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Abstract. In this paper, we give a decomposition of triply rooted trees into three

doubly rooted trees. This leads to a combinatorial interpretation of an identity con-

jectured by Lacasse in the study of the PAC-Bayesian machine learning theory, and

proved by Younsi by using the Hurwitz identity on multivariate Abel polynomials. We

also give a bijection between the set of functions from [n+1] to [n] and the set of triply

rooted trees on [n], which leads to the refined enumeration of functions from [n + 1]

to [n] with respect to the number of elements in the orbit of n+ 1 and the number of

periodic points.
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1 Introduction

Lacasse [4] introduced the functions ξ(n) and ξ2(n) in his study of the classical PAC-

Bayes theorem in the theory of machine learning, where

ξ(n) =

n
∑

k=0

(

n

k

)(

k

n

)k (

1−
k

n

)n−k

and

ξ2(n) =
n

∑

j=0

n−j
∑

k=0

(

n

j

)(

n− j

k

)(

j

n

)j (
k

n

)k (

1−
j

n
−

k

n

)n−j−k

.

He showed that ξ(n) can be used to give a tighter bound of the Kullback-Leibler

divergence between the risk and the empirical risk on a sample space S of a hypothesis

function in a hypothesis space, whereas ξ2(n) can be used to bound the Kullback-Leibler

divergence between the risk and the empirical risk on S of the joint distribution of two

hypothesis functions in a hypothesis space.

While ξ2(n) is a double sum, based on numerical evidence Lacasse [4] posed the

following conjecture stating that ξ2(n) can be reduced to the single sum ξ(n).
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Conjecture 1.1 For n ∈ N, we have

ξ2(n) = ξ(n) + n. (1.1)

By applying an identity of Hurwitz on multivariate Abel polynomials, Younsi [7]

gave an algebraic proof of this conjecture. Recall that multivariate Abel polynomials

are defined by

An(x1, x2, . . . , xm; p1, p2, . . . , pm) =
∑

k1+k2+···+km=n

(

n

k1, k2, . . . , km

) m
∏

j=1

(xj + kj)
kj+pj ,

where x1, x2, . . . , xm ∈ R and p1, p2, . . . , pm ∈ Z. Hurwitz proved that under certain

conditions, the polynomials An(x1, x2, . . . , xm; p1, p2, . . . , pm) reduce to single sums. In

particular, when p1 = p2 = · · · = pm = 0, we have

An(x1, . . . , xm; 0, . . . , 0) =

n
∑

k=0

(

n

k

)

(x1 + x2 + · · ·+ xm + n)n−kαk(m− 1), (1.2)

where αk(r) = r(r+1) · · · (r+k−1) is the rising factorial, see, for example, Riordan [5].

Younsi [7] observed that ξ(n) = An(0, 0; 0, 0) and ξ2(n) = An(0, 0, 0; 0, 0, 0), and

obtained the following expressions for ξ(n) and ξ2(n) by the above identity (1.2),

ξ(n) =
1

nn

n
∑

j=0

nj n!

j!
, (1.3)

ξ2(n) =
1

nn

n
∑

j=0

nn−j

(

n

j

)

(j + 1)!. (1.4)

Conjecture 1.1 can be easily deduced from (1.3) and (1.4).

In this paper, we give a combinatorial explanation of relation (1.1). Rewriting (1.1)

as

n
∑

j=0

n−j
∑

k=0

(

n

j

)(

n− j

k

)

jjkk(n− j − k)n−j−k =
n

∑

k=0

(

n

k

)

kk(n− k)n−k + nn+1, (1.5)

we see that it is equivalent to the following form

n
∑

j=1

n−j
∑

k=0

(

n

j

)(

n− j

k

)

jjkk(n− j − k)n−j−k = nn+1. (1.6)

The right hand side of (1.6) indicates that we need the notion of triply rooted trees,

namely, labeled trees with three distinguished, but not necessarily distinct vertices.

To be more specific, the three distinguished vertices of a triply rooted tree are called

the first, the second and the third root, respectively. It can be easily seen that the
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summand on the left hand side of (1.6) can be interpreted as the number of triples of

doubly rooted trees with a given number of vertices in each doubly rooted tree. Hence

relation (1.6) can be deduced from a decomposition of a triply rooted tree into three

doubly rooted trees.

The second result of this paper is a correspondence between the set of functions

from [n + 1] to [n] and the set of triply rooted trees on [n]. Let f be a function from

[n+1] to [n] and let T be the corresponding triply rooted tree. We find that the orbit

of n + 1 on f is mapped to the set of ancestors of the second root in T , and the set

of periodic points of f is mapped to the set of ancestors of the third root in T . Based

on this property of our bijection, we derive a formula for the number of functions from

[n+1] to [n] with a given number of elements in the orbit of n+1 and a given number

of periodic points.

2 Decomposition of triply rooted tree

In this section, we give a combinatorial interpretation of Lacasse’s identity by providing

a decomposition of a triply rooted tree into three doubly rooted trees.

Recall that a rooted tree is defined to be a labeled tree with a specific vertex, which

is called the root. Let Rn denote the set of rooted trees on [n]. The set Rn is counted

by nn−1, see Stanley [6, 5.3.2 Proposition]. A doubly rooted tree is defined as a labeled

tree with two distinguished vertices r1 and r2, where we call r1 the first root and call

r2 the second root. Notice that the two roots of a doubly rooted tree are not required

to be distinct. We denote by Dn the set of doubly rooted trees on [n]. From the

formula for |Rn|, one sees that |Dn| = nn. The notion of doubly rooted trees leads to

be an elegant proof of the formula for |Dn| independently obtained by Goulden and

Jackson [2] and Joyal [3].

The identity (1.6) indicates that there is a decomposition of a triply rooted tree

into three doubly rooted trees. More precisely, we define a triply rooted tree to be a

labeled tree with three distinguished vertices r1, r2, and r3, which are called the first,

the second, and the third root, respectively. Again, the three roots of a triply rooted

tree are not necessarily distinct. Denote by Tn the set of triply rooted trees. From the

formula for |Dn| it is clear that |Tn| = nn+1. So the right hand side of (1.6) can be

interpreted as the number of triply rooted trees on [n].

On the other hand, let Qn denote the set of triples of doubly rooted trees (D,D′, D′′)

such that the vertex sets ofD, D′,D′′ form a composition of [n] withD being nonempty.

To be more specific, a triple (X, Y, Z) of subsets of a set S is said to be a composition

of S if X, Y , and Z are disjoint and their union equals S. It is obvious that Qn is

counted by
n

∑

j=1

n−j
∑

k=0

(

n

j

)(

n− j

k

)

jjkk(n− j − k)n−j−k,
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which is the left hand side of (1.6). Hence identity (1.6) follows from the following

bijection.

Theorem 2.1 For n ≥ 1, there is a bijection between Qn and Tn.

To present the proof of the above theorem, we recall some terminology. Given two

vertices i and j of a rooted tree T , we say that j is a descendant of i, or i is an ancestor

of j, if i lies on the unique path from the root to j. In particular, each vertex is a

descendant as well as an ancestor of itself. A child of i means a descendant j of i such

that (i, j) is an edge of T . The depth of i is defined to be the number of edges of the

unique path from the root to i. Given two vertices v1 and v2 of T , there is a unique

vertex v that is the common ancestor of v1 and v2 with the largest depth. This vertex

is called the least common ancestor of v1 and v2, see Aho, Hopcroft and Ullman [1].

For example, for the tree in Figure 2.1, the least common ancestor of 1 and 3 is 5,

while the least common ancestor of 1 and 6 is the root 4.

✉
4

✉2 ✔
✔
✔

✉5❚
❚

❚

✉

6

✉

3

✔
✔
✔

✉

1

❚
❚

❚

Figure 2.1: A rooted tree on [6].

Throughout this paper, we use r1(D) and r2(D) to denote the first root and the

second root of a doubly rooted tree D, respectively, and we use r1(T ), r2(T ) and r3(T )

to denote the first root, the second root and the third root of a triply rooted tree T ,

respectively.

Proof of Theorem 2.1. We define a map ϕ from Qn to Tn. Given a triple (D,D′, D′′)

of doubly rooted trees in Qn, we aim to construct a triply rooted tree on [n]. First, we

consider the case when neither D′ nor D′′ is empty.

We merge D and D′ by setting r1(D
′) to be a child of r2(D), and we merge D and

D′′ by setting r1(D
′′) to be a child of r2(D). By setting r2(D

′) and r2(D
′′) to be the

second root and the third root of the resulting tree, we obtain a triply rooted tree T .

For example, Figure 2.2 gives an illustration of a triple of doubly rooted trees and

the corresponding triply rooted tree, where the second root is represented by a solid

square, and the third root is represented by a hollow square.

We now consider the case when either D′ or D′′ is empty. If D′ = ∅ and D′′ 6= ∅, we
merge D and D′′ by setting r1(D

′′) to be a child of r2(D). Setting r2(D) and r2(D
′′)

to be the second root and the third root, we obtain a triply rooted tree T .
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✉
6

12 ✔
✔
✔

✉8❚
❚

❚

✉

9

✉

3

✔
✔
✔

✉

1

❚
❚

❚

2

✉

10

✉
5

✉4

✉✔
✔
✔

7

✉❚
❚

❚

11

D D′ D′′

=⇒

✉
6

✉�
�
�

12

✉

9

✉❚
❚

❚

5

4

✉✔
✔✔

7

✉❚
❚❚

11

✔
✔
✔

2

✉

10

✉❅
❅

❅

8

✉✔
✔
✔

3

✉❚
❚

❚

1

Figure 2.2: The merging process when D′ 6= ∅ and D′′ 6= ∅.

If D′ 6= ∅ and D′′ = ∅, we merge D and D′ by setting r1(D
′) to be a child of r2(D).

Setting r2(D
′) and r2(D) to be the second root and the third root, we obtain a triply

rooted tree T .

If both D and D′′ are empty, then we set r2(D) to be the second root and the third

root to obtain a triply rooted tree T .

In summary, (r1(T ), r2(T ), r3(T )) is given as follows:






















(r1(D), r2(D
′), r2(D

′′)), if D′ 6= ∅, and D′′ 6= ∅;

(r1(D), r2(D), r2(D
′′)), if D′ = ∅, and D′′ 6= ∅;

(r1(D), r2(D
′), r2(D)), if D′ 6= ∅, and D′′ = ∅;

(r1(D), r2(D), r2(D)), if D′ = ∅, and D′′ = ∅.

Figure 2.3 gives an illustration of the merging process when D′ = ∅ and D′′ 6= ∅.

✉
6

10 ✔
✔
✔

✉8❚
❚

❚

✉

9

✉

3

✔
✔
✔

✉

1

❚
❚

❚

✉
5

4

✉✔
✔
✔

7

✉❚
❚

❚

2

D D′

∅

D′′

=⇒

✉
6

�
�
�

10

✉❚
❚

❚

5

4

✉✔
✔✔

7

✉❚
❚❚

2

✉✔
✔
✔

9

✉❅
❅

❅

8

✉✔
✔
✔

3

✉❚
❚

❚

1

Figure 2.3: The merging process when D′ = ∅ and D′′ 6= ∅.

To show that the above process is invertible, we give a description of the inverse

procedure. Given a triply rooted tree T with three roots r1, r2 and r3, assume that w

is the least common ancestor of r2 and r3.
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We first consider the case when w 6= r2 and w 6= r3. We proceed to find two edges

such that by removing them we can recover three doubly rooted trees D, D′ and D′′.

Find the child x of w such that r2 is a descendant of x, and the child y of w such that

r3 is a descendant of y. Removing the edges (w, x) and (w, y), we get three trees with

three roots r1, x and y. Let D be the doubly rooted trees with two roots r1 and w,

let D′ be the doubly rooted trees with two roots x and r2, and let D′′ be the doubly

rooted trees with two roots y and r3.

Next we consider the remaining cases. When w = r2 and w 6= r3, suppose that y is

the child of w such that r3 is a descendant of y. Removing the edge (w, y), we get a

doubly rooted tree D with two roots r1 and w, a doubly rooted tree D′′ with two roots

y and r3. Moreover, we set D′ = ∅.

When w = r3 and w 6= r2, suppose that x is the child of w such that r2 is a

descendant of x. Removing the edge (w, x), we get a doubly rooted tree D with two

roots r1 and w and a doubly rooted tree D′ with two roots x and r2. Meanwhile, we

set D′′ = ∅.

When w = r2 = r3, let D to be the doubly rooted tree obtained from T by setting

the two roots to be r1 and w, and let D′ = ∅ and D′′ = ∅.

It can be easily checked that in any case the three doubly rooted trees D, D′ and

D′′ can be merged into the triply rooted tree T . That is, the above merging process is

invertible. This completes the proof.

3 Functions from [n + 1] to [n]

In this section, we establish a correspondence between functions from [n+1] to [n] and

triply rooted trees on [n], which maps the orbit of n + 1 to the set of ancestors of the

second root, and maps the set of periodic points to the set of ancestors of the third

root. By the symmetry between the second and third roots, we deduce a symmetry

property of the number of functions from [n + 1] to [n] with respect to the number of

periodic points and the size of the orbit of n + 1.

Given a function f from [n + 1] to [n], the orbit of x on f is defined to be the set

{x, f(x), f 2(x), . . .}. If there exists some j ≥ 1, such that f j(x) = x, then x is called a

periodic point of f . We have the following correspondence.

Theorem 3.1 There is a bijection φ between the set of functions f from [n+1] to [n]

and the set of triply rooted trees on [n] such that the orbit of n+1 on f excluding n+1

itself is mapped to the set of ancestors of the second root of φ(f) and the set of periodic

points of f is mapped to the set of ancestors of the third root of φ(f).

Proof. The map φ can be described as follows. Let f be a function from [n + 1] to

[n]. We proceed to construct a triply rooted tree T on [n] based on the function f .

6



We begin with the functional digraph Gf of f , that is, a digraph on [n + 1] with arcs

(i, f(i)) for 1 ≤ i ≤ n + 1. Let C1 be the connected component of Gf containing the

vertex n + 1. Consider the longest path P starting from n+ 1, say,

P : n + 1 = u0 → u1 → u2 → · · · → uk.

In other words, k is the smallest integer such that f(uk) = uj for some j ≤ k. Removing

the arc (uk, uj) and the vertex n+ 1 from C1, we get a tree H rooted at uk.

Let C2 be the digraph Gf \ C1. When C2 = ∅, we set uk, u1 and uj to be the three

roots of H to obtain a triply rooted tree T .

When C2 6= ∅, suppose that the vertex set of C2 is {v1, v2, . . . , vs}. Note that C2 is a

functional digraph on {v1, v2, . . . , vs}. By applying the bijection between functions and

doubly rooted trees, obtained by Joyal [3] and Goulden and Jackson [2], C2 corresponds

to a doubly rooted tree D on {v1, v2, . . . , vs}. Let w1 and w2 be the two roots of D.

Finally, we merge the rooted tree H and the doubly rooted tree D by joining the

first root w1 of D and the vertex uj of H with w1 being the child. Setting uk, u1 and

w2 to be the first, the second and the third root, respectively, we get a triply rooted

tree T , and we set φ(f) = T .

For example, let f be the following function from [13] to [12],

f =

(

1 2 3 4 5 6 7 8 9 10 11 12 13

8 6 8 5 4 12 4 6 12 2 4 2 3

)

.

The functional digraph of f is given in Figure 3.4, where C1 is the functional digraph on

{1, 2, 3, 6, 8, 9, 10, 12, 13} and C2 is the functional digraph on {4, 5, 7, 11}. The longest

s s s s s✲ ✲ ✲ ✛

s
✻

s

❄
❅

❅■
❅

❅
❅

s✛

s s

s s�
�
�

�
�✒ ✻

✲
✛

1 8 6 12 9

3 2 10

4 5

7 11

✲s
13

Figure 3.4: The functinal digraph Gf .

path starting from 13 is

P : 13 → 3 → 8 → 6 → 12 → 2,

with f(2) = 6, that is, u1 = 3, uk = 2 and uj = 6 as in the proof. Deleting the arc

(2, 6) and vertex 13, we get a rooted tree H as illustrated in Figure 3.5. By applying

the bijection between functional digraphs and doubly rooted trees, C2 can be mapped

to a doubly rooted tree D with roots 5 and 4 as shown in Figure 3.5, where w1 = 5

and w2 = 4 as in the proof. Merging H and D by adding an edge (6, 5) and setting

2, 3 and 4 to be the three roots, we get a triply rooted tree T in Figure 3.5.
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✉
2

✉✔
✔
✔

10 ✉❚
❚

❚

12

✔
✔✔

6 ✉❚
❚❚

9

✉8

✉✔
✔✔

1 ❚
❚❚

3

Tree H

✉
5

4

✉✔
✔
✔

7 ✉❚
❚

❚

11

Tree D

=⇒

✉
2

✉�
�
�

10 ✉❅
❅

❅

12

✉�
��

6 ✉❅
❅❅

9

✉✡
✡
✡✡

8

✉✔
✔
✔

1

✉❚
❚

❚

3

✉❏
❏

❏❏

5

4

✉✡
✡✡

7

✉❏
❏❏

11

Tree T

Figure 3.5: An example of the bijection φ.

The map φ is indeed a bijection. The inverse map can be described as follows. For

a triply rooted tree T ∈ Tn with the three roots r1, r2 and r3, we first find the least

common ancestor of r2 and r3, and we denote it by u0. Suppose that the unique path

P from u0 to r3 in T is u0u1 · · ·ui = r3. Removing the edge (u0, u1) from T , we get

two components T1 and T2, where T1 is rooted at r1 and T2 is rooted at u1. Adding

n + 1 to T1 by setting it as a child of r2. Now, T1 can be viewed as a directed graph

by making each edge point to the father. Then we add the arc (r1, u0) to T1 to obtain

a connected functional digraph C1.

Next, we transform T2 rooted at u1 into a doubly rooted tree by setting r3 to be the

second root. Then we get a functional digraph C2 by applying the inverse map of the

bijection of Joyal [3] and Goulden and Jackson [2].

Finally, let G = C1 ∪C2. It is easily seen that G is a directed graph on [n+ 1] such

that each vertex has outdegree one and the vertex n + 1 has indegree zero. In other

words, G is the functional digraph of a function from [n+ 1] to [n]. It can be checked

that the above procedure is indeed the inverse of the map φ.

It remains to prove the properties of φ as stated in the theorem. For a function f

from [n+1] to [n], an element x is a periodic point in f if and only if it is a vertex in a

cycle in the functional digraph Gf . It can be seen that x is in a cycle if and only if it is

an ancestor of the third root in the triply rooted tree φ(f). Moreover, it can be checked

that each element y in the orbit of n+1 on f other than n+1 itself corresponds to an

ancestor of the second root in the triply rooted tree φ(f). This completes the proof.

For example, for the function f in Figure 3.4, there are five periodic points 2, 12, 6, 5, 4,

which are the vertices in the path from the root 2 to the third root 4 in φ(f) as demon-

strated in Figure 3.5. The orbit of 13 consists of 13, 3, 8, 6, 12, 2. These elements

8



3, 8, 6, 12, 2 correspond to the vertices in the path from the root 2 to the second root 3

in φ(f).

From the above bijection φ, we obtain a formula for the number of functions from

[n + 1] to [n] with a given number of elements in the orbit of n + 1 and a given

number of periodic points. This formula implies a symmetry property, which can also

be interpreted in terms of triply rooted trees.

Theorem 3.2 For n ≥ 1, let Wn,i,j denote the set of triply rooted trees on [n] such

that the depth of the second root is i and the depth of the third root is j. Then we have

|Wn,i,j| =

min(i,j)
∑

d=0

(i+ j − d+ 1)n!

(n− i− j + d− 1)!
nn−i−j+d−2, (3.1)

where |Wn,i,j| is the cardinality of Wn,i,j.

Proof. Let Wn,i,j(d) denote the set of triply rooted trees T in Wn,i,j such that d is the

depth of the least common ancestor of the second root and the third root of T . We

proceed to show that Wn,i,j(d) is enumerated by the summand on the right hand side

of (3.1).

Let T be a triply rooted tree in Wn,i,j(d). We denote by P1 the path from the first

root to the second root and denote by P2 the path from the first root to the third root.

It can be seen that there are exactly k = i + j − d + 1 vertices on P1 and P2. Hence

the number of ways to form P1 and P2 equals n!
(n−k)!

. Moreover, it is known that there

are knn−k−1 forests consisting of k rooted trees on [n] with k given roots. It follows

that Wn,i,j(d) is enumerated by the summand on the right hand side of (3.2). This

completes the proof.

Combining Theorem 3.1 and Theorem 3.2, we arrive at the following formula for

the refined enumeration of functions from [n+ 1] to [n].

Theorem 3.3 For n ≥ 1, let Fn,i,j denote the set of functions from [n+1] to [n] such

that the size of the orbit of n+ 1 is i and the number of periodic points is j. Then we

have

|Fn,i+1,j| =

min(i,j)−1
∑

s=0

(i+ j − s− 1)n!

(n− i− j + s+ 1)!
nn−i−j+s. (3.2)

By the symmetry of the second roots and the third roots for Tn, we can conclude a

symmetry relation of functions from [n+ 1] to [n] concerning the size of orbit of n+ 1

and the number of periodic points, that is,

|Fn,i+1,j| = |Fn,j+1,i|. (3.3)

Notice that the above symmetry is implied by (3.2).
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