) +∇

b
(1)
t (X2

t ,µ
2
t )−b

(1)
t (X2

t ,µ
1
t )
ut(X

2
t )
}

dt

+
{[

(∇Θt)σt
]
(X2

t )−
[
(∇Θt)σt

]
(X1

t )
}

dWt,

v0 = Θ0(X2
0 )−Θ0(X1

0 ).

By (4.4.17) and (4.4.14), we obtain

|b(1)
t (x, µ2

t )− b
(1)
t (x, µ1

t )|k ≤ KkE[|X2
t −X1

t |k] ≤ (2K)kE[|Y 2
t − Y 1

t |k].

Combining this with (A4.5), (4.4.17), Lemma 1.3.4, and applying Itô’s for-

mula, for any j ≥ k we find a constant c1 > 0 such that

|vt|2j ≤ |v0|2j + c1

∫ t

0

|vs|2j
{

1 +

l∑
i=0

Mf2
i (s,Xs)

}
ds

+ c1

∫ t

0

(E[|vs|k])
2j
k ds+Mt, t ∈ [0, T ]

(4.4.21)

holds for some local martingale Mt with M0 = 0. Since (4.4.17) implies

|v0| ≤ 2|X1
0 −X2

0 |,

by stochastic Gronwall’s inequality in Lemma 1.3.3 and Khasminskii’s es-

timate in Theorem 1.2.4, we find a constant c2 > 0 such that

γt := sup
s∈[0,t]

|vs|, t ∈ [0, T ]
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satisfies

E
[
|γt|j

∣∣F0

]
≤ c2

(
|X1

0 −X2
0 |2j +

∫ t

0

(E[|vs|k])
2j
k ds

) 1
2

≤ c2|X1
0 −X2

0 |j +
1

2
sup
s∈[0,t]

(
E[|vs|k]

) j
k

+
c22
2

∫ t

0

(
E[|vs|k]

) j
k ds <∞, t ∈ [0, T ].

(4.4.22)

Noting that sups∈[0,t] E[|vs|k] ≤ E[|γt|k], by taking expectation in (4.4.22)

with j = k, we derive

E
[
|γt|k

]
≤ 2c2E[|X1

0 −X2
0 |k] + c22

∫ t

0

E[|γs|k]ds, t ∈ [0, T ].

Since E
[
|γt|k

]
< ∞ due to (4.4.10), by Gronwall’s inequality we find a

constant c > 0 such that

sup
t∈[0,T ]

E[|vs|k] ≤ E[|γT |k] ≤ cE[|X1
0 −X2

0 |k].

Substituting this into (4.4.22) implies (4.4.11).

(3) Let ν ∈ Pk and take F0-measurable random variables X0, X̃0 such

that

LX0 = µ, LX̃0
= ν, E[|X0 − X̃0|k] = Wk(µ, ν)k. (4.4.23)

Let Xt and X̃t solve (3.4.1) with initial values X0 and X̃0 respectively, and

denote

µt := P ∗t µ = LXt , νt := P ∗t ν = LX̃t , t ∈ [0, T ].

Let Pµt be the semigroup associated with Xµ,x
t . According to Remark 1.4.1,

(1.4.3) holds for Pµt replacing Pt and some constant c > 0 independent of

µ. Then

‖P ∗t µ− (Pµt )∗ν‖var = ‖(Pµt )∗µ− (Pµt )∗ν‖var ≤
c√
t
W1(µ, ν). (4.4.24)

On the other hand, let

Rt := e
∫ t
0
〈ζs(Xs){bs(X̃s,µs)−bs(X̃s,νs)},dWs〉− 1

2

∫ s
0
|ζs(Xs){bs(X̃s,νs)−bs(X̃s,µs)}|2ds.

By (A4.5) and Girsanov’s theorem, Qt := RtP is a probability measure

under which

W̃s := Ws −
∫ s

0

ζs(Xs){bs(X̃s, µs)− bs(X̃s, νs)}ds, r ∈ [0, t]
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is a Brownian motion. Reformulating the SDE for X̃s as

dX̃s = bs(X̃s, µs)ds+ σs(X̃s)dW̃s, LX̃0
= ν,

by the uniqueness we obtain LX̃t|Qt = (Pµt )∗ν, so that by Pinsker’s inequal-

ity (3.2.3) and (A4.5), we find a constant c1 > 0 such that

‖P ∗t ν − (Pµt )∗ν‖2var = sup
|f |≤1

|E[f(X̃t)(Rt − 1)]|2 ≤ 2E[Rt logRt]

≤ c1EQt

∫ t

0

Wk(µs, νs)
2ds = c1

∫ t

0

Wk(µs, νs)
2ds.

Combining this with (4.4.25) and (4.4.24), we derive (4.4.13) for some con-

stant c > 0. �

Remark 4.4.1. By taking X1
0 and X2

0 such that

LX1
0

= µ, LX2
0

= ν, E[|X1
0 −X2

0 |k] = Wk(µ, ν)k,

we deduce from (4.4.12) that

Wk(P ∗t µ, P
∗
t ν) ≤ cWk(µ, ν), t ∈ [0, T ], µ, ν ∈ Pk (4.4.25)

holds for some constant c > 0.

Next, we calculate ∇φXµ
t . In general, let Xµ

t solve (3.4.1) for LXµ0 =

µ ∈ Pk, and for any ε ∈ [0, 1] and F0-measurable random variable η with

Lη ∈ Pk, let Xε
t solve (3.4.1) with Xr

0 = Xµ
0 + εη. We intend to calculate

∇ηXµ
t := lim

ε↓0

Xε
t −X

µ
t

ε
, t ∈ [0, T ] (4.4.26)

in Lk(Ω→ C([0, T ];Rd),P). In particular, taking η := φ(Xµ
0 ) for φ ∈ Tµ,k,

we have

∇φXµ
t = ∇ηXµ

t , t ∈ [0, T ]. (4.4.27)

Choosing general η instead of φ(Xµ
0 ) is useful in the proof of Theorem 4.4.3.

Let u solve (4.4.16) such that (4.4.17) and (1.4.9) hold as explained in

the proof of Theorem 1.4.2. Let Θt = id+ ut and

Y rt := Θt(X
r
t ) = Xr

t + ut(X
r
t ), t ∈ [0, T ], r ∈ [0, 1]. (4.4.28)

By (4.4.16) and Itô’s formula, for any r ∈ [0, 1] we have

dY rt =
{
b
(1)
t (Xr

t , µ
r
t ) + λut(X

r
t )

+∇
b
(1)
t (Xrt ,µ

r
t )−b(1)

t (Xrt ,µt)
ut(X

r
t )
}

dt+
{

(∇Θt)σt
}

(Xr
t )dWt,

Y r0 = Θ0(Xr
0 ) = Xµ

0 + rη + u0(Xµ
0 + rη).

(4.4.29)
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For any t ∈ [0, T ] and v ∈ Lk(Ω→ Rd,P), let

ψt(v) := E
[
〈DLb

(1)
t (z, µt)(X

µ
t ), (∇Θt(X

µ
t ))−1v〉

]∣∣
z=Xµt

. (4.4.30)

By (A4.5)(2), there exists a constant K > 0 such that for any v, ṽ ∈ Lk(Ω→
Rd,P),

ψt(0) = 0, |ψt(v)− ψt(ṽ)| ≤ K(E[|v − ṽ|k])
1
k , t ∈ [0, T ]. (4.4.31)

If

vηt := ∇ηY 0
t := lim

ε↓0

Y εt − Y 0
t

ε
(4.4.32)

exists in Lk(Ω → C([0, T ];Rd),P), by (4.4.17), (1.4.9) and (4.4.28) we see

that ∇ηXµ
t exists in the same sense and

∇ηXµ
t = (∇Θt(X

µ
t ))−1∇ηY 0

t = (∇Θt(X
µ
t ))−1vηt . (4.4.33)

Combining this with (A4.5), applying the chain rule Theorem 4.3.2, and

noting that µt is absolutely continuous due to Theorem 6.3.1 in [Bogachev

et al (2015)], we obtain that for ζr := rXε
t + (1− r)Xµ

t ,

lim
ε→0

b
(1)
t (Xε

t , µ
ε
t )− b

(1)
t (Xε

t , µt)

ε
= lim
ε→0

∫ 1

0

1

ε

d

dr
b
(1)
t (Xε

t ,Lζr )dr

= lim
ε→0

∫ 1

0

E
[〈
DLb

(1)
t (z,Lζr )(ζr),

Xε
t −X

µ
t

ε

〉
dr
]∣∣∣
z=Xεt

= ψt(v
η
t ),

(4.4.34)

which together with (4.4.33) yields

lim
ε→0

b
(1)
t (Xε

t , µ
ε
t )− b

(1)
t (Xµ

t , µt)

ε
= ψt(v

η
t ) +∇(∇Θt(X

µ
t ))−1vηt

b
(1)
t (Xµ

t , µt),

lim
ε→0

{(∇Θt)σt}(Xε
t )− {(∇Θt)σt}(Xµ

t )

ε
= ∇(∇Θt(X

µ
t ))−1vηt

{(∇Θt)σt}(Xµ
t ),

lim
ε→0

ut(X
ε
t )− ut(Xµ

t )

ε
= ∇(∇Θt(X

µ
t ))−1vηt

ut(X
µ
t ).

Thus, if vηt in (4.4.32) exists, by (4.4.29) it should solve the SDE

dvηt =
{
ψt(v

η
t ) +∇(∇Θt(X

µ
t ))−1vηt

b
(1)
t (Xµ

t , µt)

+∇ψt(vηt )+λ(∇Θt(X
µ
t ))−1vηt

ut(X
µ
t )
}

dt

+∇(∇Θt(X
µ
t ))−1vηt

{(∇Θt)σt}(Xµ
t )dWt,

vη0 = η + (∇ηu0)(X0).

(4.4.35)

Therefore, in terms of (4.4.33), to study ∇ηXµ
t we first consider the SDE

(4.4.35).
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Lemma 4.4.5. Assume (A4.5). For any η ∈ Lk(Ω → Rd,F0,P), the SDE

(4.4.35) has a unique solution, and for any j ≥ 1 there exists a constant

c > 0 such that

E
[

sup
t∈[0,T ]

|vηt |j
∣∣∣∣F0

]
≤ c
{

(E[|η|k])
j
k + |η|j

}
,

µ ∈ Pk, η ∈ Lk(Ω→ Rd,F0,P).

(4.4.36)

Proof. Let Xt(= Xµ
t ) solve (3.4.1) with LX0 = µ.

(1) Well-posedness of (4.4.35). Consider the space

Ck :=

{
(vt)t∈[0,T ] is continuous adapted, v0 = vη0 , E

[
sup
t∈[0,T ]

|vt|k
]
<∞

}
,

which is complete under the metric

ρλ(v1, v2) :=

(
E
[

sup
t∈[0,T ]

e−λt|v1
t − v2

t |k
]) 1

k

, v1, v2 ∈ Ck

for λ > 0. By (A4.5), (4.4.17) and (4.4.31), there exist a constant K > 0

and a function 1 ≤ f0 ∈ L̃p0
q0 such that for any random variable v,∣∣∇(∇Θt(Xt))−1vb

(1)
t (Xt, µt) +∇ψt(vt)+λ(∇Θt(Xt))−1vut(Xt)

∣∣
≤ K|v|,∥∥∇(∇Θt(Xt))−1v{(∇Θt)σt}(Xt)

∥∥ ≤ K|v| l∑
i=0

fi(t,Xt),

∣∣ψt(v)
∣∣ ≤ K(E[|v|k]

) 1
k , t ∈ [0, T ].

(4.4.37)

Let f =
∑l
i=0 fi. Let θ > 1 such that (θ−1pi, θ

−1qi) ∈ K, 0 ≤ i ≤ l. By

Krylov’s estimate Theorem 1.2.3(2), we find a constant c > 0 such that

E
∫ T

0

ft(Xt)
2θdt ≤ c

l∑
i=0

‖f2θ‖
L̃
pi/θ

qi/θ

= c

l∑
i=0

‖fi‖2θL̃piqi <∞.

So,

τn := T ∧ inf

{
t ≥ 0 :

∫ t

0

|ft(Xt)|2θds ≥ n
}
→ T as n→∞. (4.4.38)

Thus,

Ht(v) := vη0 +

∫ t

0

{
ψs(vs) +∇(∇Θs(Xs))−1vsb

(1)
s (Xs, µs)

+∇ψs(vs)+λ(∇Θs(Xs))−1vsus(Xs)
}

ds

+

∫ t

0

∇(∇Θs(Xs))−1vs{(∇Θs)σs}(Xs)dWs, t ∈ [0, T ]

(4.4.39)
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is an adapted continuous process on Rd, and for any n ≥ 1,

H·∧τn : Ck,n → Ck,n, Ck,n :=
{

(v·∧τn) : v ∈ Ck
}
.

So, it remains to prove that H has a unique fixed point vη ∈ Ck satisfying

(4.4.36), which is then the unique solution of (4.4.35). In the following we

explain that it suffices to prove

H·∧τn has a unique fixed point in Ck,n, n ≥ 1. (4.4.40)

Indeed, if (4.4.40) holds, then the unique fixed point vη,n·∧τn satisfies

vη,n·∧τn = vη,n+k
·∧τn , n, k ≥ 1,

so that

vηt := lim
n→∞

vη,nt∧τn

is a continuous adapted process on Rd, and

H·∧τn(vη) = vη·∧τn ∈ Ck,n, n ≥ 1.

By this and (4.4.37), for any j ≥ k we find a constant c > 0 such that

d|vηt |2j ≤ c
(
{E[|vηt∧τn |

k]}
2j
k + |vηt |2j

)
(1 + f2

t (Xt))dt+ dM̃t, t ∈ [0, τn],

holds for some local martingale M̃t. By the stochastic Gronwall inequality

in Lemma 1.3.3, we find constants k1, k2 > 0 such that

E
[

sup
t∈[0,T ]

|vηt∧τn |
j
∣∣∣F0

]
≤ k1

(∫ t

0

{
E[|vηt∧τn |

k]
} 2j
k ds+ E[|vη0 |2j |F0]

) 1
2

≤ k2|η|j + k1

(∫ t

0

{
E[|vηt∧τn |

k]
} 2j
k ds

) 1
2

.

(4.4.41)

Choosing j = k we obtain

E
[

sup
t∈[0,T ]

|vηt∧τn |
k
∣∣∣F0

]
≤ k2|η|k +

k2
1

2

∫ t

0

E[|vηt∧τn |
k]ds+

1

2
E
[

sup
t∈[0,T ]

|vηt∧τn |
k
]
, t ∈ [0, T ].

Taking expectation and applying Gronwall’s inequality, we find a constant

k3 > 0 such that

sup
n≥1

E
[

sup
t∈[0,T ]

|vηt∧τn |
k
]
≤ k3E[|η|k],
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so that (4.4.41) with n→∞ implies (4.4.36), and vηt is the unique solution

of (4.4.35) in Ck, since for each n ≥ 1, vηt∧τn is the unique fixed point of

H·∧τn in Ck,n.
(2) We now verify (4.4.40). By (4.4.31), (4.4.37) and (4.4.38), we find

constants c1, c2 > 0 such that

ρλ(H·∧τn(v1), H·∧τn(v2))k := E
[

sup
t∈[0,τn]

e−λt|Ht(v
1)−Ht(v

2)|k
]

≤ c1E
[

sup
t∈[0,τn]

e−λt
{(∫ t

0

{
|v1
s − v2

s |+
(
E|v1

s − v2
s |k
) 1
k
}

ds

)k
+

(∫ t

0

|v1
s − v2

s |2fs(Xs)
2ds

) k
2
}]

≤ 2c1T
k−1ρλ,n(v1, v2) sup

t∈[0,T ]

∫ t

0

e−λ(t−s)ds

+ c1E
[

sup
t∈[0,τn]

(
e−λt|v1

t − v2
t |k
)(∫ t

0

e−
2λ(t−s)

k fs(Xs)
2ds

) k
2
]

≤ ρλ(v1, v2)

{
c2
λ

+ c1 sup
Ω

sup
t∈[0,τn]

(∫ t

0

fs(Xs)
2θds

) k
2θ
(∫ t

0

e−
2θ∗λ(t−s)

k ds

) k
2θ∗
}

≤
{
c2
λ

+ c1n
k
2θ

( k

2λθ∗

) k
2θ∗
}
ρλ(v1, v2), v1, v2 ∈ Ck,n, θ∗ :=

θ

θ − 1
.

Therefore, when λ > 0 is large enough, H·∧τn is contractive in ρλ for large

λ > 0, and hence has a unique fixed point on Ck,n. �

4.4.3 Proof of Theorem 4.4.1(1)

Theorem 4.4.1(1) is implied by the following result for η = φ(Xµ
0 ).

Proposition 4.4.6. Assume (A4.5). For any v ∈ Rd and η ∈ Lk(Ω →
Rd,F0,P), ∇ηXµ

t in (4.4.26) and ∇vXµ,x
t in (4.4.4) exist in Lk(Ω →

C([0, T ];Rd),P), and for any j ≥ 1 there exists a constant c > 0 such

that

E
[

sup
t∈[0,T ]

|∇ηXµ
t |j
∣∣∣F0

]
≤ c{E[|η|k]}

j
k + c|η|j ,

µ ∈ Pk, η ∈ Lk(Ω→ Rd,F0,P),

(4.4.42)
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E
[

sup
t∈[0,T ]

|∇vXµ,x
t |j

]
≤ c|v|j , x, v ∈ Rd, µ ∈ Pk. (4.4.43)

Proof. The existence of ∇vXµ,x
t and (4.4.43) follow from Theo-

rem 1.4.2(1) for bt(x) := bt(x, µt) where the constant in (1.4.1) is uniformly

in µt according to Remark 1.4.1. So, it suffices to prove the existence of

∇ηXµ
t and to verify (4.4.42). We simply denote

Xt = Xµ
t , vt = vηt , t ∈ [0, T ].

For any r ∈ (0, 1] let Y rt be in (4.4.28). We have Yt := Y 0
t = Θt(Xt). Let

ṽεt :=
Y εt − Yt

ε
, t ∈ [0, T ], ε ∈ (0, 1). (4.4.44)

By Lemma 4.4.4(2) and (4.4.17), for any j ≥ 1 there exists c(j) > 0 such

that

E
[

sup
t∈[0,T ]

|ṽεt |j
∣∣∣F0

]
≤ c(j)

(
{E[|η|k]}

j
k + |η|j

)
, ε ∈ (0, 1). (4.4.45)

We claim that it suffices to prove

lim
ε↓0

E
[

sup
t∈[0,T ]

|ṽεt − vt|k
]

= 0. (4.4.46)

Indeed, this implies that

∇ηYt := lim
ε↓0

ṽεt = vt

exists in Lk(Ω→ C([0, T ];Rd),P), so that (4.4.17), (1.4.9) and Θt := id+ut
yield

∇ηXt := lim
ε↓0

Xε
t −Xt

ε
= (∇Θt(Xt))

−1vt

exists in the same space, and (4.4.42) follows from (4.4.36).

Recall that µεs = LXεs , ε ∈ [0, 1]. By (4.4.16) and Itô’s formula, we

obtain

dṽεt =
1

ε

{
b
(1)
t (Xε

t , µ
ε
t )− b

(1)
t (Xt, µt) +∇

b
(1)
t (Xεt ,µ

ε
t )−b

(1)
t (Xεt ,µt)

ut(X
ε
t )
}

dt

+
1

ε

{[
(∇Θt)σt

]
(Xε

t )−
[
(∇Θt)σt

]
(Xt)

}
dWt, ṽε0 =

Θ0(Xε
0)−Θ0(X0)

ε
.

Then

ṽεt = ṽε0 +

∫ t

0

{
∇(∇Θs(Xs))−1ṽεs

b(1)
s (Xs, µs)

+ ψs(ṽ
ε
s) +∇ψs(ṽεs)us(Xs)

}
ds

+

∫ t

0

∇(∇Θs(Xs))−1ṽεs
{(∇Θs)σs}(Xs)dWs + αεt , t ∈ [0, T ],

(4.4.47)
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where ψt(v) is in (4.4.30), and for t ∈ [0, T ],

αεt :=

∫ t

0

ξεsds+

∫ t

0

ηεs dWs,

ξεs :=
1

ε

{
b(1)
s (Xε

s , µ
ε
s)− b(1)

s (Xs, µs) +∇
b
(1)
s (Xεs ,µ

ε
s)−b

(1)
s (Xεs ,µs)

ut(X
ε
s )
}

−
{
∇(∇Θs(Xs))−1ṽεs

b(1)
s (Xs, µs) + ψs(ṽ

ε
s) +∇ψs(ṽεs)us(Xs)

}
,

ηεs :=
{(∇Θs)σs}(Xε

s )− {(∇Θs)σs}(Xs)

ε
−∇(∇Θs(Xs))−1ṽεs

{(∇Θs)σs}(Xs).

We claim

lim
ε→0

E
[

sup
t∈[0,T ]

|αεt |n
∣∣∣F0

]
= 0, n ≥ 1. (4.4.48)

This can be proved by the argument leading to (1.4.13), but with the con-

ditional expectation E[·|F0] replacing the expectation.

Firstly, by (4.4.45), Y εt = Xε
t +ut(X

ε
t ) and (4.4.17), for any j ≥ 1 there

exists c(j) > 0 such that

sup
ε∈(0,1]

E
[

sup
t∈[0,T ]

∣∣∣Xε
t −Xt

ε

∣∣∣j∣∣∣F0

]
≤ c(j)

(
{E[|η|k]}

j
k + |η|j

)
. (4.4.49)

Since {(∇Θs)σs}, b(1)
s (·, µs) and ∇us are a.e. differentiable, by the same

reason leading to (1.4.14), (4.4.49) implies that for any s ∈ (0, T ], P-a.s.

lim
ε→0

{∣∣∣∣{(∇Θs)σs}(Xε
s )− {(∇Θs)σs}(Xs)

ε

−∇(∇Θs(Xs))−1ṽεs
{(∇Θs)σs}(Xs)

∣∣∣∣
+

∣∣∣∣b(1)
s (Xε

s , µs)− b
(1)
s (Xs, µs)

ε
−∇(∇Θs(Xs))−1ṽεs

b(1)(Xs, µs)

∣∣∣∣} = 0.

Next, as in (4.4.34), by the chain rule in Theorem 4.3.2 and b
(1)
t ∈ Dk, we

obtain

lim
ε→0

∣∣∣b(1)
s (Xε

s , µ
ε
s)− b

(1)
s (Xε

s , µs)

ε
− ψs(ṽεs)

∣∣∣ = 0, s ∈ (0, T ].

Thus, for any s ∈ (0, T ],

lim
ε→0

{
|ξεs |+ ‖ηεs‖

}
= 0, P-a.s.. (4.4.50)

Moreover, by (A4.5) and Lemma 1.3.4, we find a constant c > 0 such that

|ξεs |+ ‖ηεs‖ ≤ c|ṽεs |
(

1 +

l∑
i=0

{
Mfi(s, ·)(Xs) +Mfi(s, ·)(Xε

s )
})
, s ∈ [0, T ].
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Finally, let θ > 1 be in the proof of (1.4.13) such that (1.4.15) holds for Xε
t

replacing Xx+εv
t . By (1.4.15) for Xε

t , (4.4.45), and Lemma 1.3.4, for any

n ≥ 1 there exist constants c1(n), c2(n) > 0 such that

E
[(∫ T

0

{
|ξεs |2θ + ‖ηεs‖2θ

}
ds

)n∣∣∣∣F0

]
≤ c1(n)E

[(
sup

s∈[0,T ]

|ṽεs |2θn
)

×
(∫ T

0

(
1 +

∑
i=0l

{
Mf2θ

i (s,Xs) +Mf2θ
i (s,Xε

s )
})

ds

)n∣∣∣∣F0

]

≤ c1(n)
(
E
[

sup
s∈[0,T ]

|ṽεs |4θn
∣∣∣F0

]) 1
2

×
(
E
[(∫ T

0

(
1 +

∑
i=0l

{
Mf2θ

i (s,Xs) +Mf2θ
i (s,Xε

s )
})

ds

)2n∣∣∣∣F0

]) 1
2

≤ c2(n)(1 + |η|2θn) <∞.
By BDG’s inequality in Lemma 1.3.5 and the dominated convergence the-

orem, this and (4.4.50) imply (4.4.48).

Now, by (4.4.35) and (4.4.47), the argument leading to (4.4.21) gives

|vt − ṽεt |2k ≤ |v0 − ṽε0|2k +

∫ t

0

{
|vs − ṽεs |2kγt +

(
E[|vs − ṽεs |k]

)2}
dt

+K sup
r∈[0,t]

|αεr|2k +Mt, t ∈ [0, T ],

where K > 0 is a constant and γt is a positive process satisfying

E
[
eN

∫ T
0
γtdt
]
<∞, N > 0.

Therefore, by the stochastic Gronwall inequality in Lemma 1.3.3, we find a

constant c > 0 such that for any t ∈ [0, T ],

E
[

sup
s∈[0,t]

|ṽεs − vs|k
∣∣∣F0

]
≤ c|v0 − ṽε0|k + c

(
E
[

sup
s∈[0,t]

|αεs|2k
∣∣∣∣F0

]) 1
2

+ c

(∫ t

0

(
E[|ṽεs − vs|k]

)2
ds

) 1
2

.

Combining this with (4.4.48) and limε→0 |v0 − ṽε0| = 0, we obtain

lim sup
ε→0

E
[

sup
s∈[0,t]

|ṽεs − vs|k
∣∣∣F0

]
≤ c lim sup

ε→0

(∫ t

0

(
E[ṽεs − vs|k]

)2
ds

) 1
2

.

(4.4.51)



July 27, 2024 9:20 ws-book9x6 13512-main page 196

196 Distribution Dependent Stochastic Differential Equations

Taking j = k, by (4.4.36), (4.4.45) and (4.4.49), we conclude that{
E
[

sup
t∈[0,T ]

{
|ṽεt |k + |vt|k

}∣∣∣F0

]
: ε ∈ (0, 1]

}
is uniformly integrable with respect to P, so that by Fatou’s lemma, (4.4.51)

implies

ht := lim sup
ε→0

E
[

sup
s∈[0,t]

|ṽεs − vs|k
]

= lim sup
ε→0

E
{
E
[

sup
s∈[0,t]

|ṽεs − vs|k
∣∣∣∣F0

]}

≤ E
{

lim sup
ε→0

E
[

sup
s∈[0,t]

|ṽεs − vs|k
∣∣∣F0

]}
≤ c
(∫ t

0

h2
sds

) 1
2

, t ∈ [0, T ]

and ht <∞, so that ht = 0 for all t ∈ [0, T ]. Therefore, (4.4.46) holds and

hence the proof is finished. �

4.4.4 Proof of Theorem 4.4.1(2)

For any η ∈ Lk(Ω→ Rd,F0,P), µ ∈ Pk, and ε ∈ [0, 1], let Xε
t solve (3.4.1)

for Xε
0 = Xµ

0 + εη, where LXµ0 = µ. Then X0
t = Xµ

t . Consider

Γη(f(Xµ
t )) := lim

ε↓0

E[f(Xε
t )− f(Xµ

t )]

ε
, t ∈ (0, T ], f ∈ Bb(Rd).

Theorem 4.4.1(2) is implied by the following result for η = φ(X0).

Proposition 4.4.7. Assume (A4.5). DI
ηPtf(µ) exists for any t ∈ (0, T ],

f ∈ Bb(Rd), η ∈ Lk(Ω → Rd,F0,P) and µ ∈ Pk. Moreover, for any

β ∈ C1([0, t]) with β0 = 0 and βt = 1, the formula

Γη(f(Xµ
t )) =

∫
Rd×Rd

E
[
f(Xµ,x

t )Mµ,x
β,t (v)

]
L(Xµ0 ,η)(dx, dv)

+ E
[
f(Xµ

t )Nµ
t (η)

]
,

(4.4.52)

holds for

Mµ,x
β,t (v) :=

∫ t

0

β′s
〈
ζs(X

µ,x
s )∇vXµ,x

s ,dWs

〉
,

Nµ
t (η) :=

∫ t

0

〈
ζs(X

µ
s )E

[
〈DLb(1)

s (z, P ∗s µ)(Xµ
s ),∇ηXµ

s 〉
]∣∣
z=Xµs

,dWs

〉
.

Consequently, there exists a constant c > 0 such that∣∣Γη(f(Xµ
t ))
∣∣ ≤ c√

t

(
Pt|f |

k
k−1 (µ)

) k−1
k (E[|η|k])

1
k ,

t ∈ (0, T ], f ∈ Bb(Rd), µ ∈ Pk, η ∈ Lk(Ω→ Rd,F0,P).

(4.4.53)
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Proof. Let Xµ,x
t solve (4.4.3). Since Xµ

t solves the same SDE with initial

value Xµ
0 replacing x, the pathwise uniqueness implies

Xµ
t = X

µ,Xµ0
t , t ∈ [0, T ]. (4.4.54)

Let (Pµs,t)0≤s≤t≤T be the semigroup associated with (4.4.3), i.e. for

(Xµ,x
s,t )t∈[s,T ] solving (4.4.3) from time s with Xµ,x

s,s = x,

Pµs,tf(x) := E[f(Xµ,x
s,t )], t ∈ [s, T ], x ∈ Rd. (4.4.55)

Simply denote Pµt = Pµ0,t. Then (4.4.54) implies

Ptf(µ) = E[f(Xµ
t )] =

∫
Rd
Pµt f(x)µ(dx), t ∈ [0, T ], f ∈ Bb(Rd). (4.4.56)

By Theorem 1.4.2, (A4.5) implies that for any t ∈ (0, T ] and β ∈ C1([0, t])

with β0 = 0 and βt = 1,

∇vPµt f(x) = E
[
f(Xµ,x

t )Mµ,x
t,β (v)

]
, v ∈ Rd, f ∈ Bb(Rd). (4.4.57)

Next, denote µt = P ∗t µ = LXµt and let X̄ε
s solve (4.4.3) for X̄ε

0 = Xε
0 , i.e.

dX̄ε
s = bs(X̄

ε
s , µs)ds+ σs(X̄

ε
s )dWs, s ∈ [0, t], X̄ε

0 = Xε
0 . (4.4.58)

We have

E[f(X̄ε
t )] =

∫
Rd

(Pµt f)(x)]LXµ0 +εη(dx)

=

∫
Rd×Rd

Pµt f(x+ εv)L(Xµ0 ,η)(dx,dv), f ∈ Bb(Rd).

Combining this with (4.4.56) and (4.4.57), and applying the dominated

convergence theorem, we obtain

lim
ε→0

E[f(X̄ε
t )]− Ptf(µ)

ε
=

∫
Rd×Rd

∇vPµt f(x)L(Xµ0 ,η)(dx, dv)

=

∫
Rd×Rd

E
[
f(Xµ,x

t )Mµ,x
β,t (v)

]
L(Xµ0 ,η)(dx, dv).

(4.4.59)

On the other hand, denote µεt = LXεt and let

Rεt := e
∫ t
0
〈ξs,dWs〉− 1

2

∫ t
0
|ξs|2ds,

ξs := ζs(X
ε
s ){b(1)

s (Xε
s , µs)− b(1)

s (Xε
s , µ

ε
s)}.

By (A4.5), ζs = σ∗s (σsσ
∗
s )−1 and Girsanov’s theorem, Qεt := RεtP is a prob-

ability measure under which

W̃ ε
r := Wr −

∫ r

0

ζs(X
ε
s ){b(1)

s (Xε
s , µs)− b(1)

s (Xε
s , µ

ε
s)}ds, r ∈ [0, t]
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is a Brownian motion, and

sup
r∈[0,T ],ε∈(0,1]

E
[ |Rεr − 1|j

εj

]
<∞, j ≥ 1. (4.4.60)

Reformulate the SDE for Xε
s as

dXε
s = bs(X

ε
s , µs) + σs(X

ε
s )dW̃ ε

s , Xε
0 = X̄ε

0 .

By the well-posedness we obtain LXεt |Qεt = LX̄εt |P, so that

E[f(X̄ε
t )] = E[Rεtf(Xε

t )], f ∈ Bb(Rd).

Thus,

E[f(Xε
t )]− E[f(X̄ε

t )]

ε
=

E[f(Xε
t )(1−Rεt )]
ε

= I1(ε) + I2(ε),

I1(ε) := E
[
f(Xµ

t )
1−Rεt
ε

]
, I2(ε) := E

[
{f(Xε

t )− f(Xµ
t )}1−Rεt

ε

]
.

By (4.4.14), (4.4.34) and the dominated convergence theorem, we obtain

lim
ε→0

I1(ε) = E
[
f(Xµ

t )

∫ t

0

〈
ζs(X

µ
s )E[〈DLb(1)

s (z, µs),∇ηXµ
s 〉]|z=Xµs ,dWs

〉]
.

So, to prove (4.4.52) it suffices to verify

lim
ε→0

I2(ε) = 0. (4.4.61)

By (4.4.14), we obtain

lim
r↑t

sup
ε∈(0,1]

E
[ |Rεt −Rεr|

ε

]
= 0. (4.4.62)

Since (A4.5) holds for [r, T ] replacing [0, T ], we have (4.4.13) for (r, T )

replacing (0, T ). Similarly, (1.4.3) holds for Pµ
ε

r,t and Pµr,t replacing Pt−r,

where Pµ
ε

r,t and Pµr,t are defined in (4.4.55). Therefore, by the Markov

property,

|E[f(Xε
t )− f(Xµ

t )|Fr]| = |(Pµ
ε

r,t f)(Xε
r )− (Pµr,tf)(Xµ

r )|

≤ |(Pµ
ε

r,t f)(Xε
r )− (Pµ

ε

r,t f)(Xµ
r )|+ |(Pµ

ε

r,t f)(Xµ
r )− (Pµr,tf)(Xµ

r )|

≤ c‖f‖∞
(
|Xε

r −Xµ
r |√

t− s
∧ 1

)
+ |(Pµ

ε

r,t f)(Xµ
r )− (Pµr,tf)(Xµ

r )|.

(4.4.63)

On the other hand, let (X̃ε
r,s)s∈[r,t] solve the SDE

dX̃ε
r,s = bs(X̃

ε
r,s, µ

ε
s)ds+ σs(X̃

ε
r,s)dWs, X̃ε

r,r = Xµ
r , s ∈ [r, t].
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We have

Pµ
ε

r,t f(Xµ
r ) = E

[
f(X̃ε

r,t)
∣∣Fr], Pµr,tf(Xµ

r ) = E
[
f(Xµ

t )|Fr
]
.

Noting that (4.4.14) and (4.4.25) imply

|b(x, µεt )− bt(x, µt)| ≤ c1Wk(µε0, µ0) ≤ c1ε(E[|η|k])
1
k (4.4.64)

for some constant c1 > 0, by Girsanov’s theorem, for any r ∈ [0, t),

Rεr,t := e
∫ t
r
〈ξs,dWs〉− 1

2

∫ t
r
|ξs|2ds =

Rεt
Rεr

is a probability density such that under Qr,t := Rεr,tP,

W̃s := Ws −
∫ s

r

ζ(Xθ){bs(Xµ
θ , µ

ε
θ)− bθ(X

µ
θ , µθ)}dθ, s ∈ [r, t]

is a Brownian motion. Reformulating the SDE for (Xµ
s )s∈[r,t] as

dXµ
s = bs(X

µ
s , µ

ε
s)ds+ σs(X

µ
s )dW̃s, Xµ

r = X̃ε
r,r, s ∈ [r, t],

by the weak uniqueness, we obtain

Pµ
ε

r,t f(Xµ
r ) = E

[
Rεr,tf(Xµ

t )
∣∣Fr],

so that by Pinsker’s inequality (3.2.3) and (4.4.64), we find a constant

c2 > 0 such that

|(Pµ
ε

r,t f)(Xµ
r )− (Pµr,tf)(Xµ

r )|2 ≤ ‖f‖∞
∣∣E[|1−Rεr,t|

∣∣Fr]∣∣2
≤ 2‖f‖∞EQr,t

[
logRεr,t

∣∣F0

]
= ‖f‖∞

∫ t

r

EQr,t
[
|ζ(Xµ

s ){bs(Xµ
s , µ

ε
s)− bs(Xµ

s , µs)}|2
∣∣Fr]ds

≤ c2‖f‖∞(t− r)ε2‖η‖2Lk(P).

(4.4.65)

Combining this with (4.4.12), (4.4.60), (4.4.63) and that (s ∧ 1)2 ≤ s for

s ≥ 0, we find constants c3, c4 > 0 such that∣∣∣∣E[{f(Xε
t )− f(Xt)}

1−Rεr
ε

]∣∣∣∣
≤
(
E
∣∣∣E[f(Xε

t )− f(Xt)
∣∣Fr]∣∣∣2) 1

2
(
E
[ |1−Rεr|2

ε2

]) 1
2

≤ c4‖f‖∞
(
E[|Xε

r −Xµ
r |]√

t− r

) 1
2

+ c4‖f‖∞ε

≤ c5
√
T‖f‖∞

( ε

t− r

) 1
2

, ε ∈ (0, 1], t ∈ [0, T ].
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Combining this with (4.4.62) we obtain

lim
ε↓0

I2(ε)

≤ lim
r↑t

lim
ε↓0

{∣∣∣∣E[{f(Xε
t )− f(Xt)}

1−Rεr
ε

]∣∣∣∣+ 2‖f‖∞E
[ |Rεt −Rεr|

ε

]}
= 0.

Therefore, (4.4.62) holds.

It remains to prove (4.4.53). By Jensen’s inequality, we only need to

consider p ∈ (1, 2]. By (4.4.52), we have

|Γη(f(Xµ
t ))| ≤ E(|J1(Xµ

0 , η)|) + |J2|, (4.4.66)

where

J1(x, v) := E
[
f(Xµ,x

t )

∫ t

0

β′s
〈
ζs(X

µ,x
s )∇vXµ,x

s ,dWs

〉]
, x, v ∈ Rd,

J2 := E
[
f(Xµ

t )

∫ t

0

〈
ζs(X

µ
s )E

[
〈DLb(1)

s (z, P ∗s µ)(Xµ
s ),∇ηXµ

s 〉
]
|z=Xµs ,dWs

〉]
.

Taking βs = s
t , by ‖ζ‖∞ < ∞, (4.4.6) and Hölder’s inequality, we find

constants c1, c2 > 0 such that

|J1(x, v)| ≤ c1
t

(
Pµt |f |p(x)

) 1
p

{
E
[(∫ t

0

|∇vXµ,x
s |2ds

) p∗
2
]} 1

p∗

≤ c2|v|√
t

(Pµt |f |p(x))
1
p , t ∈ (0, T ], x, v ∈ Rd.

Combining this with (4.4.56) and Pµt |f |p(X
µ
0 ) = E[|f(Xµ

t )|p|F0], we derive

E[|J1(Xµ
0 , η)|] ≤ c2√

t
E
[
|η|
(
Pµt |f |p(X

µ
0 )
) 1
p

]
≤
c2‖η‖Lk(P)√

t

∥∥(E[|f(Xµ
t )|p|F0]

) 1
p
∥∥
Lk∗ (P)

, t ∈ (0, T ].

(4.4.67)

On the other hand, by (A4.5), Hölder’s inequality and (4.4.42) for j = k,

we find constants c3, c4 > 0 such that

Is(z) :=
∣∣∣ζs(Xµ

s )E
[
〈DLb(1)

s (z, P ∗s µ)(Xµ
s ),∇ηXµ

s 〉
]∣∣∣

≤ c3‖∇ηXµ
s ‖Lk(P) ≤ c4‖η‖Lk(P),

so that

|J2| ≤ E
[(
E[|f(Xµ

t )|pF0]
) 1
p

(
E
[ ∫ t

0

Is(X
µ
s )2ds

] p∗
2
) 1
p∗
]

≤ c4
√
t‖η‖Lk(P)E

[(
E[|f(Xµ

t )|pF0]
) 1
p

]
.

This and (4.4.67) imply (4.4.53). �
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4.4.5 Proof of Theorem 4.4.3

Let Xt(= Xµ
t ) solve (3.4.1) with LX0 = µ. For any ε ∈ [0, 1], let Xε

t solve

(3.4.1) with Xε
0 = X0 + εφ(X0), µε := LX0+εφ(X0) and µεt := P ∗t µ

ε = LXεt .
We have

Ptf(µ ◦ (id+ εφ−1)) = E[f(Xε
t )].

It suffices to prove

lim
ε↓0

sup
‖φ‖

Lk(µ)
≤1

∣∣∣∣∣E[f(Xε
t )− f(Xt)]

ε
−DI

φPtf(µ)

∣∣∣∣ = 0. (4.4.68)

By applying (4.4.52) with βs = s
t for (µr, φ(X0)) replacing (µ, η), we obtain

d

dr
E[f(Xr

t )] := lim
ε↓0

E[f(Xr+ε
t )− f(Xr

t )]

ε
= Γφ(X0)(f(Xµr

t ))

=
1

t

∫
Rd

E
[
f(Xµr,id+rφ

t )

∫ t

0

〈
ζs(X

µr,id+rφ
s )∇φXµr,id+rφ

s ,dWs

〉]
dµ

+ E
[
f(Xr

t )

∫ t

0

〈
ζs(X

r
s )E
[
〈DLb(1)

s (z, µrs)(X
r
s ),∇φ(X0)X

µr

s 〉
]
|z=Xrs ,dWs

〉]
.

Combining this with (4.4.7) for βs = s
t , we derive

sup
‖φ‖

Lk(µ)
≤1

∣∣∣∣E[f(Xε
t )− f(Xt)]

ε
−DI

φPtf(µ)

∣∣∣∣
= sup
‖φ‖

Lk(µ)
≤1

∣∣∣∣1ε
∫ ε

0

{ d

dr
E[F (Xr

t )]−DI
φPtf(µ)

}
dr

∣∣∣∣ ≤ c

tε

∫ ε

0

4∑
i=1

αi(r)dr

for some constant c > 0, where letting

Gφ(r) :=

∫ t

0

〈
ζs(X

r
s )E
[
〈DLb(1)

s (z, µrs)(X
r
s ),∇φ(X0)X

µr

s 〉
]
|z=Xrs ,dWs

〉
,

Fφ(r, x) :=

∫ t

0

〈
ζs(X

µr,x+rφ(x)
s )∇φ(x)X

µr,x+rφ(x)
s ,dWs

〉
, r ∈ [0, 1], x ∈ Rd,

we set

α1(r) := sup
‖φ‖

Lk(µ)
≤1

∣∣∣∣ ∫
Rd

E
[
f(X

µr,x+rφ(x)
t )

{
Fφ(r, x)− Fφ(0, x)

}]
µ(dx)

∣∣∣∣,
α2(r) := sup

‖φ‖
Lk(µ)

≤1

∣∣∣∣ ∫
Rd

E
[{
f(X

µr,x+rφ(x)
t )− f(Xµ,x

t )
}
Fφ(0, x)

]
µ(dx)

∣∣∣∣,
α3(r) := sup

‖φ‖
Lk(µ)

≤1

∣∣∣E[f(Xr
t )
{
Gφ(r)−Gφ(0)

}]∣∣∣,
α4(r) := sup

‖φ‖
Lk(µ)

≤1

∣∣∣E[{f(Xr
t )− f(Xt)

}
Gφ(0)

]∣∣∣.
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Since ‖f‖∞ <∞, by (A4.5), (4.4.5) and (4.4.6), we conclude that {αi}1≤i≤4

are bounded on [0, 1]. So, (4.4.68) follows if

lim
r↓0

αi(r) = 0, 1 ≤ i ≤ 4.

To prove these limits, we need the following two lemmas.

Lemma 4.4.8. Assume (A4.5). For any j ≥ 1 there exists a constant c > 0

such that for any µ ∈ Pk and φ ∈ Tµ,k with ‖φ‖Lk(µ) ≤ 1,

E
[

sup
t∈[0,T ]

|Xµr,x+rφ(x)
t −Xµ,x

t |j
]
≤ crj(1 + |φ(x)|j), r ∈ [0, 1].

Proof. By (4.4.6), we have

E[|Xµr,x+rφ(x)
t −Xµr,x

t |j ] ≤ crj |φ(x)|j , r ∈ [0, 1], x ∈ Rd.
Combining this with Wk(µr, µ) ≤ r‖φ‖Lk(µ) ≤ r, we need only to prove

sup
x∈Rd

E[|Xµ,x
t −Xν,x

t |j ] ≤ cWk(µ, ν)j , µ, ν ∈ Pk (4.4.69)

for some constant c > 0, where Xν,x
t solves (4.4.3) for νt := P ∗t ν replacing

µt := P ∗t µ. Let u solve (4.4.16) such that (4.4.17) holds. Let Θt = id+ ut
and

Y µ,xt := Θt(X
µ,x
t ), Y ν,xt := Θt(X

ν,x
t ), t ∈ [0, T ].

By Itô’s formula we obtain

d(Y µ,xt − Y ν,xt ) =
〈{

(∇Θt)σt
}

(Xµ,x
t )−

{
(∇Θt)σt

}
(Xν,x

t ),dWt

〉
+
{
b
(1)
t (Xµ,x

t , µt) + λut(X
µ,x
t )− b(1)

t (Xν,x
t , νt)− λut(Xν,x

t )

+∇
b
(1)
t (Xµ,xt ,µt)−b(1)

t (Xν,xt ,νt)
ut(X

ν,x
t )

}
dt.

By (A4.5), (4.4.17), Lemma 1.3.4 and Itô’s formula, for any j ≥ 1 we find

a constant c > 0 such that

|Y µ,xt − Y ν,xt |2j

≤ c
∫ t

0

|Y µ,xs − Y ν,xs |2j
l∑
i=0

{
1 +Mf2

i (x,Xµ,x
s ) +Mf2

i (x,Xν,x
s )

}
ds

+ c

∫ t

0

Wk(µs, νs)
2jds+Mt, t ∈ [0, T ]

holds for some local martingale Mt with M0 = 0. Since Wk(µs, νs) ≤
cWk(µ, ν) due to (4.4.25), (4.4.69) follows from the stochastic Gronwall

inequality in Lemma 1.3.3, the maximal inequalities in Lemma 1.3.4, and

Khasminskii’s estimate in Theorem 1.2.4 for Xµ,x
s and Xν,x

s replacing Xs

respectively. �
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Lemma 4.4.9. Assume (A4.5) and (4.4.8). For any j ≥ 1 there exist a

constant c > 0 and a positive function ε(·) on [0, 1] with ε(r) ↓ 0 as r ↓ 0,

such that for any φ ∈ Tµ,k with ‖φ‖Lk(µ) ≤ 1 and r ∈ [0, 1],

sup
|v|≤1

E
[

sup
t∈[0,T ]

∣∣∇vXµr,x+rφ(x)
t −∇vXµ,x

t

∣∣j]
≤ min

{
c, ε(r)(1 + |φ(x)|j)

}
, x ∈ Rd,

(4.4.70)

E
[

sup
t∈[0,T ]

∣∣∇φ(X0)X
µr

t −∇φ(X0)X
µ
t

∣∣j∣∣∣F0

]
≤ |φ(X0)|j min

{
c, ε(r)(1 + |φ(X0)|j)

}
.

(4.4.71)

Proof. We only prove (4.4.70), since (4.4.71) can be proved in the same

way by using (4.4.42) and (4.4.11) replacing (4.4.6) and Lemma 4.4.8 re-

spectively. We simply denote

Xx
t := Xµ,x

t , Xr,x
t := X

µr,x+rφ(x)
t ,

ṽt := ∇vXµ,x
t , ṽrt := ∇vXµr,x+rφ(x)

t .
(4.4.72)

Let u solve (4.4.16) such that (4.4.17) holds. We may also assume that u

satisfies (1.4.9) as explained before. Let Θt = id+ ut and denote

Y xt := Θt(X
x
t ), Y r,xt := Θt(X

r,x
t ),

vt := (∇Θt(X
x
t ))−1ṽt, vrt := (∇Θt(X

r,x
t ))−1ṽrt .

(4.4.73)

By (4.4.6) and (4.4.17), to prove (4.4.70) it suffices to find ε(r) ↓ 0 as r ↓ 0

such that

sup
|v|≤1

E
[

sup
t∈[0,T ]

∣∣vrt − vt∣∣j] ≤ ε(r)(1 + |φ(x)|j), r ∈ [0, 1], x ∈ Rd. (4.4.74)

By Jensen’s inequality, we only need to prove for j ≥ 4.

To calculate vt and vrt , for any ε ∈ [0, 1] we let

Y r,xt (ε) := Θt(X
µr,x+rφ(x)+εv
t ), Y xt (ε) := Θt(X

µ,x+εv
t ).

Then the argument leading to (1.4.8) implies that

vt = lim
ε↓0

Y xt (ε)− Y xt
ε

, vrt = lim
ε↓0

Y r,xt (ε)− Y r,xt

ε
. (4.4.75)

By (4.4.16) and Itô’s formula, we obtain

dY xt (ε) =
{
b
(1)
t (Xµ,x+εv

t , µt) + λut(X
µ,x+εv
t )

}
dt

+
{

(∇Θt)σt
}

(Xµ,x+εv
t )dWt, Y x0 (ε) = x+ εx,
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dY r,xt (ε) =
{
b
(1)
t (X

µr,x+rφ(x)+εv
t , µrt ) + λut(X

µr,x+rφ(x)+εv
t )

+∇
b
(1)
t (X

µr,x+rφ(x)+εv
t ,µrt )−b(1)

t (X
µr,x+rφ(x)+εv
t ,µt)

ut(X
µr,x+rφ(x)+εv
t )

}
dt

+
{

(∇Θt)σt
}

(X
µr,x+rφ(x)+εv
t )dWt, Y r,x0 (ε) = x+ rφ(x) + εx.

Combining this with (4.4.72) and (4.4.75), we conclude that (vt, v
r
t ) solves

the SDEs

dvt =
{
∇ṽtb

(1)
t (Xx

t , µt) + λ∇ṽtut(Xx
t )
}

dt+∇ṽt
{

(∇Θt)σt
}

(Xx
t )dWt,

v0 = (∇Θ0(x))−1v,

dvrt =
{
∇ṽrt b

(1)
t (Xr,x

t , µrt ) + λ∇ṽrt ut(X
r,x
t ) +∇ṽrt−ṽtut(X

r,x
t )
}

dt

+∇ṽrt
{

(∇Θt)σt
}

(Xr,x
t )dWt, vr0 =

{
∇Θ0(x+ rφ(x))

}−1
v.

Therefore, by (4.4.73),

zrt := vrt − vt, t ∈ [0, T ]

solves the SDE

dzrt =
{
∇(∇Θt(Xxt ))−1zrt

[
b
(1)
t (·, µt) + λut

]
(Xx

t )

+∇(∇Θt(Xxt ))−1zrt
ut(X

r,x
t )
}

dt

+∇(∇Θt(Xxt ))−1zrt

{
(∇Θt)σt

}
(Xx

t )dWt − ηrt dt− ξrt dWt,

zr0 =
{

(∇Θ0(x+ rφ(x))−1 − (∇Θ0)(x))−1
}
v,

(4.4.76)

where for any t ∈ [0, T ],

ηrt := ∇(Θt(X
r,x
t ))−1vrt

b
(1)
t (Xx

t , µt)−∇(Θt(Xxt ))−1vrt
b
(1)
t (Xr,x

t , µrt )

− λ∇(Θt(X
r,x
t ))−1vrt

ut(X
r,x
t ) + λ∇(Θt(Xxt ))−1vrt

ut(X
x
t )

+∇{(∇Θt(Xxt ))−1−(∇Θt(X
r,x
t ))−1}vrt ut(X

r,x
t ),

ξrt := ∇(Θt(Xxt ))−1vrt

{
(∇Θt)σt

}
(Xx

t )−∇(Θt(X
r,x
t ))−1vrt

{
(∇Θt)σt

}
(Xr,x

t ).

By (4.4.17), (A4.5) and Lemma 1.3.4, we find a constant c1 > 0 such that

|ηrt |+ ‖ξrt ‖ ≤ c1|vrt |
{
‖∇b(1)

t (Xx
t , µt)−∇b

(1)
t (Xr,x

t , µrt )‖

+ |Xr,x
t −Xx

t |
l∑
i=0

(
1 +Mfi(t,X

x
t ) +Mfi(t,X

r,x
t )
)}
.

By the boundedness of ∇b(1) and (4.4.8), we have

‖∇b(1)
t (Xx

t , µt)−∇b
(1)
t (Xr,x

t , µrt )‖

≤ n
{
|Xx

t −X
r,x
t |+ Wk(µt, µ

r
t )
} 1

2j + sn, n ≥ 1,
(4.4.77)
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where for ϕ(r) := sup|x−x′|+Wk(µ,ν)≤r ‖∇b
(1)
t (x, µ)−∇b(1)

t (x′, ν)‖,
sn := sup

r≥0

{
ϕ(r)− nr

1
2j
}
↓ 0 as n ↑ ∞.

Using the notation (4.4.72), by combining this with Lemma 4.4.8, (4.4.25)

and (1.4.15) for the processes Xx
t and Xr,x

t , for any j ≥ 4 we find positive

function ε1 with ε1(r) ↓ 0 as r ↓ 0 such that for ‖φ‖Lk(µ) ≤ 1,

E
[(∫ T

0

{∣∣ηrs ∣∣2 + ‖ξrs‖2
}

ds

)j]
≤ ε1(r)(1 + |φ(x)|2j), r ∈ [0, 1], x ∈ Rd.

(4.4.78)

Combining this with (4.4.76), (A4.5) and BDG’s inequality in Lemma 1.3.5,

we find a constant c1 > 0 such that

γrt := sup
s∈[0,t]

|zrs |, t ∈ [0, T ]

satisfies

E[γjt ] ≤ ε2(r) + c1

∫ t

0

{
γjs + γj−1

s |ηrs |+ γj−2
s |ξrs |2

}
ds, t ∈ [0, T ], (4.4.79)

where by (1.4.9), ε2(r) := E[|zr0 |j ] → 0 as r → 0. Since st ≤ s
n
n−1 + tn

holds for s, t ≥ 0 and n ≥ 1, by taking n = j
2 and j for j ≥ 4 respectively,

we obtain∫ t

0

{
γj−1
s |ηrs |+ γj−2

s |ξrs |2
}

ds

≤
(∫ t

0

|zrs |2(j−1)ds

) 1
2
(∫ t

0

|ηrs |2ds

) 1
2

+

(∫ t

0

|zrs |2(j−2)ds

) 1
2
(∫ t

0

|ξrs |2ds

) 1
2

≤
(∫ t

0

|zrs |2(j−1)ds

) j
2(j−1)

+

(∫ t

0

|zrs |2(j−2)ds

) j
2(j−2)

+ αr,

where

αr :=

(∫ T

0

|ηrs |2ds

) j
2

+

(∫ T

0

|ξrs |2ds

)j
.

So, there exists a constant c2 > 0 such that

c1

∫ t

0

{
γj−1
s |ηrs |+ γj−2

s |ξrs |2
}

ds ≤ c1|γrt |
j(j−2)
2(j−1)

(∫ t

0

|zrs |jds
) j

2(j−1)

+ c1|γrt |
j(j−4)
2(j−2)

(∫ t

0

|zrs |jds
) j

2(j−2)

+ c1α
r

≤ 1

2
|γrt |j + c2

∫ t

0

|γrs |jds+ c1α
r.
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Since (4.4.6) implies E[|γrt |j ] < ∞, combining this with (4.4.78), (4.4.79)

and applying Gronwall’s inequality, we derive (4.4.74) for some positive

function ε with ε(r) ↓ 0 as r ↓ 0. �

We are now ready to prove αi(r)→ 0 as r → 0 for i = 1, 2, 3, 4 respec-

tively and hence finish the proof of Theorem 4.4.3.

(a) α1(r) → 0. As in (4.4.77), by (A4.5) and (4.4.8) we find a sequence of

positive numbers sn ↓ 0 as n ↑ ∞ such that

sup
s∈[0,T ]

‖ζs(x)− ζs(y)‖2 ≤ n|x− y|2(k−1) + sn, n ≥ 1, (4.4.80)

sup
s∈[0,T ]

∥∥DLb(1)
s (x, µ)(y)−DLb(1)

s (x′, ν)(y′)
∥∥

≤ n{|x− x′|+ |y − y′|+ Wk(µ, ν)} 1
k∗ + sn, n ≥ 1.

(4.4.81)

By (4.4.80), Lemma 4.4.8, Lemma 4.4.9 and (4.4.43), we find a constant

c1 > 0 such that for any φ ∈ Tµ,k with ‖φ‖Lk(µ) ≤ 1,

E[|Fφ(r, x)− Fφ(0, x)|]

≤ E
(∫ t

0

|ζs(Xµr,x+rφ(x)
s )− ζs(Xµ,x

s )|2 · |∇φ(x)X
µr,x+rφ(x)
s |2ds

) 1
2

+ ‖ζ‖∞E
(∫ t

0

|∇φ(x)X
µr,x+rφ(x)
s −∇φ(x)X

µ,x
s |2ds

) 1
2

≤
(
E
[

sup
s∈[0,T ]

|∇φ(x)X
µr,x+rφ(x)
s |2

]
∫ t

0

E
[
n|Xµr,x+rφ(x)

s −Xµ,x
s |2(k−1) + sn

]
ds

) 1
2

+ c1|φ(x)|min
{

1, ε(r)(1 + |φ(x)|)
}

≤ c1|φ(x)|
(√

n(r + r|φ(x)|)k−1 +
√
sn + min

{
1, ε(r)(1 + |φ(x)|)

})
, n ≥ 1.

Integrating with respect to µ(dx) and letting first r → 0 then n → ∞, we

derive α1(r)→ 0 as r → 0.

(b) α2(r) + α4(r)→ 0. Let

Rθ :=

∫ θ

0

〈ζs(Xµ,x
s )∇φ(x)X

µ,x
s ,dWs〉, θ ∈ [0, t].

By (4.4.6), we find a constant c1 > 0 such that

E[|Rt −Rθ|] ≤ c1
√
t− θ|φ(x)|, θ ∈ [0, t], x ∈ Rd. (4.4.82)
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On the other hand, as in (4.4.63) and (4.4.65), we find a constant c2 > 0

such that for ‖φ‖Lk(µ) ≤ 1,∣∣E[f(X
µr,x+rφ(x)
t )−f(Xµ,x

t )
∣∣Fθ]∣∣= ∣∣(Pµrθ,tf)(X

µr,x+rφ(x)
θ )−(Pµθ,tf)(Xµ,x

θ )
∣∣

≤
∣∣(Pµrθ,tf)(X

µr,x+rφ(x)
θ )−(Pµ

r

θ,tf)(Xµ,x
θ )

∣∣+∣∣(Pµrθ,tf)(Xµ,x
θ )−(Pµθ,tf)(Xµ,x

θ )
∣∣

≤ c2‖f‖∞
[
1 ∧
|Xµr,x+rφ(x)

θ −Xµ,x
θ |√

t− θ
+ r
]
, θ ∈ [0, t].

Combining this with (4.4.82) and Lemma 4.4.8, and using the Markov prop-

erty, we find constants c3, c4 > 0 such that∣∣E[{f(X
µr,x+rφ(x)
t )− f(Xµ,x

t )}Fφ(0, x)
]∣∣

≤ 2‖f‖∞E[|Rt −Rθ|] +
∣∣E[E(f(X

µr,x+rφ(x)
t )− f(Xµ,x

t )
∣∣Fθ)Rθ]∣∣

≤ c3‖f‖∞
{√

t− θ|φ(x)|+
(
r +

min{1, r(1 + |φ(x)|)}√
t− θ

)(
E[|Rθ|2]

) 1
2

}
≤ c4‖f‖∞

{√
t− θ|φ(x)|+ r|φ(x)|+ {nr

k−1(1 + |φ(x)|)k−1 + sn}|φ(x)|√
t− θ

}
,

where

sn := sup
s>0
{s ∧ 1− nsk−1} ↓ 0 as n ↑ ∞.

Therefore, there exists a constant c5 > 0 such that

α2(r) ≤ ‖f‖∞
{
c5
√
t− θ +

nrk−1 + sn√
t− θ

+ r

}
, θ ∈ (0, t).

By letting first r → 0 then n→∞ and finally θ → t, we derive α2(r)→ 0

as r → 0.

The proof of α4(r)→ 0 is completely similar.

(c) α3(r)→ 0. Write

E
[
|Gφ(r)−Gφ(0)|

]
≤ εr(φ) + ‖ζ‖∞E

[
Jr(X

µr

s , Xµ
s )
]
,

where

εr(φ) := E
[(∫ t

0

|ζs(Xr
s )− ζs(Xs)|2

(
E|∇φ(X0)X

µr

s |k
) 2
k ds

) 1
2
]
,

Jr(y, z) :=

(∫ t

0

∣∣∣E[〈DLb(1)
s (ys, µ

r
s)(X

r
s ),∇φ(X0)X

µr

s 〉

− 〈DLb(1)
s (zs, µs)(Xs),∇φ(X0)X

µ
s 〉
]∣∣∣2ds

) 1
2

, y, z ∈ C([0, t];Rd).
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By (4.4.42) for j = k, we obtain

sup
r∈[0,1]

E[|∇φ(X0)X
µr

s |k] ≤ c, ‖φ‖Lk(µ) ≤ 1 (4.4.83)

for some constant c > 0, so that by (4.4.12) and (4.4.80), we find constants

c1, c2 > 0 such that

sup
‖φ‖

Lk(µ)
≤1

εr(φ) ≤ c1E
[

sup
s∈[0,t]

n|Xr
s−Xs|k−1+sn

]
≤ c2nrk−1+c1sn, n ≥ 1.

Then sup‖φ‖
Lk(µ)

≤1 εr(φ)→ 0 as r → 0. It remains to prove

lim
r↓0

sup
‖φ‖

Lk(µ)
≤1

E[Jr(X
r, X)] = 0. (4.4.84)

By (A4.5), (4.4.12), (4.4.25), Lemma 4.4.9, (4.4.81) and (4.4.83), we find

constants c3, c4, c5 > 0 and positive function ε̃(·) on [0, 1] with ε̃(r)→ 0 as

r → 0, such that when ‖φ‖Lk(µ) ≤ 1,

E
[∣∣〈DLb(1)

s (ys, µ
r
s)(X

r
s ),∇φ(X0)X

µr

s 〉 − 〈DLb(1)
s (zs, µs)(Xs),∇φ(X0)X

µ
s 〉
∣∣]

≤ c3
(
E
[∣∣∇φ(X0)X

µr

s −∇φ(X0)X
µ
s

∣∣k]) 1
k

+
(
E[|∇φ(X0)Xs|k

]) 1
k (E[|DLb(1)

s (zs, µs)(Xs)−DLb(1)
s (ys, µ

r
s)(X

r
s )|k

∗
]
) 1
k∗

≤ ε̃(r) + c4
(
E[nk

∗
{|zs − ys|+ |Xr

s −Xs|+ r}+ sk
∗

n ]
) 1
k∗

≤ ε̃(r) + c5
{
n|zs − ys|

1
k∗ + nr

1
k∗ + sn

}
, n ≥ 1.

Combining this with (4.4.12) we find a constant c6 > 0 such that

sup
‖φ‖

Lk(µ)
≤1

E[Jr(X
r, X)] ≤ c6

{
ε̃(r) + nr

1
k∗ + sn

}
, n ≥ 1.

By letting first r → 0 then n→∞ we derive (4.4.84).

4.5 Notes and further results

The power/log-Harnack inequalities and Bismut formulas have been estab-

lished in [Huang et al (2019)] and [Bao et al (2021)] respectively for the

path-distribution dependent SDE (3.8.7) when the noise coefficient is path-

distribution independent. Moreover, when the noise coefficient σt(x, µ)

depends on both x and µ, then the log-Harnack inequality has been de-

rived in recent papers [Ren and Wang (2023); Huang et al (2023); Qian

et al (2023)]. See also [Huang and Song (2021)] for the study on singular

distribution dependent SPDEs.
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In the following, we introduce Bismut formula for degenerate DDSDEs,

two results on derivative estimates for distribution dependent noise, log-

Harnack inequality and Bismut formula for DDSDEs with drifts singular in

distribution.

4.5.1 Bismut formula for degenerate DDSDEs

Consider the following distribution dependent stochastic Hamiltonian sys-

tem for Xt = (X
(1)
t , X

(2)
t ) on Rd = Rd1 × Rd2 :{

dX
(1)
t = b

(1)
t (Xt)dt,

dX
(2)
t = b

(2)
t (Xt,LXt)dt+ σtdWt,

(4.5.1)

where (Wt)t≥0 is a d2-dimensional Brownian motion as before, and for each

t ≥ 0, σt is an invertible d2 × d2-matrix,

bt = (b
(1)
t , b

(2)
t ) : Rd × P2 → Rd,

which is measurable with b
(1)
t (x, µ) = b

(1)
t (x) independent of the distribu-

tion µ. Let ∇ = (∇(1),∇(2)) be the gradient operator on Rd = Rd1 × Rd2 ,

where ∇(i) is the gradient in the i-th component, i = 1, 2. Let ∇2 = ∇∇
denote the Hessian operator on Rd. We assume

(A4.6) For every t ∈ [0, T ], b
(1)
t ∈ C2

b (Rd → Rd1), b
(2)
t ∈ C1,1(Rd × P2 →

Rd2). Moreover:

(1) There exists a constant K > 0 such that

‖∇bt(·, µ)(x)‖+ ‖DLb
(2)
t (x, ·)(µ)‖+ ‖∇2b

(1)
t (x)‖ ≤ K,

t ∈ [0, T ], (x, µ) ∈ Rd × P2.

(2) There exist B ∈ Bb([0, T ] → Rd1 ⊗ Rd2), an increasing function

θ ∈ C([0, T ]; (0,∞)) with θt > 0 for t ∈ (0, T ], and ε ∈ (0, 1) such

that

〈(∇(2)b
(1)
t −Bt)B∗t v, v〉 ≥ −ε|B∗t v|2, v ∈ Rd1 ,∫ t

0

s(T − s)KT,sBsB
∗
sK
∗
T,sds ≥ θtId1×d1 , t ∈ (0, T ],

where for any s ≥ 0, {Kt,s}t≥s is the unique solution of the following

linear random ODE on Rd1 ⊗ Rd1 :

d

dt
Kt,s = (∇(1)b

(1)
t )(Xt)Kt,s, t ≥ s,Ks,s = Id1×d1 .
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According to the proof of Theorem 1.1 in [Wang and Zhang (2013)],

(A4.6) implies that the matrices

Qt :=

∫ t

0

s(T − s)KT,s∇(2)b(1)
s (Xs)B

∗
sK
∗
T,sds, t ∈ (0, T ]

are invertible with

‖Q−1
t ‖ ≤

1

(1− ε)θt
, t ∈ (0, T ]. (4.5.2)

For (Xt)t∈[0,T ] solving (4.5.1) with LX0
= µ ∈ P2 and φ = (φ(1), φ(2)) ∈

L2(Rd → Rd, µ), let

α
(2)
t =

T − t
T

φ(2)(X0)−
t(T − t)B∗tK∗T,t∫ T

0
θ2
sds

∫ T

t

θ2
sQ
−1
s KT,0φ

(1)(X0)ds

− t(T − t)B∗tK∗T,tQ−1
T

∫ T

0

T − s
T

KT,s∇(2)

φ(2)(X0)
b(1)
s (Xs)ds,

α
(1)
t = Kt,0φ

(1)(X0) +

∫ t

0

Kt,s∇(2)

α
(2)
s

b(1)
s (Xs(x)) ds, t ∈ [0, T ],

and define

hαt :=

∫ t

0

σ−1
s

{(
E〈DLb(2)

s (y, ·)(LXs)(Xs), αs〉
)∣∣
y=Xs

+∇αsb(2)
s (·,LXs)(Xs)− (α(2)

s )′
}

ds, t ∈ [0, T ].

(4.5.3)

Let (D∗,D(D∗)) be the Malliavin divergence operator associated with the

Brownian motion (Wt)t∈[0,T ], see Theorem 1.4.1. The following result is

due to Theorem 2.3 in [Ren and Wang (2019)].

Theorem 4.5.1. Assume (A4.6). Then hα ∈ D(D∗) with E|D∗(hα)|p <∞
for all p ∈ [1,∞). Moreover, for any f ∈ Bb(Rd) and T > 0, PT f is

L-differentiable such that

DL
φ (PT f)(µ) = E

[
f(XT )D∗(hα)

]
holds for µ ∈ P2, φ ∈ L2(Rd → Rd, µ) and hα in (4.5.3). Consequently:

(1) Let ψ ∈ L2(Rd → R, P ∗Tµ) be such that ψ(XT ) = E(D∗(hα)|XT ). Then

DL
φP
∗
Tµ := lim

ε↓0

P ∗Tµ ◦ (Id + εφ)−1 − P ∗Tµ
ε

= ψP ∗Tµ (4.5.4)

exists in the total variational norm.

(2) There exists a constant c ≥ 0 such that for any T > 0,

‖DL(PT f)(µ)‖ ≤ c
√
PT |f |2(µ)− (PT f)2(µ)

√
T (T 2 + θT )∫ T

0
θ2
sds

, f ∈ Bb(Rd),

‖P ∗Tµ− P ∗T ν‖TV ≤ cW2(µ, ν)

√
T (T 2 + θT )∫ T

0
θ2
sds

, µ, ν ∈ P2.
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4.5.2 L-derivative estimate for distribution dependent

noise

Consider the DDSDE (3.1.1) with coefficients satisfying the following as-

sumption which, by Theorem 3.3.1, implies the well-posedness.

(A4.7) For any t ≥ 0, bt, σt ∈ C1,1(Rd×P2), and there exists an increasing

function K : [0,∞)→ [1,∞) such that for any t ≥ 0, x, y ∈ Rd and

µ ∈ P2,

K−1
t Id×d ≤ (σtσ

∗
t )(x, µ) ≤ KtId×d,

|bt(x, µ)|+ ‖∇bt(·, µ)(x)‖+ ‖DL{bt(x, ·)}(µ)‖
+ ‖∇{σt(·, µ)}(x)‖2 + ‖DL{σt(x, ·)}(µ)‖2 ≤ Kt,

‖DL{bt(x, ·)}(µ)−DL{bt(y, ·)}(µ)‖
+ ‖DL{σt(x, ·)}(µ)−DL{σt(y, ·)}(µ)‖ ≤ Kt|x− y|.

Let Ps,tf(µ) := E[f(Xs,t)] for f ∈ Bb(Rd) and (Xs,t)t≥s≥0 solving

(3.1.1) with LXs,s = µ ∈ P2. The following result is due to Theorem 1.1

in [Huang and Wang (2021b)].

Theorem 4.5.2. Assume (A4.7). Then for any t > s ≥ 0 and f ∈ Bb(Rd),
Ps,tf is L-differentiable, and there exists an increasing function C :

[0,∞)→ (0,∞) such that

‖DLPtf(µ)‖ ≤ Ct‖f‖∞√
t− s

, t > s, f ∈ Bb(Rd).

Consequently, for any t > 0 and µ, ν ∈ P2,

‖P ∗s,tµ− P ∗s,tν‖TV := 2 sup
‖f‖∞≤1

|Ps,tf(µ)− Ps,tf(ν)| ≤ 2Ct√
t− s

W2(µ, ν).

4.5.3 Derivative estimates for the transition density

Consider the decoupled SDE associated with (3.1.1):

dXµ,x
t = bt(X

µ,x
t , P ∗t µ)dt+ σt(X

µ,x
t , P ∗t µ)dWt,

Xµ,x
0 = x, t ∈ [0, T ].

(4.5.5)

We have

Pµt f(x) := E[f(Xµ
t )] =

∫
Rd
f(y)pµt (x, y)dy, t ∈ (0, T ], x ∈ Rd, f ∈ Bb(Rd).
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Derivative estimates on pµt (x, y) have been studied in [Crisan and E. Mc-

Murray, (2018)] and [Chaudru de Raynal and Frikha (2022)] under (A3.8)

and the following assumption involving the linear functional derivatives ∂µ
and ∂2

µ introduced in (3.8.1) and (3.8.2).

(A4.8) bt(x, ·) and at(x, ·) := (σtσ
∗
t )(x, ·) have second order linear func-

tional derivatives, such that for constants K > 0 and α ∈ (0, 1],

the following conditions hold for any t ∈ [0, T ], ν, µ ∈ P and

x, x′, y, y′, z, z′ ∈ Rd:

‖σt(x, µ)− σt(y, µ)‖ ≤ K|x− y|,∣∣∂µbt(x, µ)(y)− ∂µbt(x, µ)(y′)
∣∣+
∣∣∂2
µbt(x, µ)(y, z)− ∂2

µbt(x, µ)(y, z′)
∣∣

+
∣∣bt(x, µ)− bt(x′, µ)

∣∣+
∣∣∂2
µat(x, µ)(y, z)− ∂2

µat(x, µ)(y, z′)
∣∣

≤ K
(
|x− x′|α + |y − y′|α + |z − z′|α

)
.

The following result is included in Theorem 3.6 in [Chaudru de Raynal

and Frikha (2022)].

Theorem 4.5.3. Assume (A3.8).

(1) For any µ ∈ P2 and t ∈ (0, T ], the density pµt (x, y) exists. Moreover,

there exists a constant c > 1 such that for any t ∈ (0, T ], x, y ∈ Rd and

µ ∈ P, ∣∣∇ixpµt (x, y)
∣∣ ≤ ct− i+d2 e−

|x−y|2
ct , i = 0, 1, 2,

and for any β ∈ [0, α) there exists a constant c(β) > 0 such that for

any x′ ∈ Rd,

∣∣∇2
xp
µ
t (x, y)−∇2

x′p
µ
t (x′, y)

∣∣ ≤ c(β)|x− x′|βt−1− β+d
2 e−

|x−y|2
c(β)t .

(2) If (A4.8) holds, then there exists a constant c > 0 such that for any

β ∈ [0, 1], t ∈ (0, T ], x, x′, y, z ∈ Rd and µ ∈ P2,

∣∣∇iz{DLpµt (x, y)}(z)
∣∣ ≤ ct− 1+i+d−α

2 e−
|x−y|2
ct , i = 0, 1,∣∣{DLpµt (x, y)}(z){DLpµt (x′, y)}(z)

∣∣ ≤ c|x− x′|βt− 1+β+d−α
2 e−

|x−y|2+|x′−y|2
ct ,∣∣∇ixpµt (x, y)−∇ixpνt (x, y)

∣∣ ≤ c(β)W2(µ, ν)βt−
i+β+d

2 e−
|x−y|2
ct ,
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and for any β ∈ [0, α) there exists a constant c(β) > 0 such that for

any z′ ∈ Rd and ν ∈ P2,∣∣∇z{DLpµt (x, y)}(z)−∇z′{DLpµt (x, y)}(z′)
∣∣

≤ c(β)(|x− x′|β + |z − z′|β)t−
1+β+d−α

2 e−
|x−y|2
ct ,∣∣∇2

xp
µ
t (x, y)−∇2

xp
ν
t (x, y)

∣∣ ≤ c(β)W2(µ, ν)βt−1− β+d
2 e−

|x−y|2
ct ,∣∣∇z{DLpµt (x, y)}(z)−∇z{DLpνt (x, y)}(z)

∣∣
≤ c(β)W2(µ, ν)βt−1− β+d−α

2 e−
|x−y|2
ct .

We remark that the above derivative estimates imply the derivative

formula for DLPtf . Indeed, since

Ptf(µ) =

∫
Rd×Rd

pµt (x, y)f(y)µ(dx)dy,

for any f ∈ Bb(Rd) and φ ∈ Tµ,2, we have

DφPtf(µ) =
d

dε

∣∣∣
ε=0

∫
Rd×Rd

p
µ◦(id+εφ)−1

t (x+ εφ(x), y)f(y)µ(dx)dy

=

∫
Rd×Rd

〈
DLpµt (x, y)(·), φ

〉
L2(µ)

f(y)µ(dx)dy

+

∫
Rd×Rd

∇φ(x)p
µ
t (·, y)(x)f(y)µ(dx)dy.

4.5.4 Log-Harnack inequality and Bismut formula for

DDSDEs with drifts singular in distributions

This part is taken from [Huang and Wang (2022b)] where Theorem 4.1.1 for

log-Harnack inequality and Theorem 4.4.1 for Bismut formula are extended

to the case that bt(x, µ) is only Lipschitz continuous in µ with respect to

the distance induced by the square root of Dini functions, so that it may

be discontinuous in the distance induced by Dini functions.

4.5.4.1 Log-Harnack inequality

Let α be in the following class

A :=

{
α : [0,∞)→ [0,∞) is increasing and concave,

α(0) = 0,

∫ 1

0

α(r)2

r
dr ∈ (0,∞)

}
,
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where
∫ 1

0
α(r)2

r dr < ∞ is the Dini condition for α2. For a (real or Banach

valued) function f , let

[f ]α := sup
x 6=y

|f(x)− f(y)|
α(|x− y|)

be its continuity modulus in α. Define the Wasserstein distance induced by

α:

Wα(µ, ν) := sup
[f ]α≤1

|µ(f)− ν(f)|, µ, ν ∈ Pα :=
{
µ ∈ P : µ(α(| · |)) <∞

}
,

where f are real functions and µ(f) :=
∫
Rd fdµ.

By the concavity of α, Wα is a complete distance on Pα, and Pk ⊂ Pα
for k ≥ 1.

(A4.9) There exist α ∈ A, k ∈ (1,∞), κ ∈ [0,∞),K ∈ (0,∞), l ∈ N, and

1 ≤ fi ∈ L̃piqi (T ), (pi, qi) ∈ K, pi > 2, 0 ≤ i ≤ l

such that the following conditions hold.

(1) (σtσ
∗
t )(x) is invertible and σt(x) is weakly differentiable in x such

that

‖σσ∗‖∞ + ‖(σσ∗)−1‖∞ <∞, |∇σ| ≤
l∑
i=1

fi,

lim
ε↓0

sup
t∈[0,T ],|x−x′|≤ε

‖(σtσ∗t )(x)− (σtσ
∗
t )(x′)‖ = 0.

(2) bt(x, µ) = b
(0)
t (x) + b

(1)
t (x, µ), where for any t ∈ [0, T ], x, y ∈

Rd, µ, ν ∈ Pk,

|b(0)
t (x)| ≤ f0(t, x), |b(1)

t (x, µ)| ≤ K + κ|x|+ κ‖µ‖k,

|b(1)
t (x, µ)− b(1)

t (y, ν)| ≤ K
{
|x− y|+ Wα(µ, ν) + Wk(µ, ν)

}
.

By Theorem 3.5.1, (A4.9) implies the well-posedness of (3.4.1) for dis-

tributions in Pk, and for any n ≥ 1 there exists a constant cn > 0 such

that

E
[

sup
t∈[0,T ]

|Xt|n
∣∣∣F0

]
≤ cn(1 + |X0|n).

The following result due to [Huang and Wang (2022b)] extends Theo-

rem 4.1.1.
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Theorem 4.5.4. Assume (A4.9) with k = 2, let

α̃(r) :=

(∫ r

0

α(t)2

t
dt

) 1
2

, r ≥ 0.

Then there exists a constant c > 0 such that for any t ∈ (0, T ] and γ, γ̃ ∈ P2,

Ent(P ∗t γ|P ∗t γ̃)

≤W2(γ, γ̃)2
{c
t

+ α̃(1 + κ‖γ‖2 + κ‖γ̃‖2)2ecα(1+κ‖γ‖2+κ‖γ̃‖2)2
}
.

If in particular κ = 0 (i.e. b(1) is bounded), there exists a constant c > 0

such that

Ent(P ∗t γ|P ∗t γ̃) ≤ c

t
W2(γ, γ̃)2, t ∈ (0, T ], γ, γ̃ ∈ P2.

4.5.4.2 Bismut formula

In this part, we establish the Bismut formula for the intrinsic derivative of

Ptf(γ) for γ ∈ Pk. To this end, we assume

bt(x, µ) = b
(0)
t (x) +Bt(x, µ, µ(V )), t ∈ [0, T ], x ∈ Rd, µ ∈ P, (4.5.6)

where for a Banach space (B, ‖ · ‖B),

V : Rd → B, B : [0, T ]× Rd × Pk × B→ Rd

are measurable such that [V ]α ≤ 1 for some α ∈ A, i.e. V is only square

root Dini continuous and hence µ 7→ Bt(x, µ, µ(V )) may be not intrinsically

differentiable.

Recall that a real function f on a Banach space B is called Gateaux

differentiable, if for any z ∈ B,

v 7→ ∇B
vf(z) := lim

ε↓0

f(z + εv)− f(z)

ε

is a well-defined bounded linear functional. In this case we denote

‖∇Bf(z)‖B∗ := sup
‖v‖B≤1

|∇B
vf(z)|.

Moreover, f is called Fréchet differentiable if it is Gateaux differentiable

and

lim
‖v‖B↓0

|f(z + v)− f(z)−∇B
vf(z)|

‖v‖B
= 0, z ∈ B.

It is well-known that a Gateaux differentiable function f is Fréchet differ-

entiable provided ∇B
vf(z) is continuous in (v, z) ∈ B×B. When B = Rl for

some l ≥ 1, we simply denote ∇B = ∇.
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(A4.10) Let k ∈ (1,∞) and let b in (4.5.6).

(1) b(0) and σ satisfy the corresponding conditions in (A4.9).

(2) There exists α ∈ A such that αk(s) := α(s
1
k−1 ) is concave in s ≥ 0,

and

[V ]α := sup
x 6=y

‖V (x)− V (y)‖B
α(|x− y|)

≤ 1.

(3) For any t ∈ [0, T ], Bt ∈ C(Rd×Pk×B), Bt(x, µ, z) is differentiable

in x, L-differentiable in µ ∈ Pk, and Fréchet differentiable in z ∈ B,

such that ∇B
vBt(x, µ, z) is continuous in (v, z) ∈ B×B. Next, there

exist constants K > 0 and κ ≥ 0 such that

|Bt(x, µ, z)| ≤ K + κ
(
|x|+ ‖µ‖k + ‖z‖B

)
,

|∇Bt(·, µ, z)(x)|+ ‖DLBt(x, ·, z)(µ)‖Lk∗ (µ) + ‖∇BBt(x, µ, ·)(z)‖B∗

≤ K, (t, x, µ, z) ∈ [0, T ]× Rd × Pk × B.
Moreover, for any (t, x, µ) ∈ [0, T ]×Rd×Pk, there exists a constant

c(t, µ, z) > 0 such that

|{DLBt(x, ·, z)(µ)(y)| ≤ c(t, x, µ, z)(1 + |y|k−1), y ∈ Rd.

Since α is concave, the concavity of αk holds for k ≥ 2. When α(s) = sε

for some ε ∈ (0, 1), αk is concave for k ≥ 1 + ε. Since (A4.10) implies

(A4.9), as explained above that under this assumption (3.4.1) is well-posed

for distributions in Pk.
For µ ∈ Pk, consider the decoupled SDE

dXx,µ
t =

{
b
(0)
t (Xx,µ

t ) +Bt(X
x,µ
t , P ∗t µ, PtV (µ))

}
dt+ σt(X

x,µ
t )dWt,

Xx,µ
0 = x, t ∈ [0, T ].

According to Theorem 1.3.1, (A4.10) implies that this SDE is well-posed,

∇vXx,µ
t := lim

ε↓0

Xx+εv,µ
t −Xx,µ

t

ε
, t ∈ [0, T ]

exists in Lp(Ω→ C([0, T ];Rd);P) for any p ≥ 1, and there exists a constant

cp > 0 such that

E
[

sup
t∈[0,T ]

|∇vXx,µ
t |p

]
≤ cp|v|p, v ∈ Rd, µ ∈ Pk, x ∈ Rd.

To state the Bismut formula for Ptf , we introduce the following Ift
which comes from the Bismut formula Theorem 1.4.2: for any t ∈ (0, T ],

β ∈ C1([0, t]) with β0 = 0 and βt = 1, let

Ift (µ, φ) :=

∫
Rd

E
[
f(Xx,µ

t )

∫ t

0

〈
β′sζs(X

x,µ
s )∇φ(x)X

x,µ
s ,dWs

〉]
µ(dx),

ζs := σ∗s (σsσ
∗
s )−1, s ∈ [0, t], µ ∈ Pk, φ ∈ Tµ,k.
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Then there exists a constant c > 0 such that

|Ift (µ, φ)| ≤ c‖β′‖∞
√
t
(
Pt|f |k

∗
(µ)
) 1
k∗ ‖φ‖Lk(µ), µ ∈ Pk, φ ∈ Tµ,k.

Next, let Xµ
0 be F0-measurable such that LXµ0 = µ, and let Xµ

t solve

(3.4.1) with initial value Xµ
0 . For any ε ≥ 0, denote

µε := µ ◦ (id+ εφ)−1, Xµε
0 := Xµ

0 + εφ(Xµ
0 ).

Let Xµε
t solve (3.4.1) with initial value Xµε

0 . So,

Xµ
t = Xµ0

t , P ∗t µε = LXµεt , t ∈ [0, T ], ε ≥ 0.

Recall that

∇φXµ
t := lim

ε↓0

Xµε
t −X

µ
t

ε
, t ∈ [0, T ]. (4.5.7)

Theorem 4.5.5. Assume (A4.10). Then the following assertions hold.

(1) For any t ∈ (0, T ], PtV is intrinsically differentiable on Pk, and there

exists a constant c > 0 such that

‖DIPtV (µ)‖Lk∗ (µ) ≤
c α((1 + κ‖µ‖k)t

1
2 )√

t
ec α̃(1+κ‖µ‖)2

, t ∈ (0, T ], µ ∈ Pk.

(2) The limit in (4.5.7) exists in Lk(Ω→ C([0, T ],Rd),P), and there exists

a constant c > 0 such that

E
[

sup
t∈[0,T ]

|∇φXµ
t |k
]
≤ c‖φ‖kLk(µ), t ∈ (0, T ], µ ∈ Pk.

(3) For any t ∈ (0, T ] and f ∈ Bb(Rd), Ptf is intrinsically differentiable

on Pk. Moreover, for any µ ∈ Pk and φ ∈ Tµ,k,

DI
φPtf(µ) = Ift (µ, φ) + E

[
f(Xµ

t )

∫ t

0

〈
ζs(X

µ
s )
{
Ns + Ñs

}
, dWs

〉]
,

Ns :=
{
∇BDIφPsV (µ)Bs(X

µ
s , µ, ·)

}
(PsV (µ)),

Ñs :=
〈
E
[
{DLB(1)

s (y, ·, PsV (µ))}(P ∗s µ)(Xµ
s )
]
y=Xµs

,∇φXµ
s

〉
,

where Xµ
t solves (3.4.1) with initial distribution LX0

= µ, and ζs :=

σ∗s (σsσ
∗
s )−1.

By taking βs = s
t , we find a constant c > 0 such that for any t ∈ (0, T ],

f ∈ Bb(Rd), µ ∈ Pk,

‖DIPtf(µ)‖Lk∗ (µ) ≤
{Pt|f |k

∗
(µ)} 1

k∗

√
t

ec α̃(1+κ‖µ‖k)2

.
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Chapter 5

DDSDEs: Long Time Behaviors

In this chapter, we study the exponential ergodicity for the time-

homogeneous DDSDE:

dXt = σ(Xt,LXt)dWt + b(Xt,LXt)dt, (5.0.1)

where Wt is the m-dimensional Brownian motion and

σ : Rd × P → Rd ⊗ Rm, b : Rd × P → Rd

are measurable.

We first present a general result with application to the Wk-exponential

ergodicity, then consider the exponential ergodicity in variation distance

for singular DDSDEs, investigate the exponential ergodicity in entropy and

W2 for the dissipative case, and finally derive the exponential ergodici-

ty in weighted Wasserstein distance for the partially dissipative and non-

dissipative cases.

5.1 A general result with application to Wk-exponential

ergodicity

Let P̂ ⊂ P be equipped with a complete metric W. When (5.0.1) is well-

posed for distributions in P̂, for any t ≥ 0, let P ∗t µ := LXt for the solution

Xt with initial distribution LX0 = µ ∈ P̂. The well-posedness implies the

semigroup property

P ∗t P
∗
s = P ∗t+s, t, s ≥ 0. (5.1.1)

A point µ ∈ P̂ is called P ∗t -invariant, if P ∗t µ = µ for all t ≥ 0.

Theorem 5.1.1. If there exist constants c ≥ 1, λ > 0, t0 >
log c
λ and a point

µ0 ∈ P̂ such that

sup
t∈[0,t0]

W(P ∗t µ0, µ0) <∞, (5.1.2)

219
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W(P ∗t µ, P
∗
t ν) ≤ ce−λtW(µ, ν), µ, ν ∈ P̂, (5.1.3)

then there exists a unique P ∗t -invariant point µ̄ ∈ P̂, and

W(P ∗t µ, µ̄) ≤ ce−λtW(µ, µ̄), t ≥ 0, µ ∈ P̂. (5.1.4)

Proof. Since (5.1.4) follows from (5.1.3) if µ̄ is P ∗t -invariant, it suffices

to prove that P ∗t has an invariant probability measure.

Simply denote µt = P ∗t µ0, t ≥ 0. By (5.1.2), we have

c0 := sup
t∈[0,t0]

W(µt, µ0) <∞.

Moreover, by (5.1.1), (5.1.3) and ε := ce−λt0 ∈ (0, 1), we obtain

sup
s∈[0,t0]

W(µnt0+s, µnt0) ≤ c0εn, n ≥ 1.

By this and the triangle inequality, we obtain

sup
s≥0

W(µs, µ0) ≤ c0 +

∞∑
n=0

W(µ(n+1)t0 , µnt0)

≤ c0 +

∞∑
n=0

εn =: c1 <∞.

Thus,

lim
t→∞

sup
s≥0

W(µt, µt+s) ≤ lim
t→∞

ce−λt sup
s≥0

W(µ0, µs) = 0.

Therefore, {µt}t≥0 is a W-Cauchy family as t → ∞, hence there exists a

unique µ̄ ∈ P̂ such that

lim
t→∞

W(µt, µ̄) = 0.

This together with (5.1.1) yields that µ̄ is P ∗t -invariant. �

Next, we consider the exponential ergodicity in Wk for k ∈ [1,∞) under

the condition
k

2
|x− y|k−2

(
‖σ(x, µ)− σ(y, ν)‖2HS + 2〈b(x, µ)− b(y, ν), x− y〉

+ (k − 2)‖σ(x, µ)− σ(y, ν)‖2
)
≤ K2Wk(µ, ν)k −K1|x− y|k,

x, y ∈ Rd, µ, ν ∈ Pk,

(5.1.5)

for some constants K1 > K2 > 0, where for k ∈ [1, 2), we assume that

σ(x, µ) = σ(x) does not depend on µ.

Theorem 5.1.2. Assume that (σ, b) satisfies (A3.1). If (5.1.5) holds for

some constants K1 > K2 ≥ 0, then P ∗t has a unique invariant probability

measure µ̄ in Pk, and

Wk(P ∗t µ, µ̄)k ≤ e−(K1−K2)tWk(µ, µ̄)k, t ≥ 0, µ ∈ Pk.
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Proof. By Theorem 3.3.1, (3.1.1) is well-posed for distributions in Pk,

and (5.1.2) holds for µ0 = δ0 and any t0 > 0. Next, for any µ, ν ∈ Pk, let

Xt and Yt solve (3.1.1) with

LX0
= µ, LY0

= ν, Wk(µ, ν)k = E[|X0 − Y0|k]. (5.1.6)

We have

d|Xt − Yt|2 =2
〈
Xt − Yt, (σ(Xt, P

∗
t µ)− σ(Yt, P

∗
t ν))dWt

〉
+ ‖σ(Xt, P

∗
t µ)− σ(Yt, P

∗
t ν)‖2HSdt

+ 2〈b(Xt, P
∗
t µ)− b(Yt, P ∗t ν), Xt − Yt〉dt.

Combining this with Itô’s formula and applying (5.1.5), we derive

d|Xt − Yt|k ≤
{
K2Wk(P ∗t µ, P

∗
t ν)k −K1|Xt − Yt|k

}
dt+ dMt

for some martingale Mt. This and (5.1.6) imply

Wk(P ∗t µ, P
∗
t ν)k ≤ E[|Xt − Yt|k] ≤Wk(µ, ν)ke−(K1−K2)t, t ≥ 0.

Then the proof is finished by Theorem 5.1.1. �

5.2 Ergodicity in variation distance: singular case

The following result extends Theorem 1.6.1 to the distribution dependent

setting. See [Wang (2023c)] for a result with weaker integral condition

replacing (5.2.1).

Theorem 5.2.1. Let σ(x, µ) = σ(x) not depend on µ. Assume that for

any ν ∈ P, (σ, b(·, ν)) satisfies (A1.4), and that

|b(x, µ1)− b(x, µ2)| ≤ κ‖µ1 − µ2‖var, x ∈ Rd, µ1, µ2 ∈ P (5.2.1)

holds for some constant κ > 0. Then (5.0.1) is well-posed, and when κ > 0

is small enough and Φ is convex with
∫∞

0
ds

Φ(s) < ∞, P ∗t has a unique

invariant probability measure µ̄, µ̄(Φ(ε0V )) < ∞ holds for some constant

ε0 > 0, and there exist constants c, λ > 0 such that

‖P ∗t ν − µ̄‖var ≤ ce−λt‖µ̄− ν‖var, t ≥ 0, ν ∈ P. (5.2.2)
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5.2.1 Two lemmas

For any γ ∈ P, consider the following SDE with fixed distribution param-

eter:

dXγ
t = b(Xγ

t , γ) + σ(Xγ
t )dWt. (5.2.3)

The following result says that if (5.2.3) is exponentially ergodic with respect

to ‖ · ‖var uniformly in γ, and if the dependence of b(x, µ) on µ is weak

enough, then (5.0.1) is exponentially ergodic in ‖ · ‖var.

Lemma 5.2.2. Assume (5.2.1) and that for each γ ∈ P the SDE (5.2.3) is

well-posed. Then (5.0.1) is well-posed. If the associated Markov semigroup

P γt of (5.2.3) satisfies

‖(P γt )∗µ1−(P γt )∗µ2‖var ≤ ce−λt‖µ1−µ2‖var, t ≥ 0, γ, µ1, µ2 ∈ P (5.2.4)

for some constants c, λ > 0, then P ∗t associated with (5.0.1) has a unique

invariant probability measure µ̄ when κ <
√
λ

2
√

log(2c)
. If moreover κ ∈ (0, κ̂),

where

κ̂ := sup
{
κ > 0 :

(cκ)2(2c)
2κ2

λ

λ+ κ2
<

1

2

}
> 0,

then there exists a constant c′ > 0 such that

‖P ∗t ν − µ̄‖var ≤ c′e−λ
′t‖ν − µ̄‖var, t ≥ 0, ν ∈ P (5.2.5)

holds for

λ′ := − λ

log(2c)
log
(1

2
+

(cκ)2(2c)
2κ2

λ

λ+ κ2

)
> 0.

Proof. By Theorem 3.4.1, the well-posedness of (5.0.1) follows from that

of (5.2.3) and (5.2.1).

(a) Existence and uniqueness of µ̄. For any γ ∈ P, (5.2.4) implies that

P γt has a unique invariant probability measure µγ . It suffices to prove that

the map γ 7→ µγ has a unique fixed point µ̄, which is the unique invariant

probability measure of P ∗t .

For γ1, γ2 ∈ P, (5.2.3) implies

‖(P γ1

t )∗µγ2
− µγ1

‖var ≤ ce−λt‖µγ2
− µγ1

‖var, t ≥ 0. (5.2.6)

On the other hand, let (X1
t , X

2
t ) solve the SDEs

dXi
t = b(Xi

t , γi) + σ(Xi
t)dWt, i = 1, 2
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with X1
0 = X2

0 having distribution µγ2
. Since µγ2

is (P γ2

t )∗-invariant, we

have

LX2
t

= (P γ2

t )∗µγ2 = µγ2 , LX1
t

= (P γ1

t )∗µγ2 , t ≥ 0. (5.2.7)

Let

ηt := {σ∗(σσ∗)−1[b(·, γ2)− b(·, γ1)]}(X1
t ),

Rt := e
∫ t
0
〈ηs,dWs〉− 1

2

∫ t
0
|ηs|2ds, t ≥ 0.

By (5.2.1), Rt is a martingale, and by Girsanov’s theorem, for any t > 0,

W̃r := Wr −
∫ r

0

ηsds, r ∈ [0, t]

is a Brownian motion under Qt := RtP. Reformulating the SDE for X1
r as

dX1
r = b(X1

r , γ2)dr + σ(X1
r )dW̃r, r ∈ [0, t],

by X1
0 = X2

0 and the weak uniqueness, the law of X1
t under Qt satisfies

LX1
t |Qt = LX2

t
= (P γ2

t )∗µγ2 .

Combining this with (5.2.7) and Pinsker’s inequality (3.2.3), we obtain

‖(P γ1

t )∗µγ2 − µγ2‖2var = ‖(P γ1

t )∗µγ2 − (P γ2

t )∗µγ2‖2var
= sup
|f |≤1

∣∣E[f(X1
t )]− E[f(X1

t )Rt]
∣∣2 ≤ (E|Rt − 1|

)2
≤ 2E[Rt logRt] = 2EQt [logRt]

= EQt

∫ t

0

∣∣{σ∗(σσ∗)−1[b(·, γ2)− b(·, γ1)]}(X1
s )
∣∣2ds.

(5.2.8)

Thus, (5.2.1) implies

‖(P γ1

t )∗µγ2
− µγ2

‖2var ≤ κ2

∫ t

0

‖γ1 − γ2‖2vards = κ2t‖γ1 − γ2‖2var.

Combining this with (5.2.6) and taking t = log(2c)
λ , we derive

‖µγ1
− µγ2

‖var ≤ ‖(P γ1

t )∗µγ1
− µγ1

‖var + ‖(P γ1

t )∗ − µγ2
‖var

≤
{
κ
√
t+ ce−λt

}
‖γ1 − γ2‖var =

{
1

2
+
κ
√

log(2c)√
λ

}
‖γ1 − γ2‖var

=: δ‖γ1 − γ2‖var.

When κ < κ0 :=
√
λ

2
√

log(2c)
, we have δ < 1 so that µγ is contractive in γ,

hence it has a unique fixed point.
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(b) Exponential ergodicity in variation distance. Let µ̄ be the unique

invariant probability measure of P ∗t , and for any ν ∈ P, let (X̄0, X0) be

F0-measurable such that

P(X̄0 6= X0) =
1

2
‖µ̄− ν‖var, LX̄0

= µ, LX0
= ν.

Let X̄t and Xt solve the following SDEs with initial values X̄0 and X0

respectively:

dX̄t = b(X̄t, µ̄)dt+ σ(X̄t)dWt,

dXt = b(Xt, P
∗
t ν)dt+ σ(Xt)dWt.

Since µ̄ is P ∗t -invariant, we have

LX̄t = (P µ̄t )∗µ̄ = P ∗t µ̄ = µ̄. (5.2.9)

Moreover, LXt = P ∗t ν by the definition of P ∗t . Let

η̄t := {σ∗(σσ∗)−1[b(·, µ̄)− b(·, P ∗s ν)]}(Xt),

R̄t := e
∫ t
0
〈η̄s,dWs〉− 1

2

∫ t
0
|η̄s|2ds.

Similarly to (5.2.8), by (5.2.1), Girsanov’s theorem and Pinsker’s inequality

(3.2.3), we obtain

‖(P µ̄t )∗ν − P ∗t ν‖2var = sup
|f |≤1

∣∣E[f(Xt)R̄t]− E[f(Xt)]
∣∣2

≤ κ2

∫ t

0

‖µ̄− P ∗s ν‖2vards, t ≥ 0.

This together with (5.2.6) for γ1 = µ and (5.2.9) gives

‖P ∗t ν − µ̄‖2var ≤ 2‖P ∗t ν − (P µ̄t )∗ν‖2var + 2‖(Pµt )∗ν − µ̄‖2var

≤ 2κ2

∫ t

0

‖µ̄− P ∗s ν‖2vards+ 2c2e−2λt‖ν − µ̄‖2var, t ≥ 0.

By Gronwall’s inequality we obtain

‖P ∗t ν − µ̄‖2var ≤ ‖µ̄− ν‖2var
(

2c2e−2λt + 2κ2c2
∫ t

0

e−2λs+2κ2(t−s)ds

)
≤
{

2c2e−2λt +
(cκ)2e2κ2t

λ+ κ2

}
‖µ̄− ν‖2var, t ≥ 0.

Taking t = t̂ := log(2c)
λ , we arrive at

‖P ∗
t̂
ν − µ̄‖2var ≤ δκ‖µ̄− ν‖2var, ν ∈ P

for

δκ :=
(1

2
+

(cκ)2(2c)
2κ2

λ

λ+ κ2

)
< 1, κ < κ̂.

So, (5.2.5) holds for some constant c′ > 0 due to the semigroup property

(5.1.1). �
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To verify condition (5.2.4), we present below a Harris type theorem

on the exponential ergodicity in variation distance for a family of Markov

processes.

Lemma 5.2.3. Let (E, ρ) be a metric space and let {(P it )t≥0 : i ∈ I} be a

family of Markov semigroups on Bb(E). If there exist t0 > 0 and measurable

set B ⊂ E such that

α := inf
i∈I,x∈E

P it01B(x) > 0, (5.2.10)

β := sup
i∈I,x,y∈B

‖(P it1)∗δx − (P it1)∗δy‖var < 2, (5.2.11)

then there exists c > 0 such that

sup
i∈I,x,y∈E

‖(P it )∗δx − (P it )
∗δy‖var ≤ ce−λt, t ≥ 0 (5.2.12)

holds for λ := 1
t0+t1

log 2
2−α2(2−β) > 0.

Proof. By the semigroup property, we have

‖(P it0+t1)∗δx − (P it0+t1)∗δy‖var

= sup
|f |≤1

∣∣∣∣ ∫
E×E

(
P it1f(x′)− P it1f(y′)

)
{(P it0)∗δx}(dx′){(P it0)∗δy}(dy′)

∣∣∣∣
≤
∫
B×B

‖(P it1)∗δx′ − (P it1)∗δy′‖var{(P it0)∗δx}(dx′){(P it0)∗δy}(dy′)

+ 2

∫
(B×B)c

{(P it0)∗δx}(dx′){(P it0)∗δy}(dy′)

≤ β{P it01B(x)}P it01B(y) + 2
[
1− {P it01B(x)}P it01B(y)

]
≤ 2− α2(2− β).

Noting that ‖δx − δy‖var = 2 for x 6= y and δ := 2−α2(2−β)
2 < 1, we derive

‖(P it0+t1)∗δx − (P it0+t1)∗δy‖var ≤ δ‖δx − δy‖var, x, y ∈ E.

Combining this with the semigroup property, we find constants c > 0 such

that (5.2.12) holds for the claimed λ > 0. �

5.2.2 Proof of Theorem 5.2.1

According to Theorems 1.6.1 and Lemma 3.7.7, it suffices to verify (5.2.4).

By Lemma 5.2.3, we only need to prove (5.2.10) and (5.2.11) for the family

{(P γt )t≥0 : γ ∈ P}.
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(a) Proof of (5.2.11). Let us fix γ ∈ P, and let Xx,γ
t solve (5.2.3) with

Xγ
0 = x. For any ν ∈ P, by Girsanov’s theorem we have

P νt f(x) = E[f(Xx,γ
t )Rx,γ,νt ], t ≥ 0,

where

Rx,γ,νt := e
∫ t
0
〈ηx,γ,νs ,dWs〉− 1

2 |η
x,γ,ν
s |2ds,

ηx,γ,νs := {σ∗(σσ∗)−1[b(·, ν)− b(·, γ)]}(Xx,γ
s ).

So, (5.2.1) and Pinsker’s inequality (3.2.3) imply

‖(P γt )∗δz − (P νt )∗δz‖2var ≤ (E|Rγ,νt − 1|)2 ≤ κ2t‖γ − ν‖2var
≤ 4κ2t, t ≥ 0, z ∈ Rd, ν ∈ P.

Taking t1 = 1
16κ2 , we obtain

sup
ν∈P
‖(P γt1)∗δz − (P νt1)∗δz‖var ≤

1

2
, z ∈ Rd, ν ∈ P. (5.2.13)

On the other hand, by (1.3.4), there exists x0 ∈ D and a constant ε > 0

such that B(x0, ε) ⊂ D and

‖(P γt1)∗δx − (P γt1)∗δy‖var ≤
1

4
, x, y ∈ B(x0, ε).

Combining this with (5.2.13) we derive

sup
ν∈P
‖(P νt1)∗δx − (P νt1)∗δy‖var ≤

3

2
< 2, x, y ∈ B(x0, ε).

So, (5.2.11) holds for B = B(x0, ε).

(b) Let u solve (5.5.16) for f = −b(0) and large λ > 0 such that (1.3.16)

holds, and let Θ(x) = x + u(x). Since (σ, b(·, γ)) satisfies (A1.4), (1.6.20)

holds for Y x,νt := Θ(Xx,ν
t ) replacing Yt for all ν ∈ P. So, by H(∞) < ∞

and the argument leading to (1.6.23), we obtain

sup
ν∈P,x∈Rd

E[V (Y x,νt )] ≤ θ−1k, t ≥ kH(∞) =: t2.

This together with (1.6.18) implies

sup
ν∈P,x∈Rd

E[V (Xx,ν
t )] ≤ θ−2k, t ≥ t2.

Letting K := {V ≤ 2θ−2k}, we derive

inf
ν∈P,x∈Rd

P νt21K(x) ≥ 1

2
. (5.2.14)
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On the other hand, by Girsanov’s theorem and Schwarz’s inequality, we

find a constant c0 > 0 such that

P ν1 1B(x0,ε)(x) = E
[
1B(x0,ε)(X

x,γ
1 )Rx,γ,ν1

]
≥
{E1B(x0,ε)(X

x,γ
1 )}2

ERx,γ,ν1

≥ c0(P γ1 1B(x0,ε)(x))2.

Since K is bounded, combining this with Lemma 3.7.6 for P γt , we find a

constant c1 > 0 such that

inf
ν∈P,x∈K

P ν1 1B(x0,ε)(x) ≥ c1.

This together with (5.2.14) and the semigroup property yields

P νt2+11B(x0,ε)(x) ≥ P νt2
{

1KP
ν
1 1B(x0,ε)}(x) ≥ c1P νt21K(x) ≥ c1

2
> 0

for all x ∈ Rd, ν ∈ P. Therefore, (5.2.10) holds for t0 = t2 + 1.

5.3 Exponential ergodicity in relative entropy and W2: dis-

sipative case

We first present a criterion on the exponential convergence in entropy by

using the log-Harnack and Talagrand inequalities, then apply to (5.0.1)

with non-degenerate and degenerate noises respectively.

5.3.1 A criterion with application to Granular media type

equations

Theorem 5.3.1. Assume that (5.0.1) is well-posed for distributions in P2,

P ∗t has a unique invariant probability measure µ̄ ∈ P2 such that for some

constants t0, c0, C > 0 we have the log-Harnack inequality

Pt0(log f)(ν) ≤ logPt0f(µ) + c0W2(µ, ν)2, µ, ν ∈ P2, (5.3.1)

and the Talagrand inequality

W2(µ, µ̄)2 ≤ CEnt(µ|µ̄), µ ∈ P2. (5.3.2)

(1) If there exist constants c1, λ, t1 ≥ 0 such that

W2(P ∗t µ, µ̄)2 ≤ c1e−λtW2(µ, µ̄)2, t ≥ t1, µ ∈ P2, (5.3.3)

then for any t ≥ t0 + t1,

max
{
c−1
0 Ent(P ∗t µ|µ̄),W2(P ∗t µ, µ̄)2

}
≤ c1e−λ(t−t0) min

{
W2(µ, µ̄)2, CEnt(µ|µ̄)

}
, µ ∈ P2.

(5.3.4)
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(2) If for some constants λ, c2, t2 > 0,

Ent(P ∗t µ|µ̄) ≤ c2e−λtEnt(µ|µ̄), t ≥ t2, ν ∈ P2, (5.3.5)

then for any t ≥ t0 + t2 and µ ∈ P2,

max
{

Ent(P ∗t µ, µ̄), C−1W2(P ∗t µ, µ̄)2
}

≤ c2e−λ(t−t0) min
{
c0W2(µ, µ̄)2,Ent(µ|µ̄)

}
.

(5.3.6)

Proof. (1) Since

Ent(P ∗t0ν|P
∗
t0µ) = sup

f≥0,(Pt0f)(µ)=1

Pt0(log f)(ν),

(5.3.1) implies

Ent(P ∗t0ν|P
∗
t0µ) ≤ c0W2(µ, ν)2.

This together with P ∗t0 µ̄ = µ̄ gives

Ent(P ∗t0µ|µ̄) ≤ c0W2(µ, µ̄)2, µ ∈ P2. (5.3.7)

Combining (5.3.3) with (5.3.2) and (5.3.7), we obtain

W2(P ∗t µ, µ̄)2 ≤ c1e−λtW2(µ, µ̄)2

≤ c1e−λt min
{
W2(µ, µ̄)2, CEnt(µ|µ̄)

}
, t ≥ t1,

and for any t ≥ t0 + t1,

Ent(P ∗t µ|µ̄) = Ent(P ∗t0P
∗
t−t0µ|µ̄)

≤ c0W2(P ∗t−t0µ, µ̄)2 ≤ c0c1e−λ(t−t0)W2(µ, µ̄)2

= {c0c1eλt0}e−λt min
{
W2(µ, µ̄)2, CEnt(µ|µ̄)

}
.

Therefore, (5.3.4) holds.

(2) Similarly, if (5.3.5) holds, then (5.3.2) and (5.3.7) imply

Ent(P ∗t µ|µ̄) ≤ c2e−λ(t−t0) min
{

Ent(P ∗t0µ|µ̄),Ent(µ|µ̄)
}

≤ c2e−λ(t−t0) min
{
c0W2(µ, µ̄)2,Ent(µ|µ̄)

}
, t ≥ t0 + t2,

and

C−1W2(P ∗t µ, µ̄)2 ≤ Ent(P ∗t−t0P
∗
t0µ|µ̄)

≤ c2 min
{

e−λtEnt(µ|µ̄), e−λ(t−t0)Ent(P ∗t0µ|µ̄)
}

≤ c2e−λ(t−t0) min
{

Ent(µ|µ̄), c0W2(µ, µ̄)2
}
, t ≥ t0 + t2.

Then (5.3.6) holds, and the proof is finished. �
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When σσ∗ is invertible and does not depend on the distribution, the

log-Harnack inequality (5.3.1) has been established in Theorem 4.1.1. The

Talagrand inequality was first found in [Talagrand (1996)] for µ̄ being

the Gaussian measure, and extended in [Bobkov et al (2001)] to µ̄ sat-

isfying the log-Sobolev inequality

µ̄(f2 log f2) ≤ Cµ̄(|∇f |2), f ∈ C1
b (Rd), µ̄(f2) = 1, (5.3.8)

see [Otto and Villani (2000)] for an earlier result under a curvature condi-

tion, and see [Wang (2004)] for further extensions.

To illustrate this result, we consider the granular media type equation

for probability density functions (ρt)t≥0 on Rd:

∂tρt = div
{
a∇ρt + ρta∇(V +W ~ ρt)

}
, (5.3.9)

where

W ~ ρt :=

∫
Rd
W (·, y)ρt(y)dy, (5.3.10)

and the functions

a : Rd → Rd ⊗ Rd, V : Rd → R, W : Rd × Rd → R

satisfy the following assumptions.

(A5.1)

(1) a := (aij)1≤i,j≤d ∈ C2
b (Rd → Rd ⊗ Rd), and a ≥ λaId for some

constant λa > 0.

(2) V ∈ C2(Rd),W ∈ C2(Rd × Rd) with W (x, y) = W (y, x), and there

exist constants κ0 ∈ R and κ1, κ2, κ
′
0 > 0 such that

HessV ≥ κ0Id, κ′0I2d ≥ HessW ≥ κ0I2d, (5.3.11)

〈x,∇V (x)〉 ≥ κ1|x|2 − κ2, x ∈ Rd. (5.3.12)

Moreover, for any λ > 0,∫
Rd×Rd

e−V (x)−V (y)−λW (x,y)dxdy <∞. (5.3.13)

(3) There exists a function b0 ∈ L1
loc([0,∞)) with

r0 :=
‖HessW ‖∞

4

∫ ∞
0

e
1
4

∫ t
0
b0(s)dsdt < 1

such that〈
y − x,∇V (x)−∇V (y) +∇W (·, z)(x)−∇W (·, z)(y)

〉
≤ |x− y|b0(|x− y|), x, y, z ∈ Rd.
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For any N ≥ 2, consider the Hamiltonian for the system of N particles:

HN (x1, . . . , xN ) =

N∑
i=1

V (xi) +
1

N − 1

N∑
1≤i<j≤N

W (xi, xj),

and the corresponding finite-dimensional Gibbs measure

µ(N)(dx1, . . . , xN ) =
1

ZN
e−HN (x1,...,xN )dx1 . . . dxN ,

where ZN :=
∫
RdN e−HN (x)dx < ∞ due to (5.3.13) in (A5.5). For any

1 ≤ i ≤ N , the conditional marginal of µ(N) given z ∈ Rd(N−1) is

µ(N)
z (dx) :=

1

ZN (z)
e−HN (x|z)dx,

where

ZN (z) :=

∫
Rd

e−HN (x|z)dx,

HN (x|z) := V (x)− log

∫
Rd(N−1)

e−
∑N−1
i=1 {V (zi)+

1
N−1W (x,zi)}dz1 . . . dzN−1.

The following result allows V and W to be non-convex. For instance,

let V = V1 + V2 ∈ C2(Rd) such that ‖V1‖∞ ∧ ‖∇V1‖∞ <∞, HessV2
≥ λId

for some λ > 0 (recall that Id is the d × d identity matrix), and W ∈
C2(Rd × Rd) with ‖W‖∞ ∧ ‖∇W‖∞ < ∞. Then the uniform log-Sobolev

inequality (5.3.14) holds for some constant β > 0. Indeed, by the Bakry-

Emery criterion, µ2(dx) := 1∫
Rd e−V (x)dx

e−V2(x)dx satisfies the log-Sobolev

inequality,

µ2(f2 log f2) ≤ 2

λ
µ2(|∇f |2), f ∈ C1

b (Rd), µ2(f2) = 1.

Then (5.3.14) with some constant β > 0 follows by the stability of the

log-Sobolev inequality under bounded perturbations (see [Chen and Wang

(1997)]), as well as Lipschitz perturbations (see [Aida (1998)]) for the po-

tential V2. Moreover, assumptions (A5.1) holds provided ‖HessW ‖∞ is s-

mall enough such that r0 < 1. So, the following Theorem 5.3.2 applies.

See [Guillin et al (2022)] for more concrete examples satisfying (A5.1) and

(5.3.14).

Theorem 5.3.2. Assume (A5.1). If there is a constant a > 0 such that the

uniform log-Sobolev inequality

µ(N)
z (f2 log f2) ≤ 1

β
µ(N)
z (|∇f |2),

f ∈ C1
b (Rd), µ(N)

z (f2) = 1, N ≥ 2, z ∈ Rd(N−1)

(5.3.14)
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holds, then there exists a unique µ̄ ∈ P2 and a constant c > 0 such that

W2(µt, µ̄)2 + Ent(µt|µ̄)

≤ ce−λaβ(1−r0)2t min
{
W2(µ0, µ̄)2 + Ent(µ0|µ̄)

}
, t ≥ 1

(5.3.15)

holds for any probability density functions (ρt)t≥0 solving (5.3.9), where

µt(dx) := ρt(x)dx, t ≥ 0.

Proof. By Theorem 10 in [Guillin et al (2022)], there exists a unique

µ̄ ∈ P2 such that

EntV,W (µ̄) = 0. (5.3.16)

Let µ0 = ρ0dx ∈ P2. As in (5.3.10), let

W ~ µ :=

∫
Rd
W (·, y)µ(dy).

We first note that µt = P ∗t µ0 := LXt for Xt solving the distribution depen-

dent SDE (5.0.1) with

b(x, µ) =

d∑
j=1

∂ja·,j(x)− a∇{V +W ~ µ}(x),

σ(x, µ) =
√

2a(x), x ∈ Rd, µ ∈ P2.

(5.3.17)

Obviously, for this choice of (σ, b), conditions (A5.1)(1)–(2) imply condition

(A3.1) for any k ≥ 1, so that (5.0.1) SDE is well-posed for distributions in

Pk, k ≥ 1. Below we only consider k = 2. For any N ≥ 2, let µ
(N)
t = L

X
(N)
t

for the mean field particle system X
(N)
t = (XN,k

t )1≤i≤N :

dXN,k
t =

√
2σ(XN,k

t )dBkt

+
{ d∑
j=1

∂ja·,j(X
N,k
t )− a(XN,k

t )∇kHN (X
(N)
t )

}
dt, t ≥ 0,

(5.3.18)

where ∇k denotes the gradient in the k-th component, and {XN,k
0 }1≤i≤N

are i.i.d. with distribution µ0 ∈ P2. According to the propagation of chaos,

see [Sznitman (1991)], (A5.1) implies

lim
N→∞

W2(LXN,1t
, P ∗t µ0) = 0. (5.3.19)

Next, our conditions imply conditions (25) and (26) in [Guillin et al

(2022)] for ρLS = β(1− r0)2. So, by Theorem 8(2) in [Guillin et al (2022)],

we have the log-Sobolev inequality

µ(N)(f2 log f2) ≤ 2

β(1− r0)2
µ(N)(|∇f |2),

f ∈ C1
b (RdN ), µ(N)(f2) = 1.

(5.3.20)
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By [Bobkov et al (2001)], this implies the Talagrand inequality

W2(ν(N), µ(N))2 ≤ 2

β(1− r0)2
Ent(ν(N)|µ(N)),

t ≥ 0, N ≥ 2, ν(N) ∈ P(RdN ).

(5.3.21)

On the other hand, by Itô’s formula we see that the generator of the diffu-

sion process X
(N)
t is

L(N)(x(N)) :=

d∑
i,j,k=1

{
aij(x

N,k)∂xN,ki
∂xN,kj

+ ∂jaij(x
N,k)∂xN,ki

− aij(xN,k)
[
∂xN,ki

HN (x(N))
]
∂xN,ki

}
,

for x(N) = (xN,1, . . . , xN,N ) ∈ RdN , where xN,ki is the i-th component of

xN,k ∈ Rd. Using the integration by parts formula, we see that this operator

is symmetric in L2(µ(N)), i.e. for any f, g ∈ C∞0 (RdN ),

E(N)(f, g) :=

∫
RdN
〈a(N)∇f,∇g〉dµ(N) = −

∫
RdN

(fL(N)g)dµ(N),

where

a(N)(x(N)) := diag{a(xN,1), . . . , a(xN,N )}.

So, the closure of the pre-Dirichlet form (E(N), C∞0 (RdN )) in L2(µ(N)) is

the Dirichlet form for the Markov semigroup P
(N)
t of X

(N)
t . By (A5.1) we

have a(N) ≥ λaIdN , so that (5.3.20) implies

µ(N)(f2 log f2) ≤ 2

βλa(1− r0)2
E(N)(f, f), f ∈ C1

b (RdN ), µ(N)(f2) = 1.

It is well known that this log-Sobolev inequality implies the exponential

convergence

Ent(µ
(N)
t |µ(N)) ≤ e−λaβ(1−r0)2tEnt(µ

(N)
0 |µ(N))

= e−λaβ(1−r0)2tEnt(µ⊗N |µ(N)), t ≥ 0, N ≥ 2,
(5.3.22)

see for instance Theorem 5.2.1 in [Bakry et al (2014)]. Moreover, since

HessV and HessW are bounded from below, (A5.1) implies that the Bakry-

Emery curvature of the generator of X
(N)
t is bounded by a constant. Then

according to [Wang (2010)], there exists a constant K ≥ 0 such that the

Markov semigroup P
(N)
t of X

(N)
t satisfies the log-Harnack inequality

P
(N)
t log f(x) ≤ logP

(N)
t f(y) +

Kρ(N)(x, y)2

2(1− e−2Kt)
,

0 < f ∈ Bb(RdN ), t > 0, x, y ∈ RdN ,
(5.3.23)
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where ρ(N) is the intrinsic distance induced by the Dirichlet form E(N).

Since a(N) ≥ λaIdN , we have ρ(N)(x, y)2 ≤ λ−1
a |x−y|2. So, (5.3.23) implies

(5.3.1) for P
(N)
t replacing Pt0 and c0 = K

2λa(1−e−2Kt)
:

P
(N)
t (log f)(ν) ≤ logP

(N)
t f(µ) +

KW2(µ, ν)2

2λa(1− e−2Kt)
,

0 < f ∈ Bb(RdN ), t > 0, µ, ν ∈ P2(RdN ).

Thus, by Theorem 5.3.1, (5.3.22) implies

W2(µ
(N)
t |µ(N))2 ≤ c1e−λaβ(1−r0)2t

1 ∧ t
W2(µ⊗N , µ(N))2,

t > 0, N ≥ 2

(5.3.24)

for some constant c1 > 0. Moreover, (5.3.21), (5.3.16) and Lemma 17

in [Guillin et al (2022)] yield

lim
N→∞

1

N
W2(µ̄⊗N , µ(N))2 ≤ lim sup

N→∞

2

β(1− r0)2N
Ent(µ̄⊗N |µ(N))2

=
2

β(1− r0)2
EntV,W (µ̄) = 0.

(5.3.25)

Combining this with (5.3.24) we derive

lim sup
N→∞

1

N
W2(µ

(N)
t , µ̄⊗N )2 = lim sup

N→∞

1

N
W2(µ

(N)
t , µ(N))2

≤ c1e−λaβ(1−r0)2t

1 ∧ t
lim sup
N→∞

1

N
W2(µ⊗N0 , µ(N))2

=
c1e−λaβ(1−r0)2t

1 ∧ t
lim sup
N→∞

1

N
W2(µ⊗N0 , µ̄⊗N )2

=
c1e−λaβ(1−r0)2t

1 ∧ t
W2(µ0, µ̄)2 , t > 0.

(5.3.26)

Now, let ξ = (ξi)1≤i≤N and η = (ηi)1≤i≤N be random variables on RdN

such that Lξ = µ
(N)
t ,Lη = µ̄⊗N and

N∑
i=1

E|ξi − ηi|2 = E|ξ − η|2 = W2(µ
(N)
t , µ̄⊗N )2.

We have Lξi = LXN,1t
,Lηi = µ̄ for any 1 ≤ i ≤ N , so that

NW2(LXN,1t
, µ̄)2 ≤

N∑
i=1

E|ξi − ηi|2 = W2(µ
(N)
t , µ̄⊗N )2. (5.3.27)
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Substituting this into (5.3.26), we arrive at

lim sup
N→∞

W2(LXN,1t
, µ̄)2 ≤ c1e−λaβ(1−r0)2t

1 ∧ t
W2(µ, µ̄)2 , t > 0.

This and (5.3.19) imply

W2(P ∗t µ, µ̄)2 ≤ c1e−λaβ(1−r0)2t

1 ∧ t
W2(µ, µ̄)2 , t > 0. (5.3.28)

Since (A5.1)(1)–(2) imply (A4.1), by Theorem 4.1.1 we have the log-Harnack

inequality

Pt(log f)(ν) ≤ logPtf(µ) +
c2

1 ∧ t
W2(µ, ν)2, µ, ν ∈ P2, t > 0 (5.3.29)

for some constant c2 > 0. Similarly to the proof of (5.3.27) we have

NW2(µ̄, µ(N,1))2 ≤W2(µ̄⊗N , µ(N))2,

where µ(N,1) := µ(N)(·×Rd(N−1)) is the first marginal distribution of µ(N).

This together with (5.3.25) implies

lim
N→∞

W2(µ(N,1), µ̄)2 = 0.

Therefore, applying (5.3.20) to f(x) depending only on the first component

x1, and letting N →∞, we derive the log-Sobolev inequality

µ̄(f2 log f2) ≤ 2

β(1− r0)2
µ̄(|∇f |2), f ∈ C1

b (Rd), µ̄(f2) = 1.

By [Bobkov et al (2001)], this implies (5.3.2) for C = 2
β(1−r0)2 . Combining

this with the log-Harnack inequality and (5.3.28), by Theorem 5.3.1 we

prove (5.3.15) for some constant c > 0 and µt = LXt = P ∗t µ0 for solutions

to (5.0.1) with b, σ in (5.3.17).

According to Example 3.1.3, for any probability density functions ρt
solving (5.3.9), we have ρtdx = P ∗t µ0 for µ0 = ρ0dx ∈ P2. So, we have

proved (5.3.15) for ρt solving (5.3.9) with µ0 ∈ P2. When µ0 /∈ P2, it is

easy to see that Ent(µ0, µ̄) = W2(µ, µ̄) =∞, so that (5.3.15) holds. �

5.3.2 The non-degenerate case

(A5.2)

(1) b is continuous on Rd × P2 and there exists a constant K > 0 such

that

〈b(x, µ)−b(y, ν), x− y〉++‖σ(x, µ)− σ(y, ν)‖2 ≤ K
{
|x− y|2+W2(µ, ν)2},

|b(0, µ)| ≤ c
(

1 +
√
µ(| · |2)

)
, x, y ∈ Rd, µ, ν ∈ P2.



July 27, 2024 9:20 ws-book9x6 13512-main page 235

DDSDEs: Long Time Behaviors 235

(2) σσ∗ is invertible with λ := ‖(σσ∗)−1‖∞ < ∞, and there exist con-

stants K2 > K1 ≥ 0 such that for any x, y ∈ Rd and µ, ν ∈ P2,

‖σ(x)−σ(y)‖2HS+2〈b(x, µ)−b(y, ν), x−y〉 ≤ K1W2(µ, ν)2−K2|x−y|2.

According to Theorem 3.3.1, if (A5.2)(1) holds and b(x, µ) is continuous

on Rd × P2, then for any initial value X0 ∈ L2(Ω→ Rd,F0,P), (5.0.1) has

a unique solution which satisfies

E
[

sup
t∈[0,T ]

|Xt|2
]
<∞, T ∈ (0,∞). (5.3.30)

Let P ∗t µ = LXt for the solution with LX0
= µ. We have the following result.

Theorem 5.3.3. Assume (A5.2). Then P ∗t has a unique invariant proba-

bility measure µ̄ such that

max
{
W2(P ∗t µ, µ̄)2,Ent(P ∗t µ|µ̄)

}
≤ c1
t ∧ 1

e−(K2−K1)tW2(µ, µ̄)2, t > 0, µ ∈ P2

(5.3.31)

holds for some constant c1 > 0. If moreover σ ∈ C2
b (Rd → Rd ⊗Rm), then

there exists a constant c2 > 0 such that for any µ ∈ P2, t ≥ 1,

max
{
W2(P ∗t µ, µ̄)2,Ent(P ∗t µ|µ̄)

}
≤ c2e−(K2−K1)t min

{
W2(µ, µ̄)2,Ent(µ|µ̄)

}
.

(5.3.32)

Proof. For any µ, ν ∈ P2, let Xt, Yt solve (5.0.1) for initial values satis-

fying

LX0
= µ, LY0

= ν, E[|X0 − Y0|2] = W2(µ, ν)2. (5.3.33)

Then µt := LXt = P ∗t µ and νt := LYt = P ∗t ν. By (A5.2) and Itô’s formula,

we obtain

d|Xt − Yt|2 ≤
{
K1W2(µt, νt)

2 −K2|Xt − Yt|2
}

dt+ dMt

for some martingale Mt. Combining this with W2(µt, νt)
2 ≤ E[|Xt − Yt|2],

we obtain

W2(µt, νt)
2 ≤ E[|Xt − Yt|2] ≤ e−(K2−K1)tE[|X0 − Y0|2]

= e−(K2−K1)tW2(µ, ν)2, t ≥ 0.

By Theorem 5.1.1, this and (5.3.30) imply that P ∗t has a unique invariant

probability measure µ̄ and

W2(P ∗t µ, µ̄) ≤ e−
1
2 (K2−K1)tW2(µ, µ̄), t ≥ 0, µ ∈ P2. (5.3.34)
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Next, since (A5.2) implies (A4.1), by Theorem 4.1.1, there exists a constant

c0 > 0 such that

Ent(P ∗t µ|µ̄) ≤ c0
1 ∧ t

W2(µ, µ̄)2, t > 0, µ ∈ P2. (5.3.35)

Then for any p > 1, combining these with P ∗t = P ∗1∧tP
∗
(t−1)+ , we obtain

Ent(P ∗t µ|µ̄) = Ent(P ∗1∧tP
∗
(t−1)+µ|µ̄) ≤ c0

1 ∧ t
W2(P ∗(t−1)+µ, µ̄)2

≤ c0e−(K2−K1)(t−1)+

1 ∧ t
W2(µ, µ̄)2 =

c0eK2−K1

1 ∧ t
e−(K2−K1)tW2(µ, µ̄)2.

This together with (5.3.34) implies (5.3.31) for some constant c1 > 0.

Now, let σ ∈ C2
b (Rd → Rd ⊗ Rm). To deduce (5.3.32) from (5.3.31),

it remains to find a constant c > 0 such that the following Talagrand

inequality holds:

W2(µ, µ̄)2 ≤ cEnt(µ|µ̄), µ ∈ P2.

According to [Bobkov et al (2001)], this inequality follows from the log-

Sobolev inequality

µ̄(f2 log f2) ≤ cµ̄(|∇f |2), f ∈ C1
b (Rd), µ̄(f2) = 1. (5.3.36)

To prove this inequality, we consider the diffusion process X̄t on Rd gener-

ated by

L̄ :=
1

2

d∑
i,j=1

(σσ∗)ij∂i∂j +

∞∑
i=1

bi(·, µ̄)∂i,

which can be constructed by solving the SDE

dX̄t = σ(X̄t)dWt + b(X̄t, µ̄)dt. (5.3.37)

Let P̄t be the associated Markov semigroup. Since P ∗t µ̄ = µ̄, when LX0
= µ̄,

the SDE (5.3.37) coincides with (5.0.1) so that by the uniqueness, we see

that µ̄ is an invariant probability measure of P̄t. Combining this with

(A5.2)(2) and Itô’s formula, we obtain

W2(LX̄t , µ̄)2 ≤ e−K2tW2(LX̄0
, µ̄)2, t > 0. (5.3.38)

To prove the log-Sobolev inequality (5.3.36), we first verify the hyperbound-

edness of P̄t, i.e. for large t > 0 we have

‖P̄t‖L2(µ̄)→L4(µ̄) <∞. (5.3.39)

Since (A5.2) implies that σ and b(·, µ̄) satisfy conditions (A1)-(A3) in [Wang

(2011)] for K = −(K2 − K1), λ2
t = λ and δt = ‖σ‖∞, by Theorem 1.1(3)
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in [Wang (2011)], we find a constant C > 0 such that the following Harnack

inequality holds:

(P̄tf(x))2 ≤ P̄tf2(y) exp
[ C|x− y|2

e(K2−K1)t − 1

]
, t > 0.

Then for any f with µ̄(f2) ≤ 1, we have(
P̄tf(x)

)2 ∫
Rd

exp
[
− C|x− y|2

e(K2−K1)t − 1

]
µ̄(dy)

≤ µ̄(P̄tf
2) = µ̄(f2) ≤ 1.

So,

sup
µ̄(f2)≤1

|P̄tf(x)|4 ≤ 1( ∫
Rd e
− C|x−y|2

exp[(K2−K1)t]−1 µ̄(dy)
)2

≤ 1( ∫
B(0,1)

e
− C|x−y|2

exp[(K2−K1)t]−1 µ̄(dy)
)2

≤ C1 exp
[
C1e−(K2−K1)t|x|2

]
, t ≥ 1, x ∈ Rd.

(5.3.40)

Next, by ‖σ‖∞ <∞, (A5.2)(2) and Itô’s formula, for any k ∈ (0,K2) there

exists a constant ck > 0 such that

d|X̄t|2 ≤ 2〈X̄t, σ(X̄t)dWt〉+
{
ck − k|X̄t|2

}
dt.

Then for any ε > 0,

deε|X̄t|
2

≤ 2εeε|X̄t|
2

〈X̄t, σ(X̄t)dWt〉

+ εeε|X̄t|
2{
ck + 2ε‖σ‖2∞|X̄t|2 − k|X̄t|2

}
dt.

(5.3.41)

When ε > 0 is small enough such that 2ε‖σ‖2∞ < K2, there exist constants

c1(ε), c2(ε) > 0 such that

εeε|X̄t|
2{
ck + 2ε‖σ‖2∞|X̄t|2 − k|X̄t|2

}
≤ c1(ε)− c2(ε)eε|X̄t|

2

.

Combining this with (5.3.41) we obtain

deε|X̄t|
2

≤ c1(ε)− c2(ε)eε|X̄t|
2

dt+ 2εeε|X̄t|
2

〈X̄t, σ(X̄t)dWt〉.

Taking for instance X̄0 = 0, we get

c2(ε)

t

∫ t

0

Eeε|X̄s|
2

ds ≤ 1 + c1(ε)t

t
, t > 0.

This together with (5.3.38) yields

µ̄(eε(|·|
2∧N)) = lim

t→∞

1

t

∫ t

0

Eeε(|X̄s|
2∧N)ds ≤ c1(ε)

c2(ε)
, N > 0.
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By letting N → ∞ we derive µ̄(eε|·|
2

) < ∞. Obviously, this and (5.3.40)

imply (5.4.4) for large t > 0. Moreover, since ‖(σσ∗)−1‖∞ < ∞, σ ∈
C2
b (Rd → Rd ⊗ Rm) and noting that (A5.2)(2) for µ = ν = µ̄ implies

〈v,∇vb(·, µ̄)〉 ≤ −K2|v|2, v ∈ Rd,

we find a constant K0 ∈ R such that for any f ∈ C∞(Rd),

Γ2(f) :=
1

2
L̄|σ∗∇f |2 − 〈σ∗∇f, σ∗∇L̄f〉 ≥ K0|σ∗∇f |2,

i.e. the Bakry-Emery curvature of L̄ is bounded below by a constant K0.

According to Theorem 2.1 in [Röckner and Wang (2003)], this and the

hyperboundedness (5.4.4) imply the defective log-Sobolev inequality

µ̄(f2 log f2) ≤ C1µ̄(|σ∗∇f |2) + C2

≤ C1‖σ‖2∞µ̄(|∇f |2) + C2, f ∈ C1
b (Rd), µ̄(f2) = 1

(5.3.42)

for some constants c1, c2 > 0. Since L̄ is elliptic, the invariant probability

measure µ̄ is equivalent to the Lebesgue measure, see for instance Theo-

rem 1.1(ii) in [Bogachev et al (2001b)], so that the Dirichlet form

E(f, g) := µ̄(〈∇f,∇g〉), f, g ∈W 1,2(µ)

is irreducible, i.e. f ∈ W 1,2(µ) and E(f, f) = 0 imply that f is constant.

Therefore, by Corollary 1.3 in [Wang (2014a)], the defective log-Sobolev

inequality (5.3.42) implies the desired log-Sobolev inequality (5.3.36) for

some constant c > 0. Hence, the proof is finished. �

To illustrate this result, we consider the following example which is not

included by Theorem 5.3.2 since the function W may be non-symmetric.

Example 5.2.1 (Granular media equation). Let a = Id, let V ∈
C2(Rd) and W ∈ C2(Rd × Rd) such that

HessV ≥ λId, HessW ≥ δ1Id, ‖HessW ‖ ≤ δ2 (5.3.43)

holds for some constants λ1, δ2 > 0 and δ1 ∈ R. If λ+δ1−δ2 > 0, then there

exists a unique µ̄ ∈ P2 and a constant c > 0 such that for any probability

density functions (ρt)t≥0 solving (5.3.9), µt(dx) := ρt(x)dx satisfies

max
{
W2(µt, µ̄),Ent(µt|µ̄)

}
≤ ce−(λ+δ1−δ2)t min

{
W2(µ0, µ̄),Ent(µ0|µ̄)

}
, t ≥ 1.

(5.3.44)

Proof. Let b(x, µ) := −∇{V +W ~ µ}(x). It is easy to see that (5.5.20)

implies (A5.2)(1) and

〈b(x, µ)− b(y, ν), x− y〉 ≤ −(λ1 + δ1)|x− y|2 + δ2|x− y|W1(µ, ν),
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where we have used the formula

W1(µ, ν) = sup{µ(f)− ν(f) : ‖∇f‖∞ ≤ 1}.

So, by taking α = δ2
2 and noting that W1 ≤W2, we obtain

〈b(x, µ)− b(y, ν), x− y〉 ≤ −
(
λ+ δ1 − α

)
|x− y|2 +

δ2
2

4α
W1(µ, ν)2

≤ −
(
λ+ δ1 −

δ2
2

)
|x− y|2 +

δ2
2
W2(µ, ν)2, x, y ∈ Rd, µ, ν ∈ P2.

Therefore, if (5.5.20) holds for λ+ δ1 − δ2 > 0, Theorem 5.3.3 implies that

P ∗t has a unique invariant probability measure µ̄ ∈ P2, such that (5.3.44)

holds for µ0 ∈ P2. When µ0 /∈ P2, we have W2(µ0, µ̄)2 = ∞ since µ̄ ∈ P2.

Combining this with the Talagrand inequality

W2(µ0, µ̄)2 ≤ CEnt(µ0|µ̄)

for some constant C > 0, see the proof of Theorem 5.3.3, we have

Ent(µ0|µ̄) =∞ for µ0 /∈ P2, so that (5.3.44) holds for all µ0 ∈ P. �

5.3.3 The degenerate case

When Rk with some k ∈ N is considered, to emphasize the space, we use

P(Rk) (P2(Rk)) to denote the class of probability measures (with finite

second moment) on Rk. Consider the following McKean-Vlasov stochastic

Hamiltonian system for (Xt, Yt) ∈ Rd1+d2 := Rd1 × Rd2 :

dXt = BYtdt,

dYt =
√

2dWt − Ytdt

−
{
B∗∇V (·,L(Xt,Yt))(Xt) + βB∗(BB∗)−1Xt

}
dt,

(5.3.45)

where β > 0 is a constant, B is a d1×d2-matrix such that BB∗ is invertible,

and

V : Rd1 × P2(Rd1+d2)→ Rd2

is measurable. Let

ψB((x, y), (x̄, ȳ)) :=
√
|x− x̄|2 + |B(y − ȳ)|2, (x, y), (x̄, ȳ) ∈ Rd1+d2 ,

WψB
2 (µ, ν) := inf

π∈C(µ,ν)

{∫
Rd1+d2×Rd1+d2

ψB
2dπ

} 1
2

, µ, ν ∈ P2(Rd1+d2).

We assume



July 27, 2024 9:20 ws-book9x6 13512-main page 240

240 Distribution Dependent Stochastic Differential Equations

(A5.3) V (x, µ) is differentiable in x such that ∇V (·, µ)(x) is Lipschitz con-

tinuous in (x, µ) ∈ Rd1×P2(Rd1+d2). Moreover, there exist constants

θ1, θ2 ∈ R with

θ1 + θ2 < β, (5.3.46)

such that for any (x, y), (x′, y′) ∈ Rd1+d2 and µ, µ′ ∈ P2(Rd1+d2),〈
BB∗{∇V (·, µ)(x)−∇V (·, µ′)(x′)}, x− x′ + (1 + β)B(y − y′)

〉
≥ −θ1ψB((x, y), (x′, y′))2 − θ2WψB

2 (µ, µ′)2.

(5.3.47)

Obviously, (A5.3) implies (A3.1)(1) with k = 2 for d = m = d1 + d2,

σ = diag{0,
√

2Id2
}, and

b((x, y), µ) =
(
By,−B∗∇V (·, µ)(x)− βB∗(BB∗)−1x− y

)
.

So, by Theorem 3.3.1, (5.3.45) is well-posed for distributions in P2(Rd1+d2)

and

sup
t∈[0,T ]

(P ∗t µ)(| · |2) <∞, µ ∈ P2(Rd1+d2), T ∈ (0,∞). (5.3.48)

Let P ∗t µ = L(Xt,Yt) for the solution with initial distribution µ ∈ P2(Rd1+d2).

In this case, (5.3.45) becomes{
dXt = BYtdt,

dYt =
√

2dWt + Zt(Xt, Yt)dt,

where Zt(x, y) := −B∗{∇V (·, P ∗t µ)}(x) +βB∗(BB∗)−1x+ y. According to

Theorems 2.4 and 3.1 in [Wang (2014b)], when HessV (·, P ∗t µ) is bounded,

ρt(z) :=
(P ∗t µ)(dz)

dz
=

d(L(Xt,Yt))(dz)

dz
exists and is differentiable in z ∈ Rd1+d2 . Moreover, since (A5.3) implies

that the class

{∂yj , [∂yj , (By)i∂xi ] : 1 ≤ i ≤ d1, 1 ≤ j ≤ d2}
spans the tangent space at any point (i.e. the Hörmander condition of rank

1 holds), according to the Hörmander theorem, ρt ∈ C∞(Rd1+d2) for t > 0

provided Zt ∈ C∞(Rd1+d2) for t ≥ 0.

Theorem 5.3.4. Assume (A5.3). Then P ∗t has a unique invariant proba-

bility measure µ̄ such that for any t > 0 and µ ∈ P2(Rd1+d2),

max
{
W2(P ∗t µ, µ̄)2,Ent(P ∗t µ|µ̄)

}
≤ ce−2κt

(1 ∧ t)3
min

{
Ent(µ|µ̄),W2(µ, µ̄)2

} (5.3.49)

holds for some constant c > 0 and

κ :=
2(β − θ1 − θ2)

2 + 2β + β2 +
√
β4 + 4

> 0. (5.3.50)



July 27, 2024 9:20 ws-book9x6 13512-main page 241

DDSDEs: Long Time Behaviors 241

Proof. (a) We first prove the exponential convergence of P ∗t in W2: there

exists a constant c1 > 0 such that

W2(P ∗t µ, P
∗
t ν)2 ≤ c1e−κtW2(µ, ν)2, t ≥ 0, µ, ν ∈ P2(Rd1+d2). (5.3.51)

By Theorem 5.1.1, this and (5.3.48) imply that P ∗t has a unique invariant

probability measure µ̄ ∈ P2(Rd1+d2).

Let

a :=
(1 + β + β2

1 + β

) 1
2

, r :=
1√

(1 + β)(1 + β + β2)
∈ (0, 1), (5.3.52)

and consider the distance

ψ̄B((x, y), (x̄, ȳ))

:=
√
a2|x− x̄|2 + |B(y − ȳ)|2 + 2ra〈x− x̄, B(y − ȳ)〉

(5.3.53)

for (x, y), (x̄, ȳ) ∈ Rd1+d2 . Then there exists a constant C > 1 such that

C−1|(x− x̄, y − ȳ)| ≤ ψ̄B((x, y), (x̄, ȳ)) ≤ C|(x− x̄, y − ȳ)|. (5.3.54)

Moreover, we claim that

ψ̄B((x, y), (x̄, ȳ))2 ≤ 2 + 2β + β2 +
√
β4 + 4

2(1 + β)
ψB((x, y), (x̄, ȳ))2. (5.3.55)

Indeed, by (5.3.52) and (5.3.53), for any ε > 0 we have

ψ̄B((x, y), (x̄, ȳ))2

≤ a2(1 + ε)|x− x̄|2 +
(

1 +
1

ε(1 + β)(1 + β + β2)

)
|B(y − ȳ)|2.

(5.3.56)

Obviously, by (5.3.52),

ε :=
1− a2 +

√
(a2 − 1)2 + 4a2(1 + β)−1(1 + β + β2)−1

2a2
=

√
β4 + 4− β2

2(1 + β + β2)

satisfies

a2(1 + ε) = 1 +
1

ε(1 + β)(1 + β + β2)
=

2 + 2β + β2 +
√
β4 + 4

2(1 + β)
.

Thus, (5.3.55) follows from (5.3.56).

Now, let (Xt, Yt) and (X̄t, Ȳt) solve (5.3.45) with L(X0,Y0) = µ,

L(X̄0,Ȳ0) = ν such that

W2(µ, ν)2 = E|(X0 − X̄0, Y0 − Ȳ0)|2. (5.3.57)

Simply denote µt = L(Xt,Yt), µ̄t = L(X̄t,Ȳt). By (A5.3) and Itô’s formula,

and noting that (5.3.52) implies

a2 − β − ra = 0, 1− ra = raβ =
β

1 + β
,
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we obtain

1

2

d

dt

{
ψ̄B((Xt, Yt), (X̄t, Ȳt))

2
}

=
〈
a2(Xt − X̄t) + raB(Yt − Ȳt), B(Yt − Ȳt)

〉
+
〈
B∗B(Yt − Ȳt) + raB∗(Xt − X̄t), βB

∗(BB∗)−1(X̄t −Xt) + Ȳt − Yt
〉

+
〈
B∗B(Yt − Ȳt) + raB∗(Xt − X̄t), B

∗{∇V (X̄t, µ̄t)−∇V (Xt, µt)}
〉

≤ −(1− ra)|B(Yt − Ȳt)|2

+ (a2 − β − ra)〈Xt − X̄t, B(Yt − Ȳt)〉 − raβ|Xt − X̄t|2

+
〈
B∗B(Yt − Ȳt) +

B∗(Xt − X̄t)

1 + β
, B∗{∇V (X̄t, µ̄t)−∇V (Xt, µt)}

〉
≤ θ2

1 + β
WψB

2 (µt, µ̄t)
2 − β − θ1

1 + β
ψB((Xt, Yt), (X̄t, Ȳt))

2.

By (5.3.55) and the fact that

WψB
2 (µt, µ̄t)

2 ≤ E[ψB((Xt, Yt), (X̄t, Ȳt))
2],

for κ > 0 in (5.3.50), we obtain

1

2

{
E[ψ̄B((Xt, Yt), (X̄t, Ȳt))

2]− E[ψ̄B((Xs, Ys), (X̄s, Ȳs))
2]
}

≤ −β − θ1 − θ2

1 + β

∫ t

s

E[ψB((Xr, Yr), (X̄r, Ȳr))
2]dr

≤ −κ
∫ t

s

E[ψ̄B((Xr, Yr), (X̄r, Ȳr))
2]dr, t ≥ s ≥ 0.

Therefore, Gronwall’s inequality implies

E[ψ̄B((Xt, Yt), (X̄t, Ȳt))
2] ≤ e−2κtE[ψ̄B((X0, Y0), (X̄0, Ȳ0))2], t ≥ 0.

Combining this with (5.3.54) and (5.3.57), we derive (5.3.51) for some con-

stant c > 0.

(b) By Theorem 5.3.1, (a) and the log-Harnack inequality in Theo-

rem 4.1.2, we only need to verify the Talagrand inequality. As shown in

the beginning of Section 3 in [Grothause and Wang (2019)] that µ̄ has the

representation

µ̄(dx, dy) = Z−1eV̄ (x,y)dxdy, V̄ (x, y) := V (x, µ̄) +
β

2
|(BB∗)− 1

2x|2 +
1

2
|y|2,

where Z :=
∫
Rd1+d2

e−V̄ (x,y)dxdy is the normalization constant. Since

(5.3.47) implies

BB∗HessV (·,µ̄) ≥ −θ1Id1
,
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we deduce from (5.3.46) that

HessV̄ ≥ γId1+d2
, γ := 1 ∧ β − θ1

‖B‖2
> 0.

So, by the Bakry-Emery criterion [Bakry and Emery (1984)], we have the

log-Sobolev inequality

µ̄(f2 log f2) ≤ 2

γ
µ̄(|∇f |2), f ∈ C1

b (Rd1+d2), µ̄(f2) = 1.

According to [Bobkov et al (2001)], this implies the Talagrand inequality

W2(µ, µ̄)2 ≤ 2

γ
Ent(µ|µ̄).

Then the proof is finished. �

Example 5.2.2 (Degenerate granular media equation). Let m ∈ N
and W ∈ C∞(Rm × R2m). Consider the following PDE for probability

density functions (ρt)t≥0 on R2m:

∂tρt(x, y) = ∆yρt(x, y)− 〈∇xρt(x, y), y〉
+ 〈∇yρt(x, y),∇x(W ~ ρt)(x) + βx+ y〉,

(5.3.58)

where β > 0 is a constant, ∆y,∇x,∇y stand for the Laplacian in y and the

gradient operators in x, y respectively, and W ~ ρt is in (5.3.10). If there

exists a constant θ ∈
(
0, 2β

1+3
√

2+2β+β2

)
such that

|∇W (·, z)(x)−∇W (·, z̄)(x̄)|
≤ θ
(
|x− x̄|+ |z − z̄|

)
, x, x̄ ∈ Rm, z, z̄ ∈ R2m,

(5.3.59)

then there exists a unique probability measure µ̄ ∈ P2(R2m) and a con-

stant c > 0 such that for any probability density functions (ρt)t≥0 solving

(5.3.58), µt(dx) := ρt(x)dx satisfies

max
{
W2(µt, µ̄)2,Ent(µt|µ̄)

}
≤ ce−κt min

{
W2(µ0, µ̄)2,Ent(µ0|µ̄)

}
, t ≥ 1,

(5.3.60)

which holds for κ =
2β−θ

(
1+3
√

2+2β+β2
)

2+2β+β2+
√
β4+4

> 0.

Proof. Let d1 = d2 = m and (Xt, Yt) solve (5.3.45) for

B := Im, V (x, µ) :=

∫
R2m

W (x, z)µ(dz). (5.3.61)

We first observe that ρt solves (5.3.58) if and only if ρt(z) =
d(P∗t µ)(dz)

dz for

µ(dz) = ρ0(z)dz, where P ∗t µ := L(Xt,Yt).



July 27, 2024 9:20 ws-book9x6 13512-main page 244

244 Distribution Dependent Stochastic Differential Equations

Firstly, let ρt(z) =
L(Xt,Yt)

(dz)

dz which exists and is smooth as explained

before Theorem 5.6.3. By Itô’s formula and the integration by parts for-

mula, for any f ∈ C2
0 (R2m) we have

d

dt

∫
R2m

(ρtf)(z)dz =
d

dt
E[f(Xt, Yt)]

=

∫
R2m

ρt(x, y)
{

∆yf(x, y) +
〈
∇xf(x, y), y

〉
−
〈
∇yf(x, y),∇xV (x, ρt(z)dz) + βx+ y

〉}
dxdy

=

∫
R2m

f(x, y)
{

∆yρt(x, y)−
〈
∇xρt(x, y), y

〉
+
〈
∇yρt(x, y),∇xµt(W (x, ·)) + βx+ y

〉}
dxdy.

Then ρt solves (5.3.58).

On the other hand, let ρt solve (5.3.58) with µ0(dz) := ρ0(z)dz ∈
P2(R2m). By the integration by parts formula, µt(dz) := ρt(z)dz solves

the nonlinear Fokker-Planck equation

∂tµt = L∗µtµt

in the sense that for any f ∈ C∞0 (Rd1+d2) we have

µt(f) = µ0(f) +

∫ t

0

µs(Lµsf)ds, t ≥ 0,

where Lµ := ∆y+y ·∇x−{∇xµ(W (x, ·))+βx−y}·∇y. By the superposition

principle, see Section 2 in [Barbu and Röckner (2020)], we have µt = P ∗t µ.

Now, as explained in the proof of Example 5.2.1, by Theorem 5.6.3 we

only need to verify (A5.3) for B, V in (5.3.61) and

θ1 = θ
(1

2
+
√

2 + 2β + β2
)
, θ2 =

θ

2

√
2 + 2β + β2, (5.3.62)

so that the desired assertion holds for

κ :=
2(β − θ1 − θ2)

2 + 2β + β2 +
√
β4 + 4

=
2β − θ(1 + 3

√
2 + 2β + β2)

2 + 2β + β2 +
√
β4 + 4

.

By (5.3.59) and V (x, µ) := µ(W (x, ·)), for any constants α1, α2, α3 > 0 we
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have

I :=
〈
∇V (·, µ)(x)−∇V (·, µ̄)(x̄), x− x̄+ (1 + β)(y − ȳ)

〉
=

∫
R2m

〈
∇W (·, z)(x)−∇W (·, z)(x̄), x− x̄+ (1 + β)(y − ȳ)

〉
µ(dz)

+
〈
µ(∇x̄W (x̄, ·))− µ̄(∇x̄W (x̄, ·)), x− x̄+ (1 + β)(y − ȳ)

〉
≥ −θ

{
|x− x̄|+ W1(µ, µ̄)

}
·
(
|x− x̄|+ (1 + β)|y − ȳ|

)
≥ −θ(α2 + α3)W2(µ, µ̄)2

− θ
{(

1 + α1 +
1

4α2

)
|x− x̄|2 + (1 + β)2

( 1

4α1
+

1

4α3

)
|y − ȳ|2

}
.

Take

α1 =

√
2 + 2β + β2 − 1

2
, α2 =

1

2
√

2 + 2β + β2
, α3 =

(1 + β)2

2
√

2 + 2β + β2
.

We have

1 + α1 +
1

4α2
=

1

2
+
√

2 + 2β + β2,

(1 + β)2
( 1

4α1
+

1

4α3

)
=

1

2
+
√

2 + 2β + β2,

α2 + α3 =
1

2

√
2 + 2β + β2.

Therefore,

I ≥ −θ
2

√
2 + 2β + β2W2(µ, µ̄)2 − θ

(1

2
+
√

2 + 2β + β2
)
|(x, y)− (x̄, ȳ)|2,

i.e. (A5.3) holds for B and V in (5.3.61) where B = Im implies that ψB is

the Euclidean distance on R2m, and for θ1, θ2 in (5.3.62). �

5.4 Exponential ergodicity: non-dissipative case

For any t ≥ 0 and µ ∈ P, consider the second-order differential operator

Lt,µ :=
1

2
tr{σtσ∗t∇2}+ bt(·, µ) · ∇. (5.4.1)

For any positive measurable function V on Rd, let

PV := {µ ∈ P : µ(V ) <∞}.

We assume the following Lyapunov condition.
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(A5.4) (Lyapunov) There exists a function 0 ≤ V ∈ C2(V ) with

lim|x|→∞ V (x) =∞ and

sup
t≥0, x∈Rd

|σt(x)∇V (x)|
1 + V (x)

<∞, (5.4.2)

such that for some K0,K1 ∈ L1
loc([0,∞);R),

Lt,µV ≤ K0(t)−K1(t)V, t ≥ 0, µ ∈ PV . (5.4.3)

For any l > 0, consider the class

Ψl :=
{
ψ ∈ C2([0, l]; [0,∞)) : ψ(0) = ψ′(l) = 0, ψ′|[0,l) > 0

}
.

For each ψ ∈ Ψl, we extend it to the half line by setting ψ(r) = ψ(r ∧ l),
so that ψ′ is nonnegative and Lipschitz continuous with compact support.

Then

cψ := sup
r>0

rψ′(r)

ψ(r)
<∞. (5.4.4)

When ψ′′ ≤ 0, we have ‖ψ′‖∞ := sup |ψ′| = ψ′(0) and cψ = limr↓0
rψ′(r)
ψ(r) =

1.

For any constant β > 0, the weighted Wasserstein distance is given by

Wψ,βV (µ, ν) := inf
π∈C(µ,ν)

∫
Rd×Rd

ψ(|x− y|)
(
1 + βV (x) + βV (y)

)
π(dx, dy)

for µ, ν ∈ PV . In general, Wψ,βV is only a quasi-distance on PV as the

triangle inequality may not hold. But it is complete in the sense that

any Wψ,βV -Cauchy sequence in PV is convergent. For any µ, ν ∈ PV , we

introduce

Ŵψ,βV (µ, ν) := inf
π∈C(µ,ν)

∫
Rd×Rd ψ(|x− y|)(1 + βV (x) + βV (y))π(dx,dy)∫
Rd×Rd ψ

′(|x− y|)(1 + βV (x) + βV (y))π(dx, dy)
,

(5.4.5)

which will come naturally from Itô’s formula for the process

ψ(|Xt − Yt|)(1 + βV (Xt) + βV (Yt))

for a coupling (Xt, Yt) of the SDE. We observe that

sup
π∈C(µ,ν)

∫
Rd×Rd

ψ′(|x−y|)(1+βV (x)+βV (y))π(dx, dy) ≤ 1+βµ(V )+βν(V ),

so that Ŵψ,βV ≥ Wψ,βV (µ,ν)
1+βµ(V )+βν(V ) .

Moreover, let ‖∇f‖∞ be the Lipschitz constant of a real function f on

Rd. We need the following non-degenerate and monotone conditions.
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(A5.5) (Non-degeneracy) There exist α ∈ L1
loc([0,∞); (0,∞)) and mea-

surable

σ̂ : [0,∞)× Rd → Rd ⊗ Rd

with
∫ T

0
‖∇σ̂t‖∞dt <∞ for T ∈ (0,∞), such that

at(x) := (σtσ
∗
t )(x) = αtId + (σ̂tσ̂

∗
t )(x), t ≥ 0, x ∈ Rd. (5.4.6)

(A5.6) (Monotonicity) b is bounded on bounded set in [0,∞)×Rd ×PV .

Moreover, there exist l > 0, K, θ, ql ∈ L1
loc([0,∞); [0,∞)) and ψ ∈

Ψl, such that

2αtψ
′′(r) +Ktψ

′(r) ≤ −ql(t)ψ(r), r ∈ [0, l], t ≥ 0, (5.4.7)

〈bt(x, µ)− bt(y, ν), x− y〉+
1

2
‖σ̂t(x)− σ̂t(y)‖2HS

≤ Kt|x− y|2 + θt|x− y|Ŵψ,βV (µ, ν), x, y ∈ Rd, µ, ν ∈ PV , t ≥ 0.

(5.4.8)

Remark 5.3.1. (1) Since V ≥ 0 with V (x)→∞ as |x| → ∞, we have

κl,β(t) := inf
|x−y|>l

K1(t)V (x) +K1(t)V (y)− 2K0(t)

β−1 + V (x) + V (y)
∈ R, l > 0, (5.4.9)

and κl,β(t) > 0 for large enough l > 0 and K1(t) > 0.

(2) Consider the one-dimensional differential operator L = 2λ d2

dr2 +K d
dr

on [0, l]. In (5.4.7) one may take ψ to be the first eigenfunction of L with

Dirichlet boundary at 0 and Neumann boundary at l. In this case, ql > 0

is the first mixed eigenvalue.

(3) (5.4.2) and (A5.5) imply that

αl,β(t) := cψ sup
|x−y|∈(0,l)

{
αt

|∇V (x)−∇V (y)|
|x− y|{β−1 + V (x) + V (y)}

+
|{σ̂t(x)− σ̂t(y)}[(σ̂t(·)∗∇V )(x) + (σ̂t(·)∗∇V )(y)]|

|x− y|{β−1 + V (x) + V (y)}

}
<∞

(5.4.10)

for any β, l > 0. In many cases, we have αl,β ↓ 0 as β ↓ 0. For instance,

it is the case when V (x) = e|x|
p

for p ∈ (0, 1) and large |x|, and σ̂ is

Lipschitz continuous with ‖σ̂(x)‖ ≤ c(1 + |x|q) for some constants c > 0

and q ∈ (0, 1− p), or V (x) = |x|k for some k > 0 and large |x|.
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For K0, ql, κl,β and αl,β given in (A5.4), (A5.6), (5.4.9) and (5.4.10)

respectively, let

λl,β(t) := min
{
κl,β(t), ql(t)− 2K0(t)β − αl,β(t)

}
. (5.4.11)

Since αl,β(t) → 0 as β → 0, and since κl,β(t) > 0 for K1(t) > 0 and large

l > 0, when K1(t) > 0 we may take large l > 0 and small β > 0 such that

λl,β(t) > 0. The main result in this part is the following.

Theorem 5.4.1. Assume (A5.4)–(A5.6), with ψ′′ ≤ 0 when σ̂t(·) is non-

constant for some t ≥ 0. Then the SDE (5.0.1) is well-posed in PV , and

P ∗t := P ∗0,t satisfies

Wψ,βV (P ∗t µ, P
∗
t ν) ≤ e−

∫ t
0
{λl,β(s)−θs}dsWψ,βV (µ, ν),

t ≥ 0, µ, ν ∈ PV .
(5.4.12)

Consequently, if (a, b) does not depend on t and λl,β > θ, then P ∗t has a

unique invariant probability measure µ̄ ∈ PV such that

Wψ,βV (P ∗t µ, µ̄) ≤ e−(λl,β−θ)tWψ,βV (µ, µ̄), t ≥ 0, µ ∈ PV . (5.4.13)

Example 5.3.1. Let a = Id + σ̂σ̂∗ for some Lipschitz continuous matrix

valued function σ̂, V (x) = e(1+|x|2)p/2

for some p ∈ (0, 1], and

b(x, µ) := b0(x) + εΦ(x, logµ(V ))

for some ε ∈ [0, 1), b0 ∈ C1(Rd) with b0(x) = −|x|−px for |x| ≥ 1, and

Φ ∈ C1
b (Rd × [0,∞);Rd). Let

W̃V (µ, ν) := inf
π∈C(µ,ν)

∫
Rd×Rd

{1 ∧ |x− y|} · {1 + V (x) + V (y)}π(dx,dy).

Then when ε > 0 is small enough, P ∗t has a unique invariant probability

measure µ̄ ∈ PV , and there exist constants c, q > 0 such that

W̃V (P ∗t µ, µ̄) ≤ ce−qtW̃V (µ, µ̄), t ≥ 0, µ ∈ PV .

Proof. It is easy to see that (A5.4) holds for some constants K0,K1 > 0,

(A5.5) holds for α = 1. Since V (x) → ∞ as |x| → ∞, we take l > 0 such

that

inf
|x−y|≥l

{
K1V (x) +K1V (y)− 2K0

}
≥ 1.

So, in (5.4.9) the constant κl,β > 0 for all β > 0. Next, take ψ ∈ Ψl

such that (5.4.7) holds for some ql > 0, for instance ψ is the first mixed
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eigenfunction of 2 d2

dr2 + K d
dr on [0, l] with Dirichlet condition at 0 and

Neumann condition at l. Then there exists a constant c0 > 0 such that

|V (x)− V (y)| ≤ c0ψ(|x− y|)(V (x) + V (y)), x, y ∈ Rd. (5.4.14)

Next, since for any π ∈ C(µ, ν) we have∫
Rd×Rd

ψ′(|x− y|)(1 + βV (x) + βV (y))π(dx, dy)

≤ ‖ψ′‖∞
∫
{|x−y|≤l}

{
1 + (1 + e)β[V (x) ∧ V (y)]

}
π(dx,dy)

≤ (2 + e)[µ(V ) ∧ ν(V )], β ∈ (0, 1],

(5.4.5) implies

Ŵψ,βV (µ, ν) ≥ Wψ,βV (µ, ν)

(2 + e)[µ(V ) ∧ ν(V )]
, β ∈ (0, 1].

Combining this with Φ ∈ C1
b and noting that (5.4.14) implies

|µ(V )−ν(V )| ≤ inf
π∈C(µ,ν)

∫
Rd×Rd

|V (x)−V (y)|π(dx,dy) ≤ c0β−1Wψ,βV (µ, ν)

for some constant c0 > 0, we find a constant c1 > 0 such that

|b(x, µ)− b(x, ν)| ≤ ε‖∇Φ(x, ·)‖∞| logµ(V )− log ν(V )|

≤ ε‖∇Φ(x, ·)‖∞|µ(V )− ν(V )|
µ(V ) ∧ ν(V )

≤ c1εβ−1Ŵψ,βV (µ, ν), β ∈ (0, 1].

Noting that ‖∇b0‖∞+‖∇Φ‖∞+‖∇σ̂‖∞ <∞, this implies (A5.6) holds for

some constant K > 0 and θ = c1εβ
−1, β ∈ (0, 1].

Finally, as observed in Remark 5.3.1(3) that for the present V we have

αl,β ↓ 0 as β ↓ 0. Then in (5.4.11), λl,β > 0 for small β ∈ (0, 1]. Therefore,

by Theorem 5.4.1, when ε > 0 is small enough, P ∗t has a unique invariant

probability measure µ̄ ∈ PV , such that

Wψ,βV (P ∗t µ, µ̄) ≤ e−qtWψ,βV (µ, µ̄), t ≥ 0

holds for some constant q > 0. This completes the proof since

C−1W̃V ≤Wψ,βV ≤ CW̃V

holds for some constant C > 1. �
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5.4.1 Proof of Theorem 5.4.1

Since ψ(r) := ψ(r ∧ l) for ψ ∈ Ψl is not second order differentiable at l,

we introduce the following lemma ensuring Itô’s formula for ψ of a semi-

martingale which will be used frequently in the sequence.

Lemma 5.4.2. Let ξt be a nonnegative continuous semi-martingale satis-

fying

dξt ≤ Atdt+ dMt

for a local martingale Mt and an integrable adapted process At. Then for

any ψ ∈ C1([0,∞)) with ψ′ nonnegative and Lipschitz continuous, we have

dψ(ξt) ≤ ψ′(ξt)Atdt+
1

2
ψ′′(ξt)d〈M〉t + ψ′(ξt)dMt,

where

ψ′′(r) := lim sup
s↓r

lim sup
ε↓0

ψ′(s+ ε)− ψ′(s)
ε

, r ≥ 0

is a bounded measurable function on [0,∞).

Proof. By choosing stopping times τ such that ξt∧τ ,
∫ ∧τ

0
tAsds and Mt∧τ

are bounded, we may and do assume that these processes with t replacing

t ∧ τ are bounded.

For any n ≥ 1, let

ψn(r) = n

∫ ∞
0

ψ(r + s)e−nsds, r ≥ 0.

Then each ψn is C∞-smooth, with ψ′n ≥ 0, (ψn, ψ
′
n) → (ψ,ψ′) locally

uniformly, {‖ψ′′n‖∞}n≥1 uniformly bounded, and by Fatou’s lemma,

lim sup
n→∞

ψ′′n(r) ≤ lim sup
n→∞

∫ ∞
0

lim sup
ε↓0

ψ′(r + s+ ε)− ψ′(r + s)

ε
ne−nsds

≤ lim sup
s↓0

lim sup
ε↓0

ψ′(r + s+ ε)− ψ′(r + s)

ε
= ψ′′(r), r ≥ 0.

Therefore, by applying Itô’s formula to ψn(ξt) and letting n→∞, we finish

the proof. �
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A. The well-posedness. For any T > 0 and a subspace P̂ ⊂ P, let

Cw([0, T ]; P̂) be the class of all continuous maps from [0, T ] to P̂ under the

weak topology.

Lemma 5.4.3. Let Lt,µ be in (5.4.1). Assume that for some K ∈ L1
loc([0,

∞); (0,∞)),

Lt,µV (x) ≤ Kt(1 + µ(V ) + V (x)), t ≥ 0, x ∈ Rd, µ ∈ PV , (5.4.15)

‖σt∇V (x)‖ ≤ Kt(1 + V (x)), t ≥ 0, x ∈ Rd, (5.4.16)

2〈bt(x, µ)− bt(y, ν), x− y〉+ + ‖σt(x)− σt(y)‖2HS
≤ Kt|x− y|

{
|x− y|+ Wψ,V (µ, ν)

}
,

t ≥ 0, x, y ∈ Rd, µ, ν ∈ PV .
(5.4.17)

Then (5.0.1) is well-posed for distributions in PV with

E[V (Xt)] ≤ e2
∫ T
0
KsdsE

[
V (X0)

∫ T

0

Kse
2
∫ T
s
Krdrds

]
. (5.4.18)

Proof. It is easy to see that (5.4.18) follows from (5.4.15) and Itô’s for-

mula. To prove the well-posedness for distributions in PV , we adopt a fixed

point theorem in distributions. For any T > 0, γ := LX0
∈ PV , and

µ ∈ PγT,V :=
{
µ ∈ Cw([0, T ];PV ) : µ0 = γ

}
,

consider the following SDE

dXµ
t = bt(X

µ
t , µt) + σt(X

µ
t )dWt, Xµ

0 = X0, t ∈ [0, T ]. (5.4.19)

It is well known that the monotone condition (5.4.8) in (A5.6) implies the

well-posedness of this SDE up to life time, while the Lyapunov condition

(5.4.15) implies

sup
t∈[0,T ]

E[V (Xµ
t )] <∞.

Then by the continuity of Xµ
t in t we conclude that

Φγ· µ := LXµ· ∈ Cw([0, T ];PV ).

It remains to prove that Φγ has a unique fixed point µ̄ ∈ PV,T , so that

X µ̄
t is the unique solution of (5.0.1) up to time T , and by the modified

Yamada-Watanabe principle Theorem 3.2.3, this also implies the weak well-

posedness of (5.0.1) up to time T .
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To prove the existence and uniqueness of the fixed point of H, for any

N ≥ 1 let

Pγ,NV,T :=
{
µ ∈ Cw([0, T ];PV ) : µ0 = γ, sup

t∈[0,T ]

e−Ntµt(V ) ≤ N(1 + γ(V ))
}
.

Then as N ↑ ∞, we have Pγ,NV,T ↑ P
γ
V,T as N ↑ ∞. So, it suffices to find

N0 ≥ 1 such that for any N ≥ N0, ΦγPγ,NT,V ⊂ P
γ,N
T,V and Φγ has a unique

fixed point in Pγ,NT,V . We prove this in the following two steps.

(a) Construction of N0. Let

c := e
∫ T
0
Ksds, N0 := 3c.

By Itô’s formula and (5.4.15), for any N ≥ N0 and µ ∈ Pγ,NT,V , we have

e−NtE[V (Xµ
t )] ≤ γ(V )e

∫ t
0
Ksds−Nt

+

∫ t

0

Ks

{
1 +N(1 + γ(V ))

}
e
∫ t
s
Krdr−N(t−s)ds

≤ cγ(V ) + 2cN(1 + γ(V )) sup
t∈[0,T ]

∫ t

0

e−N(t−s)ds

≤ cγ(V ) + 2c(1 + γ(V )) ≤ N(1 + γ(V )).

So, ΦγPγ,NT,V ⊂ P
γ,N
T,V for N ≥ N0.

(b) Let N ≥ N0. It remains to prove that H is contractive in Pγ,NT,V
under

Wψ,V,λ(µ, ν) := sup
t∈[0,T ]

e−λtWψ,V (µt, νt), µ, ν ∈ Pγ,NT,V

for large λ > 0.

For µ, ν ∈ Pγ,NT,V , by (5.4.17) and the Itô-Tanaka formula, we find C0 ∈
L1
loc([0,∞); (0,∞)) such that

d|Xµ
t −Xν

t | ≤C0(t)(Wψ,βV (µt, νt) + |Xµ
t −Xν

t |)dt

+
〈 Xµ

t −Xν
t

|Xµ
t −Xν

t |
,
{
σt(X

µ
t )− σt(Xν

t )
}

dWt

〉
.

Since ψ ∈ Ψl, by extending to the half-line with ψ(r) := ψ(r∧l), we see that

ψ′ is nonnegative and Lipschitz continuous. By Lemma 5.4.2, µ, ν ∈ Pγ,NV,T ,

and noting that ψ′′ ≤ 0 when σt is non-constant for some t ≥ 0, we find

C1 ∈ L1([0, T ]; (0,∞)) such that

dψ(|Xµ
t −Xν

t |) ≤ C1(t)
{
ψ(|Xµ

t −Xν
t |) + Wψ,βV (µt, νt)

}
dt

+ ψ′(|Xµ
t −Xν

t |)
〈 Xµ

t −Xν
t

|Xµ
t −Xν

t |
,
{
σt(X

µ
t )− σt(Xν

t )
}

dWt

〉 (5.4.20)

holds for t ∈ [0, T ].
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On the other hand, by (5.4.15) and µ, ν ∈ Pγ,NV,T , we find a constant

K(N) > 1 such that

d
{
V (Xµ

t ) + V (Xν
t )
}
≤ Kt

{
1 + µt(V ) + νt(V ) + V (Xµ

t ) + V (Xν
t )
}

dt

+
〈
σt(X

µ
t )∇V (Xµ

t ) + σt(X
ν
t )∇V (Xν

t ),dWt

〉
≤K(N)Kt

{
1 + V (Xµ

t ) + V (Xν
t )
}

dt

+
〈
σt(X

µ
t )∇V (Xµ

t ) + σt(X
ν
t )∇V (Xν

t ),dWt

〉
.

Combining this with (5.4.4), (5.4.16), and (5.4.20), we find C2 ∈ L1([0, T ];

(0,∞)) such that

ξt := ψ(|Xµ
t −Xν

t |)
(
1 + V (Xµ

t ) + V (Xν
t )
)

satisfies

dξt ≤ C2(t)
[
ξt + (1 + V (Xµ

t ) + V (Xν
t ))Wψ,V (µt, νt)

]
dt+ dMt

for some local martingale Mt, t ∈ [0, T ]. Since Φγµ,Φγν ∈ Pγ,NV,T , we have

EV (Xµ
t ) + EV (Xν

t ) ≤ N(1 + γ(V ))eNT =: D(N) <∞, t ∈ [0, T ],

which together with ξ0 = 0 yields that for any t ∈ [0, T ], λ > 0,

e−λtEξt ≤
(
1 +D(N)

)
Wψ,V,λ(µ, ν)

∫ t

0

C2(s)e
∫ t
s

(C2(r)−λ)drds.

Noting that limλ→∞ supt∈[0,T ]

∫ t
0
C2(s)e

∫ t
s

(C2(r)−λ)drds = 0, we conclude

that when λ > 0 is large enough,

e−λtWψ,V

(
Φγt µ,Φ

γ
t ν
)
≤ e−λtEξt ≤

1

2
Wψ,V,λ(µ, ν), t ∈ [0, T ].

Therefore, Φγ : Pγ,NV,T → P
γ,N
V,T is contractive in Wψ,T,λ for large enough

λ > 0. �

B. Construction of coupling. Simply denote

ψβV (x, y) := ψ(|x− y|)(1 + βV (x) + βV (y)), x, y ∈ Rd.

For s ≥ 0 and µ, ν ∈ PV , let Xs and Ys be Fs-measurable random variables

such that

LXs = P ∗s µ, LYs = P ∗s ν, EψβV (Xs, Ys) = Wψ,βV (P ∗s µ, P
∗
s ν). (5.4.21)

Let W
(1)
t and W

(2)
t be two independent d-dimensional Brownian motions

and consider the following SDE:

dXt = bt(Xt, P
∗
t µ)dt+

√
αtdW

(1)
t + σ̂t(Xt)dW

(2)
t , t ≥ s. (5.4.22)
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By (A5.6), this SDE is well-posed. Indeed, since b is locally bounded, by

Girsanov’s transform to the regular SDE

dXt =
√
αtdW

(1)
t + σ̂t(Xt)dW

(2)
t , t ≥ s

up to the exit time of a large ball, we construct a weak solution to (5.4.22) up

to the same stopping time. On the other hand, the monotone condition in

(A5.6) implies the pathwise uniqueness of (5.4.22), then the well-posedness

is implied by the Yamada-Watanabe principle. Moreover, the Lyapunov

condition in (A5.4) ensures the non-explosion. By (A5.5), we have

σ∗t (σtσ
∗
t )−1

{
αt + σ̂tσ̂

∗
t

}
(σtσ

∗
t )−1σt +

{
Im − σ∗t (σtσ

∗
t )−1σt

}2

= σ∗t (σtσ
∗
t )−1σt + Im − σ∗t (σtσ

∗
t )−1σt = Im.

So, for an m-dimensional Brownian motion W (3) independent of (W (1),

W (2)),

Wt :=

∫ t

0

{
σ∗s (σsσ

∗
s )−1

}
(Xs)

{√
αsdW

(1)
s

+ σ̂s(Xs)dW
(2)
s

}
+

∫ t

0

{
Im − σ∗s (σsσ

∗
s )−1σs

}
(Xs)dW

(3)
s

is an m-dimensional Brownian motion such that

σt(Xt)dWt =
√
αtdW

(1)
t + σ̂t(Xt)dW

(2)
t .

So, the solution to (5.4.22) is a weak solution to (5.0.1), the weak uniqueness

of (5.4.22) implies that LXt = P ∗t µ, t ≥ s.
To construct the coupling with reflection, let

u(x, y) =
x− y
|x− y|

, x 6= y ∈ Rd.

We consider the SDE:
dYt = bt(Yt, P

∗
t ν)dt+ σ̂t(Yt)dW

(2)
t

+
√
αt
{
Id − 2u(Xt, Yt)⊗ u(Xt, Yt)1{t<τ}

}
dW

(1)
t , t ≥ s,

(5.4.23)

where

τ := inf{t ≥ s : Yt = Xt}
is the coupling time. Since the coefficients in noises are Lipschitz continuous

in Yt 6= Xt, by the same argument leading to the well-posedness of (5.4.22),

we conclude that (5.4.23) has a unique solution up to the coupling time τ .

When t ≥ τ , the equation of Yt becomes

dYt = bt(Yt, P
∗
t ν)dt+

√
αtdW

(1)
t

+ σ̂t(Yt)dW
(2)
t ,

(5.4.24)

which is well-posed as explained above. Therefore, (5.4.23) has a unique

solution up to life time. On the other hand, the Lyapunov condition in

(A5.4) implies that the solution is non-explosive, and by the same reason

leading to LXt = P ∗t µ, we have LYt = P ∗t ν.
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Remark 5.3.2 The operator Id− 2u(Xt, Yt)⊗u(Xt, Yt) in (5.4.23) is the

reflection operator with respect to the vertical mirror at the middle of the

line from Xt to Yt, so that the term for W
(1)
t in (5.4.23) together with that

in (5.4.22) is called the coupling by reflection, while that for W
(2)
t without

change is called the coupling by parallel displacement. The construction of

coupling by reflection is due to Lindvall and Rogers [Lindvall and Rogers

(1986)], and has been extended by Chen and Li [Chen and Li (1989)] to

diffusion processes on Rd. The construction of (5.4.23) with split couplings

by reflection for W
(1)
t and by parallel displacement for W

(2)
t is due to [Priola

and Wang (2006)].

C. Proof of (5.4.12). By (A5.6) and the Itô-Tanaka formula for (5.4.22)

and (5.4.23), we obtain

d|Xt − Yt| ≤
{
θtŴψ,βV (P ∗t µ, P

∗
t ν) +Kt|Xt − Yt|

}
dt

+ 2
√
αt〈u(Xt, Yt),dW

(1)
t 〉+ 〈u(Xt, Yt), (σ̂t(Xt)− σ̂t(Yt))dW (2)

t 〉, t < τ.

By Lemma 5.4.2 and noting that ψ′′ ≤ 0 when σ̂ is non-constant, we derive

dψ(|Xt − Yt|)

≤ θtψ′(|Xt − Yt|)Ŵψ,βV (P ∗t µ, P
∗
t ν)dt

+
{
Kt|Xt − Yt|ψ′(|Xt − Yt|) + 2αtψ

′′(|Xt − Yt|)
}

dt

+ ψ′(|Xt − Yt|)2
√
αt

〈
u(Xt, Yt),dW

(1)
t

〉
+ ψ′(|Xt − Yt|)

〈
u(Xt, Yt), (σ̂t(Xt)− σ̂t(Yt))dW (2)

t

〉
, t ∈ [0, τ).

Therefore, (5.4.7) yields

dψ(|Xt − Yt|) ≤ θtψ′(|Xt − Yt|)Ŵψ,βV (P ∗t µ, P
∗
t ν)dt

− ql(t)ψ(|Xt − Yt|)1{|Xt−Yt|<l}dt

+ ψ′(|Xt − Yt|)
[
2
√
αt

〈
u(Xt, Yt),dW

(1)
t

〉
+
〈
u(Xt, Yt), (σ̂t(Xt)− σ̂t(Yt))dW (2)

t

〉]
, t < τ.

(5.4.25)

By (A5.4) and Itô’s formula, we obtain

d{V (Xt) + V (Yt)} ≤
{

2K0(t)−K1(t)V (Xt)−K1(t)V (Yt)}dt

+
√
αt
〈
∇V (Xt) +∇V (Yt)− 2〈u(Xt, Yt),∇V (Yt)〉u(Xt, Yt), dW

(1)
t

〉
+
〈
σ̂t(Xt)

∗∇V (Xt) + σ̂t(Yt)
∗∇V (Yt), dW

(2)
t

〉
.

(5.4.26)
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This together with (5.4.25) yields that

φt := ψβV (Xt, Yt) = ψ(|Xt − Yt|){1 + βV (Xt) + βV (Yt)}

satisfies

dφt ≤
{
θtψ
′(|Xt − Yt|)Ŵψ,βV (P ∗t µ, P

∗
t ν)
[
1 + βV (Xt) + βV (Yt)

]
+ βψ′(|Xt − Yt|)

(
αt|∇V (Xt)−∇V (Yt)| − ql(t)φt1{|Xt−Yt|<l}

+ βψ(|Xt − Yt|)
[
2K0(t)−K1(t)V (Xt)−K1(t)V (Yt)

]
+
∣∣{σ̂t(Xt)− σ̂t(Yt)}[σ̂t(Xt)

∗∇V (Xt) + σ̂t(Yt)
∗∇V (Yt)]

∣∣)}dt

+ dMt, t < τ

(5.4.27)

for some martingale Mt. Combining (5.4.4), (5.4.9) and (5.4.10), we derive

βψ(|Xt − Yt|)
{

2K0(t)−K1(t)V (Xt)−K1(t)V (Yt)
}

≤ 2K0(t)βφt1{|Xt−Yt|<l} − κl,β(t)φt1{|Xt−Yt|≥l},

βψ′(|Xt − Yt|)
{
αt|∇V (Xt)−∇V (Yt)|

+
∣∣{σ̂t(Xt)− σ̂t(Yt)}[σ̂t(Xt)

∗∇V (Xt) + σ̂t(Yt)
∗∇V (Yt)]

∣∣}
≤ αl,β(t)φt1{|Xt−Yt|<l}.

Hence, it follows from (5.4.27) that for t ∈ [0, τ),

dφt − dMt ≤ θtψ′(|Xt − Yt|)Ŵψ,βV (P ∗t µ, P
∗
t ν){1 + βV (Xt) + βV (Yt)}dt

−
{

[ql(t)− αl,β(t)− 2K0(t)β]φt1{|Xt−Yt|<l} + κl,β(t)φt1{|Xt−Yt|≥l}
}

dt

≤
{
θψ′(|Xt − Yt|)Ŵψ,βV (P ∗t µ, P

∗
t ν){1 + βV (Xt) + βV (Yt)} − λl,β(t)φt

}
dt.

Since φt∧τ = 0 for t ≥ τ , this implies

e
∫ t
0
λl,β(s)dsEφt∧τ = E[φt∧τe

∫ t∧τ
0

λl,β(s)ds] ≤ e
∫ s
0
λl,β(r)drEφs

+ E
∫ t∧τ

s

e
∫ r
0
λl,β(p)dpθtψ

′(|Xt − Yt|)Ŵψ,βV (P ∗r µ, P
∗
r ν)

×
{

1 + βV (Xr) + βV (Yr)
}

dr, t ≥ s.

Therefore, for any t ≥ s, we have

Eφt∧τ ≤ e−
∫ t
s
λl,β(r)drEφs

+ e
∫ t
s
|λl,β |(r)drE

∫ t∧τ

s

θrŴψ,βV (P ∗r µ, P
∗
r ν)ψ′(|Xt − Yt|)

×
{

1 + βV (Xr) + βV (Yr)
}

dr.

(5.4.28)
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On the other hand, for t ≥ τ , by Itô’s formula for (5.4.22) and (5.4.24),

and applying (5.4.8), we find C1 ∈ L1
loc([0,∞); (0,∞)) such that

dψ(|Xt − Yt|) ≤
{
C1(t)ψ(|Xt − Yt|) + θtψ

′(|Xt − Yt|)Ŵψ,βV (P ∗t µ, P
∗
t ν)
}

dt

+ ψ′(|Xt − Yt|)〈{σ̂t(Xt)− σ̂t(Yt)}∗u(Xt, Yt),dW
(2)
t 〉.

Combining this with (5.4.26), we find C2 ∈ L1
loc([0,∞); (0,∞)) such that

for some martingale Mt and t ∈ [0, τ),

dφt − dMt

≤
{
C2(t)φt + θtŴψ,βV (P ∗t µ, P

∗
t ν)ψ′(|Xt − Yt|)

[
1 + βV (Xt) + βV (Yt)

]}
dt.

Therefore, for any t ≥ s, we have t ∧ τ ≥ s so that

E
[
1{t>τ}(φt − φt∧τ )

]
≤ E

∫ t

t∧τ
e
∫ t
r
C2(p)dpθrŴψ,βV (P ∗r µ, P

∗
r ν)ψ′(|Xr − Yr|)

×
{

1 + βV (Xr) + βV (Yr)
}

dr

≤ e
∫ t
s
C2(p)dpE

∫ t

t∧τ
θrŴψ,βV (P ∗r µ, P

∗
r ν)ψ′(|Xr − Yr|)

×
{

1 + βV (Xr) + βV (Yr)
}

dr.

This together with (5.4.28), (5.4.21) and (5.4.5) yields

Eφt = Eφt∧τ + E
[
1{t>τ}(φt − φt∧τ )

]
≤ e−

∫ t
0
λl,β(r)drEφs

+ e
∫ t
s

(|λl,β |+C2)(r)drE
∫ t

s

θrŴψ,βV (P ∗r µ, P
∗
r ν)ψ′(|Xr − Yr|)

×
{

1 + βV (Xr) + βV (Yr)
}

dr

≤ e−
∫ t
s
λl,β(r)drWψ,βV (P ∗s µ, P

∗
s ν)

+ e
∫ t
s

(2|λl,β |+C2(r))dr

∫ t

s

θre
∫ r
s
λl,β(p)dpEφrdr, t ≥ s,

where the last step follows from the definition of Ŵψ,βV which implies

Ŵψ,βV (P ∗r µ, P
∗
r ν) ≤ Eφr

E[ψ′(|Xr − Yr|){1 + βV (Xr) + βV (Yr)}]
.

By Gronwall’s lemma, we obtain

e
∫ t
s
λl,β(r)drEφt

≤Wψ,βV (P ∗s µ, P
∗
s ν) exp

[
e
∫ t
s
{2|λl,β(r)|+C2(r)}dr

∫ t

s

θr dr

]
,
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for t ≥ s. Thus, for a.e. s ≥ 0,

d+

ds
Wψ,βV (P ∗s µ, P

∗
s ν)

:= lim sup
t↓s

Wψ,βV (P ∗t µ, P
∗
t ν)−Wψ,βV (P ∗s µ, P

∗
s ν)

t− s

≤ lim sup
t↓s

Eφt −Wψ,βV (P ∗s µ, P
∗
s ν)

t− s
≤ −(λl,β(s)− θs)Wψ,βV (P ∗s µ, P

∗
s ν).

This implies (5.4.12).

D. Proof of (5.4.13). Let a, b be independent of the time parameter and

κ := λl,β − θ > 0.

According to Theorem 5.1.1, (5.4.13) implies that P ∗t has a unique invariant

probability measure µ̄ in PV , and (5.4.13) holds.

5.5 Exponential ergodicity in Wψ: partially dissipative case

In this part, we do not assume the Lyapunov condition in (A5.4) but use

the following (A5.7) to replace (A5.6).

For any ψ ∈ Ψ, where

Ψ :=
{
ψ ∈ C2([0,∞)) : ψ(0) = 0, ψ′ > 0, rψ′(r) + r2(ψ′′)+(r) ≤ cr

for some constant c > 0
}
,

the quasi-distance

Wψ(µ, ν) := inf
π∈C(µ,ν)

∫
Rd×Rd

ψ(|x− y|)π(dx, dy) (5.5.1)

on the space

Pψ :=
{
µ ∈ P : ‖µ‖ψ := µ(ψ(| · |)) <∞

}
is complete, i.e. a Wψ-Cauchy sequence in Pψ converges with respect to

Wψ. When ψ is concave, Wψ satisfies the triangle inequality and is hence

a metric on Pψ.

(A5.7) (ψ-Monotonicity) Let ψ ∈ Ψ, g ∈ C([0,∞)) with g(r) ≤ Kr for

some constant K > 0 and all r ≥ 0, such that

2αtψ
′′(r) + (gψ′)(r) ≤ −qtψ(r), r ≥ 0 (5.5.2)
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holds for some q ∈ L1
loc([0,∞); (0,∞)). Moreover, b is locally bound-

ed on [0,∞)×Rd×Pψ, and there exists θ ∈ L1
loc([0,∞); (0,∞)) such

that

〈bt(x, µ)− bt(y, ν), x− y〉+
1

2
‖σ̂t(x)− σ̂t(y)‖2HS

≤ |x− y|
{
θtWψ(µ, ν) + g(|x− y|)

}
,

t ≥ 0, x, y ∈ Rd, µ, ν ∈ Pψ.

(5.5.3)

When a = Id and

b(x, µ) = b0(x) +

∫
Rd
Z(x, y)µ(dy)

for a drift b0 and a Lipschitz continuous map Z : Rd × Rd → Rd, the

exponential convergence of (5.0.1) is presented in Theorems 2.3 and 2.4

in [Eberle et al (2019)] under the condition that

〈b0(x)− b0(y), x− y〉 ≤ κ(|x− y|)|x− y|2, x, y ∈ Rd

for some function κ ∈ C((0,∞)) with
∫ 1

0
rκ+(r)dr < ∞ and

lim supr→∞ κ(r) < 0, and that the Lipschitz constant of Z is small enough.

It is clear that in this case (5.5.3) holds for g(r) := rκ(r) and ψ(r) com-

parable with r, for which we may choose ψ ∈ Ψ as in (5.5.15) below such

that (5.5.2) holds for α = 1 and some q > 0. Therefore, this situation is

included in Theorem 5.5.1 below.

5.5.1 Main results and example

Theorem 5.5.1. Assume (A5.5) and (A5.7), with ψ′′ ≤ 0 if σ̂t(·) is non-

constant for some t ≥ 0. Then (5.0.1) is well-posed in Pψ, and P ∗t satisfies

Wψ(P ∗t µ, P
∗
t ν) ≤ e−

∫ t
0
{qs−θs‖ψ′‖∞}dsWψ(µ, ν), t ≥ 0, µ, ν ∈ Pψ. (5.5.4)

Consequently, (bt, σt) = (b, σ) does not depend on t and q > θ‖ψ′‖∞, then

P ∗t has a unique invariant probability measure µ̄ ∈ Pψ such that

Wψ(P ∗t µ, µ̄) ≤ e−(q−θ‖ψ′‖∞)tWψ(µ, µ̄), t ≥ 0, µ ∈ Pψ. (5.5.5)

Proof. By (A5.5) and (A5.7), the well-posedness follows from the proof

of Lemma 3.6.2 with Wψ replacing Wψ,V , and the solution satisfies

sup
t∈[0,T ]

‖P ∗t µ‖ψ <∞, µ ∈ Pψ, T > 0. (5.5.6)

It remains to prove (5.5.4) and the existence of the invariant probability

measure µ̄ in the time homogeneous case.
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(1) Proof of (5.5.4). Let s ≥ 0 and µ, ν ∈ Pψ. We make use of the

coupling constructed by (5.4.22) and (5.4.23) for initial values (Xs, Ys) sat-

isfying

LXs = P ∗s µ, LYs = P ∗s ν, Wψ(P ∗s µ, P
∗
s ν) = Eψ(Xs, Ys). (5.5.7)

By the same reason leading to (5.4.25), by (A5.7) for ψ ∈ Ψ with ψ′′ ≤ 0

when σ̂ is non-constant, we derive

dψ(|Xt − Yt|) ≤
{
θψ′(|Xt − Yt|)Wψ(P ∗t µ, P

∗
t ν)− qψ(|Xt − Yt|)

}
dt

+ ψ′(|Xt − Yt|)
[
2
√
λ
〈
u(Xt, Yt),dW

(1)
t

〉
+
〈
u(Xt, Yt), (σ̂t(Xt)− σ̂t(Yt))dW (2)

t

〉]
, t < τ.

(5.5.8)

By the same argument leading to (5.4.28), this implies

Eψ(|Xt∧τ − Yt∧τ |) ≤ e−q(t−s)Eψ(|Xs − Ys|)

+ θ‖ψ′‖∞
∫ t∧τ

s

Wψ(P ∗r µ, P
∗
r ν)dr, t ≥ s.

(5.5.9)

On the other hand, when t ≥ τ , by (A5.7) and applying Itô’s formula for

(5.4.22) and (5.4.24), we find a constant C > 0 such that

dψ(|Xt − Yt|) ≤{Cψ(|Xt − Yt|)dt+ θ‖ψ′‖∞Wψ(P ∗t µ, P
∗
t ν)
}

dt

+ ψ′(|Xt − Yt|)〈{σ̂t(Xt)− σ̂t(Yt)}∗u(Xt, Yt),dW
(2)
t 〉.

Thus,

E
[
1{t>τ}ψ(|Xt − Yt|)

]
≤ θ‖ψ′‖∞eC(t−s)E

∫ t

t∧τ
Wψ(P ∗r µ, P

∗
r ν)dr, t ≥ s.

Combining this with (5.5.9) and (5.5.7), we derive

Wψ(P ∗t µ, P
∗
t ν)

≤ Eψ(|Xt − Yt|) = Eψ(|Xt∧τ − Yt∧τ |) + E
[
1{t>τ}ψ(|Xt − Yt|)

]
≤ e−q(t−s)Eψ(|Xs − Ys|) + θ‖ψ′‖∞eC(t−s)

∫ t

s

Wψ(P ∗r µ, P
∗
r ν)dr

= e−q(t−s)Wψ(P ∗s µ, P
∗
s ν) + θ‖ψ′‖∞eC(t−s)

∫ t

s

Wψ(P ∗r µ, P
∗
r ν)dr, t ≥ s.

Therefore,
d+

ds
Wψ(P ∗s µ, P

∗
s ν) := lim sup

t↓s

Wψ(P ∗t µ, P
∗
t ν)−Wψ(P ∗s µ, P

∗
s ν)

t− s
≤ −(q − θ‖ψ′‖∞)Wψ(P ∗s µ, P

∗
s ν), s ≥ 0.

This implies (5.5.4).

(2) Existence of µ̄ ∈ Pψ. According to Theorem 5.1.1, (5.5.4) and (5.5.6)

imply that P ∗t has a unique invariant probability measure µ̄ ∈ Pψ, so that

(5.5.5) follows from (5.5.4). �
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As a consequence of Theorem 5.5.1, we consider the non-dissipative case

where ∇bt(·, µ)(x) is positive definite in a possibly unbounded set but with

bounded “one-dimensional puncture mass” in the sense of (5.5.12) below.

Let P1 = {µ ∈ P : µ(| · |) <∞} and

Sb(x) := sup
{
〈∇vbt(·, µ)(x), v〉 : t ≥ 0, |v| ≤ 1, µ ∈ P1

}
, x ∈ Rd.

(A5.8) There exist constants θ0, θ1, θ2, β ≥ 0 such that

1

2
‖σ̂t(x)− σ̂t(y)‖2HS ≤ θ0|x− y|2, t ≥ 0, x, y ∈ Rd; (5.5.10)

Sb(x) ≤ θ1, |bt(x, µ)− bt(x, ν)| ≤ βW1(µ, ν),

t ≥ 0, x ∈ Rd, µ, ν ∈ P1;
(5.5.11)

κ := sup
x,v∈Rd,|v|=1

∫
R

1{Sb(x+sv)>−θ2}ds <∞. (5.5.12)

Let W1 = Wψ and P1 = Pψ for ψ(r) = r.

Corollary 5.5.2. Assume (A5.5) and (A5.8). Let

g(r) := (θ1 + θ2)
{

(κr−1) ∧ r
}
− (θ2 − θ0)r, r ≥ 0,

k :=
2λ∫∞

0
t e

1
2λ

∫ t
0
g(u)dudt

− β(θ2 − θ0)

2λ

∫ ∞
0

te
1

2λ

∫ t
0
g(u)dudt.

(5.5.13)

Then there exists a constant c > 0 such that

W1(P ∗t µ, P
∗
t ν) ≤ ce−ktW1(µ, ν), t ≥ 0, µ, ν ∈ P1.

If θ2 > θ0 and

β <
4λ2

(θ2 − θ2)(
∫∞

0
t e

1
2λ

∫ t
0
g(u)dudt)2

, (5.5.14)

then κ > 0 and P ∗t has a unique invariant probability measure µ̄ ∈ P1

satisfying

W1(P ∗t µ, µ̄) ≤ ce−ktW1(µ, µ̄), t ≥ 0, µ ∈ P1.

Proof. For g in (5.5.13), let

q :=
2λ∫∞

0
t e

1
2λ

∫ t
0
g(u)dudt

, θ :=
β(θ2 − θ0)

2λ

∫ ∞
0

te
1

2λ

∫ t
0
g(u)dudt,

and take

ψ(r) :=

∫ r

0

e−
1

2λ

∫ s
0
g(u)du

∫ ∞
s

te
1

2λ

∫ t
0
g(u)dudt, r ≥ 0. (5.5.15)

By Theorem 5.5.1, it suffices to verify
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(a) ψ ∈ Ψ and ψ′′ ≤ 0;

(b) there exists a constant C > 1 such that C−1Wψ ≤W1 ≤ CWψ;

(c) (5.5.2) and (5.5.3) hold.

(a) We have ψ(0) = 0, ψ′(r) > 0 and

ψ′′(r) = −g(r)

2λ
e−

1
2λ

∫ r
0
g(u)du

∫ ∞
r

te
1

2λ

∫ t
0
g(u)dudt− r, r ≥ 0. (5.5.16)

To prove ψ ∈ Ψ, it suffices to show ψ′′ ≤ 0. To this end, take

r0 :=

√
κ(θ1 + θ2)√
θ2 − θ0

.

It is easy to see that g in (5.5.13) satisfies

g|[0,r0] ≥ 0, g|(r0,∞) < 0. (5.5.17)

Combining this with (5.5.16), we have ψ′′(r) ≤ 0 for r ≤ r0. On the other

hand, for r > r0, we have g(r) < 0 and

r

−g(r)
=

1

(θ2 − θ0)r1−p − (θ1 + θ2)κr−(1+p)

is decreasing in r > r0, so that∫ ∞
r

te
1

2λ

∫ t
0
g(u)dudt =

∫ ∞
r

2λt

g(t)

( d

dt
e

1
2λ

∫ t
0
g(u)du

)
dt

= − 2λr

g(r)
e

1
2λ

∫ r
0
g(u)du + 2λ

∫ ∞
r

( d

dt

2λt

−g(t)

)
e

1
2λ

∫ t
0
g(u)dudt

≤ − 2λr

g(r)
e

1
2λ

∫ r
0
g(u)du, r > r0.

This together with (5.5.16) yields ψ′′(r) ≤ 0 for r > r0. In conclusion,

ψ ∈ Ψ.

(b) Since ψ ∈ Ψ with ψ′′ ≤ 0 implies that ψ(r) ≤ ψ′(0)r and ψ(r)
r is

decreasing in r > 0, we have Wψ ≤ ψ′(0)W1 and

inf
r>0

ψ(r)

r
= lim
r→∞

ψ(r)

r
= lim
r→∞

ψ′(r)

= lim
r→∞

∫∞
r
t exp[ 1

2λ

∫ t
0
g(u)du]dt

exp[ 1
2λ

∫ r
0
g(u)du]

= lim
r→∞

2λr

−g(r)
=

2λ

θ2 − θ0
∈ (0,∞).

(5.5.18)

Thus,

1

ψ′(0)
Wψ ≤W1(µ, ν) ≤ θ2 − θ0

2λ
Wψ.
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(c) By (5.5.13) we have

2λψ′′(r) + g(r)ψ′(r) = −2λr, r ≥ 0.

Since ψ(r) ≤ ψ′(0)r, this implies

2λψ′′(r) + g(r)ψ′(r) ≤ − 2λr

ψ′(0)r
ψ(r) =: −qψ(r), r ≥ 0.

Therefore, (5.5.2) holds.

Next, for x 6= y, let v = x−y
|x−y| . Then (5.5.11) implies

〈bt(x, µ)− bt(y, ν), x− y〉
= |x− y|〈bt(x, µ)− bt(y, µ), v〉+ |x− y|〈bt(y, µ)− bt(y, ν), v〉

≤ β|x− y|W1(µ, ν) + |x− y|
∫ |x−y|

0

Sb(y + s(x− y))ds

= β|x− y|W1(µ, ν) +

∫ |x−y|2
0

Sb(y + sv)ds, µ, ν ∈ P1.

(5.5.19)

On the other hand, by (5.5.11) and (5.5.12) we obtain∫ |x−y|2
0

Sb(y + sv)ds

≤ θ1

∫ |x−y|2
0

1{Sb(x+sv)>−θ2}ds− θ2

∫ |x−y|2
0

1{Sb(x+sv)≤−θ2}ds

= (θ1 + θ2)

∫ |x−y|2
0

1{Sb(x+sv)>−θ2}ds− θ2|x− y|2

≤ (θ1 + θ2)(κ ∧ |x− y|2)− θ2|x− y|2.
Combining this with (5.5.10) and (5.5.19), we derive (5.5.3). �

Example 5.4.1. Let a satisfy (A5.5) with σ̂ satisfying (5.5.10). Consider

(5.3.9) with G ∈ C2(Rd) and W ∈ C2(Rd × Rd) such that

∇2{G+W (·, z)} ≥ θ21{|·|≥λ0} − θ11{|·|<λ0}, z ∈ Rd,

‖∇x∇yW (x, y)‖ ≤ θ̃, x, y ∈ Rd
(5.5.20)

holds for some constants λ0, θ1, θ2 > 0. Then the assertion in Corollary 5.5.2

holds for κ = 4λ0 and (P ∗t µ)(dx) := ρt(x)dx, where ρt solves (5.3.9) with

ρ0(x)dx ∈ P1.

Proof. It is easy to see that (5.5.20) implies (5.5.11). So, it remains to

verify that κ in (5.5.12) satisfies κ ≤ 4λ0. By the second inequality in

(5.5.20) we have

Sb(x) ≤ −θ21{|x|≥λ0} + θ11{|x|<λ0}, x ∈ Rd.
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For x, v ∈ Rd with |v| = 1, if there exists s0 ∈ Rd such that |x+ s0v| < λ0,

then

|x+ sv| ≥ |s− s0| − |x+ s0v| > |s− s0| − λ0,

so that

{s ∈ R : |x+ sv| < λ0} ⊂ (s0 − 2λ0, s0 + 2λ0),

which implies

κ := sup
x,v∈Rd,|v|=1

∫
{Sb(x+sv)>−θ2}

ds ≤ sup
x,v∈Rd,|v|=1

∫
{|x+sv|<λ0}

ds ≤ 4λ0.
�

5.6 Donsker-Varadhan large deviations

The LDP (large deviation principle) is a fundamental tool characterizing

asymptotic behaviours of probability measures {µε}ε>0 on a topological

space E, see [Dembo and Zeitouni (1998)] and references within. Recall

that µε for small ε > 0 is said to satisfy the LDP with speed λ(ε) → +∞
(as ε → 0) and rate function I : E → [0,+∞], if I has compact level sets

(i.e. {I ≤ r} is compact for r ∈ R+), and for any Borel subset A of E,

− inf
Ao
I ≤ lim inf

ε→0

1

λ(ε)
logµε(A) ≤ lim sup

ε→0

1

λ(ε)
logµε(A) ≤ − inf

Ā
I,

where Ao and Ā stand for the interior and the closure of A in E respectively.

In this part, we consider the Donsker-Varadhan type long time LDP

[Donsker and Varadhan (1975)] for µε := LLε−1 , where

Lt :=
1

t

∫ t

0

δXsds, t > 0

is the empirical measure for a path-distribution dependent SPDE.

We first introduce the main results and illustrate them by concrete ex-

amples, then recall some facts on LDP for Markov processes due to Liming

Wu [Wu (2000)] and [Wu (2000b)], and finally present the proof of the main

result.

5.6.1 Main result and examples

Consider

dXt = b(Xt,LXt)dt+ σ(LXt)dWt, (5.6.1)

where b : Rd × P2 → Rd, σ : P2 → Rd ⊗ Rm and Wt is the m-dimensional

Brownian motion. We assume



July 27, 2024 9:20 ws-book9x6 13512-main page 265

DDSDEs: Long Time Behaviors 265

(A5.9) b is continuous, σ is bounded and continuous such that

2〈b(x, µ)− b(y, ν), x− y〉+ ‖σ(µ)− σ(ν)‖2HS
≤ −κ1|x− y|2 + κ2W2(µ, ν)2

holds for some constants κ1 > κ2 ≥ 0 and all x, y ∈ Rd, µ, ν ∈ P2.

According to Theorem 5.1.2 for k = 2, (A5.9) implies that (5.6.1) is well-

posed for distributions in P2, and P ∗t has a unique invariant probability

measure µ̄ ∈ P2 such that

W2(P ∗t ν, µ̄)2 ≤ e−(κ1−κ2)tW2(ν, µ̄)2, t ≥ 0, ν ∈ P2. (5.6.2)

Let Xν
t be the solution of (5.6.1) with initial distribution ν. We study the

long time LDP for the empirical measure

Lνt :=
1

t

∫ t

0

δXνs ds, t > 0.

Definition 5.6.1. Let P be equipped with the weak topology, let A ⊂ P,

and let J : P → [0,∞] have compact level sets, i.e. {J ≤ r} is compact in

P for any r > 0.

(1) {Lνt }ν∈A is said to satisfy the upper bound uniform LDP with rate

function J , denoted by {Lνt }ν∈A ∈ LDPu(J), if for any closed A ⊂ P,

lim sup
t→∞

1

t
sup
ν∈A

logP(Lνt ∈ A) ≤ − inf
A
J.

(2) {Lνt }ν∈A is said to satisfy the lower bound uniform LDP with rate

function J , denoted by {Lνt }ν∈A ∈ LDPl(J), if for any open A ⊂ P,

lim inf
t→∞

1

t
inf
ν∈A

logP(Lνt ∈ A) ≥ − inf
A
J.

(3) {Lνt }ν∈A is said to satisfy the uniform LDP with rate function J , de-

noted by {Lνt }ν∈A ∈ LDP (J), if {Lνt }ν∈A ∈ LDPu(J) and {Lνt }ν∈A ∈
LDPl(J).

Let P be a sub-Markov operator on Bb(Rd), i.e. it is a positivity-

preserving linear operator with P1 ≤ 1. P is called strong Feller if

PBb(Rd) ⊂ Cb(Rd), is called Feller if PCb(Rd) ⊂ Cb(Rd), and is called µ-

irreducible for some µ ∈ P(Rd) if µ(1AP1B) > 0 holds for any A,B ∈ B(Rd)
with µ(A)µ(B) > 0.

Recall that the strong Feller property has been introduced in Defini-

tion 1.6.1, where the irreducibility is stronger than µ-irreducibility.
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Consider the reference SDE

dX̄t = b(X̄t, µ̄)dt+ σ(µ̄)dWt. (5.6.3)

It is standard that under (A5.9) the equation (5.6.3) has a unique solution

X̄x
t for any starting point x ∈ Rd, and µ̄ is the unique invariant probability

measure of the associated Markov semigroup

P̄tf(x) := E[f(X̄x
t )], t ≥ 0, x ∈ Rd, f ∈ Bb(Rd).

Consequently, P̄t uniquely extends to L∞(µ̄). If f ∈ L∞(µ̄) satisfies

P̄tf = f +

∫ t

0

P̄sgds, µ̄-a.e.

for some g ∈ L∞(µ̄) and all t ≥ 0, we write f ∈ D(Ā) and denote

Āf = g. Obviously, we have D(Ā) ⊃ C∞c (Rd) := {f ∈ C∞b (Rd) : ∇f
has compact support} and

Āf(x) =
1

2

d∑
i,j=1

{σσ∗}ij(µ̄)∂i∂jf(x) +

d∑
i=1

bi(x, µ̄)∂if(x), f ∈ C∞c (Rd).

The Donsker-Varadhan level 2 entropy function J for the diffusion pro-

cess generated by Ā has compact level sets in P under the τ and weak

topologies, and

J(ν) =

{
sup

{ ∫
Rd
−Āf
f dν : 1 ≤ f ∈ D(Ā)

}
, if dν

dµ exists,

∞, otherwise.

Theorem 5.6.1. Assume (A5.9). For any r,R > 0, let Br,R =
{
ν ∈ P :

ν(e|·|
r

) ≤ R
}
.

(1) We have {Lνt }ν∈Br,R ∈ LDPu(J) for all r,R > 0. If P̄t is strong Feller

and µ̄-irreducible for some t > 0, then {Lνt }ν∈Br,R ∈ LDP (J) for all

r,R > 0.

(2) If there exist constants ε, c1, c2 > 0 such that

〈x, b(x, ν)〉 ≤ c1 − c2|x|2+ε, x ∈ Rd, ν ∈ P2, (5.6.4)

then {Lνt }ν∈P2
∈ LDPu(J). If moreover P̄t is strong Feller and µ̄-

irreducible for some t > 0, then {Lνt }ν∈P2 ∈ LDP (J).

To apply this result, we first recall some facts on the strong Feller prop-

erty and the µ̄-irreducibility of diffusion semigroups.
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Remark 5.6.1. (1) Let P̄t be the (sub-)Markov semigroup generated by

the second order differential operator

Ā :=

m∑
i=1

U2
i + U0,

where {Ui}mi=1 are C1-vector fields and U0 is a continuous vector field.

According to Theorem 5.1 in [Lanconelli and Polidoro (1994)], if {Ui : 1 ≤
i ≤ m} together with their Lie brackets with U0 span Rd at any point (i.e.

the Hörmander condition holds), then the Harnack inequality

Ptf(x) ≤ ψ(t, s, x, y)Pt+sf(y), t, s > 0, x, y ∈ Rd, f ∈ B+(Rd)
holds for some map ψ : (0,∞)2×(Rd)2 → (0,∞). Consequently, if moreover

P̄t has an invariant probability measure µ̄, then P̄t is µ̄-irreducible for any

t > 0. Finally, if {Ui}0≤i≤m are smooth with bounded derivatives of all

orders, then the above Hörmander condition implies that P̄t has smooth

heat kernel with respect to the Lebesgue measure, in particular it is strong

Feller for any t > 0.

(2) Let P̄t be the Markov semigroup generated by

Ā :=

d∑
i,j=1

āij∂i∂j +

d∑
i=1

b̄i∂j ,

where (āij(x)) is strictly positive definite for any x, āij ∈ Hp,1
loc (dx) and

b̄i ∈ Lploc(dx) for some p > d and all 1 ≤ i, j ≤ d. Moreover, let µ̄ be an

invariant probability measure of P̄t. Then by Theorem 4.1 in [Bogachev

et al (2001)], P̄t is strong Feller for all t > 0. Moreover, as indicated

in (1) that Theorem 5.1 in [Lanconelli and Polidoro (1994)] ensures the

µ̄-irreducibility of P̄t for t > 0.

We present below two examples to illustrate this result, where the first

is a distribution dependent perturbation of the Ornstein-Ulenbeck process,

and the second is the distribution dependent stochastic Hamiltonian sys-

tem.

Example 5.6.1. Let σ(ν) = I+εσ0(ν) and b(x, ν) = − 1
2 (σσ∗)(ν)x, where

I is the identity matrix, ε > 0 and σ0 is a bounded Lipschitz continuous

map from P2 to Rd ⊗ Rd. When ε > 0 is small enough, assumption (A5.4)

holds and P̄t satisfies conditions in Remark 5.6.1(2). So, Theorem 5.6.1(1)

implies {Lνt }ν∈Br,R ∈ LDP (J) for all r,R > 0.

If we take b(x, ν) = −x − c|x|θx for some constants c, θ > 0, then

when ε > 0 is small enough such that (A5.4) and (5.6.4) are satisfied,

Theorem 5.6.1(2) and Remark 5.6.1(2) imply {Lνt }ν∈P2
∈ LDP (J).
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Example 5.6.2. Let d = 2m and consider the following distribution de-

pendent SDE for Xt = (X
(1)
t , X

(2)
t ) on Rm × Rm:{

dX
(1)
t = {X(2)

t − λX
(1)
t }dt

dX
(2)
t = {Z(Xt,LXt)− λX

(2)
t }dt+ σdWt,

where λ > 0 is a constant, σ is an invertible m × m-matrix, Wt is the

m-dimensional Brownian motion, and Z : R2m × P2(R2m)→ Rm satisfies

|Z(x1, ν1)− Z(x2, ν2)| ≤ α1|x(1)
1 − x

(1)
2 |+ α2|x(2)

1 − x
(2)
2 |+ α3W2(ν1, ν2)

for some constants α1, α2, α3 ≥ 0 and all xi = (x
(1)
i , x

(2)
i ) ∈ R2m, νi ∈

P2(R2m), 1 ≤ i ≤ 2. If

4λ > inf
s>0

{
2α3s+ α3s

−1 + 2α2 +
√

4(1 + α1)2 + (2α2 + α3s−1)2
}
, (5.6.5)

then {Lνt }ν∈Br,R ∈ LDP (J) for all r,R > 0.

Indeed, b(x, ν) := (x(2) − λx(1), Z(x, ν)− λx(2)) satisfies

2〈b(x1, ν1)− b(x2, ν2), x1 − x2〉

≤ −2λ|x(1)
1 − x

(1)
2 |2 − 2(λ− α2)|x(2)

1 − x
(2)
2 |2

+ 2|x(2)
1 − x

(2)
2 |
{

(1 + α1)|x(1)
1 − x

(1)
2 |+ α3W2(ν1, ν2)

}
≤ α3sW2(ν1, ν2)2 − {2λ− δ(1 + α1)}|x(1)

1 − x
(1)
2 |2

− {2λ− 2α2 − δ−1(1 + α1)− α3s
−1}|x(2)

1 − x
(2)
2 |2, s, δ > 0

for all x1, x2 ∈ R2m and ν1, ν2 ∈ P2(R2m). Taking

δ =
2α2 + α3s

−1 +
√

4(1 + α1)2 + (2α2 + α3r−1)2

2(1 + α1)

such that δ(1 + α1) = 2α2 + δ−1(1 + α1) + α3s
−1, we see that (A5.9)

holds for some κ1 > κ2 provided 2λ − δ(1 + α1) > α3s for some s >

0, i.e. (5.6.5) implies (A5.9). Moreover, it is easy to see that conditions

in Remark 5.6.1(1) hold, see also [Guillin and Wang (2012); Wang and

Zhang (2013)] for Harnack inequalities and gradient estimates on stochastic

Hamiltonian systems which also imply the strong Feller and µ̄-irreducibility

of P̄t. Therefore, the claimed assertion follows from Theorem 5.6.1(1).

5.6.2 LDP for Markov processes

We first introduce the rate function, i.e. the Donsker-Varadhan level 2 en-

tropy function for continuous Markov processes on a Polish space E.
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Consider the path space

CE := C([0,∞)→ E) = {w : [0,∞) 3 t 7→ wt ∈ E is continuous}.
Let P(CE) be the set of all probability measures on CE , and Ps(CE)

the set of all stationary (i.e. time-shift-invariant) elements in P(CE). For

any Q ∈ Ps(CE), let Q̄ be the unique stationary probability measure on

C̄E := C(R→ E) such that

Q̄
(
{w ∈ C̄E : w(ti) ∈ Ai, 1 ≤ i ≤ n}

)
= Q

(
{w ∈ CE : w(ti + s) ∈ Ai, 1 ≤ i ≤ n}

)
holds for any n ≥ 1,−∞ < t1 < t2 < . . . < tn < ∞, s ≥ −t1, and

{Ai}1≤i≤n ⊂ B(E). We call Q̄ the stationary extension of Q to C̄E . For

any s ≤ t, let Fst := σ(C̄E 3 w 7→ w(u) : s ≤ u ≤ t). For a probability

measure Q̄ on C̄E , let Q̄w− be the regular conditional distribution of Q̄

given F−∞0 . Moreover, let EntF0
1

be the Kullback-Leibler divergence (i.e.

relative entropy) on the σ-field F0
1 ; that is, for any two probability measures

µ1, µ2 on CE ,

EntF0
1
(µ1|µ2) :=

{∫
CE

(
h log h

)
dµ2, if dµ1|F0

1
= hdµ2|F0

1
,

∞, otherwise.

Now, for a standard Markov process on E with {P x : x ∈ E} ⊂ P(CE),

where P x stands for the distribution of the process starting at x, the process

level entropy function of Donsker-Varadhan is given by

H(Q) :=

{∫
C̄E

EntF0
1
(Q̄w−|Pw(0))Q̄(dw), if Q ∈ Ps(CE),

∞, otherwise.

Then the Donsker-Varadhan level 2 entropy function is defined as

J(ν) := inf
{
H(Q) : Q ∈ Ps(CE), Q(w(0) ∈ ·) = ν

}
, ν ∈ P(E). (5.6.6)

This function has compact level sets in P(E) under the τ - (hence the weak)

topology, see for instance [Wu (2000)] and [Wu (2000b)]. For any ν ∈ P(E),

let (Xν
t )t≥0 be the Markov process with initial distribution ν. Consider its

empirical measure

Lνt :=
1

t

∫ t

0

δXνs ds, t > 0.

When ν = δx, we denote Xν
t = Xx

t and Lνt = Lxt . Let µ be an invariant

probability measure of Pt, where Pt is the Markov semigroup given by

Ptf(x) = E[f(Xx
t )], x ∈ E, t ≥ 0, f ∈ Bb(E).

We write f ∈ Dµ(A) if f ∈ L∞(µ) and there exists g ∈ L∞(µ) such that

Ptf − f =
∫ t

0
Psgds holds µ-a.e. for all t ≥ 0. In this case, we denote

Af = g. We have the following formula for J .
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Theorem 5.6.2 ([Wu (2000b)], Proposition B.10, Corollary B.11).

Assume that Pt has a unique invariant probability measure µ. Then

J(ν) =

{
sup

{ ∫
E
−Af
f dν : 1 ≤ f ∈ Dµ(A)

}
, if νλµ,

∞, otherwise.
(5.6.7)

In particular, if the Markov process is associated with a symmetric Dirichlet

form (E ,D(E)) in L2(µ), then

J(ν) =

{
E(h

1
2 , h

1
2 ), if ν = hµ, h

1
2 ∈ D(E),

∞, otherwise.
(5.6.8)

We now recall another result due to [Wu (2000b)] on the LDP for uni-

formly integrable Markov semigroups. Let p ≥ 1 and let P be a bounded

linear operator on Lp(µ). We call P uniformly integrable in Lp(µ) if

lim
R→∞

sup
µ(|f |p)≤1

µ(|Pf |p1{|Pf |>R}) = 0.

This LDP is established under the τ -topology induced by f ∈ Bb(E), and

hence also holds under the weak topology. Let ν ∈ Iq,L := {ν = hµ :

‖h‖Lq(µ) ≤ L} for q, L ∈ (1,∞).

Theorem 5.6.3 ([Wu (2000b)], Theorem 5.1). Let µ be the unique in-

variant probability measure of Pt. If there exists T ∈ (1,∞) and p ∈ (1,∞)

such that PT is µ-irreducible and uniformly integrable in Lp(µ), then

{Lνt }ν∈Iq,L ∈ LDP (J) under the τ -topology for all q, L ∈ (1,∞).

The next result due to [Wu (2000)] provides criteria on the LDP using

the hitting time to compact sets. For any set K ⊂ E and any x ∈ E, let

τxK := inf{t ≥ 0 : Xx
t ∈ K},

where Xx
t is the Markov process starting at x. We will use the following

conditions where (D1) is weaker than (D2):

(D1) For any λ > 0 there exist a constant s > 0 and a compact set K ⊂ E
such that for any compact set K ′ ⊂ E,

sup
x∈K

E[eλτ
Xxs
K ] <∞, sup

x∈K′
E[eλτ

x
K ] <∞. (5.6.9)

(D2) For any λ > 0 there exists a compact set K ⊂ E such that

sup
x∈E

E[eλτ
x
K ] <∞. (5.6.10)
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Theorem 5.6.4 ([Wu (2000)], Theorems 1.1,1.2). Assume that Pt is

a Feller Markov semigroup.

(1) (D1) implies {Lxt }x∈D ∈ LDPu(J) for any compact set D ⊂ E, and

the inverse holds provided E is locally compact. If Pt is strong Feller

and µ-irreducible for some t > 0, then {Lxt }x∈D ∈ LDP (J) for compact

D ⊂ E if and only if (D1) holds.

(2) (D2) implies {Lνt }ν∈P(E) ∈ LDPu(J), and the inverse holds when E

is locally compact. If moreover Pt is strong Feller and µ-irreducible for

some t > 0, then {Lνt }ν∈P(E) ∈ LDP (J) if and only if (D2) holds.

Moreover, we introduce the following approximation lemma which is

easy to prove and useful in applications, see for instance Theorem 3.2

in [Röckner et al (2006)] for a stronger version called generalized contrac-

tion principle.

Lemma 5.6.5 (Approximation Lemma for LDP). Let

{(Lνt )t>0, (L̄
ν
t )t>0 : ν ∈ I} be two families of stochastic processes on a

Polish space (E, ρ) for an index set I. If (L̄νt )ν∈I ∈ LDPu(J) (respectively

LDPl(J)) and

lim
t→∞

1

λ(t)
sup
ν∈I

logP(ρ(Lνt , L̄
ν
t ) > δ) = −∞, δ > 0,

then (Lνt )ν∈I ∈ LDPu(J) (respectively LDPl(J)).

5.6.3 Proof of Theorem 5.6.1

Proof of Theorem 5.6.1(1). Let X̄x
t denote the solution of (5.6.3)

starting at x. According to Theorem 5.6.4 and Lemma 5.6.5, we only need

to prove the following assertions:

(1a) For any λ > 0, there exist a constant s > 0 and compact set K ⊂ Rd,
such that (5.6.9) holds for any compact set K ′ ⊂ Rd and

τxK := inf{t ≥ 0 : X̄x
t ∈ K}, x ∈ Rd.

(1b) For any N ≥ 1,

sup
ν∈Br,R

EeN
∫∞
0
{1∧|Xνs−X̄

0
s |

2}ds <∞.

Indeed, by Theorem 5.6.4(1), (1a) implies the upper LDP (LDP if P̄t is

strong Feller and µ̄-irreducible) for L̄xt locally uniformly in x, in particular,

L0
t satisfies the upper LDP (LDP if P̄t is strong Feller and µ̄-irreducible).
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On the other hand, by Lemma 5.6.5, (1b) implies the equivalence of L̄νt and

Lνt in LDPu(J) and LDPl(J). Then we prove the desired assertion for Lνt
with ν ∈ Br,R.

Verify (1a). By (A5.9), there exist constants α, β > 0 such that

d|X̄t|2 ≤ 2{α− β|X̄t|2}dt+ 2〈X̄t, σ(µ̄)dWt〉. (5.6.11)

Let θ = ‖σ‖2∞. Then for any ε ∈ (0, β/θ), there exist constants c1, c2 > 0

such that

deε|X̄t|
2

≤ 2ε
{
α− (β − εθ)|X̄t|2

}
eε|X̄t|

2

dt+ dMt

≤
{
c1 − c2eε|X̄t|

2}
dt+ dMt

for some martingale Mt. So,

Eeε|X̄
x
t |

2

≤ eε|x|
2

+
c1
c2
, x ∈ Rd. (5.6.12)

To estimate τxK for K := B0(N), we take N ≥ N0 := (2α/β)
1
2 . Then

(5.6.11) implies

d|X̄t|2 ≤ −β|X̄t|2dt+ 2〈X̄x
t , σ(µ̄)dWt〉, t ≤ τxK .

For any δ > 0, we obtain

Eeδ
∫ t∧τxK
0 |X̄xs |

2ds ≤ eδβ
−1|x|2Ee2δβ−1

∫ t∧τxK
0 〈X̄xs ,σ(X̄xs ,µ)dWs〉

≤ eδβ
−1|x|2(Ee8δ2β−2θ

∫ t∧τxK
0 |X̄xs |

2ds
) 1

2 .

Thus, taking δ ≤ β2

8θ , we arrive at

EeδN
2(t∧τxK) ≤ Eeδ

∫ t∧τxK
0 |X̄xs |

2ds ≤ e2δβ−1|x|2 .

Letting t ↑ ∞ implies

EeδN
2τxK ≤ e2δβ−1|x|2 , x ∈ Rd, N ≥ N0. (5.6.13)

Combining this with the Markov property and (5.6.12), when δ ≤ εβ
2 , we

have

EeδN
2τ
X̄xs
K ≤ Ee2δβ−1|X̄xs |

2

≤ eε|x|
2

+
c1
c2
, x ∈ Rd, s ≥ 0, N ≥ N0.

Therefore, for any λ > 0 there exists compact K ⊂ Rd such that (5.6.9)

holds.
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Verify (1b). Simply denote Xt = Xν
t , X̄t = X̄0

t and νt = LXνt = P ∗t ν for

ν ∈ Br,R. By (A5.9), (5.6.2) and Itô’s formula, we obtain

d|Xt − X̄t|2 ≤
{
− κ1|Xt − X̄t|2 + κ2e−(κ1−κ2)tW2(µ̄, ν)2

}
dt

+ 2〈Xt − X̄t, {σ(νt)− σ(µ̄)}dWt〉.

Letting gt = |Xt−X̄t|2
1+|Xt−X̄t|2

, we derive

d log(1 + |Xt − X̄t|2) ≤
{
− κ1gt + κ2e−(κ1−κ2)tW2(µ̄, ν)2

}
dt

+
2

1 + |Xt − X̄t|2
〈Xt − X̄t, {σ(νt)− σ(µ̄)}dWt〉.

We deduce from this and (5.6.2) that for any λ > 0,

e−
λκ2
κ1−κ2

W2(µ̄,ν)2

E
[
eλκ1

∫ t
0
gsds

]
≤ E

[
(1 + |X0|2)λe

λ
∫ t
0

2〈Xs−X̄s,{σ(νs)−σ(µ)}dWs〉
1+|Xs−X̄s|2

]
≤ E

[
(1 + |X0|2)λ

(
E
[
e8κ2λ

2
∫ t
0
gsW2(νs,µ̄)2ds

]∣∣∣F0

) 1
2

]
≤
{
ν
(
(1 + | · |2)2λ

)} 1
2

(
E
[
e8κ2λ

2W2(ν,µ̄)2
∫ t
0
gse
−(κ1−κ2)sds

]) 1
2

≤ C(λ,R)
(
E
[
eλκ1

∫ t
0
gsds

]) 1
2

, t > 0

(5.6.14)

holds for some constant C(λ,R) > 0, where the last step is due to gs ≤ 1

and ν ∈ Br,R. Therefore,

sup
ν∈Br,R

E
[
e
λκ1

∫∞
0

|Xνs−X̄
0
s |

2

1+|Xνs−X̄
0
s |

2 ds
]
<∞, λ > 0,

which implies (1b). �

Proof of Theorem 5.6.1(2). Assume (5.6.4). For any λ > 0, it suffices

to find a compact set K ⊂ Rd such that (5.6.10) holds for X̄, and

sup
ν∈P2

EeN
∫∞
0
{1∧|Xνs−X̄

ν
s |

2}ds <∞, N ≥ 1.

Indeed, by Theorem 5.6.4(2), (1b) and Lemma 5.6.5, this implies the upper

LDP (LDP if P̄t is strong Feller and µ̄-irreducible) for Lνt uniformly in

ν ∈ P2.

By (5.6.4), there exist constants c1, c2 > 0 such that

de|X̄t|
2

≤
{
c1 − c2|X̄t|2+εe|X̄t|

2}
dt

+ 2e|X̄t|
2

〈X̄t, σ(µ̄)dWt〉.
(5.6.15)
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This implies

hx(t) := Ee|X̄
x
t |

2

≤ c1t+ e|x|
2

<∞, t ≥ 0, x ∈ Rd.

Moreover, by Jensen’s inequality and the convexity of [1,∞) 3 r 7→
r log1+ε/2 r, we deduce from (5.6.15) that

hx(t) ≤ hx(0) + c1t− c2
∫ t

0

hx(s) log1+ε/2 hx(s)ds, t ≥ 0.

This and the comparison theorem imply hx(t) ≤ ψ(t), where ψ(t) solves

the ODE

ψ′(t) = c1 − c2ψ(t) log1+ε/2 ψ(t), ψ(0) = hx(0) = e|x|
2

.

So,

sup
x∈Rd

hx(t) ≤ sup
ψ(0)≥1

ψ(t) =: c(t) <∞. (5.6.16)

On the other hand, by (5.6.15), there exist constants N0, β > 0 such that

for any N ≥ N0 and K = B0(N), we have

de|X̄
x
t |

2

≤ 2e|X̄
x
t |

2

〈X̄x
t , σ(µ̄)dWt〉

− β|X̄x
t |2+εe|X̄

x
t |

2

dt, t ≤ τxK .
(5.6.17)

Combining this with (5.6.13) and using the Markov property, when 2δ ≤ β2,

we find a constant c > 0 such that

E[eδN
2τxK ] ≤ eδN

2

+ E
[
eδN

2τxK1{τxK≥1}
]

≤ eδN
2

+ E
[
eδN

2(1+τ
X̄x1
K )1{τxK≥1}

]
≤ eδN

2

(1 + Ee|X̄
x
1 |

2

) ≤ eδN
2

(1 + c) <∞, x ∈ Rd, N ≥ N0.

Therefore, for any λ > 0, there exists compact set K such that (5.6.10)

holds.

Finally, repeating the proof of (6.3.3) using Xν
t replacing X̄x

t , we derive

sup
ν∈P2

E[e|X
ν
1 |

2

] <∞.

This together with (6.3.3) yields

sup
ν∈P2

E
[
e|X

ν
1 |

2

+ e|X̄
ν
1 |

2]
<∞. (5.6.18)
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On the other hand, as in (5.6.14) but integrating from time 1, we obtain

e−
λκ2
κ1−κ2

W2(µ̄,ν)2

E
[
e
λκ1

∫ t
1

|Xνs−X̄
ν
s |

2

1+|Xνs−X̄
ν
s |

2 ds]
≤ E

[
(1 + |Xν

1 − X̄ν
1 |2)λe

λ
∫ t
1

2〈Xνs−X̄
ν
s ,{σ(νs)−σ(µ̄)}dWs〉
1+|Xνs−X̄

ν
s |

2

]
≤
{
E
[
(1 + |Xν

1 − X̄ν
1 |2)2λ

]} 1
2

×
(
E
[
e
λκ1W2(P∗1 ν,µ̄)2

∫ t
1

|Xνs−X̄
ν
s |

2e−(κ1−κ2)s

1+|Xνs−X̄
ν
s |

2 ds]) 1
2

, t > 1.

Combining this with (5.6.18), we derive

sup
ν∈P2

Ee
λκ1

∫∞
1

|Xνs−X̄
ν
s |

2

1+|Xνs−X̄
ν
s |

2 ds
<∞, λ ≥ 1.

Therefore, the desired assertion holds. �

5.7 Notes

The condition (5.1.2) in Theorem 5.1.1 is new, in references one uses the

following stronger condition:

sup
t≥0

W(P ∗t µ0, µ0) <∞,

see for instance [Wang (2018)] for W = W2.

Theorem 5.6.4 is taken from [Wang (2023c)] where the exponential er-

godicity is derived for a weighted variation norm ‖ · ‖V replacing ‖ · ‖var,
see also Theorem 6.5.1 in Chapter 6 for the case with reflection.

Section 5.3 is organized from [Ren and Wang (2021b)], while Section-

s 5.4–5.5 are due to [Wang (2023a)], where a result for order-preserving

McKean-Vlasov SDEs is also presented, see also [Ren et al (2021)] for ex-

tensions to the time periodic setting.

There are a number of papers studying the Freidlin-Wentzell type large

deviations for DDSDEs with small noise, see for instance [Fan et al (2023)]

and references therein, where fractional noise is considered.

Finally, Section 5.6 is taken from [Ren and Wang (2021a)], where the

Donsker-Varadhan large deviations are derived for more general models,

including path-distribution dependent SDEs in Hilbert space.
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Chapter 6

DDSDEs with Reflecting Boundary

In this chapter, we study reflected DDSDEs, i.e. DDSDEs in a domain D ⊂
Rd with reflecting boundary. We first introduce the link of reflected DDSDE

and nonlinear Neumann problem, then study this type of DDSDEs for the

well-posedness, regularity estimates and exponential ergodicity respectively.

6.1 Reflected DDSDE for nonlinear Neumann problem

Let P(D̄) be the space of all probability measures on the closure D̄ of

D, equipped with the weak topology. We regard P(D̄) ⊂ P by letting

µ(Rd \ D̄) = 0 for µ ∈ P(D̄). For any k ≥ 0, let

Pk(D̄) := P(D̄) ∩ Pk.

Consider the following reflected DDSDE on D̄ for fixed T > 0:

dXt = bt(Xt,LXt)dt+ σt(Xt,LXt)dWt + n(Xt)dlt, t ∈ [0, T ], (6.1.1)

where

b : [0, T ]×D × P(D̄)→ Rd, σ : [0, T ]×D × P(D̄)→ Rd ⊗ Rm

are measurable, and Wt,n(Xt) and lt are as in (2.0.1).

For a subspace P̂ of P(D̄) equipped with a complete metric d̂, let

Cw([0, T ]; P̂) and Cwb ([0, T ]; P̂) be in (3.1.2).

Definition 6.1.1. (1) A pair (Xt, lt)t∈[0,T ] is called a solution of (6.1.1),

if Xt is an adapted continuous process on D̄, lt is an adapted continuous

increasing process with dlt supported on {t ≥ 0 : Xt ∈ ∂D}, such that

P-a.s. ∫ t

0

{
|br(Xr,LXr )|+ ‖σr(Xr,LXr )‖2}dr <∞, t ∈ [0, T ],

277
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and for some measurable map ∂D 3 x 7→ n(x) ∈ Nx, P-a.s.

Xt = X0+

∫ t

0

br(Xr,LXr )dr+
∫ t

0

σr(Xr,LXr )dWr+

∫ t

0

n(Xr)dlr, t ∈ [0, T ].

In this case, lt is called the local time of Xt on ∂D. We call (6.1.1) strong-

ly well-posed for distributions in a subspace P̂ ⊂ P(D̄), if for any F0-

measurable variable X0 with LX0
∈ P̂, the equation has a unique solution

with LX· ∈ Cwb ([0, T ]; P̂); if this is true for P̂ = P(D̄), we call it strongly

well-posed.

(2) A triple (Xt, lt,Wt)t∈[0,T ] is called a weak solution of (6.1.1), if

Wt is an m-dimensional Brownian motion under a probability space and

(Xt, lt)t∈[0,T ] solves (6.1.1). (6.1.1) is called weakly unique (resp. jointly

weakly unique), if for any two weak solutions (Xt, lt,Wt)t∈[0,T ] under prob-

ability P and (X̃t, l̃t, W̃t)t∈[0,T ] under probability P̃, LX0|P = LX̃0|P̃ implies

L(Xt,lt)t≥0|P = L(X̃t,l̃t)t∈[0,T ]|P̃ (resp. L(Xt,lt,Wt)t∈[0,T ]|P = L(X̃t,l̃t,W̃t)t∈[0,T ]|P̃).

We call (6.1.1) weakly well-posed for distributions in P̂ ⊂ P(D̄), if it has a

unique weak solution for initial distributions in P̂ with LX· ∈ Cwb ([0, T ]; P̂);

it is called weakly well-posed if moreover P̂ = P(D̄).

(3) We call (6.1.1) well-posed (for distributions in P̂), if it is both strong-

ly and weakly well-posed (for distributions in P̂).

To characterize the nonlinear Fokker-Planck equation associated with

(6.1.1), consider the following time-distribution dependent second order

differential operator:

Lt,µ :=
1

2
tr
{

(σtσ
∗
t )(·, µ)∇2

}
+∇bt(·,µ), t ∈ [0, T ], µ ∈ P(D̄). (6.1.2)

Assume that for any µ ∈ Cw([0,∞);P(D̄)), see (3.1.2),

σµt (x) := σt(x, µt), bµt (x) := bt(x, µt) (6.1.3)

satisfy ‖σµ‖2 + |bµ| ∈ L1
loc([0, T ]× D̄; dt µt(dx)).

Let C2
N (D̄) be the class of C2-functions on D̄ with compact support

satisfying the Neumann boundary condition ∇nf |∂D = 0. By Itô’s formula,

for any (weak) solution Xt to (6.1.1), µt := LXt solves the nonlinear Fokker-

Planck equation

∂tµt = L∗t,µtµt with respect to C2
N (D̄), t ∈ [0, T ] (6.1.4)

for probability measures on D̄, in the sense that µ· ∈ Cw([0,∞);P(D̄)) and

µt(f) :=

∫
D̄

fdµt = µ0(f) +

∫ t

0

µs(Ls,µsf)ds,

t ∈ [0, T ], f ∈ C2
N (D̄).

(6.1.5)
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To understand (6.1.4) as a nonlinear Neumann problem on D, let L∗t,µt
be the adjoint operator of Lt,µt : for any

g ∈ L1
loc(D, (‖σt(x, µt)‖2 + |bt(x, µt)|)dx),

L∗t,µtg is the linear functional on C2
0 (D) (the class of C2-functions on D

with compact support) given by

C2
0 (D) 3 f 7→

∫
D

{fL∗t,µtg}(x)dx :=

∫
D

{gLt,µtf}(x)dx. (6.1.6)

Assume that LXt has a density function ρt, i.e. µt := LXt = ρt(x)dx. It is

the case under a general non-degenerate or Hörmander condition (see for

instance [Bogachev et al (2015)]), and Krylov’s estimate (2.2.3) or (2.2.34)

implies that ρt exists for a.e. t ∈ (0, T ]. When ∂D ∈ C2, (6.1.4) implies

that ρt solves the following nonlinear Neumann problem on D̄:

∂tρt = L∗t,ρtρt, ∇t,nρt|∂D = 0, t ∈ [0, T ] (6.1.7)

in the weak sense, where Lt,ρt := Lt,ρt(x)dx, and for a function g on ∂D

∇t,ng := ∇σtσ∗t ng + div∂D(gπσtσ
∗
t n)

for the divergence div∂D on ∂D and the projection π to the tangent space

of ∂D:

πxv := v − 〈v,n(x)〉n(x), v ∈ Rd, x ∈ ∂D.
If in particular σσ∗n = λn holds on [0,∞)× ∂D for a function λ 6= 0 a.e.,

∇t,nρt|∂D = 0 is equivalent to the standard Neumann boundary condition

∇nρt|∂D = 0.

We now deduce (6.1.7) from (6.1.5). Firstly, by (6.1.6), (6.1.5) implies∫
D

(fρt)(x)dx =

∫
D

(fρ0)(x)dx+

∫ t

0

ds

∫
D

(fL∗s,ρsρs)(x)dx,

f ∈ C2
0 (D), t ∈ [0, T ],

so that ∂tρt = L∗t,ρtρt. Next, by the integration by parts formula, (6.1.5)

implies

I :=

∫
D

(fρt)(x)dx−
∫
D

(fρ0)(x)dx =

∫ t

0

ds

∫
D

(ρsLs,ρsf)(x)dx

=

∫ t

0

(∫
D

(fL∗s,ρsρs)(x)dx+

∫
∂D

{
f∇σsσ∗snρs − ρs∇σsσ∗snf

}
(x)dx

)
ds

=

∫
D

f(x)dx

∫ t

0

(∂sρs)(x)ds

+

∫ t

0

ds

∫
∂D

{
f∇σsσ∗snρs + fdiv∂D(ρsπσsσ

∗
sn)
}

(x)dx

= I +

∫ t

0

ds

∫
∂D

{
f(∇s,nρt)

}
(x)dx, f ∈ C2

N (D̄), t ∈ [0, T ].

Thus, ∇t,nρt|∂D = 0.
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6.2 Well-posedness: singular case

By (3.5.1), ‖µ‖k := µ(| · |k)
1
k for k > 0, and ‖µ‖0 := 1. We make the

following assumption.

(A6.1) Let k ≥ 0. σµ = σ does not depend on µ, and there exists µ̂ ∈ Pk(D̄)

such that at least one of the following two conditions holds.

(1) (A2.3) holds for b̂ := b(·, µ̂) replacing b, and there exists a constant

α ≥ 0 such that for any t ∈ [0, T ], x ∈ D̄, and µ, ν ∈ Pk(D̄),

|bt(x, µ)− b̂(1)
t (x)| ≤ f0(t, x) + α‖µ‖k, (6.2.1)

|bt(x, µ)− bt(x, ν)| ≤
{
‖µ−ν‖k,var +Wk(µ, ν)

} l∑
i=0

fi(t, x). (6.2.2)

(2) (A2.2) holds for b̂ := b(·, µ̂) replacing b, and (6.2.1)–(6.2.2) hold for√
fi replacing fi, 0 ≤ i ≤ l.

Since b̂
(1)
t is regular, (6.2.1) gives a control for the singular term of bµ.

Moreover, (6.2.2) is a Lipschitz condition on bt(x, ·) in ‖ · ‖k,var +Wk with

Lipschitz coefficient singular in (t, x).

Theorem 6.2.1. Assume (A6.1).

(1) (6.1.1) is weakly well-posed for distributions in Pk(D̄). Moreover, for

any γ ∈ Pk(D̄), and any n > 0, there exists a constant c > 0, such that

E
[

sup
t∈[0,T ]

|Xt|n
∣∣∣X0

]
≤ c(1 + |X0|n), EenlT ≤ c (6.2.3)

holds for the solution with LX0 = γ.

(2) (6.1.1) is well-posed for distributions in Pk(D̄) in each of the following

situations:

(i) d = 1 and (A6.1)(2) holds.

(ii) (A6.1)(1) holds with p1 > 2 in (A2.3) for b̂ replacing b.

To prove Theorem 6.2.1, we first present a general result on the well-

posedness of the reflected DDSDE (6.1.1) by using that of the reflected

SDE (3.1.5).

For any k ≥ 0, γ ∈ Pk, N ≥ 2, let

PT,Nk,γ (D̄) =
{
µ ∈ Cwb ([0, T ];Pk(D̄)) : µ0 = γ, sup

t∈[0,T ]

e−Nt(1+µt(|·|k)) ≤ N
}
.
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Then as N ↑ ∞,

PT,Nk,γ (D̄) ↑ PTk,γ(D̄) :=
{
µ ∈ Cwb ([0, T ];Pk(D̄)) : µ0 = γ

}
. (6.2.4)

For any µ ∈ PTk,γ(D̄), we will assume that the reflected SDE

dXµ,γ
t = bt(X

µ,γ
t , µt)dt+ σt(X

µ,γ
t )dWt + n(Xµ,γ

t )dlµ,γt ,

t ∈ [0, T ],LXµ,γ0
= γ

(6.2.5)

has a unique weak solution with

Φγt µ := LXµ,γt
∈ Pk(D̄), t ∈ [0, T ].

(A6.2) Let k ≥ 0. For any γ ∈ Pk(D̄) and µ ∈ PTk,γ(D̄), (6.2.5) has a

unique weak solution, and there exist constants l ∈ N, {pi, qi}0≤i≤l ⊂
(1,∞), N0 ≥ 2 and increasing maps C : [N0,∞) → (0,∞) and

F : [N0,∞) × [0,∞) → (0,∞), such that for any N ≥ N0 and

µ ∈ PT,Nk,γ (D̄), the (weak) solution satisfies

Φγ· := L(Xµ,γ· ) ∈ P
T,N
k,γ , (6.2.6)(

E
[
(1+|Xµ,γ

t |k)2
∣∣Xµ,γ

0

]) 1
2 ≤ C(N)(1+|Xµ,γ

0 |k), t ∈ [0, T ], (6.2.7)

E
(∫ t

0

gs(X
µ,γ
s )ds

)2

≤ C(N)‖g‖2
L̃
pi
qi

(t0,t1)
,

Ee
∫ t
0
gs(X

µ,γ
s )ds ≤ F (N, ‖g‖L̃piqi (T,D)),

t ∈ [0, T ], g ∈ L̃piqi (t,D), 0 ≤ i ≤ l.

(6.2.8)

Obviously, when k = 0, conditions (6.2.6) and (6.2.7) hold for N0 = 2.

Theorem 6.2.2. Assume (A6.2) and let σt(x, µ) = σt(x) not depend on

µ. Let 1 ≤ fi with |fi|2 ∈ L̃piqi (T,D), 0 ≤ i ≤ l. Assume that there exist a

measurable map Γ : [0, T ]× D̄ × P(D̄)→ Rm such that

bt(x, ν)− bt(x, µ) = σt(x)Γt(x, ν, µ),

x ∈ D̄, t ∈ [0, T ], ν, µ ∈ Pk(D̄).
(6.2.9)

(1) If for any x ∈ D̄, t ∈ [0, T ], and ν, µ ∈ Pk(D̄),

|Γt(x, ν, µ)| ≤ ‖ν − µ‖k,var
l∑
i=0

fi(t, x), (6.2.10)

then (6.1.1) is weakly well-posed for distributions in Pk(D̄). If, fur-

thermore, in (A6.2) the SDE (6.2.5) is strongly well-posed for any

γ ∈ Pk(D̄) and µ ∈ PTk,γ(D̄), so is (6.1.1) for distributions in Pk(D̄).
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(2) Let k > 1. If for any µ, ν ∈ Pk(D̄) and (t, x) ∈ [0, T ]× D̄,

|Γt(x, ν, µ)| ≤
{
‖ν − µ‖k,var + Wk(µ, ν)

} l∑
i=0

fi(t, x), (6.2.11)

and for any γ ∈ Pk(D̄) and N ≥ N0, there exists a constant C(N) > 0

such that for any µ, ν ∈ PT,Nk,γ (D̄),

Wk(Φγt µ,Φ
γ
t ν)2k

≤ C(N)

∫ t

0

{
‖µs − νs‖2kk,var + Wk(µs, νs)

2k
}

ds, t ∈ [0, T ],
(6.2.12)

then assertions in (1) holds.

Proof. Let γ ∈ Pk(D̄). Then the weak solution to (6.2.5) is a weak

solution to (6.1.1) if and only if µ is a fixed point of the map Φγ in PTk,γ(D̄).

So, if Φγ on PTk,γ(D̄) has a unique fixed point in PTk,γ(D̄), then the (weak)

well-posedness of (6.2.5) implies that of (6.1.1). Thus, by (6.2.4), it suffices

to show that for any N ≥ N0, Φγ has a unique fixed point in PT,Nk,γ (D̄).

By (6.2.6) and the fixed point theorem, we only need to prove that for any

N ≥ N0, Φγ is contractive with respect to a complete metric on PT,Nk,γ (D̄).

(1) For any λ > 0, consider the metric

Wk,λ,var(µ, ν) := sup
t∈[0,T ]

e−λt‖µt − νt‖k,var, µ, ν ∈ PT,Nk,γ (D̄).

Let (Xµ,γ
t , lµ,γt ) solve (6.2.5) for some Brownian motion Wt on a complete

probability filtration space (Ω, {Ft},P). By (6.2.8), (6.2.10) or (6.2.11) with

|f |2 ∈ L̃pq′(T,D), we find a constant c1 > 0 depending on N such that

sup
µ,ν∈PT,Nk,γ (D̄)

E
(
e2

∫ T
0
|Γs(Xµ,γs ,νs,µs)|2ds|F0

)
≤ c21,

sup
µ∈PT,Nk,γ (D̄)

E
((∫ T

0

gs(X
µ,γ
s )ds

)2∣∣∣∣F0

)
≤ c21‖g‖2L̃piqi (T,D)

,

g ∈ L̃piqi (T ), 0 ≤ i ≤ l.

(6.2.13)

Then by Girsanov’s theorem,

W̃t := Wt −
∫ t

0

Γs(X
µ,γ
s , νs, µs)ds, t ∈ [0, T ]

is a Brownian motion under the probability Q := RTP, where

Rt := e
∫ t
0
〈Γs(Xµ,γs ,νs,µs),dWs〉− 1

2

∫ t
0
|Γs(Xµ,γs ,νs,µs)|2ds, t ∈ [0, T ]
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is a P-martingale. By (6.2.9), we may formulate (6.2.5) as

dXµ,γ
t = bt(X

µ,γ
t , νt)dt+σt(X

µ,γ
t )dW̃t+n(Xµ,γ

t )dlµ,γt , t ∈ [0, T ],LXµ,γ0
= γ.

By the weak uniqueness due to (A6.2), the definition of ‖ · ‖k,var, (6.2.7)

and (6.2.9), we obtain

‖Φγt µ− Φγt ν‖k,var = sup
|f̃ |≤1+|·|k

∣∣E[(Rt − 1)f̃(Xµ,γ
t )

]∣∣
≤ E

[
(1 + |Xµ,γ

t |k)|Rt − 1|
]

≤ E
[{

E
(
(1 + |Xµ,γ

t |k)2|F0

)} 1
2
{
E
(
|Rt − 1|2|F0

)} 1
2

]
≤ C(N)E

[
(1 + |Xµ,γ

0 |k)
{
E(e

∫ t
0
|Γs(Xµ,γs ,νs,µs)|2ds − 1|F0)

} 1
2

]
.

(6.2.14)

Moreover, (6.2.13) implies

E(e
∫ t
0
|Γs(Xµ,γs ,νs,µs)|2ds − 1|F0)

≤ E
(

e
∫ t
0
|Γs(Xµ,γs ,νs,µs)|2ds

∫ t

0

|Γs(Xµ,γ
s , νs, µs)|2ds

∣∣∣∣F0

)
≤ c1

l∑
i=0

{
E
((∫ t

0

|fi(s,Xµ,γ
s )|2‖µs − νs‖2k,vards

)2∣∣∣∣F0

)} 1
2

≤ c1
l∑
i=0

e2λtWk,λ,var(µ, ν)2E
((∫ t

0

|fi(s,Xµ,γ
s )|2e−2λ(t−s)ds

)2∣∣∣∣F0

) 1
2

≤ c21
l∑
i=0

e2λt‖f2
i e−2λ(t−·)‖L̃piqi (t,D)Wk,λ,var(µ, ν)2, t ∈ [0, T ].

Combining this with (6.2.14) and the definition of Wk,λ,var, we obtain

Wk,λ,var(Φ
γµ,Φγν)

≤ C(N)(1 + γ(| · |k))c1
√
ε(λ)Wk,λ,var, λ > 0,

(6.2.15)

where

ε(λ) := sup
t∈[0,T ]

l∑
i=0

‖f2
i e−2λ(t−·)‖L̃piqi (t) ↓ 0 as λ ↑ ∞.

So, Φγ is contractive on (PT,Nk,γ (D̄),Wk,λ,var) for large enough λ > 0.

(2) Let k > 1. We consider the metric W̃k,λ,var := Wk,λ,var + Wk,λ,

where

Wk,λ(µ, ν) := sup
t∈[0,T ]

e−λtWk(µt, νt), µ, ν ∈ PT,Nk,γ (D̄).
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By using (6.2.11) replacing (6.2.10), instead of (6.2.15) we find constants

{C(N,λ) > 0}λ>0 with C(N,λ)→ 0 as λ→∞ such that

Wk,λ,var(Φ
γµ,Φγν)

≤ C(N,λ)W̃k,λ,var(µ, ν), λ > 0, µ, ν ∈ PT,Nk,γ (D̄).
(6.2.16)

On the other hand, (6.2.12) yields

Wk,λ(Φγµ,Φγν)

≤ sup
t∈[0,T ]

(
C(N)e−λkt

∫ t

0

{
‖µs − νs‖2kk,var + Wk(µs, νs)

2k
}

ds

) 1
2k

≤ W̃k,λ,var(µ, ν) sup
t∈[0,T ]

(
C(N)

∫ t

0

e−2λk(t−s)ds

) 1
2k

≤ C(N)
1
2k

(2λk)
1
2k

W̃k,λ,var(µ, ν), λ > 0.

Combining this with (6.2.16), we conclude that Φγ is contractive in

PT,Nk,γ (D̄) under the metric W̃k,λ,var when λ is large enough, and hence

finish the proof. �

Proof of Theorem 6.2.1. Let γ ∈ Pk(D̄) be fixed. By (6.2.1), for any

i = 2, 3 and µ ∈ Cwb ([0, T ];Pk(D̄)), condition (A2.i) for b̂ replacing b implies

the same condition for µ. So, by Theorem 6.2.2, (A6.1) implies the weak

well-posedness of (6.2.5) for distributions in Pk(D̄) with

Φγt µ ∈ Pk(D̄), Eeλl
µ,γ
T <∞,

λ > 0, γ ∈ Pk(D̄), µ ∈ C([0,∞);Pk(D̄)),
(6.2.17)

and also implies the strong well-posedness of (6.2.5) in each situation of

Theorem 6.2.1(2). Moreover, by Lemma 2.2.1 and Lemma 2.2.3, (A6.1) im-

plies that (6.2.8) holds for any (p, q) ∈ K, as well as for (p, q) = (p2/2, q2/2)

under (A2.3) for b̂ replacing b, (6.2.9) with (6.2.10) holds for k ≤ 1 due

to (3.7.19), and (6.2.9) with (6.2.11) holds for k > 1. Therefore, by The-

orem 6.2.2, it remains to verify (6.2.3), (6.2.6), (6.2.7), and (6.2.12) for

k > 1. Since (6.2.7) and (6.2.6) are trivial for k = 0, we only need to prove:

• (6.2.3);

• (6.2.7) and (6.2.6) for k > 0;

• (6.2.12) for k > 1 for case (i);

• (6.2.12) for k > 1 for case (ii).
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In the following we simply denote

f(s, x) =

l∑
i=0

fi(s, x).

(a) Let Xµ,γ
t solve (6.2.5). We first prove that under (A6.1), there exist

a constant c > 0 and an increasing function c : [1,∞) → (0,∞) such that

for any m ≥ 1, µ ∈ PTk,γ(D̄), and t ∈ [0, T ],

E
(∫ t

0

|fs(Xµ,γ
s )|2ds

)m
≤ c(m) + c(m)

(∫ t

0

‖µs‖2kds

)m
,

E exp

[
m

∫ t

0

|fs(Xµ,γ
s )|2ds

]
≤ c(m) exp

[
c

∫ t

0

‖µs‖2kds

]
.

(6.2.18)

We will prove these estimates by Lemmas 2.2.1 and 2.2.3 for the following

reflected SDE:

dX̂s = b̂s(X̂s)ds+ σs(X̂s)dWs + n(X̂s)dl̂s, X̂0 = Xµ,γ
0 , s ∈ [0, t].

By (2.2.35) under (A6.1)(1), and (2.2.4) under (A6.1)(2), for any m ≥ 1 we

find a constant c1(m) > 0 such that

Eem
∫ t
0

(|b̂(0)
s |

2+|fs|2)(Xµ,γs )ds ≤ c1(m), t ∈ [0, T ]. (6.2.19)

Let γs =
{

[σ∗s (σsσ
∗
s )−1](bµs − b̂s)

}
(X̂s), and

Rt := e
∫ t
0
〈γs,dWs〉− 1

2

∫ t
0
|γs|2ds, W̃s := Ws −

∫ s

0

γrdr, s ∈ [0, t].

By Girsanov theorem, (W̃s)s∈[0,t] is a Brownian motion under RtP, and the

SDE for X̂s becomes

dX̂s = bµs (X̂s)ds+ σs(X̂s)dW̃s + n(X̂s)dl̂s, X̂0 = Xµ,γ
0 , s ∈ [0, t].

So, by (6.2.1), (6.2.19) and Hölder’s inequality, we find constants c1, c,

c(m) > 0 such that

Eem
∫ t
0
|fs(Xµ,γs )|2ds = E

[
Rte

m
∫ t
0
|fs(X̂s)|2ds

]
≤
(
Ee2m

∫ t
0
|fs(X̂s)|2ds

) 1
2
(
E[R2

t ]
) 1

2

≤
√
c1(2m)

(
Eec1

∫ t
0
{|b̂(0)

s |
2+(fs+α‖µs‖k)2}(X̂s)ds

) 1
2 ≤ c(m)ec

∫ t
0
‖µs‖2kds.

Next, taking c2(m) > 0 large enough such that the function r 7→ [log(r +

c2(m))]m is concave for r ≥ 0, this and Jensen’s inequality imply

E
(∫ t

0

|fs(Xµ,γ
s )|2ds

)m
≤ E

([
log(c2(m) + e

∫ t
0
|fs(Xµ,γs )|2ds)

]m)
≤
[

log(c2(m) + Ee
∫ t
0
|fs(Xµ,γs )|2ds)

]m ≤ c(m) + c(m)

(∫ t

0

‖µs‖2kds

)m
holds for some constant c(m) > 0. Therefore, (6.2.18) holds.
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(b) Proof of (6.2.6). Simply denote Xt = Xµ,γ
t . By (6.2.1), the bound-

edness of σ and the condition on b̂(1) in (A2.1) which follows from (A2.3)

due to Lemma 2.2.2, we find a constant c1 > 0 such that

Lt,µ :=
1

2
tr{σtσ∗t∇2}+∇bµt , Lσ,b̂

(1)

:=
1

2
tr{σtσ∗t∇2}+∇

b̂
(1)
t

satisfy

Lt,µρ̃ ≥ Lσ,b̂
(1)

t ρ̃− |bµt − b̂
(1)
t | · |∇ρ̃| ≥ −c1(ft + ‖µt‖k).

Since 〈n, ρ̃〉|∂D ≥ 1, by Itô’s formula we obtain

dρ̃(Xt) ≥ −c1
{
ft(Xt) + ‖µt‖k

}
dt+ dMt + dlt (6.2.20)

for some martingale Mt with 〈M〉t ≤ ct for some constant c > 0. This

together with (6.2.18) yields that for some constant k0 > 0,

Elkt ≤ k0 + k0E
(∫ t

0

{fs(Xs) + ‖µs‖k}ds
)k
.

Combining this with (2.2.3), (6.2.2), (6.2.18) and ‖σ‖∞ < ∞, and using

the formula

Xt = X0 +

∫ t

0

bµs (Xs)ds+

∫ t

0

σs(Xs)dWs + n(Xt)dlt, LX0 = γ,

we find constants k1, k2 > 0 such that

E(1 + |Xt|k)

≤ k1(1 + ‖γ‖kk) + k1E
(∫ t

0

{
|Xs|+ |fs(Xs)|+ ‖µs‖k

}
ds

)k
≤ k2 + k2E

(∫ t

0

{
|Xs|2 + ‖µs‖2k

}
ds

) k
2

, t ∈ [0, T ].

(6.2.21)

(b1) When k ≥ 2, by (6.2.21) we find a constant k3 > 0 such that

E(1 + |Xt|k) ≤ k2 + k3

∫ t

0

{
E|Xs|k + ‖µs‖kk

}
ds, t ∈ [0, T ].

By Gronwall’s lemma, and noting that µ ∈ PT,Nk,γ (D̄), we find constant

k4 > 0 such that

E(1 + |Xt|k) ≤ k4 + k4

∫ t

0

(1 + ‖µs‖kk)ds

≤ k4 + k4NeNT
∫ t

0

e−N(t−s)ds ≤ 2k4eNt, t ∈ [0, T ].
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Taking N0 = 2k4 we derive

sup
t∈[0,T ]

e−Nt(1 + ‖Φγt µ‖kk)

= sup
t∈[0,T ]

e−NtE(1 + |Xt|k) ≤ N0 ≤ N, N ≥ N0, µ ∈ PT,Nk,γ (D̄),

so that (6.2.6) holds.

(b2) When k ∈ (0, 2), by BDG’s inequality, and by the same reason

leading to (6.2.21), we find constants k5, k6, k7 > 0 such that

Ut := E
[

sup
s∈[0,t]

(1 + |Xs|k)
]
≤ k5 + k5E

(∫ t

0

{
|Xs|2 + ‖µs‖2k

}
ds

) k
2

≤ k6 + k6

(∫ t

0

‖µs‖2kds

) k
2

+ k6E
{[

sup
s∈[0,t]

(|Xs|k + ‖µs‖kk)
]1− k2(∫ t

0

|Xs|kds

) k
2
}

≤ K6 +
1

2
Ut + k7

∫ t

0

Usds+ k6

(∫ t

0

‖µs‖2kds

) k
2

, t ∈ [0, T ].

By Gronwall’s lemma, we find constants k8, k9 > 0 such that for any µ ∈
PT,Nk,γ (D̄),

E(1 + |Xt|k) ≤ Ut ≤ k8 + k8

(∫ t

0

‖µs‖2kds

) k
2

≤ k8 + k8NeNt
(∫ t

0

e−2N(t−s)/kds

) k
2

≤ k8 + k9N
1− k2 eNt, t ∈ [0, T ].

Thus, there exists N0 > 0 such that for any N ≥ N0,

sup
t∈[0,T ]

e−Nt(1 + ‖Φγt µ‖kk) = sup
t∈[0,T ]

e−NtE(1 + |Xt|k)

≤ k8 + k9N
1− k2 ≤ N, µ ∈ PT,Nk,γ (D̄),

which implies (6.2.6).

(c) Proofs of (6.2.7) and (6.2.3). Simply denote (X̂t, l̂t) = (Xµ,γ
t , lµ,γt )

in (6.2.5) for µt = µ̂, t ∈ [0, T ]; that is,

dX̂t = b̂t(X̂t)dt+ σ(X̂t)dWt + n(X̂t)dl̂t, LX̂0
= γ. (6.2.22)

By (A6.1) and Theorem 6.2.2, this SDE has a unique weak solution, and

for any n ≥ 1 there exists a constant c > 0 such that

E
[

sup
t∈[0,T ]

|X̂t|n
∣∣∣X̂0

]
≤ c(1 + |X̂0|n), Eenl̂T ≤ c. (6.2.23)
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So, by (6.2.2), Lemma 2.2.1, Lemma 2.2.3 under (A2.3) for b̂ replacing b,

and Girsanov’s theorem,

W̃t := Wt −
∫ t

0

{σ∗s (σsσ
∗
s )−1}(X̂s)

{
bµs (X̂s)− b̂s(X̂s)

}
ds, t ∈ [0, T ]

is a Q-Brownian motion for Q := RTP, where

RT := e
∫ T
0
〈ηs,dWs〉− 1

2

∫ T
0
|ηs|2ds,

ηs := {σ∗s (σsσ
∗
s )−1}(X̂s){bµs (X̂s)− b̂s(X̂s)}.

By (A6.1), (6.2.23), Lemma 2.2.1 when |f |2 ∈ L̃pq(T ) for some (p, q) ∈ K,

and Lemma 2.2.3 when (A2.3) holds for b̂ replacing b, we find an increasing

function F such that

E(|RT |2|F0) ≤ E(e
∫ T
0
|fs(X̂s)|2{‖µs−µ̂‖k,var+Wk(µs,µ̂)}2ds|F0) ≤ F (‖µ‖k,T ),

where ‖µ‖k,T := supt∈[0,T ] µt(| · |k). Reformulating (6.2.22) as

dX̂t = bµt (X̂t)dt+ σt(X̂t)dW̃t + n(X̂t)dl̂t, LX̂0
= γ,

by the weak uniqueness we have LX̂|Q = LXµ,γ , so that (6.2.23) with 2n

replacing n implies

E
[

sup
t∈[0,T ]

|Xµ,γ
t |n

∣∣∣F0

]
= EQ

[
sup
t∈[0,T ]

|X̂t|n
∣∣∣F0

]
≤
(
E
[

sup
t∈[0,T ]

|X̂t|2n
∣∣∣F0

]) 1
2

(ER2
T |F0)

1
2 ≤ c(1 + |X̂0|n)F (‖µ‖k,T ).

Since supµ∈PT,Nk,γ (D̄) ‖µ‖k,T is a finite increasing function of N , this implies

(6.2.7).

Finally, since Xt := Xµ,γ
t solves (6.1.1) with initial distribution γ and

µt = LXt (i.e. µ is the fixed point of Φγ), and since Φγ has a unique fixed

point in PT,Nk,γ (D̄) for some N > 0 depending on γ as proved in the proof

of Theorem 6.2.2 using (6.2.8) and (6.2.6), we have LX· ∈ P
T,N
k,γ (D̄), and

hence (6.2.3) follows from (2.3.1).

(d) Proof of (6.2.12) for k > 1 in case (i). Let uλt and Θλ
t be constructed

for bµ replacing b in the proof of Theorem 2.4.1 under (A2.2) for d = 1. Let

X
(1)
0 = X

(2)
0 be F0-measurable with L

X
(i)
0

= γ, i = 1, 2. As explained in the

beginning of the present proof, the following reflected SDEs are well-posed:

dX
(1)
t = bt(X

(1)
t , µt)dt+ σt(X

(1)
t )dWt + n(X

(1)
t )dl

(1)
t ,

dX
(2)
t = bt(X

(2)
t , νt)dt+ σt(X

(2)
t )dWt + n(X

(2)
t )dl

(2)
t , t ∈ [0, T ].
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Then instead of (2.4.15), the processes

Y
(i)
t := Θλ

t (X
(i)
t ), i = 1, 2

satisfy

dY
(1)
t = Bt(Y

(1)
t )dt+ Σt(Y

(1)
t )dWt + {1 +∇uλt (X

(1)
t )}n(X

(1)
t )dl

(1)
t ,

dY
(2)
t = Bt(Y

(2)
t )dt+ Σt(Y

(2)
t )dWt + {1 +∇uλt (X

(2)
t )}n(X

(2)
t )dl

(2)
t

+
{
bt(X

(2)
t , νt)− bt(X(2)

t , µt)
}

dt.

By (6.2.2), Y
(1)
0 = Y

(2)
0 , Itô’s formula to |Y (1)

t − Y (2)
t |2k with this formula

replacing (2.4.15), the calculations in the proof of Theorem 2.4.1 under

(A2.2) for d = 1 yield that when λ is large enough,

|Y (1)
t − Y (2)

t |2k +Mt ≤ c1
∫ t

0

|Y (1)
s − Y (2)

s |2kdLs

+ c1

∫ t

0

|Y (1)
s − Y (2)

s |2k−1fs(X
(2)
s )
{
‖µs − νs‖k,var + Wk(µs, νs)

}
ds

≤ c1
∫ t

0

|Y (1)
s − Y (2)

s |2kdL̃s + c1

∫ t

0

{
‖µs − νs‖k,var + Wk(µs, νs)

}2k
ds

holds for all t ∈ [0, T ] and some constant c1 > 0 depending on N uniformly

in µ ∈ PT,Nk,γ (D̄), some martingale Mt, Lt in (2.4.19), and

L̃t := Lt +

∫ t

0

|fs(X(2)
s )|

2k
2k−1 ds ≤ Lt +

∫ t

0

|fs(X(2)
s )|2ds.

By the stochastic Gronwall lemma, Lemma 2.2.1, we find a constant c2 > 0

depending on N such that(
E
[

sup
s∈[0,t]

|Y (1)
s − Y (2)

s |k
])2

≤ c2
∫ t

0

{
‖µs − νs‖k,var + Wk(µs, νs)

}2k
ds,

which implies (6.2.12), since by (2.4.14) and the definition of Φγ , there

exists a constant c > 0 depending on N such that

(E|Y (1)
t − Y (2)

t |k)2 ≥ c(E|X(1)
t −X

(2)
t |k)2 ≥ cWk(Φγt µ,Φ

γ
t ν)2k.

(e) Proof of (6.2.12) for k > 1 in case (ii). Let uλ,nt solve (2.4.20)

for Lt = Lt,ν , b
(0) = b

(0)
t (·, νt) and the mollifying approximation b0,n =

b0,nt (·, νt). Then in (2.4.24) the equation for ξt becomes

dξt =
{
λuλ,nt (X

(1)
t )− λuλ,nt (X

(2)
t ) + (b

(0)
t − b

0,n
t )(X

(1)
t )

− (b
(0)
t − b

0,n
t )(X

(2)
t ) + b(X

(2)
t , µt)− bt(X(2)

t , νt)
}

dt

+
{

[(∇Θλ,n
t )σt](X

(1)
t )− [(∇Θλ,n

t )σt](X
(2)
t )
}

dWt

+ n(X
(1)
t )dl

(1)
t − n(X

(2)
t )dl

(2)
t .
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So, as shown in step (d) by (6.2.2), instead of (2.4.33), we have

|X(1)
t∧τm −X

(2)
t∧τm |

2k

≤ Gm(t) + c2

∫ t∧τm

0

|X(1)
s∧τm −X

2
s∧τm |

2kdL̃s + M̃t

for some local martingale M̃t,

L̃t := Lt +

∫ t

0

|fs(X(2)
s )|2ds, t ∈ [0, T ]

for Lt in (2.4.32), and due to X
(1)
0 = X

(2)
0 = X0 in the present setting,

Gm(t) :=

∫ t

0

{
c2m

2(k−1)
2∑
i=1

|b(0)
s − b0,ns |2(X(i)

s )

+
(
‖µs − νs‖k,var + Wk(µs, νs)

)2k}
ds.

By the stochastic Gronwall inequality, Lemma 2.2.3 and (6.2.18), we find a

constant c > 0 such that

Wk(Φγt µ,Φ
γ
t ν)2k ≤ (E|X(1)

t −X
(2)
t |k)2

≤ c lim inf
m→∞

lim inf
n→∞

EGm(t)

= c

∫ t

0

{
‖µs − νs‖2kk,var + Wk(µs, νs)

2k
}

ds.

(6.2.24)

Thus, (6.2.12) holds.

6.3 Well-posedness: monotone case

For any k ≥ 0, Pk(D̄) is a complete metric space under the Lk-Wasserstein

distance Wk, where W0(µ, ν) := 1
2‖µ− ν‖var and

Wk(µ, ν) := inf
π∈C(µ,ν)

(∫
D̄×D̄

|x− y|kπ(dx, dy)

) 1
1∨k

, µ, ν ∈ Pk(D̄), k > 0.

In the following, we first study the well-posedness of (6.1.1) for distributions

in Pk(D̄) with k > 1, then extend to a setting including k = 1.

(A6.3) Let k > 1. (D) holds, b and σ are bounded on bounded subsets of

[0, T ]× D̄ × Pk(D̄), and the following two conditions hold.
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(1) There exists 0 < K ∈ L1([0, T ]) such that

‖σt(x, µ)− σt(y, ν)‖2HS + 2〈x− y, bt(x, µ)− bt(y, ν)〉+

≤ Kt

{
|x− y|2 + |x− y|Wk(µ, ν) + 1{k≥2}Wk(µ, ν)2

}
,

t ∈ [0, T ], x, y ∈ D̄, µ, ν ∈ Pk(D̄).

(2) There exists a subset ∂̃D ⊂ ∂D such that

〈y − x,n(x)〉 ≥ 0, x ∈ ∂D \ ∂̃D, y ∈ D̄, (6.3.1)

and when ∂̃D 6= ∅, there exists ρ̃ ∈ C2
b (D̄) such that ρ̃|∂D = 0,

〈∇ρ̃,n〉|∂D ≥ 1∂̃D and

sup
(t,x)∈[0,T ]×D̄

{
‖{σt(·, µt)}∗∇ρ̃‖2 + 〈bt(·, µt),∇ρ̃〉−

}
(x)

<∞, µ ∈ Cwb ([0, T ];Pk(D̄)).

(6.3.2)

(A6.3)(1) is a monotone condition, when k ≥ 2 it allows σt(x, µ) de-

pending on µ, but when k ∈ [1, 2) it implies that σt(x, µ) = σt(x) does not

depend on µ.

(A6.3)(2) holds for ∂̃D = ∅ when D is convex, and it holds for ∂̃D = ∂D

if ∂D ∈ C2
b and for some r0 > 0

sup
(t,x)∈[0,T ]×∂r0D

{
‖(σµt )∗∇ρ‖2(x)+〈bµt ,∇ρ〉−(x)

}
<∞, µ ∈ Cwb ([0, T ];Pk(D̄)),

where in the second case we may take ρ̃ = h ◦ ρ for 0 ≤ h ∈ C∞([0,∞))

with h(r) = r for r ≤ r0/2 and h(r) = r0 for r ≥ r0. In general, (A6.3)(2)

includes the case where ∂D is partly convex and partly C2
b .

Theorem 6.3.1. Assume (A6.3). Then (6.1.1) is well-posed for distribu-

tions in Pk(D̄), and there exist a constant C > 0 and a map c : [1,∞) →
(0,∞) such that for any solution (Xt, lt) of (6.1.1) with LX0

∈ Pk(D̄),

E
[

sup
t∈[0,T ]

|Xt|k
]
≤ C(1 + E|X0|k), (6.3.3)

Eenl̃T ≤ c(n), n ≥ 1, l̃T :=

∫ T

0

1∂̃D(Xt)dlt. (6.3.4)

Proof. Let X0 be F0-measurable with γ := LX0 ∈ Pk(D̄). Then

PTk,γ(D̄) :=
{
µ ∈ Cwb ([0, T ];Pk(D̄)) : µ0 = γ

}
is a complete space under the following metric for any λ > 0:

Wλ,T
k (µ, ν) := sup

t∈[0,T ]

e−λtWk(µt, νt), µ, ν ∈ PTk,γ(D̄).
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By Lemma 2.3.4, (A6.3) implies the well-posedness of the following reflected

SDE for any µ ∈ PTk,γ(D̄):

dXµ
t = bt(X

µ
t , µt)dt+ σt(X

µ
t , µt)dWt + n(Xµ

t )dlµt , Xµ
0 = X0, (6.3.5)

and the solution satisfies

E
[

sup
t∈[0,T ]

|Xµ
t |k
]
<∞. (6.3.6)

So, as explained in the proof of Theorem 6.2.2, for the well-posedness of

(6.1.1), it suffices to prove the contraction of the map

PTk,γ(D̄) 3 µ 7→ Φ·µ := LXµ· ∈ P
T
k,γ(D̄)

under the metric Wλ,T
k for large enough λ > 0.

Denote

l̃µt :=

∫ t

0

1∂̃D(Xµ
s )dlµs , l̃νt :=

∫ t

0

1∂̃D(Xν
s )dlνs , t ≥ 0.

By (2.1.2), (A6.3) and Itô’s formula, for any k ≥ 1 we find a constant c1 > 0

such that

d|Xµ
t −Xν

t |k ≤ c1Kt

{
|Xµ

t −Xν
t |k + Wk(µt, νt)

k
}

dt

+
k

r0
|Xµ

t −Xν
t |k(dl̃µt + dl̃νt ) + dMt

(6.3.7)

for some martingale Mt with

d〈M〉t ≤ c1Kt

{
|Xµ

t −Xν
t |2k + Wk(µt, νt)

2k
}

dt.

To estimate
∫ t

0
|Xµ

s −Xν
s |k(dl̃µs + dl̃νs ), we take

0 ≤ h ∈ C∞b ([0,∞)) such that h′ ≤ 0,

h′(0) = −(1 + 2r−1
0 k), h(0) = 1,

(6.3.8)

where r0 > 0 is in (2.1.2). Let

F (x, y) := |x− y|k
{

(h ◦ ρ̃)(x) + (h ◦ ρ̃)(y)
}
, x, y ∈ D̄.

By (A6.3)(2), we have ρ̃|∂D = 0 and ∇nρ̃|∂D ≥ 1∂̃D, so that (6.3.8) and

(2.1.2) imply

∇nF (·, Xν
t )(Xµ

t )dlµt +∇nF (Xµ
t , ·)(Xν

t )dlνt ≤ −|X
µ
t −Xν

t |k(dl̃µt + dl̃νt ).

Therefore, by (A6.3) and applying Itô’s formula, we find a constant c2 > 0

such that

dF (Xµ
t , X

ν
t ) ≤ c2

{
|Xµ

t −Xν
t |k + Wk(µt, νt)

k
}

dt

− |Xµ
t −Xν

t |k(dl̃µt + dl̃νt ) + dM̃t
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for some martingale M̃t. This and F (Xµ
0 , X

ν
0 ) = F (X0, X0) = 0 imply

E
∫ t

0

|Xµ
s −Xν

s |k(dl̃µs + dl̃νs )

≤ c2
∫ t

0

Ks

{
E|Xµ

s −Xν
s |k + Wk(µs, νs)

k
}

ds.

(6.3.9)

Substituting (6.3.9) into (6.3.7) and applying BDG’s inequality, we find a

constant c3 > 0 such that

ζt := sup
s∈[0,t]

|Xµ
s −Xν

s |k, t ∈ [0, T ]

satisfies

Eζt ≤ c3
∫ t

0

Ks

{
Eζs + Wk(µs, νs)

k
}

ds, t ∈ [0, T ], (6.3.10)

so that for any λ > 0,

Eζt ≤ c3
∫ t

0

ec3
∫ t
s
KrdrWk(µs, νs)

kds

≤ c3ekλtWλ,T
k (µ, ν)k

∫ t

0

e
∫ t
s
{crKr−kλ}dr)ds

≤ c3ekλtδ(λ)Wλ,T
k (µ, ν)k, t ∈ [0, T ],

(6.3.11)

where

δ(λ) := sup
t∈[0,T ]

∫ t

0

e
∫ t
s
{crKr−kλ}drds ↓ 0 as λ ↑ ∞.

Therefore, Φ is contractive in Wλ,T
k for large λ > 0 as desired.

It remains to prove (6.3.3) and (6.3.4). Let Xt be the unique solution

to (6.1.1). By (A6.3), for any k > 1, we find a constant c(k) > 0 such that

d|Xt|k ≤ c(k)Kt

{
1 + |Xt|k + E|Xt|k

}
dt+

k|Xt|k−2〈Xt, σt(Xt,LXt)dWt〉+ k|Xt|k−1dl̃t,
(6.3.12)

where dl̃t := 1∂̃D(Xt)dlt. By applying Itô’s formula to (1+|Xt|k)(h◦ρ̃)(Xt),

similarly to (6.3.9) we obtain

E
∫ t

0

(1 + |Xs|k)dl̃s ≤ c̃(k)

∫ t

0

KsE
{

1 + |Xs|k
}

ds (6.3.13)

for some constant c̃(k) > 0. Combining (6.3.13) with (6.3.12) and using

Gronwall’s lemma, we derive

E
[

sup
t∈[0,T ]

|Xt|k
]
≤ c′(1 + E|X0|k)

for some constant c′ > 0. Substituting this into (6.3.12) and using BDG’s

inequality, we derive (6.3.3) for some constant c > 0.

Finally, by (A6.3)(2) and applying Itô’s formula to ρ̃(Xt), we derive

(6.3.4). �
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We now solve (6.1.1) for distributions in

Pψ(D̄) :=
{
µ ∈ P(D̄) : ‖µ‖ψ := µ(ψ(| · |)) <∞

}
,

where ψ belongs to the following class for some κ > 0:

Ψκ :=
{
ψ ∈ C2((0,∞)) ∩ C1([0,∞)) : ψ(0) = 0, ψ′|(0,∞) > 0,

‖ψ′‖∞ <∞, rψ′(r) + r2{ψ′′}+(r) ≤ κψ(r) for r > 0
}
.

(6.3.14)

Let

Wψ(µ, ν) := inf
π∈C(µ,ν)

∫
D̄×D̄

ψ(|x− y|)π(dx, dy), µ, ν ∈ Pψ(D̄). (6.3.15)

If ψ′′ ≤ 0 then Wψ is a complete metric on Pψ. In general, it is only a

complete quasi-metric since the triangle inequality not necessarily holds.

(A6.4) (D) holds, σt(x, µ) = σt(x) does not depend on µ, b and σ are

bounded on bounded subsets of [0,∞)× D̄×Pψ(D̄) for some ψ ∈ Ψκ

and κ > 0. Moreover, there exists 0 < K ∈ L1([0, T ]) such that

‖σt(x)− σt(y)‖2HS + 2〈x− y, bt(x, µ)− bt(y, ν)〉+

≤ Kt|x− y|
{
|x− y|+ Wψ(µ, ν)

}
, t ∈ [0, T ], x, y ∈ D̄, µ, ν ∈ Pk(D̄).

Theorem 6.3.2. Assume (A6.4) and (A6.3)(2). Then (6.1.1) is well-posed

for distributions in Pψ(D̄), and

E
[

sup
t∈[0,T ]

ψ(|Xt|)
]
<∞, T > 0,LX0

∈ Pψ(D̄). (6.3.16)

Proof. Let X0 be F0-measurable with Eψ(|X0|) < ∞, and consider the

path space

PTψ (D̄) :=
{
µ ∈ Cwb ([0, T ];Pψ(D̄)) : µ0 = LX0

}
.

For any λ > 0, the quasi-metric

Wλ,ψ(µ, ν) := sup
t∈[0,T ]

e−λtWψ(µt, νt), µ, ν ∈ PTψ (D̄)

is complete. By Lemma 2.3.4, (A6.4) implies the well-posedness of the

SDE (6.3.5) for any µ ∈ PTψ (D̄). By (A6.3)(2) and Itô’s formula for gt :=√
1 + |Xµ

t −X0|2, we find a constant c1 > 0 such that

dgt ≤ c1Kt{‖µt‖ψ + gt}dt+ g−1
t 〈X

µ
t −X0, σt(X

µ
t )dWt〉+ dl̃µt ,
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where dl̃µt := 1∂̃D(Xµ
t )dlµt . Combining this with ψ ∈ Ψκ and the linear

growth of ‖σt‖ implied by (A6.4), we find a constant c2 > 0 such that

dψ(gt) ≤ c2Kt{‖µt‖ψ + ψ(gt)}dt

+ ψ′(gt)g
−1
t 〈X

µ
t −X0, σt(X

µ
t )dWt〉+ ψ′(gt)dl̃

µ
t .

(6.3.17)

Next, by (A6.3)(2), ψ ∈ Ψκ which implies ψ′(gt) ≤ κψ(gt) since gt ≥ 1, and

applying Itô’s formula to ψ(gt){‖ρ̃‖∞ − ρ̃(Xµ
t )}, we find a constant c3 > 0

such that similarly to (6.3.9),

E
∫ t

0

ψ′(gs)dl̃
µ
s ≤ κE

∫ t

0

ψ(gs)dl̃
µ
s

≤ c3E
∫ t

0

Ks

{
1 + ‖µs‖ψ + ψ(|Xµ

s |)
}

ds, t ∈ [0, T ].

(6.3.18)

Combining this with (6.3.17), rψ′(r) ≤ κψ(r), the linear growth of σt en-

sured by (A6.4), and applying BDG’s inequality, we obtain

E
[

sup
t∈[0,T ]

ψ(|Xµ
t |)
]
<∞.

Consequently, (6.3.16) holds for solutions of (6.1.1) with LX· ∈ PTψ (D̄).

So, as explained in the proof of Theorem 6.2.2, it remains to prove the

contraction of the map

PTψ (D̄) 3 µ 7→ Φ·µ := LXµ· ∈ P
T
ψ (D̄)

under the metric Wλ,ψ for large enough λ > 0.

By (2.1.2), (A6.3)(2), ‖ψ′‖∞ <∞ and rψ′(r) ≤ κψ(r), we obtain

∇n{ψ(| · −y|)}(x) ≤ κ

2r0
1∂̃D(x)ψ(|x− y|), x ∈ ∂D, y ∈ D̄. (6.3.19)

Combining this with (A6.4) and Itô’s formula, we find a constant c4 > 0

such that

dψ(|Xµ
t −Xν

t |) ≤ c4Kt

{
ψ(|Xµ

t −Xν
t |) + Wψ(µt, νt)

}
dt

+ c4ψ(|Xµ
t −Xν

t |)(dl̃
µ
t + dl̃νt ) + dMt

(6.3.20)

for some martingale Mt.

On the other hand, let ε = r0
2κ and take h ∈ C∞([0,∞)) with h′ ≥ 0,

h(r) = r for r ≤ ε/2 and h(r) = ε for r ≥ ε. Consider

ηt := ψ(|Xµ
t −Xν

t |)
{

2ε− h ◦ ρ̃(Xµ
t )− h ◦ ρ̃(Xν

t )
}
.
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By (6.3.19), (A6.3)(2), ε = r0
2κ and Itô’s formula, we find a constant c5 > 0

such that

dηt + dM̃t

≤ c5Kt

{
ψ(|Xµ

t −Xν
t |) + Wψ(µt, νt)

}
dt

+
(2εκ

2r0
− 1
)
ψ(|Xµ

t −Xν
t |)(dl̃

µ
t + dl̃νt )

= c5Kt

{
ψ(|Xµ

t −Xν
t |) + Wψ(µt, νt)

}
dt− 1

2
ψ(|Xµ

t −Xν
t |)(dl̃

µ
t + dl̃νt ).

Since Xµ
0 = Xν

0 = X0, this implies

E
∫ t

0

ψ(|Xµ
s −Xν

s |)(dl̃
µ
t +dl̃νt ) ≤ 2c5

∫ t

0

Ks

{
Eψ(|Xµ

s −Xν
s |)+Wψ(µs, νs)

}
ds.

Substituting this into (6.3.20), we find a constant c6 > 0 such that

Wψ(Φtµ,Φtν) ≤ Eψ(|Xµ
t −Xν

t |) ≤ c6
∫ t

0

KsWψ(µs, νs)ds, t ∈ [0, T ],

so that as in (6.3.11), we conclude that Φγ is contractive in Wλ,ψ for large

λ > 0. Therefore, the proof is finished. �

6.4 Log-Harnack inequality and applications

6.4.1 Singular case

(A6.5) Let ∂D ∈ C2,L
b , let σt(x, µ) = σt(x) be distribution free. There exists

µ̂ ∈ P2(D̄) such that (A2.3) for b̂ replacing b holds with pi > 2, where

b̂ := b(·, µ̂) with regular term b̂(1). Moreover, there exist a constant

α ≥ 0 and a function 1 ≤ f0 ∈ L̃p0
q0 (T,D) for some (p0, q0) ∈ K, p0 >

2, such that for any (t, x) ∈ [0, T ]× D̄,
|bt(x, µ)− b̂(1)

t (x)| ≤ f0(t, x) + α‖µ‖2, µ ∈ P2(D̄), (6.4.1)

|bt(x, µ)− bt(x, ν)| ≤W2(µ, ν)

l∑
i=1

fi(t, x), µ, ν ∈ P2(D̄). (6.4.2)

According to Theorem 6.2.1, (A6.5) implies the well-posedness of (6.1.1)

for distributions in P2(D̄). Let

P ∗t µ = LXt for Xt solving (6.1.1) with LX0
= µ ∈ P2(D̄), t ≥ 0.

We consider

Ptf(µ) :=

∫
D̄

fd(P ∗t µ), t ≥ 0, µ ∈ P2(D̄), f ∈ Bb(D̄),

where Bb(D̄) is the class of all bounded measurable functions on D̄.
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Theorem 6.4.1. Assume (A6.5). For any N > 0, let P2,N (D̄) := {µ ∈
P2(D̄) : ‖µ‖2 ≤ N}.

(1) For any N > 0, there exists a constant C(N) > 0 such that for any

ν ∈ P2,N (D̄) and any t ∈ (0, T ], the following inequalities hold:

W2(P ∗t µ, P
∗
t ν)2 ≤ C(N)W2(µ, ν)2, µ ∈ P2(D̄), (6.4.3)

Pt log f(ν) ≤ logPtf(µ) +
C(N)

t
W2(µ, ν)2,

0 < f ∈ Bb(D̄), µ ∈ P2,N (D̄),

(6.4.4)

1

2
‖P ∗t µ− P ∗t ν‖2var ≤ Ent(P ∗t ν|P ∗t µ)

≤ C(N)

t
W2(µ, ν)2, µ ∈ P2,N (D̄),

(6.4.5)

‖∇Ptf(ν)‖W2
:= lim sup

µ→ν in W2

|Ptf(ν)− Ptf(µ)|
W2(µ, ν)

≤
√

2C(N)√
t
‖f‖∞, f ∈ Bb(D̄).

(6.4.6)

(2) If (6.4.2) holds for α = 0, then there exists a constant C > 0 such that

W2(P ∗t µ, P
∗
t ν)2 ≤ CW2(µ, ν)2, µ, ν ∈ P2(D̄). (6.4.7)

Moreover, if either
∑l
i=1 ‖fi‖∞ < ∞ or D is bounded, then (6.4.4)–

(6.4.6) hold for some constant C replacing C(N) and all µ, ν ∈ P2(D̄).

Proof. (1) Since the relative entropy of µ with respect to ν is given by

Ent(ν|µ) = sup
g∈B+(D̄),µ(g)=1

ν(log g),

(6.4.4) is equivalent to

Ent(P ∗t ν|P ∗t µ) ≤ C(N)

t
W2(µ, ν)2, t ∈ (0, T ], µ, ν ∈ P2,N (D̄). (6.4.8)

By Pinsker’s inequality (3.2.3), we conclude that (6.4.8) implies (6.4.5),

which further yield (6.4.6). So, we only need to prove (6.4.3) and (6.4.8).

For any µ, ν ∈ P2(D̄), let Xt solve (6.1.1) for LX0 = µ, and denote

µt := P ∗t µ = LXt , νt := P ∗t ν, µ̄t := LX̄t , t ∈ [0, T ],

where X̄t solves

dX̄t = bt(X̄t, νt)dt+ σt(X̄t)dWt, t ∈ [0, T ], X̄0 = X0.
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Let σ and b̂ := b(·, µ̂) = b̂(1) + b̂(0) satisfy (A2.3) for b̂ replacing b. Consider

the decomposition

bνt := bt(·, νt) = b̂
(1)
t + bν,0t , bν,0t := bνt − b̂

(1)
t .

Denote ft(x) :=
∑l
i=1 fi(t, x). By (6.2.3) and (6.4.2), there exists a constant

K(N) > 0 such that

|bν,0t | ≤ |b̂
(0)
t |+K(N)ft, ‖ν‖2 ≤ N, t ∈ [0, T ]. (6.4.9)

So, by Theorem 2.4.1, the estimate (2.4.1) and the log-Harnack inequality

(2.4.5) hold for solutions of (3.1.5) with bν replacing b with a constant

depending on N ; that is, there exists a constant c1(N) > 0 such that

W2(µ̄t, νt)
2 ≤ c1(N)W2(µ, ν)2, t ∈ [0, T ], µ ∈ P2(D̄), (6.4.10)

Ent(νt|µ̄t) = sup
f>0,µ̄(f)=1

(Ptf)(ν)

≤ c1(N)

t
W2(µ, ν)2, t ∈ (0, T ], µ ∈ P2(D̄).

(6.4.11)

Moreover, repeating step (e) in the proof of Theorem 2.4.1 for k = 2 and

(Xt, X̄t) replacing (X
(1)
t , X

(2)
t ), and using (6.4.2) replacing (6.2.2), instead

of (6.2.24) where ‖µs − νs‖2k,var disappears in the present case, we derive

W2(µt, µ̄t)
4 ≤ (E|Xt − X̄t|2)2 ≤ c2(N)

∫ t

0

W2(µs, νs)
4ds, t ∈ [0, T ]

for some constant c2(N) > 0. This together with (6.4.10) yields

W2(µt, νt)
4 ≤ 8W2(µt, µ̄t)

4 + 8W2(µ̄t, νt)
2

≤ 8c1(N)2W2(µ, ν)4 + 8c2(N)

∫ t

0

W2(µs, µs)
4ds, t ∈ [0, T ].

Therefore, Gronwall’s inequality implies (6.4.3) for some constant C(N) >

0.

On the other hand, let ‖µ‖2 ≤ N and define

Rt := exp

[
−
∫ t

0

〈gs,dWs〉 −
1

2

∫ t

0

|gs|2ds

]
,

gs :=
{
σ∗s (σsσ

∗
s )−1

}
(Xs)

[
bµs (Xs)− bνs (Xs)

]
.

By Girsanov’s theorem, we obtain∫
D̄

(dµ̄t
dµt

)2

dµt = E
[(dµ̄t

dµt
(Xt)

)2]
= E

[(
E
[
Rt|Xt]

)2]
≤ ER2

t .
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By the same argument leading to (4.1.38), we derive

Ent(νt|µt) ≤ 2Ent(νt|µ̄t) + logER2
t . (6.4.12)

By (6.4.2), (6.4.3), ‖σ∗(σσ∗)−1‖∞ < ∞ and (2.2.35) due to (A2.3) for bµ

replacing b, we find constants c3(N), c4(N) > 0 such that

E[R2
t ] ≤

(
E[R2

t ]
)2 ≤ Eec3(N)W2(µ,ν)2

∫ t
0
fs(Xs)

2ds

≤ 1 + E
[
c3(N)W2(µ, ν)2

(∫ t

0

fs(Xs)
2ds

)
× ec3(N)W2(µ,ν)2

∫ t
0
fs(Xs)

2ds

]
≤ 1 + c3(N)W2(µ, ν)2

[
E
(∫ t

0

fs(Xs)
2ds

)2] 1
2

×
[
Ee2c3(N)W2(µ,ν)2

∫ t
0
fs(Xs)

2ds
] 1

2

≤ 1 + c4(N)W2(µ, ν)2.

(6.4.13)

Combining this with (6.4.11) and (6.4.12), we derive (6.4.8) for some con-

stant C(N) > 0.

(2) When α = 0, (6.4.9) holds for K(N) = K independent of N , so that

(6.4.10) and (6.4.11) hold for some constant C1(N) = C1 > 0 independent

of N and all µ, ν ∈ P2(D̄), and in (6.4.13) the constant C3(N) = C3 is

independent of N as well. Consequently, (6.4.7) holds and

E[R2
t ] ≤ EeC3W2(µ,ν)2

∫ t
0
fs(Xs)

2ds ≤ eCW2(µ,ν)2

if ‖f‖∞ < ∞, and when D is bounded we conclude that C4(N) = C4 in

(6.4.13) is uniform in N > 0. Therefore, (6.4.4) and hence its consequent

inequalities hold for some constant independent of N . �

6.4.2 Monotone case

(A6.6) (D) and (A6.3)(2) hold, σt(x, µ) = σt(x) does not depend on µ and

is locally bounded on [0,∞)× D̄, σσ∗ is invertible, b is bounded on

bounded subsets of [0,∞)×Rd ×P2(D̄), and there exists a constant

L > 0 such that

‖σt(x)− σt(y)‖2HS + 2〈x− y, bt(x, µ)− bt(y, ν)〉+

≤ L|x− y|2 + L|x− y|W2(µ, ν),

‖σt(x)(σtσ
∗
t )−1(x)

∥∥ ≤ L, t ∈ [0, T ], x, y ∈ D̄, µ, ν ∈ P2(D̄).
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By Theorem 6.3.1, (A6.6) implies that (6.1.1) is well-posed for distribu-

tions in P2(D̄).

Theorem 6.4.2. Assume (A6.6). Then there exists a constant C > 0 such

that the following inequalities hold for all t ∈ (0, T ] and ν ∈ P2(D̄):

W2(P ∗t µ, P
∗
t ν)2 ≤ CW2(µ, ν)2, µ ∈ P2(D̄), (6.4.14)

Pt log f(ν) ≤ logPtf(µ) +
C

t
W2(µ, ν)2, 0 < f ∈ Bb(D̄), µ ∈ P2(D̄),

(6.4.15)

1

2
‖P ∗t µ− P ∗t ν‖2var ≤ Ent(P ∗t ν|P ∗t µ) ≤ C

t
W2(µ, ν)2, µ ∈ P2(D̄), (6.4.16)

‖∇Ptf(ν)‖W2
:= lim sup

µ→ν in W2

|Ptf(µ)− Ptf(ν)|
W2(µ, ν)

≤
√

2C‖f‖∞√
t

, f ∈ Bb(D̄).

(6.4.17)

Proof. As explained in the proof of Theorem 6.4.1, it suffices to prove

(6.4.14) and (6.4.15).

Firstly, for µ0, ν0 ∈ P2(D̄), let (X0, Y0) be F0-measurable such that

LX0 = µ0, LY0 = ν0, E|X0 − Y0|2 = W2(µ0, ν0)2. (6.4.18)

Denote

µt := P ∗t µ0, νt := P ∗t ν0, t ≥ 0.

Let Xt solve (6.1.1). We have

dXt = bt(Xt, µt)dt+ σt(Xt)dWt + n(Xt)dl
X
t , t ∈ [0, T ], (6.4.19)

where lXt is the local time of Xt on ∂D. Next, for any t0 ∈ (0, T ] consider

the SDE

dYt =
{
bt(Yt, νt) +

σt(Yt){σ∗t (σtσ
∗
t )−1}(Xt)(Xt − Yt)
ξt

}
dt

+ σt(Yt)dWt + n(Yt)dl
Y
t , t ∈ [0, t0),

(6.4.20)

where lYt is the local time of Yt on ∂D. For the constant L > 0 in (A6.6),

let

ξt :=
1

L

(
1− eL(t−t0)

)
, t ∈ [0, t0). (6.4.21)
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The construction of Yt goes back to [Wang (2011)] for the classical SDEs,

see also [Wang (2018)] for the extension to DDSDEs. According to Theo-

rem 2.3.2, (A6.6) implies that (6.4.20) has a unique solution up to times

τn,m :=
T0n

n+ 1
∧ inf

{
t ∈ [0, t0) : |Yt| ≥ m}, n,m ≥ 1.

Let h be in (6.3.8) for k = 2. By (2.1.2) and (A6.3)(2), we have

〈∇
{

(1 + h ◦ ρ̃)| · −x0|2
}

(Yt),n(Yt)〉dlYt ≤ 0, x0 ∈ D̄,

so that (A6.6), for any n ≥ 1 we find a constant c(n) > 0 such that

d
{

(1+h◦ρ̃)(Yt)|Yt−x0|2
}
≤ c(n)(1+|Yt|2)dt+dMt, t ∈ [0, τn,m], n,m ≥ 1

holds for some martingale Mt. This implies limm→∞ τn,m = T0n
n+1 , and hence

(6.4.20) has a unique solution up to time t0.

Next, let Ỹt solve the SDE

dỸt = bt(Ỹt, νt)dt+ σt(Ỹt)dWt + n(Ỹt)dl
Ỹ
t , Ỹ0 = Y0, t ∈ [0, T ], (6.4.22)

where lỸt is the local time of Ỹt on ∂D. By (A6.6), (2.1.2) and Itô’s formula,

we find a constant c2 > 0 such that

E|Xt − Ỹt|2 −W2(µ0, ν0)2

≤ c2
∫ t

0

{
E|Xs − Ỹs|2 + W2(µs, νs)

2
}

ds

+
2

r0
E
∫ t

0

|Xs − Ỹs|2(dl̃Xs + dl̃Ỹs ), t ∈ [0, T ].

(6.4.23)

For h in (6.3.8) with k = 2, we deduce from (A6.3)(2) that〈
∇
{
|Xt − ·|2(h ◦ ρ(Xt) + h ◦ ρ)

}
(Ỹt),n(Ỹt)

〉
dl̃Ỹt

≤ −|Xt − Ỹt|2dl̃Ỹt ,〈
∇
{
|Ỹt − ·|2(h ◦ ρ(Ỹt) + h ◦ ρ)

}
(Xt),n(Xt)

〉
dl̃Xt

≤ −|Xt − Ỹt|2dl̃Xt .

(6.4.24)

So, applying Itô’s formula to

ηt := |Xt − Ỹt|2(h ◦ ρ(Xt) + h ◦ ρ(Ỹt)),

and using (A6.6) and (2.1.2), we find a constant c3 > 0 such that

dηt + dMt

≤ c3
{
|Xt − Ỹt|2 + W2(µt, νt)

2
}

dt+ dMt − |Xt − Ỹt|2(dl̃Xt + dl̃Ỹt )
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holds for some martingale Mt. This together with (6.4.23) yields

E|Xt − Ỹt|2

≤W2(µ0, ν0)2 + Eη0 + (c2 + c3)

∫ t

0

{
E|Xs − Ỹs|2 + W2(µs, νs)

2
}

ds

≤ 3W2(µ0, ν0)2 + 2(c2 + c3)

∫ t

0

E|Xs − Ỹs|2ds, t ∈ [0, T ],

where we have used the fact that W2(µs, νs)
2 ≤ E|Xs − Ỹs|2 by definition.

By Gronwall’s lemma, this and W2(µt, νt)
2 ≤ E|Xt−Ỹt|2, we find a constant

c4 > 0 such that

W2(µt, νt)
2 ≤ E|Xt − Ỹt|2 ≤ c4W2(µ0, ν0)2, t ∈ [0, T ], (6.4.25)

so that (6.4.14) holds.

Moreover, for any n ≥ 1, let

τn :=
t0n

n+ 1
∧ inf{t ∈ [0, t0) : |Xt − Yt| ≥ n},

βs :=
1

ξs
{σ∗s (σsσ

∗
s )−1}(Xs)(Xs − Ys), s ∈ [0, τn].

(6.4.26)

By Girsanov’s theorem,

W̃t := Wt +

∫ t

0

βsds, t ∈ [0, τn]

is an m-dimensional Brownian motion under the probability Qn := RnP,
where

Rn := e−
∫ τn
0
〈βs,dWs〉− 1

2

∫ τn
0
|βs|2ds. (6.4.27)

Then (6.4.19) and (6.4.20) imply

dXt =
{
bt(Xt, µt)−

Xt − Yt
ξt

}
dt+ σt(Xt)dW̃t + n(Xt)dl

X
t ,

dYt = bt(Yt, νt)dt+ σt(Yt)dW̃t + n(Yt)dl
Y
t , t ∈ [0, τn], n ≥ 1.

(6.4.28)
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Combining this with (A6.6), (2.1.2), (6.4.25) and Itô’s formula, we obtain

d
|Xt − Yt|2

ξt
− dMt

≤ L|Xt − Yt|2 + L|Xt − Yt|W2(µt, νt)

ξt
dt

− |Xt − Yt|2(2 + ξ′t)

ξ2
t

dt+
|Xt − Yt|2

ξ2
t

(dl̃Xt + dl̃Yt )

≤
{L2W2(µt, νt)

2

2
−
|Xt − Yt|2(2 + ξ′t − Lξt − 1

2 )

ξ2
t

}
dt

+
|Xt − Yt|2

ξ2
t

(dl̃Xt + dl̃Yt )

≤
{L2e2LtW2(µ0, ν0)2

2
− |Xt − Yt|2

2ξ2
t

}
dt

+
|Xt − Yt|2

ξ2
t

(dl̃Xt + dl̃Yt ), t ∈ [0, τn],

(6.4.29)

where dMt := 2
ξt

〈
Xt − Yt, {σt(Xt) − σt(Yt)}dW̃t

〉
is a Qn-martingale. By

(6.4.24) for (Yt, l̃
Y
t ) replacing (Ỹt, l̃

Ỹ
t ), and applying Itô’s formula to gt :=

|Xt−Yt|2
ξt

(h ◦ ρ(Xt) + h ◦ ρ(Yt)), we find a constant c5 > 0 such that

dgt ≤ c5gtdt+ dM̃t −
|Xt − Yt|2

ξt
(dl̃Xt + dl̃Yt ), t ∈ [0, τn], n ≥ 1

holds for some Qn-martingale M̃t. This and (6.4.18) imply that for some

constants c6, c7 > 0,

EQngt∧τn ≤ ec4t0Eg0 ≤
c6
t0
W2(µ0, ν0)2, t ≥ 0,

EQn

∫ τn

0

|Xt − Yt|2

ξt
(dl̃Xt + dl̃Yt ) ≤ c7

t0
W2(µ0, ν0)2, n ≥ 1.

Combining this with (6.4.25), (6.4.29) and (A6.6), we derive

E[Rn logRn] = EQn [logRn]

=
1

2
EQn

∫ τn

0

|{σ∗s (σsσ
∗
s )−1}(Xs)(Xs − Ys)|2

|ξs|2
ds

≤ c

t0
W2(µ0, ν0)2, n ≥ 1

(6.4.30)

for some constant c > 0 uniformly in t0 ∈ (0, T ]. Therefore, by the martin-

gale convergence theorem, R∞ := limn→∞Rn exists, and

Nt := e−
∫ t
0
〈βs,dWs〉− 1

2

∫ t
0
|βs|2ds, t ∈ [0, t0]

is a P-martingale.
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Finally, let Q := Nt0P. By Girsanov’s theorem, (W̃t)t∈[0,t0] is an m-

dimensional Brownian motion under the probability Q, and (Xt)t∈[0,t0]

solves the SDE

dXt =
{
bt(Xt, µt)−

Xt − Yt
ξt

}
dt

+ σt(Xt)dW̃t + n(Xt)dl
X
t , t ∈ [0, t0].

(6.4.31)

Let (Yt)t∈[0,t0] solve

dYt = bt(Yt, νt)dt+ σt(Yt)dW̃t + n(Yt)dl
Y
t , t ∈ [0, t0]. (6.4.32)

By the well-posedness of (6.1.1), this extends the second equation in (6.4.28)

with LYt0 |Q = νt0 . Moreover, (6.4.30) and Fatou’s lemma implies

1

2
EQ

∫ t0

0

|{σ∗s (σsσ
∗
s )−1}(Xs)(Xs − Ys)|2

|ξs|2
ds

= E[Nt0 logNt0 ] ≤ lim inf
n→∞

E[Rn logRn] ≤ c

t0
W2(µ0, ν0)2,

(6.4.33)

which in particular implies Q(Xt0 = Yt0) = 1. Indeed, by (A6.6), if

Xt0(ω) 6= Yt0(ω) then there exists a small constant ε > 0 such that

|ηs|2(ω) = |{σ∗s (σsσ
∗
s )−1}(Xs)(Xs − Ys)|2(ω) ≥ ε, s ∈ [t0 − ε, t0],

which implies
∫ t0

0
|ηs|2
|ξs|2 (ω)ds = ∞. So, (6.4.33) implies Q(Xt0 = Yt0) = 1.

Combining this with the Young’s inequality, we arrive at

Pt0 log f(ν0) = E[Nt0 log f(Yt0)] = E[Nt0 log f(Xt0)]

≤ E[Nt0 logNt0 ] + logE[f(Xt0)]

≤ logPt0f(µ0) +
c

t0
W2(µ0, ν0)2, t0 ∈ (0, T ].

Hence, (6.4.15) holds. �

6.5 Exponential ergodicity

Let (bt, σt) = (b, σ) not depend on t. The SDE (6.1.1) becomes

dXt = b(Xt,LXt)dt+ σ(Xt,LXt)dWt + n(Xt)dlt, t ≥ 0. (6.5.1)

In this case, a probability measure µ̄ is called P ∗t -invariant, if P ∗t µ̄ = µ̄

holds for all t ≥ 0, where P ∗t µ := LXt for the solution with LX0
= µ.
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6.5.1 Singular case

The following result can be proved by repeating the proof of Theorem 5.2.1,

see [Wang (2023c)] for a result under a weaker integral condition replacing

the following condition (6.5.2).

Theorem 6.5.1. Assume (A2.3) for b(·, ν) replacing b for any ν ∈ P(D̄),

and that

|b(x, µ1)− b(x, µ2)| ≤ κ‖µ1 − µ2‖var, x ∈ D̄, µ1, µ2 ∈ P (6.5.2)

holds for some constant κ > 0. Then (6.1.1) is well-posed, and when κ > 0

is small enough and Φ is convex with
∫∞

0
ds

Φ(s) < ∞, P ∗t has a unique

invariant probability measure µ̄ such that for some constants ε0, c, λ > 0,

µ̄(Φ(ε0V )) <∞ and

‖P ∗t ν − µ̄‖var ≤ ce−λt‖µ̄− ν‖var, t ≥ 0, ν ∈ P.

6.5.2 Dissipative case

In this part, we study the exponential ergodicity of P ∗t in entropy and W2,

such that Theorem 5.6.2 is extended to the reflected case.

Theorem 6.5.2. Let D be convex and (σ, b) satisfy (A6.3) with k = 2. Let

K1,K2 ∈ L1
loc([0,∞);R) such that

2〈bt(x, µ)− bt(y, ν), x− y〉+ ‖σt(x, µ)− σt(y, ν)‖2HS
≤ K1(t)|x− y|2 +K2(t)W2(µ, ν)2, t ≥ 0.

(6.5.3)

Then (6.1.1) with t ∈ [0,∞) is well-posed for distributions in P2(D̄), and

P ∗t satisfies

W2(P ∗t µ, P
∗
t ν)2 ≤ e

∫ t
0

(K1+K2)(r)drW2(µ, ν)2, µ, ν ∈ P2(D̄), t ≥ 0. (6.5.4)

Consequently, the following assertions hold for (bt, σt) = (b, σ) independent

of t provided λ := −(K1 +K2) > 0.

(1) P ∗t has a unique invariant probability measure µ̄ such that

W2(P ∗t µ, µ̄)2 ≤ e−λtW2(µ, µ̄)2, µ ∈ P2(D̄), t ≥ 0. (6.5.5)

If moreover σ(x, µ) = σ(x) does not depend on µ and σσ∗ is invertible

with ‖σ‖∞+ ‖(σσ∗)−1‖∞ <∞, then there exists a constant c > 0 such

that

Ent(P ∗t µ|µ̄) ≤ ce−λtW2(µ, µ̄)2, t ≥ 1, µ ∈ P2(D̄). (6.5.6)
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(2) If σ(x, µ) = σ(µ) does not depend on x, then there exists a constant c >

0 such that µ̄ satisfies the following log-Sobolev inequality and Talagrand

inequality:

µ̄(f2 log f2) ≤ cµ̄(|∇f |2), f ∈ C1
b (Rd), µ̄(f2) = 1, (6.5.7)

W2(µ, µ̄)2 ≤ cEnt(µ|µ̄), µ ∈ P2. (6.5.8)

If furthermore σ(x, µ) = σ is constant with σσ∗ invertible, then there

exists a constant c > 0 such that

W2(P ∗t µ, µ̄)2 + Ent(P ∗t µ|µ̄)

≤ ce−λt min
{
W2(µ, µ̄)2,Ent(µ|µ̄)

}
, t ≥ 1, µ ∈ P2(D̄).

(6.5.9)

Proof. The well-posedness is ensured by Theorem 6.3.1. Since D is con-

vex, (2.1.3) holds. For any µ, ν ∈ P2(D̄), let Xµ
0 and Xν

0 be F0-measurable

such that

LXµ0 = µ, LXν0 = ν, E|Xµ
0 −Xν

0 |2 = W2(µ, ν)2. (6.5.10)

By (6.5.3), (2.1.3), and applying Itô’s formula to |Xµ
t −Xν

t |2, where (Xµ
t )t≥0

and (Xν
t )t≥0 solve (6.1.1), we obtain

d|Xµ
t −Xν

t |2 ≤
{
K1(t)|Xµ

t −Xν
t |2 +K2(t)W2(P∗tµ, P ∗t ν)2

}
dt+ dMt

for some martingale Mt. Combining this with (6.5.10), W2(P ∗t µ, P
∗
t ν)2 ≤

E|Xµ
t −Xν

t |2, and Gronwall’s lemma, we derive (6.5.4).

(1) Let (bt, σt) not depend on t and λ := −(K1 +K2) > 0. Then (6.5.4)

implies the uniqueness of P ∗t -invariant probability measure µ̄ ∈ P2(D̄) and

(6.5.5).

Next, by Theorem 5.1.1, the existence of µ̄ follows from a standard

argument by showing that for x0 ∈ D, {P ∗t δx0
}t≥0 is a W2-Cauchy family

as t → ∞. Since the term of local time does not make trouble due to

(2.1.3), the proof is completely similar to that of Theorem 5.3.3.

Finally, when σt(x, µ) = σt(x) and σσ∗ is invertible with ‖σ‖∞ +

‖(σσ∗)−1‖∞ < ∞, by Theorem 6.4.2, (A6.3) with k = 2 implies the log-

Harnack inequality

Ent(P ∗1 µ|µ̄) ≤ cW2(µ, µ̄)2, µ ∈ P2(D̄)

for some constant c > 0. So, (6.5.6) follows from (6.5.5) and P ∗t = P ∗1 P
∗
t−1

for t ≥ 1.

(2) Let σ(x, µ) = σ(µ) be independent of x. Consider the SDE

dX̄x
t = b(X̄x

t , µ̄)dt+ σ(µ̄)dWt + n(X̄x
t )dlt, t ≥ s, X̄x

0 = x ∈ D̄. (6.5.11)
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The associated Markov semigroup {P̄t}t≥0 is given by

P̄tf(x) := Ef(X̄x
t ), t ≥ 0, f ∈ Bb(D̄), x ∈ D̄.

Let P̄ ∗t be given by

(P̄ ∗t µ)(f) := µ(P̄tf), µ ∈ P(D̄), t ≥ 0, f ∈ Bb(D̄).

Since (6.5.3) with x = y implies K2 ≥ 0, we have

K1 ≤ −λ < 0. (6.5.12)

As explained in the above proofs of (6.5.4) and (6.5.5), this implies that

P̄ ∗t has a unique invariant probability measure µ̃ such that

lim
t→∞

P̄tf(x) = µ̃(f), f ∈ Cb(D̄), x ∈ D̄. (6.5.13)

Since µ̄ is the unique invariant probability measure of P ∗t , and when the

initial distribution is µ̄, the SDE (6.5.11) coincides with (6.1.1), we conclude

that µ̃ = µ̄. Hence, (6.5.13) yields

µ̄(f) = lim
t→∞

Ptf(x0), f ∈ Cb(D̄), x0 ∈ D. (6.5.14)

Now, by Itô’s formula, (2.1.3) and (6.5.3) with (bt, σt) independent of t, we

obtain

|X̄x
t − X̄

y
t |2 ≤ eK1t|x− y|2, x, y ∈ D̄, t ≥ 0.

This and (6.5.12) imply

|∇P̄tf(x)| := lim sup
y→x

|P̄tf(x)− P̄tf(y)|
|x− y|

≤ lim sup
y→x

E|f(X̄x
t )− f(X̄y

t )|
|x− y|

≤ e−
λt
2 lim sup

y→x
E
|f(X̄x

t )− f(X̄y
t )|

|X̄x
t − X̄

y
t |

= e−λt/2P̄t|∇f |(x), t ≥ 0, f ∈ C1
b (D̄).

(6.5.15)

On the other hand, we have

∂tP̄tf = L̄P̄tf, 〈n,∇P̄tf〉|∂D = 0, t ≥ 0, f ∈ C2
N (D̄),

where C2
N (D̄) is the set of f ∈ C2

b (D̄) satisfying 〈n,∇f〉|∂D = 0, and

L̄ :=
1

2
tr{(σ̄σ̄∗)∇2}+∇b(·,µ̄), σ̄ := σ(µ̄), s ≥ 0.
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So, by Itô’s formula, for any ε > 0 and f ∈ C2
N (D̄),

d
{

(P̄t−s(ε+ f2)) log P̄t−s(ε+ f2)
}

(X̄s)

=
{ |σ̄∗∇P̄t−sf2|2

ε+ P̄t−sf2

}
dt+ dMε

s , s ∈ [0, t]

holds for some martingale (Mε
s )s∈[0,t]. Combining this with (6.5.15), we

find a constant c > 0 such that for any f ∈ C2
N (Rd),

P̄t
{

(ε+ f2) log(ε+ f2)
}
− (ε+ P̄tf

2) log(ε+ P̄tf
2)

=

∫ t

0

P̄s
|σ̄∗∇P̄t−sf2|2

ε+ P̄t−sf2
ds ≤ 4(c1‖σ̄‖∞)2

∫ t

0

e−λ(t−s)P̄sP̄t−s|∇f |2ds

= 4(c1‖σ̄‖∞)2(P̄t|∇f |2)

∫ t

0

e−λ(t−s)ds ≤ cP̄t|∇f |2, t ≥ 0, ε > 0.

By letting first ε ↓ 0 then t→∞, we deduce from this and (6.5.14) that

µ̄(f2 log f2) ≤ c2µ̄(|∇f |2), f ∈ C2
N (D̄), µ̄(f2) = 1

holds for some constant c2 > 0. This implies (6.5.7) by an approximation

argument. Indeed the inequality holds for f ∈ H1,2(µ̄) with µ̄(f2) = 1.

According to Lemma 6.5.3 below, (6.5.8) holds.

Finally, let σ be constant with σσ∗ invertible. Then (6.5.9) follows from

(6.5.5), (6.5.6) and (6.5.8). �

Note that under the log-Sobolev inequality, the Talagrand inequality

has been derived in [Bobkov et al (2001)] for a probability measure µ̄ of

type eV (x)dx for some V ∈ C(Rd). Below we extend assertion to general

probability measures and such that µ̄ supported in the domain D can be

applied.

Lemma 6.5.3. Let c > 0 be a constant and µ̄ ∈ P2(Rd). Then the log-

Sobolev inequality (6.5.7) implies (6.5.8).

Proof. By an approximation argument, we only need to prove for µ = %µ̄

for some density % ∈ Cb(Rd). Let P
(0)
t be the Ornstein-Uhlenbeck semi-

group generated by ∆− x · ∇ on Rd. We have

|∇P (0)
t f | ≤ P (0)

t |∇f |, P
(0)
t (f2 log f2)

≤ tP (0)
t |∇f |2 + (P

(0)
t f2) logP

(0)
t f2, f ∈ C1

b (Rd).
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Combining this with (6.5.7), we see that µ̄t := (P
(0)
t )∗µ̄ satisfies

µ̄t(f
2 log f2) = µ̄(P

(0)
t (f2 log f2))

≤ tµ̄t(|∇f |2) + µ̄((P
(0)
t f2) logP

(0)
t f2)

≤ tµ̄t(|∇f |2) + cµ̄
(∣∣∣∇√P (0)

t f2
∣∣∣2)+ µ̄t(f

2) log µ̄t(f
2)

≤ (t+ c)µ̄t(|∇f |2) + µ̄t(f
2) log µ̄t(f

2), f ∈ C1
b (Rd), t > 0,

where the last step follows from the gradient estimate |∇P (0)
t f | ≤ P (0)

t |∇f |,
which the Schwarz inequality imply∣∣∣∇√P (0)

t f2
∣∣∣2 =

|∇P (0)
t f2|2

4P
(0)
t f2

≤ {P
(0)
t (|f∇f |)}2

P
(0)
t f2

≤ P (0)
t |∇f |2.

Therefore, µ̄t satisfies the log-Sobolev inequality with constant t + c and

has smooth strictly positive density. According to [Bobkov et al (2001)],

we have

W2(µ, µ̄t)
2 ≤ (t+ c)Ent(µ|µ̄t), µ ∈ P2(Rd).

Since W2(µ̄t, µ̄)→ 0 as t→ 0, and µ = %µ̄ with % ∈ Cb(Rd), this implies

W2(µ, µ̄)2 = lim
t↓0

W2(µ, µ̄t)
2 ≤ lim

t↓0
(t+ c)Ent(µ|µ̄t)

= lim
t↓0

(t+ c)µ̄((P
(0)
t %) logP

(0)
t %) = cµ̄(% log %).

Therefore, (6.5.8) holds. �

6.5.3 Partially dissipative case

In this part, we consider the partially dissipative case such that Theo-

rem 5.5.1 is extended to the reflected setting. Let ψ ∈ Ψκ and Wψ be given

in (5.5.1) for D̄ replacing Rd. Then Wψ is a complete quasi-metric on the

space

Pψ(D̄) :=
{
µ ∈ P(D̄) : µ(ψ(| · |)) <∞

}
.

(A6.7) σt(x, µ) = σt(x) does not depend on µ.

(1) (Ellipticity) There exist α ∈ C([0,∞); (0,∞)) and σ̂ ∈ B([0,∞) ×
D̄;Rd ⊗ Rd) such that

σt(x)σt(x)∗ = αtId + σ̂t(x)σ̂t(x)∗, t ≥ 0, x ∈ D̄.
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(2) (Partial dissipativity) Let ψ ∈ Ψκ in (6.3.14) for some κ > 0, g ∈
C([0,∞)) with g(r) ≤ Kr for some constant K > 0 and all r ≥ 0,

such that

2αtψ
′′(r) + (gψ′)(r) ≤ −qtψ(r), r ≥ 0, t ≥ 0 (6.5.16)

holds for some q ∈ C([0,∞);R). Moreover, b ∈ C([0,∞) × D̄ ×
Pψ(D̄);Rd), and there exists θ ∈ C([0,∞); [0,∞)) such that

〈bt(x, µ)− bt(y, ν), x− y〉+
1

2
‖σ̂t(x)− σ̂t(y)‖2HS

≤ |x− y|
{
θtWψ(µ, ν) + g(|x− y|)

}
,

t ≥ 0, x, y ∈ D̄, µ, ν ∈ Pψ(D̄).

(6.5.17)

Theorem 6.5.4. Let D be convex and assume (A6.7), where ψ′′ ≤ 0 if σ̂

is non-constant. Then (6.1.1) with t ∈ [0,∞) is well-posed for distributions

in Pψ(D̄), and P ∗t satisfies

Wψ(P ∗t µ, P
∗
t ν) ≤ e−

∫ t
0
{qs−θs‖ψ′‖∞}dsWψ(µ, ν),

t ≥ 0, µ, ν ∈ Pψ(D̄).
(6.5.18)

Consequently, if (bt, σt, qt, θt) do not depend on t and q > θ‖ψ′‖∞, then P ∗t
has a unique invariant probability measure µ̄ ∈ Pψ(D̄) such that

Wψ(P ∗t µ, µ̄) ≤ e−(q−θ‖ψ′‖∞)tWψ(µ, µ̄), t ≥ 0, µ ∈ Pψ(D̄). (6.5.19)

Proof. Since D is convex, the proof is similar to that of Theorem 5.5.1.

We outline it below for completeness.

By Theorem 6.3.2, the well-posedness follows from (A6.7)(1) and

(A6.7)(2). Next, according to the proof of Theorem 6.5.2(2) with Wψ re-

placing W2, the second assertion follows from the first. So, in the following

we only prove (6.5.18).

For any s ≥ 0, let (Xs, Ys) be Fs-measurable such that

LXs = P ∗s µ, LYs = P ∗s ν, Wψ(P ∗s µ, P
∗
s ν) = Eψ(|Xs − Ys|). (6.5.20)

Let W
(1)
t and W

(2)
t be two independent d-dimensional Brownian motions

and consider the following SDE for t ≥ s:

dXt = bt(Xt, P
∗
t µ)dt+

√
αtdW

(1)
t + σ̂t(Xt)dW

(2)
t + n(Xt)dl

X
t , (6.5.21)

where lXt is the local time of Xt on ∂D. By Theorem 6.5.2, (A6.7)(1) and

(A6.7)(2) imply that this SDE is well-posed and
√
αtdW

(1)
t + σ̂t(Xt)dW

(2)
t = σt(Xt)dWt
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for the m-dimensional Brownian motion

Wt :=

∫ t

s

{
σ∗r (σrσ

∗
r )−1

}
(Xr)

{√
αrdW

(1)
r + σ̂r(Xr)dW

(2)
r

}
, t ≥ s,

so that the weak uniqueness of (6.1.1) implies LXt = P ∗s,tP
∗
s µ = P ∗t µ, t ≥ s,

where for γ ∈ Pψ we denote P ∗s,tγ = LXt for Xt solving (6.5.21) with

LXs = γ.

To construct the coupling with reflection, let

u(x, y) =
x− y
|x− y|

, x 6= y ∈ Rd.

We consider the SDE for t ≥ s:
dYt = bt(Yt, P

∗
t ν)dt+

√
αt
{
Id − 2u(Xt, Yt)⊗ u(Xt, Yt)1{t<τ}

}
dW

(1)
t

+ σ̂t(Yt)dW
(2)
t + dlYt ,

(6.5.22)

where

τ := inf{t ≥ s : Yt = Xt}
is the coupling time. Since the coefficients in noises are Lipschitz contin-

uous outside a neighborhood of the diagonal, according to Theorem 2.3.2,

(6.5.22) has a unique solution up to the coupling time τ . When t ≥ τ , the

equation of Yt becomes

dYt = bt(Yt, P
∗
t ν)dt+

√
αtdW

(1)
t + σ̂t(Yt)dW

(2)
t + dlYt , (6.5.23)

which is well-posed under (A6.7)(1) and (A6.7)(2) according to Theo-

rem 6.3.2. So, (6.5.22) is well-posed and LYt = P ∗t ν by the same reason

leading to LXt = P ∗t µ. Since D is convex, (2.1.3) holds. So, by (A6.7)(1)

and (A6.7)(2) for ψ ∈ Ψ with ψ′′ ≤ 0 when σ̂t is non-constant, and applying

Itô’s formula, we obtain

dψ(|Xt − Yt|)
≤
{
θtψ
′(|Xt − Yt|)Wψ(P ∗t µ, P

∗
t ν)− qtψ(|Xt − Yt|)

}
dt

+ ψ′(|Xt − Yt|)
[
2
√
αt

〈
u(Xt, Yt),dW

(1)
t

〉
+
〈
u(Xt, Yt), (σ̂t(Xt)− σ̂t(Yt))dW (2)

t

〉]
, s ≤ t < τ.

(6.5.24)

By a standard argument and noting that ψ(|Xt∧τ , Yt∧τ |)1{τ≤t} = 0, this

implies

e
∫ t
s
qpdpE

[
ψ(|Xt∧τ − Yt∧τ |)

]
= E

[
e
∫ t∧τ
s

qpdpEψ(|Xt∧τ − Yt∧τ |)
]

≤ Eψ(|Xs − Ys|) + ‖ψ′‖∞
∫ t∧τ

s

θre
∫ r
s
qpdpWψ(P ∗r µ, P

∗
r ν)dr, t ≥ s.



July 27, 2024 9:20 ws-book9x6 13512-main page 312

312 Distribution Dependent Stochastic Differential Equations

Consequently,

Eψ(|Xt∧τ − Yt∧τ |) ≤ e−
∫ t
s
qrdrEψ(|Xs − Ys|)

+ ‖ψ′‖∞
∫ t∧τ

s

θre
−

∫ t
r
qpdpWψ(P ∗r µ, P

∗
r ν)dr, t ≥ s.

(6.5.25)

On the other hand, when t ≥ τ , by (A6.7)(2) and applying Itô’s formula for

(6.5.21) and (6.5.23), we find a constant C > 0 such that

dψ(|Xt − Yt|) ≤{Cψ(|Xt − Yt|)dt+ θt‖ψ′‖∞Wψ(P ∗t µ, P
∗
t ν)
}

dt

+ ψ′(|Xt − Yt|)〈{σ̂t(Xt)− σ̂t(Yt)}∗u(Xt, Yt),dW
(2)
t 〉.

Noting that ψ(|Xτ − Yτ |) = 0, we obtain

E
[
1{t>τ}ψ(|Xt − Yt|)

]
≤ ‖ψ′‖∞eC(t−s)E

∫ t

t∧τ
θrWψ(P ∗r µ, P

∗
r ν)dr, t ≥ s.

Combining this with (6.5.25) and (6.5.20), we derive

Wψ(P ∗t µ, P
∗
t ν) ≤ Eψ(|Xt − Yt|)

= Eψ(|Xt∧τ − Yt∧τ |) + E
[
1{t>τ}ψ(|Xt − Yt|)

]
≤ e−

∫ t
s
qrdrEψ(|Xs − Ys|) + ‖ψ′‖∞eC(t−s)

∫ t

s

θrWψ(P ∗r µ, P
∗
r ν)dr

= e−
∫ t
s
qrdrWψ(P ∗s µ, P

∗
s ν) + ‖ψ′‖∞eC(t−s)

∫ t

s

θrWψ(P ∗r µ, P
∗
r ν)dr, t ≥ s.

Therefore,

d+

ds
Wψ(P ∗s µ, P

∗
s ν) := lim sup

t↓s

Wψ(P ∗t µ, P
∗
t ν)−Wψ(P ∗s µ, P

∗
s ν)

t− s
≤ −(qs − θs‖ψ′‖∞)Wψ(P ∗s µ, P

∗
s ν), s ≥ 0.

This implies (6.5.18). �

As a consequence of Theorem 6.5.4, we consider the non-dissipative case

where ∇bt(·, µ)(x) is positive definite in a possibly unbounded set but with

bounded “one-dimensional puncture mass” in the sense of (6.5.28) below.

Let W1 = Wψ and P1(D̄) = Pψ(D̄) for ψ(r) = r, and define

Sb(x) := sup
{
〈∇vbt(·, µ)(x), v〉 : t ≥ 0, |v| ≤ 1, µ ∈ P1(D̄)

}
, x ∈ D̄.
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(A6.7) (3) There exist constants θ0, θ1, θ2, β ≥ 0 such that
1

2
‖σt(x)− σt(y)‖2HS ≤ θ0|x− y|2, t ≥ 0, x, y ∈ D̄; (6.5.26)

Sb(x) ≤ θ1, |bt(x, µ)− bt(x, ν)| ≤ βW1(µ, ν),

t ≥ 0, x ∈ D̄, µ, ν ∈ P1(D̄);
(6.5.27)

κ := sup
x,v∈D̄,|v|=1

∫
R

1{Sb(x+sv)>−θ2}ds <∞. (6.5.28)

According to the proof of Corollary 5.5.2, the following result follows

from Theorem 6.5.4.

Corollary 6.5.5. Let D be convex. Assume (A6.7)(1) and (A6.7)(3). Let

g(r) := (θ1 + θ2)
{

(κr−1) ∧ r
}
− (θ2 − θ0)r, r ≥ 0,

k :=
2α∫∞

0
t e

1
2β

∫ t
0
g(u)dudt

− β(θ2 − θ0)

2α

∫ ∞
0

te
1

2α

∫ t
0
g(u)dudt.

(6.5.29)

Then there exists a constant c > 0 such that

W1(P ∗t µ, P
∗
t ν) ≤ ce−ktW1(µ, ν), t ≥ 0, µ, ν ∈ P1(D̄).

If (bt, σt) does not depend on t and θ2 > θ0 with

β <
4α2

(θ2 − θ0)(
∫∞

0
t e

1
2α

∫ t
0
g(u)dudt)2

, (6.5.30)

then k > 0 and P ∗t has a unique invariant probability measure µ̄ ∈ P1(D̄)

satisfying

W1(P ∗t µ, µ̄) ≤ ce−ktW1(µ, µ̄), t ≥ 0, µ ∈ P1(D̄).

6.5.4 Non-dissipative case

Finally, we consider the fully non-dissipative case such that Theorem 5.4.1

is extended to the reflected setting. Let Lt,µ be in (6.1.2) for any t ≥ 0 and

µ ∈ P(D̄). We assume the following Lyapunov condition.

(A6.8) (Lyapunov Condition) There exists a function 0 ≤ V ∈ C2(D̄) with

〈∇V,n〉|∂D ≤ 0, lim|x|→∞ V (x) =∞ and

sup
t≥0;x,y∈D̄

{
|∇V (x)−∇V (y)|

|x− y|{1 + V (x) + V (y)}

+
‖σt(x)‖2 · |∇V (x)|+ ‖σt(y)‖2 · |∇V (y)|

1 + V (x) + V (y)

}
<∞,

(6.5.31)
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such that for some K0,K1 ∈ L1
loc([0,∞);R) and any

µ ∈ PV (D̄) := {µ ∈ P(D̄) : µ(V ) <∞}, (6.5.32)

we have

Lt,µV ≤ K0(t)−K1(t)V, t ≥ 0. (6.5.33)

Next, we introduce the monotone condition with respect to a weighted

Wasserstein distance induced by V and a function ψ in the following class

for some l > 0:

Ψ̃l :=
{
ψ ∈ C2([0, l]; [0,∞)) : ψ(0) = ψ′(l) = 0, ψ′|[0,l) > 0

}
.

For each ψ ∈ Ψ̃l, we extend it to the half line by setting ψ(r) = ψ(r ∧ l),
so that ψ′ is nonnegative, Lipschitz continuous with compact support, and

satisfies

‖ψ′‖∞ := sup
r>0
|ψ′(r)| = sup

r∈(0,l)

ψ′(r) ∈ (0,∞).

For any constant β > 0, define the quasi-distance on PV (D̄):

Wψ,βV (µ, ν) := inf
π∈C(µ,ν)

∫
Rd×Rd

ψ(|x− y|)
(
1 + βV (x) + βV (y)

)
π(dx, dy),

Ŵψ,βV (µ, ν) := inf
π∈C(µ,ν)

∫
D̄×D̄ ψ(|x− y|)(1 + βV (x) + βV (y))π(dx,dy)∫
D̄×D̄ ψ

′(|x− y|)(1 + βV (x) + βV (y))π(dx, dy)
.

Obviously, Ŵψ,βV (µ, ν) ≥ Wψ,βV (µ,ν)
‖ψ′‖∞(1+βµ(V )+βν(V )) .

(A6.9) (Local monotonicity) σ satisfies (A6.7)(1), b is bounded on bound-

ed set in [0,∞) × D̄ × PV (D̄). Moreover, there exist K, θ, q ∈
L1
loc([0,∞); [0,∞)) and a function ψ ∈ Ψ̃l for some l > 0 satisfying

2αtψ
′′(r) +Ktψ

′(r) ≤ −qtψ(r), r ∈ [0, l],

such that

〈bt(x, µ)− bt(y, ν), x− y〉+
1

2
‖σ̂t(x)− σ̂t(y)‖2HS

≤ Kt|x− y|2 + θt|x− y|Ŵψ,βV (µ, ν), x, y ∈ D̄, µ, ν ∈ PV (D̄).
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By (A6.8), V (x) → ∞ as |x| → ∞, when K1(t) > 0 and l is large

enough, we have

ζl,β(t) := inf
|x−y|>l

K1(t)V (x) +K1(t)V (y)− 2K0(t)

β−1 + V (x) + V (y)
> 0. (6.5.34)

Moreover, (A6.7)(1) and (A6.8) imply

αl,β(t) := ‖ψ′‖∞ sup
|x−y|∈(0,l)

{
|∇V (x)−∇V (y)|

|x− y|{β−1 + V (x) + V (y)}

+
|{σ̂t(x)− σ̂t(y)}[(σ̂∗t∇V )(x) + (σ̂∗t∇V )(y)]|

|x− y|{β−1 + V (x) + V (y)}

}
<∞

(6.5.35)

for any β, l > 0. For constants K0, ζl,β , αl,β and q given in (A6.8), (A6.9),

(6.5.34) and (6.5.35) respectively, let

λl,β(t) := min
{
ζl,β(t), qt − 2K0(t)β − αl,β(t)

}
.

Theorem 6.5.6. Let D be convex. Assume (A6.8) and (A6.9), where ψ′′ ≤
0 if σ̂t(·) is non-constant. Then (6.1.1) with t ∈ [0,∞) is well-posed for

distributions in PV (D̄), and P ∗t satisfies

Wψ,βV (P ∗t µ, P
∗
t ν) ≤ e−

∫ t
0
{λl,β(s)−θs}dsWψ,βV (µ, ν),

t ≥ 0, µ, ν ∈ PV (D̄).
(6.5.36)

Consequently, if (σt, bt) does not depend on t and λl,β > θ, then P ∗t has a

unique invariant probability measure µ̄ ∈ PV (D̄) such that

Wψ,βV (P ∗t µ, µ̄) ≤ e−(λl,β−θ)tWψ,βV (µ, µ̄), t ≥ 0, µ ∈ PV (D̄). (6.5.37)

Proof. We first prove the well-posedness. Let X0 be F0-measurable with

LX0
=: γ ∈ PV (D̄). For any T > 0 and

µ ∈ PTV,γ(D̄) :=
{
µ ∈ Cwb ([0, T ];PV (D̄)) : µ0 = γ

}
,

consider the following reflected SDE on D̄:

dXµ
t = bt(X

µ
t , µt) + σt(X

µ
t )dWt + n(Xt)dLt,µ, Xµ

0 = X0, t ∈ [0, T ].

According to Theorem 2.3.2, (A6.9) implies that this SDE is well-posed up

to life time. By 〈∇V,n〉|∂D ≤ 0 and (6.5.26) in (A6.8), and applying Itô’s

formula, we obtain

dV (Xµ
t )

= Lt,µtV (Xµ
t )dt+ 〈∇V (Xµ

t ), σt(X
µ
t )dWt〉+ 〈∇V (Xµ

t ),n(Xµ
t )〉dLt,µ

≤ {K0(t)−K1(t)V (Xµ
t )}dt+ 〈∇V (Xµ

t ), σt(X
µ
t )dWt〉.
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By Gronwall’s lemma and lim|x|→∞ V (x) = ∞, this implies the non-

explosion of Xµ
t , and

Φ·µ := LXµ· ∈ P
T
V,γ(D̄).

So, as shown in the proof of Theorem 6.2.2, it suffices to verify the contrac-

tion of Φ on PTV,γ(D̄) under the metric

Wψ,V,λ(µ, ν) := sup
t∈[0,T ]

e−λtWψ,V (µt, νt), µ, ν ∈ PTV,γ(D̄)

for large λ > 0. Let µ, ν ∈ PTV,γ(D̄). By (A6.9), 〈n,∇V 〉|∂D ≤ 0, (2.1.3),

and applying Itô-Tanaka formula, we find a constant C1 > 0 such that

d|Xµ
t −Xν

t | ≤C1(Ŵψ,βV (µt, νt) + |Xµ
t −Xν

t |)dt

+
〈 Xµ

t −Xν
t

|Xµ
t −Xν

t |
,
{
σt(X

µ
t )− σt(Xν

t )
}

dWt

〉
.

Then the remainder of the proof is the same as that of Lemma 5.4.3.

Next, we prove (6.5.36) which implies (6.5.37) in the time homogenous

case. For any µ, ν ∈ PV (D̄), let X0, Y0 be F0-measurable such that LX0 =

µ, LY0
= ν, and

E
[
ψ(|X0 − Y0|)(1 + βV (X0) + βV (Y0))

]
= Wψ,βV (µ, ν).

Let (Xt, Yt) be the coupling constructed in the proof of Theorem 6.5.2.

By 〈n,∇V 〉|∂D ≤ 0 and (2.1.3), the local time terms does not make any

trouble when we apply Itô’s formula to ψ(|Xt− Yt|) or V (Xt) + V (Yt). So,

by repeating step C in the proof of Theorem 5.4.1, we derive (6.5.36). �

6.6 Notes

The study of reflected DDSDEs goes back to [Sznitman (1984)] where the

coefficients are Lipschitz continuous and the dependence of distribution is

of integral type. In a more general framework but with convex domain

D, the propagation of chaos and large deviation principle for small noise

have been investigated in [Adams et al (2022)] where more references on

reflected DDSDEs can be found.

In this chapter, most results in Chapters 3–5 have been extended to

the reflected case, except Bismut formula and the Donsker-Varadhan large

deviations. Noting that Bismut formulas have been established for reflected

diffusion processes, see for instance [Wang (2014)], this type of formulas

should also be valid for the reflected DDSDEs. When D is convex, it
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should be easy to extend the Donsker-Varadhan LDP in Theorem 5.6.1 to

the reflected setting.

It is interesting to study the exponential ergodicity and long time LDP

for non-convex D.
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Chapter 7

Killed DDSDEs

In this chapter, we consider the killed DDSDEs which in turn describe

the nonlinear Dirichlet problems, where the distributions are restricted to

an open domain and thus might be sub-probability measures. We first

introduce the link of killed DDSDE and nonlinear Dirichlet problem with

a general well-posedness result, then study the killed DDSDE for several

different situations. This part is due to [Wang (2023f)].

7.1 Killed DDSDE for nonlinear Dirichlet problem

Let D ⊂ Rd be a connected open domain with closure D̄, and let

PD :=
{
µ is a measure on D, µ(D) ≤ 1

}
be the space of sub-probability measures on D equipped with the weak

topology.

Consider the following time-distribution dependent second order differ-

ential operator on D:

Lt,µ := tr{(σtσ∗t )(·, µ)∇2}+∇bt(·,µ), t ∈ [0, T ], µ ∈ PD,

where T > 0 is a fixed constant, σ∗ is the transposition of σ, ∇2 is the

Hessian operator, ∇b := b ·∇ is the derivative along b, and for some m ∈ N,

b : [0, T ]×D × PD → Rd, σ : [0, T ]×D × PD → Rd ⊗ Rm

are measurable such that∫ T

0

dt

∫
D

{
|bt(x, µt)|+ ‖σt(x, µt)‖2

}
µt(dx) <∞,

µ = (µt)t∈[0,T ] ∈ C([0, T ];PD).

(7.1.1)

319
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To introduce the nonlinear Dirichlet problem for Lt,µ on PD, let C2
D(D)

be the class of f ∈ C2
b (D̄) with Dirichlet condition f |∂D = 0, where f ∈

C2
b (D̄) means that f is a bounded C2 function on D̄ with bounded first

and second order derivatives. For any t ∈ [0, T ] and µ, ν ∈ PD such that∫
D

{
|bt(x, µ)|+ ‖σt(x, µ)‖2

}
ν(dx) <∞,

define the linear functional on C2
D(D):

LD∗t,µν : C2
D(D) 3 f 7→ (LD∗t,µν)(f) :=

∫
D

Lt,µfdν ∈ R.

The corresponding nonlinear Dirichlet problem for Lt,µ is the equation

∂tµt = LD∗t,µtµt, t ∈ [0, T ] (7.1.2)

for µ : [0, T ]→ PD. We call µ· ∈ C([0, T ];PD) a solution to (7.1.2), if

µt(f) = µ0(f) +

∫ t

0

µs(Ls,µsf)ds, t ∈ [0, T ], f ∈ C2
D(D),

where µ(f) :=
∫
fdµ for a measure µ and f ∈ L1(µ).

When µt(dx) = ρt(x)dx, (7.1.2) reduces to the nonlinear Dirichlet prob-

lem

∂tρt = LD∗t,ρtρt, t ∈ [0, T ],

where Lt,ρt := Lt,ρt(x)dx, in the sense that∫
D

(fρt)(x)dx =

∫
D

(fρ0)(x)dx+

∫ t

0

ds

∫
D

(ρsLs,ρsf)(x)dx,

t ∈ [0, T ], f ∈ C2
D(D).

To characterize (7.1.2), we consider the following killed DDSDE on D̄:

dXt = 1{t<τ(X)}
{
bt(Xt,LDXt)dt+ σt(Xt,LDXt)dWt

}
, t ∈ [0, T ], (7.1.3)

where Wt is the m-dimensional Brownian motion on a complete filtration

probability space (Ω, {Ft}t≥0,P),

τ(X) := inf{t ∈ [0, T ] : Xt ∈ ∂D}

with inf ∅ =∞ by convention, and for a D̄-valued random variable ξ,

LDξ := P(ξ ∈ D ∩ ·)

is the distribution of ξ restricted to D, which we call the D-distribution of

ξ. When different probability spaces are concerned, we denote LDξ by LDξ|P
to emphasize the reference probability measure.
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Definition 7.1.1. A continuous adapted process (Xt)t∈[0,T ] on D̄ is called

a solution of (7.1.3), if P-a.s.∫ T∧τ(X)

0

{
|bt(Xt,LDXt)|+ ‖σt(Xt,LDXt)‖

2
}

dt <∞

and

Xt = X0 +

∫ t∧τ(X)

0

{
bs(Xs,LDXs)ds+ σs(Xs,LDXs)dWs

}
, t ∈ [0, T ].

We call (X̃t, W̃t) a weak solution to (7.1.3), if there exists a complete fil-

tration probability space (Ω̃, {F̃t}t∈[0,T ], P̃) such that W̃t is m-dimensional

Brownian motion and X̃t solves (7.1.3) for W̃t replacing Wt.

Remark 7.1.1. (1) It is easy to see that for any (weak) solution Xt of

(7.1.3), µt := LDXt solves the nonlinear Dirichlet problem (7.1.2). Indeed,

since dXt = 0 for t ≥ τ(X), we have

Xt = Xτ(X) ∈ ∂D, t ≥ τ(X),

so that

Xt = Xt∧τ(X), LDXt(dx) = P(t < τ(X), Xt ∈ dx), t ∈ [0, T ].

By this and Itô’s formula, for any f ∈ C2
D(D) we have

µt(f) = E[(1Df)(Xt)] = E[f(Xt)]

= E[f(X0)] + E
∫ t

0

1{s<τ(X)}Ls,µsf(Xs)ds

= µ0(f) +

∫ t

0

µs(Ls,µsf)ds, t ∈ [0, T ].

(2) An alternative model to (7.1.3) is

dXt = 1D(Xt)
{
bt(Xt,LDXt)dt+ σt(Xt,LDXt)dWt

}
, t ∈ [0, T ]. (7.1.4)

A solution of (7.1.3) also solves (7.1.4); while for a solution Xt to (7.1.4),

X̃t := Xt∧τ(X)

solves (7.1.3). In general, a solution of (7.1.4) does not have to solve (7.1.3).

For instance, let d = m = 1 and D = (0,∞), consider σt(x, µ) = 2x,

bt(x, µ) = 2
√
x. Let Yt solve the SDE

dYt = YtdWt +
(

1− 1

2
Yt

)
dt, Y0 = 0.

Then Xt := (Yt)
2 solves (7.1.4) but does not solve (7.1.3), since τ(X) = 0

and Xt > 0 (i.e. Xt /∈ ∂D) for t > 0.
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(3) The SDE (7.1.4) can be formulated as the usual DDSDE on Rd,
so that the superposition principle in [Barbu and Röckner (2020)] applies.

More precisely, let P be the space of probability measures on Rd, and define

b̄t(x, µ) := 1D(x)bt(x, µ(D ∩ ·)), σ̄t(x, µ) := 1D(x)σt(x, µ(D ∩ ·))

for (t, x, µ) ∈ [0, T ]× Rd × P. Then (7.1.4) becomes the following DDSDE

on Rd:

dXt = b̄t(Xt,LXt)dt+ σ̄t(Xt,LXt)dWt, t ∈ [0, T ].

We often solve (7.1.3) for D-distributions in a non-empty sub-space P̂D
of PD, which is equipped with a complete metric d̂. Let Cw([0, T ]; P̂D) and

Cwb ([0, T ]; P̂D) be defined as in (3.1.2).

Definition 7.1.2. (1) If for any F0-measurable random variable X0 on D̄

with LDX0
∈ P̂D, (7.1.3) has a unique solution starting at X0 such that

LDX := (LDXt)t∈[0,T ] ∈ Cwb ([0, T ]; P̂D), we call the SDE strongly well-posed

for D-distributions in P̂D.

(2) We call the SDE weakly unique for D-distributions in P̂D, if for

any two weak solutions (Xi
t ,W

i
t ) w.r.t. (Ωi, {F it}t∈[0,T ],Pi)(i = 1, 2) with

LD
X1

0 |P1 = LD
X2

0 |P2 ∈ P̂D, we have LDX1|P1 = LDX2|P2 . We call (7.1.3) weakly

well-posed for D-distributions in P̂D, if for any initial D-distribution µ0 ∈
P̂D, it has a unique weak solution for D-distributions in P̂D.

(3) The SDE (7.1.3) is called well-posed for D-distributions in P̂D, if it

is both strongly and weakly well-posed for D-distributions in P̂D.

When (7.1.3) is well-posed for D-distributions in P̂D, for any µ ∈ P̂D
and t ∈ [0, T ], let

PD∗t µ = LDXt , t ∈ [0, T ], LDX0
= µ.

We will study the well-posedness under the following assumption.

(A7.1) For any µ ∈ Cwb ([0, T ]; P̂D), the killed SDE

dXµ
t = 1{t<τ(Xµ)}

{
bt(X

µ
t , µt)dt+ σt(X

µ
t , µt)dWt

}
, t ∈ [0, T ]

(7.1.5)

is well-posed for initial value Xµ
0 with LD

Xµ0
= µ0, and LDXµ ∈ Cwb ([0,

T ]; P̂D).
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Under this assumption, we define a map

Cwb ([0, T ]; P̂D) 3 µ 7→ Φ·µ := LDXµ· ∈ C
w
b ([0, T ]; P̂D). (7.1.6)

It is clear that a solution of (7.1.5) solves (7.1.3) if and only if µ is a fixed

point of Φ. So, we have the following result.

Theorem 7.1.1. Assume (A7.1). If for any γ ∈ P̂D, Φ has a unique

fixed point in {µ ∈ Cwb ([0, T ]; P̂D), µ0 = γ}, then (7.1.3) is well-posed for

D-distributions in P̂D.

7.2 Monotone case

In this part, we solve (7.1.3) under monotone conditions with respect to

the L1 or truncated L1 Wasserstein distances:

W1(µ, ν) := inf
π∈PD(µ,ν)

∫
D×D

|x− y|π(dx, dy),

Ŵ1(µ, ν) := inf
π∈PD(µ,ν)

∫
D×D

(1 ∧ |x− y|)π(dx, dy), µ, ν ∈ PD,
(7.2.1)

where π ∈ PD(µ, ν) means that π is a probability measure on D̄ × D̄ such

that

π({· ∩D} × D̄) = µ, π(D̄ × {· ∩D}) = ν.

7.2.1 Monotonicity in Ŵ1

(A7.2) For any µ ∈ Cw([0, T ];PD), bt(x, µt) and σt(x, µt) are continuous

in x ∈ D such that for any N ≥ 1 and DN := {x ∈ D : |x| ≤ N},∫ T

0

sup
DN

{
|bt(·, µt)|+ ‖σt(·, µt)‖2

}
dt <∞.

Moreover, there exists K ∈ L1([0, T ]; (0,∞)) such that for any x, y ∈
D and µ, ν ∈ PD,

2〈bt(x, µ)− bt(y, ν), x− y〉+ ‖σt(x, µ)− σt(y, ν)‖2HS
≤ K(t)

{
|x− y|2 + Ŵ1(µ, ν)2

}
,

2〈bt(x, µ), x〉+ ‖σt(x, µ)‖2HS ≤ K(t)
(
1 + |x|2

)
, t ∈ [0, T ].
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(A7.3) There exists r0 ∈ (0, 1] such that the distance function ρ∂ to ∂D is

C2-smooth in

∂r0D := {x ∈ D̄ : ρ∂(x) ≤ r0

}
,

and there exists a constant α > 0 such that

|σt(x, µ)∗∇ρ∂(x)|−2 ≤ α, Lt,µρ∂(x) ≤ α, x ∈ ∂r0D, t ∈ [0, T ].

Theorem 7.2.1. Assume (A7.2) and (A7.3). Then the following assertions

hold.

(1) (7.1.3) is well-posed for D-distributions in PD. Moreover, for any p ≥ 1

there exists a constant c > 0 such that for any solution Xt to (7.1.3)

for D-distributions in PD,

E
[

sup
t∈[0,T ]

|Xt|p
∣∣∣F0

]
≤ c
(
1 + |X0|p

)
. (7.2.2)

(2) There exists a constant c > 0 such that

sup
t∈[0,T ]

Ŵ1(PD∗t µ, PD∗t ν) ≤ cŴ1(µ, ν), µ, ν ∈ PD. (7.2.3)

Under assumption (A7.2), for any µ ∈ Cw([0, T ];PD), the SDE (7.1.5)

satisfies the semi-Lipschitz condition before the hitting time τ(Xµ), hence

it is well-posed, and for any p ≥ 1 there exists a constant c > 0 uniformly

in µ such that

E
[

sup
t∈[0,T ]

|Xµ
t∧τ̃ |

p
∣∣∣F0

]
= E

[
sup
t∈[0,T ]

|Xµ
t∧τ(Xµ)∧τ̃ |

p
∣∣∣F0

]
≤ c(1 + |Xµ

0 |p)
(7.2.4)

holds for any solution Xµ
t of (7.1.5) and any stopping time τ̃ .

By Theorem 7.1.1, to prove the well-posedness of (7.1.3) for D-

distributions in PD, it remains to show that for any γ ∈ PD, the map

Φ in (7.1.6) for P̂D = PD has a unique fixed point in

PTγ (D̄) := {µ ∈ Cw([0, T ];PD) : µ0 = γ}. (7.2.5)

To this end, for i = 1, 2, let µi ∈ Cw([0, T ];PD), and let Xi
t solve (7.1.5)

for µi replacing µ with LD
Xi0

= µi0, i.e.

dXi
t = 1{t<τ(Xi)}

{
bt(X

i
t , µ

i
t)dt+ σt(X

i
t , µ

i
t)dWt

}
,

t ∈ [0, T ],LDXi0 = µi0.
(7.2.6)

Simply denote

τi = τ(Xi) for i = 1, 2, τ1,2 := τ1 ∧ τ2.
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Since

Γ :=
{

(x, y) : x ∈ D, y ∈ ∂D, |x− y| = ρ∂(x)
}

is a measurable subset of D × ∂D and Γx := {y ∈ ∂D : (x, y) ∈ Γ} 6=
∅ for any x ∈ D, by the measurable selection theorem, see Theorem 1

in [Evstigneev (1988)], there exists a measurable map P∂ : D → ∂D such

that

|P∂x− x| = ρ∂(x), x ∈ D. (7.2.7)

We will use the following coupling by projection.

Definition 7.2.1. The coupling by projection (X̄1
t , X̄

2
t ) for (X1

t , X
2
t ) =

(X1
t∧τ1 , X

2
t∧τ2) is defined as

(X̄1
t , X̄

2
t ) :=


(X1

t , X
2
t ), if t ≤ τ1,2,

(X1
t , P∂X

1
t ), if τ2 < t ∧ τ1,

(P∂X
2
t , X

2
t ), otherwise.

(7.2.8)

It is easy to see that LD
X̄it

= LD
Xit

= Φtµ
i for i = 1, 2; i.e. the distribution

L(X̄1
t ,X̄

2
t ) of the coupling by projection (X̄1

t , X̄
2
t ) satisfies

L(X̄1
t ,X̄

2
t ) ∈ PD(Φtµ

1,Φtµ
2).

Thus, by (7.2.1) and Definition 7.2.1,

Ŵ1(Φtµ
1,Φtµ

2) ≤ E
[
1 ∧ |X̄1

t − X̄2
t |
]

≤ E
[
1 ∧ |X1

t∧τ1,2 − X̄
2
t∧τ1,2 |

]
+ r−1

0 E[{r0 ∧ ρ∂(X1
t )}1{t∧τ1≥τ2}

]
+ r−1

0 E[{r0 ∧ ρ∂(X2
t )}1{t∧τ2≥τ1}

]
.

(7.2.9)

Lemma 7.2.2. Assume (A7.2). Then there exists a constant c > 1 such

that for any t ∈ [0, T ] and µ1, µ2 ∈ Cw([0, T ];PD),

E
[
|X1

t∧τ1,2 −X
2
t∧τ1,2 |

2
∣∣F0

]
≤ c |X1

0 −X2
0 |2 + c

∫ t

0

K(s)Ŵ1(µ1
s, µ

2
s)

2ds.
(7.2.10)

Consequently, for any t ∈ [0, T ],

E
[
1 ∧ |X1

t∧τ1,2 −X
2
t∧τ1,2 |

]
≤
√
cE[1 ∧ |X1

0 −X2
0 |] +

(
c

∫ t

0

K(s)Ŵ1(µ1
s, µ

2
s)

2ds

) 1
2

.
(7.2.11)
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Proof. It suffices to prove (7.2.10), which implies (7.2.11) due to Jensen’s

inequality.

By (A7.2) and Itô’s formula, we obtain

d|X1
t −X2

t |2 ≤ K(t)
{
|X1

t −X2
t |2 + Ŵ1(µ1

t , µ
2
t )

2
}

dt+ dMt, t ∈ [0, T ∧ τ1,2]

for some local martingale Mt. This and (7.2.4) imply that

βt := E
[
|X1

t∧τ1,2 −X
2
t∧τ1,2 |

2
∣∣F0

]
is bounded in t ∈ [0, T ] and satisfies

βt ≤ β0 +

∫ t

0

K(s)
{
βs + Ŵ1(µ1

s, µ
2
s)

2
}

ds, t ∈ [0, T ].

By Gronwall’s inequality, we prove (7.2.10). �

Lemma 7.2.3. Assume (A7.3). Then there exists a constant c > 1 inde-

pendent of µ such that for any solution Xµ
t to (7.1.5) and any stopping time

τ̃ ,

1{t∧τ(Xµ)≥τ̃}E
[
r0 ∧ ρ∂(Xµ

t )
∣∣Fτ̃ ] ≤ c1{t∧τ(Xµ)≥τ̃}ρ∂(Xµ

t∧τ̃ ), t ∈ [0, T ].

Proof. By the strong Markov property of Xµ
t which is implied by the

well-posedness of (7.1.5), we may and do assume that τ̃ = 0 and x = Xµ
0 ∈

D, such that the desired estimate becomes

Ex
[
r0 ∧ ρ∂(Xµ

t )
]
≤ cρ∂(x), t ∈ [0, T ], (7.2.12)

where Ex is the expectation under the probability Px for Xµ
t starting at x.

If ρ∂(x) ≥ r0
4 , this inequality holds for c := 4. So, it suffices to prove for

ρ∂(x) < r0
4 .

Let h ∈ C∞([0,∞)) such that

h′ ≥ 0, h′′ ≤ 0, h(r) = r for r ∈ [0, r0/2], h′(r) = 0 for r ≥ r0.

By (A7.3),

dh(ρ∂(Xµ
t )) ≤ αdt+ dMt, t ∈ [0, T ∧ τ(Xµ)], (7.2.13)

where Mt is a martingale with

d〈M〉t ≥ α−1dt, t ≤ τ̂ := inf{t ≥ 0 : ρ∂(Xµ
t ) ≥ r0/2}. (7.2.14)

By (7.2.13) we obtain

Ex[r0 ∧ ρ∂(Xµ
t )] ≤ 2Ex[h(ρ∂(Xµ

t∧τ(Xµ)))]

≤ 2ρ∂(x) + 2αEx[t ∧ τ(Xµ)].
(7.2.15)
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On the other hand, let

ηt :=

∫ ρ∂(Xµt )

0

e−2α2sds

∫ r0

s

e2α2θdθ, t ∈ [0, T ∧ τ(Xµ) ∧ τ̂ ].

Since h(r) = r for r ≤ r0
2 , by (7.2.13), (7.2.14) and Itô’s formula, we find a

martingale M̃t such that

dηt ≤ −dt+ dM̃t, t ∈ [0, T ∧ τ(Xµ) ∧ τ̂ ].

Consequently,

Ex[t ∧ τ(Xµ) ∧ τ̂ ] ≤ η0 ≤ c1ρ∂(x) (7.2.16)

holds for some constant c1 > 0. Therefore,

Ex[t ∧ τ(Xµ)] ≤ Ex[t ∧ τ(Xµ) ∧ τ̂ ] + T Ex
[
1{t∧τ(Xµ)>τ̂}

]
≤ c1ρ∂(x) + T Px

(
t ∧ τ(Xµ) > τ̂

)
, t ∈ [0, T ].

(7.2.17)

To estimate the second term, let

ξt :=

∫ ρ∂(Xµt )

0

e−2α2sds, t ∈ [0, T ∧ τ(Xµ) ∧ τ̂ ].

By h(r) = r for r ∈ [0, r02 ], (7.2.13), (7.2.14) and Itô’s formula, we see that

ξt is a sup-martingale, so that

ρ∂(x) ≥ ξ0 ≥ Ex[ξt∧τ(Xµ)∧τ̂ ]

≥ Px
(
t ∧ τ(Xµ) ≥ τ̂

) ∫ r0/2

0

e−2α2sds.
(7.2.18)

Combining this with (7.2.15) and (7.2.17), we prove (7.2.12) for some con-

stant c > 0. �

Proof of Theorem 7.2.1. (a) Well-posedness. Let γ := LDX0
, and con-

sider PTγ (D̄) in (7.2.5). We intend to prove that Φ is contractive in PTγ (D̄)

under the complete metric

Ŵ1,θ(µ
1, µ2) := sup

t∈[0,T ]

e−θtŴ1(µ1
t , µ

2
t )

for large enough θ > 0. Then Φ has a unique fixed point in PTγ (D̄), so that

the well-posedness follows from Theorem 7.1.1.

To this end, let µi ∈ Cγ and let Xi
t solve (7.1.5) with µ = µi and

Xi
0 = X0, i = 1, 2. By r0 ≤ 1, Lemma 7.2.3, and noting that

1{t∧τ2≥τ1}ρ∂(X2
t∧τ1,2) ≤ 1{t∧τ2≥τ1}|X

2
t∧τ1,2 −X

1
t∧τ1,2 |,
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we obtain

E
[
1{t∧τ2≥τ1}

{
r0 ∧ ρ∂(X2

t∧τ2)
}]

= E
(

1{t∧τ2≥τ1}E
[{
r0 ∧ ρ(X2

t∧τ2)
}∣∣Fτ1])

≤ c E
[
1{t∧τ2≥τ1}

{
r0 ∧ ρ∂(X2

t∧τ1,2)
}]

≤ c E
[
1 ∧ |X1

t∧τ1,2 −X
2
t∧τ1,2 |

]
.

(7.2.19)

By symmetry, the same estimate holds for E
[
1{t∧τ1≥τ2}

{
r0 ∧ ρ∂(X1

t∧τ2)
}]

.

Combining these with X1
0 = X2

0 = X0, (7.2.9) and (7.2.11), we find a

constant c1 > 0 such that

Ŵ1(Φtµ
1,Φtµ

2) ≤ c1
(∫ t

0

K(s)Ŵ1(µ1
s, µ

2
s)

2ds

) 1
2

, t ∈ [0, T ].

This implies that Φ is contractive in Ŵ1,θ for large enough θ > 0.

(b) Estimate (7.2.2). Let µt = LDXt for the unique solution of (7.1.3),

we have Xt = Xµ
t since µ is a fixed point of Φ. So, (7.2.2) follows from

(7.2.4).

(c) Estimate (7.2.3). Take X1
0 , X

2
0 such that

LDX1
0

= µ, LDX2
0

= ν, E[1 ∧ |X1
0 −X2

0 |] = Ŵ1(µ, ν). (7.2.20)

Let X1
t and X2

t solve (7.1.3). Then they solve (7.2.6) with

µ1
t := LDX1

t
= PD∗t µ, µ2

t := LDX2
t

= PD∗t ν,

so that µit = Φtµ
i, t ∈ [0, T ], i = 1, 2. Thus, by (7.2.9), (7.2.10) and

Lemma 7.2.3, we find a constant c2 > 0 such that

Ŵ1(PD∗t µ, PD∗t ν) = Ŵ1(Φtµ
1,Φtµ

2)

≤ c2Ŵ1(µ, ν) +

(
c2

∫ t

0

K(s)Ŵ1(PD∗s µ, PD∗s ν)2ds

) 1
2

, t ∈ [0, T ].

By Gronwall’s inequality, we prove (7.2.3) for some constant c > 0. �

7.2.2 Monotonicity in W1

Let PD1 = {µ ∈ PD, ‖µ‖1 := µ(| · |) <∞}. Define

‖µ‖1,T := sup
t∈[0,T ]

‖µt‖1, µ ∈ Cwb ([0, T ];PD1 ).
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(A7.4) For any µ ∈ Cwb ([0, T ];PD1 ), bt(x, µt) and σt(x, µt) are continuous

in x ∈ D such that for any N ≥ 1 and DN := {x ∈ D : |x| ≤ N},∫ T

0

sup
DN

{
|bt(·, µt)|+ ‖σt(·, µt)‖2

}
dt <∞.

Moreover, there exists K ∈ L1([0, T ]; (0,∞)) such that for any x, y ∈
D and µ, ν ∈ PD1 ,

2〈bt(x, µ)− bt(y, ν), x− y〉+ ‖σt(x, µ)− σt(y, ν)‖2HS
≤ K(t)

{
|x− y|2 + W1(µ, ν)2

}
,

2〈bt(x, µ), x〉+ ‖σt(x, µ)‖2HS ≤ K(t)
{

1 + |x|2 + ‖µ‖21
}
, t ∈ [0, T ].

(A7.5) There exists r0 > 0 such that ρ∂ ∈ C2(∂r0D), and there exists an

increasing function α : [0,∞)→ [1,∞) such that

|σt(x, µ)∗∇ρ∂ |−2 ≤ α(‖µ‖1),

Lt,µρ∂(x) ≤ α(‖µ‖1), x ∈ ∂r0D,
(7.2.21)

2〈bt(x, µ), x− y〉+ ‖σt(x, µ)‖2HS
≤ K(t)α(‖µ‖1)

(
1 + |x− y|2

)
, t ∈ [0, T ], y ∈ ∂D, x ∈ D.

(7.2.22)

Theorem 7.2.4. Assume (A7.4) and (A7.5). Then the following assertions

hold.

(1) (7.1.3) is well-posed for D-distributions in PD1 . Moreover, for any p ≥ 1

there exists a constant c > 0 such that for any solution Xt to (7.1.3)

for D-distributions in PD1 ,

E
[

sup
t∈[0,T ]

|Xt|p
∣∣∣F0

]
≤ c
(
1 + |X0|+ E[1D(X0)|X0|]

)p
. (7.2.23)

(2) If α is bounded, then there exists a constant c > 0 such that

sup
t∈[0,T ]

W1(PD∗t µ, PD∗t ν) ≤ cW1(µ, ν), µ, ν ∈ PD1 . (7.2.24)

It is standard that (A7.4) and (A7.5) imply the well-posedness of (7.1.5)

for µ ∈ Cwb ([0, T ];PD1 ), and instead of (7.2.4), for any p ≥ 1 there exists a

constant c > 0 such that

E
[

sup
t∈[0,T ]

|Xµ
t |p
∣∣∣F0

]
≤ c
(
1 + |Xµ

0 |p
)

+ c

∫ t

0

K(s)‖µs‖p1ds,

t ∈ [0, T ], µ ∈ Cwb ([0, T ];PD1 ).

(7.2.25)
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Let µi ∈ Cwb ([0, T ];PD1 ), i = 1, 2, let Xi
t solve (7.1.5) for µi replacing µ with

LD
Xi0

= µi0, and denote as before

τi := τ(Xi) for i = 1, 2, τ1,2 := τ1 ∧ τ2.

Using (A7.4) replacing (A7.2), the proof of (7.2.10) leads to

E
[
|X1

t∧τ1,2 −X
2
t∧τ1,2 |

2
∣∣F0

]
≤ c|X1

0 −X2
0 |2 + c

∫ t

0

K(s)W1(µ1
s, µ

2
s)

2ds, t ∈ [0, T ],
(7.2.26)

and instead of (7.2.9), Φ defined in (7.1.6) for P̂D = PD1 satisfies

W1(Φtµ
1,Φtµ

2) ≤ E
[
|X̄1

t − X̄2
t |
]
≤ E

[
|X1

t∧τ1,2 − X̄
2
t∧τ1,2 |

]
+ E[ρ∂(X1

t )1{t∧τ1≥τ2}
]

+ E[ρ∂(X2
t )1{t∧τ2≥τ1}

]
.

(7.2.27)

The following lemma is analogous to Lemma 7.2.3.

Lemma 7.2.5. Assume (A7.5). Then there exists an increasing function

ψ : [0,∞) → (0,∞) which is bounded if so is α, such that for any µ ∈
Cwb ([0, T ];PD1 ), any solution Xµ

t to (7.1.5), and any stopping time τ̃ ,

1{t∧τ(Xµ)≥τ̃}E
[
ρ∂(Xµ

t )
∣∣Fτ̃ ] ≤ 1{t∧τ(Xµ)≥τ̃}ψ(‖µ‖1,T )ρ∂(Xµ

τ̃ ).

Proof. By the strong Markov property, we may assume that τ̃ = 0 and

x = Xµ
0 ∈ D, so that it suffices to prove

Γt(x) := Ex[ρ∂(Xµ
t )] ≤ ψ(‖µ‖1,T )ρ∂(x), x ∈ D, t ∈ [0, T ]. (7.2.28)

(a) Let ρ∂(x) ≥ r0
2 and y ∈ ∂D such that ρ∂(x) = |y − x|. By (7.2.22), we

have

d|Xµ
t − y|2 ≤ K(t)α(‖µ‖1,T )

(
1 + |Xµ

t − y|2
)
dt+ dMt, t ∈ [0, T ∧ τ(Xµ)]

for some martingale Mt. Combining this with |x− y| = ρ∂(x), we obtain

Ex[|Xµ
t − y|2] ≤ ρ∂(x)2 + α(‖µ‖1)

∫ t

0

K(s)ds

+

∫ t

0

K(s)α(‖µ‖1,T )Ex[|Xµ
s − y|2]ds, t ∈ [0, T ].

By Gronwall’s inequality and ρ∂(x) ≥ r0
2 , we find an increasing function

ψ1 : [0,∞)→ (0,∞) which is bounded if so is α, such that

Ex[|Xµ
t − y|2] ≤

{
ρ∂(x)2 + α(‖µ‖1,T )

∫ T

0

K(s)ds

}
eα(‖µ‖1,T )

∫ T
0
K(s)ds

≤
{
ψ1(‖µ‖1,T )ρ∂(x)

}2
, t ∈ [0, T ].
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Combining this with Jensen’s inequality, we prove (7.2.28) with ψ = ψ1 for

ρ∂(x) ≥ r0
2 .

(b) Let ρ∂(x) < r0
2 . Simply denote α = α(‖µ‖1,T ) and define

τ̂ := inf{t ≥ 0 : ρ∂(Xµ
t ) ≥ r0}.

By (A7.5) and Itô’s formula, we obtain

dρ∂(Xµ
t ) ≤ αdt+ dMt, t ∈ [0, T ∧ τ(Xµ) ∧ τ̂ ]

for some martingale satisfying (7.2.14). So,

Ex[ρ∂(Xµ
t∧τ(Xµ)∧τ̂ )] ≤ αEx[t ∧ τ(Xµ) ∧ τ̂ ].

Combining this with step (a) and the strong Markov property, we obtain

Ex[ρ∂(Xµ
t )] = Ex[ρ∂(Xµ

t∧τ(Xµ))]

≤ Ex[ρ∂(Xµ
t∧τ(Xµ)∧τ̂ )] + Ex

[
1{t∧τ(Xµ)≥τ̂}Γt−τ̂ (Xµ

τ̂ )
]

≤ αEx[t ∧ τ(Xµ) ∧ τ̂ ] + Px
(
t ∧ τ(Xµ) ≥ τ̂

)
ψ1(‖µ‖1,T )r0.

Combining this with (7.2.16) and (7.2.18), we prove (7.2.28) for some in-

creasing function ψ : [0,∞)→ (0,∞), which is bounded if so is α. �

Proof of Theorem 7.2.4. Let Xt solve (7.1.3) for D-distributions in PD1 .

Then Xt = Xµ
t for µt := LDXt , so that

‖µs‖1 = E[1D(Xs)|Xs|] = E[1{t<τ(X)}|Xs|], s ∈ [0, T ].

Combining this with (7.2.25), we obtain

‖µt‖21 ≤
(
E
√

E[1{t<τ(X)}|Xt|2|F0]
)2

≤ 2
(
E
√
c(1 + 1D(X0)|X0|2)

)2

+ 2c

∫ t

0

K(s)‖µs‖21ds

≤ 2c(1 + E[1D(X0)|X0|])2 + 2c

∫ t

0

K(s)‖µs‖21ds, t ∈ [0, T ].

By Gronwall’s inequality, we find a constant c1 > 0 such that

sup
t∈[0,T ]

‖µt‖21 ≤ c1(1 + E[1D(X0)|X0|])2.

This together with (7.2.25) yields (7.2.23) for some different constant c > 0.

It remains to prove the well-posedness and (7.2.24).
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(a) Well-posedness. Let γ := LDX0
∈ PD1 . For any N > 0, let

PT,N1,γ (D̄) :=

{
µ ∈ Cwb ([0, T ];PD1 ) : µ0 = γ, sup

t∈[0,T ]

e−Nt‖µt‖1 ≤ N
}
.

(7.2.29)

We first observe that for some constant N0 > 0,

ΦPT,N1,γ (D̄) ⊂ PT,N1,γ (D̄), N ≥ N0, (7.2.30)

where Φ is defined in (7.1.6) for P̂D = PD1 . Let µ ∈ PT,N1,γ (D̄) and let Xµ
t

solve (7.1.5) for Xµ
0 = X0. Then Φtµ = LD

Xµt
. By (7.2.25) and

‖Φtµ‖1 ≤ E
√
E[1D(X0)|Xt∧τ(Xµ)|2|F0],

we find a constant c1 > 0 such that

‖Φtµ‖1 ≤ c1(1 + ‖γ‖1) + c1

(∫ t

0

‖µs‖21ds

) 1
2

, t ∈ [0, T ].

Then for any N ≥ N0 := c1 + 2c1(1 + ‖γ‖1), we have

sup
t∈[0,T ]

e−Nt‖Φtµ‖1

≤ c1(1 + ‖γ‖1) + c1 sup
t∈[0,T ]

(∫ t

0

e−2Ns‖µs‖21e−2N(t−s)ds

) 1
2

≤ c1(1 + ‖γ‖1) + c1N sup
t∈[0,T ]

(∫ t

0

e−2N(t−s)ds

) 1
2

≤ c1(1 + ‖γ‖1) + c1
√
N ≤ N.

Next, for any N ≥ N0, we intend to prove that Φ is contractive in PT,N1,γ (D̄)

under the complete metric

W1,θ(µ
1, µ2) := sup

t∈[0,T ]

e−θtW1(µ1
t , µ

2
t )

for large enough θ > 0, so that Φ has a unique fixed point in PT1,γ(D̄) :=

∪N≥N0
PT,N1,γ (D̄). Hence the well-posedness follows from Theorem 7.1.1.

To this end, let µi ∈ PT,N1,γ (D̄) and Xi
t solve (7.1.5) for µ = µi and

Xi
0 = X0, i = 1, 2. By Lemma 7.2.5 and noting that ρ∂(x) ≤ |x − y| for

x ∈ D and y ∈ ∂D, we find a constant c2 > 0 depending on N but uniformly

in µi, such that

E
[
ρ∂(X1

t )1{t∧τ1≥τ2} + ρ∂(X2
t )1{t∧τ2≥τ1}

]
≤ c2E

[
ρ∂(X1

t∧τ1,2)1{t∧τ1≥τ2} + ρ∂(X2
t∧τ1,2)1{t∧τ2≥τ1}

]
≤ 2c2E[|X1

t∧τ1,2 −X
2
t∧τ1,2 |], t ∈ [0, T ].
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Combining this with (7.2.26) and (7.2.27), we find a constant c3 > 0 de-

pending on N such that

W1(Φtµ
1,Φtµ

2) ≤ c3E[|X1
0 −X2

0 |]

+ c3

(∫ t

0

K(s)W1(µ1
s, µ

2
s)

2ds

) 1
2

, µ1, µ2 ∈ PT,N1,γ (D̄), t ∈ [0, T ].
(7.2.31)

Since X1
0 = X2

0 = X0, this implies the contraction of Φ in W1,θ for large

enough θ > 0.

(b) Estimate (7.2.24). Now, for µ1
0, µ

2
0 ∈ PD1 , let X1

0 , X
2
0 be F0-

measurable random variables on D̄ such that

LDX1
0

= µ1
0, LDX2

0
= µ2

0, E[|X1
0 −X2

0 |] = W1(µ1
0, µ

2
0). (7.2.32)

Letting Xi
t solve (7.1.3) with initial value Xi

0, then µi := (PD∗t µi0)t∈[0,T ] is

the unique fixed point of Φ in Cµi0 , so that

µit = LDXit = Φµit = PD∗t µi0, i = 1, 2, t ∈ [0, T ]. (7.2.33)

When α is bounded, (7.2.31) holds for some constant c3 > 0 independent

of N , which together with (7.2.32) yields

W1(µ1
t , µ

2
t ) = W1(Φtµ

1,Φtµ
2)

≤ c3E[|X1
0 −X2

0 |] + c3

(∫ t

0

K(s)W1(µ1
s, µ

2
s)

2ds

) 1
2

= c3W1(µ1
0, µ

2
0) + c3

(∫ t

0

K(s)W1(µ1
s, µ

2
s)

2ds

) 1
2

, t ∈ [0, T ].

By Gronwall’s inequality and (7.2.33), we obtain

W1(PD∗t µ1
0, P

D∗
t µ2

0)2 = W1(µ1
t , µ

2
t )

2

≤ 2c23W1(µ1
0, µ

2
0)2e2c23

∫ t
0
K(s)ds, t ∈ [0, T ].

Then the proof is finished. �

7.3 Singular case with distribution dependent noise

In this part, we assume that σ and b are extended to [0, T ]×Rd×PD, but

may be singular in the space variable. For any µ ∈ Cw([0, T ];PD), let

bµt (x) := bt(x, µt) = bµ,0t (x) + b
(1)
t (x),

σµt (x) := σt(x, µt), (t, x) ∈ [0, T ]× Rd,
(7.3.1)

where bµ,0t (·) is singular and b
(1)
t (·) is Lipschitz continuous. As in the last

section, we consider (7.1.3) for D-distributions in PD and PD1 respectively.
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7.3.1 For D-distributions in PD

(A7.6) There exist K ∈ (0,∞), l ∈ N, {(pi, qi) : 0 ≤ i ≤ l} ⊂ K with pi > 2,

and 1 ≤ fi ∈ L̃qipi(T ) for 0 ≤ i ≤ l, such that σµ and bµ in (7.3.1)

satisfy the following conditions.

(1) For any µ ∈ Cw([0, T ];PD), aµ := σµ(σµ)∗ is invertible with

‖aµ‖∞ + ‖(aµ)−1‖∞ ≤ K and

lim
ε↓0

sup
µ∈Cw([0,T ];PD)

sup
t∈[0,T ],|x−y|≤ε

‖aµt (x)− aµt (y)‖ = 0.

(2) b(1)(0) is bounded on [0, T ], σµt is weakly differentiable for µ ∈
Cw([0, T ];PD), and

|bµ,0t (x)| ≤ f0(t, x), ‖∇σµt (x)‖ ≤
l∑
i=1

fi(t, x),

|b(1)
t (x)− b(1)

t (y)| ≤ K|x− y|, t ∈ [0, T ], x, y ∈ Rd.

(3) For any t ∈ [0, T ], x ∈ Rd and µ, ν ∈ PD,

‖σt(x, µ)− σt(x, ν)‖+ |bt(x, µ)− bt(x, ν)| ≤ Ŵ1(µ, ν)

l∑
i=0

fi(t, x).

Theorem 7.3.1. Assume (A7.6) and (A7.3). Then the following assertions

hold.

(1) (7.1.3) is well-posed for D-distributions in PD.

(2) For any p ≥ 1, there exists a constant cp > 0 such that for any solution

Xt to (7.1.3) for D-distributions in PD,

E
[

sup
t∈[0,T ]

|Xt|p
∣∣∣∣F0

]
= E

[
sup
t∈[0,T ]

|Xt∧τ(X)|p
∣∣∣∣F0

]
≤ cp

(
1 + |X0|p

)
.

(7.3.2)

(3) There exists a constant c > 0 such that (7.2.3) holds.

For any µ ∈ Cwb ([0, T ];PD), instead of (7.1.5) we consider the following

SDE on Rd:

dXµ
t = bµt (Xµ

t )dt+ σµt (Xµ
t )dWt, t ∈ [0, T ]. (7.3.3)

Noting that X̃µ
t := Xµ

t∧τ(Xµ) solves (7.1.5), the map Φ in (7.1.6) is given

by

Φtµ := LDXµ
t∧τ(Xµ)

, t ∈ [0, T ].



July 27, 2024 9:20 ws-book9x6 13512-main page 335

Killed DDSDEs 335

So, (7.2.9) and (7.2.27) remain true for Xi
t solving (7.3.3) with µ = µi ∈

Cw([0, T ];PD), i = 1, 2.

By Theorem 1.3.1, (A7.6)(1) and (A7.6)(2) imply that this SDE is well-

posed, and for any p ≥ 1 there exists a constant cp > 0 such that

E
[

sup
t∈[0,T ]

|Xµ
t |p
∣∣∣∣F0

]
≤ cp

(
1 + |Xµ

0 |p
)
, µ ∈ Cw([0, T ];PD). (7.3.4)

We have the following lemma.

Lemma 7.3.2. Assume (A7.6). Then for any j ≥ 1 there exists a constant

c > 0 and a function ε : [1,∞)→ (0,∞) with ε(θ) ↓ 0 as θ ↑ ∞, such that

for any µ1, µ2 ∈ Cwb ([0, T ];PD) and any Xi
t solving (7.3.3) with µ = µi, i =

1, 2,

E
[

sup
s∈[0,t]

|X1
s −X2

s |j
∣∣F0

]
≤ c|X1

0 −X2
0 |j + ε(θ)ejθtŴ1,θ(µ

1, µ2)j , θ ≥ 1.

Proof. By Lemma 1.2.2, (A7.6)(1) and (A7.6)(2) imply that for large

enough λ ≥ 1, the PDE(
∂t +

1

2
tr{aν

1

t ∇2}+ bµ
1

t · ∇
)
ut = λut − bµ

1,0
t , t ∈ [0, T ], uT = 0 (7.3.5)

for u : [0, T ]× Rd → Rd has a unique solution such that

‖∇2u‖L̃q0p0
(T ) ≤ c0, ‖u‖∞ + ‖∇u‖∞ ≤

1

2
. (7.3.6)

Let Y it := Θt(X
i
t), i = 1, 2,Θt := id+ ut. By Itô’s formula we obtain

dY 1
t =

{
b
(1)
t + λut

}
(X1

t )dt+ ({∇Θt}σν
1

t )(X1
t ) dWt,

dY 2
t =

{{
b
(1)
t + λut + (∇Θt)(b

µ2

t − b
µ1

t )
}

(X2
t )

+
1

2

[
tr{(aν

2

t − aν
1

t )∇2ut}
]
(X2

t )
}

dt+ ({∇Θt}σν
2

t )(X2
t ) dWt.

Let ηt := |X1
t −X2

t | and

gr :=

l∑
i=0

fi(r,X
2
r ), g̃r := gr‖∇2ur(X

2
r )‖,

ḡr :=

2∑
i=1

‖∇2ur‖(Xi
r) +

2∑
j=1

l∑
i=0

fi(r,X
j
r ), r ∈ [0, T ].
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Since b
(1)
t +λut is Lipschitz continuous uniformly in t ∈ [0, T ], by (A7.6) and

the maximal functional inequality in Lemma 1.3.4, there exists a constant

c1 > 0 such that∣∣{b(1)
r + λur

}
(X1

r )−
{
b(1)
r + λur

}
(X2

r )
∣∣ ≤ c1ηr,∣∣{(∇Θr)(b

µ2

r − bµ
1

r )
}

(X2
r )
∣∣ ≤ c1grŴ1(µ1

r, µ
2
r),∣∣[tr{(aν2

r − aν
1

r )∇2ur}
]
(X2

r )
∣∣ ≤ c1g̃rŴ1(µ1

r, µ
2
r),∥∥{(∇Θr)σ

ν1

r

}
(X1

r )−
{

(∇Θr)σ
µ2

r

}
(X2

r )
∥∥

≤ c1ḡrηr + c1grŴ1(µ1
r, µ

2
r), r ∈ [0, T ].

So, by Itô’s formula, for any j ≥ k we find a constant c2 > 1 such that

d|Y 1
t − Y 2

t |2j ≤ c2η
2j
t dAt + c2(g2

t + g̃t)Ŵ1(µ1
t , µ

2
t )

2jdt+ dMt (7.3.7)

holds for some martingale Mt with M0 = 0 and

At :=

∫ t

0

{
1 + g2

s + g̃s + ḡ2
s

}
ds, t ∈ [0, T ].

Since ‖∇u‖∞ ≤ 1
2 implies |Y 1

t − Y 2
t | ≥ 1

2ηt, this implies

η2j
t ≤ 22jMt + 22jη2j

0 + 22jc2

∫ t

0

η2j
r dAr

+ 22jc2

∫ t

0

(g2
s + g̃s)Ŵ1(µ1

s, µ
2
s)

2jds, t ∈ [0, T ]

(7.3.8)

for some constant c2 > 0. By (7.3.6), fi ∈ L̃qipi(T ) for (pi, qi) ∈ K, Krylov’s

estimate in Theorem 1.2.3 and Khasminskii’s estimate in Theorem 1.2.4, we

find an increasing function ψ : (0,∞) → (0,∞) and a decreasing function

ε : (0,∞)→ (0,∞) with ε(θ) ↓ 0 as θ ↑ ∞, such that

E[erAT |F0] ≤ ψ(r), r > 0,

sup
t∈[0,T ]

E
(∫ t

0

e−2kθ(t−r)(g2
r + g̃r)dr

∣∣∣∣F0

)
≤ ε(θ), θ > 0.

By the stochastic Gronwall inequality in Lemma 1.3.3 and the maximal

inequality in Lemma 1.3.4, we find a constant c3 > 0 depending on N such

that (7.3.8) yields{
E
(

sup
s∈[0,t]

ηjs

∣∣∣F0

)}2

≤ c3E
(
η2j

0 +

∫ t

0

(g2
s + g̃s)Ŵ1(µ1

s, µ
2
s)

2jds

∣∣∣∣F0

)
≤ c3η2j

0 + c3e2jθtε(θ)Ŵ1(µ1, µ2)2j , t ∈ [0, T ], θ > 0.

This finishes the proof. �
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Proof of Theorem 7.3.1. Let Xt solve (7.1.3). We have Xt = Xµ
t∧τ(Xµ)

for Xµ
t solving (7.3.3) with

Xµ
0 = X0, µt := LDXt , t ∈ [0, T ].

So, (7.3.2) follows from (7.3.4). It remains to prove the well-posedness and

estimate (7.2.3).

(a) Well-posedness. Let X0 be an F0-measurable random variable on

D̄, and let PTγ (D̄) be in (7.2.5) for γ = LDX0
. By Theorem 7.1.1, it suffices

to prove that Φ is contractive in PTγ (D̄) under Ŵ1,θ for large enough θ > 0.

By (7.2.9), (7.2.19) and Lemma 7.3.2 for X1
0 = X2

0 = X0, we find a

constant c1 > 0 such that

Ŵ1(Φtµ
1,Φtµ

2) ≤ c1ε(θ)Ŵ1(µ1, µ2), µ1, µ2 ∈ Cγ .

Since ε(θ)→ 0 as θ →∞, Φ is Ŵ1,θ-contractive for large enough θ > 0.

(b) Estimate (7.2.3). Let X1
t , X

2
t solve (7.1.3) with X1

0 , X
2
0 satisfying

(7.2.20). Then

Φtµ
i = µit := LDXi = PD∗t µi, i = 1, 2,

so that (7.2.9), (7.2.19) and Lemma 7.3.2 imply

Ŵ1(µ1, µ2) = Ŵ1(Φtµ
1,Φtµ

2)

≤ c1Ŵ1(µ1
0, µ

2
0) + c1ε(θ)Ŵ1(µ1, µ2), t ∈ [0, T ]

for some constant c1 > 0. Taking θ > 0 large enough such that ε(θ) ≤ 1
2c1

,

we derive (7.2.3) for some constant c > 0. �

7.3.2 For D-distributions in PD1

(A7.7) There exist an increasing function α : [0,∞) → (0,∞), constants

K > 0, l ∈ N, {(pi, qi) : 0 ≤ i ≤ l} ⊂ K with pi > 2, and functions

1 ≤ fi ∈ L̃qipi(T ) for 0 ≤ i ≤ l such that σµ and bµ in (7.3.1) satisfy

the following conditions.

(1) For any µ ∈ Cwb ([0, T ];PD1 ), aµ := σµ(σµ)∗ is invertible with

‖aµ‖∞ + ‖(aµ)−1‖∞ ≤ α(‖µ‖1,T ),

lim
ε↓0

sup
µ∈Cwb ([0,T ];PD1 )

sup
t∈[0,T ],|x−y|≤ε

‖aµt (x)− aµt (y)‖ = 0.
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(2) b(1)(0) is bounded on [0, T ], σµt is weakly differentiable for µ ∈
Cwb ([0, T ];PD1 ), and

|bµ,0t (x)| ≤ f0(t, x) + α(‖µ‖1,T ), ‖∇σµt (x)‖ ≤
l∑
i=1

fi(t, x) + α(‖µ‖1,T ),

|b(1)
t (x)− b(1)

t (y)| ≤ K|x− y|, t ∈ [0, T ], x, y ∈ Rd.

(3) For any t ∈ [0, T ], x ∈ Rd and µ, ν ∈ PD,

‖σt(x, µ)− σt(x, ν)‖+ |bt(x, µ)− bt(x, ν)| ≤W1(µ, ν)

l∑
i=0

fi(t, x).

(4) There exists r0 ∈ (0, 1] such that ρ∂ ∈ C2
b (∂r0D), and for any µ ∈

Cwb ([0, T ];PD1 ),

〈bµt (x),∇ρ∂(x)〉 ≤ α(‖µ‖1), x ∈ ∂r0D, (7.3.9)

〈bµt (x), x− y〉 ≤ α(‖µ‖1,T )(f0(t, x)2 + |x− y|2),

x ∈ D, y ∈ ∂D, t ∈ [0, T ].
(7.3.10)

Note that when b(1) = 0, (7.3.9) is implied by the first condition in

(A7.7)(2).

Theorem 7.3.3. Assume (A7.7). Then the following assertions hold.

(1) (7.1.3) is well-posed for D-distributions in PD1 .

(2) For any p ≥ 1, there exists a constant cp > 0 such that for any solution

Xt to (7.1.3) for D-distributions in PD,

E
[

sup
t∈[0,T ]

|Xt|p
∣∣∣∣F0

]
≤ cp

{
1 + |X0|p +

(
E[1D(X0)|X0|]

)p}
. (7.3.11)

(3) If α is bounded, then there exists a constant c > 0 such that (7.2.24)

holds.

By Theorem 1.3.1, (A7.7) implies that for any µ ∈ Cwb ([0, T ];PD1 ), the

SDE (7.3.3) is well-posed, and for any p ≥ 1 there exists a constant cp > 0

such that for any µ ∈ Cwb ([0, T ];PD1 ),

E
[

sup
t∈[0,T ]

|Xµ
t |2p

∣∣∣∣F0

]
≤ cp

{
1 + |Xµ

0 |2p +

∫ T

0

‖µs‖2p1 ds

}
. (7.3.12)

For any µ1, µ2 ∈ Cwb ([0, T ];PD1 ), let Xi
t solve (7.3.3) for µ = µi, i = 1, 2.

For any N > 0 and γ ∈ PD1 , let PT,N1,γ (D̄) be in (7.2.29). Since restricting

to µ, ν ∈ PT,N1,γ (D̄), the conditions in (A7.7) hold for a constant αN replacing
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the function α, by repeating the proof of Lemma 7.3.2 with W replacing

Ŵ, we prove that the following results.

Lemma 7.3.4. Assume (A7.7). For any N > 0 and j ≥ 1, there exists a

constant c > 0 and a function ε : [1,∞) → (0,∞) with ε(θ) ↓ 0 as θ ↑ ∞,

such that for any µ1, µ2 ∈ PT,N1,γ (D̄) and any Xi
t solving (7.3.3) with µ = µi,

i = 1, 2,

E
[

sup
s∈[0,t]

|X1
s −X2

s |j
∣∣F0

]
≤ c|X1

0 −X2
0 |j + ε(θ)ejθtŴ1,θ(µ

1, µ2)j , θ ≥ 1.

When α is bounded, the constant c does not depend on N .

Moreover, we need the following result analogous to Lemma 7.2.5.

Lemma 7.3.5. Assume (A7.7). Then the assertion in Lemma 7.2.5 holds.

Proof. It suffices to prove (7.2.28) for some increasing function ψ which

is bounded if so is α.

(a) Let ρ∂(x) ≥ r0
2 and y ∈ ∂D such that ρ∂(x) = |y − x|. By (7.3.10)

and (A7.7)(2), we find an increasing function ψ1 : [0,∞)→ (0,∞) which is

bounded if so is α, such that

d|Xµ
t − y|2 ≤ ψ1(‖µ‖1,T )

( l∑
i=0

fi(t,X
µ
t )2 + |Xµ

t − y|2
)

dt+ dMt

holds for some martingale Mt, t ∈ [0, T ∧ τ(Xµ)]. Next, by Theorem 1.2.3,

(A7.7) implies that for some increasing function ψ2 : [0,∞)→ (0,∞) which

is bounded if so is α, the following Krylov’s estimate holds:

E
(∫ T

0

fi(t,X
µ
t )2dt

∣∣∣∣F0

)
≤ ψ2(‖µ‖1,T )‖fi‖2L̃piqi (T )

, 0 ≤ i ≤ l.

Combining these with |x− y| = ρ∂(x), we derive

E[|Xµ
t − y|2|F0] ≤ ρ∂(x)2 + ψ1(‖µ‖1,T )ψ2(‖µ‖1,T )

l∑
i=0

‖fi‖2L̃piqi (T )

+ ψ1(‖µ‖1,T )

∫ t

0

E[|Xµ
s − y|2|F0]ds, t ∈ [0, T ].

By Gronwall’s inequality and ρ∂(x) ≥ r0
2 , we find an increasing function

ψ : [0,∞)→ (0,∞) which is bounded if so is α, such that

E[|Xµ
t − y|2|F0] ≤ ψ(‖µ‖1,T )ρ∂(x).

Since ρ∂(Xµ
t ) ≤ |Xµ

t − y|, we prove (7.2.28) for ρ∂(x) ≥ r0
2 .
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(b) Let ρ∂(x) < r0
2 . By (A7.7)(1), (7.3.9) and ρ∂ ∈ C2

b (∂r0D), (7.2.21)

holds for some different increasing function α which is bounded if so is the

original one. Then step (b) in proof of Lemma 7.2.5 implies the desired

estimate. �

Proof of Theorem 7.3.3. Let Xt solve (7.1.3) for D-distributions in PD1 .

We have Xt = Xµ
t∧τ(Xµ) for Xµ

t solving (7.3.3) with

Xµ
0 = X0, µt = LDXt , t ∈ [0, T ].

So, as explained in the beginning of the proof of Theorem 7.2.4 that (7.3.11)

follows from (7.3.12), it suffices to prove the well-posedness and estimate

(7.2.24).

Let X0 be an F0-measurable random variable with LDX0
∈ PD1 , and let

PT,N1,γ (D̄) be in (7.2.29) for N > 0. By the proof of Lemma 3.6.4(1), there

exists N0 > 0 such that ΦPT,N1,γ (D̄) ⊂ PT,N1,γ (D̄) for any N ≥ N0. For the

well-posedness, it suffices to prove that for any N ≥ N0, Φ is contractive in

PT,N1,γ (D̄) under the metric W1,θ for large enough θ > 0. This follows from

(7.2.27), Lemma 7.3.4 and Lemma 7.3.5.

Finally, by using W1 replacing Ŵ1 in step (b) in the proof of Theorem

7.3.1, (7.2.24) follows from Lemma 7.3.4 with c independent of N . �

7.4 Singular case with distribution independent noise

In this part, we let σt(x, µ) = σt(x) not depend on µ, so that (7.1.3) becomes

dXt = 1{t<τ(X)}
{
bt(Xt,LDXt)dt+ σt(Xt)dWt

}
, t ∈ [0, T ]. (7.4.1)

In this case, we are able to study the well-posedness of the equation on an

arbitrary connected open domain D, for which we only need bt(x, ·) to be

Lipschitz continuous with respect to a weighted variation distance.

For a measurable function V : D → [1,∞), let

PDV :=

{
µ ∈ PD : µ(V ) :=

∫
D

V dµ <∞
}
.

This is a Polish space under the weighted variation distance

‖µ− ν‖V := sup
|f |≤V

|µ(f)− ν(f)|, µ, ν ∈ PDV . (7.4.2)

When V ≡ 1, ‖ · ‖V reduces to the total variation norm. We will take V

from the class V defined as follows.
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Definition 7.4.1. We denote V ∈ V, if 1 ≤ V ∈ C2(Rd) such that the

level set {V ≤ r} for r > 0 is compact, and there exist constants K, ε > 0

such that for any x ∈ D,

sup
y∈B(x,ε)

{
|∇V (y)|+ ‖∇2V (y)‖

}
≤ KV (x),

where B(x, ε) := {y ∈ Rd : |y − x| < ε}.

7.4.1 Main result

(A7.8) σ has an extension to [0, T ] × Rd which is weakly differentiable in

x ∈ Rd, and b has a decomposition bt(x, µ) = b
(0)
t (x) + b

(1)
t (x, µ),

such that the following conditions hold.

(1) a := σσ∗ is invertible with ‖a‖∞ + ‖a−1‖∞ <∞ and

lim
ε→0

sup
|x−y|≤ε,t∈[0,T ]

‖at(x)− at(y)‖ = 0.

(2) There exist l ∈ N, {(pi, qi)}0≤i≤l ⊂ K with pi > 2, and 1 ≤ fi ∈
L̃piqi (T ), such that

|1Db(0)| ≤ f0, ‖∇σ‖ ≤
l∑
i=1

fi.

(3) There exists V ∈ V such that for any µ ∈ PV := Cwb ([0, T ];PDV ),

1D(x)b
(1)
t (x, µt) is locally bounded in (t, x) ∈ [0, T ]×Rd. Moreover,

there exist constants K, ε > 0 such that

〈b(1)(x, µ),∇V (x)〉+ ε|b(1)(x, µ)| sup
B(x,ε)

{
|∇V |+ |∇2V |

}
≤ K

{
V (x) + µ(V )

}
, x ∈ D,µ ∈ PDV .

(4) There exists a constant κ > 0 such that

sup
x∈D
|bt(x, µ)− bt(x, ν)| ≤ κ‖µ− ν‖V , µ, ν ∈ PDV . (7.4.3)

Theorem 7.4.1. Assume (A7.8). Then (7.4.1) is well-posed for D-

distributions in PDV , and for any p ≥ 1, there exists a constant cp > 0

such that any solution Xt of (7.4.1) for D-distributions in PDV satisfies

E
[

sup
t∈[0,T ]

V (Xt)
p
∣∣∣F0

]
≤ cp V (X0)p. (7.4.4)
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Proof. Let PV (D̄) be the space of all probability measures µ on D̄ with

µ(V ) <∞, see (6.5.32), which is a Polish space under the weighted variation

distance defined in (7.4.2) for µ, ν ∈ PV (D̄). We extend bt(x, ·) from PDV
to PV (D̄) by setting

bt(x, µ) := bt(x, µ(D ∩ ·)), µ ∈ PV (D̄).

Then (A7.8) implies the same assumption for PV (D̄) replacing PDV . So, the

desired assertions follow from Theorem 7.4.2 presented in the next subsec-

tion. �

7.4.2 An extension of Theorem 7.4.1

Consider the following SDE on D̄:

dXt = 1{t<τ(X)}
{
bt(Xt,LXt)dt+ σt(Xt)dWt

}
, t ∈ [0, T ], (7.4.5)

where τ(X) := inf{t ≥ 0 : Xt ∈ ∂D} as before, and LXt is the distribution

of Xt.

The strong/weak solution of (7.4.5) is defined as in Definition 7.1.1

with L replacing LD. We call this equation well-posed for distribution-

s in PV (D̄), if for any F0-measurable random variable X0 on D̄ with

LX0
∈ PV (D̄) (respectively, any µ0 ∈ PV (D̄)), (7.4.5) has a unique solution

starting at X0 (respectively, a unique weak solution with initial distribution

µ0) such that LX = (LXt)t∈[0,T ] ∈ Cwb ([0, T ];PV (D̄)).

Theorem 7.4.2. Assume that (A7.8) holds for PV (D̄) replacing PDV . Then

(7.4.5) is well-posed for distributions in PV (D̄) and (7.4.4) holds.

Proof. Let X0 be an F0-measurable random variable on D̄ with

γ := LX0
∈ PV (D̄).

Let

PTV,γ(D̄) :=
{
µ ∈ Cwb ([0, T ];PV (D̄)) : µ0 = γ

}
.

For any µ ∈ PTV,γ(D̄), let Xµ
t solve (7.4.1) with Xµ

0 = X0, i.e.

dXµ
t = 1{t<τ(Xµ)}

{
bt(X

µ
t , µt)dt+ σt(X

µ
t )dWt

}
,

Xµ
0 = X0, t ∈ [0, T ].

(7.4.6)

Let Φtµ := LXµt , t ∈ [0, T ]. Then it suffices to prove that Φ has a unique

fixed point in PTV,γ(D̄). To this end, for any N ≥ 1, let

PT,NV,γ (D̄) :=
{
µ ∈ PTV,γ(D̄) : sup

t∈[0,T ]

e−Ntµt(V ) ≤ Nγ(V )
}
.
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It suffices to find a constant N0 > 0 such that for any N ≥ N0, Φ has a

unique fixed point in PT,NV,γ (D̄). We finish the proof by three steps.

(a) The Φ-invariance of PT,NV,γ (D̄) for large N . For any λ ≥ 0 and N ≥ 1,

PT,NV,γ (D̄) is a complete space under the metric

ρλ(µ, ν) := sup
t∈[0,T ]

e−λt‖µt − νt‖V , µ, ν ∈ PT,NV,γ (D̄).

Let µ ∈ PT,NV,γ (D̄). By (7.4.6), (A7.8) with V ∈ V and Itô’s formula, for any

p ≥ 1 we find a constant c1(p) > 0 such that

dV (Xµ
t )p ≤ 1{t<τ(Xµ)}

{
dMt + c1

{
V (Xµ

t )p + µt(V )p
}

dt
}
, t ∈ [0, T ],

where Mt is a martingale with

d〈M〉t ≤ c1V (Xµ
t )pdt.

By using BDG’s and Gronwall’s inequality, we find a constant c2(p) > 0

such that

E
[

sup
s∈[0,t]

V (Xµ
s )p
]

= E
[

sup
s∈[0,t∧τ(Xµ)]

V (Xµ
s )p
]

≤ c2(p)V (X0)p + c2(p)

∫ t

0

µs(V )pds, t ∈ [0, T ].

(7.4.7)

Consequently, for p = 1 and c2 = c2(1) we derive

(Φtµ)(V ) = E[V (Xµ
t )] ≤ c2γ(V ) + c2

(∫ t

0

µs(V )2ds

) 1
2

,

so that by µ ∈ PT,NV,γ (D̄), we obtain

sup
t∈[0,T ]

e−Nt(Φtµ)(V ) ≤ c2γ(V ) + c2 sup
t∈[0,T ]

(∫ t

0

e−2N(t−s)N2γ(V )2ds

) 1
2

,

c2
(
1 +
√
N
)
γ(V ) ≤ Nγ(V ),

provided N ≥ N0 for a large enough constant N0 ≥ 1. By the continuity of

Xµ
t in t, Φtµ is weakly continuous in t. Therefore,

ΦPT,NV,γ (D̄) ⊂ PT,NV,γ (D̄), N ≥ N0.

(b) Let N ≥ N0. It remains to show that Φ has a unique fixed point in

PT,NV,γ (D̄). By (7.4.7) with p = 2 and V ≥ 1, there exists a constant c3 > 0

such that

E
[

sup
t∈[0,T ]

V (Xµ
t )2
∣∣∣F0

]
≤ c23V (X0)2, µ ∈ PT,NV,γ (D̄). (7.4.8)
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For any µi ∈ CV (D̄), i = 1, 2, we estimate ‖Φtµ1 − Φtµ
2‖V by using Gir-

sanov’s theorem. Let X1
t be the unique solution for the SDE

dX1
t = 1{t<τ(X1)}

{
bt(X

1
t , µ

1
t )dt+ σt(X

1
t )dWt

}
, X1

0 = X0. (7.4.9)

By the definition of Φ, we have

Φtµ
1 = LX1

t
, t ∈ [0, T ]. (7.4.10)

To construct Φtµ
2 using Girsanov’s theorem, let

ξt := 1{t<τ(X1)}{σ∗t (σtσ
∗
t )−1}(X1

t ){bt(X1
t , µ

2
t )− bt(X1

t , µ
1
t )}, t ∈ [0, T ].

By (A7.8), there exists a constant k > 0 such that

|ξt| ≤ k‖µ1
t − µ2

t‖V , t ∈ [0, T ]. (7.4.11)

So, by Girsanov’s theorem,

W̃t := Wt −
∫ t

0

ξsds, t ∈ [0, T ]

is an m-dimensional Brownian motion under the probability measure Q :=

RTP, where

Rs := e
∫ s
0
〈ξt,dWt〉− 1

2

∫ s
0
|ξt|2dt, s ∈ [0, T ].

Reformulate (7.4.9) as

dX1
t = 1{t<τ(X1)}

{
bt(X

1
t , µ

2
t )dt+ σt(X

1
t )dW̃t

}
, X1

0 = X̃0.

By the weak uniqueness of (7.4.6), we obtain

Φtµ
2 = Q(X1

t∧τ(X1) ∈ dx) = LX1
t |Q.

Combining this with (7.4.8) and (7.4.10), we derive

‖Φtµ1 − Φtµ
2‖V ≤ E

[
V (X1

t )|Rt − 1|
]

≤ E
[
{E(V (X1

t )2|F0)} 1
2 {E(|Rt − 1|2|F0)} 1

2

]
≤ c3E

[
V (X0){E(|Rt − 1|2|F0)} 1

2

]
.

(7.4.12)

On the other hand, by µ1, µ2 ∈ PT,NV,γ (D̄), (7.4.11), and noting that er−1 ≤
rer for r ≥ 0, we find a constant c > 0 such that

E[|Rt − 1|2|F0] = E[e2
∫ t
0
〈ξs,dWs〉−

∫ t
0
|ξs|2ds − 1|F0]

≤ E
[
e2

∫ t
0
〈ξs,dWs〉−2

∫ t
0
|ξs|2dt|F0]ek

2
∫ t
0
‖µ1
s−µ

2
s‖

2
V ds − 1

= ek
2
∫ t
0
‖µ1
s−µ

2
s‖

2
V ds − 1 ≤ ek

2
∫ t
0
‖µ1
s−µ

2
s‖

2
V ds

∫ t

0

k2‖µ1
s − µ2

s‖2V ds

≤ c2
∫ t

0

‖µ1
s − µ2

s‖2V ds, t ∈ [0, T ].
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Combining this with (7.4.12) and letting C = cc3 E[V (X0)], we arrive at

ρλ(Φµ1,Φµ2) ≤ C sup
t∈[0,T ]

e−λt
(∫ t

0

‖µ1
s − µ2

s‖2V ds

) 1
2

≤ Cρλ(µ1, µ2)

(∫ t

0

e−2λ(t−s)ds

) 1
2

.

Thus, when λ > 0 is large enough, Φ is contractive in ρλ and hence has a

unique fixed point in PT,NV,γ (D̄).

(c) Note that for any (weak) solution Xt of (7.4.5) for distributions in

PV (D̄), µt := LXt is a fixed point of Φ in PγV (D̄). Since Φ has a unique

fixed point, (7.4.1) has the (weak) uniqueness. Moreover, by Gronwall’s

inequality, (7.4.4) follows from (7.4.8) for Xµ
t = Xt and µt := LXt , where

µ is the unique fixed point of Φ. �
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∇2: Hessian operator, 3
∇v: directional derivative along v, 3
φ ∈ Φ : increasing,

∫∞
0

ds
1+sφ(s)

<∞,
14

∂D: boundary of D, 61
∂D ∈ Ck, 63
∂D ∈ Ck,Lb , 63
∂rD, 62
∂−rD, 62
ρ∂ , 63
CD(µ, ν), 323
K := {(p, q) : p, q ∈ (1,∞), d

p
+ 2
q
< 1},

5
LDξ , 320
Mf : local Hardy-Littlewood

maximal function of f , 18
Nx,r, 61
P(E): space of probability measures

on E, 17
P: space of probability measures on

Rd, 3
P: space of probability measures on

the sate space of SDE, 35
PD, 319
Pkγ,T , 138
PV := {µ : µ(V ) <∞}, 245
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PTγ (D̄), 324
Pk(D̄), 277
Sn(g): mollifying approximation of g,

7
σ∗: transposition of σ, 6
H̃ε,p, 5
L̃p, 5
L̃pq(s, t,D), 64

L̃pq(t), 64

P̃k, Pk, 137
P̃kγ,T , 138
bµt (x) := bt(x, µt)., 172
h ∈ Λ: h : (0, 1]→ (0,∞) is

increasing,
∫ 1

0
ds
h(s)

=∞, 78

(strong) solution, 2

Condition (D), 62

DDSDE: distribution dependent
SDE, 101

dimension-free Harnack inequality, 34

Irreducibility, 48

Linear functional derivative, 156
log-Harnack inequality, 34

Malliavin calculus, 26
Markov operator, 34
Markov transition kernel, 47

pathwise uniqueness, 2
petite or small set, 48
power Harnack inequality, 34

SDE: stochastic differential equation,
1

Stochastic Gronwall inequality, 17
Strong Feller, 47
strong Feller, 13

weak solution, 2
weak well-posedness, 2
well-posedness, 2

Yamada-Watanabe principle, 3, 17

Zvokin’s transform, 24
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