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ABSTRACT. In this paper, we investigate the rate of convergence on the qua-
dratic Wasserstein distance between conditional empirical measures associated
with subordinated Dirichlet diffusion processes on a connected compact Rie-
mannian manifold with boundary and the quasi-ergodic distribution. We ob-
tain the sharp rate of convergence for any initial distribution and even prove
the precise limit for a large class of initial distributions. This proof is based on
the PDE method developed by L. Ambrosio et al. in [3] and the arguments on
diffusion cases by F.-Y. Wang in [27].

1. Imtroduction. In this section, we first introduce the framework and then prese-
nt the main results. Some related literatures are discussed subsequently.

Let M be a d-dimensional connected compact Riemannian manifold with smooth
boundary dM and P be the set of all Borel probability measures on M. Let U €
C?(M) such that p(dz) = eV dz belongs to P, where dx is the volume measure on
M. Denote L = A+ VU, where A and V stand for the Laplace—Beltrami operator
and the gradient operator on M, respectively. Let (X;);>o be the diffusion process
corresponding to £ with hitting time

T:=inf{t >0: X; € OM}.

Let No = NU{0} and let ¢, A, m € Ny, be Dirichlet eigenfunctions and Dirichlet
eigenvalues of the operator —L in L?(p) respectively (see Section 2 for details). Set
o := @3, which clearly belongs to P.

We are interested in the asymptotic behavior of conditional empirical measures
of a large class of Markov processes subordinated to (X;);>o. For this purpose,
we should recall some basics on Bernstein functions and subordinated processes;
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see e.g. [6, 21, 4] for a systematic study. A function B € C([0,00);[0,00)) N
C*((0,00);[0,00)) is called a Bernstein function if, for each k € N,

—1’“*1d—kBt >0, t>0
(=1) ar (t) >0, t>0.

We will use the following class of Bernstein functions (see [33]), i.e.,
B :={B: B is a Bernstein function with B(0) =0, B'(0) > 0}.

Let B € B, and let (SP);>0 be the unique subordinator corresponding to B, i.e.,
an increasing stochastic process with stationary, independent increments, taking
values in [0,00) and S& = 0 such that B is the Laplace exponent of (SP);>o, i.e.,

B

Ee % = e B ¢ x>0, (1.1)

Let (X);>0 be the Markov process on M generated by —B(—L). It is well known
that (X);>0 can be constructed as the time-changed process of (X;)i>0 by (SZ)i>0;
more precisely,

Xf = XStB/\T7 t >0,
where (SP);>¢ is the subordinator introduced above, independent of (X;);>o. We
call (X);>0 the Dirichlet diffusion process subordinated to (X;);>¢ or B-subordina-
ted Dirichlet diffusion process'.

Our main results are based on the following class of Bernstein function. For any
a € [0,1], let

B® .= {B € B: liminf A\™*B(\) > 0}.
A—00

From the table in [21, Chapter 16], we can find many examples belonging to B such
as A%, a € (0,1] (algebraic type), V(1 — 6’2\5‘) (exponential type), %
(logarithmic type), etc. Let B € B for some « € [0, 1]. Set

of i=inf{t >0: SP > 1},
which can be regarded as the hitting time of the B-subordinated Dirichlet diffusion
process (X{);>o at the boundary M. Denote M as the interior of M i.e., M :=
M\ OM. Then we can verify that ug is the unique quasi-ergodic distribution of the
B-subordinated Dirichlet diffusion process (X);> for B € B*, a € (0, 1], i.e., for
every v € P supported on M,
1/t
lim E” [E/ F(XByds
0

t—o0

ol > t] - /Mfdli(h f € By(M),

where E” denotes the expectation for the process (X )i~ with initial distribution
v € P; see Appendix for a proof. This implies that the family of conditional
empirical measures (,uf’”)bo7 ie.,

B 1 [
/,Lt v = Ey(*/ 6XB dS
t O s

converges weakly to ug as t — oo.

of>t), t>0,

L According to the literature, it seems more appropriate to call (Xf)tzo the subordinate killed
diffusion process w.r.t. B. See e.g. [22] for studies on subordinate killed processes.
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Let p be the geodesic distance on M. The quadratic Wasserstein distance Wy is
defined as

1
WQ(MIHU/Z) = inf / p($7y)2 7T(dxvdy) ) M1, 42 S Pv
w€C(p1,p2) MxM

where C(u1,u2) is the set of all Borel probability measures on the product space
M x M with respective marginal distributions p1 and ps. According to [24, Theorem
7.12], we have that

Wao(ul, o) = 0, t— oo.

So, it is interesting and significant to estimate the rate of convergence on Wa(p, B, v

uo) as t tends to infinity.
In order to avoid the situation that P¥(¢2 > t) = 0 for some v € P, we should
consider the conditional empirical measure ,uf ¥ with v € Py, where

={veP: v(M) >0}

For convenience, for every B € B and every v € Py, we set

Z {V G0) (D) + 11(Po)v (¢m)}2
~ {ul ¢0 (¢0)}* 2 = 20)[B(Am) — B(Ao)J?

Now we present the first main result of this paper, which contains the rate of
convergence for any initial distribution from Pj.

Theorem 1.1. Let o € (0,1] and B € B®. Then
lim sup{t?Wy (u", 110)?} < 41 € (0, <], (1.2)
t—o00

and moreover, [ is finite in either of the following cases:
(1) d<2(1+2a),
(2) d > 2(1 +2a) and v = hy with h € L24/(d+2+4a) (),

Some further remarks are in order.

Remark 1.2. (a) In particular, if we choose B(r) = r, r > 0, then we are in the
framework of [27]. Compared with the upper bound in [27], the rate of convergence
in (1.2) is sharp, although there is an extra factor 4 which comes from the application
of inequality (3.1). It seems that the original idea used in [27, Section 3] to prove the
upper bound is not applicable to the present non-local setting due to the difficulty
in employing (4.2) instead of (3.1). Nevertheless, the precise limit is obtained in
Theorem 1.3 below for a large class of initial distributions.

(b) Let mP = %fot dxpds for any ¢t > 0. In the recent work [17], the rate
of convergence on conditional expectations of the quadratic Wasserstein distance
between mP and pg is studied, which in particularly shows that for any v € Po,
EY[Wa(mP, 10)?|t < 0Z] decays with rate ¢t~ as t — oo, slower than the one ¢t=2 i
Theorem 1.1.

The next main result contains the exact limit for a large class of initial distribu-
tions.

Theorem 1.3. Let o € (0,1] and B € B*. Then, for any v € Py such that v = hu
with hey ' € LP(uo) for some p € (pg, o0l

lim {2 Wa (g™, 1)} = 1, (1.3)
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where
6(d + 2) §}
d+24+12a’2)°

Remark 1.4. (1) It is clear that the limit in (1.3) belongs to (0, co0), which follows
from Theorem 1.1. The main novel contribution is the introduction of a new regu-
larization procedure for the proof of Theorem 1.3, different from [27], which leads
us to apply (4.2) successfully. However, this approach does not seem to be effective
without additional regularity on the initial distribution v € Py. Although we do
not know how to get rid of the extra assumption on the initial distribution at the
moment, we believe that (1.3) holds for all v € Py at least for « close enough to 1.
(2) It is interesting to notice that, due to our approach, we do not need any
upper control on the Bernstein function for the lower bound in Theorem 1.3, which
is different from the recent results [17, Theorem 1.3(2)] and [33, Theorem 1.1(2)].

po = max{

Recently, besides [27, 17] mentioned above, large time asymptotic behaviors of
empirical measures associated with (subordinated) diffusion processes to the ref-
erence measure under Wasserstein distances on Riemannian manifolds have been
investigated in a series of papers. (i) Let M be a compact Riemannian manifold
with M empty or convex. Uniformly in z € M, the precise limit of tE*[Wy (1, p1)?]
as t — oo and sharp rates of convergence on E*[Wa(u, 1t)?] for large ¢ are obtained
in [34], where y; is the empirical measure associated with the given (reflecting) dif-
fusion process (when OM # () and p is the invariant measure. Furthermore, these
results are successfully generalized to subordinated diffusion processes by the second
named author joint with F.-Y. Wang in a more recent paper [33]. See related studies
on empirical measures in the quadratic Wasserstein distance under the conditional
expectation in [28], where the rate of convergence turns out to be quite different
from [27]. (ii) Let M be a noncompact Riemannian manifold with M empty or
convex. Sharp rates of convergence on EX[Wy(uy, 11)?] for large ¢ are obtained in
[29], where p; and p are similar as the ones in (i). The results are generalized to
a large class of subordinated processes more recently in [16] by the same authors
of the present paper. (iii) Further studies on this subject can be found in [30] for
stochastic partial differential equations, in [13] for the fractional Brownian motion
on flat torus and its subordinated case [18, 35] for weighted empirical measures of
symmetric diffusion processes on compact Riemannian manifolds without boundary,
[31] for subordinated non-symmetric diffusion processes, and [32] for general ergodic
Markov processes. Last but not the least, being a classic research subject with a
wild range of applications, the study on asymptotic behaviors of empirical measures
associated with i.i.d. random variables to the reference measure under Wasserstein
distances, particularly on quantifying the rate of convergence, has received consid-
erable attention over years; see e.g. the papers [3, 5, 14, 15, 12, 11, 1, 36, 19], and
the book [23] as well as references therein for many deep results.

The remainder of the paper is laid out as follows. In Section 2, we recall some
known results and present some useful properties needed for the later sections. The
proof of Theorem 1.1 and Theorem 1.3 are presented in Sections 3 and 4 respectively.
An appendix on quasi-ergodic distributions is included.

2. Preparations. In this section, we briefly recall some well known facts on the
Dirichlet diffusion semigroup and the Dirichlet heat kernel, which are mainly bor-
rowed from [27, Section 2]; see e.g. [26, 7] for more details. Then we deduce some
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useful properties on the subordinated Dirichlet diffusion semigroup and introduce
necessary notations.

It is well known that the spectrum of the operator —L is discrete, whose eigen-
values A\, k € Ny, are nonnegative and listed in an ascending order counting multi-
plicities, and the corresponding eigenfunctions ¢y, k € Ny, satisfying the Dirichlet
boundary condition, form a complete orthonormal system in the function space
L?(u). We may assume that ¢g > 0 in M since ¢o does not change the sign in M.
It is also well known that \g > 0,

ag KT <A = X0 <aok??, [ éllee < aoVh,  kEN, (2.1)
for some constant ag > 1, and
60 I zr (o) < 00, p € [1,3). (2.2)
Here and in the sequel, we denote the supremum norm by || - ||oo-

Let pP and PP be the Dirichlet heat kernel and the Dirichlet diffusion semigroup
corresponding to £, respectively. It is well known that p” has the following spectral
representation, i.e.,

= e (2)dm(y), t>0,z,y€ M. (2.3)

m=0

Then, we can use (2.3) to express the Dirichlet diffusion semigroup as
PP f(a) = B (X0 an] = [ o) f0) ()

=Y e (G f)om(x), t>0,z€M, feli(n). (24

m=0

Moreover, there exists a constant ¢ > 0 such that

IPPlLe(y—rag == sup B fllLau
[l <1

(a—p)
<ce AN, t>0,1<p<q< oo (2.5)

Since the Dirichlet diffusion operator £ is non-symmetric w.r.t. pg, we can not
use [3, Proposition 2.3] directly. One important technique to overcome the difficulty
is by employing Doob’s transform and considering

Lo =L+ 2V log ¢p.

Then Ly is a non-positive self-adjoint operator in L?(jg), and the corresponding
semigroup, defined by P := e'*¢ in the sense of functional analysis, satisfies

PYf=eto PP (foo), t>0, f€ L (uo). (2.6)

Moreover, p is the invariant measure of P since P? is conservative (i.e., P1 =1
for every t > 0) and symmetric w.r.t. po. By taking f = qﬁalqﬁk in (2.6) and noting
that PP ¢y, = e t¢y, for every k € Ny, we clearly see that

Pl(¢rog ') = e M2l 0t ke N, t >0,
Lo(dudy ') = —(Ae — Mooy ', k € No, (2.7)



WASSERSTEIN CONVERGENCE FOR CONDITIONAL EMPIRICAL MEASURES 551

and hence, {¢g ' dm}men, is an eigenbasis of —Lq in L?(yg). Thus, by (2.4) and
(2.6),

PP f=> polfompy e P2 g o0t feL?(m), t>0,  (2.8)

m=0

and the heat kernel of P w.r.t. ug, denoted by p?, can be represented by

Z e A2 (b bo ) (@) (my ) (Y), wy €M, t>0.  (2.9)

By the intrinsic ultra-contractivity (introduced first in [10]), we can find a con-
stant o > 1 such that

1P) = poll Lt (uo)—sLo(ue) == sup [ BYf = po(f)ll (o)
”f”l,l(uo)gl

ale_(A1 _)\O)t

which along with the semigroup property and the contractivity of P? in LP(u)
implies that, there exists a constant as > 1 such that

1P? = poll ooy Lo (o) == sup [1P2f = 10 ()l Lo (o)
£l P (ug) <1
<age”M1mA)t >0 00> p > 1. (2.11)

Combining the Riesz—Thorin interpolation theorem (see e.g. [9, page 3]) with (2.10)
and (2.11), we obtain that

(Mg — _M
1P = pioll Lo (uo)—La(ue) < ze” MTAVIANLT 20 £>0,00>¢>p>1,

(2.12)
for some constant ez > 0. Thus, (2.12) and (2.1) lead to that, there exists a constant
ay > 0 such that

6165 oo < ak’3, k€N (2.13)
Moreover, by [27, Lemma 2.4], we have
IV (¢rdy lloo < ask3d, k€N, (2.14)

for some constant as > 0.

We now turn to the non-local situation. Let B € B, ¢ > 0, and let ptD’B and PtD’B
be the subordinated Dirichlet heat kernel and the subordinated Dirichlet diffusion
semigroup associated with the B-subordinated Dirichlet diffusion process (X);>o,
respectively. By (1.1), (2.3) and (2.4), one has that

P B (x,y) Z Bty (2)bm(y), z,y€ M, (2.15)
and

PPP f() = B[ f(XP)L{ycomy] = /Mp?%,y)f(y)u(dy)

i e~ BOD (b Pom(z), x €M, f € L2(p). (2.16)

m=0
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By (2.6), we immediately obtain that
PPf=e P (fog "), fe€L(po)

. D.B .
Hence, the semigroup P; ’~ can be written as

PPPf= [ PPfR(SP € ds)
0

N / T Mg PO B(SE € ds), fe L), (217)
0

where P(SP € -) is the distribution of the subordinator SF.
We also need the next useful facts. Let a € [0,1] and B € B*. It is easy to see
that, there exist constants a,c > 0 and b > 0 such that
B(r)>c(r*Ar)>ar®—=b, r>0; (2.18)
see also [33, (3.12)] and [16, page 17]. Moreover, according to (2.18) (which partic-
ularly implies that lim,_, . B(r) = o0), we have for every o > 0,
lim 730 )
r=o0 B(r) — B(ro)
Together with (2.18) and (2.19), applying (2.16) and (2.1), we get a constant C' > 0
such that

=1. (2.19)

PP (¢ < 0 B) — u(go)v(go)] = [P (PP 1) = u(o)v (o)
< 3 e BN ()0 61)

< o [BOD=BO0)l/2 Z e [BOW =B g 12

m=1
< Ce IBO)=BRII/2 4> 1 e Py, (2.20)
which clearly implies that
Jim {e Co)tpv(t < gBY} = u(¢o)v(do), v € Po. (2.21)

The following notation is used frequently in the sequel. Let v € Py and ¢t > 0.

Define
W= /M do(@)pd (. ) w(da),

which is obviously non-negative. Then, by (2.9), we have the spectral representation
of ny as follows:

) = v(go) + Z (fm)e Pm 2 p5t > 0. (2.22)
m=1
Let By (M) (resp. By(M)) be the class of non-negative (resp. bounded) mea-
surable functions on M, and set By (M) := {f € By(M) : || f]lcc < 1}. Denote the
standard gamma function as I'(-). For any a,b € RU {co, —00}, a A b := min{a, b}
and a V b := max{a, b}; in particular, a V0 =: a™.
Throughout the following Sections 3 and 4, we always assume that « € (0, 1] and
B € B® unless explicitly stated otherwise.
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3. Proofs of Theorem 1.1. In this section, we aim to prove Theorem 1.1. Recall
that po = ¢3u. One of the key steps to reach this target is based on the following
inequality:

Wa(fpo, po)? < 4/M IV(=Lo) " (f = 1)Pdpo, [ =0, po(f) =1 (3.1)

see [14, Theorem 2| and see also [20, 3, 29] for related results.
Let v € Py. In order to employ (3.1) to estimate Wa(ur", o), we should

B,v
first calculate the Radon—Nikodym derivative dﬁ i, which is presented in the next
lemma. The main tools to reach this are the Markov property and the spectral

representation of the subordinated Dirichlet diffusion semigroup (PtD’B)tZO.

Lemma 3.1. Let v € Py and ¢ > 0. Then

dp“f)y B,v
d,UO t +]-7
where .
By ._ By 1 _
o0 = ] /0 & ds — Ay,
and
~Byv . - ¢0 ¢7n ( ) (¢7n)] B(Ro)t -1
Py 1{t<oB} mZ=1 ()\m)_ o) dmPy
S +v(go)p(¢m)]e PO
A = m®o
CT R 1{t<JB} — ()\m)_B(/\O) Pmo
&= (Ze—mm”v(%wm%l) (Ze—mn’“—s)u(%)%%1)
n=1
- Ze M)t () (), 0 < s <t (3.2)

Proof. Let t > s> 0 and f € B4 (M). By the Markov property,
/ FAE  [bxplcony] = B [f(XP) 1 icom B (1{t s<oB})]
M

=E"[f(x? )1{S<GB}(P DX
= u(PPP{fPPE1Y). (3:3)
By (2.16), we have

PPBELfPP P 1Y) = > e B (6, fPP P 1) (), € M.

m=0

Applying (2.16) again, we derive that

w(dm PP :/M Om(y) (ZQ—B(An)(t ) 11( ) b (y )) p(dy)

=3 e B9y / b (1) (9) £ () 1)
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= YT u0,) [ (005 )(0) 005" ) ) o).
n=0

Hence

/ AR [6xn1(pcory] (3.4)
M

-y Ze—B“m”e‘w")(t‘s)u(¢n)u(¢m)/M(¢m¢61)(y)(¢n¢61)(y)f(y) pio(dy).

m=0n=0

According to(3.4), we deduce that the Radon-Nikodym derivative of E”[6 x5 1{;<,5)]
w.r.t. po can be written as

dE"[0x 51 {t<ony]
dpo

= Z Z e—B()\m)se—B(/\n)(t—s)M(¢n)V(¢m)(¢m¢61)(¢n¢61)

m=0n=0

= (Z e‘B(“)vamwm%l) (Ze‘B“"')“‘S)u(qsn)mo1)

m=0 n=0

= e PO u(go)u(do) + e PP u(go) D e PO (g, by !
m=1
o0
+ efB(AO)(tfs) Z e B(Am)s )¢m¢61
m=1

(Z e V(dm)Pm o ) (Z e BO= 1(Pn)Pndy ) . (3.5)

Applying (2.16) again, we get

E"[Lji<ony] = e PO u(go)v(0) + > e PO (g )v(dm).
m=1

Combining this with (3.5), we have
dE"[6x51{1<ony]
dpo

= e POy (gg) 37 e PO () !
m=1

—E"[111<051)

9]
+e 73()\0)(15 5) ¢O Ze B()\M)S ¢m)¢m¢0
m=1

(Ze V(fm) Py ) (ZeB H(6n)bndy )

- Ze*B DBV,
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Noting that

t [o ]
L= / B0y Ze*”m” 1 bm) by ' ds
0

 Y(Po)(¢ )(e‘B(Af’)t e~ PO

:m:1 BOv.) — BOw) GmPo s
and
Il := /0 e B0 Ze*B V() dmdy * ds
= 1 do)v(dm)(e” B(AO — e BOWYy
S B0 Bow) Pmo
we have
= [1(00)v(Dm) + v(Go)p(pm)] e PO
1+H_mz_:1 00— B0 Smeby !
V(m) + v(¢o)p(fm) e PO 0
‘23 B0w) — BO) Omoo

Therefore, we can write
dpl B 1 /t dE"[6x5111<ony] ds
dpo  tE[1<omy] dpo

B 1 /t (dE”[5xSB Lt<ony]
tE [l <oy dpo

1 t
= I—G—H—i—/fsds)—i—l
tEY[141<5y] < 0

~B,v 1 /t
=p — A+ [ &ds+1,
! ' tEY [1e<ony] Jo

where g2, A, and &, are explicitly expressed in (3.2).

- Ey[l{t<a§}]> ds+1

Indeed, we have the following useful integral representation of &;.

Remark 3.2. Let v € Py and t > 0. Then

& = / / e 0 [y — (o) [Py ' — (o) P(SE , € dR)P(SE € di)
0 0

= [ e (oot — o RSP € ), 0<s <t

0

Proof. Indeed, according to (2.8),

PY(¢") = mleo) + Z (bm)e” P20, 65,
which together with (2.22) and (1.1) imply that

/ / e 20D [y (60)] [Pt — 1u(d0)] P(SE. . € dk)P(SE € di)
0 0

555

(3.6)
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<Ze O 0 (G )by ) (ZeB“ R (m)mal), 0<ss<t,

and
| e oot ro" - nlon)) B(SE < ) Ze-w DB ().

Thus, we immediately obtain (3.6) from the deﬁnltlon of &s in (3.2). O

With Lemma 3.1 and inequality (3.1) in hand, we establish (1.2) for particular
initial distributions in the next proposition.

Proposition 3.3. Assume that B € B* for some « € (0, 1]. Then, for every v € Py
satisfying that v = hy and ||hég e < 00,

lim sup{t?Wy (u2", 110)?} < 4I.

t— o0
B,v
Proof. Since dg;m =1+ pf’”, applying (3.1), we have

Wa (", po)® < 4/ IV (=Lo) o [P dpo, > 0.
M

According to Lemma 3.1 and the triangle inequality of || - || 12(,,), we deduce that
for any § > 0,

Wz(Mth”,Mo)Q g4(1+6)/ IV(—Lo)" 15 BV|2d’u0
M

8(1+671) / V(= L0) A2 duo
M

8(1+671) /M

Since —Lo(dmdg ') = (Am — A0)dmdy " and [¢mdg || 22(ue) = 1 for every m € N,
by the integration-by-parts formula, for any m € N

/ IV (=L0) " (s I dptg = / Gy (L) (Dmoy ") dpio =
M M

2

vww%] /0 £.ds| duo. (3.7)

tEY [t <on)

_
)\m - )\O ’
Recalling the definition of [)f ¥ and Ay in (3.2), it is easy to see that, for every ¢ > 0,
PR N [(b0)v(dm) + v(¢o)u(dm)]?
V(=Lo) 5P 2 dpy = 1 Po)V(m m)”
[, L P g (B Mo 2= o — ) B0 - B )P
(3.8)

and
[ 1920 A dp
M

i ¢m + V(o) (P ) |2 2BOm)t
(B 1{t<gB} 2= =) BOw) —BOWP

(3.9)

By the definition of & in (3.2), since {gi)mgbo_ 1}77L€N0 is an orthonormal basis in
L?(uo), we have

() = o Z Z e PO BNy (6,)4(60) 665 6"



WASSERSTEIN CONVERGENCE FOR CONDITIONAL EMPIRICAL MEASURES

557
= > e B (G )y (im)
m=1
Z efB()\,,L) —B(Am)(t— S)/U' Z e~ ,,L)t )V(¢m)
m=1 m=1
=0, 0<s<t (3.10)

By the fact that (—LO)*% = % fooo PY% ds and Minkowski’s inequality, we obtain

that
1 1 ‘ ’
V(=Ly)™ 7/ sds
/M (=£o) tEY[1(<o51] ¢

= (B Leam])? 1{t<05} /’f/ / 255d8dr

L )
Prgfs 2 dsdr ) , t>0. 3.11
T(tEY [1{1<o51])? ( | 220 (3.11)

Recalling the integral representation of &, in (3.6), we have

dpo

dpo

€511 22 (110)

< [Ty < wlon iP5  n(on) s PUSE., < ARI(SE € )
+/0 e My (po{ PPyt — pu(o)})|P(SP edl), 0<s<t.

Since v = hu € Po, |65 lr2ue) = 1, m2 = P(hy') for any s > 0, and
||h¢al||Lz(M0) < ||y oo, (2.11) yields that for every k,1 > 0,
It} = v(@0)][PEdg " — 1(é0)]ll L2 (uo)

<P (hg ") = mo(heg el PRég " = 1(é0)ll 22 (u0)
S [ [N

_ ||h¢al ||ooef()\17)\o)(k+l),

(3.12)

122 (o)

(3.13)

and

[v(@o{r(g0) = P(g NN < 1165 12u0) IPL 60" = 1(@0)22 1)
< g o™ P10
Hence, by (1.1), (3.12), (3.13) and (3.14), we have

sl ooy < Hh%luw/ / ool o= =2) k) p(SB ¢ dp)P(S5 € di)

o0
H e e [ e Nlem NN B(SP € )
0
= 2|y e B s> 0.

Then we can apply (2.11) to get that

(3.14)

IPLEs | L2 gy < 200]|hpy H|owe™ BOD e =200 - s ) (3.15)
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where s is the same constant in (2.11). Thus, according to (3.15), (2.20) and
(3.11), there exist some constants c¢1, ¢y > 0 such that

2
1 t

V(-L *17/ ¢.ds
/M‘ (=Lo) tEY[1<o51] Jo

< ey ||hgg L2 e 2B =B > g, (3.16)

Therefore, by (3.7), (3.8), (3.9) and (3.16), we find constants cq, to > 0 such that

4(1 +8)e 2P0 & [u(bo)v(dm) + V(o) dm))?
(B [Lgecony])? A= (Am = 20)[B(Am) — B(o)]?

T en(1467Y) mil [(“)\(ioz if)ﬂ[@) ZL V()¢o)2(( 7:))]} 2[B(Am)~ B0t

+ eo(1 4 07 |hey t|2 e 2BOD=BOOIE g > (3.17)

tQWQ(MtB7V7 MO)Q S

[ V)

Since ||hég oo < 00, by (2.19) and (2.21), letting t — oo first and then § — 0, we
arrive at

4 o [1(P0)v(Pm) + (o) i(¢m)]
h?ligp{t Wg( ,Mo) }< [1(d0)v(d0)]2 2:1 - )\o)[B()\m)EB()\o)]Q .
We finish the proof. O

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof consists of two parts. Let « € (0, 1] and v € Py.
PART 1. In this part, we aim to prove (1.2), which is divided into three steps.
Assume that B € B.
Step (i). Let t > s > ¢ > 0. By the Markov property, the definition of 7},
(2.17) and Fubini’s theorem, we have, for any f € By(M),

EY[f(X2)1<ony]

= B (Lpecory B2 [F(XP ) 1ppmecony]) = /M PPBy(z) v(dx)
/ / e R (2) PR (Yo ) (2) P(SE € dk) v(dx)

= [Tk [ onn) nianp(s? e an
0

— [ e [ o) B (XE Lo (A B(SP € )
0 M

where we set () = E'[f(XZ )1;_.<,5] for convenience. Taking f = 1 in this
equality, we immediately obtain

“(t < oB / / e k(¥ do) () PY(t — e < 0B) u(dy)P(SP € dk).

Letting
Jo e Py oo P(SE € dk)p
Jo ek u(ng do) P(SE € dk)

Ve = = hE,LL7
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by the Markov property again, we have

Eve [f(XsB—s)l{t—s<af_3}}

BN <o) = =iy~ < oB)

=E"[f(X7 )t —e <o7].

Thus,
g ::—/ Y(6xs|r < of yds = puP r>e (3.18)
Noting that for any k& > 0,
uikdo) = v(doPRey ') = v(do)llgoll =: 7 € (0,1],

we obtain N
/ ok ( V¢O) (SEB Edk) zfye*B()\O)E’
0
where we applied (1.1). Then, by (1.1) and (2.18),
E[(1AS2)"F] <1+E [(s2)"F]

=1+ 1 /00 t%—le—aB(t)dt
0

L(%52)
1 X ate
<1+ / t 1 e(b—at )dt
r(42) Jo
<e (1 + 57%) . e>0, (3.19)

for some constant ¢ > 0. Hence, by the intrinsic ultra-contractivity (2.10), there
exists a constant ¢; > 0 such that, for every y € M,

) [ e Mokpr (y) P(SE € dk)
[(hetrg ") ()| = fOOe Mok (77k¢0) P(SB e dk)

g'y_leB(/\O)a/ e_’\ok/ pg(%y)gbo(x) 1/(dx)IE”(S::B € dk)
0 M

< 7 1eB09) o / €K [0 | o (o) B(SE € k)

<ce 7, e€(0,1),
and hence,
1 _d+2
Hh€¢0 ||oo < g 2@ , €€ (07 1) (320)

Thus, (3.17) and (3.20) imply that, there exist constants ca > 0 and to > 1 such
that, for every § > 0 and every ¢ € (0, 1),

t2W2(ﬂféy7 110)*
= t2Wa (1Y, o)
A1+ 6)e 2Bt 0 [1(¢o)ve (Pm) + v=(d0) i dm))
(B [Li<omy])? 2= (Am — X0)[B(Am) — B(Ao)]?
i (A )ueAqﬁ)m Z\ us)(aﬁo) ((jﬁn;])fezw(xm)B(Aon(te)
_ m — N0 0
+ep(14+6 e _%e_mB()‘l) BQIt=e) ¢ > ¢, (3.21)

m=

+CQ 1+5
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Step (ii). Let

I 1 i {ve(90) p(dm) + p(d0)ve(dm) }?
° {M(¢O)VE(¢O)}2 m—1 (/\m - AO)[B(/\m) - B(/\O)]2 ’

Next, we prove that

e > 0.

lim I. = I.

e—0t
By Fubini’s theorem, (2.6), (2.7) and (2.22), for every k > 0, it is direct to verify
that

p(nido) = v(goPRdy ") = e™Fu(PP1),
p(n podm) = v (G0 PR (mey 1)) = e A2 u(g,), m e No.
Let € € (0,1). Then
Jy" ek u(ngdogm) B(SE € dk) e BOmEy(g,,)
Jooe —W < Vo) P(SE € dk) v(PPP1)

It is easy to see that lim._,o+ ve(dm) = v(édm) for each m € Ny since v(PPB1) =
P’(e <oP) - 1lase — 0", By (2.17) and (1.1), we have

V€(¢m) = , m € Ng.

eBAmey,(pP-B1) ZeB(’\O)Eu(/ e % po POyt P(SE € ds)) >~€(0,1], m € No,
0

which together with v(P2:P1) < 1 implies that
e PO ()] < [ve(dm)| <77 (dm)l,  m € No. (3.22)

Since {&m }men, is an orthonormal sequence in L%(u), by Bessel’s inequality, it is

clear that
o0

S wlom)? < 1. 529
m=1
On the one hand, if I < oo, by (3.22) and (3.23), applying the dominated con-
vergence theorem, we have lim,_,qg+ I = I. On the other hand, if I = co, which is
equivalent to
= V(pm)?
2= Am = 20)[B(Am) — B(Ao)]?

then, by (3.22) and the monotone convergence theorem, we have

lim inf i Ve (fm)®
em0t L~ (Am — 20)[B(Am) — B(Ao)]?

) —2B(Am)e 2
> liminf ¢ Y(m) = 00.

e—0t el (/\m - AO)[B()\m) - B()‘O)]Q

Combining this with (3.23) and v, (gbo) — v(¢o) as e — 0T, we have

= Q.

liminf I, = ;limmf {ve (o) p(dm) + 1(d0)ve ()}
=0+ {pu(go)r(¢o)}? em0t A= (A = Ao)[B(Am) — B(Xo)]?
L i 3 4000}~ 2l60liom)”

= Tulo0)v (002 508 22" 200 — A)[BOv) — B

Thus,
lim I. =1. (3.24)

e—0t
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Step (iii). Taking e = ¢t~2 in (3.18), by (2.21), (3.21) and (3.24), we obtain
hm lim sup{¢ Wg(ui’fz,uo)Q} < A4lI. (3.25)
t—o0 ’

It is easy to verify that

B L7 1 1 /€ .
H:ut e — Ut var < PR ds + 7 ds < 2et™, e€(0,t),
€ 0

where [t — vllvar = supgeg, (ar) [1(f) — v(f)] for any p,v € P by definition. Then,
for any t > 1,
B 1 . v _
Wa (™" frgy22)? < 5Dy s = i fvar < D75,
2

Combining this with the triangle inequality of Ws, we arrive at
PWo(u, p10)* < (146D + (14 )P Wa(ji "2, o)?, 6> 0.

Letting ¢ — oo first and then § — 0T, by (3.25), we finally complete the proof of
(1.2).

PART 2. In this part, we prove the remaining assertions of Theorem 1.1. Assume
that B € B*.

It is obvious that I > 0. The same argument in [27, pages 21-22] shows that
I > 0. So it is left to us to show that I < co under the condition (1) or (2). Set

J = Z )\1+2a :

Recall that Y>> j(¢n)? < 1. Then, since B € B®, by (2.18) and (2.19), it is
easy to see that I < bJ, for some constant b > 0. Hence it remains to prove that if
the condition (1) or (2) holds then J < oo.

Let (fn)nen be a sequence of probability density functions w.r.t. p such that the
sequence of probability measures (f,it)nen converges weakly to v. Then

oo

142 3 9
I=£)" 122 ) = mz::O (/M(—L) du)
> (o (fudun)?
B mz::O (W /M S dn) Z a S (3.26)

(i) Let d > 2 4 4a. Assume that v = hy with h € L%(p). By (2.5) and the
fact that (PP )~ is contractive in both L!(u) and L (), applying [25, Theorem
I1.2.7], i.e., for any p € (1,00) and 8 € (0,d/p),

I(=L) P2 | pavsca-smr ) < esll fllzey,  f € LP(w),

for some constant c3 > 0, we have

1(=£)~

for some constant ¢4 > 0, where ¢ :=
replaced by h, we have

p1(hém)?
7= Z B < -0

22wy < call fullLau), (3.27)

7o~ Then by (3.26) and (3.27) with f,

12(n) < CillRlTagn < oo,
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(ii) Let d < 2+4a. By (2.5) and (3.26), we can find a constant ¢5 > 0 such that

A 71 o S L _li2a o
J < h”H—l’g%fmZ; T < lminf[|(=£)7 72 fullzz(
oo
< . . 21 .
= % l}rbrggf/o ‘ Pt +2a Ll(u)—>L2(u)||anL Ol
Therefore, the proof is completed. O

4. Proofs of Theorem 1.3. This section is divided into two parts. In the first
part, we present the proof for the upper bound in Theorem 1.3, and in the second
part, we prove the lower bound in Theorem 1.3.

We begin by introducing some frequently used notations. Let ¢, > 0 and v € P,.
Recall the definition of pP* and 5" in Lemma 3.1. Set

By ._ B, By _ B,
t g = (L4 pe i o, oy = Plapy .

Note that Hfj;j should be regarded as the regularized version of /Jf Y. Similarly, set

iy = (L5 o, Ay = Plopi .

We should point out that our regularization procedure is different from [27],
where in the particular case when B is the identity map, F.-Y. Wang proved that
{(1+ ﬁf Vu}test, is a family of probability measures for some big enough ¢y and then
he employed it to approximate the conditional empirical measure utB Y. However,
this approach seems invalid in our non-local setting.

4.1. Upper bounds. Since uf " is a probability measure, it is easy to see that

uf é’j € Py. From Lemma 4.1, for every § € (0 , there exists a constant

2
J 2d72a+1)
to > 0 such that ﬁf g’ is a probability measure for every t > t3. Applying the

triangle inequality of Wy, we have
Walu  1o)? < (1+OWa(iily  mo)? + (1+ 6 YWaliily ™)
< (L4+OWaliify, p0)* +2(1+ 6 YWal s, uly )
+ 2L+ 6 Y Walp ) ud )2, t >0, 0> 0. (4.1)

Clearly, in order to get the upper bound of Wg(,uf’",uo), we need to estimate
the three terms in the right hand side of (4.1). The term Wy (ﬂfbV7M0) should be
regarded as the dominant term, and the others as error terms.

To bound Wg(ﬂf 4 » 1o) from above, the crucial tool is the following inequality:
for any probability density functions fy and f; w.r.t. po,

— -1 _ 2

where the function M : [0,00) x [0,00) — [0, 00) is defined as

o, (4.2)

a=b
M(a,b) = {loga—logbl{a/\b>0}, a#b,

%1{(»0}, otherwise.

Refer to [3, Proposition 2.3] for (4.2). To bound Wg(ﬁfb”,ufﬁ”), we use the total
variation norm since M is compact; see Lemma 4.5. As for the estimation of
Ws (,uf 5 u2"), we apply inequality (4.7) introduced later.
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In order to apply (4.2), the following estimate on ﬁf b" is important.

Lemma 4.1. For every 8 > 0, there exist constants c,ty > 0 such that
I B ¢ (d-2et1)p

Prjs lloe < T o0) , t>ty, vETP,. (4.3)

2

Moreover, if 8 € (0, 535=5577

and every v € Py.

Proof. Combining (2.20) with (2.1), (2.7), (2.13), (2.18), (2.19) and (3.2), we can
find some constants c1, ca, c3,tg > 0 such that

i [1(h0)V (D) + V(o) 1t )|~ BP0
[B(Am) — B(Ao)JeCm—20)t 7

), then [Lf i is a probability measure for every t > to

162 Nl !
t]EV[l{t<UB}}

Pmdy "

o0

< Z ||¢m||oo||¢m¢01Hooe, A —A0)t 7
— ¢0 = B(m) = B(o)
< G2 (izzatus /ooud*Q;Jrle—u% du
= tr(¢o) 0
c3 (2d—2041)8 _4
< —= 2 t > 1o,
v(¢o) 7

which proves (4.3).
Now let 8 € (0, 55—=—). It is clear that (4.3) implies that there exists a constant

) 2d—2aF1
t1 >0, such that for anJ; t > t1, ||ﬁfg’||oo < 1. Hence, 1+ ﬁfé” > 1 and po(1 +
o ) < for every t > t;. Noting that po(¢pm¢y’) = p(dmeoe) = 0 for every
m 6 N, we easily see that po(1 + ﬁféy) 1 for any ¢ > 0. Thus, ,uBV is a
probability measure for every t > t;. O

Remark 4.2. In the particular case when B(r) = r for every r > 0, the pointwise
lower bound of 52" is obtained in [27, Lemma 3.2]. However, it seems that the
original method of proof does not work in the general setting of Lemma 4.1. That is
why we introduce pt ’, the regularized version of ﬁf ¥, and establish (4.3). Indeed,
the pointwise lower bound in (4.3) is enough for our purpose.

In the next lemma, we give an upper bound estimate on Wg(ﬂf 23”, o)?.

2

Lemma 4.3. For every g € (0, 3 5aT1

, there exist constants c,ty > 0 such that
k)

(2d— 20+1)[‘J‘

1+ct i [11(B0) v (dm) +1(do) (@ )]26 2(Am—Ao)t 8
{1(do)v(d0)}* = (Am—2A0)[B(An)—B(Ao)]?

for any t > ty and any v € Py.

t2W2 (ﬂféua /U‘O)2

Proof. The proof is a direct application of Lemma 4.1 and inequality (4.2). By

Lemma 4.1, for every 8 € (0, WZH), there exist constants c,ty > 0 such that

ﬂf 5 € Py for every t > tg, and
1

(2d—2a+1)B _ 7
2 _

MO+ 500 1) 2 1ANA+ 0y > t > to.

1+ct
So, (4.2) implies that
Wa (a2, 1o)® < (1 +oet

(2d— 2a+1)ﬁ

1)p0(|v(—£0)* PEYP), t=t0.  (44)
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Next, (2.7), (3.2) and the integration-by-parts formula yield that

t2ﬂo(|v(*ﬁo) ﬁfﬁy| )

Z ¢m + v(do) (d’m)Fe*QB(AO)tefz(xmf,\o)rﬂ
(] 1{t<UB} )? = 20)[B(Am) = B(Ao)]?
Combining this with (2.20) and (4.4), we finish the proof. O

In order to use the total variation || ,ufﬁ
need the following lemma.

to bound Wy (1, ﬁ”, T ﬁ,,)

Lemma 4.4. For every p € (3/2,00], there exist constants ¢,tg > 0 such that, for
every v € Py with v = hu and every t > o,

~B,v

po(lpy™ = ") < ellhgg o (ugye” POV BOL,

Proof. Let p € (3/2,00] and p’ be its conjugate number. Since ¥ = P2(h¢y ') for
any s > 0 and any v = hu € Py, by Holder’s inequality and (2.11), there exist
constants c1, ca > 0 such that

[ (nf = v(d0)) PRlog " — 1@ 11 )

< PP (heg ™) = o (e o | PR = 10(@™ )l
< c1llhgg 2o oy D5 | o (ugye™Hr AV EFD

< callhdg Lo (ugye” M TAOEED k1> 0,

where we used (2.2) in the last inequality. Similarly, we find a constant ¢z > 0 such
that

[V(90{n(d0) = P65 NI < 1065 10 uo) 1P 5™ = 110(95 Il )
< 03Hh¢61HLP(,LO)e_(’\l_/\O)l, {>0. (4.5)

Together with (2.20), we find some constants c4,ty > 0 such that

1 t
o (|grr o [ 6o
tEY [1<051] Jo
<o | Il ds
_ s
T tEY 1 cony] Jo £ o)

B(Xo)t gt oo poo
S [ e g = vton 15" = o),

P(SP , € dk)P(SB € di)ds
C4eB()\0)t t [e'e] ol - 5
t—F ), © [v(9o{ P [dg — 1(d0)I) | L1 (uo) (S € dl)ds
C4eB()\0)t t o0 oo
< =11 Lo (uo) / / / e M) P(SB ¢ dk)P(SE € di)ds
| o B(Xo _
- IIh%lllm (110) / / MUP(SB € dl)ds

—2C4||h¢o o ugye POV =B > ¢, (4.6)
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where we used (3.6) in the second inequality and (1.1) in the last equality. By (3.2),
(2.20), (2.19), (2.18), (2.1) and the fact that ||¢mdg ' |r2(u) = 1 for every m € N,
we find some constants cs, cg, tg > 0 such that

e —[B(Am)=B(Xo)]t
B(Am) = B(Xo)

< Cﬁe*[B(M)*B()\o)]t, t > to.

110(|6mdo )

Combining this with (4.6) and

po(lpy™” = 5" 1) < o (

1 t
— [ eids| ) + mo(ALD,
tEy[l{t<gf}} /0 f > /’LO(‘ t|)

we complete the proof of the desired result. O

With Lemma 4.4 at our disposal, we may obtain upper bound estimates on
-B
WQ(Mt ﬂyhut B )

2

Lemma 4.5. For every p € (3/2,00] and every 8 € (0, 55=5577

stants g, ¢ > 0 such that

), there exist con-

Wg(ufﬁﬂﬂfﬂ”) < c||hg M| Lo (uoye POV TBRE T > 4y = hy € Py

Proof. We use D to denote the diameter of M, i.e., D = sup {p(x,y) : z,y € M},
which is obviously finite since M is compact. According to Lemmas 4.1 and 4.4, for
every p € (3/2 oo] and every S € (0, ﬁ) there exist constants tg,c > 0 such

that, ,ut /' is a probability measure for any t > tg and v € Py, and

v ~B,v 1 B,v ~B,v
Wa (Ntﬂ s My g )? < §D2Hﬂt, — g [lvar = D Mo(mtﬁ 3 1)
7[B(/\1) B()‘O)] , t 2 to’ V= h/j, (S Po,

where in the first equality we used the fact that
B, -B,

dpy _ i
dpo dpo

~B,v
H:U’t B Mg [lvar = H

B,v ~B,v
L1 (po) - Hpt,ﬁ ~Pip HLl(uo)' O

Next, we estimate the error term VVQ(,u;B Yy 5"). We need the following in-

equality borrowed from [29, Theorem A.1] (see also [2, Corollary 4.4]), i.e., for any
probability density functions f; and fs with respect to pg such that fi VvV fo > 0,

o N=l(f g2
Wa(f1p0, fatio)? §4/M [V(=£o) f(fz 1)l d

(4.7)

Recall the number pg introduced in Theorem 1.3, i.e.,

_6(d+2) 3
o= o190 Vo

Lemma 4.6. Let 8 € (0, ﬁ) and p € (po,00]. Then there exist constants
¢, tg > 0 such that, for every t > tg and every v = hu € Py with h(bgl € LP(pp),

t2W2(,u/tB Vvutﬁ) < C||h¢0 ||LP(Hg)t_
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Proof. We divide the proof into five steps.

STEP 1. Since po(€s) = 0 for any s > 0 (see (3.10)) and po > 3/2, by (2.10) and
(4.6), we find some constants c1, ca,t9 > 0 such that

1 t
T4 1 Sd <7 S OOd
tE”[l{KUB}] / PO, ds SET / P2 4. o ds

/ 1P s — 10l nars e (o €811 21 (o s

tEV[l{t<UB}
T T O S R R / d
@e { A I tEy[l{t<a§}} 0 I8l oy ds

< ol I ooyt T e BON=BOONE g > g (4.8)
According to (2.7) and the definition of A; in (3.2), we have

1 i [14(60) v () + (0 11(rm ) e~ BOm?
B [Lyycony] S~ [B(Am) — B(Xo)]eGm—20)t7

Combining this with (2.20), Lemma 4.1 and B(\,;,) > B(\g) for each m € N, we
easily deduce that there exist constants c3,tg > 0 such that

- M
1P s Adlloo < 1515 oo < cst Lot >t (4.9)

By Lemma 3.1, Lemma 4.1, (4.8) and (4.9), we obtain

Py Ay = Pmdg ', t>0.

(a12)5 (2a=z0tn)s
||P Ul < c2llhdg Lo (uo)t e [BOI=B0IE 4 9eqt Lot >t

)

Since 8 € (0, m) by Lemma 4.1, we can find a constant ¢; > 0 such that
for any t > t1, Hpt 3 Moo < 3. S0, 1+ o 3 > 1,t>t;. Hence, by (4.7), we have

Walul 5P <8 [ VL) 6 <P, b0 (@0

So we need to estimate the right hand side of (4.10).
STEP 2. Let € = t~#. By the fact that (—Lo) /% = a [;° P% ds with a = T
we have

— B,v B,v — B,v B,v
J=V(=Lo) " (" — P L2 o) = 11(=Lo) V2 (p - Pes Mz uo)
—a P B ds‘

| [ patpe—poap s,

e 1 0 B,v
o —=(P.p; P+ept 7)dr

L2(po)

POy dr‘

1
VT —€ L2(po)

[ G-t [ ot
€ r—e AT o VT " k L2(po)
(J1+J2), (4.11)

where we applied twice the change-of-variables method, and let

L o0 1 0 0 sV
Jq _/E (m f)”P HLQ(HO) dr, Jo —/ f||P ||L2(H0)d7".

Hence it remains to estimate both J; and Js.

I
NI N N
S—

3
S
iyl
kS
“w
<
o

3
ng
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STEP 3. As for the estimate on J;, we claim that, for every p € (pg, o], there
exist constants c,ty > 0 such that

0o 1 w
I [ (= = ) IR Ny + [ P2A g2 dr

< ellhdg e uoyt” T, > 1o, (4.12)
and
o0 1 1 1 t
J ::/ (7—— _ /Pfgsds dr
b2 e \Wr—e \/77) tE [111<o23] [[Jo L2 (o)
< cemBOON=BRI Rt 0682 > 1. (4.13)

Proof of (4.12). By the expression of =", Ay in (3.2) and by (2.7),

by _ e PO (o)) + v(00)(om)

—(Am=Ao)r gy 4=1
T p - € ¢m¢ bl
t B [Leony] 2= B(An) — B(\o) 0

and

1 i [1(60)0 () + 1(60) ()] B
B [Li<ony] £ B(Am) — B(Xo)

Since {pmdy ' bmen, is an eigenbasis of Lo in L?(pg), by (2.20), (2.19) and (2.18),
we derive that

PYA, = e”Gm=Ro)rg bt

1P Al 2oy < (|27 1 L2 (o)

- L(Ao)t [:U’(QSO) (¢m) ( ):u( m” —2(>\m—>\o)?” 1/2
_tIEV[l{KJg}](Z [B(Am) — B(Xo)]? )

co(s (o) (?;ij:é;@(g 1(Em)l? aa,, o) s,

m=1
for some constant cy4 > 0.
Let h = ;L(gﬁo)hgbo + V(qbo)cZ) . If pg < p < 2V pg, which is equivalent to that
po < p < 2, then
1Al Lr oy < 11(P0) 1A | Lo (o) + 1 (00) b5 Il L (110

< 1(60) 1heg 1o a0y + I1heg 21 (o) 195 122 10)

< 2[lheg [l £ (o) (4.15)
and if co > p > 2V pg, then
171l 2 o) < 1hg M 122 (o) + 1895 M 121 o) < 20175 L (o) (4.16)
since p(pp) < 1 and ||¢51||L2(H0) = 1. By (2.8),
(PY = po)h =Y [1(do)v(dm) + v(do)(dm)le” A 2057,
m=1

which immediately leads to

I=L0) =B = 10)h 2

N TR

L2 (po)
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_ (i [u(%)u(gb;jj;s@mquﬂzemmM)T)”z_ (4.17)

m=1

Due to (2.11), (4.14), (4.17), (4.15) (resp. (4.16)) and the fact that (—Ly)™* =
C P?,,., ds for some constant C' > 0, we have

1(;/600( rl_e )/ r+sl/a NO)EHLQ(MO) dsdr
7)

/ 1P2, e — 101l 20 )2y Vel s

IN
[

IN
[

RS

IN

c/oo( 1
tJ. Jr—e
1 1 >/OO e—()\lf)\o)(T‘ksl/a)
VT —e€ \/77 0
_ (d+2)(2=p)

& —
Wy ooy [
x [1A(r+ sl/a)] ® o dsdr

I > ( 1 1 ) % a—ag)st/e 1/ — a2 @=p)
< - » - 1=Ao Ir
> t“h(% ||L (uo)/6 \/m \/77 dr 0 € (1 Ns ) ds

< cllhdg ooyt ™A, > to,

where the positive constant ¢ may vary from line to line, and in the last inequality
we used the fact that

o° 1 1 2[ 1 Ny
dr R (WA ds < oo,
/6 (\/r —€ \f) / ( ) T
since p > po > 2(d +2)/(d + 2 + 4a). We finish the proof of (4.12).

Proof of (4.13). Suppose that pg < p < 6. (Note that py < 6.) By Holder’s
inequality, (2.12) and (2.2), there exist constants cs,cg > 0 such that, for any
k.1 >0,

i = v(@0)I[PLéa " = m(o)lll 2 (o)

< 1P (h3") = ooy o | PG5 = (@0l 2,

< ”PZO - NO||LT’(,LL0)—>L‘7(#0)Hh¢61||Lp(#o) ||Pz?(¢61) - (QSO)HL%

o @ -
< cze” MO EFN (T AT (e | Lo (o) 00

(ko)

L7 (o)
(22 (a=p)
< cgem M AR (1 A )~ = 1hdo e (uo)s  a € (6,00].
By (4.5), for every p € (pg, o], we find a constant ¢; > 0 such that

w(go{p(do) — PP ' 1| < cre™ MM hg [ o), 1> 0.

Hence, according to (1.1) and (3.6), we have
€51l £2 (1o
S A B Y
S P(SP , € dk)P(S? € di)

05 gy [ e O IB(SE € a
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_ (d+2)(ga—p)

< cllngy o gupye ™ ZOE) / e M LADTEETER(SE € )

+ c||\hddg I Lo (ugye” BOV!
_ (d+2)(¢—p) _ _
< C”hqao—l”Lp(Mo)efB()q)t (1 + s 2(,;’(1 P ) 4 C||h(,250 1||Lp(/to)e B()\l)t’

where the positive constant ¢ may vary from line to line. A similar argument as in
(3.15) leads to
_ (d+2)(a=p)
1P sl 22 (o) < 08||h¢61HLP(uo)efB(Al)t(l +s T ) r>0,  (418)
for some constant cg > 0.
It is easy to see that

_[d+2)(6-p)

0 1 6.
> 120[]) <l, pe (p07 ]
Then, for every p € (po, 6], there exists p € (6, 00] such that
d+2)(p—
9 = w € (0,1).
2app

Hence, by (4.18) and (2.20), we can find constants cg, c19,tp > 0 such that

1 / ¢ o 1 / R
Pré-sds < ||P’I"£5HL2 ds
ﬂEy[l{Krff}] 0 L2(po) tEV[l{t<a§}] 0 (o)
7B(>\1)t

t
Co€ -1 —9
< 9 T hgs Yl / 1 +57)ds
t]EV[]-{t<o_f_3}] || 0 ”L (ro) o ( )

< ClOe_[B()\l)_BO\O)]t||h¢61”LP(/LO)a t > to.

Thus, for every p € (po, 6], there exist constants g, 11 > 0 such that

~[BOW Bty 4~ 1 Tl 1
J1,2 < cpoe ! O hdg || Lo (o) (m - W) dr

< Clle_[B()\l)_BO\O)]tHh(balHLP(uo)t_B/zv t > to.

Now suppose that p € (6,00]. Then there exists constant cj2 > 0 such that, for
any k,l > 0,

Iy — v(¢0)][Pede " — (o)l 2 (o)
<|I1P(heby ") = 1o (hedg M) Lo (puo) 1 PR b6 — 11(b0)

< 6126—(>\1—>\0)(/€+l) ||h¢al ||LP(;L0)7

Il 20
LP=2 (o)

and a similar argument also leads to (4.13).
Thus, by the definition of pP*”, (4.12) and (4.13) imply that, for every p € (po, <],
there exist constants ci3,tg > 0 such that

Jl < 013‘|h¢61“Lp(uo)t_(1+6/2)7 t > to. (419)

STEP 4. To estimate Jo, by an analogous argument for (4.12) and (4.13), we
have

c1 ~B,v B,v
/OW(HP;)pt’ 122 (uo) + I PPAT [ 22 0)) dr

c [°1 _ -
< | T P = )bl
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C € dT o0
< = h —1 » —()\1—)\0)5
< -llhoy L (“0)/0 e
< ellhdg oo guoyt™ TR, t > o, (4.20)

(d+2)(2—p)

1/Ol(l/\sl/o“)f w ds
and

¢
P2¢.ds dr

1
/0 \/Ft]EV[]-{t<JF}} L2(uo)
c1
< llho-? —[B(/\l)—B(/\o)]t/ 1 g
—CH (bO ||LP(Mo)e o \/77 r

< c”h(bal||LP(#O)e_[B()‘l)_BO\O)]tt_ﬂ/Q7 t > to, (4.21)

where the constant ¢ > 0 may vary from line to line. Thus, there exists a constant
c14 > 0, such that

Jo < crallhdg ooyt "D, t > to. (4.22)
STEP 5. Finally, by (4.10), (4.11), (4.19), (4.22), we complete the proof of Lemma
4.6. O

An alternative proof leads to the following result, which improves the rate of
convergence in the case when « € (1/2,1]. However, a = 1/2 seems critical for the
approach employed below. We postpone the proof of Remark 4.7 to the end of this
subsection.

Remark 4.7. Assume that o € (1/2,1] and B € B, Let 8 € (0, ﬁ) and
p € (po,00]. Then there exist constants ¢,ty > 0 such that, for any ¢ > ¢y, and any
v = hu € Py with hoy' € LP(uo),

B, _
t2W2(Mt V’#’t B ) < C||h¢0 ”LP ;m)t
The next proposition establishes the upper bound in Theorem 1.3.

Proposition 4.8. Let a € (0,1], B € B* and p € (pg,00]. Then for any v = hy €
Py with héy ' € LP (1),

- ) + v(¢0)1(¢m)]?
hiris:)gp{ﬁWz( aMO) }< I ¢0 (60)}2 E:l _)\0 [B(Am )iB(AO)]Q.

Proof. By the triangle inequality of W, we see that for any 8 € (0 there

2
) 2d—2a+1 ),
exists some constant ty > 0 such that ﬂf /’;' € Py for every t > ty and

W (i 10)? < (1+ 6 PWa(ii 'y mo)® + 2(1+ 6~ )Wy, iy )?
+2(1+ 6 W (Y ul ), t > to, 8> 0.

According to this and Lemmas 4.3, 4.5 and 4.6, for any g € (0, ﬁa“) and any
p € (po, o], there exist some constants g, ¢ > 0 such that, for every t > tq,

2 B,v 2
t WZ(/U‘t 7#0)
(2d— 2a+1)ﬁ

1+t — [11(00)v(dm) + v(d0) t(dm)]? o—2(m—20)t™?
R PR P ENIE ;<Am—ko>[3<km> B(20)?

+2(1 4 6oyl o (ugye PO TBON foc(1+ 671 [1hgg 130 oyt
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Since thﬁalHLp(Mo) < 00, by letting ¢ — oo first and then § — 0, we have

o ¢m + V(o) 1(pm))?
tlggo{t Wg( 7.U0) P< {u( ¢O (60) }2 Z —)\0 B(Am) — B(A\o)]?

We finish the proof. O
To end this subsection, we present the proof of Remark 4.7.

Proof of Remark 4.7. We use the same notations as in Lemma 4.6. The positive
constant ¢ used below may vary from line to line. By the definition of pf v pf /’3"
and (3.2), we have
I = IV(=Lo) (0" = pi Mz (uoy < J1+ T2 +Js, (4.23)

where

3 —1/~B,v ~B,v

I = IV (=Lo) 750" = e g M L2 (o)

Jo := | V(=Lo) ™ (A = PLs A 22 (o)

o 1 ¢ _1 0
Js = tE[l{K}/ IV (=L0) ™ (€ — P2 (€))L (o) ds.

So it suffices to estimate the right hand side of (4.23).
(1) Firstly, we estimate J; + Jo. Noting that
B

~B,v ~B,v ~B,v ~B,v
Pt — P =Pt PO Bpt = / (_‘CO)PBPt dr,
0

we have
Ty = IV (=Lo) 7 37" = i M e2(uo) = 1(=L0) ™2 (58 = By M L2 (o)
_ 0)1/2 PO 5B 0)1/2 PO 5B

H/ P% dr’ o / 1(=L0) 2 POAE || oy A (4:24)

By the expression of 5 in (3.2) and (2.7),
B (¢0)v(Pm) +v(d0) (D O o) g A
(= Lo) /2P0 B — Z (9o (()\ )) ((/\03)( ) S e S O

where a; := e P00 Gince (Pmg  )men, is an eigenbasis of Lo in L?(ug), by

t]E"[l{t<g71_3}] :
(2. 20) (2.19) and (2.18), we derive that

~B N2
1=L£0)" 2 P2 || 2,

_ (S (00 (6m) + v(G0)i(dm)]?
- t(z [B(Am) — B(Mo))2

B B _ 1/2
()\m — )\o)e 2(Am AO)Tl|¢m¢o 1”%2(#0))

m=1
< %( i [u(aﬁo)l/((;zﬁm)_ﬂt\:)(io)it(qu)]2e_zum_m)r)l/27 t>to, (4.25)
m=1 m

for some constant ¢ > 0. By a similar argument as J; and (4.25), we have

€
o < [ I-L0)F P2 A g (4.26)
0

and

I=L0) 2 PP A
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o S [(60)v(ém) + (@)l e 20O 1 /
iz 3] 2y T8O — B3Oy 7198 M6

< %( 3 [N(%)V((fm)_J;Z)(io_)fwm)]2e2(AmAo)r)w, t > to, (4.27)
m=1 m
for some constz}nt c> 0.
Recall that i = u(po)hoy ' + v(do)py*. Since
(PY = po)h =Y [1(do)(dm) + v(do) p(dm)le™ O 2665,

m=1

by (2.7), we immediately have
|| (—=Lo) 1/2- PO Ho h”Lz

(ko)
[1(¢0) v (Dm) + V(Do) 1(dm)]* _o(r,.—r0)r) /2
= m=ro)r) " 4.2
<§_:1 O Dot ¢ ) (4:2%)
Thus, combining (4.24), (4.25) (4.26), (4.27) and (4.28), we obtain
Jl + J2 / H ﬁo 1/2- a - ,uo)il L2(po) d?“, t Z to. (429)

Suppose that po < p < 2V po. By (2.11), (4.15) and the fact that (—Lg)Y/?~* =
cfo 0 2a—1) s, we have

J1 + J2
c € o0 .

< PO o hd ‘ d

= / / (Pryg2/a—1) — po)hds L2 (o) r

// r+g2/<2a y — MO)EHB(HO)deT

// 1P g2/ a1y = Holl L (o) L2 (o) 1| o (o) dsdr
P e A (T e
0 0

< cllhgg e (uoyt™ Y, > to, (4.30)

for some constant ¢ > 0, where we applied the fact that

o0
o (d+2)(2-p)
/ o~ (A1 =20)s?/ ”(1 A 82/(204*1))*Tpd5 < 00,
0

\ /\

I /\

| /\

since
be 2 ([d+22-p)
T 2a-—1 4p
Suppose that pg V2 < p < co. By an analogous argument, we also have (4.30).

(2) Secondly, we turn to estimate J3. By (4.21) and a similar argument as in
(4.11) and (4.13),

- c E e 1 1 |
Jg< —— — P%.d 0¢, d
= E”[l{ms}]/ / (\/7“—6 f) Sdr= o VT g dr

1
< — - - P2, || 12(puo) drds
E 1{t<aB} / / < r— ¢ \f) ” ||L (1o)

<1, pée(po,2], ae(1/2,1].

ds
L2(po)
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PO, drd
tIE 1{t<o‘3} // ” ¢ HLQ(HO) e

oo 1 € 1
< cllhgg | o gy~ POV PO [/ <\/T f)d”/ ﬁdf]
< c|hdy o uyye” POV TEONE2 g > g, (4.31)

for some constant ¢ > 0.
(3) Finally, combining (4.10), (4.23), (4.30) and (4.31) together, we complete the
proof. O

4.2. Lower bounds. In this subsection, we present the proof of the lower bound

in Theorem 1.3. Note that, by Lemma 4.1, for any 8 € (0, ﬁa“), there exists
some constant tg > 0 such that ﬁf BV € Py for every t > ty and every v € Py.
Set ft7 5= (=Lo)~ ﬁf BV The next lemma establishes useful regularity estimates

for ffﬁ and its gradient.
Lemma 4.9. For any « € (0,1], 8 > 0, there exists a constant ¢ > 0 such that

12510 + I1£0fBsloo + IV f Bl < et 571 £ 21, v € Py,
Proof. By (2.7) and (3.2), we have, for every t > 1,
(—Lo)f s
_ 1 i [1(¢0) v (¢m) + v(do) p(m)]e” B0 e Am=20 7y 4ot
B [1p<omy] “= B(An) — B(Mo)
and
PR S 711 G Rl G L G) i (W O

tE” [11<o84] (Am = A0)[B(Am) — B(Ao)]
Combining these identities with (2.1), (2.13), (2.20), (2.19), (2.18) and the fact that
1(60)(3m) + v(@0)1(dm)| < l|dolloc + [ dmlloc < crm?, meN,

for some constant ¢; > 0, we find constants cs, c3, ¢4 > 0 such that

m=1

)\m*)‘O)t f d+1
; Ty <6 ) e T
£ e + 1205100} 22 ) =B
o0 1.2 3 dti—2a
§63/ TR P
0
(2d+1—2a)8
St T, t>1,

where g is from (2.1). By a similar argument as above, applying (2.14), we deduce
that there exist constants cs, cg, c7 > 0 such that

(3_(’\’"”_)‘0”7ﬂ 3d+4

ISl = 2 By = Bowom ="

oo

-1, 2.5 3d+4_2(1+a)
< cg Z e~ mdt Tl S —
m=1
B(5d—4a)
<et™TE 1>

The proof is completed. O
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In the following lemma, we present the lower bound estimate for Wg(ﬂf ‘BV, o)-
With Lemma 4.9 in hand, the proof can be achieved by the same approach employed
for [27, Lemma 4.2]. So we omit the details here.

Lemma 4.10. For any a € (0,1], 8 € (0 there exist constants ¢,y > 0

’4od+2 1o )]

such that
PWa () mo)® > Jg —ct™%, t>to, v € Py,
where
S + v(#0) (D) _a(n—re)t"
Jg = e 2Am=20)t™"
7 ¢o (¢0)}2 2 Z - Ao <Am> — B(M)2
t>0,veP. (4.32)

The main result of this subsection, which is the lower bound in Theorem 1.3.

Proposition 4.11. Let a € (0,1], B € B® and p € (pg,0]. Then for any v =
hu € Py with hoy' € LP(uo),

v(ém) + v(do )U(¢m)]2
") }_{M(%) (60)}? 2 Z onnB(A ) = B

N 2
htn_1>1£f{t Wa (P

Proof. By the triangle inequality of Wy, we have for any 5 € (0 ), there

2
) 2d—2a+1
exists a constant fy > 0 such that ﬂf é’j € Py for every t > ty and

WQ(H’tB’Va /U’O) > WQ(,&E[’SUMU’O) - W2(ﬂf,(’iunufb ) WQ(N’t ﬁya ,u‘t V)a t > 1. (433)

Combining Lemmas 4.5, 4.10 and 4.6 together, for any 8 € (0 and any

1
) 4(5d+2—4a)]
p € (po, 0], we can find some constants ¢, tg > 0 such that, for every v = hy € Py
with h(bal € LP(up) and every t > to,
tWa(jiyy sy ) < cte PON=BOI2 g
1
tWQ(/]t”(’;v/’LO) Z ([J,B - Ctiz]+) 27
By B, _ _B
Wy iy ") < ellhdg Loyt 2,

where Jjg is defined in (4.32). Substituting these estimates into (4.33), we immedi-
ately obtain that

' ”L”(HO)’

th( 7,“0) ([Jﬁ — ot~ 4] )% . Ctef[B()\l)fB()\o)]t/2||h¢61”LP(HO)
_ _s
— c||hdg M lnr(uo)t ™2, t = to.
Since ||h¢g* | e (o) < 00, by letting t — oo, we prove the desired result. O

Appendix. Let B € B® for some a € (0,1]. Recall that puy = ¢3u, and pug is
called a quasi-ergodic distribution of the B-subordinated Dirichlet diffusion process
(XP)i>0 if for every v € P supported on M and every Borel set E C M,

1 t
lim E”[f/ 1p(XB)ds
t—00 t 0

The following result implies that pg is the unique quasi-ergodic distribution of
(XP)ez0.

0B > t} = po(E).
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Proposition A.1. Let a € (0,1] and B € B®. Then, for every v € P supported
on M,

. B,v _
tlggo (|12 tollvar = 0,

and

t—o00

lim ]EVE /Otf(XSB)ds‘af > t} = /Mfduo, f € By(M).

Proof. The proof is a direct application of [8, Theorem 2.1]. So we only need to
check the assumptions (A;) and (As) on [8, page 185]. (Aq) is clearly satisfied. By
(2.15), Fubini’s theorem, u(¢2,) = 1 for each m € Ny, (2.1) and (2.18),

/Mp?%,xmmx) /M S e BOIGE (1) p(da) = 3 e BOmE
m=0 m

=0

— e~ B0 (1 +3 e—[B(Am)—B(AUﬂt)

m=1

IN

oo
c1 (1 + Z e_Cthza/d> < oo, t>0,
m=1

for some constants cj,c2 > 0. By (2.17), (2.5), a similar argument as in (3.19),

there exist constants csz, cq4 > 0 such that
o0 o)

IPPZ ey = | / PRFR(SP e du) < / 1Pl P(SP € du)

d

_ B _4a _4a
sl Pz [0S (LA SPYH] < el fllaagE (1A SP) 1]
callfllzzg (L +¢73), >0, f € L (u),

ie., HPtD’B”LQ(u)HLC’O(M) < C4(1 + t_ﬁ), t > 0. Thus, (Ag) is satisfied. ]

IA
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