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Abstract

Let {Pn}n≥0 denote the Catalan-Larcombe-French sequence, which naturally
came from the series expansion of the complete elliptic integral of the first kind. In
this paper, we prove the strict log-concavity of the sequence { n

√
Pn}n≥1, which was

originally conjectured by Z.W. Sun. We also obtain the strict log-concavity of the
sequence { n

√
Vn}n≥1, where {Vn}n≥0 is the Fennessey-Larcombe-French sequence

arising from the series expansion of the complete elliptic integral of the second kind.
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1 Introduction

The main purpose of this paper is to prove the log-concavity of the sequences { n
√
Pn}n≥1

and { n
√
Vn}n≥1, where {Pn}n≥0 and {Vn}n≥0, known as the Catalan-Larcombe-French

sequence and the Fennessey-Larcombe-French sequence respectively, are given by

(n+ 1)2Pn+1 = 8(3n2 + 3n+ 1)Pn − 128n2Pn−1, (1.1)

n(n+ 1)2Vn+1 = 8n(3n2 + 5n+ 1)Vn − 128(n− 1)(n+ 1)2Vn−1, (1.2)

with the initial values P0 = V0 = 1 and P1 = V1 = 8. These two sequences came naturally
from the series expansions of the complete elliptic integrals. For more information on
{Pn}n≥0 and {Vn}n≥0, see [1, 3, 4, 5, 6].

Let us first give an overview of some background. Recall that a sequence {an}n≥0 of
real numbers is said to be log-concave (resp. log-convex) if

a2n ≥ an−1an+1 (resp. a2n ≤ an−1an+1)

for all n ≥ 1, and it is strictly log-concave (resp. strictly log-convex) if the inequality is
strict. Clearly, for some integer N > 0, the positive sequence {an}n≥N is log-concave (resp.
log-convex) if and only if the sequence {an+1/an}n≥N is decreasing (resp. increasing).
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The strict log-concavity of { n
√
Pn}n≥1 was first conjectured by Sun [10], who also

conjectured that the sequences {Pn+1/Pn}n≥0 and { n
√
Pn}n≥1 are strictly increasing. In

fact, motivated by Firoozbakht’s conjecture on the strictly decreasing property of the
sequence { n

√
pn}n≥1, where pn is the n-th prime number (see [7, p.185]), Sun [10] studied

the monotonicity of many number theoretical and combinatorial sequences.

The strictly increasing property of the sequence {Pn+1/Pn}n≥0 and { n
√
Pn}n≥1 has

been confirmed by Xia and Yao [12], and independently by Zhao [14]. We would like to
point out that Zhao [14] only proved the log-convexity of {Pn}n≥0, which also implies the
monotonicity of { n

√
Pn}n≥1 by using a result due to Wang and Zhu [11].

For a positive sequence {an}n≥0 satisfying a three-term recurrence relation, Chen, Guo
and Wang [2] obtained a useful criterion to determine the log-concavity of { n

√
an}n≥N

for some positive integer N . While, their criterion does not apply to the the Catalan-
Larcombe-French sequence, namely not on Sun’s conjecture. The first main result of this
paper is as follows.

Theorem 1.1. The sequence { n
√
Pn}n≥1 is strictly log-concave, that is, for n ≥ 2,(

n
√
Pn

)2
> n−1

√
Pn−1 · n+1

√
Pn+1. (1.3)

Since the Fennessey-Larcombe-French sequence {Vn}n≥0 is closely related to the se-
quence {Pn}n≥0, we are led to study the log-behavior of { n

√
Vn}n≥1. The second main

result of this paper is as follows.

Theorem 1.2. The sequence { n
√
Vn}n≥1 is strictly log-concave, that is, for n ≥ 2,(

n
√
Vn

)2
> n−1

√
Vn−1 · n+1

√
Vn+1. (1.4)

This paper is organized as follows. In Section 2, we give a proof of Theorem 1.1 by
establishing a lower bound and an upper bound for the ratio Pn/Pn−1. The proof of
Theorem 1.2 is similar to that of Theorem 1.1, which will be given in Section 3. Finally,
we give a new proof of the monotonicity of { n

√
Pn}n≥1 by using Theorem 1.1, and obtain

the monotonicity of { n
√
Vn}n≥1 by using Theorem 1.2.

2 Proof of Theorem 1.1

In this section we aim to prove Theorem 1.1. To this end, we first establish a lower bound
and an upper bound for the ratio Pn/Pn−1 that will lead to the strict log-concavity of the
sequence { n

√
Pn}n≥1.

Lemma 2.1. For any integer n ≥ 1, let

f(n) =
16(n− 1)

n
. (2.1)
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Then for n ≥ 5, we have

f(n− 1) <
Pn

Pn−1
< f(n). (2.2)

Proof For notational convenience, let v(n) = Pn/Pn−1. We first use induction on n to
prove v(n) > f(n− 1) for n ≥ 5. By the recurrence (1.1), we have

v(n+ 1) =
8(3n2 + 3n+ 1)

(n+ 1)2
− 128n2

(n+ 1)2v(n)
, n ≥ 1, (2.3)

with the initial value v(1) = 8. Clearly, v(5) = 2152/169 > 12 = f(4). Assume that
v(n) > f(n− 1), and we proceed to prove that v(n+ 1) > f(n) for n ≥ 5. Observe that

v(n+ 1)− f(n) =
8(3n2 + 3n+ 1)

(n+ 1)2
− 128n2

(n+ 1)2v(n)
− 16(n− 1)

n

=
8(n3 + n2 + 3n+ 2)v(n)− 128n3

n(n+ 1)2v(n)
.

By the induction hypothesis, we have v(n) > f(n− 1) > 0 for n ≥ 5, therefore

v(n+ 1)− f(n) >
8(n3 + n2 + 3n+ 2)f(n− 1)− 128n3

n(n+ 1)2v(n)
=

128(n2 − 4n− 4)

(n− 1)n(n+ 1)2v(n)
> 0

for n ≥ 5, since n2 − 4n − 4 = (n + 1)(n − 5) + 1 > 0.This proves that v(n) > f(n − 1)
for n ≥ 5. Moreover, it is clear that v(n) is positive for n ≥ 1.

The inequality v(n) < f(n) for n ≥ 5 can be obtained in the same manner, so the
detailed proof is omitted here. This completes the proof. �

With the bounds given in Lemma 2.1 we are now able to prove Theorem 1.1.

Proof of Theorem 1.1 Note that for n ≥ 2, the inequality (1.3) can be rewritten as

n
√
Pn

n−1
√
Pn−1

>
n+1
√
Pn+1

n
√
Pn

,

or equivalently, (
Pn

Pn−1

)n(n+1)

> P 2
n

(
Pn+1

Pn

)n(n−1)

. (2.4)

By the recurrence (1.1), it is easy to verify that (2.4) holds for 2 ≤ n ≤ 6. We proceed
to prove that (2.4) is true for n ≥ 7. By Lemma 2.1 we have(

Pn

Pn−1

)n(n+1)

− P 2
n

(
Pn+1

Pn

)n(n−1)

>(f(n− 1))n(n+1) − P 2
n(f(n+ 1))n(n−1)
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=

(
16(n− 2)

n− 1

)n(n+1)

− P 2
n

(
16n

n+ 1

)n(n−1)

=16n(n−1)

(
162n

(
n− 2

n− 1

)n(n+1)

− P 2
n

(
n

n+ 1

)n(n−1)
)
.

It suffices to prove that

162n

(
n− 2

n− 1

)n(n+1)

− P 2
n

(
n

n+ 1

)n(n−1)

> 0,

or equivalently

P 2
n

162n
<

(
(n− 2)(n+ 1)

(n− 1)n

)n(n−1)(
n− 2

n− 1

)2n

.

Thus we only need to show that, for n ≥ 7,

Pn

16n
<

(
(n− 2)(n+ 1)

(n− 1)n

)n(n−1)
2
(
n− 2

n− 1

)n

. (2.5)

Let ln denote the term on the left hand side, and rn denote the term on the right hand
side. We claim that

(i) the sequence {ln}n≥5 is strictly decreasing, and

(ii) the sequence {rn}n≥5 is strictly increasing.

By Lemma 2.1, we see that

0 <
ln
ln−1

=
Pn/Pn−1

16
< 1

for n ≥ 5, which implies (i).

We proceed to prove (ii). Note that

rn =

(
1− 1(

n
2

))(n
2)

·
(

1− 1

n− 1

)n−1

·
(

1− 1

n− 1

)
.

The increasing property of the sequence {rn}n≥5 immediately follows from the well-known
fact that the sequence {

(
1− 1

n

)n}n≥1 is strictly increasing.

It is easy to verify that l7 < r7. Combining (i) and (ii), we get that ln < rn for n ≥ 7,
namely (2.5) holds. This completes the proof.
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3 Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2 in a similar way of that of Theorem
1.1. For this purpose, we need a lower bound and an upper bound for the ratio Vn/Vn−1.
For integer n ≥ 2, let

h(n) =
16(n3 − n2 + 1)

n3 − n2
, (3.1)

which was introduced by Yang and Zhao [13] in their study of the log-concavity of the
sequence {Vn}n≥1. They [13] showed that h(n) is a lower bound for the ratio Vn/Vn−1,
precisely,

Vn
Vn−1

> h(n), (3.2)

for n ≥ 4. We further show that h(n− 1) is an upper bound for the ratio Vn/Vn−1.

Lemma 3.1. Let h(n) be given by (3.1). Then for n ≥ 11, we have

Vn
Vn−1

< h(n− 1). (3.3)

Proof Let g(n) = Vn/Vn−1, by (1.2) it is clear that

g(n+ 1) =
8(3n2 + 5n+ 1)

(n+ 1)2
− 128(n− 1)

ng(n)
, n ≥ 1, (3.4)

with g(1) = 8. The inequality (3.3) can be proved inductively based on the recurrence
(3.4). The proof is similar to that of Lemma 2.1, and hence is omitted here. �

We proceed to prove Theorem 1.2.

Proof of Theorem 1.2 Note that for n ≥ 2, the inequality (1.4) can be rewritten as

n
√
Vn

n−1
√
Vn−1

>
n+1
√
Vn+1

n
√
Vn

,

or equivalently, (
Vn
Vn−1

)n(n+1)

> V 2
n

(
Vn+1

Vn

)n(n−1)

. (3.5)

By the recurrence (1.2), it is easy to verify that (3.5) holds for 2 ≤ n ≤ 9. We proceed
to prove that (3.5) is true for n ≥ 10. By (3.2) we have

Vn
Vn−1

> h(n),
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for n ≥ 4. By Lemma 3.1, we have

Vn+1

Vn
< h(n),

for n ≥ 10. Then for n ≥ 10, it follows that(
Vn
Vn−1

)n(n+1)

− V 2
n

(
Vn+1

Vn

)n(n−1)

> (h(n))n(n+1) − V 2
n (h(n))n(n−1)

= (h(n))n(n−1) ((h(n))n + Vn) ((h(n))n − Vn) .

Clearly, both (h(n))n(n−1) and ((h(n))n + Vn) are positive for n ≥ 10. Thus it suffices to
show that for n ≥ 10,

(h(n))n − Vn > 0. (3.6)

Note that the relation (24) in [5] gave an upper bound of Vn, that is, for n ≥ 1,

Vn < (2n+ 1)

(
2n

n

)2

. (3.7)

Sasvári [9, Corollary 1] showed that for n ≥ 1,(
2n

n

)
<

4n

√
πn

e−
1
8n

+ 1
192n3 . (3.8)

It is clear that for n ≥ 1,

0 < e−
1
8n

+ 1
192n3 < 1.

Then it follows from (3.8) that for n ≥ 1(
2n

n

)
<

4n

√
πn

. (3.9)

Combining (3.7) and (3.9), for n ≥ 1 we have

Vn <
2n+ 1

πn
16n < 16n. (3.10)

Note that for n ≥ 2

h(n) =
16(n3 − n2 + 1)

n3 − n2
> 16. (3.11)

Thus by (3.10) and (3.11), we obtain (3.6). This completes the proof.
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4 The monotonicity of { n
√
Pn}n≥1 and { n

√
Vn}n≥1

In this section, we aim to derive the monotonicity of both { n
√
Pn}n≥1 and { n

√
Vn}n≥1 from

their log-concavity obtained above. The main result of this section is as follows.

Proposition 4.1. Both { n
√
Pn}n≥1 and { n

√
Vn}n≥1 are strictly increasing.

Proof Recall that for a real sequence {an}n≥0 with positive numbers, it was shown that

lim inf
n→∞

an+1

an
≤ lim inf

n→∞
n
√
an,

and
lim sup
n→∞

n
√
an ≤ lim sup

n→∞

an+1

an
,

see Rudin [8, §3.37]. These two inequalities imply a well-known criterion, that is, if
lim
n→∞

an
an−1

= c, then lim
n→∞

n
√
an = c, where c is a real number.

Note that it was proved in [5, Eq. (30)] that

lim
n→∞

Pn

Pn−1
= lim

n→∞

Vn
Vn−1

= 16.

Then it follows that

lim
n→∞

n
√
Pn = lim

n→∞
n
√
Vn = 16.

Consequently,
lim
n→∞

n+1
√
Pn+1/

n
√
Pn = lim

n→∞
n+1
√
Vn+1/

n
√
Vn = 1.

By Theorems 1.1 and 1.2, we see that both { n+1
√
Pn+1/

n
√
Pn}n≥1 and { n+1

√
Vn+1/

n
√
Vn}n≥1

are strictly decreasing. Thus for all n ≥ 1, we have

n+1
√
Pn+1/

n
√
Pn > 1, and n+1

√
Vn+1/

n
√
Vn > 1.

This completes the proof. �

Remark. By employing a criterion due to Wang and Zhu [11, Theorem 2.1], Yang and
Zhao [13] showed that the sequence { n

√
Vn+1}n≥1 is strictly decreasing.
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