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Abstract. In 1961, Gordon found a combinatorial generalization of the Rogers—Ramanujan
identities, which has been called the Rogers—Ramanujan—Gordon theorem. In 1974, Andrews
derived an identity which can be considered as the generating function counterpart of the
Rogers—Ramanujan—Gordon theorem, and it has been called the Andrews—Gordon identity.
The Andrews—Gordon identity is an analytic generalization of the Rogers—Ramanujan identities
with odd moduli. In 1979, Bressoud obtained a Rogers—Ramanujan—Gordon type theorem and
the corresponding Andrews—Gordon type identity with even moduli. In 2004, Lovejoy proved
two overpartition analogues of two special cases of the Rogers—Ramanujan—Gordon theorem.
In 2012, Chen, Sang and Shi found the overpartition analogue of the Rogers—Ramanujan—
Gordon theorem in general cases and the corresponding Andrews-Gordon type identity with
even moduli. In 2008, Corteel, Lovejoy, and Mallet found an overpartition analogue of a
special case of Bressoud’s theorem of the Rogers—Ramanujan—Gordon type. In 2012, Chen,
Sang and Shi obtained the overpartition analogue of Bressoud’s theorem in the general case.
In this paper, we obtain an Andrew—Gordon type identity corresponding to this overpartition
theorem with odd moduli by using the Gordon marking representation of an overpartition.
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1 Introduction

In this paper, we present an Andrews—Gordon type identity for overpartition with odd moduli.
This identity can be considered as the generating function form of an overpartition analogue
of Bressoud’s theorem of the Rogers—Ramanujan—Gordon type.

Let us give an overview of some definitions. A partition A of a positive integer n is a
non-increasing sequence of positive integers Ay > --- > Ay > 0 such that n = Ay + -+ + As.



An overpartition A of a positive integer n is also a non-increasing sequence of positive integers
A1 > -+ > Ag > 0 such that n = Ay + --- + A\s and the first occurrence of each integer may
be overlined, see Corteel and Lovejoy [8]. Given a partition or an overpartition A, let f;(\)
(f7(X)) denote the number of occurrences of non-overlined (overlined) / in A. Let V)(I) denote
the number of overlined parts in A that are less than or equal to [.

We adopt the common notation in g-series as used in Andrews [3]. Let

[e.9]
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We also write
(@)n = (a59)n = (1 —a)(1 —aq)--- (1 — ag" "),

Gordon [10] found the following combinatorial generalization of the Rogers—Ramanujan
identities, which has been called the Rogers—Ramanujan—Gordon theorem, see Andrews [1].

Theorem 1.1 For k > i > 1, let By ;(n) denote the number of partitions of n of the form
A+ Ao+ A, where Aj > ANjp1, Ai — Aig2 > 2 and at most i — 1 of the \; are equal to
1. Let Ay i(n) denote the number of partitions of n into parts not congruent to 0,+i modulo
2k + 1. Then for all n > 0, we have

In 1974, Andrews [2] derived an identity which can be considered as the generating function
counterpart of the Rogers—Ramanujan—Gordon theorem. It has been called the Andrews—
Gordon identity, and it is an analytic generalization of the Rogers—Ramanujan identities with
odd moduli.

Theorem 1.2 For k > i > 1, we have

N24+ N2+ N2 +N;j++Ny_ i 2k+1—i  2k+1. , 2k+1
> g i k-1 I UL S S R I (1.1)
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Andrews showed that both sides of (1.1) satisfy the same recurrence relation with the same
initial condition. In 2009, Kursungoz [11] proved that the sum on the left-hand side of (1.1) can
be viewed as the generating function for By, ;(n) by using the Gordon markings of partitions.

Bressoud [4, 5] obtained a Rogers—Ramanujan—Gordon type theorem and the corresponding
Andrews—Gordon type identity with even moduli.

Theorem 1.3 For k > ¢ > 1, let E;“(n) denote the number of partitions of n of the form
A=A+ Ao+ -+ g, such that

(i) f1(A) <i—1,



(it) i(A) + firn(A) <k -1,
(iii) if the equality in condition (i) is attained atl, then lfi(A\)+(1+1)fiz1(A) =i—1 (mod 2).
Let gkﬂ'(n) denote the number of partitions of n whose parts are not congruent to 0, ¢ modulo

2k. Then for all n > 0, we have B B
A;m(n) = Bk’l(n)

The generating function form of the above theorem can be stated as follows.

Theorem 1.4 For k >1¢ > 1, we have

NZ4+N2+--+N2 N; o Np— i —i
Z q { NG+ +Ng _ +Nip1++Ng_1 _ (qz’q2k z’q2k;q2kz)oo (1 2)

N1>No>.>Nj_1>0 (Q)N1—N2 T (q)Nk—Q_Nk—l (q2; QZ)NkA (9)oo

In 2004, Lovejoy [12] obtained the overpartition analogues of Theorem 1.1 for i = k and
1=1.

Theorem 1.5 Let Bi(n) denote the number of overpartitions of n of the form A +Xa+- -+,
such that \j — Njrr—1 > 1 if A is overlined and \j — \j1x—1 > 2 otherwise. Let Ap(n) denote
the number of overpartitions of n into parts not divisible by k. Then for all n > 0, we have

Theorem 1.6 Let Dy(n) denote the number of overpartitions of n of the form A1 +Xo+- -+,
such that 1 can not occur as a non-overlined part, and where \j — Xj1x—1 > 1 if \; is overlined
and N\j — Njyp—1 = 2 otherwise. Let ﬁk(n) denote the number of overpartitions of n whose
non-overlined parts are not congruent to 0,£1 modulo 2k. Then for all n > 0, we have

In 2012, Chen, Sang and Shi [6] found an overpartition analogue of the Rogers—Ramanujan—
Gordon theorem in the general case for k >4 > 1.

Theorem 1.7 For k> i > 1, let Dy ;(n) denote the number of overpartitions of n of the form
A+ Ao+ + A, such that 1 can occur as a non-overlined part at most i — 1 times, and where
Aj = Njyk—1 = 1 if Nj is overlined and \j — Nj1p—1 > 2 otherwise. Fork—12>12>1, let C;(n)
denote the number of overpartitions of n whose non-overlined parts are not congruent to 0, 14
modulo 2k and let Cy, 1,(n) denote the number of overpartitions of n with parts not divisible by
k. Then for alln >0 and k > ¢ > 1, we have

Ck,i(n) = Dyi(n).

Theorem 1.5 and 1.6 are special cases of Theorem 1.7 for ¢ = k and ¢ = 1. The generating
function form of Theorem 1.7 is given by Chen, Sang and Shi [6].



Theorem 1.8 For k > i > 1, we have

Z q
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As an overpartition analogue of Bressoud’s theorem for the case i = 1, Corteel, Lovejoy,
and Mallet [9] obtained the following overpartition theorem.

Theorem 1.9 For k > 2, let Zi(n) denote the number of overpartitions whose non-overlined

parts are not congruent to 0, +1 modulo 2k — 1. Let Ei(n) denote the number of overpartitions
A of n such that

(i) f1(A) =0,
(ii) filA) + f;(A) + firr (V) <k -1,

(iii) if the equality in Condition (i) is attained at I, then Lfi(X) + 1f;(A) + (I + 1) fiz1(X) =
VA(1)(mod 2).

Then for all n > 0, we have
—3 =3
Ag(n) = By(n).

In 2013, Chen, Sang and Shi [7] obtained the overpartition analogue of the Bressoud’s
theorem in the general case.

Theorem 1.10 Fork—1>1¢>1, let lN);m(n) denote the number of overpartitions of n of the
form A= X1+ Ao+ -+ Xg, such that

(i) fiA) + fi(A) + fira(N) <k -1,

(iii) if the equality in Condition (ii) is attained at I, then 1fi(\) + 1f;(A) + (I + 1) firi(N) =
V(1) + i — 1(mod 2).

Let C~';“(n) denote the number of overpartitions of n whose non-overlined parts are not congru-
ent to 0,+% modulo 2k — 1. Then for all n > 0, we have

Ch.i(n) = Dy.(n).

It should be noticed that Zz(n) and Ei(n) in Theorem 1.9 are ékl(n) and ﬁkl(n) in
Theorem 1.10.

In this paper, we obtain the generating function formula for Theorem 1.10, which is an
Andrews—Gordon type identity for overpartitions with odd modulo.



Theorem 1.11 Fork—12>14> 1, we have

Z q
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To prove the above identity, we use the Gordon marking for overpartitions introduced in 6]
to show that the left hand side of (1.4) can be interpreted in terms of f overpartitions in Dy, i(n).
Let Dk i(m,n) denote the number of overpartitions enumerated by Dk i(n) with m parts. The
generating function of Dkﬂ(m, n) is given below.

Theorem 1.12 For m,n >0 and k—12> 1> 1, we have

Z ﬁk,i(m, n)x

m,n>0

_ T g
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(1.5)

where assume that Nj, = 0.

By setting = 1 in (1.5), we see that the generating function for Dy, ;(n) becomes the left
hand side of (1.4). On the other hand, it is clear that the generating function for Cj, ;(n) equals
the right-hand side of (1.4). Hence identity (1.4) follows from Theorem 1.10.

Let ﬁ“(m n) denote the set of overpartitions enumerated by ﬁkl(m,n) Let ﬁkz(m,n)
denote the subset of T;”(m n) in which the overpartitions with the smallest parts has an
overlined part, and let Fj, i(m, n) denote the number of overpartitions in Uy, i(m,n). We shall
establish a connection between D;“(m n) and F;“(m n) so that the generating function of
Dkﬂ(m, n) can be expressed by the generating function of Fk,z(m, n).

_ This paper is organized as follows. In Section 2, we establish a connection between
Dy, i(m,n) and Fj;(m,n). In Section 3, we give the generating function formula of Fy ;(m,n)
and to give the proof of this formula we introduce the definition of the Gordon marking of an
overpartition. In Section 4, we use the first reduction operation and the first dilation operation
to describe the first bijection for the proof of the formula of ﬁkﬂ-(m, n). In Section 5, we em-
ploy the second reduction operation and the second dilation operation on Gordon markings to
describe the second bijection for the proof of the formula of Fj, ;(m,n) and complete the proof.

2 Connection between Dy ;(m,n) and Fy;(m,n)

For the purpose of computing the generating function of l~?k7i(m, n), we consider the connection
between Dy, ;(m,n) and Fj;(m,n). In the next section, we present a formula for Fj ;(m,n),



which leads to the formula for Ekl(m, n) as given in Theorem 1.12. The detailed proof of the
formula for Fj, ;(m,n) depends on two bijections which will be presented in Sections 4 and 5.

Recall that Tkvi(m, n) is the set of overpartitions enumerated by ﬁkvi(m, n) and ﬁkz(m, n) is
the subset of T;“(m, n) in which the overpartitions with the smallest parts has an overlined part.
Let sz(m, n) = Tk’i(m, n)\ (jfm(m, n). In other words, Wm(m, n) is the set of overpartitions
enumerated by ﬁlm(m,n) in which none of the smallest parts is overlined. Let ékl(m,n)
denote the number of overpartitions in Wk,i(m, n). So we have

Dyi(m,n) = Fy.i(m,n) + Ggi(m,n). (2.6)

The following theorem gives a connection between F ki(m,n) and ékﬂ-(m, n) which enables us
to deduce the generating function of Dy, ;(m,n) from the generating function of Fy ;(m,n).

Theorem 2.1 For k > 2 and m < n, we have
Gra(m,n) = Fyp_1(m,n —m). (2.7)
Fork>3,k—1>1i>2 and m <n, we have

Gr,i(m,n) = Fyi_1(m,n). (2.8)

Proof. To prove (2.7), we give a bijection between kal(m,n) and ffhk_l(m,n —m). For an
overpartition A in kal(m, n), there are no parts equal to 1 in A, that is, each part is greater
than or equal to 2, so we can substract 1 from each part of A and set one of the smallest
parts to an overlined part to obtain an overpartition \’. We aim to show that A belongs to
ﬁhk_l(m,n —m). It suffices to verify that X satisfies Condition (iii) in Theorem 1.10 with
1 =k — 1, namely, if
fN)+ ) + fin(V) =k =1,
then
LAN) +1HN) + U+ 1) fipr (V) = V() + k=2 (mod 2).

From the definition of the bijection it can be seen that

SN+ )+ fin(N) =k =1,

if and only if
frerN) + [N + fiee (V) =k — 1.

Since A is an overpartition in 7 k.1(m,n) and the equality in Condition (ii) in Theorem 1.10 is
attained at [ + 1, we have

U+ Dfir )+ (+ D)+ (+ 2 fia) =+ D) +1-1 (mod 2).  (29)
Again, by the construction of the bijection, we see that
Sror V) + frr V) = V) + £V), (2.10)

frir2(N) = fia(X) (2.11)



and
W(l+1)=Vy(l) - 1. (2.12)

By (2.9), (2.10), (2.11) and (2.12), we find that
lfl(A/) -+ lfz()\/) + (l + 1)fl+1()\/) = V)\/(l) + k -2 (mod 2)

So X' is an overpartition in Uy ,_1(m,n —m).

Conversely, for an overpartition in ﬁkvk_l(m, n—m), we can add 1 to each part and change
the smallest overlined part to a non-overlined part to get an overpartition in Wy ;(m,n). So
Gri1(m,n) = Fyx—1(m,n —m) for all k > 2.

For the case k —1 >4 > 2, there is a simple bijection between ﬁkyi,l(m, n) and Wlﬂ(m, n).
Let X be an overpartition in ﬁm_l(m,n). Switching the smallest overlined part of A to a
non-overlined part, we get an overpartition \' with non-overlined smallest parts. It can be
checked that ) satisfies Condition (i) and Condition (ii) in the definition of l~)k7i(m,n) given
in Theorem 1.10. It remains to verify that \’ satisfies Condition (iii). From the definition of
this bijection, the equality in Condition (ii) is attained at [ in X if and only if the equality in
Condition (ii) is attained at [ in A. Since A is an overpartition in ﬁm_l(m, n), we have

LAY + 160 + 1+ D) fin(N) = Vi) +i—2  (mod 2). (2.13)

From the definition of this map, it can be easily seen that

S+ 0 = V) + f(N), (2.14)
frii(N) = fipr(N) (2.15)

and
V(1) = a(l) — 1. (2.16)

Combining (2.13), (2.14), (2.15) and (2.16), we get
lfl()\/) + lfi()\/) + (l + 1)fl+1()\/) = V)\/(Z) +1—2 (mod 2).

So we have shown that )\ is an overpartition in W;“(m, n).

__ To see that this map is a bijection, we give the inverse map. For an overpartition in
W,i(m,n), one can change one of the smallest part to an overlined part to get an overpartition

belonging to Uy, ;—1(m,n). It follows that ﬁk,i,l(m, n) = é;“(m, n)fork>3and k—1>1i> 2.
This completes the proof. |

By the relation (2.7) and (2.8), we can express Ekﬂ-(m, n) in terms of ﬁ’kz(m, n).

Theorem 2.2 For k > 2 and m <n, we have
ﬁkyl(m, n) = va(m, n) + ﬁk,k,l(m, n—m). (2.17)
Fork>3,k—12>1i>2 and m <n, we have

ﬁk,i(ma n) = ﬁk,i—l(ma n) + ﬁk,i(mv n) (218)



3 The generating function for F;(m,n)

In this section, we give a formula for the generating function for f;“(m, n). By Theorem 2.2
we obtain a formula for the generating function for Dy ;(m,n). We outline the proof of the

generating function formula for F ki(m,n). The detailed proof relies on two bijections that will
be given in Section 4 and Section 5.

The generating function formula for ﬁm(m, n) is stated as follows.
Theorem 3.1 For k—1>1i>1, we have

Z Fyi(m,n)z™q"

n,m>0

_ Z q Q)Nrw

N1 >No>- >Ny 130 (@Ny—Ny - (q)Nk727Nk71(q2; q2)Nk—1

7(N1+21)N1 +NZ+-+NZ_ +Niy1++Ng_1 (— Ni+-+Ng_1

(3.19)

By the generating function of Em(m, n) and Theorem 2.2, we obtain the generating function
of Dy i(m,n).

Proof of Theorem 1.12. Using the generating function of ﬁkl(m, n) and relation (2.18), we
find that for k —1 > ¢ > 2,

Z lN)kﬂ-(m, n)x™q"

m,n>0
= Z ﬁkﬂ-(m,n)xmq"—i— Z ]?’M_l(m,n)xmq"

m,n>0 m,n>0

— > a4

N1>N32>-->Ng_120

N{+DN
M+ DN 1+ ) 1+N22+"'+N13_1+Ni+1+"'+Nk71(_ (1+ qu)xN1+"'+Nk—1

q)N; -1
(q)N1—N2 T (q)Nk—Q_Nk—l(qQ; qQ)Nk:—l

(3.20)

By relation (2.17), we find that for i =1 and k — 1 > 4,

Z Dy.1(m, n)z™q"

m,n>0
= Z ﬁkyl(m,n):rmq"+ Z ﬁkyk,l(m,n)xmq"
m,n>0 m,n>0
B Z QM+N22+~~~+N,f,1+N2+"~+Nk_1(_q)Nl_l(l+qN2)$N1+~-+Nk71
Ni>Np>->Nj 120 (Dna- = (Do N1 (%5 6% Ny

(3.21)

Observe that formula (3.20) for i > 2 and formula (3.21) for ¢ = 1 take the same form as
(1.5) in Theorem 1.12. This completes the proof. 1



To prove Theorem 3.1, we need to use the Gordon marking of an overpartition as defined
by Chen, Sang and Shi [6], which is an overpartition analogue of the Gordon marking of
an ordinary partition introduced by Kursungdz [11]. Recall that the Gordon marking of an
overpartition A is an assignment of positive integers, called marks, to parts of A, subject to
certain conditions. More precisely, we assign the marks to parts in the following order

I<l<2<2<--
such that the marks are as small as possible subject to the following conditions:

(i) If 7 + 1 is not a part of A, then all the parts j, j, and j+ 1 are assigned different integers.

(ii) If A contains an overlined part j + 1, then the smallest mark assigned to a part j or j
can be used as the mark of j +1 or j + 1.

For example, let
A= (16,13,12,12,11,10,8,8,8,7,6,6,5,5,4,2,2,1).
Then the Gordon marking of A is
(11, 29,23, 41, 59, 53,61, 62, 73, 81, 82,83, 101, 115, 127, 123, 135, 161),

where the subscripts stand for marks. The Gordon marking of A can also be illustrated as
follows

2 b} 78 12 3
A= 2 5 6 8 11 13 2,
1 4 6 8 10 12 16| 1

where the parts in the third row are marked by 1, the parts in the second row are marked by
2, and the parts in the first row are marked by 3.

Let A(") denote the overpartition that consists of all r-marked parts of A\. Let N, be the
number of r-marked parts, namely, the number of parts in A7) and let n, = N, — N,_; for
any positive integer r. For an overpartition in ﬁ;“(n), any part [ and non-overlined part [ + 1
occur at most a total number of £ — 1 times, so there are no parts with marks greater than or
equal to k. Using the parameters NVy,..., Ny_1; we can further classify the set ﬁk,i(m, n). Let
6N17N27,..,Nk71;i(n) denote the set of overpartitions in ﬁkl(m,n) that have N, r-marked parts
for 1 <r <k-—1, where Ny + No+ -+ + Np_1 = m, and let ISNLNQW.’N,%W-(n) denote the set
of overpartitions in U Ni,Na,....N,_q:i(n) with all the 1-marked parts overlined.

The proof of Theorem 3.1 also involves restrictions of two bijections given by Chen, Sang
and Shi [6] to subsets of Un, n,... N :i(n) and Py, N, N,_,;i(n) respectively. Let us recall
the notation used in [6]. We use Uy ;(m,n) to denote the set of overpartitions enumerated by
Dy, i(m,n) for which the smallest 1-marked part is overlined. Let Un, n,,. n, ,:i(n) denote
the set of overpartitions in Uy ;(m,n) that have N, r-marked parts for 1 < r < k — 1, and
let P, N,,. N, ,:i(n) denote the set of overpartitions in Un, n,,.. N, ;:i(n) such that the 1-
marked parts are overlined. Define Qn, n,,.. N, ,:i(n) to be the set of overpartitions A in
PN, N,,.. N, _,:i(n) satisfying the following conditions:



(1) Q) =i-1;

(2) fr(A) + fz(A) + fe41(X) = k —1 for any positive integer ¢ that is smaller than the greatest
(k — 1)-marked part.

It should be noticed that ﬁNl,N%,_,Nk_l;i(n) is the subset of overpartitions in Uy, n,,...~N,_,:i(7)
that satisfy Condition (iii) in Theorem 1.10.

We also define the following sets
UNy N N1t = | UMy NNy (1),
n>0

UNi,Na,....No_15i = U UNy Naye Ny 151 (1),
n>0

PNy Nay Ny 150 = U PNy Ngyo Ny _13i(R),
n>0

PNy Voo N = | PyNo sy 1),
n>0

and

QN Vo, Ny 1 = | QNN i)

n>0

From the definition of ﬁNl,Ng,...,Nk_l;h for 1 <i<k—1andm >0, we have

Zﬁkﬂ-(m,n)q” = Z Z qu (3.22)

n>0 N12N22+2Nk-120 xelp, N,

where m = N1+ No + -+ - + Np_1.

The following theorem gives the generating function of ﬁNl, Na,..,Ny_q:i- Theorem 3.1 can

be derived from the generating function of (~]N1,N27“.7Nk71;,' and identity (3.22). The proof of
the following theorem will be presented in Sections 4 and 5.

Theorem 3.2 Fork—1>i¢>1 and Ny > Ny > --- > Nip_1 > 0, we have

N QM+N§+”'+N§71+Ni+1+"'+Nk—1(7q)N171
SR R e
(Q)leNz o (Q)Nk,z—Nk,1 (q ) )Nk,1

AEUN, ,Ny,...,Nj_q5i

We conclude this section with a sketch of the proof of Theorem 3.2. Let Dy, denote
the set of ordinary partitions with distinct parts such that each part is less than Ni, and
let Ry, , denote the set of ordinary partitions with at most Nj_; parts. Let Ey, , denote
the set of partitions with at most Ni_; even parts. In Section 4, we show that a bijection
between Uy, N,,.. N, ;i and Py, Ny, Ny ;i X Dy, given by Chen, Sang and Shi remains a
bijection when restricted to ﬁNl,Nz,...,Nk,l;z‘ and ﬁNl,Ng,...,Nk,l;z' X Dpy,. Then we express the
generating function for ﬁNl,NQ,...,Nk,l;i in terms of the generating function for ]3N17N27“,7Nk71;i.

10



In Section 5, we show that Qn, n,,.. N, ;i i a subset of 13N1,N2,...,Nk_1;z‘- Then we restrict the
bijection between P, n,,.. N, ;i and QN Ny, N, i X N, , given by Chen, Sang and Shi to
]—T’NLNQ’_”,N,C_I;@- and @Nl,NQ,...7Nk_1;i X B, _,. This enables us to compute the generating function
for ]5N17N27__.7Nk_1;2~ by using the generating function for Qn, n,,.. N, ,;i- Hence we can derive
the generating function for ﬁNl,Ng,...,Nk_l;z‘ from the generating function of Qn, Ny, N, _;:i-

4 The first bijection for the proof of Theorem 3.2

In this section, we establish a connection between the generating function for U UN1,Na,., Ny
and the generating function for PN1 Na,..N._,: Dy giving a bijection between U N1,Na,....Np_1:i
and PN1,N27---,N1€—1;Z X Dny .

Theorem 4.1 Fork—1>i¢>1 and Ny > Ny > --- > Ni_1, we have

> ¢ = (=g)ni > g, (4.24)

n [6], Chen, Sang and Shi introduced the first reduction operation and the first dilation
operation in order to construct a bijection between Uy, n,.... N, ;i and Py, Ny.... Ny 150 X Dy

We show that this bijection induces a bijection between Un, n,... N, ;i and Py, Ny N,y X
Dy, .

Let us recall the definition of the first reduction operation. Let A\ = (A1,...,Apn) €
UN\,Ns,....N,_,: be an overpartition of n containing at least one non-overlined part with mark
1 and let as; be the underlying part of A\; for 1 < s < m. Assume that \; is the greatest
non-overlined part with mark 1. Here are two cases.

Case 1: There is a non-overlined part a; + 1 of A but there is no overlined 1-marked part
a; + 1. First, we change the part \; to a 1-marked overlined part @;. Then we choose the part
aj + 1 with the smallest mark, say r, and replace this r-marked part a; + 1 with an r-marked
part a;. Moreover, if there is a 1-marked overlined part to the right of @;, we switch it to a
non-overlined part.

Case 2: Either there is a 1-marked overlined part a; + 1 or there are no parts with underlying
part a; + 1. In this case, we may change the part A; to a l-marked overlined part with
underlying part a; — 1. Moreover, if there are 1-marked parts larger than a;, we switch the
overlined 1-marked part next to A\; to a non-overlined part.

For example, let A be the following overpartition in Uz 5.1(135)

2 5 7 8 12 3
2 5 6 8 11 13 2.
1 4 [ 8 10 12 15| 1

The part 12 with mark 1 is the A; as in the description of the reduction operation, since it is
the rightmost non-overlined part with mark 1. Notice that 13 is not a 1-marked part of A, but
13 is a 2-marked part. By the operation in Case 1, we change the 1-marked part 12 to a part
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12, then we change the 2-marked part 13 to 12 and place it in a position with mark 2. Then
we switch 15 to 15 to get an overpartition p in Uz g 5.1(134)

2 5 7 8 12 3
2 5 6 8 11 12 2.
1 4 6 8 10 12 15| 1

The first reduction operation possesses the following property.

Proposition 4.2 Let A be an overpartition in ﬁNl,NQ,...,Nk_l;i(n)~ Let X' be the overpartition
obtained from X\ by applying the first reduction operation. Then N € UN17N27---7Nk—1§i(n -1).

Proof. Let A be an overpartition in ﬁNl’ No,...N,_1:i(n). Applying the first reduction operation
to A\, we get an overpartition X' in Un, n,,.. N, ,:i(n—1). To prove X' € ﬁNl’NQ,,,_,Nkil;i(n —1),
it suffices to verify that A" satisfies Condition (iii) in the definition of ﬁkl(n) in Theorem 1.10.
To be more specific, we shall show that if

JN) + ) + fin (V) =k =1 (4.25)
for some [, then
LAN) +1f;N)+ ((+ D) firn(N)=Vu(l) +i—1 (mod 2). (4.26)

Suppose that A; is the greatest non-overlined part with mark 1 whose underlying part is a;.

For the first case of the reduction operation, there is a non-overlined part a; + 1 of A but
there is no overlined 1-marked part a; + 1. In this case, one can check that X" satisfies Condition
(iii) for I not equal to aj — 1 or a;. So it suffices to verify that the Condition (iii) in Theorem
1.10 is satisfied for [ = a; — 1 and | = a;.

For | = aj, we show that if relation (4.25) holds, then relation (4.26) also holds for | = a;.
According to the definition of the first reduction operation, we have

AN) + fi(N) = L0 + fih) + 1, (4.27)

and
Jror(N) = fra(h) = 1. (4.28)

Under the assumption that fi(X') + fi(X) + fiy1(N) = k—1, from (4.27) and (4.28) we deduce
that
Sl + i)+ fin(N) =k = 1. (4.29)

Since \ € ﬁNl,Nz,_..7Nk_1;i(n) and A satisfies the relation (4.29) for [ = a;, we have
LAA) +1fi(A) + (T + D) frin(AN) =i = 14+ Vi) (mod 2)
for I = a;. In view of (4.27) and (4.28), we find that

LAWY + 1) + (04 1) frpn (X)) = LA + 1) + (04 1) fren (V) — 1

12



Noticing that Vy/(I) = Vi(I) + 1, we obtain that

LAY +1N)+ (+ 1) fisr(N) =i — 14+ Vu(l) (mod 2).

We have proved that Condition (iii) is satisfied for [ = a;, now we prove that also satisfied
forl =a; — 1.

For | = a; — 1, we show that if relation (4.25) holds, then relation (4.26) also holds for
[ =a; — 1. It can be seen from the definition of the first reduction operation that

fIN) = fi(N), (4.30)
FN) = fr(N) (4.31)

and
Jrer(N) = fira (V). (4.32)

By the above relations (4.30), (4.31) and (4.32), the assumption

AN+ FN) + V) =k =1

can be rewritten as

Sl + fiA) + fiiyr(A) =k — 1. (4.33)

Since A\ € ﬁNl,NQ’...yNk_l;i(n) and A satisfies (4.33), from the definition of ﬁNl,N%...,Nk_l;i(n),
we have

LA + 10+ 0+ 1) firi(N) =i =14+ Vo(I) (mod 2). (4.34)
Notice that V) (I) = Vi(I). Substituting (4.30), (4.31) and (4.32) into (4.34), we find that

L)+ 1LEN) + 4+ D) fia (V) =i — 1+ V(1) (mod 2),

which implies that the Condition (iii) in Theorem 1.10 is satisfied for [ = a; — 1. So we have
proved that Condition (iii) is satisfied for all integers [ in X. Thus, A is an overpartition
in U Ni,Na,..N_q:i(n — 1). This completes the proof for the first case of the first reduction
operation.

For the second case, it can be verified that A" also satisfies Condition (iii) in Theorem 1.10.
The proof is similar to that in the first case, and hence it is omitted. |

We are now ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Based on the first reduction operation and Proposition 4.2, we give the
following bijection ¢ between U Ni,Na,.... N, and PNL Na,....Np_q1: X Dn, which is induced from
the bijection between Uy, n,,.. Ny ,:i and Py, Ny, N, ;i X Dn, obtained by Chen, Sang and
Shi in [6].

Let A be an overpartition in (~JN17 Na,.., Nk_l;i<”)- We proceed to construct an overpartition

o and an ordinary partition 3 such that o € Py, n, Ny_q:is B € D, and |A| = |of + |8].

-----

If there are no non-overlined 1-marked parts in A, then \ € ﬁNl,Ng,...,Nk,l;ia we just set

a=\and 8= 0.
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We now consider the case when A\ contains at least one non-overlined 1-marked part, say,
)\g) < )\g) << )\g), where s1 < s9 < --- < s¢. We have the following two cases.

Case 1. If the largest 1-marked part is overlined, that is, s; < N1, then we get an overpartition
n in UN, Ns,... Ny_y:i(n — 1) with ¢ non-overlined 1-marked parts by applying the first reduction
(1)

operation to A. Moreover, it can be seen that the 1-marked part to the right of Ag,” in A is

overlined. Hence ng ) is an overlined part in 7, but 77;111 is a non-overlined part. It follows

that the ¢ non-overlined 1-marked parts in 7 are ng) < ngi) << ngll.

Case 2. If the largest 1-marked part is non-overlined, that is, s; = Ny, then we get an over-
partition 7 in Un, N, N, _,:i(n — 1) with £ — 1 non-overlined 1-marked parts by applying the
first reduction operation to A\. Moreover, the ¢ — 1 non-overlined 1-marked parts in 7 are

ni <l <<y

From the above discussions, we see that applying the first reduction operation Ni — s;
times to X for the first case , we get an overpartition in Uy, n,,... N, q;i(n — N1+ s¢) with ¢ 1-
marked non-overlined parts and the largest 1-marked part is non-overlined. Applying the first
reduction operation to the resulting overpartition for the second case, we get an overpartition
in ﬁN17N27.,_’Nk71;7;(n — Ny + s¢ — 1) with ¢ — 1 1-marked non-overlined parts.

In conclusion, to get an overpartition with ¢ — 1 non-overlined 1-marked parts, we need to
apply the first reduction operation Ny —s;+1 times to A. Similarly, to get an overpartition with
t — 2 non-overlined 1-marked parts, we need to apply the first reduction operation N1 —s;_o+1
times to the resulting overpartition. Hence one needs to apply the first reduction operation
Ni—si1+1,Ny—so+1,..., Ny —so+1 and Ny —s1 + 1 times to A successively to generate
an overpartition o with no non-overlined 1-marked parts. Meanwhile, we also get an ordinary
partition f = (N7 — s4—1 + L, Ny —s4—o+ 1,..., Ny — s1 + 1).

We define the map ¢ to be that ¢(\) = («, 5). One can check that « is an overpartition in

PN, Ng,...Ny_15i» B € Dy, and [\ = |a| + |5].

The inverse map ¢! can be described based on the first dilation operation, and the details

can be found in [6]. It can be checked that ¢~ maps a pair (a,3) in PNy Ny, N1 X Dy
to an overpartition A in Un, n,,.. N, ,:- S0 we come to the conclusion that ¢ is a bijection
between Uny,N,,..,Nj_y5i @0 PNy Ny, Ny X Divy - u

Let us give an example to demonstrate the above bijection. Let
A= (14,14,14,12,11,11,10,9,7,7,7,6,5,5,4,4,3,2,2,1),

which is an overpartition in ﬁ777,6;1(148). The Gordon marking of A is

2 4 6 7 11 14( 3
A= 2 4 5 7 10 12 14| 2.
1 3 5 7 9 11 1411

There are 3 non-overlined 1-marked parts in A and the largest 1-marked part is non-overlined.
By applying the first reduction operation for the second case to A, we get the following over-
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partition with two non-overlined 1-marked parts

2 4 6 7 11 141 3
n= 2 45 7 10 12 141 2.
1 3 5 7 9 11 13 1

For the above overpartition n, we have

fis(m) + fis(n) + 14 fia(n) = 3.
Consequently,
13frz(n) + 13f13(n) + 14 f14(n) = V;(13) +i—1  (mod 2).
So 7 is an overpartition in 57,7,6;1(147).

Since the largest 1-marked non-overlined part in n is 11 and there is one 1-marked part
larger than 11, one needs to use the first reduction operation twice to n to get the following
overpartition with one non-overlined 1-marked part

2 4 6 7 11 14 3
0= 2 4 5 7 10 11 13
1 3 5 79 11 13

It can be checked that € is an overpartition in (7777,6;1(145).

The largest non-overlined 1-marked part in 6 is 3 and there are five 1-marked parts larger
than 3. So it requires six times of the first reduction operation in order to get the following
overpartition with no non-overlined 1-marked parts,

2 4 5 7 11 13 3
o= 2 3 5 7 9 11 13 2
1 3 56 9 10 13

which is an overpartition in ﬁ7,776;1(141). Meanwhile, we get a partition 8 = (6,2, 1) such that
Al = lal + 18]

Conversely, one can recover the overpartition A € ﬁ7,776;1(148) from (o, B) via the inverse

map L.

5 The second bijection for the proof of Theorem 3.2

In this section, we give a relation between the generating function for Py, n,... n, ,: and the
generating function for Qn, n,,..,n,_,; Dy establishing a bijection between Py, .. n, ,:; and
QNI:Nankafl?i X ENkfl'

Theorem 5.1 Fork—1>¢>1 and Ny > Ny > --- > Np_1 > 0, we have

> ¢ = EOn 21)N“ > g (5.35)

YEQN,No,...,Nj,_ 15
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We first show that Qn, ;... N, ;i is a subset of ﬁNl,Nz,...,Nk_l;z‘- To this end, we need the

following proposition which says that for any overpartition o € Py, n,.... n,_,:i if the equality
in Condition (ii) in Theorem 1.10 is attained for integers [ — 1 and [, then Condition (iii) in
Theorem 1.10 is satisfied for [ if and only if it satisfied for [ — 1. Recall that V() stands for

the number of overlined parts in A that are less than or equal to [.

Proposition 5.2 Let o be an overpartition in Py, N,.. N, - Assume that

fici(a) + fi=(a) + fila) =k — 1
and
fila) + fj(Oé) + fir1(a) =k — 1.

Then
(=1 fimi(a) + (1 =1)fi=(a) +1fi(a) =Va(l=1)+i—1 (mod 2)

if and only if
lfila) +1fi(a) + (I +1) fiza(a) =Vo(l) +i—1 (mod 2).

Proof. We consider the following two cases.
Case 1: There is an overlined part [, that is, fi(a) = 1. In this case, we have
Va(l) = Vo(l—1) =1,

Consequently, (5.38) can be rewritten as

(=Dficr(a) + (1 =1) fix(a) +1file) + 1=V (1) +i—1 (mod 2).

To express (5.41) in the form of (5.39), it remains to show that

Lile) +1fi(e) + (1 +1) fira (@) = (1= 1) fimr (o) + (1 = 1) fizg (@) + 1fi(@) + 1 (mod 2).

Comparing (5.36) and (5.37), we see that
fici(a) + fi(a) + file) = fila) + fi(a) + fip1(a).
But f;(a) = 1, hence we get

fl_l(a) + fm(a) =1+ fl+1(0¢).

It then follows that

Uila) +1fi(e) + (1 + 1) fipa(e) = [(0 = 1) fier (@) + (1 = 1) f= (@) + 1fi(a) +1]

=2f1+1(a) =0 (mod 2).

This proves (5.42), so that (5.38) is equivalent to (5.39).

Case 2: There is no overlined part equal to [, that is, f;(cr) = 0. In this case, we have

Va(l) = Va(l - 1)'
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Hence (5.39) is equivalent to
L) + 1 (@) + (L + ) fipa(@) = Va(l — 1) 4 i1 (mod 2). (5.45)
To prove that (5.45) is equivalent to (5.38), it suffices to show that
Uila) +1fi(e) + (1 + 1) fipa(e) = (= 1) fimr(a) + (I = 1) fizg(a) + 1fi(@)  (mod 2). (5.46)
Combining (5.36) and (5.37), we arrive at
fim1(a) + fi=(a) + fila) = fila) + fila) + fiy1(a),

which simplifies to
fiea(a) + fig(a) = fira(a), (5.47)
since f;(a) = 0. By using (5.47), we get

Li(e) +1fi(a)+(141) fipa (@) = [(1=1) ficr (@) + (I =1) fizg (@) +1fi(a)] = 2fi41(e) =0 (mod 2),

which leads to (5.46). This completes the proof. 1

Theorem 5.3 Fork—1>i¢>1 and Ny > Ny > --- > Nj_1 > 0, we have

QN1,N27~~-,N1€71;1' - PN17N27-~~:Nk71§i'

Proof. Recall that IBNh Na,..,N,_,: 18 a set of overpartitions in which the overpartitions satisfy
the Condition (i), (ii) and (iii) in Theorem 1.10 with an additional requirement that all 1-
marked parts are overlined. The set Qn, N,,... N, ;i consists of overpartitions a subject to the
following conditions:

1. Condition (i) and Condition (ii) in Theorem 1.10 hold.

2. All 1-marked parts in « are overlined.

3. AN =i—1for1<l<al V1,
file) + fi(a) + firi(a) =k -1, (5.48)
and for [ > agl\;’;ll),
fila) + fi(@) + fiya(a) <k —1. (5.49)

-----

shall use the conditions (5.48) and (5.49) to demonstrate that « also satisfies Condition (iii) in
Theorem 1.10.

To prove « satisfies Condition (iii) in Theorem 1.10, we need to show that for all [ satisfying
(5.48), we have

i) + 1) + (1 + 1) fipa(@) = Va() +i—1 (mod 2). (5.50)

17



By definition, (5.48) holds for 1 <[ < 045\, Y , but it does not hold for [ > a( ). As for the
(k

-1
case | = « Ni_ ) , there are two cases:
Case 1:

file) + fila) + fir1(e) =k — 1;
Case 2:
fila) + fi(@) + fiya(a) <k —1.
For the first case, we show that (5.50) holds for [ = 045\];]:_11). Using Proposition 5.2, it suffices
to prove that if (5.50) holds for I = afy ") — 1, then it also holds for I = "), Since (5.48)
holds for 1 <1 < 0‘5\] b_ 1, we need to show that (5.50) holds for 1 <1 < ag\, 7) -1

If Ni_1 = 0, there are no integers [ satisfying that
fl(a) + fz(a) + fl+1(Oé) =k-—1.
Hence (5.50) is not required.

If Ni_1 > 1, we use induction to show that (5.50) holds for 1 <[ < ag\, 7) 1. From the

definition of Qn, N,,..., Ny, _1:i, We have fi(a) = i—1, fi(a) = 1and fi(a)+ fi(a)+ fiy1(a) = k—1.
It follows that fo(a) =k —i —1 and V,(1) = 1. Moreover, we get

fila) + fr(a) +2fo(a) = Vo(l) +i—1 (mod 2),
so that (5.50) is valid for [ = 1.

Assume that (5.50) holds for [ with 1 <1 < ag\]fk_}l) — 2, that is,

fila) + fi(a) + 2fip1(a) = Vo(l) +i—1 (mod 2), (5.51)
we aim to prove that (5.50) is satisfied for [ + 1, that is,
firi(@) + frg(a) + 2fipe(a) = Vol +1) +i—1  (mod 2), (5.52)

Since « is an overpartition in Qn, N,,.. . N, i, We have

fl(a) + fi(Ck) -+ le(a) =k—-1
and
Jra(a) + frg(a) + frpa(a) =k =1

for1 <1< ag\, B V_o, Combining the assumption (5.51) and Proposition 5.2, we obtain (5.52).
This complete the proof. |

We are now ready to construct a bijection between JSNl,NQ,.,.,Nk_l;i and @N17N27-~-7Nk—1§i X
En, ,. We shall use the second reduction operation and the second dilation operation intro-
duced by Chen, Sang and Shi [6].

Let us recall the definition of the second reduction operation. Let o« = (aq,...,q;) be
an overpartition in Py, Ny, N, 1:i \ @N1,Na,... N, _:i- From the definition of Py, n,,.. N, ,: and
QN ,No,...Ny_:i> it can be seen that among the (k — 1)-marked parts in the Gordon marking
representation of «, there exists a part o; whose underlying part, denoted by ¢, satisfies one of
the following conditions:
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1. There are no parts with underlying part ¢t — 1;

2. There is a part with underlying part ¢ — 1, and fi(a) <i—1 for t = 2,

ft_Q(Oé) + ft_ﬁ(a) + ft_l(Oé) <k-—1fort>2.

So we may choose a; as a (k — 1)-marked part with the smallest underlying part ¢ such that
one of the above conditions holds. Now we can define the second reduction operation on «
with respect to a selected part a; by considering the following three cases.

Case 1: «; satisfies the above Condition 1. There is an overlined part ¢ in «. We replace ¢ with
a 1-marked overlined part ¢ — 1.

Case 2: «; satisfies the above Condition 2 and ¢t = 2. Let s = fi(a) and replace the (s + 2)-
marked part 2 with an (s 4 2)-marked part 1.

Case 3: «; satisfies the above Condition 2 and ¢ > 2. In this case, there exists an r-marked
part with underlying part ¢ such that » > 2 and

T

D (fra(@V) + frg(@D) + fi1(aV))) <1, (5.53)

=1

where a9) is the overpartition consisting of the j-marked parts of . Assume that r is the
smallest integer for the above choice of a!?). We replace this r-marked part ¢ with an r-marked
part ¢t — 1.

After applying a second reduction operation to an overpartition « in ﬁNl, Na,...Nj_q:i(n), we
get an overpartition o/ in Pn, Ny....Ny_y:i(n—1). Although o/ is not necessarily an overpartition

in ﬁNl,Ng,...,Nk,l;z‘(n — 1), as will be seen, applying the second reduction operation one more

time, we are led to an overpartition in Py, n,,.. N, ;:i(n — 2).

Proposition 5.4 Let o be an overpartition in ﬁNl’NQ,__’Nk_I;i(n)\QN17N2,,_.7Nk_1;i(n). Applying
the second reduction operation twice to o, we get an overpartition 3 in PNl,NQ,A..,Nk_l;z‘(n —2).

Proof. From the construction of the second reduction operation, it is easy to see that 3 belongs
to PNy .Ny,...N,,_y:i(n — 2). To prove that 8 € Py, N,,. N, _,:i(n — 2), we are required to verify
that for any integer ! satisfying

Ji(B) + f1(B) + fiya(B) = k — 1, (5.54)

we have
LR(B) + Lfi(8) + (L+ 1) fisa (B) = Va(l) +i— 1 (mod 2). (5.55)

Let
a(B) =1i(B8) + Lf(B) + (L + 1) fisa(B) — Va(0),

so that (5.55) can be rewritten as

aq(f)=i—1 (mod 2). (5.56)
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In fact, from the construction of the Gordon marking of an overpartition, it can be seen
that (5.54) holds for [ if and only if either [ or [ + 1 is a (k — 1)-marked part in the Gordon

marking of 5. Let ﬁ§k_1) be the j-th (k — 1)-marked part in 8 with the underlying part equal
to ¢, that is, 8" =1t.

We claim that ¢ — 1 satisfies (5.54) or ¢ satisfies (5.54). Assume that ¢ — 1 does not satisfy
(5.54). We aim to show that ¢ satisfies (5.54). Note that there is a (k — 1)-marked part equal
to t in 5. Since t — 1 does not satisfy (5.54), we deduce that there are no parts equal to t — 1

in 8. From the construction of the Gordon marking of 3, it can be seen that there are k — 1
parts equal to t in 3, and hence

fe(B) + fi(B) =k — 1,
that is, ¢ satisfies (5.54). This proves the claim.

For notational convenience, to each (k — 1)-marked part ﬂ](-k_l) of B we associate a number
d;() which is defined as follows. Let Bj(-k_l) = t. From the above claim, we see that either
t — 1 or ¢ satisfies (5.54). If ¢t — 1 satisfies (5.54), we set d;(8) = ¢;—1(B). Otherwise, we set
d;j(8) = ci(B).

With the above notation, it is enough to show that for all (k — 1)-marked parts of S,

dj(B)=i—1 (mod 2), (5.57)
where 7 =1,2,..., Np_1.

From the definition of 3, we see that (3 is obtained from « by applying the second reduction
operation twice. More precisely, for fixed h, we first obtain v by applying the second reduction

ﬁfc_l). Then [ is obtained from v by applying the second

reduction operation with respect to ’y,(Lk_l). We now establish a connection between d;(3) and
dj(a).

We proceed to show that for j # h,

dj(7) = dj(), (5.58)

operation to a with respect to «

and
dp(7) # dp() (mod 2). (5.59)

Since [ is obtained from v by applying the second reduction operation, as a consequence of
the above claim, we find that for j # h,

d;(B) = d;j(7), (5.60)
and
dn(B) # dn(y) (mod 2). (5.61)
Combining (5.58), (5.59), (5.60), and (5.61), we deduce that
4;(8) = dj(a) (mod 2) (5.62)
where j =1,2,..., Ni_1. Since a € ﬁNl,NQ,...,Nk,l;ia we have
di(e) =i—1 (mod 2), (5.63)
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where j = 1,2,..., Ny_1. From (5.62) and (5.63), we arrive at (5.57). So we conclude that
B e PN1,N2:--~7N/¢71§2'(” - 2)'

Up to now, we have shown that if (5.58) and (5.59) hold, then 5 € ]5N17N27_._7Nk_1;i(n —2).
It remains to show that (5.58) and (5.59) hold. From the construction of the second reduction

operation, it is easy to see that (5.58) holds. To prove (5.59), we consider the following two

cases. Suppose that ozékil) =t.

Case 1: There are no parts with underlying part ¢ — 1 in «. In this case, t — 1 does not satisfy
(5.54), but ¢ satisfies (5.54). From the definition of dj(«), we have

dp(a) = ci(a) = tfi(a) + tfz(a) + (t+ 1) fir1(a) — Va(t).

Furthermore, from the construction of the second reduction operation, we see that v is obtained
from « by replacing a 1-marked ¢ by a 1-marked ¢ — 1. Consequently, there is a £ — 1 in ~, so
that ¢ — 1 satisfies (5.54). From the definition of dj(7y), we find that

dn(7) = c—1(7) = (t = 1) fica(v) + (¢ = 1) fi=x(v) + tfily) — V5t = 1).

It is obvious that fi(a) = fi(7), fila) = fizx(7) = 1, fie1(7) = fier(@) = 0 and Vo (t) =
Vy(t —1). So we deduce that

dn(a) # dn(y)  (mod 2).

Case 2: There are at least one part equal to t —1 in «v. In this case, t — 1 satisfies (5.54). Hence

dp(a) = c—1(o) = (t = 1) fimi(a) + (t — 1) fi=x(a) + tfi(a) — Vo (t = 1).
We consider the following two subcases.

Case 2.1: t = 2. Let s = fi(a), from the construction of the second reduction operation, we
see that v is obtained from « by replacing (s + 2)-marked 2 with (s + 2)-marked 1. It follows
that

dn(v) = c1(y) = fi(y) + f1(7) + 2f2(7) = V5(1).
Since f1(7) = file) + 1, f7(7) = fi(a), f2(7) = f2(a) — 1 and V(1) = Vi (1), we deduce that

dp(v) = c1(a) =1 =dp(a) — 1,

which implies that
dn(a) £ dn(7)  (mod 2).

Case 2.2: t > 2. Let r be the smallest integer such that there is an r-marked part equal to t in

o and
T

S (foa(@™) + f=g(a®™) + fi1 (™)) < 1. (5.64)

m=1
In this case, v is obtained from « by replacing an r-marked ¢ with an r-marked ¢ — 1.

If 1 <r < k-1, then t — 1 satisfies (5.54) in =, so that

dn(7) = a—1(7) = (t = 1) fica(v) + (¢ = 1) fi=x(v) + thi(y) = V5t = 1).
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It is easily seen that V,(t — 1) = Vo (t — 1), fi—1(y) = fi—1(a) + 1, fizz(7) = fizz(a) and
fi(v) = fi(a) — 1. Thus we deduce that

dp(v) = dp(@) — 1,
which yields
dn(a) # dn(y) (mod 2).

If r = k — 1 and there are no parts equal to ¢t — 2 in «, then 7571 =t—1 and

dp(7) = ct—1(7) = (t = D) frm1 () + (t = 1) fr==x(v) + tfe(y) = V5 (t = 1).
From the construction of v, we have V,(t — 1) = Vo (t — 1), fi—1(y) = fic1(a) + 1, fix(7) =
fi=g(a) and fi(v) = fi(a) — 1. It follows that

dn(y) = dp(ar) — 1,
which implies that
dp(a) # dp(y)  (mod 2).

If r = k — 1 and there is at least one part equal to ¢ — 2 in «, then ’y,k;_l =t —1, It follows
that ¢ — 2 satisfies (5.54) in ~, so that

dn(7) = cr—2(7) = (t = 2) fi2(7) + (£ = 2) fi3(v) + (E = D) fea(v) = V5 (¢ = 2).

Since r = k — 1 is the smallest integer subject to condition (5.64) holds, we have

Ji—2(@) + fiz(a@) + fior(a) =k — 2. (5.65)
On the other hand,
ft_l(oz) + fg(a) + ft(Oé) =k—1. (566)
Combining (5.65) and (5.66), we get
fizi(@) + fila) = fi—2(a) + fim(a) + 1. (5.67)
Now, we have f;_o(y) = fi—2(a) and f;—(7) = fi=s(c). Thus, (5.67) becomes
fimz(@) + fila) = fia(v) + fi=z(y) + 1. (5.68)
By the second reduction operation, we also have
fie1(7) = fi1(a) +1 (5.69)
and
Valt =1) = V4(t = 2) + fi—x(a). (5.70)

Combining (5.68), (5.69) and (5.70), we find that
dn(7) = ci—2(7)

=t =2)fi2(v) + (= 2) fr=2(v) + C = D) fia(y) = V5(t = 2)
= (t = 2)(fizz(a) + frla) = 1) + (¢ = D(fi-1() +1) = (Valt = 1) = fr=(a))
=tfi(e) +(t—1)fig(a) + (t = 1) fici(a) —2fi () = Va(t —1) +1
=c¢-1(a)+1 (mod 2).

Noticing that dj(a) = ¢;—1(«), we obtain

dn(a) # dn()  (mod 2),

as required. |
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For example, let o be an overpartition in 13776,5;1(133) as given below.

2 5 78 12 3
o= 2 5 6 8 11 12 2.
1 1 6 8 10 12 141

Choosing the 3-marked part 5 to be oagk_l), we see that it satisfies Condition 2 of the second

reduction operation and the integer r is 2. Replacing the 2-marked 5 by 2-marked 4 in «a, we
get

2 5 78 12 3
v = 2 4 6 8 11 12 2.
1 4 6 8 10 12 14)1

This overpartition is not in Py g 5.1 (132) since 4f4(y) +4f7(v) +5f5(v) # Vy(4)+1—1 (mod 2).

In the above overpartition, we still apply the second reduction operation to v with respect
to the 3-marked part 5 to be 'y,(Lk_l). It can be seen that it satisfies Condition 2 of the second
reduction operation. Clearly, 3 is the smallest mark r such that (5.53) holds. So we replace
the 3-marked part 5 with a 3-marked part 4 to form an overpartition:

2 4 7 8 12 3
8= 2 4 6 8 11 12 2.
1 4 6 8 10 12 141

After applying the second reduction operation twice to agg), it can be checked that g €

Based on the second reduction operation and Proposition 5.4, we give the following bijection
1) between ﬁNl,Nan,Nkfl;i and QN, . N,,....N,_,:i X En,_, which induces from the bijection between
Pny Ny Ny _ysi @0d QNy Ny o Njo_q:i X R, obtained by Chen, Sang and Shi in [6]. Using the
bijection v, we are now ready to finish the proof of Theorem 5.1.

Proof of Theorem 5.1. Let o be an overpartition in ﬁN11N27"'7Nk—1§'L" We wish to construct a
pair of partitions (i, d) = ¢ («) where p € Qn,.N,,....N,_,;i and 6 € En, . Assume that

aikil) < ozgkfl) << ag\lftj

are the (k — 1)-marked parts of «.

We choose the smallest integer s, such that the underlying part of agk_l) satisfies either

Condition 1 or Condition 2 in the construction of the second reduction operation. For each
j from s to Np_q1, we repeatedly apply the second reduction operation with respect to ok

J
until the underlying part of ag«k*l) satisfies neither Condition 1 nor Condition 2. At last, there

are no parts in « can be applied the second reduction operation, so we get an overpartition u €

Ny No....N._ .- Let t; be the number of the second reduction operation that have been applied
154V25009dVE—1, J p pp

with respect to ag-k_l), we get a partition 0 = (tn,_,,tN,_,—1,-.-,ts). By the Proposition 5.4,

it can be checked that 6 € Ey, ;. ]
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We conclude this section with an example to demonstrate the above bijection. For k = 4
and ¢ = 1, let a be an overpartition in P;g5.1(131) as given below:

2 4 7 8 12 3
o= 2 4 6 8 11 12 2.
1 4 6 8 10 12 14)1

We can see that for the 3-marked 2, there are no second reduction operations can be applied,
so we choose the 3-marked 4. We apply the second reduction operation on it for two time to
obtain the following overpartition in Py ¢ 5.1(129):

2 4 7 8 12 3
o= 2 3 6 8 11 12 2.
1 3 6 8 10 12 14]1

We see that one cannot apply the second reduction operation with respect to ozég) =4, and

so we have § = (2). Next we choose aﬁls) to be agg) = 7. Then we can apply the reduction

operation four times to get an overpartition o in P7¢ 5.1(125) along with 6 = (4, 2):

2 4 5 8 12 3
o= 2 3 5 8 11 12 2.
1 3 5 8 10 12 141
We continue to consider Ozf) = 8 as a choice of agf). Applying the second reduction

operation four times, o becomes an overpartition in Py 5.1 (121) as given below:

2 4 5 12 3
o= 2 3 ) 7 11 12 2.
1 3 56 10 12 14)1

Meanwhile, adding 4 to ¢ as a new part, we get 6 = (4,4,2).

For the remaining 3-marked part 12, applying the reduction operation eight times with
respect to a; = 12, we get a partition 6 = (8,4,4,2) € Es5 and an overpartition 1 € Q76,5,1(113)
as given by

2 45 79 3
o= 2 3 5 7 8 12 2.
1 3 5 6 8 12 14| 1

Finally, we see that Theorem 3.2 follows from Theorem 4.1, Theorem 5.1 and the following
generating function for Qn, .. n,_,.i given by Chen, Sang and Shi [6]. For £k > 2 and 1 < i <
k — 1, we have

3 2 gt — 4

(N1+21)N1 +N22+“'+N13_1+Ni+1+'“+Nk71:CN1+"'+Nk71

(@ON1—Ny = (O Ny o—Ne s ; (5.71)
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where [(11) denotes the number of parts of p.

Proof of Theorem 3.2. Combining Theorems 4.1, 5.1, and the generating function (5.71), we

obtain
SR
ACUN ,Ny,...,Nj_q5i
(_Q)N —1 A
- (q2'q2)11\7 Z g™
’ L XeQNy, Ny yii
B qw+N22+"'+N,g_1+Ni+1+"'+Nk—1 (_Q)Nl—l
(Q)N1—N2 T (q)Nk—Q_Nk—l(q2; q2>Nk—1

A comparison with (3.23) completes the proof. [ |
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