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Abstract. In 1961, Gordon found a combinatorial generalization of the Rogers–Ramanujan
identities, which has been called the Rogers–Ramanujan–Gordon theorem. In 1974, Andrews
derived an identity which can be considered as the generating function counterpart of the
Rogers–Ramanujan–Gordon theorem, and it has been called the Andrews–Gordon identity.
The Andrews–Gordon identity is an analytic generalization of the Rogers–Ramanujan identities
with odd moduli. In 1979, Bressoud obtained a Rogers–Ramanujan–Gordon type theorem and
the corresponding Andrews–Gordon type identity with even moduli. In 2004, Lovejoy proved
two overpartition analogues of two special cases of the Rogers–Ramanujan–Gordon theorem.
In 2012, Chen, Sang and Shi found the overpartition analogue of the Rogers–Ramanujan–
Gordon theorem in general cases and the corresponding Andrews-Gordon type identity with
even moduli. In 2008, Corteel, Lovejoy, and Mallet found an overpartition analogue of a
special case of Bressoud’s theorem of the Rogers–Ramanujan–Gordon type. In 2012, Chen,
Sang and Shi obtained the overpartition analogue of Bressoud’s theorem in the general case.
In this paper, we obtain an Andrew–Gordon type identity corresponding to this overpartition
theorem with odd moduli by using the Gordon marking representation of an overpartition.
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1 Introduction

In this paper, we present an Andrews–Gordon type identity for overpartition with odd moduli.
This identity can be considered as the generating function form of an overpartition analogue
of Bressoud’s theorem of the Rogers–Ramanujan–Gordon type.

Let us give an overview of some definitions. A partition λ of a positive integer n is a
non-increasing sequence of positive integers λ1 ≥ · · · ≥ λs > 0 such that n = λ1 + · · · + λs.
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An overpartition λ of a positive integer n is also a non-increasing sequence of positive integers
λ1 ≥ · · · ≥ λs > 0 such that n = λ1 + · · · + λs and the first occurrence of each integer may
be overlined, see Corteel and Lovejoy [8]. Given a partition or an overpartition λ, let fl(λ)
(fl(λ)) denote the number of occurrences of non-overlined (overlined) l in λ. Let Vλ(l) denote
the number of overlined parts in λ that are less than or equal to l.

We adopt the common notation in q-series as used in Andrews [3]. Let

(a)∞ = (a; q)∞ =
∞∏
i=0

(1− aqi),

and
(a1, . . . , ak; q)∞ = (a1; q)∞ · · · (ak; q)∞.

We also write
(a)n = (a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Gordon [10] found the following combinatorial generalization of the Rogers–Ramanujan
identities, which has been called the Rogers–Ramanujan–Gordon theorem, see Andrews [1].

Theorem 1.1 For k ≥ i ≥ 1, let Bk,i(n) denote the number of partitions of n of the form
λ1 + λ2 + · · · + λs, where λj ≥ λj+1, λi − λi+2 ≥ 2 and at most i − 1 of the λj are equal to
1. Let Ak,i(n) denote the number of partitions of n into parts not congruent to 0,±i modulo
2k + 1. Then for all n ≥ 0, we have

Ak,i(n) = Bk,i(n).

In 1974, Andrews [2] derived an identity which can be considered as the generating function
counterpart of the Rogers–Ramanujan–Gordon theorem. It has been called the Andrews–
Gordon identity, and it is an analytic generalization of the Rogers–Ramanujan identities with
odd moduli.

Theorem 1.2 For k ≥ i ≥ 1, we have

∑
N1≥N2≥···≥Nk−1≥0

qN
2
1+N

2
2+···+N2

k−1+Ni+···+Nk−1

(q)N1−N2 . . . (q)Nk−2−Nk−1
(q)Nk−1

=
(qi, q2k+1−i, q2k+1; q2k+1)∞

(q)∞
. (1.1)

Andrews showed that both sides of (1.1) satisfy the same recurrence relation with the same
initial condition. In 2009, Kurşungöz [11] proved that the sum on the left-hand side of (1.1) can
be viewed as the generating function for Bk,i(n) by using the Gordon markings of partitions.

Bressoud [4, 5] obtained a Rogers–Ramanujan–Gordon type theorem and the corresponding
Andrews–Gordon type identity with even moduli.

Theorem 1.3 For k ≥ i ≥ 1, let B̃k,i(n) denote the number of partitions of n of the form
λ = λ1 + λ2 + · · ·+ λs, such that

(i) f1(λ) ≤ i− 1,
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(ii) fl(λ) + fl+1(λ) ≤ k − 1,

(iii) if the equality in condition (ii) is attained at l, then lfl(λ)+(l+1)fl+1(λ) ≡ i−1 (mod 2).

Let Ãk,i(n) denote the number of partitions of n whose parts are not congruent to 0,±i modulo
2k. Then for all n ≥ 0, we have

Ãk,i(n) = B̃k,i(n).

The generating function form of the above theorem can be stated as follows.

Theorem 1.4 For k ≥ i ≥ 1, we have

∑
N1≥N2≥···≥Nk−1≥0

qN
2
1+N

2
2+···+N2

k−1+Ni+1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q2; q2)Nk−1

=
(qi, q2k−i, q2k; q2k)∞

(q)∞
. (1.2)

In 2004, Lovejoy [12] obtained the overpartition analogues of Theorem 1.1 for i = k and
i = 1.

Theorem 1.5 Let Bk(n) denote the number of overpartitions of n of the form λ1+λ2+· · ·+λs,
such that λj − λj+k−1 ≥ 1 if λj is overlined and λj − λj+k−1 ≥ 2 otherwise. Let Ak(n) denote
the number of overpartitions of n into parts not divisible by k. Then for all n ≥ 0, we have

Ak(n) = Bk(n).

Theorem 1.6 Let Dk(n) denote the number of overpartitions of n of the form λ1+λ2+· · ·+λs,
such that 1 can not occur as a non-overlined part, and where λj −λj+k−1 ≥ 1 if λj is overlined
and λj − λj+k−1 ≥ 2 otherwise. Let Ck(n) denote the number of overpartitions of n whose
non-overlined parts are not congruent to 0,±1 modulo 2k. Then for all n ≥ 0, we have

Ck(n) = Dk(n).

In 2012, Chen, Sang and Shi [6] found an overpartition analogue of the Rogers–Ramanujan–
Gordon theorem in the general case for k ≥ i ≥ 1.

Theorem 1.7 For k ≥ i ≥ 1, let Dk,i(n) denote the number of overpartitions of n of the form
λ1 +λ2 + · · ·+λs, such that 1 can occur as a non-overlined part at most i− 1 times, and where
λj−λj+k−1 ≥ 1 if λj is overlined and λj−λj+k−1 ≥ 2 otherwise. For k−1 ≥ i ≥ 1, let Ck,i(n)
denote the number of overpartitions of n whose non-overlined parts are not congruent to 0,±i
modulo 2k and let Ck,k(n) denote the number of overpartitions of n with parts not divisible by
k. Then for all n ≥ 0 and k ≥ i ≥ 1, we have

Ck,i(n) = Dk,i(n).

Theorem 1.5 and 1.6 are special cases of Theorem 1.7 for i = k and i = 1. The generating
function form of Theorem 1.7 is given by Chen, Sang and Shi [6].
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Theorem 1.8 For k ≥ i ≥ 1, we have

∑
N1≥N2···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

=
(−q)∞(qi, q2k−i, q2k; q2k)∞

(q)∞
. (1.3)

As an overpartition analogue of Bressoud’s theorem for the case i = 1, Corteel, Lovejoy,
and Mallet [9] obtained the following overpartition theorem.

Theorem 1.9 For k ≥ 2, let A
3
k(n) denote the number of overpartitions whose non-overlined

parts are not congruent to 0,±1 modulo 2k−1. Let B
3
k(n) denote the number of overpartitions

λ of n such that

(i) f1(λ) = 0,

(ii) fl(λ) + fl(λ) + fl+1(λ) ≤ k − 1,

(iii) if the equality in Condition (ii) is attained at l, then lfl(λ) + lfl(λ) + (l + 1)fl+1(λ) ≡
Vλ(l)(mod 2).

Then for all n ≥ 0, we have

A
3
k(n) = B

3
k(n).

In 2013, Chen, Sang and Shi [7] obtained the overpartition analogue of the Bressoud’s
theorem in the general case.

Theorem 1.10 For k− 1 ≥ i ≥ 1, let D̃k,i(n) denote the number of overpartitions of n of the
form λ = λ1 + λ2 + · · ·+ λs, such that

(i) f1(λ) ≤ i− 1,

(ii) fl(λ) + fl(λ) + fl+1(λ) ≤ k − 1,

(iii) if the equality in Condition (ii) is attained at l, then lfl(λ) + lfl(λ) + (l + 1)fl+1(λ) ≡
Vλ(l) + i− 1(mod 2).

Let C̃k,i(n) denote the number of overpartitions of n whose non-overlined parts are not congru-
ent to 0,±i modulo 2k − 1. Then for all n ≥ 0, we have

C̃k,i(n) = D̃k,i(n).

It should be noticed that A
3
k(n) and B

3
k(n) in Theorem 1.9 are C̃k,1(n) and D̃k,1(n) in

Theorem 1.10.

In this paper, we obtain the generating function formula for Theorem 1.10, which is an
Andrews–Gordon type identity for overpartitions with odd modulo.
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Theorem 1.11 For k − 1 ≥ i ≥ 1, we have

∑
N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q2; q2)Nk−1

=
(−q)∞(qi, q2k−1−i, q2k−1; q2k−1)∞

(q)∞
. (1.4)

To prove the above identity, we use the Gordon marking for overpartitions introduced in [6]
to show that the left hand side of (1.4) can be interpreted in terms of overpartitions in D̃k,i(n).

Let D̃k,i(m,n) denote the number of overpartitions enumerated by D̃k,i(n) with m parts. The

generating function of D̃k,i(m,n) is given below.

Theorem 1.12 For m,n ≥ 0 and k − 1 ≥ i ≥ 1, we have∑
m,n≥0

D̃k,i(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q2; q2)Nk−1

,

(1.5)

where assume that Nk = 0.

By setting x = 1 in (1.5), we see that the generating function for Dk,i(n) becomes the left
hand side of (1.4). On the other hand, it is clear that the generating function for Ck,i(n) equals
the right-hand side of (1.4). Hence identity (1.4) follows from Theorem 1.10.

Let T̃k,i(m,n) denote the set of overpartitions enumerated by D̃k,i(m,n). Let Ũk,i(m,n)

denote the subset of T̃k,i(m,n) in which the overpartitions with the smallest parts has an

overlined part, and let F̃k,i(m,n) denote the number of overpartitions in Ũk,i(m,n). We shall

establish a connection between D̃k,i(m,n) and F̃k,i(m,n) so that the generating function of

D̃k,i(m,n) can be expressed by the generating function of F̃k,i(m,n).

This paper is organized as follows. In Section 2, we establish a connection between
D̃k,i(m,n) and F̃k,i(m,n). In Section 3, we give the generating function formula of F̃k,i(m,n)
and to give the proof of this formula we introduce the definition of the Gordon marking of an
overpartition. In Section 4, we use the first reduction operation and the first dilation operation
to describe the first bijection for the proof of the formula of F̃k,i(m,n). In Section 5, we em-
ploy the second reduction operation and the second dilation operation on Gordon markings to
describe the second bijection for the proof of the formula of F̃k,i(m,n) and complete the proof.

2 Connection between D̃k,i(m,n) and F̃k,i(m,n)

For the purpose of computing the generating function of D̃k,i(m,n), we consider the connection

between D̃k,i(m,n) and F̃k,i(m,n). In the next section, we present a formula for F̃k,i(m,n),
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which leads to the formula for D̃k,i(m,n) as given in Theorem 1.12. The detailed proof of the

formula for F̃k,i(m,n) depends on two bijections which will be presented in Sections 4 and 5.

Recall that T̃k,i(m,n) is the set of overpartitions enumerated by D̃k,i(m,n) and Ũk,i(m,n) is

the subset of T̃k,i(m,n) in which the overpartitions with the smallest parts has an overlined part.

Let W̃k,i(m,n) = T̃k,i(m,n) \ Ũk,i(m,n). In other words, W̃k,i(m,n) is the set of overpartitions

enumerated by D̃k,i(m,n) in which none of the smallest parts is overlined. Let G̃k,i(m,n)

denote the number of overpartitions in W̃k,i(m,n). So we have

D̃k,i(m,n) = F̃k,i(m,n) + G̃k,i(m,n). (2.6)

The following theorem gives a connection between F̃k,i(m,n) and G̃k,i(m,n) which enables us

to deduce the generating function of D̃k,i(m,n) from the generating function of F̃k,i(m,n).

Theorem 2.1 For k ≥ 2 and m ≤ n, we have

G̃k,1(m,n) = F̃k,k−1(m,n−m). (2.7)

For k ≥ 3, k − 1 ≥ i ≥ 2 and m ≤ n, we have

G̃k,i(m,n) = F̃k,i−1(m,n). (2.8)

Proof. To prove (2.7), we give a bijection between W̃k,1(m,n) and Ũk,k−1(m,n −m). For an

overpartition λ in W̃k,1(m,n), there are no parts equal to 1 in λ, that is, each part is greater
than or equal to 2, so we can substract 1 from each part of λ and set one of the smallest
parts to an overlined part to obtain an overpartition λ′. We aim to show that λ′ belongs to
Ũk,k−1(m,n − m). It suffices to verify that λ′ satisfies Condition (iii) in Theorem 1.10 with
i = k − 1, namely, if

fl(λ
′) + fl(λ

′) + fl+1(λ
′) = k − 1,

then
lfl(λ

′) + lfl(λ
′) + (l + 1)fl+1(λ

′) ≡ Vλ′(l) + k − 2 (mod 2).

From the definition of the bijection it can be seen that

fl(λ
′) + fl(λ

′) + fl+1(λ
′) = k − 1,

if and only if
fl+1(λ) + fl+1(λ) + fl+2(λ) = k − 1.

Since λ is an overpartition in T̃k,1(m,n) and the equality in Condition (ii) in Theorem 1.10 is
attained at l + 1, we have

(l + 1)fl+1(λ) + (l + 1)fl+1(λ) + (l + 2)fl+2(λ) ≡ Vλ(l + 1) + 1− 1 (mod 2). (2.9)

Again, by the construction of the bijection, we see that

fl+1(λ) + fl+1(λ) = fl(λ
′) + fl(λ

′), (2.10)

fl+2(λ) = fl+1(λ
′) (2.11)
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and
Vλ(l + 1) = Vλ′(l)− 1. (2.12)

By (2.9), (2.10), (2.11) and (2.12), we find that

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) ≡ Vλ′(l) + k − 2 (mod 2).

So λ′ is an overpartition in Ũk,k−1(m,n−m).

Conversely, for an overpartition in Ũk,k−1(m,n−m), we can add 1 to each part and change

the smallest overlined part to a non-overlined part to get an overpartition in W̃k,1(m,n). So

G̃k,1(m,n) = F̃k,k−1(m,n−m) for all k ≥ 2.

For the case k− 1 ≥ i ≥ 2, there is a simple bijection between Ũk,i−1(m,n) and W̃k,i(m,n).

Let λ be an overpartition in Ũk,i−1(m,n). Switching the smallest overlined part of λ to a
non-overlined part, we get an overpartition λ′ with non-overlined smallest parts. It can be
checked that λ′ satisfies Condition (i) and Condition (ii) in the definition of D̃k,i(m,n) given
in Theorem 1.10. It remains to verify that λ′ satisfies Condition (iii). From the definition of
this bijection, the equality in Condition (ii) is attained at l in λ′ if and only if the equality in
Condition (ii) is attained at l in λ. Since λ is an overpartition in Ũk,i−1(m,n), we have

lfl(λ) + lfl(λ) + (l + 1)fl+1(λ) ≡ Vλ(l) + i− 2 (mod 2). (2.13)

From the definition of this map, it can be easily seen that

fl(λ) + fl(λ) = fl(λ
′) + fl(λ

′), (2.14)

fl+1(λ) = fl+1(λ
′) (2.15)

and
Vλ′(l) = Vλ(l)− 1. (2.16)

Combining (2.13), (2.14), (2.15) and (2.16), we get

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) ≡ Vλ′(l) + i− 2 (mod 2).

So we have shown that λ′ is an overpartition in W̃k,i(m,n).

To see that this map is a bijection, we give the inverse map. For an overpartition in
W̃k,i(m,n), one can change one of the smallest part to an overlined part to get an overpartition

belonging to Ũk,i−1(m,n). It follows that F̃k,i−1(m,n) = G̃k,i(m,n) for k ≥ 3 and k−1 ≥ i ≥ 2.
This completes the proof.

By the relation (2.7) and (2.8), we can express D̃k,i(m,n) in terms of F̃k,i(m,n).

Theorem 2.2 For k ≥ 2 and m ≤ n, we have

D̃k,1(m,n) = F̃k,1(m,n) + F̃k,k−1(m,n−m). (2.17)

For k ≥ 3, k − 1 ≥ i ≥ 2 and m ≤ n, we have

D̃k,i(m,n) = F̃k,i−1(m,n) + F̃k,i(m,n). (2.18)
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3 The generating function for F̃k,i(m,n)

In this section, we give a formula for the generating function for F̃k,i(m,n). By Theorem 2.2

we obtain a formula for the generating function for D̃k,i(m,n). We outline the proof of the

generating function formula for F̃k,i(m,n). The detailed proof relies on two bijections that will
be given in Section 4 and Section 5.

The generating function formula for F̃k,i(m,n) is stated as follows.

Theorem 3.1 For k − 1 ≥ i ≥ 1, we have∑
n,m≥0

F̃k,i(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1x

N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q2; q2)Nk−1

. (3.19)

By the generating function of F̃k,i(m,n) and Theorem 2.2, we obtain the generating function

of D̃k,i(m,n).

Proof of Theorem 1.12. Using the generating function of F̃k,i(m,n) and relation (2.18), we
find that for k − 1 ≥ i ≥ 2,∑

m,n≥0
D̃k,i(m,n)xmqn

=
∑
m,n≥0

F̃k,i(m,n)xmqn +
∑
m,n≥0

F̃k,i−1(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q2; q2)Nk−1

.

(3.20)

By relation (2.17), we find that for i = 1 and k − 1 ≥ i,∑
m,n≥0

D̃k,1(m,n)xmqn

=
∑
m,n≥0

F̃k,1(m,n)xmqn +
∑
m,n≥0

F̃k,k−1(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+N2+···+Nk−1(−q)N1−1(1 + qN2)xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q2; q2)Nk−1

.

(3.21)

Observe that formula (3.20) for i ≥ 2 and formula (3.21) for i = 1 take the same form as
(1.5) in Theorem 1.12. This completes the proof.
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To prove Theorem 3.1, we need to use the Gordon marking of an overpartition as defined
by Chen, Sang and Shi [6], which is an overpartition analogue of the Gordon marking of
an ordinary partition introduced by Kurşungöz [11]. Recall that the Gordon marking of an
overpartition λ is an assignment of positive integers, called marks, to parts of λ, subject to
certain conditions. More precisely, we assign the marks to parts in the following order

1 < 1 < 2 < 2 < · · ·

such that the marks are as small as possible subject to the following conditions:

(i) If j + 1 is not a part of λ, then all the parts j, j, and j+ 1 are assigned different integers.

(ii) If λ contains an overlined part j + 1, then the smallest mark assigned to a part j or j
can be used as the mark of j + 1 or j + 1.

For example, let

λ = (16, 13, 12, 12, 11, 10, 8, 8, 8, 7, 6, 6, 5, 5, 4, 2, 2, 1).

Then the Gordon marking of λ is

(11, 22, 23, 41, 52, 53, 61, 62, 73, 81, 82, 83, 101, 112, 121, 123, 132, 161),

where the subscripts stand for marks. The Gordon marking of λ can also be illustrated as
follows

λ =

 2 5 7 8 12

2 5 6 8 11 13

1 4 6 8 10 12 16

 3

2

1

,

where the parts in the third row are marked by 1, the parts in the second row are marked by
2, and the parts in the first row are marked by 3.

Let λ(r) denote the overpartition that consists of all r-marked parts of λ. Let Nr be the
number of r-marked parts, namely, the number of parts in λ(r), and let nr = Nr − Nr−1 for
any positive integer r. For an overpartition in Ũk,i(n), any part l and non-overlined part l + 1
occur at most a total number of k − 1 times, so there are no parts with marks greater than or
equal to k. Using the parameters N1, . . . , Nk−1 we can further classify the set Ũk,i(m,n). Let

ŨN1,N2,...,Nk−1;i(n) denote the set of overpartitions in Ũk,i(m,n) that have Nr r-marked parts

for 1 ≤ r ≤ k − 1, where N1 +N2 + · · ·+Nk−1 = m, and let P̃N1,N2,...,Nk−1;i(n) denote the set

of overpartitions in ŨN1,N2,...,Nk−1;i(n) with all the 1-marked parts overlined.

The proof of Theorem 3.1 also involves restrictions of two bijections given by Chen, Sang
and Shi [6] to subsets of ŨN1,N2,...,Nk−1;i(n) and P̃N1,N2,...,Nk−1;i(n) respectively. Let us recall
the notation used in [6]. We use Uk,i(m,n) to denote the set of overpartitions enumerated by
Dk,i(m,n) for which the smallest 1-marked part is overlined. Let UN1,N2,...,Nk−1;i(n) denote
the set of overpartitions in Uk,i(m,n) that have Nr r-marked parts for 1 ≤ r ≤ k − 1, and
let PN1,N2,...,Nk−1;i(n) denote the set of overpartitions in UN1,N2,...,Nk−1;i(n) such that the 1-
marked parts are overlined. Define QN1,N2,...,Nk−1;i(n) to be the set of overpartitions λ in
PN1,N2,...,Nk−1;i(n) satisfying the following conditions:
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(1) f1(λ) = i− 1;

(2) ft(λ) + ft(λ) + ft+1(λ) = k− 1 for any positive integer t that is smaller than the greatest
(k − 1)-marked part.

It should be noticed that ŨN1,N2,...,Nk−1;i(n) is the subset of overpartitions in UN1,N2,...,Nk−1;i(n)
that satisfy Condition (iii) in Theorem 1.10.

We also define the following sets

ŨN1,N2,...,Nk−1;i =
⋃
n≥0

ŨN1,N2,...,Nk−1;i(n),

UN1,N2,...,Nk−1;i =
⋃
n≥0

UN1,N2,...,Nk−1;i(n),

P̃N1,N2,...,Nk−1;i =
⋃
n≥0

P̃N1,N2,...,Nk−1;i(n),

PN1,N2,...,Nk−1;i =
⋃
n≥0

PN1,N2,...,Nk−1;i(n),

and
QN1,N2,...,Nk−1;i =

⋃
n≥0

QN1,N2,...,Nk−1;i(n).

From the definition of ŨN1,N2,...,Nk−1;i, for 1 ≤ i ≤ k − 1 and m ≥ 0, we have∑
n≥0

F̃k,i(m,n)qn =
∑

N1≥N2≥···≥Nk−1≥0

∑
λ∈ŨN1,N2,...,Nk−1;i

q|λ|, (3.22)

where m = N1 +N2 + · · ·+Nk−1.

The following theorem gives the generating function of ŨN1,N2,...,Nk−1;i. Theorem 3.1 can

be derived from the generating function of ŨN1,N2,...,Nk−1;i and identity (3.22). The proof of
the following theorem will be presented in Sections 4 and 5.

Theorem 3.2 For k − 1 ≥ i ≥ 1 and N1 ≥ N2 ≥ · · · ≥ Nk−1 ≥ 0, we have

∑
λ∈ŨN1,N2,...,Nk−1;i

q|λ| =
q

(N1+1)N1
2

+N2
2+···+N2

k−1+Ni+1+···+Nk−1(−q)N1−1
(q)N1−N2 · · · (q)Nk−2−Nk−1

(q2; q2)Nk−1

. (3.23)

We conclude this section with a sketch of the proof of Theorem 3.2. Let DN1 denote
the set of ordinary partitions with distinct parts such that each part is less than N1, and
let RNk−1

denote the set of ordinary partitions with at most Nk−1 parts. Let ENk−1
denote

the set of partitions with at most Nk−1 even parts. In Section 4, we show that a bijection
between UN1,N2,...,Nk−1;i and PN1,N2,...,Nk−1;i × DN1 given by Chen, Sang and Shi remains a

bijection when restricted to ŨN1,N2,...,Nk−1;i and P̃N1,N2,...,Nk−1;i × DN1 . Then we express the

generating function for ŨN1,N2,...,Nk−1;i in terms of the generating function for P̃N1,N2,...,Nk−1;i.
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In Section 5, we show that QN1,N2,...,Nk−1;i is a subset of P̃N1,N2,...,Nk−1;i. Then we restrict the
bijection between PN1,N2,...,Nk−1;i and QN1,N2,...,Nk−1;i ×RNk−1

given by Chen, Sang and Shi to

P̃N1,N2,...,Nk−1;i and Q̃N1,N2,...,Nk−1;i×ENk−1
. This enables us to compute the generating function

for P̃N1,N2,...,Nk−1;i by using the generating function for QN1,N2,...,Nk−1;i. Hence we can derive

the generating function for ŨN1,N2,...,Nk−1;i from the generating function of QN1,N2,...,Nk−1;i.

4 The first bijection for the proof of Theorem 3.2

In this section, we establish a connection between the generating function for ŨN1,N2,...,Nk−1;i

and the generating function for P̃N1,N2,...,Nk−1;i by giving a bijection between ŨN1,N2,...,Nk−1;i

and P̃N1,N2,...,Nk−1;i ×DN1 .

Theorem 4.1 For k − 1 ≥ i ≥ 1 and N1 ≥ N2 ≥ · · · ≥ Nk−1, we have∑
λ∈ŨN1,N2,...,Nk−1;i

q|λ| = (−q)N1−1
∑

α∈P̃N1,N2,...,Nk−1;i

q|α|. (4.24)

In [6], Chen, Sang and Shi introduced the first reduction operation and the first dilation
operation in order to construct a bijection between UN1,N2,··· ,Nk−1;i and PN1,N2,··· ,Nk−1;i×DN1 .

We show that this bijection induces a bijection between ŨN1,N2,...,Nk−1;i and P̃N1,N2,··· ,Nk−1;i ×
DN1 .

Let us recall the definition of the first reduction operation. Let λ = (λ1, . . . , λm) ∈
UN1,N2,...,Nk−1;i be an overpartition of n containing at least one non-overlined part with mark
1 and let as be the underlying part of λs for 1 ≤ s ≤ m. Assume that λj is the greatest
non-overlined part with mark 1. Here are two cases.

Case 1: There is a non-overlined part aj + 1 of λ but there is no overlined 1-marked part
aj + 1. First, we change the part λj to a 1-marked overlined part aj . Then we choose the part
aj + 1 with the smallest mark, say r, and replace this r-marked part aj + 1 with an r-marked
part aj . Moreover, if there is a 1-marked overlined part to the right of aj , we switch it to a
non-overlined part.

Case 2: Either there is a 1-marked overlined part aj + 1 or there are no parts with underlying
part aj + 1. In this case, we may change the part λj to a 1-marked overlined part with
underlying part aj − 1. Moreover, if there are 1-marked parts larger than aj , we switch the
overlined 1-marked part next to λj to a non-overlined part.

For example, let λ be the following overpartition in U7,6,5;1(135) 2 5 7 8 12

2 5 6 8 11 13

1 4 6 8 10 12 15

 3

2

1

.

The part 12 with mark 1 is the λj as in the description of the reduction operation, since it is
the rightmost non-overlined part with mark 1. Notice that 13 is not a 1-marked part of λ, but
13 is a 2-marked part. By the operation in Case 1, we change the 1-marked part 12 to a part

11



12, then we change the 2-marked part 13 to 12 and place it in a position with mark 2. Then
we switch 15 to 15 to get an overpartition µ in U7,6,5;1(134) 2 5 7 8 12

2 5 6 8 11 12

1 4 6 8 10 12 15

 3

2

1

.

The first reduction operation possesses the following property.

Proposition 4.2 Let λ be an overpartition in ŨN1,N2,...,Nk−1;i(n). Let λ′ be the overpartition

obtained from λ by applying the first reduction operation. Then λ′ ∈ ŨN1,N2,...,Nk−1;i(n− 1).

Proof. Let λ be an overpartition in ŨN1,N2,...,Nk−1;i(n). Applying the first reduction operation

to λ, we get an overpartition λ′ in UN1,N2,...,Nk−1;i(n− 1). To prove λ′ ∈ ŨN1,N2,...,Nk−1;i(n− 1),

it suffices to verify that λ′ satisfies Condition (iii) in the definition of D̃k,i(n) in Theorem 1.10.
To be more specific, we shall show that if

fl(λ
′) + fl(λ

′) + fl+1(λ
′) = k − 1 (4.25)

for some l, then

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) ≡ Vλ′(l) + i− 1 (mod 2). (4.26)

Suppose that λj is the greatest non-overlined part with mark 1 whose underlying part is aj .

For the first case of the reduction operation, there is a non-overlined part aj + 1 of λ but
there is no overlined 1-marked part aj + 1. In this case, one can check that λ′ satisfies Condition
(iii) for l not equal to aj − 1 or aj . So it suffices to verify that the Condition (iii) in Theorem
1.10 is satisfied for l = aj − 1 and l = aj .

For l = aj , we show that if relation (4.25) holds, then relation (4.26) also holds for l = aj .
According to the definition of the first reduction operation, we have

fl(λ
′) + fl(λ

′) = fl(λ) + fl(λ) + 1, (4.27)

and
fl+1(λ

′) = fl+1(λ)− 1. (4.28)

Under the assumption that fl(λ
′) + fl(λ

′) + fl+1(λ
′) = k− 1, from (4.27) and (4.28) we deduce

that
fl(λ) + fl(λ) + fl+1(λ) = k − 1. (4.29)

Since λ ∈ ŨN1,N2,...,Nk−1;i(n) and λ satisfies the relation (4.29) for l = aj , we have

lfl(λ) + lfl(λ) + (l + 1)fl+1(λ) ≡ i− 1 + Vλ(l) (mod 2)

for l = aj . In view of (4.27) and (4.28), we find that

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) = lfl(λ) + lfl(λ) + (l + 1)fl+1(λ)− 1.

12



Noticing that Vλ′(l) = Vλ(l) + 1, we obtain that

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) ≡ i− 1 + Vλ′(l) (mod 2).

We have proved that Condition (iii) is satisfied for l = aj , now we prove that also satisfied
for l = aj − 1.

For l = aj − 1, we show that if relation (4.25) holds, then relation (4.26) also holds for
l = aj − 1. It can be seen from the definition of the first reduction operation that

fl(λ
′) = fl(λ), (4.30)

fl(λ
′) = fl(λ) (4.31)

and
fl+1(λ

′) = fl+1(λ). (4.32)

By the above relations (4.30), (4.31) and (4.32), the assumption

fl(λ
′) + fl(λ

′) + fl+1(λ
′) = k − 1

can be rewritten as
fl(λ) + fl(λ) + fl+1(λ) = k − 1. (4.33)

Since λ ∈ ŨN1,N2,··· ,Nk−1;i(n) and λ satisfies (4.33), from the definition of ŨN1,N2,··· ,Nk−1;i(n),
we have

lfl(λ) + lfl(λ) + (l + 1)fl+1(λ) ≡ i− 1 + Vλ(l) (mod 2). (4.34)

Notice that Vλ′(l) = Vλ(l). Substituting (4.30), (4.31) and (4.32) into (4.34), we find that

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) ≡ i− 1 + Vλ′(l) (mod 2),

which implies that the Condition (iii) in Theorem 1.10 is satisfied for l = aj − 1. So we have
proved that Condition (iii) is satisfied for all integers l in λ′. Thus, λ′ is an overpartition
in ŨN1,N2,...,Nk−1;i(n − 1). This completes the proof for the first case of the first reduction
operation.

For the second case, it can be verified that λ′ also satisfies Condition (iii) in Theorem 1.10.
The proof is similar to that in the first case, and hence it is omitted.

We are now ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Based on the first reduction operation and Proposition 4.2, we give the
following bijection ϕ between ŨN1,N2,...,Nk−1;i and P̃N1,N2,...,Nk−1;i ×DN1 which is induced from
the bijection between UN1,N2,...,Nk−1;i and PN1,N2,...,Nk−1;i × DN1 obtained by Chen, Sang and
Shi in [6].

Let λ be an overpartition in ŨN1,N2,...,Nk−1;i(n). We proceed to construct an overpartition

α and an ordinary partition β such that α ∈ P̃N1,N2,...,Nk−1;i, β ∈ DN1 and |λ| = |α|+ |β|.

If there are no non-overlined 1-marked parts in λ, then λ ∈ P̃N1,N2,...,Nk−1;i, we just set
α = λ and β = ∅.
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We now consider the case when λ contains at least one non-overlined 1-marked part, say,

λ
(1)
s1 < λ

(1)
s2 < · · · < λ

(1)
st , where s1 < s2 < · · · < st. We have the following two cases.

Case 1. If the largest 1-marked part is overlined, that is, st < N1, then we get an overpartition
η in ŨN1,N2,...,Nk−1;i(n− 1) with t non-overlined 1-marked parts by applying the first reduction

operation to λ. Moreover, it can be seen that the 1-marked part to the right of λ
(1)
st in λ is

overlined. Hence η
(1)
st is an overlined part in η, but η

(1)
st+1 is a non-overlined part. It follows

that the t non-overlined 1-marked parts in η are η
(1)
s1 < η

(1)
s2 < · · · < η

(1)
st+1.

Case 2. If the largest 1-marked part is non-overlined, that is, st = N1, then we get an over-
partition η in ŨN1,N2,...,Nk−1;i(n − 1) with t − 1 non-overlined 1-marked parts by applying the
first reduction operation to λ. Moreover, the t − 1 non-overlined 1-marked parts in η are

η
(1)
s1 < η

(1)
s2 < · · · < η

(1)
st−1 .

From the above discussions, we see that applying the first reduction operation N1 − st
times to λ for the first case , we get an overpartition in ŨN1,N2,...,Nk−1;i(n−N1 + st) with t 1-
marked non-overlined parts and the largest 1-marked part is non-overlined. Applying the first
reduction operation to the resulting overpartition for the second case, we get an overpartition
in ŨN1,N2,...,Nk−1;i(n−N1 + st − 1) with t− 1 1-marked non-overlined parts.

In conclusion, to get an overpartition with t− 1 non-overlined 1-marked parts, we need to
apply the first reduction operation N1−st+1 times to λ. Similarly, to get an overpartition with
t−2 non-overlined 1-marked parts, we need to apply the first reduction operation N1−st−2 +1
times to the resulting overpartition. Hence one needs to apply the first reduction operation
N1− st−1 + 1, N1− st−2 + 1, . . ., N1− s2 + 1 and N1− s1 + 1 times to λ successively to generate
an overpartition α with no non-overlined 1-marked parts. Meanwhile, we also get an ordinary
partition β = (N1 − st−1 + 1, N1 − st−2 + 1, . . . , N1 − s1 + 1).

We define the map ϕ to be that ϕ(λ) = (α, β). One can check that α is an overpartition in
P̃N1,N2,...,Nk−1;i, β ∈ DN1 and |λ| = |α|+ |β|.

The inverse map ϕ−1 can be described based on the first dilation operation, and the details
can be found in [6]. It can be checked that ϕ−1 maps a pair (α, β) in P̃N1,N2,...,Nk−1;i × DN1

to an overpartition λ in ŨN1,N2,...,Nk−1;i. So we come to the conclusion that ϕ is a bijection

between ŨN1,N2,...,Nk−1;i and P̃N1,N2,...,Nk−1;i ×DN1 .

Let us give an example to demonstrate the above bijection. Let

λ = (14, 14, 14, 12, 11, 11, 10, 9, 7, 7, 7, 6, 5, 5, 4, 4, 3, 2, 2, 1),

which is an overpartition in Ũ7,7,6;1(148). The Gordon marking of λ is

λ =

 2 4 6 7 11 14

2 4 5 7 10 12 14

1 3 5 7 9 11 14

 3

2

1

.

There are 3 non-overlined 1-marked parts in λ and the largest 1-marked part is non-overlined.
By applying the first reduction operation for the second case to λ, we get the following over-
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partition with two non-overlined 1-marked parts

η =

 2 4 6 7 11 14

2 4 5 7 10 12 14

1 3 5 7 9 11 13

 3

2

1

.

For the above overpartition η, we have

f13(η) + f13(η) + 14f14(η) = 3.

Consequently,

13f13(η) + 13f13(η) + 14f14(η) ≡ Vη(13) + i− 1 (mod 2).

So η is an overpartition in Ũ7,7,6;1(147).

Since the largest 1-marked non-overlined part in η is 11 and there is one 1-marked part
larger than 11, one needs to use the first reduction operation twice to η to get the following
overpartition with one non-overlined 1-marked part

θ =

 2 4 6 7 11 14

2 4 5 7 10 11 13

1 3 5 7 9 11 13

 3

2

1

.

It can be checked that θ is an overpartition in Ũ7,7,6;1(145).

The largest non-overlined 1-marked part in θ is 3 and there are five 1-marked parts larger
than 3. So it requires six times of the first reduction operation in order to get the following
overpartition with no non-overlined 1-marked parts,

α =

 2 4 5 7 11 13

2 3 5 7 9 11 13

1 3 5 6 9 10 13

 3

2

1

which is an overpartition in P̃7,7,6;1(141). Meanwhile, we get a partition β = (6, 2, 1) such that
|λ| = |α|+ |β|.

Conversely, one can recover the overpartition λ ∈ Ũ7,7,6;1(148) from (α, β) via the inverse
map ϕ−1.

5 The second bijection for the proof of Theorem 3.2

In this section, we give a relation between the generating function for P̃N1,N2,...,Nk−1;i and the

generating function for QN1,N2,...,Nk−1;i by establishing a bijection between P̃N1,N2,...,Nk−1;i and
QN1,N2,...,Nk−1;i × ENk−1

.

Theorem 5.1 For k − 1 ≥ i ≥ 1 and N1 ≥ N2 ≥ · · · ≥ Nk−1 ≥ 0, we have∑
α∈P̃N1,N2,...,Nk−1;i

q|α| =
1

(q2; q2)Nk−1

∑
γ∈QN1,N2,...,Nk−1;i

q|γ|. (5.35)
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We first show that QN1,N2,...,Nk−1;i is a subset of P̃N1,N2,...,Nk−1;i. To this end, we need the

following proposition which says that for any overpartition α ∈ P̃N1,N2,...,Nk−1;i if the equality
in Condition (ii) in Theorem 1.10 is attained for integers l − 1 and l, then Condition (iii) in
Theorem 1.10 is satisfied for l if and only if it satisfied for l − 1. Recall that Vλ(l) stands for
the number of overlined parts in λ that are less than or equal to l.

Proposition 5.2 Let α be an overpartition in PN1,N2,...,Nk−1;i. Assume that

fl−1(α) + fl−1(α) + fl(α) = k − 1 (5.36)

and
fl(α) + fl(α) + fl+1(α) = k − 1. (5.37)

Then
(l − 1)fl−1(α) + (l − 1)fl−1(α) + lfl(α) ≡ Vα(l − 1) + i− 1 (mod 2) (5.38)

if and only if
lfl(α) + lfl(α) + (l + 1)fl+1(α) ≡ Vα(l) + i− 1 (mod 2). (5.39)

Proof. We consider the following two cases.

Case 1: There is an overlined part l, that is, fl(α) = 1. In this case, we have

Vα(l)− Vα(l − 1) = 1, (5.40)

Consequently, (5.38) can be rewritten as

(l − 1)fl−1(α) + (l − 1)fl−1(α) + lfl(α) + 1 ≡ Vα(l) + i− 1 (mod 2). (5.41)

To express (5.41) in the form of (5.39), it remains to show that

lfl(α) + lfl(α) + (l+ 1)fl+1(α) ≡ (l− 1)fl−1(α) + (l− 1)fl−1(α) + lfl(α) + 1 (mod 2). (5.42)

Comparing (5.36) and (5.37), we see that

fl−1(α) + fl−1(α) + fl(α) = fl(α) + fl(α) + fl+1(α). (5.43)

But fl(α) = 1, hence we get

fl−1(α) + fl−1(α) = 1 + fl+1(α).

It then follows that

lfl(α) + lfl(α) + (l + 1)fl+1(α)− [(l − 1)fl−1(α) + (l − 1)fl−1(α) + lfl(α) + 1]

= 2fl+1(α) ≡ 0 (mod 2).

This proves (5.42), so that (5.38) is equivalent to (5.39).

Case 2: There is no overlined part equal to l, that is, fl(α) = 0. In this case, we have

Vα(l) = Vα(l − 1). (5.44)
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Hence (5.39) is equivalent to

lfl(α) + lfl(α) + (l + 1)fl+1(α) ≡ Vα(l − 1) + i− 1 (mod 2). (5.45)

To prove that (5.45) is equivalent to (5.38), it suffices to show that

lfl(α) + lfl(α) + (l + 1)fl+1(α) ≡ (l − 1)fl−1(α) + (l − 1)fl−1(α) + lfl(α) (mod 2). (5.46)

Combining (5.36) and (5.37), we arrive at

fl−1(α) + fl−1(α) + fl(α) = fl(α) + fl(α) + fl+1(α),

which simplifies to
fl−1(α) + fl−1(α) = fl+1(α), (5.47)

since fl(α) = 0. By using (5.47), we get

lfl(α)+lfl(α)+(l+1)fl+1(α)−[(l−1)fl−1(α)+(l−1)fl−1(α)+lfl(α)] = 2fl+1(α) ≡ 0 (mod 2),

which leads to (5.46). This completes the proof.

We can now show that QN1,N2,...,Nk−1;i is a subset of P̃N1,N2,...,Nk−1;i.

Theorem 5.3 For k − 1 ≥ i ≥ 1 and N1 ≥ N2 ≥ · · · ≥ Nk−1 ≥ 0, we have

QN1,N2,...,Nk−1;i ⊂ P̃N1,N2,...,Nk−1;i.

Proof. Recall that P̃N1,N2,...,Nk−1;i is a set of overpartitions in which the overpartitions satisfy
the Condition (i), (ii) and (iii) in Theorem 1.10 with an additional requirement that all 1-
marked parts are overlined. The set QN1,N2,...,Nk−1;i consists of overpartitions α subject to the
following conditions:

1. Condition (i) and Condition (ii) in Theorem 1.10 hold.

2. All 1-marked parts in α are overlined.

3. f1(λ) = i− 1, for 1 ≤ l ≤ α(k−1)
Nk−1

− 1,

fl(α) + fl(α) + fl+1(α) = k − 1, (5.48)

and for l > α
(k−1)
Nk−1

,

fl(α) + fl(α) + fl+1(α) < k − 1. (5.49)

Let α be an overpartition in QN1,N2,...,Nk−1;i, we proceed to show α ∈ P̃N1,N2,...,Nk−1;i. We
shall use the conditions (5.48) and (5.49) to demonstrate that α also satisfies Condition (iii) in
Theorem 1.10.

To prove α satisfies Condition (iii) in Theorem 1.10, we need to show that for all l satisfying
(5.48), we have

lfl(α) + lfl(α) + (l + 1)fl+1(α) ≡ Vα(l) + i− 1 (mod 2). (5.50)
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By definition, (5.48) holds for 1 ≤ l < α
(k−1)
Nk−1

, but it does not hold for l > α
(k−1)
Nk−1

. As for the

case l = α
(k−1)
Nk−1

, there are two cases:
Case 1:

fl(α) + fl(α) + fl+1(α) = k − 1;

Case 2:
fl(α) + fl(α) + fl+1(α) < k − 1.

For the first case, we show that (5.50) holds for l = α
(k−1)
Nk−1

. Using Proposition 5.2, it suffices

to prove that if (5.50) holds for l = α
(k−1)
Nk−1

− 1, then it also holds for l = α
(k−1)
Nk−1

. Since (5.48)

holds for 1 ≤ l ≤ α(k−1)
Nk−1

− 1, we need to show that (5.50) holds for 1 ≤ l ≤ α(k−1)
Nk−1

− 1.

If Nk−1 = 0, there are no integers l satisfying that

fl(α) + fl(α) + fl+1(α) = k − 1.

Hence (5.50) is not required.

If Nk−1 ≥ 1, we use induction to show that (5.50) holds for 1 ≤ l ≤ α
(k−1)
Nk−1

− 1. From the

definition of QN1,N2,...,Nk−1;i, we have f1(α) = i−1, f1(α) = 1 and fl(α)+fl(α)+fl+1(α) = k−1.
It follows that f2(α) = k − i− 1 and Vα(1) = 1. Moreover, we get

f1(α) + f1(α) + 2f2(α) ≡ Vα(1) + i− 1 (mod 2),

so that (5.50) is valid for l = 1.

Assume that (5.50) holds for l with 1 ≤ l ≤ α(k−1)
Nk−1

− 2, that is,

fl(α) + fl(α) + 2fl+1(α) ≡ Vα(l) + i− 1 (mod 2), (5.51)

we aim to prove that (5.50) is satisfied for l + 1, that is,

fl+1(α) + fl+1(α) + 2fl+2(α) ≡ Vα(l + 1) + i− 1 (mod 2), (5.52)

Since α is an overpartition in QN1,N2,...,Nk−1;i, we have

fl(α) + fl(α) + fl+1(α) = k − 1

and
fl+1(α) + fl+1(α) + fl+2(α) = k − 1

for 1 ≤ l ≤ α(k−1)
Nk−1

−2. Combining the assumption (5.51) and Proposition 5.2, we obtain (5.52).
This complete the proof.

We are now ready to construct a bijection between P̃N1,N2,...,Nk−1;i and Q̃N1,N2,...,Nk−1;i ×
ENk−1

. We shall use the second reduction operation and the second dilation operation intro-
duced by Chen, Sang and Shi [6].

Let us recall the definition of the second reduction operation. Let α = (α1, . . . , αm) be
an overpartition in PN1,N2,...,Nk−1;i \QN1,N2,...,Nk−1;i. From the definition of PN1,N2,...,Nk−1;i and
QN1,N2,...,Nk−1;i, it can be seen that among the (k − 1)-marked parts in the Gordon marking
representation of α, there exists a part αj whose underlying part, denoted by t, satisfies one of
the following conditions:
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1. There are no parts with underlying part t− 1;

2. There is a part with underlying part t− 1, and f1(α) < i− 1 for t = 2,

ft−2(α) + ft−2(α) + ft−1(α) < k − 1 for t > 2.

So we may choose αj as a (k − 1)-marked part with the smallest underlying part t such that
one of the above conditions holds. Now we can define the second reduction operation on α
with respect to a selected part αj by considering the following three cases.

Case 1: αj satisfies the above Condition 1. There is an overlined part t in α. We replace t with
a 1-marked overlined part t− 1.

Case 2: αj satisfies the above Condition 2 and t = 2. Let s = f1(α) and replace the (s + 2)-
marked part 2 with an (s+ 2)-marked part 1.

Case 3: αj satisfies the above Condition 2 and t > 2. In this case, there exists an r-marked
part with underlying part t such that r ≥ 2 and

r∑
j=1

(ft−2(α
(j)) + ft−2(α

(j)) + ft−1(α
(j))) < r, (5.53)

where α(j) is the overpartition consisting of the j-marked parts of α. Assume that r is the
smallest integer for the above choice of α(j). We replace this r-marked part t with an r-marked
part t− 1.

After applying a second reduction operation to an overpartition α in P̃N1,N2,...,Nk−1;i(n), we
get an overpartition α′ in PN1,N2,...,Nk−1;i(n−1). Although α′ is not necessarily an overpartition

in P̃N1,N2,...,Nk−1;i(n − 1), as will be seen, applying the second reduction operation one more

time, we are led to an overpartition in P̃N1,N2,...,Nk−1;i(n− 2).

Proposition 5.4 Let α be an overpartition in P̃N1,N2,...,Nk−1;i(n)\QN1,N2,...,Nk−1;i(n). Applying

the second reduction operation twice to α, we get an overpartition β in P̃N1,N2,...,Nk−1;i(n− 2).

Proof. From the construction of the second reduction operation, it is easy to see that β belongs
to PN1,N2,...,Nk−1;i(n − 2). To prove that β ∈ P̃N1,N2,...,Nk−1;i(n − 2), we are required to verify
that for any integer l satisfying

fl(β) + fl(β) + fl+1(β) = k − 1, (5.54)

we have
lfl(β) + lfl(β) + (l + 1)fl+1(β) ≡ Vβ(l) + i− 1 (mod 2). (5.55)

Let
cl(β) = lfl(β) + lfl(β) + (l + 1)fl+1(β)− Vβ(l),

so that (5.55) can be rewritten as

cl(β) ≡ i− 1 (mod 2). (5.56)

19



In fact, from the construction of the Gordon marking of an overpartition, it can be seen
that (5.54) holds for l if and only if either l or l + 1 is a (k − 1)-marked part in the Gordon

marking of β. Let β
(k−1)
j be the j-th (k − 1)-marked part in β with the underlying part equal

to t, that is, β
(k−1)
j = t.

We claim that t− 1 satisfies (5.54) or t satisfies (5.54). Assume that t− 1 does not satisfy
(5.54). We aim to show that t satisfies (5.54). Note that there is a (k − 1)-marked part equal
to t in β. Since t− 1 does not satisfy (5.54), we deduce that there are no parts equal to t− 1
in β. From the construction of the Gordon marking of β, it can be seen that there are k − 1
parts equal to t in β, and hence

ft(β) + ft(β) = k − 1,

that is, t satisfies (5.54). This proves the claim.

For notational convenience, to each (k− 1)-marked part β
(k−1)
j of β we associate a number

dj(β) which is defined as follows. Let β
(k−1)
j = t. From the above claim, we see that either

t − 1 or t satisfies (5.54). If t − 1 satisfies (5.54), we set dj(β) = ct−1(β). Otherwise, we set
dj(β) = ct(β).

With the above notation, it is enough to show that for all (k − 1)-marked parts of β,

dj(β) ≡ i− 1 (mod 2), (5.57)

where j = 1, 2, . . . , Nk−1.

From the definition of β, we see that β is obtained from α by applying the second reduction
operation twice. More precisely, for fixed h, we first obtain γ by applying the second reduction

operation to α with respect to α
(k−1)
h . Then β is obtained from γ by applying the second

reduction operation with respect to γ
(k−1)
h . We now establish a connection between dj(β) and

dj(α).

We proceed to show that for j 6= h,

dj(γ) = dj(α), (5.58)

and
dh(γ) 6≡ dh(α) (mod 2). (5.59)

Since β is obtained from γ by applying the second reduction operation, as a consequence of
the above claim, we find that for j 6= h,

dj(β) = dj(γ), (5.60)

and
dh(β) 6≡ dh(γ) (mod 2). (5.61)

Combining (5.58), (5.59), (5.60), and (5.61), we deduce that

dj(β) ≡ dj(α) (mod 2), (5.62)

where j = 1, 2, . . . , Nk−1. Since α ∈ P̃N1,N2,...,Nk−1;i, we have

dj(α) ≡ i− 1 (mod 2), (5.63)
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where j = 1, 2, . . . , Nk−1. From (5.62) and (5.63), we arrive at (5.57). So we conclude that
β ∈ P̃N1,N2,...,Nk−1;i(n− 2).

Up to now, we have shown that if (5.58) and (5.59) hold, then β ∈ P̃N1,N2,...,Nk−1;i(n− 2).
It remains to show that (5.58) and (5.59) hold. From the construction of the second reduction
operation, it is easy to see that (5.58) holds. To prove (5.59), we consider the following two

cases. Suppose that α
(k−1)
h = t.

Case 1: There are no parts with underlying part t− 1 in α. In this case, t− 1 does not satisfy
(5.54), but t satisfies (5.54). From the definition of dh(α), we have

dh(α) = ct(α) = tft(α) + tft(α) + (t+ 1)ft+1(α)− Vα(t).

Furthermore, from the construction of the second reduction operation, we see that γ is obtained
from α by replacing a 1-marked t by a 1-marked t− 1. Consequently, there is a t− 1 in γ, so
that t− 1 satisfies (5.54). From the definition of dh(γ), we find that

dh(γ) = ct−1(γ) = (t− 1)ft−1(γ) + (t− 1)ft−1(γ) + tft(γ)− Vγ(t− 1).

It is obvious that ft(α) = ft(γ), ft(α) = ft−1(γ) = 1, ft−1(γ) = ft+1(α) = 0 and Vα(t) =
Vγ(t− 1). So we deduce that

dh(α) 6≡ dh(γ) (mod 2).

Case 2: There are at least one part equal to t−1 in α. In this case, t−1 satisfies (5.54). Hence

dh(α) = ct−1(α) = (t− 1)ft−1(α) + (t− 1)ft−1(α) + tft(α)− Vα(t− 1).

We consider the following two subcases.

Case 2.1: t = 2. Let s = f1(α), from the construction of the second reduction operation, we
see that γ is obtained from α by replacing (s+ 2)-marked 2 with (s+ 2)-marked 1. It follows
that

dh(γ) = c1(γ) = f1(γ) + f1(γ) + 2f2(γ)− Vγ(1).

Since f1(γ) = f1(α) + 1, f1(γ) = f1(α), f2(γ) = f2(α)− 1 and Vγ(1) = Vα(1), we deduce that

dh(γ) = c1(α)− 1 = dh(α)− 1,

which implies that
dh(α) 6≡ dh(γ) (mod 2).

Case 2.2: t > 2. Let r be the smallest integer such that there is an r-marked part equal to t in
α and

r∑
m=1

(ft−2(α
(m)) + ft−2(α

(m)) + ft−1(α
(m))) < r. (5.64)

In this case, γ is obtained from α by replacing an r-marked t with an r-marked t− 1.

If 1 ≤ r < k − 1, then t− 1 satisfies (5.54) in γ, so that

dh(γ) = ct−1(γ) = (t− 1)ft−1(γ) + (t− 1)ft−1(γ) + tft(γ)− Vγ(t− 1).
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It is easily seen that Vγ(t − 1) = Vα(t − 1), ft−1(γ) = ft−1(α) + 1, ft−1(γ) = ft−1(α) and
ft(γ) = ft(α)− 1. Thus we deduce that

dh(γ) = dh(α)− 1,

which yields
dh(α) 6≡ dh(γ) (mod 2).

If r = k − 1 and there are no parts equal to t− 2 in α, then γk−1h = t− 1 and

dh(γ) = ct−1(γ) = (t− 1)ft−1(γ) + (t− 1)ft−1(γ) + tft(γ)− Vγ(t− 1).

From the construction of γ, we have Vγ(t − 1) = Vα(t − 1), ft−1(γ) = ft−1(α) + 1, ft−1(γ) =
ft−1(α) and ft(γ) = ft(α)− 1. It follows that

dh(γ) = dh(α)− 1,

which implies that
dh(α) 6≡ dh(γ) (mod 2).

If r = k − 1 and there is at least one part equal to t− 2 in α, then γk−1h = t− 1, It follows
that t− 2 satisfies (5.54) in γ, so that

dh(γ) = ct−2(γ) = (t− 2)ft−2(γ) + (t− 2)ft−2(γ) + (t− 1)ft−1(γ)− Vγ(t− 2).

Since r = k − 1 is the smallest integer subject to condition (5.64) holds, we have

ft−2(α) + ft−2(α) + ft−1(α) = k − 2. (5.65)

On the other hand,
ft−1(α) + ft−1(α) + ft(α) = k − 1. (5.66)

Combining (5.65) and (5.66), we get

ft−1(α) + ft(α) = ft−2(α) + ft−2(α) + 1. (5.67)

Now, we have ft−2(γ) = ft−2(α) and ft−2(γ) = ft−2(α). Thus, (5.67) becomes

ft−1(α) + ft(α) = ft−2(γ) + ft−2(γ) + 1. (5.68)

By the second reduction operation, we also have

ft−1(γ) = ft−1(α) + 1 (5.69)

and
Vα(t− 1) = Vγ(t− 2) + ft−1(α). (5.70)

Combining (5.68), (5.69) and (5.70), we find that

dh(γ) = ct−2(γ)

= (t− 2)ft−2(γ) + (t− 2)ft−2(γ) + (t− 1)ft−1(γ)− Vγ(t− 2)

= (t− 2)(ft−1(α) + ft(α)− 1) + (t− 1)(ft−1(α) + 1)− (Vα(t− 1)− ft−1(α))

= tft(α) + (t− 1)ft−1(α) + (t− 1)ft−1(α)− 2ft(α)− Vα(t− 1) + 1

≡ ct−1(α) + 1 (mod 2).

Noticing that dh(α) = ct−1(α), we obtain

dh(α) 6≡ dh(γ) (mod 2),

as required.

22



For example, let α be an overpartition in P̃7,6,5;1(133) as given below.

α =

 2 5 7 8 12

2 5 6 8 11 12

1 4 6 8 10 12 14

 3

2

1

.

Choosing the 3-marked part 5 to be α
(k−1)
h , we see that it satisfies Condition 2 of the second

reduction operation and the integer r is 2. Replacing the 2-marked 5 by 2-marked 4 in α, we
get

γ =

 2 5 7 8 12

2 4 6 8 11 12

1 4 6 8 10 12 14

 3

2

1

.

This overpartition is not in P̃7,6,5;1(132) since 4f4(γ)+4f4(γ)+5f5(γ) 6≡ Vγ(4)+1−1 (mod 2).

In the above overpartition, we still apply the second reduction operation to γ with respect

to the 3-marked part 5 to be γ
(k−1)
h . It can be seen that it satisfies Condition 2 of the second

reduction operation. Clearly, 3 is the smallest mark r such that (5.53) holds. So we replace
the 3-marked part 5 with a 3-marked part 4 to form an overpartition:

β =

 2 4 7 8 12

2 4 6 8 11 12

1 4 6 8 10 12 14

 3

2

1

.

After applying the second reduction operation twice to α
(3)
2 , it can be checked that β ∈

P̃7,6,5;1(131).

Based on the second reduction operation and Proposition 5.4, we give the following bijection
ψ between P̃N1,N2,...,Nk−1;i and QN1,N2,...,Nk−1;i×ENk−1

which induces from the bijection between
PN1,N2,··· ,Nk−1;i and QN1,N2,··· ,Nk−1;i ×RNk−1

obtained by Chen, Sang and Shi in [6]. Using the
bijection ψ, we are now ready to finish the proof of Theorem 5.1.

Proof of Theorem 5.1. Let α be an overpartition in P̃N1,N2,··· ,Nk−1;i. We wish to construct a
pair of partitions (µ, δ) = ψ(α) where µ ∈ QN1,N2,...,Nk−1;i and δ ∈ ENk−1

. Assume that

α
(k−1)
1 < α

(k−1)
2 < · · · < α

(k−1)
Nk−1

are the (k − 1)-marked parts of α.

We choose the smallest integer s, such that the underlying part of α
(k−1)
s satisfies either

Condition 1 or Condition 2 in the construction of the second reduction operation. For each

j from s to Nk−1, we repeatedly apply the second reduction operation with respect to α
(k−1)
j

until the underlying part of α
(k−1)
j satisfies neither Condition 1 nor Condition 2. At last, there

are no parts in α can be applied the second reduction operation, so we get an overpartition µ ∈
QN1,N2,...,Nk−1;i. Let tj be the number of the second reduction operation that have been applied

with respect to α
(k−1)
j , we get a partition δ = (tNk−1

, tNk−1−1, . . . , ts). By the Proposition 5.4,
it can be checked that δ ∈ ENk−1

.
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We conclude this section with an example to demonstrate the above bijection. For k = 4
and i = 1, let α be an overpartition in P̃7,6,5;1(131) as given below:

α =

 2 4 7 8 12

2 4 6 8 11 12

1 4 6 8 10 12 14

 3

2

1

.

We can see that for the 3-marked 2, there are no second reduction operations can be applied,
so we choose the 3-marked 4. We apply the second reduction operation on it for two time to
obtain the following overpartition in P̃7,6,5;1(129):

α =

 2 4 7 8 12

2 3 6 8 11 12

1 3 6 8 10 12 14

 3

2

1

.

We see that one cannot apply the second reduction operation with respect to α
(3)
2 = 4, and

so we have δ = (2). Next we choose α
(3)
h to be α

(3)
3 = 7. Then we can apply the reduction

operation four times to get an overpartition α in P7,6,5;1(125) along with δ = (4, 2):

α =

 2 4 5 8 12

2 3 5 8 11 12

1 3 5 8 10 12 14

 3

2

1

.

We continue to consider α
(3)
4 = 8 as a choice of α

(3)
h . Applying the second reduction

operation four times, α becomes an overpartition in P7,6,5;1(121) as given below:

α =

 2 4 5 7 12

2 3 5 7 11 12

1 3 5 6 10 12 14

 3

2

1

.

Meanwhile, adding 4 to δ as a new part, we get δ = (4, 4, 2).

For the remaining 3-marked part 12, applying the reduction operation eight times with
respect to αj = 12, we get a partition δ = (8, 4, 4, 2) ∈ E5 and an overpartition µ ∈ Q7,6,5;1(113)
as given by

µ =

 2 4 5 7 9

2 3 5 7 8 12

1 3 5 6 8 12 14

 3

2

1

.

Finally, we see that Theorem 3.2 follows from Theorem 4.1, Theorem 5.1 and the following
generating function for QN1,...,Nk−1;i given by Chen, Sang and Shi [6]. For k ≥ 2 and 1 ≤ i ≤
k − 1, we have

∑
µ∈QN1,...,Nk−1;i

xl(µ)q|µ| =
q

(N1+1)N1
2

+N2
2+···+N2

k−1+Ni+1+···+Nk−1xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1

, (5.71)
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where l(µ) denotes the number of parts of µ.

Proof of Theorem 3.2. Combining Theorems 4.1, 5.1, and the generating function (5.71), we
obtain ∑

λ∈ŨN1,N2,...,Nk−1;i

q|λ|

=
(−q)N1−1

(q2; q2)Nk−1

∑
λ∈QN1,...,Nk−1;i

q|λ|

=
q

(N1+1)N1
2

+N2
2+···+N2

k−1+Ni+1+···+Nk−1(−q)N1−1
(q)N1−N2 · · · (q)Nk−2−Nk−1

(q2; q2)Nk−1

.

A comparison with (3.23) completes the proof.

Acknowledgments.This work was supported by the 973 Project and the National Science
Foundation of China.

References

[1] G.E. Andrews, An analytic proof of the Rogers–Ramanujan–Gordon identities, Amer. J. Math. 88
(1966) 844–846.

[2] G.E. Andrews, An analytic generalization of the Rogers–Ramanujan identities for odd moduli,
Proc. Nat. Acad. Sci. USA 71 (1974) 4082–4085.

[3] G.E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University
Press, Cambridge, 1998. Reprint of Addison-Wesley Publishing Co., 1976.

[4] D.M. Bressoud, A generalization of the Rogers–Ramanujan identities for all moduli, J. Combin.
Theory Ser. A 27 (1979) 64–68.

[5] D.M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities,
Mem. Amer. Math. Soc. 24 (1980) 1–54.

[6] W.Y.C. Chen, D.D.M. Sang and D.Y.H. Shi, The Rogers–Ramanujan–Gordon Theorem for Over-
partitions, Proc. London Math. Soc. 106 (3) (2013) 1371–1393.

[7] W.Y.C. Chen, D.D.M. Sang and D.Y.H. Shi, An Overpartition Analogue of Bressoud’s Theorem
of Rogers-Ramanujan Type, Ramanujan J., to appear.

[8] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (4) (2004) 1623–1635.

[9] S. Corteel, J. Lovejoy and O. Mallet, An extension to overpartitions of the Rogers-Ramanujan
identities for even moduli, J. Number Theory 128 (2008) 1602–1621 .

[10] B. Gordon, A combinatorial generalization of the Rogers–Ramanujan identities, Amer. J. Math.
83 (1961) 393–399.

[11] K. Kurşungöz, Parity considerations in Andrews–Gordon identities, European J. Combin. 31 (2010)
976–1000.

[12] J. Lovejoy, Gordon’s theorem for overpartitions, J. Combin. Theory Ser. A 103 (2003) 393–401.

25


