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Abstract. In this paper, we investigate the rate of convergence on the qua-

dratic Wasserstein distance between conditional empirical measures associated

with subordinated Dirichlet diffusion processes on a connected compact Rie-
mannian manifold with boundary and the quasi-ergodic distribution. We ob-

tain the sharp rate of convergence for any initial distribution and even prove
the precise limit for a large class of initial distributions. This proof is based on

the PDE method developed by L. Ambrosio et al. in [3] and the arguments on

diffusion cases by F.-Y. Wang in [27].

1. Introduction. In this section, we first introduce the framework and then prese-
nt the main results. Some related literatures are discussed subsequently.

LetM be a d-dimensional connected compact Riemannian manifold with smooth
boundary ∂M and P be the set of all Borel probability measures on M . Let U ∈
C2(M) such that µ(dx) = eU(x)dx belongs to P, where dx is the volume measure on
M . Denote L = ∆+∇U , where ∆ and ∇ stand for the Laplace–Beltrami operator
and the gradient operator on M , respectively. Let (Xt)t≥0 be the diffusion process
corresponding to L with hitting time

τ := inf{t ≥ 0 : Xt ∈ ∂M}.
Let N0 = N∪{0} and let ϕm, λm, m ∈ N0, be Dirichlet eigenfunctions and Dirichlet
eigenvalues of the operator −L in L2(µ) respectively (see Section 2 for details). Set
µ0 := ϕ20µ, which clearly belongs to P.

We are interested in the asymptotic behavior of conditional empirical measures
of a large class of Markov processes subordinated to (Xt)t≥0. For this purpose,
we should recall some basics on Bernstein functions and subordinated processes;
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see e.g. [6, 21, 4] for a systematic study. A function B ∈ C([0,∞); [0,∞)) ∩
C∞((0,∞); [0,∞)) is called a Bernstein function if, for each k ∈ N,

(−1)k−1 dk

dtk
B(t) ≥ 0, t > 0.

We will use the following class of Bernstein functions (see [33]), i.e.,

B :=
{
B : B is a Bernstein function with B(0) = 0, B′(0) > 0

}
.

Let B ∈ B, and let (SB
t )t≥0 be the unique subordinator corresponding to B, i.e.,

an increasing stochastic process with stationary, independent increments, taking
values in [0,∞) and SB

0 = 0 such that B is the Laplace exponent of (SB
t )t≥0, i.e.,

Ee−λSB
t = e−tB(λ), t, λ ≥ 0. (1.1)

Let (XB
t )t≥0 be the Markov process on M generated by −B(−L). It is well known

that (XB
t )t≥0 can be constructed as the time-changed process of (Xt)t≥0 by (SB

t )t≥0;
more precisely,

XB
t = XSB

t ∧τ , t ≥ 0,

where (SB
t )t≥0 is the subordinator introduced above, independent of (Xt)t≥0. We

call (XB
t )t≥0 the Dirichlet diffusion process subordinated to (Xt)t≥0 orB-subordina-

ted Dirichlet diffusion process1.
Our main results are based on the following class of Bernstein function. For any

α ∈ [0, 1], let

Bα :=

{
B ∈ B : lim inf

λ→∞
λ−αB(λ) > 0

}
.

From the table in [21, Chapter 16], we can find many examples belonging to Bα such

as λα, α ∈ (0, 1] (algebraic type),
√
λ(1− e−2

√
λ) (exponential type), λ(λ+1)

(λ+2) log(λ+2)

(logarithmic type), etc. Let B ∈ Bα for some α ∈ [0, 1]. Set

σB
τ := inf{t ≥ 0 : SB

t > τ},

which can be regarded as the hitting time of the B-subordinated Dirichlet diffusion
process (XB

t )t≥0 at the boundary ∂M . Denote M̊ as the interior of M i.e., M̊ :=
M \∂M . Then we can verify that µ0 is the unique quasi-ergodic distribution of the
B-subordinated Dirichlet diffusion process (XB

t )t≥0 for B ∈ Bα, α ∈ (0, 1], i.e., for

every ν ∈ P supported on M̊ ,

lim
t→∞

Eν
[1
t

∫ t

0

f(XB
s ) ds

∣∣∣σB
τ > t

]
=

∫
M

f dµ0, f ∈ Bb(M),

where Eν denotes the expectation for the process (XB
t )t>0 with initial distribution

ν ∈ P; see Appendix for a proof. This implies that the family of conditional

empirical measures (µB,ν
t )t>0, i.e.,

µB,ν
t := Eν

(1
t

∫ t

0

δXB
s
ds
∣∣∣σB

τ > t
)
, t > 0,

converges weakly to µ0 as t→ ∞.

1According to the literature, it seems more appropriate to call (XB
t )t≥0 the subordinate killed

diffusion process w.r.t. B. See e.g. [22] for studies on subordinate killed processes.
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Let ρ be the geodesic distance on M . The quadratic Wasserstein distance W2 is
defined as

W2(µ1, µ2) = inf
π∈C(µ1,µ2)

(∫
M×M

ρ(x, y)2 π(dx, dy)

) 1
2

, µ1, µ2 ∈ P,

where C(µ1, µ2) is the set of all Borel probability measures on the product space
M×M with respective marginal distributions µ1 and µ2. According to [24, Theorem
7.12], we have that

W2(µ
B,ν
t , µ0) → 0, t→ ∞.

So, it is interesting and significant to estimate the rate of convergence on W2(µ
B,ν
t ,

µ0) as t tends to infinity.
In order to avoid the situation that Pν(σB

τ > t) = 0 for some ν ∈ P, we should

consider the conditional empirical measure µB,ν
t with ν ∈ P0, where

P0 := {ν ∈ P : ν(M̊) > 0}.
For convenience, for every B ∈ B and every ν ∈ P0, we set

I :=
1

{µ(ϕ0)ν(ϕ0)}2
∞∑

m=1

{ν(ϕ0)µ(ϕm) + µ(ϕ0)ν(ϕm)}2

(λm − λ0)[B(λm)−B(λ0)]2
.

Now we present the first main result of this paper, which contains the rate of
convergence for any initial distribution from P0.

Theorem 1.1. Let α ∈ (0, 1] and B ∈ Bα. Then

lim sup
t→∞

{t2W2(µ
B,ν
t , µ0)

2} ≤ 4I ∈ (0,∞], (1.2)

and moreover, I is finite in either of the following cases:

(1) d ≤ 2(1 + 2α),
(2) d > 2(1 + 2α) and ν = hµ with h ∈ L2d/(d+2+4α)(µ).

Some further remarks are in order.

Remark 1.2. (a) In particular, if we choose B(r) = r, r ≥ 0, then we are in the
framework of [27]. Compared with the upper bound in [27], the rate of convergence
in (1.2) is sharp, although there is an extra factor 4 which comes from the application
of inequality (3.1). It seems that the original idea used in [27, Section 3] to prove the
upper bound is not applicable to the present non-local setting due to the difficulty
in employing (4.2) instead of (3.1). Nevertheless, the precise limit is obtained in
Theorem 1.3 below for a large class of initial distributions.

(b) Let mB
t = 1

t

∫ t

0
δXB

s
ds for any t > 0. In the recent work [17], the rate

of convergence on conditional expectations of the quadratic Wasserstein distance
between mB

t and µ0 is studied, which in particularly shows that for any ν ∈ P0,
Eν [W2(m

B
t , µ0)

2|t < σB
τ ] decays with rate t−1 as t→ ∞, slower than the one t−2 in

Theorem 1.1.

The next main result contains the exact limit for a large class of initial distribu-
tions.

Theorem 1.3. Let α ∈ (0, 1] and B ∈ Bα. Then, for any ν ∈ P0 such that ν = hµ
with hϕ−1

0 ∈ Lp(µ0) for some p ∈ (p0,∞],

lim
t→∞

{t2W2(µ
B,ν
t , µ0)

2} = I, (1.3)
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where

p0 := max
{ 6(d+ 2)

d+ 2 + 12α
,
3

2

}
.

Remark 1.4. (1) It is clear that the limit in (1.3) belongs to (0,∞), which follows
from Theorem 1.1. The main novel contribution is the introduction of a new regu-
larization procedure for the proof of Theorem 1.3, different from [27], which leads
us to apply (4.2) successfully. However, this approach does not seem to be effective
without additional regularity on the initial distribution ν ∈ P0. Although we do
not know how to get rid of the extra assumption on the initial distribution at the
moment, we believe that (1.3) holds for all ν ∈ P0 at least for α close enough to 1.

(2) It is interesting to notice that, due to our approach, we do not need any
upper control on the Bernstein function for the lower bound in Theorem 1.3, which
is different from the recent results [17, Theorem 1.3(2)] and [33, Theorem 1.1(2)].

Recently, besides [27, 17] mentioned above, large time asymptotic behaviors of
empirical measures associated with (subordinated) diffusion processes to the ref-
erence measure under Wasserstein distances on Riemannian manifolds have been
investigated in a series of papers. (i) Let M be a compact Riemannian manifold
with ∂M empty or convex. Uniformly in x ∈M , the precise limit of tEx[W2(µt, µ)

2]
as t→ ∞ and sharp rates of convergence on Ex[W2(µt, µ)

2] for large t are obtained
in [34], where µt is the empirical measure associated with the given (reflecting) dif-
fusion process (when ∂M ̸= ∅) and µ is the invariant measure. Furthermore, these
results are successfully generalized to subordinated diffusion processes by the second
named author joint with F.-Y. Wang in a more recent paper [33]. See related studies
on empirical measures in the quadratic Wasserstein distance under the conditional
expectation in [28], where the rate of convergence turns out to be quite different
from [27]. (ii) Let M be a noncompact Riemannian manifold with ∂M empty or
convex. Sharp rates of convergence on Eµ[W2(µt, µ)

2] for large t are obtained in
[29], where µt and µ are similar as the ones in (i). The results are generalized to
a large class of subordinated processes more recently in [16] by the same authors
of the present paper. (iii) Further studies on this subject can be found in [30] for
stochastic partial differential equations, in [13] for the fractional Brownian motion
on flat torus and its subordinated case [18, 35] for weighted empirical measures of
symmetric diffusion processes on compact Riemannian manifolds without boundary,
[31] for subordinated non-symmetric diffusion processes, and [32] for general ergodic
Markov processes. Last but not the least, being a classic research subject with a
wild range of applications, the study on asymptotic behaviors of empirical measures
associated with i.i.d. random variables to the reference measure under Wasserstein
distances, particularly on quantifying the rate of convergence, has received consid-
erable attention over years; see e.g. the papers [3, 5, 14, 15, 12, 11, 1, 36, 19], and
the book [23] as well as references therein for many deep results.

The remainder of the paper is laid out as follows. In Section 2, we recall some
known results and present some useful properties needed for the later sections. The
proof of Theorem 1.1 and Theorem 1.3 are presented in Sections 3 and 4 respectively.
An appendix on quasi-ergodic distributions is included.

2. Preparations. In this section, we briefly recall some well known facts on the
Dirichlet diffusion semigroup and the Dirichlet heat kernel, which are mainly bor-
rowed from [27, Section 2]; see e.g. [26, 7] for more details. Then we deduce some
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useful properties on the subordinated Dirichlet diffusion semigroup and introduce
necessary notations.

It is well known that the spectrum of the operator −L is discrete, whose eigen-
values λk, k ∈ N0, are nonnegative and listed in an ascending order counting multi-
plicities, and the corresponding eigenfunctions ϕk, k ∈ N0, satisfying the Dirichlet
boundary condition, form a complete orthonormal system in the function space
L2(µ). We may assume that ϕ0 > 0 in M̊ since ϕ0 does not change the sign in M̊ .
It is also well known that λ0 > 0,

α−1
0 k2/d ≤ λk − λ0 ≤ α0k

2/d, ∥ϕk∥∞ ≤ α0

√
k, k ∈ N, (2.1)

for some constant α0 > 1, and

∥ϕ−1
0 ∥Lp(µ0) <∞, p ∈ [1, 3). (2.2)

Here and in the sequel, we denote the supremum norm by ∥ · ∥∞.
Let pDt and PD

t be the Dirichlet heat kernel and the Dirichlet diffusion semigroup
corresponding to L, respectively. It is well known that pDt has the following spectral
representation, i.e.,

pDt (x, y) =

∞∑
m=0

e−λmtϕm(x)ϕm(y), t > 0, x, y ∈M. (2.3)

Then, we can use (2.3) to express the Dirichlet diffusion semigroup as

PD
t f(x) := Ex[f(Xt)1{t<τ}] =

∫
M

pDt (x, y)f(y)µ(dy)

=

∞∑
m=0

e−λmtµ(ϕmf)ϕm(x), t > 0, x ∈M, f ∈ L2(µ). (2.4)

Moreover, there exists a constant c > 0 such that

∥PD
t ∥Lp(µ)→Lq(µ) := sup

∥f∥Lp(µ)≤1

∥PD
t f∥Lq(µ)

≤ ce−λ0t(1 ∧ t)−
d(q−p)

2pq , t > 0, 1 ≤ p ≤ q ≤ ∞. (2.5)

Since the Dirichlet diffusion operator L is non-symmetric w.r.t. µ0, we can not
use [3, Proposition 2.3] directly. One important technique to overcome the difficulty
is by employing Doob’s transform and considering

L0 = L+ 2∇ log ϕ0.

Then L0 is a non-positive self-adjoint operator in L2(µ0), and the corresponding
semigroup, defined by P 0

t := etL0 in the sense of functional analysis, satisfies

P 0
t f = eλ0tϕ−1

0 PD
t (fϕ0), t ≥ 0, f ∈ L2(µ0). (2.6)

Moreover, µ0 is the invariant measure of P 0
t since P 0

t is conservative (i.e., P 0
t 1 = 1

for every t ≥ 0) and symmetric w.r.t. µ0. By taking f = ϕ−1
0 ϕk in (2.6) and noting

that PD
t ϕk = e−λktϕk for every k ∈ N0, we clearly see that

P 0
t (ϕkϕ

−1
0 ) = e−(λk−λ0)tϕkϕ

−1
0 , k ∈ N0, t ≥ 0,

L0(ϕkϕ
−1
0 ) = −(λk − λ0)ϕkϕ

−1
0 , k ∈ N0, (2.7)
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and hence, {ϕ−1
0 ϕm}m∈N0 is an eigenbasis of −L0 in L2(µ0). Thus, by (2.4) and

(2.6),

P 0
t f =

∞∑
m=0

µ0(fϕmϕ
−1
0 )e−(λm−λ0)tϕmϕ

−1
0 , f ∈ L2(µ0), t ≥ 0, (2.8)

and the heat kernel of P 0
t w.r.t. µ0, denoted by p0t , can be represented by

p0t (x, y) =

∞∑
m=0

e−(λm−λ0)t(ϕmϕ
−1
0 )(x)(ϕmϕ

−1
0 )(y), x, y ∈M, t > 0. (2.9)

By the intrinsic ultra-contractivity (introduced first in [10]), we can find a con-
stant α1 ≥ 1 such that

∥P 0
t − µ0∥L1(µ0)→L∞(µ0) := sup

∥f∥L1(µ0)≤1

∥P 0
t f − µ0(f)∥L∞(µ0)

≤ α1e
−(λ1−λ0)t

(1 ∧ t)(d+2)/2
, t > 0, (2.10)

which along with the semigroup property and the contractivity of P 0
t in Lp(µ)

implies that, there exists a constant α2 ≥ 1 such that

∥P 0
t − µ0∥Lp(µ0)→Lp(µ0) := sup

∥f∥Lp(µ0)≤1

∥P 0
t f − µ0(f)∥Lp(µ0)

≤ α2e
−(λ1−λ0)t, t ≥ 0, ∞ ≥ p ≥ 1. (2.11)

Combining the Riesz–Thorin interpolation theorem (see e.g. [9, page 3]) with (2.10)
and (2.11), we obtain that

∥P 0
t − µ0∥Lp(µ0)→Lq(µ0) ≤ α3e

−(λ1−λ0)t{1 ∧ t}−
(d+2)(q−p)

2pq , t > 0, ∞ ≥ q ≥ p ≥ 1,
(2.12)

for some constant α3 > 0. Thus, (2.12) and (2.1) lead to that, there exists a constant
α4 > 0 such that

∥ϕkϕ−1
0 ∥∞ ≤ α4k

d+2
2d , k ∈ N. (2.13)

Moreover, by [27, Lemma 2.4], we have

∥∇(ϕkϕ
−1
0 )∥∞ ≤ α5k

d+4
2d , k ∈ N, (2.14)

for some constant α5 > 0.
We now turn to the non-local situation. Let B ∈ B, t > 0, and let pD,B

t and PD,B
t

be the subordinated Dirichlet heat kernel and the subordinated Dirichlet diffusion
semigroup associated with the B-subordinated Dirichlet diffusion process (XB

t )t≥0,
respectively. By (1.1), (2.3) and (2.4), one has that

pD,B
t (x, y) =

∞∑
m=0

e−B(λm)tϕm(x)ϕm(y), x, y ∈M, (2.15)

and

PD,B
t f(x) := Ex[f(XB

t )1{t<σB
τ }] =

∫
M

pD,B
t (x, y)f(y)µ(dy)

=

∞∑
m=0

e−B(λm)tµ(ϕmf)ϕm(x), x ∈M, f ∈ L2(µ). (2.16)
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By (2.6), we immediately obtain that

PD
t f = e−λ0tϕ0P

0
t (fϕ

−1
0 ), f ∈ L2(µ0).

Hence, the semigroup PD,B
t can be written as

PD,B
t f =

∫ ∞

0

PD
s f P(SB

t ∈ ds)

=

∫ ∞

0

e−λ0sϕ0P
0
s (fϕ

−1
0 )P(SB

t ∈ ds), f ∈ L2(µ0), (2.17)

where P(SB
t ∈ ·) is the distribution of the subordinator SB

t .
We also need the next useful facts. Let α ∈ [0, 1] and B ∈ Bα. It is easy to see

that, there exist constants a, c > 0 and b ≥ 0 such that

B(r) ≥ c(rα ∧ r) ≥ arα − b, r ≥ 0; (2.18)

see also [33, (3.12)] and [16, page 17]. Moreover, according to (2.18) (which partic-
ularly implies that limr→∞B(r) = ∞), we have for every r0 ≥ 0,

lim
r→∞

B(r − r0)

B(r)−B(r0)
= 1. (2.19)

Together with (2.18) and (2.19), applying (2.16) and (2.1), we get a constant C > 0
such that

|eB(λ0)tPν(t < σB
τ )− µ(ϕ0)ν(ϕ0)| = |eB(λ0)tν(PD,B

t 1)− µ(ϕ0)ν(ϕ0)|

≤
∞∑

m=1

e−[B(λm)−B(λ0)]t|µ(ϕm)ν(ϕm)|

≤ e−[B(λ1)−B(λ0)]t/2
∞∑

m=1

e−[B(λm)−B(λ0)]t/2∥ϕm∥2∞

≤ Ce−[B(λ1)−B(λ0)]t/2, t ≥ 1, ν ∈ P0, (2.20)

which clearly implies that

lim
t→∞

{eB(λ0)tPν(t < σB
τ )} = µ(ϕ0)ν(ϕ0), ν ∈ P0. (2.21)

The following notation is used frequently in the sequel. Let ν ∈ P0 and t > 0.
Define

ηνt =

∫
M

ϕ0(x)p
0
t (x, ·) ν(dx),

which is obviously non-negative. Then, by (2.9), we have the spectral representation
of ηνt as follows:

ηνt = ν(ϕ0) +

∞∑
m=1

ν(ϕm)e−(λm−λ0)tϕmϕ
−1
0 ≥ 0. (2.22)

Let B+(M) (resp. Bb(M)) be the class of non-negative (resp. bounded) mea-
surable functions on M , and set B1(M) := {f ∈ Bb(M) : ∥f∥∞ ≤ 1}. Denote the
standard gamma function as Γ(·). For any a, b ∈ R ∪ {∞,−∞}, a ∧ b := min{a, b}
and a ∨ b := max{a, b}; in particular, a ∨ 0 =: a+.

Throughout the following Sections 3 and 4, we always assume that α ∈ (0, 1] and
B ∈ Bα unless explicitly stated otherwise.
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3. Proofs of Theorem 1.1. In this section, we aim to prove Theorem 1.1. Recall
that µ0 = ϕ20µ. One of the key steps to reach this target is based on the following
inequality:

W2(fµ0, µ0)
2 ≤ 4

∫
M

|∇(−L0)
−1(f − 1)|2 dµ0, f ≥ 0, µ0(f) = 1; (3.1)

see [14, Theorem 2] and see also [20, 3, 29] for related results.

Let ν ∈ P0. In order to employ (3.1) to estimate W2(µ
B,ν
t , µ0), we should

first calculate the Radon–Nikodym derivative
dµB,ν

t

dµ0
, which is presented in the next

lemma. The main tools to reach this are the Markov property and the spectral

representation of the subordinated Dirichlet diffusion semigroup (PD,B
t )t≥0.

Lemma 3.1. Let ν ∈ P0 and t > 0. Then

dµB,ν
t

dµ0
= ρB,ν

t + 1,

where

ρB,ν
t := ρ̃B,ν

t +
1

tEν [1{t<σB
τ }]

∫ t

0

ξs ds−At,

and

ρ̃B,ν
t :=

1

tEν [1{t<σB
τ }]

∞∑
m=1

[
µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)

]
e−B(λ0)t

B(λm)−B(λ0)
ϕmϕ

−1
0 ,

At :=
1

tEν [1{t<σB
τ }]

∞∑
m=1

[
µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)

]
e−B(λm)t

B(λm)−B(λ0)
ϕmϕ

−1
0 ,

ξs :=

( ∞∑
m=1

e−B(λm)sν(ϕm)ϕmϕ
−1
0

)( ∞∑
n=1

e−B(λn)(t−s)µ(ϕn)ϕnϕ
−1
0

)

−
∞∑

m=1

e−B(λm)tµ(ϕm)ν(ϕm), 0 < s ≤ t. (3.2)

Proof. Let t ≥ s > 0 and f ∈ B+(M). By the Markov property,∫
M

f dEν [δXB
s
1{t<σB

τ }] = Eν
[
f(XB

s )1{s<σB
τ }EXB

s (1{t−s<σB
τ })
]

= Eν
[
f(XB

s )1{s<σB
τ }(P

D,B
t−s 1)(XB

s )
]

= ν
(
PD,B
s {fPD,B

t−s 1}
)
. (3.3)

By (2.16), we have

PD,B
s {fPD,B

t−s 1}(x) =
∞∑

m=0

e−B(λm)sµ(ϕmfP
D,B
t−s 1)ϕm(x), x ∈M.

Applying (2.16) again, we derive that

µ(ϕmfP
D,B
t−s 1) =

∫
M

ϕm(y)f(y)

( ∞∑
n=0

e−B(λn)(t−s)µ(ϕn)ϕn(y)

)
µ(dy)

=

∞∑
n=0

e−B(λn)(t−s)µ(ϕn)

∫
M

ϕm(y)ϕn(y)f(y)µ(dy)



554 HUAIQIAN LI AND BINGYAO WU

=

∞∑
n=0

e−B(λn)(t−s)µ(ϕn)

∫
M

(ϕmϕ
−1
0 )(y)(ϕnϕ

−1
0 )(y)f(y)µ0(dy).

Hence∫
M

f dEν [δXB
s
1{t<σB

τ }] (3.4)

=

∞∑
m=0

∞∑
n=0

e−B(λm)se−B(λn)(t−s)µ(ϕn)ν(ϕm)

∫
M

(ϕmϕ
−1
0 )(y)(ϕnϕ

−1
0 )(y)f(y)µ0(dy).

According to(3.4), we deduce that the Radon–Nikodym derivative of Eν [δXB
s
1{t<σB

τ }]
w.r.t. µ0 can be written as

dEν [δXB
s
1{t<σB

τ }]

dµ0

=

∞∑
m=0

∞∑
n=0

e−B(λm)se−B(λn)(t−s)µ(ϕn)ν(ϕm)(ϕmϕ
−1
0 )(ϕnϕ

−1
0 )

=

( ∞∑
m=0

e−B(λm)sν(ϕm)ϕmϕ
−1
0

)( ∞∑
n=0

e−B(λn)(t−s)µ(ϕn)ϕnϕ
−1
0

)

= e−B(λ0)tµ(ϕ0)ν(ϕ0) + e−B(λ0)sν(ϕ0)

∞∑
m=1

e−B(λm)(t−s)µ(ϕm)ϕmϕ
−1
0

+ e−B(λ0)(t−s)µ(ϕ0)

∞∑
m=1

e−B(λm)sν(ϕm)ϕmϕ
−1
0

+

( ∞∑
m=1

e−B(λm)sν(ϕm)ϕmϕ
−1
0

)( ∞∑
n=1

e−B(λn)(t−s)µ(ϕn)ϕnϕ
−1
0

)
. (3.5)

Applying (2.16) again, we get

Eν [1{t<σB
τ }] = e−B(λ0)tµ(ϕ0)ν(ϕ0) +

∞∑
m=1

e−B(λm)tµ(ϕm)ν(ϕm).

Combining this with (3.5), we have

dEν [δXB
s
1{t<σB

τ }]

dµ0
− Eν [1{t<σB

τ }]

= e−B(λ0)sν(ϕ0)

∞∑
m=1

e−B(λm)(t−s)µ(ϕm)ϕmϕ
−1
0

+ e−B(λ0)(t−s)µ(ϕ0)

∞∑
m=1

e−B(λm)sν(ϕm)ϕmϕ
−1
0

+

( ∞∑
m=1

e−B(λm)sν(ϕm)ϕmϕ
−1
0

)( ∞∑
n=1

e−B(λn)(t−s)µ(ϕn)ϕnϕ
−1
0

)

−
∞∑

m=1

e−B(λm)tµ(ϕm)ν(ϕm).
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Noting that

I :=

∫ t

0

e−B(λ0)sν(ϕ0)

∞∑
m=1

e−B(λm)(t−s)µ(ϕm)ϕmϕ
−1
0 ds

=

∞∑
m=1

ν(ϕ0)µ(ϕm)(e−B(λ0)t − e−B(λm)t)

B(λm)−B(λ0)
ϕmϕ

−1
0 ,

and

II :=

∫ t

0

e−B(λ0)(t−s)µ(ϕ0)

∞∑
m=1

e−B(λm)sν(ϕm)ϕmϕ
−1
0 ds

=

∞∑
m=1

µ(ϕ0)ν(ϕm)(e−B(λ0)t − e−B(λm)t)

B(λm)−B(λ0)
ϕmϕ

−1
0 ,

we have

I + II =

∞∑
m=1

[
µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)

]
e−B(λ0)t

B(λm)−B(λ0)
ϕmϕ

−1
0

−
∞∑

m=1

[
µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)

]
e−B(λm)t

B(λm)−B(λ0)
ϕmϕ

−1
0 .

Therefore, we can write

dµB,ν
t

dµ0
=

1

tEν [1{t<σB
τ }]

∫ t

0

dEν [δXB
s
1{t<σB

τ }]

dµ0
ds

=
1

tEν [1{t<σB
τ }]

∫ t

0

(dEν [δXB
s
1{t<σB

τ }]

dµ0
− Eν [1{t<σB

τ }]
)
ds+ 1

=
1

tEν [1{t<σB
τ }]

(
I + II +

∫ t

0

ξs ds

)
+ 1

= ρ̃B,ν
t −At +

1

tEν [1{t<σB
τ }]

∫ t

0

ξs ds+ 1,

where ρ̃B,ν
t , At and ξs are explicitly expressed in (3.2).

Indeed, we have the following useful integral representation of ξs.

Remark 3.2. Let ν ∈ P0 and t > 0. Then

ξs =

∫ ∞

0

∫ ∞

0

e−λ0(k+l)[ηνl − ν(ϕ0)][P
0
kϕ

−1
0 − µ(ϕ0)]P(SB

t−s ∈ dk)P(SB
s ∈ dl)

−
∫ ∞

0

e−λ0lν
(
ϕ0{P 0

l ϕ
−1
0 − µ(ϕ0)}

)
P(SB

t ∈ dl), 0 < s ≤ t. (3.6)

Proof. Indeed, according to (2.8),

P 0
t (ϕ

−1
0 ) = µ(ϕ0) +

∞∑
m=1

µ(ϕm)e−(λm−λ0)tϕmϕ
−1
0 ,

which together with (2.22) and (1.1) imply that∫ ∞

0

∫ ∞

0

e−λ0(k+l)[ηνl − ν(ϕ0)][P
0
kϕ

−1
0 − µ(ϕ0)]P(SB

t−s ∈ dk)P(SB
s ∈ dl)
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=

( ∞∑
m=1

e−B(λm)sν(ϕm)ϕmϕ
−1
0

)( ∞∑
n=1

e−B(λn)(t−s)µ(ϕn)ϕnϕ
−1
0

)
, 0 < s ≤ t,

and ∫ ∞

0

e−λ0lν
(
ϕ0{P 0

l ϕ
−1
0 − µ(ϕ0)}

)
P(SB

t ∈ dl) =

∞∑
m=1

e−B(λm)tµ(ϕm)ν(ϕm).

Thus, we immediately obtain (3.6) from the definition of ξs in (3.2).

With Lemma 3.1 and inequality (3.1) in hand, we establish (1.2) for particular
initial distributions in the next proposition.

Proposition 3.3. Assume that B ∈ Bα for some α ∈ (0, 1]. Then, for every ν ∈ P0

satisfying that ν = hµ and ∥hϕ−1
0 ∥∞ <∞,

lim sup
t→∞

{t2W2(µ
B,ν
t , µ0)

2} ≤ 4I.

Proof. Since
dµB,ν

t

dµ0
= 1 + ρB,ν

t , applying (3.1), we have

W2(µ
B,ν
t , µ0)

2 ≤ 4

∫
M

|∇(−L0)
−1ρB,ν

t |2 dµ0, t > 0.

According to Lemma 3.1 and the triangle inequality of ∥ · ∥L2(µ0), we deduce that
for any δ > 0,

W2(µ
B,ν
t , µ0)

2 ≤ 4(1 + δ)

∫
M

|∇(−L0)
−1ρ̃B,ν

t |2 dµ0

+ 8(1 + δ−1)

∫
M

|∇(−L0)
−1At|2 dµ0

+ 8(1 + δ−1)

∫
M

∣∣∣∣∣∇(−L0)
−1 1

tEν [1{t<σB
τ }]

∫ t

0

ξs ds

∣∣∣∣∣
2

dµ0. (3.7)

Since −L0(ϕmϕ
−1
0 ) = (λm−λ0)ϕmϕ−1

0 and ∥ϕmϕ−1
0 ∥L2(µ0) = 1 for every m ∈ N,

by the integration-by-parts formula, for any m ∈ N∫
M

|∇(−L0)
−1(ϕmϕ

−1
0 )|2 dµ0 =

∫
M

ϕmϕ
−1
0 (−L0)

−1(ϕmϕ
−1
0 ) dµ0 =

1

λm − λ0
.

Recalling the definition of ρ̃B,ν
t and At in (3.2), it is easy to see that, for every t > 0,∫

M

|∇(−L0)
−1ρ̃B,ν

t |2 dµ0 =
e−2B(λ0)t

(tEν [1{t<σB
τ }])2

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
,

(3.8)
and ∫

M

|∇(−L0)
−1At|2 dµ0

=
1

(tEν [1{t<σB
τ }])2

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2e−2B(λm)t

(λm − λ0)[B(λm)−B(λ0)]2
. (3.9)

By the definition of ξs in (3.2), since {ϕmϕ−1
0 }m∈N0 is an orthonormal basis in

L2(µ0), we have

µ0

(
ξs
)
= µ0

( ∞∑
m=1

∞∑
n=1

e−B(λm)se−B(λn)(t−s)ν(ϕm)µ(ϕn)ϕmϕ
−1
0 ϕnϕ

−1
0

)
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−
∞∑

m=1

e−B(λm)tµ(ϕm)ν(ϕm)

=

∞∑
m=1

e−B(λm)se−B(λm)(t−s)µ(ϕm)ν(ϕm)−
∞∑

m=1

e−B(λm)tµ(ϕm)ν(ϕm)

= 0, 0 < s ≤ t. (3.10)

By the fact that (−L0)
− 1

2 = 2√
π

∫∞
0
P 0
s2 ds and Minkowski’s inequality, we obtain

that ∫
M

∣∣∣∣∣∇(−L0)
−1 1

tEν [1{t<σB
τ }]

∫ t

0

ξs ds

∣∣∣∣∣
2

dµ0

=
1

(tEν [1{t<σB
τ }])2

∫
M

∣∣∣∣ 2√
π

∫ ∞

0

∫ t

0

P 0
r2ξs dsdr

∣∣∣∣2 dµ0

≤ 4

π(tEν [1{t<σB
τ }])2

(∫ ∞

0

∫ t

0

∥P 0
r2ξs∥L2(µ0) dsdr

)2

, t > 0. (3.11)

Recalling the integral representation of ξs in (3.6), we have

∥ξs∥L2(µ0)

≤
∫ ∞

0

∫ ∞

0

e−λ0(k+l)∥[ηνl − ν(ϕ0)][P
0
kϕ

−1
0 − µ(ϕ0)]∥L2(µ0) P(S

B
t−s ∈ dk)P(SB

s ∈ dl)

+

∫ ∞

0

e−λ0l|ν
(
ϕ0{P 0

l ϕ
−1
0 − µ(ϕ0)}

)
|P(SB

t ∈ dl), 0 < s ≤ t. (3.12)

Since ν = hµ ∈ P0, ∥ϕ−1
0 ∥L2(µ0) = 1, ηνs = P 0

s (hϕ
−1
0 ) for any s > 0, and

∥hϕ−1
0 ∥L2(µ0) ≤ ∥hϕ−1

0 ∥∞, (2.11) yields that for every k, l > 0,

∥[ηνl − ν(ϕ0)][P
0
kϕ

−1
0 − µ(ϕ0)]∥L2(µ0)

≤ ∥P 0
l (hϕ

−1
0 )− µ0(hϕ

−1
0 )∥∞∥P 0

kϕ
−1
0 − µ(ϕ0)∥L2(µ0)

≤ e−(λ1−λ0)l∥hϕ−1
0 ∥∞e−(λ1−λ0)k∥ϕ−1

0 ∥L2(µ0)

= ∥hϕ−1
0 ∥∞e−(λ1−λ0)(k+l), (3.13)

and

|ν(ϕ0{µ(ϕ0)− P 0
l (ϕ

−1
0 )})| ≤ ∥hϕ−1

0 ∥L2(µ0)∥P
0
l ϕ

−1
0 − µ(ϕ0)∥L2(µ0)

≤ ∥hϕ−1
0 ∥∞e−(λ1−λ0)l. (3.14)

Hence, by (1.1), (3.12), (3.13) and (3.14), we have

∥ξs∥L2(µ0) ≤ ∥hϕ−1
0 ∥∞

∫ ∞

0

∫ ∞

0

e−λ0(k+l)e−(λ1−λ0)(k+l) P(SB
t−s ∈ dk)P(SB

s ∈ dl)

+ ∥hϕ−1
0 ∥∞

∫ ∞

0

e−λ0le−(λ1−λ0)l P(SB
t ∈ dl)

= 2∥hϕ−1
0 ∥∞e−B(λ1)t, s > 0.

Then we can apply (2.11) to get that

∥P 0
r2ξs∥L2(µ0) ≤ 2α2∥hϕ−1

0 ∥∞e−B(λ1)te−(λ1−λ0)r
2

, r > 0, (3.15)
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where α2 is the same constant in (2.11). Thus, according to (3.15), (2.20) and
(3.11), there exist some constants c1, t0 > 0 such that∫

M

∣∣∣∣∣∇(−L0)
−1 1

tEν [1{t<σB
τ }]

∫ t

0

ξs ds

∣∣∣∣∣
2

dµ0

≤ c1∥hϕ−1
0 ∥2∞e−2[B(λ1)−B(λ0)]t, t ≥ t0. (3.16)

Therefore, by (3.7), (3.8), (3.9) and (3.16), we find constants c2, t0 > 0 such that

t2W2(µ
B,ν
t , µ0)

2 ≤ 4(1 + δ)e−2B(λ0)t

(Eν [1{t<σB
τ }])2

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2

+ c2(1+δ
−1)

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
e−2[B(λm)−B(λ0)]t

+ c2(1 + δ−1)∥hϕ−1
0 ∥2∞e−2[B(λ1)−B(λ0)]t, t ≥ t0. (3.17)

Since ∥hϕ−1
0 ∥∞ <∞, by (2.19) and (2.21), letting t→ ∞ first and then δ → 0, we

arrive at

lim sup
t→∞

{t2W2(µ
B,ν
t , µ0)

2} ≤ 4

[µ(ϕ0)ν(ϕ0)]2

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
.

We finish the proof.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof consists of two parts. Let α ∈ (0, 1] and ν ∈ P0.
Part 1. In this part, we aim to prove (1.2), which is divided into three steps.

Assume that B ∈ Bα.
Step (i). Let t ≥ s ≥ ε > 0. By the Markov property, the definition of ηνt ,

(2.17) and Fubini’s theorem, we have, for any f ∈ Bb(M),

Eν [f(XB
s )1{t<σB

τ }]

= Eν
(
1{ε<σB

τ }EXB
ε [f(XB

s−ε)1{t−ε<σB
τ }]
)
=

∫
M

PD,B
ε ψ(x) ν(dx)

=

∫
M

∫ ∞

0

e−λ0kϕ0(x)P
0
k (ψϕ

−1
0 )(x)P(SB

ε ∈ dk) ν(dx)

=

∫ ∞

0

e−λ0k

∫
M

(ηνkϕ0)(y)ψ(y)µ(dy)P(SB
ε ∈ dk)

=

∫ ∞

0

e−λ0k

∫
M

(ηνkϕ0)(y)Ey[f(XB
s−ε)1{t−ε<σB

τ }]µ(dy)P(SB
ε ∈ dk),

where we set ψ(·) = E·[f(XB
s−ε)1{t−ε<σB

τ }] for convenience. Taking f = 1 in this
equality, we immediately obtain

Pν(t < σB
τ ) =

∫ ∞

0

∫
M

e−λ0k(ηνkϕ0)(y)Py(t− ε < σB
τ )µ(dy)P(SB

ε ∈ dk).

Letting

νε =

∫∞
0

e−λ0kηνkϕ0 P(SB
ε ∈ dk)µ∫∞

0
e−λ0kµ(ηνkϕ0)P(SB

ε ∈ dk)
=: hεµ,
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by the Markov property again, we have

Eν [f(XB
s )|t < σB

τ ] =
Eνε [f(XB

s−ε)1{t−ε<σB
τ }]

Pνε(t− ε < σB
τ )

= Eνε [f(XB
s−ε)|t− ε < σB

τ ].

Thus,

µ̂B,ν
r,ε :=

1

r − ε

∫ r

ε

Eν(δXB
s
|r < σB

τ ) ds = µB,νε

r−ε , r > ε. (3.18)

Noting that for any k > 0,

µ(ηνkϕ0) = ν(ϕ0P
0
kϕ

−1
0 ) ≥ ν(ϕ0)∥ϕ0∥−1

∞ =: γ ∈ (0, 1],

we obtain ∫ ∞

0

e−λ0kµ(ηνkϕ0)P(SB
ε ∈ dk) ≥ γe−B(λ0)ε,

where we applied (1.1). Then, by (1.1) and (2.18),

E[(1 ∧ SB
ε )−

d+2
2 ] ≤ 1 + E

[
(SB

ε )−
d+2
2

]
= 1 +

1

Γ(d+2
2 )

∫ ∞

0

t
d+2
2 −1e−εB(t)dt

≤ 1 +
1

Γ(d+2
2 )

∫ ∞

0

t
d+2
2 −1eε(b−atα)dt

≤ c
(
1 + ε−

d+2
2α

)
, ε > 0, (3.19)

for some constant c > 0. Hence, by the intrinsic ultra-contractivity (2.10), there
exists a constant c1 > 0 such that, for every y ∈M ,

|(hεϕ−1
0 )(y)| =

∫∞
0

e−λ0kηνk(y)P(SB
ε ∈ dk)∫∞

0
e−λ0kµ(ηνkϕ0)P(SB

ε ∈ dk)

≤ γ−1eB(λ0)ε

∫ ∞

0

e−λ0k

∫
M

p0k(x, y)ϕ0(x) ν(dx)P(SB
ε ∈ dk)

≤ γ−1eB(λ0)∥ϕ0∥∞
∫ ∞

0

e−λ0k∥p0k∥L∞(µ0×µ0) P(S
B
ε ∈ dk)

≤ c1ε
− d+2

2α , ε ∈ (0, 1),

and hence,

∥hεϕ−1
0 ∥∞ ≤ c1ε

− d+2
2α , ε ∈ (0, 1). (3.20)

Thus, (3.17) and (3.20) imply that, there exist constants c2 > 0 and t0 ≥ 1 such
that, for every δ > 0 and every ε ∈ (0, 1),

t2W2(µ̂
B,ν
t,ε , µ0)

2

= t2W2(µ
B,νε

t−ε , µ0)
2

≤ 4(1 + δ)e−2B(λ0)t

(Eνε [1{t<σB
τ }])2

∞∑
m=1

[µ(ϕ0)νε(ϕm) + νε(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2

+ c2(1 + δ−1)

∞∑
m=1

[µ(ϕ0)νε(ϕm) + νε(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
e−2[B(λm)−B(λ0)](t−ε)

+ c2(1 + δ−1)ε−
d+2
α e−2[B(λ1)−B(λ0)](t−ε), t ≥ t0, (3.21)
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Step (ii). Let

Iε :=
1

{µ(ϕ0)νε(ϕ0)}2
∞∑

m=1

{νε(ϕ0)µ(ϕm) + µ(ϕ0)νε(ϕm)}2

(λm − λ0)[B(λm)−B(λ0)]2
, ε > 0.

Next, we prove that
lim

ε→0+
Iε = I.

By Fubini’s theorem, (2.6), (2.7) and (2.22), for every k > 0, it is direct to verify
that

µ(ηνkϕ0) = ν(ϕ0P
0
kϕ

−1
0 ) = eλ0kν(PD

k 1),

µ(ηνkϕ0ϕm) = ν
(
ϕ0P

0
k (ϕmϕ

−1
0 )
)
= e−(λm−λ0)kν(ϕm), m ∈ N0.

Let ε ∈ (0, 1). Then

νε(ϕm) =

∫∞
0

e−λ0kµ(ηνkϕ0ϕm)P(SB
ε ∈ dk)∫∞

0
e−λ0kµ(ηνkϕ0)P(SB

ε ∈ dk)
=

e−B(λm)εν(ϕm)

ν(PD,B
ε 1)

, m ∈ N0.

It is easy to see that limε→0+ νε(ϕm) = ν(ϕm) for each m ∈ N0 since ν(PD,B
ε 1) =

Pν(ε < σB
τ ) → 1 as ε→ 0+. By (2.17) and (1.1), we have

eB(λm)εν(PD,B
ε 1)≥eB(λ0)εν

(∫ ∞

0

e−λ0sϕ0P
0
s ϕ

−1
0 P(SB

ε ∈ ds)
)
≥γ∈(0, 1], m ∈ N0,

which together with ν(PD,B
ε 1) ≤ 1 implies that

e−B(λm)ε|ν(ϕm)| ≤ |νε(ϕm)| ≤ γ−1|ν(ϕm)|, m ∈ N0. (3.22)

Since {ϕm}m∈N0
is an orthonormal sequence in L2(µ), by Bessel’s inequality, it is

clear that
∞∑

m=1

µ(ϕm)2 ≤ 1. (3.23)

On the one hand, if I < ∞, by (3.22) and (3.23), applying the dominated con-
vergence theorem, we have limε→0+ Iε = I. On the other hand, if I = ∞, which is
equivalent to

∞∑
m=1

ν(ϕm)2

(λm − λ0)[B(λm)−B(λ0)]2
= ∞.

then, by (3.22) and the monotone convergence theorem, we have

lim inf
ε→0+

∞∑
m=1

νε(ϕm)2

(λm − λ0)[B(λm)−B(λ0)]2

≥ lim inf
ε→0+

∞∑
m=1

e−2B(λm)εν(ϕm)2

(λm − λ0)[B(λm)−B(λ0)]2
= ∞.

Combining this with (3.23) and νε(ϕ0) → ν(ϕ0) as ε→ 0+, we have

lim inf
ε→0+

Iε =
1

{µ(ϕ0)ν(ϕ0)}2
lim inf
ε→0+

∞∑
m=1

{νε(ϕ0)µ(ϕm) + µ(ϕ0)νε(ϕm)}2

(λm − λ0)[B(λm)−B(λ0)]2

≥ 1

{µ(ϕ0)ν(ϕ0)}2
lim inf
ε→0+

∞∑
m=1

{µ(ϕ0)νε(ϕm)}2 − 2∥ϕ0∥2∞µ(ϕm)2

2(λm − λ0)[B(λm)−B(λ0)]2
= ∞.

Thus,
lim

ε→0+
Iε = I. (3.24)



WASSERSTEIN CONVERGENCE FOR CONDITIONAL EMPIRICAL MEASURES 561

Step (iii). Taking ε = t−2 in (3.18), by (2.21), (3.21) and (3.24), we obtain

lim
δ→0

lim sup
t→∞

{t2W2(µ̂
B,ν
t,t−2 , µ0)

2} ≤ 4I. (3.25)

It is easy to verify that

∥µ̂B,ν
t,ε − µB,ν

t ∥var ≤
∫ t

ε

(
1

t− ε
− 1

t

)
ds+

1

t

∫ ε

0

ds ≤ 2εt−1, ε ∈ (0, t),

where ∥µ− ν∥var = supf∈B1(M) |µ(f)− ν(f)| for any µ, ν ∈ P by definition. Then,
for any t > 1,

W2(µ
B,ν
t , µ̂B,ν

t,t−2)
2 ≤ 1

2
D2∥µ̂B,ν

t,t−2 − µB,ν
t ∥var ≤ D2t−3.

Combining this with the triangle inequality of W2, we arrive at

t2W2(µ
B,ν
t , µ0)

2 ≤ (1 + δ−1)D2t−1 + (1 + δ)t2W2(µ̂
B,ν
t,t−2 , µ0)

2, δ > 0.

Letting t → ∞ first and then δ → 0+, by (3.25), we finally complete the proof of
(1.2).

Part 2. In this part, we prove the remaining assertions of Theorem 1.1. Assume
that B ∈ Bα.

It is obvious that I ≥ 0. The same argument in [27, pages 21-22] shows that
I > 0. So it is left to us to show that I <∞ under the condition (1) or (2). Set

J =

∞∑
m=1

ν(ϕm)2

λ1+2α
m

.

Recall that
∑∞

m=1 µ(ϕm)2 ≤ 1. Then, since B ∈ Bα, by (2.18) and (2.19), it is
easy to see that I ≤ bJ , for some constant b > 0. Hence it remains to prove that if
the condition (1) or (2) holds then J <∞.

Let (fn)n∈N be a sequence of probability density functions w.r.t. µ such that the
sequence of probability measures (fnµ)n∈N converges weakly to ν. Then

∥(−L)−
1+2α

2 fn∥2L2(µ) =

∞∑
m=0

(∫
M

(−L)−
1+2α

2 fnϕm dµ
)2

=
∞∑

m=0

( 1

λ
(1+2α)/2
m

∫
M

fnϕm dµ
)2

=

∞∑
m=0

µ(fnϕm)2

λ1+2α
m

. (3.26)

(i) Let d > 2 + 4α. Assume that ν = hµ with h ∈ Lq(µ). By (2.5) and the
fact that (PD

t )t>0 is contractive in both L1(µ) and L∞(µ), applying [25, Theorem
II.2.7], i.e., for any p ∈ (1,∞) and β ∈ (0, d/p),

∥(−L)−β/2f∥Ldp/(d−βp)(µ) ≤ c3∥f∥Lp(µ), f ∈ Lp(µ),

for some constant c3 > 0, we have

∥(−L)−
1+2α

2 fn∥L2(µ) ≤ c4∥fn∥Lq(µ), (3.27)

for some constant c4 > 0, where q := 2d
d+2+4α . Then by (3.26) and (3.27) with fn

replaced by h, we have

J =

∞∑
m=1

µ(hϕm)2

λ1+2α
m

≤ ∥(−L)−
1+2α

2 h∥2L2(µ) ≤ c24∥h∥2Lq(µ) <∞.
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(ii) Let d ≤ 2+ 4α. By (2.5) and (3.26), we can find a constant c5 > 0 such that

J ≤ lim inf
n→∞

∞∑
m=1

µ(fnϕm)2

λ1+2α
m

≤ lim inf
n→∞

∥(−L)−
1+2α

2 fn∥2L2(µ)

≤ c5 lim inf
n→∞

∫ ∞

0

∥∥∥PD

t
2

1+2α

∥∥∥
L1(µ)→L2(µ)

∥fn∥2L1(µ) dt <∞.

Therefore, the proof is completed.

4. Proofs of Theorem 1.3. This section is divided into two parts. In the first
part, we present the proof for the upper bound in Theorem 1.3, and in the second
part, we prove the lower bound in Theorem 1.3.

We begin by introducing some frequently used notations. Let t, β > 0 and ν ∈ P0.

Recall the definition of ρB,ν
t and ρ̃B,ν

t in Lemma 3.1. Set

µB,ν
t,β := (1 + ρB,ν

t,β )µ0, ρB,ν
t,β := P 0

t−βρ
B,ν
t .

Note that µB,ν
t,β should be regarded as the regularized version of µB,ν

t . Similarly, set

µ̃B,ν
t,β := (1 + ρ̃B,ν

t,β )µ0, ρ̃B,ν
t,β := P 0

t−β ρ̃
B,ν
t .

We should point out that our regularization procedure is different from [27],
where in the particular case when B is the identity map, F.-Y. Wang proved that

{(1+ρ̃B,ν
t )µ}t>t0 is a family of probability measures for some big enough t0 and then

he employed it to approximate the conditional empirical measure µB,ν
t . However,

this approach seems invalid in our non-local setting.

4.1. Upper bounds. Since µB,ν
t is a probability measure, it is easy to see that

µB,ν
t,β ∈ P0. From Lemma 4.1, for every β ∈ (0, 2

2d−2α+1 ), there exists a constant

t0 > 0 such that µ̃B,ν
t,β is a probability measure for every t ≥ t0. Applying the

triangle inequality of W2, we have

W2(µ
B,ν
t , µ0)

2 ≤ (1 + δ)W2(µ̃
B,ν
t,β , µ0)

2 + (1 + δ−1)W2(µ̃
B,ν
t,β , µ

B,ν
t )2

≤ (1 + δ)W2(µ̃
B,ν
t,β , µ0)

2 + 2(1 + δ−1)W2(µ̃
B,ν
t,β , µ

B,ν
t,β )2

+ 2(1 + δ−1)W2(µ
B,ν
t,β , µ

B,ν
t )2, t ≥ t0, δ > 0. (4.1)

Clearly, in order to get the upper bound of W2(µ
B,ν
t , µ0), we need to estimate

the three terms in the right hand side of (4.1). The term W2(µ̃
B,ν
t,β , µ0) should be

regarded as the dominant term, and the others as error terms.

To bound W2(µ̃
B,ν
t,β , µ0) from above, the crucial tool is the following inequality:

for any probability density functions f0 and f1 w.r.t. µ0,

W2(f0µ0, f1µ0)
2 ≤

∫
M

|∇(−L0)
−1(f0 − f1)|2

M(f0, f1)
dµ0, (4.2)

where the function M : [0,∞)× [0,∞) → [0,∞) is defined as

M(a, b) =

{
a−b

log a−log b1{a∧b>0}, a ̸= b,
1
a1{a>0}, otherwise.

Refer to [3, Proposition 2.3] for (4.2). To bound W2(µ̃
B,ν
t,β , µ

B,ν
t,β ), we use the total

variation norm since M is compact; see Lemma 4.5. As for the estimation of

W2(µ
B,ν
t,β , µ

B,ν
t ), we apply inequality (4.7) introduced later.
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In order to apply (4.2), the following estimate on ρ̃B,ν
t,β is important.

Lemma 4.1. For every β > 0, there exist constants c, t0 > 0 such that

∥ρ̃B,ν
t,β ∥∞ ≤ c

ν(ϕ0)
t
(2d−2α+1)β

2 −1, t ≥ t0, ν ∈ P0. (4.3)

Moreover, if β ∈ (0, 2
2d−2α+1 ), then µ̃

B,ν
t,β is a probability measure for every t ≥ t0

and every ν ∈ P0.

Proof. Combining (2.20) with (2.1), (2.7), (2.13), (2.18), (2.19) and (3.2), we can
find some constants c1, c2, c3, t0 > 0 such that

∥ρ̃B,ν
t,β ∥∞ =

1

tEν [1{t<σB
τ }]

∥∥∥∥∥
∞∑

m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]e−B(λ0)t

[B(λm)−B(λ0)]e(λm−λ0)t−β ϕmϕ
−1
0

∥∥∥∥∥
∞

≤ c1
tν(ϕ0)

∞∑
m=1

∥ϕm∥∞∥ϕmϕ−1
0 ∥∞

B(λm)−B(λ0)
e−(λm−λ0)t

−β

≤ c2
tν(ϕ0)

t
(2d−2α+1)β

2

∫ ∞

0

u
d−2α+1

d e−u
2
d du

≤ c3
ν(ϕ0)

t
(2d−2α+1)β

2 −1, t ≥ t0,

which proves (4.3).
Now let β ∈ (0, 2

2d−2α+1 ). It is clear that (4.3) implies that there exists a constant

t1 > 0, such that for any t ≥ t1, ∥ρ̃B,ν
t,β ∥∞ ≤ 1

2 . Hence, 1 + ρ̃B,ν
t,β ≥ 1

2 and µ0(1 +

|ρ̃B,ν
t,β |) ≤ 3

2 for every t ≥ t1. Noting that µ0(ϕmϕ
−1
0 ) = µ(ϕmϕ0) = 0 for every

m ∈ N, we easily see that µ0(1 + ρ̃B,ν
t,β ) = 1 for any t > 0. Thus, µ̃B,ν

t,β is a
probability measure for every t ≥ t1.

Remark 4.2. In the particular case when B(r) = r for every r ≥ 0, the pointwise

lower bound of ρ̃B,ν
t is obtained in [27, Lemma 3.2]. However, it seems that the

original method of proof does not work in the general setting of Lemma 4.1. That is

why we introduce ρ̃B,ν
t,β , the regularized version of ρ̃B,ν

t , and establish (4.3). Indeed,

the pointwise lower bound in (4.3) is enough for our purpose.

In the next lemma, we give an upper bound estimate on W2(µ̃
B,ν
t,β , µ0)

2.

Lemma 4.3. For every β ∈ (0, 2
2d−2α+1 ), there exist constants c, t0 > 0 such that

t2W2(µ̃
B,ν
t,β , µ0)

2≤ 1+ct
(2d−2α+1)β

2 −1

{µ(ϕ0)ν(ϕ0)}2
∞∑

m=1

[µ(ϕ0)ν(ϕm)+ν(ϕ0)µ(ϕm)]2

(λm−λ0)[B(λm)−B(λ0)]2
e−2(λm−λ0)t

−β

for any t ≥ t0 and any ν ∈ P0.

Proof. The proof is a direct application of Lemma 4.1 and inequality (4.2). By
Lemma 4.1, for every β ∈ (0, 2

2d−2α+1 ), there exist constants c, t0 > 0 such that

µ̃B,ν
t,β ∈ P0 for every t ≥ t0, and

M(1 + ρ̃B,ν
t,β , 1) ≥ 1 ∧ (1 + ρ̃B,ν

t,β ) ≥ 1

1 + ct
(2d−2α+1)β

2 −1
, t ≥ t0.

So, (4.2) implies that

W2(µ̃
B,ν
t,β , µ0)

2 ≤
(
1 + ct

(2d−2α+1)β
2 −1

)
µ0

(
|∇(−L0)

−1ρ̃B,ν
t,β |2

)
, t ≥ t0. (4.4)
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Next, (2.7), (3.2) and the integration-by-parts formula yield that

t2µ0(|∇(−L0)
−1ρ̃B,ν

t,β |2)

=
1

(Eν [1{t<σB
τ }])2

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2e−2B(λ0)t

(λm − λ0)[B(λm)−B(λ0)]2
e−2(λm−λ0)t

−β

.

Combining this with (2.20) and (4.4), we finish the proof.

In order to use the total variation ∥µB,ν
t,β − µ̃B,ν

t,β ∥var to bound W2(µ̃
B,ν
t,β , µ

B,ν
t,β ), we

need the following lemma.

Lemma 4.4. For every p ∈ (3/2,∞], there exist constants c, t0 > 0 such that, for
every ν ∈ P0 with ν = hµ and every t ≥ t0,

µ0(|ρB,ν
t − ρ̃B,ν

t |) ≤ c∥hϕ−1
0 ∥Lp(µ0)e

−[B(λ1)−B(λ0)]t.

Proof. Let p ∈ (3/2,∞] and p′ be its conjugate number. Since ηνs = P 0
s (hϕ

−1
0 ) for

any s > 0 and any ν = hµ ∈ P0, by Hölder’s inequality and (2.11), there exist
constants c1, c2 > 0 such that∥∥(ηνl − ν(ϕ0)

)
P 0
k [ϕ

−1
0 − µ(ϕ0)]

∥∥
L1(µ0)

≤ ∥P 0
l (hϕ

−1
0 )− µ0(hϕ

−1
0 )∥Lp(µ0)∥P

0
kϕ

−1
0 − µ0(ϕ

−1
0 )∥Lp′ (µ0)

≤ c1∥hϕ−1
0 ∥Lp(µ0)∥ϕ

−1
0 ∥Lp′ (µ0)

e−(λ1−λ0)(k+l)

≤ c2∥hϕ−1
0 ∥Lp(µ0)e

−(λ1−λ0)(k+l), k, l > 0,

where we used (2.2) in the last inequality. Similarly, we find a constant c3 > 0 such
that

|ν(ϕ0{µ(ϕ0)− P 0
l ϕ

−1
0 })| ≤ ∥hϕ−1

0 ∥Lp(µ0)∥P
0
l ϕ

−1
0 − µ0(ϕ

−1
0 )∥Lp′ (µ0)

≤ c3∥hϕ−1
0 ∥Lp(µ0)e

−(λ1−λ0)l, l > 0. (4.5)

Together with (2.20), we find some constants c4, t0 > 0 such that

µ0

(∣∣∣∣∣ 1

tEν [1{t<σB
τ }]

∫ t

0

ξs ds

∣∣∣∣∣
)

≤ 1

tEν [1{t<σB
τ }]

∫ t

0

∥ξs∥L1(µ0) ds

≤ c4e
B(λ0)t

t

∫ t

0

∫ ∞

0

∫ ∞

0

e−λ0(k+l)
∥∥[ηνl − ν(ϕ0)]P

0
k [ϕ

−1
0 − µ(ϕ0)]

∥∥
L1(µ0)

P(SB
t−s ∈ dk)P(SB

s ∈ dl)ds

+
c4e

B(λ0)t

t

∫ t

0

∫ ∞

0

e−λ0l∥ν(ϕ0{P 0
l [ϕ

−1
0 − µ(ϕ0)]})∥L1(µ0) P(S

B
t ∈ dl)ds

≤ c4e
B(λ0)t

t
∥hϕ−1

0 ∥Lp(µ0)

∫ t

0

∫ ∞

0

∫ ∞

0

e−λ1(k+l) P(SB
t−s ∈ dk)P(SB

s ∈ dl)ds

+
c4e

B(λ0)t

t
∥hϕ−1

0 ∥Lp(µ0)

∫ t

0

∫ ∞

0

e−λ1l P(SB
t ∈ dl)ds

= 2c4∥hϕ−1
0 ∥Lp(µ0)e

−[B(λ1)−B(λ0)]t, t ≥ t0, (4.6)
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where we used (3.6) in the second inequality and (1.1) in the last equality. By (3.2),
(2.20), (2.19), (2.18), (2.1) and the fact that ∥ϕmϕ−1

0 ∥L2(µ0) = 1 for every m ∈ N,
we find some constants c5, c6, t0 > 0 such that

µ0(|At|) ≤
c5
t

∞∑
m=1

∥ϕm∥∞e−[B(λm)−B(λ0)]t

B(λm)−B(λ0)
µ0(|ϕmϕ−1

0 |)

≤ c6e
−[B(λ1)−B(λ0)]t, t ≥ t0.

Combining this with (4.6) and

µ0(|ρB,ν
t − ρ̃B,ν

t |) ≤ µ0

(∣∣∣∣∣ 1

tEν [1{t<σB
τ }]

∫ t

0

ξs ds

∣∣∣∣∣
)

+ µ0(|At|),

we complete the proof of the desired result.

With Lemma 4.4 at our disposal, we may obtain upper bound estimates on

W2(µ̃
B,ν
t,β , µ

B,ν
t,β ).

Lemma 4.5. For every p ∈ (3/2,∞] and every β ∈ (0, 2
2d−2α+1 ), there exist con-

stants t0, c > 0 such that

W2(µ
B,ν
t,β , µ̃

B,ν
t,β )2 ≤ c∥hϕ−1

0 ∥Lp(µ0)e
−[B(λ1)−B(λ0)]t, t ≥ t0, ν = hµ ∈ P0.

Proof. We use D to denote the diameter of M , i.e., D = sup {ρ(x, y) : x, y ∈M},
which is obviously finite since M is compact. According to Lemmas 4.1 and 4.4, for
every p ∈ (3/2,∞] and every β ∈ (0, 2

2d−2α+1 ), there exist constants t0, c > 0 such

that, µ̃B,ν
t,β is a probability measure for any t ≥ t0 and ν ∈ P0, and

W2(µ
B,ν
t,β , µ̃

B,ν
t,β )2 ≤ 1

2
D2∥µB,ν

t,β − µ̃B,ν
t,β ∥var =

1

2
D2µ0(|ρB,ν

t,β − ρ̃B,ν
t,β |)

≤ c∥hϕ−1
0 ∥Lp(µ0)e

−[B(λ1)−B(λ0)]t, t ≥ t0, ν = hµ ∈ P0,

where in the first equality we used the fact that

∥µB,ν
t,β − µ̃B,ν

t,β ∥var =
∥∥∥dµB,ν

t,β

dµ0
−

dµ̃B,ν
t,β

dµ0

∥∥∥
L1(µ0)

= ∥ρB,ν
t,β − ρ̃B,ν

t,β ∥L1(µ0).

Next, we estimate the error term W2(µ
B,ν
t , µB,ν

t,β ). We need the following in-

equality borrowed from [29, Theorem A.1] (see also [2, Corollary 4.4]), i.e., for any
probability density functions f1 and f2 with respect to µ0 such that f1 ∨ f2 > 0,

W2(f1µ0, f2µ0)
2 ≤ 4

∫
M

|∇(−L0)
−1(f2 − f1)|2

f1
dµ0. (4.7)

Recall the number p0 introduced in Theorem 1.3, i.e.,

p0 =
6(d+ 2)

d+ 2 + 12α
∨ 3

2
.

Lemma 4.6. Let β ∈ (0, 2
2d−2α+1 ) and p ∈ (p0,∞]. Then there exist constants

c, t0 > 0 such that, for every t ≥ t0 and every ν = hµ ∈ P0 with hϕ−1
0 ∈ Lp(µ0),

t2W2(µ
B,ν
t , µB,ν

t,β )2 ≤ c∥hϕ−1
0 ∥2Lp(µ0)

t−β .
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Proof. We divide the proof into five steps.
Step 1. Since µ0(ξs) = 0 for any s > 0 (see (3.10)) and p0 ≥ 3/2, by (2.10) and

(4.6), we find some constants c1, c2, t0 > 0 such that∥∥∥∥∥ 1

tEν [1{t<σB
τ }]

∫ t

0

P 0
t−βξs ds

∥∥∥∥∥
∞

≤ 1

tEν [1{t<σB
τ }]

∫ t

0

∥P 0
t−βξs∥∞ ds

≤ 1

tEν [1{t<σB
τ }]

∫ t

0

∥P 0
t−β − µ0∥L1(µ0)→L∞(µ0)∥ξs∥L1(µ0) ds

≤ c1e
−(λ1−λ0)t

−β

{1 ∧ t−β}−
d+2
2

1

tEν [1{t<σB
τ }]

∫ t

0

∥ξs∥L1(µ0) ds

≤ c2∥hϕ−1
0 ∥Lp(µ0)t

(d+2)β
2 e−[B(λ1)−B(λ0)]t, t ≥ t0. (4.8)

According to (2.7) and the definition of At in (3.2), we have

P 0
t−βAt =

1

tEν [1{t<σB
τ }]

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]e−B(λm)t

[B(λm)−B(λ0)]e(λm−λ0)t−β ϕmϕ
−1
0 , t > 0.

Combining this with (2.20), Lemma 4.1 and B(λm) ≥ B(λ0) for each m ∈ N, we
easily deduce that there exist constants c3, t0 > 0 such that

∥P 0
t−βAt∥∞ ≤ ∥ρ̃B,ν

t,β ∥∞ ≤ c3t
(2d−2α+1)β

2 −1, t ≥ t0. (4.9)

By Lemma 3.1, Lemma 4.1, (4.8) and (4.9), we obtain

∥ρB,ν
t,β ∥∞ ≤ c2∥hϕ−1

0 ∥Lp(µ0)t
(d+2)β

2 e−[B(λ1)−B(λ0)]t + 2c3t
(2d−2α+1)β

2 −1, t ≥ t0.

Since β ∈ (0, 2
2d−2α+1 ), by Lemma 4.1, we can find a constant t1 > 0 such that

for any t ≥ t1, ∥ρB,ν
t,β ∥∞ ≤ 1

2 . So, 1 + ρB,ν
t,β ≥ 1

2 , t ≥ t1. Hence, by (4.7), we have

W2(µ
B,ν
t , µB,ν

t,β )2 ≤ 8

∫
M

|∇(−L0)
−1(ρB,ν

t − ρB,ν
t,β )|2 dµ0, t ≥ t1. (4.10)

So we need to estimate the right hand side of (4.10).
Step 2. Let ϵ = t−β . By the fact that (−L0)

−1/2 = a
∫∞
0
P 0
s2 ds with a = 2√

π
,

we have

J := ∥∇(−L0)
−1(ρB,ν

t − ρB,ν
t,β )∥L2(µ0) = ∥(−L0)

−1/2(ρB,ν
t − ρB,ν

t,β )∥L2(µ0)

= a
∥∥∥∫ ∞

0

P 0
s2(ρ

B,ν
t − P 0

ϵ ρ
B,ν
t ) ds

∥∥∥
L2(µ0)

=
a

2

∥∥∥∫ ∞

0

1√
r
(P 0

r ρ
B,ν
t − P 0

r+ϵρ
B,ν
t ) dr

∥∥∥
L2(µ0)

=
a

2

∥∥∥∫ ∞

0

1√
r
P 0
r ρ

B,ν
t dr −

∫ ∞

ϵ

1√
r − ϵ

P 0
r ρ

B,ν
t dr

∥∥∥
L2(µ0)

=
a

2

∥∥∥∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)
P 0
r ρ

B,ν
t dr −

∫ ϵ

0

1√
r
P 0
r ρ

B,ν
t dr

∥∥∥
L2(µ0)

≤ a

2
(J1 + J2), (4.11)

where we applied twice the change-of-variables method, and let

J1 :=

∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)
∥P 0

r ρ
B,ν
t ∥L2(µ0) dr, J2 :=

∫ ϵ

0

1√
r
∥P 0

r ρ
B,ν
t ∥L2(µ0) dr.

Hence it remains to estimate both J1 and J2.
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Step 3. As for the estimate on J1, we claim that, for every p ∈ (p0,∞], there
exist constants c, t0 > 0 such that

J1,1 :=

∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)
(∥P 0

r ρ̃
B,ν
t ∥L2(µ0) + ∥P 0

rAt∥L2(µ0)) dr

≤ c∥hϕ−1
0 ∥Lp(µ0)t

−(1+β/2), t ≥ t0, (4.12)

and

J1,2 :=

∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

) 1

tEν [1{t<σB
τ }]

∥∥∥∥∫ t

0

P 0
r ξs ds

∥∥∥∥
L2(µ0)

dr

≤ ce−[B(λ1)−B(λ0)]t∥hϕ−1
0 ∥Lp(µ0)t

−β/2, t ≥ t0. (4.13)

Proof of (4.12). By the expression of ρ̃B,ν
t , At in (3.2) and by (2.7),

P 0
r ρ̃

B,ν
t =

e−B(λ0)t

tEν [1{t<σB
τ }]

∞∑
m=1

µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)

B(λm)−B(λ0)
e−(λm−λ0)rϕmϕ

−1
0 ,

and

P 0
rAt =

1

tEν [1{t<σB
τ }]

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]e−B(λm)t

B(λm)−B(λ0)
e−(λm−λ0)rϕmϕ

−1
0 .

Since {ϕmϕ−1
0 }m∈N0 is an eigenbasis of L0 in L2(µ0), by (2.20), (2.19) and (2.18),

we derive that

∥P 0
rAt∥L2(µ0) ≤

∥∥P 0
r ρ̃

B,ν
t

∥∥
L2(µ0)

=
e−B(λ0)t

tEν [1{t<σB
τ }]

( ∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

[B(λm)−B(λ0)]2
e−2(λm−λ0)r

)1/2
≤ c4

t

( ∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)2α
e−2(λm−λ0)r

)1/2
, t ≥ t0, (4.14)

for some constant c4 > 0.
Let ĥ = µ(ϕ0)hϕ

−1
0 + ν(ϕ0)ϕ

−1
0 . If p0 < p < 2 ∨ p0, which is equivalent to that

p0 < p < 2, then

∥ĥ∥Lp(µ0) ≤ µ(ϕ0)∥hϕ−1
0 ∥Lp(µ0) + ν(ϕ0)∥ϕ−1

0 ∥Lp(µ0)

≤ µ(ϕ0)∥hϕ−1
0 ∥Lp(µ0) + ∥hϕ−1

0 ∥L1(µ0)∥ϕ
−1
0 ∥L2(µ0)

≤ 2∥hϕ−1
0 ∥Lp(µ0), (4.15)

and if ∞ ≥ p ≥ 2 ∨ p0, then

∥ĥ∥L2(µ0) ≤ ∥hϕ−1
0 ∥L2(µ0) + ∥hϕ−1

0 ∥L1(µ0) ≤ 2∥hϕ−1
0 ∥Lp(µ0), (4.16)

since µ(ϕ0) ≤ 1 and ∥ϕ−1
0 ∥L2(µ0) = 1. By (2.8),

(P 0
r − µ0)ĥ =

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]e−(λm−λ0)rϕmϕ
−1
0 ,

which immediately leads to∥∥(−L0)
−α(P 0

r − µ0)ĥ
∥∥
L2(µ0)

=
∥∥∥ ∞∑

m=1

µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)

(λm − λ0)α
e−(λm−λ0)rϕmϕ

−1
0

∥∥∥
L2(µ0)
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=
( ∞∑

m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)2α
e−2(λm−λ0)r

)1/2
. (4.17)

Due to (2.11), (4.14), (4.17), (4.15) (resp. (4.16)) and the fact that (−L0)
−α =

C
∫∞
0
P 0
s1/α

ds for some constant C > 0, we have

J1,1

≤ c

t

∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)∫ ∞

0

∥(P 0
r+s1/α − µ0)ĥ∥L2(µ0) dsdr

≤ c

t

∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)∫ ∞

0

∥P 0
r+s1/α − µ0∥Lp(µ0)→L2(µ0)∥ĥ∥Lp(µ0) dsdr

≤ c

t
∥hϕ−1

0 ∥Lp(µ0)

∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)∫ ∞

0

e−(λ1−λ0)(r+s1/α)

×
[
1 ∧ (r + s1/α)

]− (d+2)(2−p)
4p dsdr

≤ c

t
∥hϕ−1

0 ∥Lp(µ0)

∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)
dr

∫ ∞

0

e−(λ1−λ0)s
1/α

(1 ∧ s1/α)−
(d+2)(2−p)

4p ds

≤ c∥hϕ−1
0 ∥Lp(µ0)t

−(1+β/2), t ≥ t0,

where the positive constant c may vary from line to line, and in the last inequality
we used the fact that∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)
dr =

2
√
ϵ√
π
,

∫ ∞

0

e−(λ1−λ0)s
1/α

(1 ∧ s1/α)−
(d+2)(2−p)

4p ds <∞,

since p > p0 > 2(d+ 2)/(d+ 2 + 4α). We finish the proof of (4.12).
Proof of (4.13). Suppose that p0 < p ≤ 6. (Note that p0 < 6.) By Hölder’s

inequality, (2.12) and (2.2), there exist constants c5, c6 > 0 such that, for any
k, l > 0,

∥[ηνl − ν(ϕ0)][P
0
kϕ

−1
0 − µ(ϕ0)]∥L2(µ0)

≤ ∥P 0
l (hϕ

−1
0 )− µ0(hϕ

−1
0 )∥Lq(µ0)∥P

0
kϕ

−1
0 − µ(ϕ0)∥

L
2q

q−2 (µ0)

≤ ∥P 0
l − µ0∥Lp(µ0)→Lq(µ0)∥hϕ

−1
0 ∥Lp(µ0)∥P

0
k (ϕ

−1
0 )− µ(ϕ0)∥

L
2q

q−2 (µ0)

≤ c5e
−(λ1−λ0)(k+l)(1 ∧ l)−

(d+2)(q−p)
2pq ∥hϕ−1

0 ∥Lp(µ0)∥ϕ
−1
0 ∥

L
2q

q−2 (µ0)

≤ c6e
−(λ1−λ0)(k+l)(1 ∧ l)−

(d+2)(q−p)
2pq ∥hϕ−1

0 ∥Lp(µ0), q ∈ (6,∞].

By (4.5), for every p ∈ (p0,∞], we find a constant c7 > 0 such that

|ν(ϕ0{µ(ϕ0)− P 0
l ϕ

−1
0 })| ≤ c7e

−(λ1−λ0)l∥hϕ−1
0 ∥Lp(µ0), l > 0.

Hence, according to (1.1) and (3.6), we have

∥ξs∥L2(µ0)

≤ ∥hϕ−1
0 ∥Lp(µ0)

∫ ∞

0

∫ ∞

0

e−λ0(k+l)e−(λ1−λ0)(k+l)(1 ∧ l)−
(d+2)(q−p)

2pq

P(SB
t−s ∈ dk)P(SB

s ∈ dl)

+ ∥hϕ−1
0 ∥Lp(µ0)

∫ ∞

0

e−λ0le−(λ1−λ0)lP(SB
t ∈ dl)
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≤ c∥hϕ−1
0 ∥Lp(µ0)e

−B(λ1)(t−s)

∫ ∞

0

e−λ1l(1 ∧ l)−
(d+2)(q−p)

2pq P(SB
s ∈ dl)

+ c∥hϕ−1
0 ∥Lp(µ0)e

−B(λ1)t

≤ c∥hϕ−1
0 ∥Lp(µ0)e

−B(λ1)t
(
1 + s−

(d+2)(q−p)
2αpq

)
+ c∥hϕ−1

0 ∥Lp(µ0)e
−B(λ1)t,

where the positive constant c may vary from line to line. A similar argument as in
(3.15) leads to

∥P 0
r ξs∥L2(µ0) ≤ c8∥hϕ−1

0 ∥Lp(µ0)e
−B(λ1)t

(
1 + s−

(d+2)(q−p)
2αpq

)
, r > 0, (4.18)

for some constant c8 > 0.
It is easy to see that

0 ≤ (d+ 2)(6− p)

12αp
< 1, p ∈ (p0, 6].

Then, for every p ∈ (p0, 6], there exists p̄ ∈ (6,∞] such that

ϑ :=
(d+ 2)(p̄− p)

2αpp̄
∈ (0, 1).

Hence, by (4.18) and (2.20), we can find constants c9, c10, t0 > 0 such that

1

tEν [1{t<σB
τ }]

∥∥∥∥∫ t

0

P 0
r ξs ds

∥∥∥∥
L2(µ0)

≤ 1

tEν [1{t<σB
τ }]

∫ t

0

∥P 0
r ξs∥L2(µ0) ds

≤ c9e
−B(λ1)t

tEν [1{t<σB
τ }]

∥hϕ−1
0 ∥Lp(µ0)

∫ t

0

(1 + s−ϑ) ds

≤ c10e
−[B(λ1)−B(λ0)]t∥hϕ−1

0 ∥Lp(µ0), t ≥ t0.

Thus, for every p ∈ (p0, 6], there exist constants t0, c11 > 0 such that

J1,2 ≤ c10e
−[B(λ1)−B(λ0)]t∥hϕ−1

0 ∥Lp(µ0)

∫ ∞

ϵ

( 1√
r − ϵ

− 1√
r

)
dr

≤ c11e
−[B(λ1)−B(λ0)]t∥hϕ−1

0 ∥Lp(µ0)t
−β/2, t ≥ t0.

Now suppose that p ∈ (6,∞]. Then there exists constant c12 > 0 such that, for
any k, l > 0,

∥[ηνl − ν(ϕ0)][P
0
kϕ

−1
0 − µ(ϕ0)]∥L2(µ0)

≤ ∥P 0
l (hϕ

−1
0 )− µ0(hϕ

−1
0 )∥Lp(µ0)∥P

0
kϕ

−1
0 − µ(ϕ0)∥

L
2p

p−2 (µ0)

≤ c12e
−(λ1−λ0)(k+l)∥hϕ−1

0 ∥Lp(µ0),

and a similar argument also leads to (4.13).

Thus, by the definition of ρB,ν
t , (4.12) and (4.13) imply that, for every p ∈ (p0,∞],

there exist constants c13, t0 > 0 such that

J1 ≤ c13∥hϕ−1
0 ∥Lp(µ0)t

−(1+β/2), t ≥ t0. (4.19)

Step 4. To estimate J2, by an analogous argument for (4.12) and (4.13), we
have ∫ ϵ

0

1√
r

(
∥P 0

r ρ̃
B,ν
t ∥L2(µ0) + ∥P 0

rA
B,ν
t ∥L2(µ0)

)
dr

≤ c

t

∫ ϵ

0

1√
r
∥(−L0)

−α(P 0
r − µ0)ĥ∥L2(µ0) dr
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≤ c

t
∥hϕ−1

0 ∥Lp(µ0)

∫ ϵ

0

dr√
r

∫ ∞

0

e−(λ1−λ0)s
1/α

(1 ∧ s1/α)−
(d+2)(2−p)

4p ds

≤ c∥hϕ−1
0 ∥Lp(µ0)t

−(1+β/2), t ≥ t0. (4.20)

and ∫ ϵ

0

1√
r

1

tEν [1{t<σB
τ }]

∥∥∥∥∫ t

0

P 0
r ξsds

∥∥∥∥
L2(µ0)

dr

≤ c∥hϕ−1
0 ∥Lp(µ0)e

−[B(λ1)−B(λ0)]t

∫ ϵ

0

1√
r
dr

≤ c∥hϕ−1
0 ∥Lp(µ0)e

−[B(λ1)−B(λ0)]tt−β/2, t ≥ t0, (4.21)

where the constant c > 0 may vary from line to line. Thus, there exists a constant
c14 > 0, such that

J2 ≤ c14∥hϕ−1
0 ∥Lp(µ0)t

−(1+β/2), t ≥ t0. (4.22)

Step 5. Finally, by (4.10), (4.11), (4.19), (4.22), we complete the proof of Lemma
4.6.

An alternative proof leads to the following result, which improves the rate of
convergence in the case when α ∈ (1/2, 1]. However, α = 1/2 seems critical for the
approach employed below. We postpone the proof of Remark 4.7 to the end of this
subsection.

Remark 4.7. Assume that α ∈ (1/2, 1] and B ∈ Bα. Let β ∈ (0, 2
2d−2α+1 ) and

p ∈ (p0,∞]. Then there exist constants c, t0 > 0 such that, for any t ≥ t0 and any
ν = hµ ∈ P0 with hϕ−1

0 ∈ Lp(µ0),

t2W2(µ
B,ν
t , µB,ν

t,β )2 ≤ c∥hϕ−1
0 ∥2Lp(µ0)

t−2β .

The next proposition establishes the upper bound in Theorem 1.3.

Proposition 4.8. Let α ∈ (0, 1], B ∈ Bα and p ∈ (p0,∞]. Then for any ν = hµ ∈
P0 with hϕ−1

0 ∈ Lp(µ0),

lim sup
t→∞

{t2W2(µ
B,ν
t , µ0)

2} ≤ 1

{µ(ϕ0)ν(ϕ0)}2
∞∑

m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
.

Proof. By the triangle inequality of W2, we see that for any β ∈ (0, 2
2d−2α+1 ), there

exists some constant t0 > 0 such that µ̃B,ν
t,β ∈ P0 for every t ≥ t0 and

t2W2(µ
B,ν
t , µ0)

2 ≤ (1 + δ)t2W2(µ̃
B,ν
t,β , µ0)

2 + 2(1 + δ−1)t2W2(µ
B,ν
t,β , µ̃

B,ν
t,β )2

+ 2(1 + δ−1)t2W2(µ
B,ν
t , µB,ν

t,β )2, t ≥ t0, δ > 0.

According to this and Lemmas 4.3, 4.5 and 4.6, for any β ∈ (0, 2
2d−2α+1 ) and any

p ∈ (p0,∞], there exist some constants t0, c > 0 such that, for every t ≥ t0,

t2W2(µ
B,ν
t , µ0)

2

≤ (1 + δ)
1 + ct

(2d−2α+1)β
2 −1

{µ(ϕ0)ν(ϕ0)}2
∞∑

m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
e−2(λm−λ0)t

−β

+ 2c(1 + δ−1)t2∥hϕ−1
0 ∥Lp(µ0)e

−[B(λ1)−B(λ0)]t + 2c(1 + δ−1)∥hϕ−1
0 ∥2Lp(µ0)

t−β .
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Since ∥hϕ−1
0 ∥Lp(µ0) <∞, by letting t→ ∞ first and then δ → 0, we have

lim
t→∞

{t2W2(µ
B,ν
t , µ0)

2} ≤ 1

{µ(ϕ0)ν(ϕ0)}2
∞∑

m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
.

We finish the proof.

To end this subsection, we present the proof of Remark 4.7.

Proof of Remark 4.7. We use the same notations as in Lemma 4.6. The positive

constant c used below may vary from line to line. By the definition of ρB,ν
t , ρB,ν

t,β

and (3.2), we have

J = ∥∇(−L0)
−1(ρB,ν

t − ρB,ν
t,β )∥L2(µ0) ≤ J̃1 + J̃2 + J̃3, (4.23)

where

J̃1 := ∥∇(−L0)
−1(ρ̃B,ν

t − ρ̃B,ν
t,β )∥L2(µ0),

J̃2 := ∥∇(−L0)
−1(At − P 0

t−βAt)∥L2(µ0),

J̃3 :=
1

tEν [1{t<σB
τ }]

∫ t

0

∥∇(−L0)
−1(ξs − P 0

t−β (ξs))∥L2(µ0) ds.

So it suffices to estimate the right hand side of (4.23).

(1) Firstly, we estimate J̃1 + J̃2. Noting that

ρ̃B,ν
t − ρ̃B,ν

t,β = ρ̃B,ν
t − P 0

t−β ρ̃
B,ν
t =

∫ t−β

0

(−L0)P
0
r ρ̃

B,ν
t dr,

we have

J̃1 = ∥∇(−L0)
−1(ρ̃B,ν

t − ρ̃B,ν
t,β )∥L2(µ0) = ∥(−L0)

−1/2(ρ̃B,ν
t − ρ̃B,ν

t,β )∥L2(µ0)

=
∥∥∥ ∫ ϵ

0

(−L0)
1/2P 0

r ρ̃
B,ν
t dr

∥∥∥
L2(µ0)

≤
∫ ϵ

0

∥∥(−L0)
1/2P 0

r ρ̃
B,ν
t

∥∥
L2(µ0)

dr. (4.24)

By the expression of ρ̃B,ν
t in (3.2) and (2.7),

(−L0)
1/2P 0

r ρ̃
B,ν
t =at

∞∑
m=1

µ(ϕ0)ν(ϕm)+ν(ϕ0)µ(ϕm)

B(λm)−B(λ0)

√
λm − λ0 e

−(λm−λ0)rϕmϕ
−1
0 ,

where at :=
e−B(λ0)t

tEν [1{t<σB
τ }]

. Since (ϕmϕ
−1
0 )m∈N0

is an eigenbasis of L0 in L2(µ0), by

(2.20), (2.19) and (2.18), we derive that∥∥(−L0)
1/2P 0

r ρ̃
B,ν
t

∥∥
L2(µ0)

= at

( ∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

[B(λm)−B(λ0)]2
(λm − λ0)e

−2(λm−λ0)r∥ϕmϕ−1
0 ∥2L2(µ0)

)1/2
≤ c

t

( ∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)2α−1
e−2(λm−λ0)r

)1/2
, t ≥ t0, (4.25)

for some constant c > 0. By a similar argument as J̃1 and (4.25), we have

J̃2 ≤
∫ ε

0

∥(−L0)
1
2P 0

rAt∥L2(µ0) dr, (4.26)

and∥∥(−L0)
1/2P 0

rAt

∥∥
L2(µ0)
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=
1

tEν [1{t<σB
τ }]

( ∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2e−2B(λm)t

[B(λm)−B(λ0)]2e2(λm−λ0)r(λm − λ0)−1
∥ϕmϕ−1

0 ∥2L2(µ0)

)1/2
≤ c

t

( ∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)2α−1
e−2(λm−λ0)r

)1/2
, t ≥ t0, (4.27)

for some constant c > 0.
Recall that ĥ = µ(ϕ0)hϕ

−1
0 + ν(ϕ0)ϕ

−1
0 . Since

(P 0
r − µ0)ĥ =

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]e−(λm−λ0)rϕmϕ
−1
0 ,

by (2.7), we immediately have∥∥(−L0)
1/2−α(P 0

r − µ0)ĥ
∥∥
L2(µ0)

=
( ∞∑

m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)2α−1
e−2(λm−λ0)r

)1/2
. (4.28)

Thus, combining (4.24), (4.25) (4.26), (4.27) and (4.28), we obtain

J̃1 + J̃2 ≤ c

t

∫ ϵ

0

∥∥(−L0)
1/2−α(P 0

r − µ0)ĥ
∥∥
L2(µ0)

dr, t ≥ t0. (4.29)

Suppose that p0 < p < 2∨ p0. By (2.11), (4.15) and the fact that (−L0)
1/2−α =

c
∫∞
0
P 0
s2/(2α−1) ds, we have

J̃1 + J̃2

≤ c

t

∫ ϵ

0

∥∥∥∫ ∞

0

(P 0
r+s2/(2α−1) − µ0)ĥds

∥∥∥
L2(µ0)

dr

≤ c

t

∫ ϵ

0

∫ ∞

0

∥∥(P 0
r+s2/(2α−1) − µ0)ĥ

∥∥
L2(µ0)

dsdr

≤ c

t

∫ ϵ

0

∫ ∞

0

∥P 0
r+s2/(2α−1) − µ0∥Lp(µ0)→L2(µ0)∥ĥ∥Lp(µ0) dsdr

≤ c

t
∥hϕ−1

0 ∥Lp(µ0)

∫ ϵ

0

e−(λ1−λ0)rdr

∫ ∞

0

e−(λ1−λ0)s
2/(2α−1)

(1 ∧ s2/(2α−1))−
(d+2)(2−p)

4p ds

≤ c∥hϕ−1
0 ∥Lp(µ0)t

−(1+β), t ≥ t0, (4.30)

for some constant c > 0, where we applied the fact that∫ ∞

0

e−(λ1−λ0)s
2/(2α−1)

(1 ∧ s2/(2α−1))−
(d+2)(2−p)

4p ds <∞,

since

0 ≤ 2

2α− 1

(d+ 2)(2− p)

4p
< 1, p ∈ (p0, 2], α ∈ (1/2, 1].

Suppose that p0 ∨ 2 ≤ p ≤ ∞. By an analogous argument, we also have (4.30).

(2) Secondly, we turn to estimate J̃3. By (4.21) and a similar argument as in
(4.11) and (4.13),

J̃3 ≤ c

tEν [1{t<σB
τ }]

∫ t

0

∥∥∥∥∫ ∞

ϵ

(
1√
r − ϵ

− 1√
r

)
P 0
r ξs dr −

∫ ϵ

0

1√
r
P 0
r ξs dr

∥∥∥∥
L2(µ0)

ds

≤ c

tEν [1{t<σB
τ }]

∫ t

0

∫ ∞

ϵ

(
1√
r − ϵ

− 1√
r

)
∥P 0

r ξs∥L2(µ0) drds
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+
c

tEν [1{t<σB
τ }]

∫ t

0

∫ ϵ

0

1√
r
∥P 0

r ξs∥L2(µ0) drds

≤ c∥hϕ−1
0 ∥Lp(µ0)e

−[B(λ1)−B(λ0)]t

[∫ ∞

ϵ

(
1√
r − ϵ

− 1√
r

)
dr +

∫ ϵ

0

1√
r
dr

]
≤ c∥hϕ−1

0 ∥Lp(µ0)e
−[B(λ1)−B(λ0)]tt−β/2, t ≥ t0, (4.31)

for some constant c > 0.
(3) Finally, combining (4.10), (4.23), (4.30) and (4.31) together, we complete the

proof.

4.2. Lower bounds. In this subsection, we present the proof of the lower bound
in Theorem 1.3. Note that, by Lemma 4.1, for any β ∈ (0, 2

2d−2α+1 ), there exists

some constant t0 > 0 such that µ̃B,ν
t,β ∈ P0 for every t ≥ t0 and every ν ∈ P0.

Set fBt,β := (−L0)
−1ρ̃B,ν

t,β . The next lemma establishes useful regularity estimates

for fBt,β and its gradient.

Lemma 4.9. For any α ∈ (0, 1], β > 0, there exists a constant c > 0 such that

∥fBt,β∥∞ + ∥L0f
B
t,β∥∞ + ∥∇fBt,β∥∞ ≤ ct

(5d+2−4α)β
4 −1, t ≥ 1, ν ∈ P0.

Proof. By (2.7) and (3.2), we have, for every t ≥ 1,

(−L0)f
B
t,β

=
1

tEν [1{t<σB
τ }]

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]e−B(λ0)t

B(λm)−B(λ0)
e−(λm−λ0)t

−β

ϕmϕ
−1
0 ,

and

fBt,β =
1

tEν [1{t<σB
τ }]

∞∑
m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]e−B(λ0)t

(λm − λ0)[B(λm)−B(λ0)]
e−(λm−λ0)t

−β

ϕmϕ
−1
0 .

Combining these identities with (2.1), (2.13), (2.20), (2.19), (2.18) and the fact that

|µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)| ≤ ∥ϕ0∥∞ + ∥ϕm∥∞ ≤ c1m
1
2 , m ∈ N,

for some constant c1 > 0, we find constants c2, c3, c4 > 0 such that

t{∥fBt,β∥∞ + ∥L0f
B
t,β∥∞} ≤ c2

∞∑
m=1

e−(λm−λ0)t
−β

B(λm)−B(λ0)
m

d+1
d

≤ c3

∫ ∞

0

e−α−1
0 s

2
d t−β

s
d+1−2α

d ds

≤ c4t
(2d+1−2α)β

2 , t ≥ 1,

where α0 is from (2.1). By a similar argument as above, applying (2.14), we deduce
that there exist constants c5, c6, c7 > 0 such that

t∥∇fBt,β∥∞ ≤ c5

∞∑
m=1

e−(λm−λ0)t
−β

[B(λm)−B(λ0)](λm − λ0)
m

3d+4
2d

≤ c6

∞∑
m=1

e−α−1
0 m

2
d t−β

m
3d+4
2d − 2(1+α)

d

≤ c7t
β(5d−4α)

4 , t ≥ 1.

The proof is completed.



574 HUAIQIAN LI AND BINGYAO WU

In the following lemma, we present the lower bound estimate for W2(µ̃
B,ν
t,β , µ0).

With Lemma 4.9 in hand, the proof can be achieved by the same approach employed
for [27, Lemma 4.2]. So we omit the details here.

Lemma 4.10. For any α ∈ (0, 1], β ∈ (0, 1
4(5d+2−4α) ], there exist constants c, t0 > 0

such that

t2W2(µ̃
B,ν
t,β , µ0)

2 ≥ Jβ − ct−
1
4 , t ≥ t0, ν ∈ P0,

where

Jβ :=
1

{µ(ϕ0)ν(ϕ0)}2
∞∑

m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
e−2(λm−λ0)t

−β

,

t > 0, ν ∈ P0. (4.32)

The main result of this subsection, which is the lower bound in Theorem 1.3.

Proposition 4.11. Let α ∈ (0, 1], B ∈ Bα and p ∈ (p0,∞]. Then for any ν =
hµ ∈ P0 with hϕ−1

0 ∈ Lp(µ0),

lim inf
t→∞

{t2W2(µ
B,ν
t , µ0)

2} ≥ 1

{µ(ϕ0)ν(ϕ0)}2
∞∑

m=1

[µ(ϕ0)ν(ϕm) + ν(ϕ0)µ(ϕm)]2

(λm − λ0)[B(λm)−B(λ0)]2
.

Proof. By the triangle inequality of W2, we have for any β ∈ (0, 2
2d−2α+1 ), there

exists a constant t0 > 0 such that µ̃B,ν
t,β ∈ P0 for every t ≥ t0 and

W2(µ
B,ν
t , µ0) ≥ W2(µ̃

B,ν
t,β , µ0)−W2(µ̃

B,ν
t,β , µ

B,ν
t,β )−W2(µ

B,ν
t,β , µ

B,ν
t ), t ≥ t0. (4.33)

Combining Lemmas 4.5, 4.10 and 4.6 together, for any β ∈ (0, 1
4(5d+2−4α) ] and any

p ∈ (p0,∞], we can find some constants c, t0 > 0 such that, for every ν = hµ ∈ P0

with hϕ−1
0 ∈ Lp(µ0) and every t ≥ t0,

tW2(µ̃
B,ν
t,β , µ

B,ν
t,β ) ≤ cte−[B(λ1)−B(λ0)]t/2∥hϕ−1

0 ∥
1
2

Lp(µ0)
,

tW2(µ̃
B,ν
t,β , µ0) ≥

(
[Jβ − ct−

1
4 ]+
) 1

2 ,

tW2(µ
B,ν
t,β , µ

B,ν
t ) ≤ c∥hϕ−1

0 ∥Lp(µ0)t
− β

2 ,

where Jβ is defined in (4.32). Substituting these estimates into (4.33), we immedi-
ately obtain that

tW2(µ
B,ν
t , µ0) ≥

(
[Jβ − ct−

1
4 ]+
) 1

2 − cte−[B(λ1)−B(λ0)]t/2∥hϕ−1
0 ∥

1
2

Lp(µ0)

− c∥hϕ−1
0 ∥Lp(µ0)t

− β
2 , t ≥ t0.

Since ∥hϕ−1
0 ∥Lp(µ0) <∞, by letting t→ ∞, we prove the desired result.

Appendix. Let B ∈ Bα for some α ∈ (0, 1]. Recall that µ0 = ϕ20µ, and µ0 is
called a quasi-ergodic distribution of the B-subordinated Dirichlet diffusion process
(XB

t )t≥0 if for every ν ∈ P supported on M̊ and every Borel set E ⊂M ,

lim
t→∞

Eν
[1
t

∫ t

0

1E(X
B
s ) ds

∣∣∣σB
τ > t

]
= µ0(E).

The following result implies that µ0 is the unique quasi-ergodic distribution of
(XB

t )t≥0.
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Proposition A.1. Let α ∈ (0, 1] and B ∈ Bα. Then, for every ν ∈ P supported

on M̊ ,

lim
t→∞

∥µB,ν
t − µ0∥var = 0,

and

lim
t→∞

Eν
[1
t

∫ t

0

f(XB
s ) ds

∣∣∣σB
τ > t

]
=

∫
M

f dµ0, f ∈ Bb(M).

Proof. The proof is a direct application of [8, Theorem 2.1]. So we only need to
check the assumptions (A1) and (A2) on [8, page 185]. (A1) is clearly satisfied. By
(2.15), Fubini’s theorem, µ(ϕ2m) = 1 for each m ∈ N0, (2.1) and (2.18),∫

M

pD,B
t (x, x)µ(dx) =

∫
M

∞∑
m=0

e−B(λm)tϕ2m(x)µ(dx) =

∞∑
m=0

e−B(λm)t

= e−B(λ0)t
(
1 +

∞∑
m=1

e−[B(λm)−B(λ0)]t
)

≤ c1

(
1 +

∞∑
m=1

e−c2tm
2α/d

)
<∞, t > 0,

for some constants c1, c2 > 0. By (2.17), (2.5), a similar argument as in (3.19),
there exist constants c3, c4 > 0 such that

∥PD,B
t f∥L∞(µ) =

∥∥∥∫ ∞

0

PD
u f P(SB

t ∈ du)
∥∥∥
L∞(µ)

≤
∫ ∞

0

∥PD
u f∥L∞(µ) P(SB

t ∈ du)

≤ c3∥f∥L2(µ)E
[
e−λ0S

B
t (1 ∧ SB

t )−
d
4

]
≤ c3∥f∥L2(µ)E

[
(1 ∧ SB

t )−
d
4

]
≤ c4∥f∥L2(µ)(1 + t−

d
4α ), t > 0, f ∈ L2(µ),

i.e., ∥PD,B
t ∥L2(µ)→L∞(µ) ≤ c4(1 + t−

d
4α ), t > 0. Thus, (A2) is satisfied.
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