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1 Introduction

Throughout this paper, the graphs considered are simple, finite and undirected. For
terminology and notation not defined here, we refer the reader to Bondy and Murty
[2].

Let G be a graph. For a vertexv ∈ V (G), we useNG(v) to denote the set, and
dG(v) the number, of neighbors ofv in G. When there is no danger of ambiguity, we
useN(v) andd(v) instead ofNG(v) anddG(v). If H andH ′ are two subgraphs ofG,
then we setNH(H ′) = {v∈V (H) : NG(v)∩V (H ′) 6= /0}. For two verticesu,v ∈V (H),
thedistance betweenu andv in H, denoted bydH(u,v), is the length of a shortest path
connectingu andv in H. In particular, when we use the notationG to denote a graph,
then for some subgraphH of G, we setNH(v) = NG(v)∩V (H) anddH(v) = |NH(v)|
(so, if G′ is another graph defined on the same vertex setV (G) andH is a subgraph
of G′, we will not useNH(v) to denoteNG′(v)∩V (H)).

We call H an induced subgraph of G, if for every x,y ∈ V (H), xy ∈ E(G) im-
plies thatxy ∈ E(H). For a given graphS, G is calledS-free if G contains no induced
subgraph isomorphic toS. Following [8],G is calledS-o-heavy if every induced sub-
graph ofG isomorphic toS contains two nonadjacent vertices with degree sum at least
|V (G)| in G. Following [9], G is calledS-f-heavy if for every induced subgraphH i-
somorphic toS and any two verticesu,v ∈ V (H) such thatdH(u,v) = 2, there holds
max{d(u),d(v)} ≥ |V (G)|/2. Note that anS-free graph isS-o-heavy (S-f -heavy).

Theclaw is the bipartite graphK1,3. Note that a claw-f -heavy graph is also claw-
o-heavy. Further graphs that will be often considered as forbidden subgraphs are
shown in Fig. 1.
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Fig. 1. GraphsPi,C3,Zi,B,N andW .

Bedrossian [1] characterized all connected forbidden pairs for a 2-connected graph
to be hamiltonian.

Theorem 1 (Bedrossian [1])Let G be a 2-connected graph and let R and S be con-
nected graphs other than P3. Then G being R-free and S-free implies G is hamiltonian
if and only if (up to symmetry) R = K1,3 and S =C3,P4,P5,P6,Z1,Z2,B,N or W .
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Faudree and Gould [6] extended Bedrossian’s result by giving a proof of the ‘only
if ’ part based on infinite families of non-hamiltonian graphs.

Theorem 2 (Faudree and Gould [6])Let G be a 2-connected graph of order at least
10 and let R and S be connected graphs other than P3. Then G being R-free and
S-free implies G is hamiltonian if and only if (up to symmetry) R = K1,3 and S =
C3,P4,P5,P6,Z1,Z2,Z3,B,N or W.

Li et al. [8] extended Bedrossian’s result by restricting Ore’s condition to pairs
of induced subgraphs of a graph. Ning and Zhang [9] gave another extension of
Bedrossian’s theorem by restricting Ore’s condition to induced claws and Fan’s con-
dition to other induced subgraphs of a graph.

Theorem 3 (Ning and Zhang [9])Let G be a 2-connected graph and S be a con-
nected graph other than P3. Suppose that G is claw-o-heavy. Then G being S-f-heavy
implies G is hamiltonian if and only if S = P4,P5,P6,Z1,Z2,B,N or W .

Motivated by Theorems 2 and 3, Ning and Zhang [9] proposed thefollowing
problem.

Problem 1 (Ning and Zhang [9]) Is every claw-o-heavy andZ3-f -heavy graph of
order at least 10 hamiltonian?

The main goal of this paper is to give an affirmative solution to this problem. Our
answer is the following theorem, where the graphsL1 andL2 are shown in Fig. 2.

Theorem 4 Let G be a 2-connected graph. If G is claw-o-heavy and Z3-f-heavy, then
G is either hamiltonian or isomorphic to L1 or L2.
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Fig. 2. GraphsL1 andL2.

Theorem 4 extends the following two previous theorems.

Theorem 5 (Faudree et al. [7])If G is a 2-connected claw-free and Z3-free graph,
then G is either hamiltonian or isomorphic to L1 or L2.

Theorem 6 (Chen et al. [5])If G is a 2-connected claw-f-heavy and Z3-f-heavy
graph, then G is either hamiltonian or isomorphic to L1 or L2.
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We remark that there are infinite 2-connected claw-o-heavy andZ3-o-heavy graph-
s which are non-hamiltonian, see [8].

Together with Theorem 3 and Theorem 4, we can obtain the following result
which generalizes Theorem 2.

Theorem 7 Let G be a 2-connected graph of order at least 10 and S be a connected
graph other than P3. Suppose that G is claw-o-heavy. Then G being S-f-heavy implies
G is hamiltonian if and only if S = P4,P5,P6,Z1,Z2,Z3,B,N or W.

2 Preliminaries

In this section, we will list some necessary preliminaries.First, we will introduce the
closure theory of claw-o-heavy graphs proposed byČada [4], which is an extension
of the closure theory of claw-free graphs due to Ryjáček [10].

Let G be a graph of ordern. A vertexx ∈ V (G) is calledheavy if d(x) ≥ n/2;
otherwise, it is calledlight. A pair of nonadjacent vertices{x,y} ⊂ V (G) is called a
heavy pair of G if d(x)+ d(y)≥ n.

Let G be a graph andx ∈ V (G). DefineBo
x(G) = {uv : {u,v} ⊂ N(x), d(u) +

d(v) ≥ |V (G)|}. Let Go
x be a graph with vertex setV (Go

x) = V (G) and edge set
E(Go

x) = E(G)∪Bo
x(G). Suppose thatGo

x [N(x)] consists of two disjoint cliquesC1

andC2. For a vertexy ∈ V (G)\(N(x)∪{x}), if {x,y} is a heavy pair inG and there
are two verticesx1 ∈ C1 andx2 ∈ C2 such thatx1y,x2y ∈ E(G), theny is called a
join vertex of x in G. If N(x) is not a clique andGo

x [N(x)] is connected, orGo
x [N(x)]

consists of two disjoint cliques and there is some join vertex of x, then the vertexx is
called ano-eligible vertex of G. Thelocally completion of G at x, denoted byG′

x, is the
graph with vertex setV (G′

x) =V (G) and edge setE(G′
x) = E(G)∪{uv : u,v ∈ N(x)}.

Let G be a claw-o-heavy graph. Theclosure of G, denoted byclo(G), is the graph
such that:
(1) there is a sequence of graphsG1,G2, . . . ,Gt such thatG=G1, Gt = clo(G), and for
anyi ∈ {1,2, . . . , t −1}, there is ano-eligible vertexxi of Gi, such thatGi+1 = (Gi)

′
xi

;
and
(2) there is noo-eligible vertex inGt .

Theorem 8 (Čada [4])Let G be a claw-o-heavy graph. Then
(1) the closure clo(G) is uniquely determined;
(2) there is a C3-free graph H such that clo(G) is the line graph of H; and
(3) the circumferences of clo(G) and G are equal.

Now we introduce some new terminology and notations. LetG be a claw-o-heavy
graph andC be a maximal clique ofclo(G). We callG[C] a region of G. For a vertex
v of G, we callv aninterior vertex if it is contained in only one region, and afrontier
vertex if it is contained in two distinct regions. For two verticesu,v ∈ V (G), we say
u andv areassociated if u,v are contained in a common region ofG; otherwiseu and
v aredissociated. For a regionR of G, we denote byIR the set of interior vertices of
R, and byFR the set of frontier vertices ofR.

From the definition of the closure, it is not difficult to get the following lemma.
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Lemma 1 Let G be a claw-o-heavy graph. Then
(1) every vertex is either an interior vertex of a region or a frontier vertex of two
regions;
(2) every two regions are either disjoint or have only one common vertex; and
(3) every pair of dissociated vertices have degree sum less than |V (G)| in clo(G) (and
in G).

Proof In the proof of the lemma, we letG′ = clo(G).
(1) Let v be an arbitrary vertex ofG. SinceG′ is closed,NG′(v) is either a clique

or a disjoint union of two cliques inG′. Thusv is contained in one or two regions of
G, and the assertion is true.

(2) Let R andR′ be two regions ofG, andC andC′ be the two maximal cliques
of G′ corresponding toR andR′, respectively. IfC andC′ have two common vertices,
sayu andv, thenu andv will be o-eligible vertices ofG′, contradicting the definition
of the closure ofG. This implies thatC andC′ (and then,R andR′) have at most one
common vertex.

(3) Letu,v be two nonadjacent vertices withdG′(u)+dG′(v)≥ n = |V (G)|. Then
u,v have at least two common neighbors inG′. Suppose thatu andv are not in a
common clique ofG′. Let x be a common neighbor ofu andv in G′. SinceNG′(x)
is not a clique inG′, it is the disjoint union of two cliques, one containingu and the
other containingv. Sinceuv ∈ Bo

x(G
′), x is ano-eligible vertex ofG′, a contradiction.

Thus we conclude thatu,v are in a common clique ofG′, i.e.,u andv are associated.
⊓⊔

The next lemma provides some structural information on regions.

Lemma 2 Let G be a claw-o-heavy graph and R be a region of G. Then
(1) R is nonseparable;
(2) if v is a frontier vertex of R, then v has an interior neighbor in R or R is complete
and has no interior vertices;
(3) for any two vertices u,v ∈ R, there is an induced path of G from u to v such that
every internal vertex of the path is an interior vertex of R; and
(4) for two vertices u,v in R, if {u,v} is a heavy pair of G, then u,v have two common
neighbors in IR.

Proof Let G1,G2, . . . ,Gt be the sequence of graphs, andx1,x2, . . . ,xt−1 the sequence
of vertices in the definition ofclo(G).

(1) Suppose thatR has a cut-vertexy. We prove by induction thaty would be a
cut-vertex ofGi[V (R)] for all i ∈ [1, t]. Sincey is a cut-vertex ofG1[V (R)] = R, we
assume that 2≤ i ≤ t. By the induction hypothesis,y is a cut-vertex ofGi−1[V (R)].
Let R′ andR′′ be two components ofGi−1[V (R)]− y, u be a vertex ofR′ andv be a
vertex ofR′′. Thenu andv have at most one common neighbory in R. Note that each
two maximal cliques ofclo(G) is either disjoint or have only one common vertex (see
Lemma 1 (1)). This implies thatu andv have no common neighbors inGi−1−V(R).
Hence{u,v} is not a heavy pair ofG. Note that ano-eligible vertex ofGi−1 will be
an interior vertex ofclo(G). This implies thaty is not ano-eligible vertex ofGi−1.
Thusxi−1 6= y. Note thatxi−1 has no neighbors inR′ or has no neighbors inR′′. This
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implies that there are no new edges inGi betweenR′ andR′′. Thusy is also a cut-
vertex ofGi[V (R)]. By induction, we can see thaty is a cut-vertex ofclo(G)[V (R)],
contradicting the fact thatV (R) is a clique inclo(G).

(2) Note thatclo(G)[V (R)] is complete. IfR has no interior vertex, thenR contains
noo-eligible vertex ofG. Since the locally completion ofG at everyo-eligible vertex
does not add an edge inR, R = clo(G)[V (R)] is complete.

Now we assume thatR has at least one interior vertex. Suppose thatv has no interi-
or neighbors inR, i.e.,N(v)∩IR = /0. Using induction, we will prove thatNGi(v)∩IR =
/0. SinceNG1(v)∩ IR = /0, we assume that 2≤ i ≤ t. By the induction hypothesis,
NGi−1(v)∩ IR = /0. Note thatxi−1 is either nonadjacent tov or nonadjacent to every
vertex inNGi−1(v)∩V (R). This implies that there are no new edges ofGi betweenv
andGi[V (R)]− v. HenceNGi(v)∩ IR = /0. Thus by the induction hypothesis, we can
see thatNclo(G)(v)∩ IR = /0, a contradiction.

(3) We use induction ont − i (t is the subscript ofGt = clo(G)) to prove that there
is an induced path ofGi[V (R)] from u to v such that every internal vertex of the path
is an interior vertex ofR. Note thatuv is an edge inGt [V (R)]. We are done ifi = t.
Now suppose that there is an induced pathP of Gi[V (R)] from u to v such that every
internal vertex of the path is an interior vertex ofR. We will prove that there is an
induced path ofGi−1[V (R)] from u to v such that every internal vertex of the path is
an interior vertex ofR. If P is also a path ofGi−1[V (R)], then we are done. So we
assume that there is an edgeu′v′ ∈ E(P) such thatu′v′ /∈ E(Gi−1). This implies that
u′,v′ ∈N(xi−1). SinceP is an induced path ofGi, xi−1 has the only two neighborsu′,v′

onP. We also note thatxi−1 ∈V (R) is an interior vertex. ThusP′ = (P−u′v′)∪u′xv′

(with the obvious meaning) is an induced path ofGi−1[V (R)] from u to v such that
every internal vertex of the path is an interior vertex ofR. Thus by the induction
hypothesis, the proof is complete.

(4) Since every vertex inFR has at least one neighbor inG−R and every vertex
in G−R has at most one neighbor inFR, we have|NG−R(FR\{u,v})| ≥ |FR\{u,v}|.
Furthermore, we haven = |IR\{u,v}|+ |FR\{u,v}|+ |V(G−R)|+2. Thus, we get

n ≤ d(u)+ d(v)

= dIR(u)+ dIR(v)+ dFR(u)+ dFR(v)+ dG−R(u)+ dG−R(v)

≤ dIR(u)+ dIR(v)+2|FR\{u,v}|+ dG−R(u)+ dG−R(v)

≤ dIR(u)+ dIR(v)+ |FR\{u,v}|+ |NG−R(FR\{u,v})|+ |NG−R(u)|+ |NG−R(v)|

= dIR(u)+ dIR(v)+ |FR\{u,v}|+ |NG−R(FR)|

≤ dIR(u)+ dIR(v)+ |FR\{u,v}|+ |V(G−R)|,

and

dIR(u)+ dIR(v)≥ n−|FR\{u,v}|− |V(G−R)|= |IR\{u,v}|+2.

This implies thatu,v have two common neighbors inIR. ⊓⊔

Let G be a graph andZ be an induced copy ofZ3 in G. We denote the vertices of
Z as in Fig. 3, and say thatZ is center-heavy in G if a1 is a heavy vertex ofG. If every
induced copy ofZ3 in G is center-heavy, then we say thatG is Z3-center-heavy.
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Lemma 3 Let G be a claw-o-heavy and Z3-f-heavy graph. Then clo(G) is Z3-center-
heavy.

Proof Let Z be an arbitrary induced copy ofZ3 in G′ = clo(G). We denote the vertices
of Z as in Fig. 3, and will prove thata1 is heavy inG′.

Let R be the region ofG containing{a,b,c}. Recall thatIR is the set of interior
vertices ofR, andFR is the set of frontier vertices ofR.

Claim 1 |NR(a2)∪NR(a3)| ≤ 1.

Proof Note that every vertex inG−R has at most one neighbor inR. If NR(a2) = /0,
then the assertion is obviously true. Now we assume thatNR(a2) 6= /0. Let x be the
vertex inNR(a2). Clearlyx 6= a anda1x /∈ E(G′). If a3x /∈ E(G′), then{a2,a1,a3,x}
induces a claw inG′, a contradiction. This implies thata3x ∈ E(G′), andx is the
unique vertex inNG′(a3)∩V (R). ThusNR(a2)∪NR(a3) = {x}. ⊓⊔

Claim 2 Let x,y be two vertices in IR ∪{a}. If xy ∈ E(G) and d(x)+ d(y) ≥ n, then
x,y have a common neighbor in IR.

Proof Note that every vertex inFR has at least one neighbor inG−R and every vertex
in G−R has at most one neighbor inR. By Claim 1,|V (G−R)| ≥ |FR|+1. Moreover,
sincea is not the neighbor ofa2 anda3 in R, |V (G−R)| ≥ |FR\{a}|+ |NG−R(a)|+1.

If x,y ∈ IR, then

n ≤ d(x)+ d(y)

= dIR(x)+ dIR(y)+ dFR(x)+ dFR(y)

≤ dIR(x)+ dIR(y)+2|FR|

≤ dIR(x)+ dIR(y)+ |FR|+ |V(G−R)|−1,

and
dIR(x)+ dIR(y)≥ n−|FR|− |V(G−R)|+1= |IR|+1.

This implies thatx,y have a common neighbor inIR.
If one ofx,y, sayy is a, then

n ≤ d(x)+ d(a)

= dIR(x)+ dIR(a)+ dFR(x)+ dFR(a)+ dG−R(a)

≤ dIR(x)+ dIR(a)+ |FR|+ |FR\{a}|+ dG−R(a)

≤ dIR(x)+ dIR(a)+ |FR|+ |V(G−R)|−1,
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and
dIR(x)+ dIR(a)≥ n−|FR|− |V(G−R)|+1= |IR|+1.

This implies thatx,a have a common neighbor inIR. ⊓⊔

By Lemma 2 (3),G has an induced pathP from a to a3 such that every vertex of
P is either in{a,a1,a2,a3} or an interior vertex outsideR. Let a,a′1,a

′
2,a

′
3 be the first

four vertices ofP.
Note thata′1 is eithera1 or an interior vertex in the region containing{a,a1}. This

implies thatdG′(a1) ≥ dG′(a′1) ≥ d(a′1). If a′1 is heavy inG, thena1 is heavy inG′

and we are done. So we assume thata′1 is not heavy inG.
If abca is also a triangle inG, then the subgraph induced by{a,b,c,a′1,a

′
2,a

′
3} is

a Z3. SinceG is Z3-f -heavy anda′1 is not heavy inG, b anda′3 are heavy inG. By
Lemma 1 (3),b anda′3 are associated, a contradiction. Thus we conclude that one
edge of{ab,ac,bc} is not inE(G).

Note thatR is not complete. By Lemma 2 (2),a has a neighbor inIR.

Claim 3 dIR(a) = 1.

Proof Suppose thatdIR(a) ≥ 2. Let x,y be two arbitrary vertices inNIR(a). If xy ∈
E(G), then{a,x,y,a′1,a

′
2,a

′
3} induces aZ3 in G. Note thata′1 is not heavy inG. Thus

x anda′3 are heavy inG. Note thatx anda′3 are dissociated, a contradiction. This
implies thatNIR(a) is an independent set.

Since{a,x,y,a′1} induces a claw inG, and{a′1,x}, {a′1,y} are not heavy pairs of
G by Lemma 1 (3), we have{x,y} is a heavy pair ofG. We assume without loss of
generality thatx is heavy inG.

If a is also heavy inG, then by Claim 2,a,x have a common neighbor inIR,
contradicting the fact thatNIR(a) is an independent set. So we conclude thata is not
heavy inG.

Since{x,y} is a heavy pair ofG, by Lemma 2 (4),x,y have two common neigh-
bors in IR. Let x′,y′ be two vertices inNIR(x)∩NIR(y). Clearly ax′,ay′ /∈ E(G). If
x′y′ ∈ E(G), then{x,x′,y′,a,a′1,a

′
2} induces aZ3 in G. Sincea is light, x′,a′2 are

heavy. Note thatx′ and a′2 are dissociated, a contradiction. Thus we obtain that
x′y′ /∈ E(G).

Note that{x,x′,y′,a} induces a claw inG, anda is light in G. So one vertex of
{x′,y′}, sayx′, is heavy inG. By Claim 2,x,x′ have a common neighborx′′ in IR.
Clearlyax′′ /∈ E(G). Thus{x,x′,x′′,a,a′1,a

′
2} induces aZ3. Sincea is not heavy inG,

x′,a′2 are heavy inG, a contradiction. ⊓⊔

Now letNIR(a) = {x}.

Claim 4 NR(a) =V (R)\{a}.

Proof Suppose thatV (R)\({a}∪NR(a)) 6= /0. By Lemma 2 (1),R− x is connected.
Let y be a vertex inV (R)\({a}∪NR(a)) such thata,y have a common neighborz
in R− x. Note thatz is a frontier vertex ofR. Let z′ be a vertex inNG−R(z). Then
{z,y,a,z′} induces a claw inG. Since{a,z′}, {y,z′} are not heavy pairs ofG, {a,y}
is a heavy pair ofG. By Lemma 2 (4),a,y have two common neighbors inIR, contra-
dicting Claim 3. ⊓⊔
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By Claims 3 and 4, we can see that|IR|= 1. Recall that one edge of{ab,bc,ac} is
not inE(G). By Claim 4,ab,ac∈ E(G). This implies thatbc /∈E(G), and{a,b,c,a′1}
induces a claw inG. Since{b,a′1}, {c,a′1} are not heavy pairs ofG, {b,c} is a heavy
pair ofG. By Lemma 2 (4),b andc have two common neighbors inIR, contradicting
the fact that|IR|= 1. ⊓⊔

Following [3], we defineP to be the class of graphs obtained by taking two
vertex-disjoint trianglesa1a2a3a1, b1b2b3b1 and by joining every pair of vertices
{ai,bi} by a pathPki = aic1

i c2
i · · ·c

ki−2
i bi, for ki ≥ 3 or by a triangleaibiciai. We denote

the graphs inP by Pl1,l2,l3, whereli = ki if ai,bi are joined by a pathPki , andli = T
if ai,bi are joined by a triangle. Note thatL1 = PT,T,T andL2 = P3,T,T .

Theorem 9 (Brousek [3])Every non-hamiltonian 2-connected claw-free graph con-
tains an induced subgraph H ∈ P .

3 Proof of Theorem 4

Let G′ = clo(G). If G′ is hamiltonian, then so isG by Theorem 8, and we are done.
Now we assume thatG′ is not hamiltonian. By Theorem 9,G′ contains an induced
subgraphH = Pl1,l2,l3 ∈ P. We denote the vertices ofH by ai,bi,ci and c j

i as in
Section 2. By Lemma 3,G′ is Z3-center-heavy.

Claim 1 For i ∈ {1,2,3}, li = 3 or T ; and at most one of {l1, l2, l3} is 3.

Proof If one of {l1, l2, l3} is at least 4, sayl1 ≥ 4, then the subgraph ofG′ induced
by {a1,a2,a3,c1

1,c
2
1,c

3
1} is aZ3 (we setc3

1 = b1 if l1 = 4). Thusc1
1 is heavy inG′. If

l2 = T , then the subgraph ofG′ induced by{a2,a1,a3,b2,b1,c
l1−2
1 } is aZ3, implying

b2 is heavy inG′. But c1
1 and b2 are dissociated, a contradiction. Ifl2 6= T , then

the subgraph ofG′ induced by{a2,a1,a3,c1
2, . . . ,c

l2−2
2 ,b2,b1} is a Zr with r ≥ 3,

implying c1
2 is heavy inG′. But c1

1 andc1
2 are dissociated, a contradiction again. Thus

we conclude thatli = 3 or T for all i = 1,2,3.
If two of {l1, l2, l3} equal 3, sayl1 = l2 = 3, then the subgraphs ofG′ induced by

{a1,a2,a3,c1
1,b1,b2} and by{a2,a1,a3,c1

2,b2,b1} areZ3’s. This implies thatc1
1 and

c1
2 are heavy inG′. But c1

1 andc1
2 are dissociated, a contradiction. Thus we conclude

that at most one of{l1, l2, l3} is 3. ⊓⊔

By Claim 1, we assume without loss of generality thatl2 = l3 = T andl1 = 3 or
T . If G′ has only the nine vertices inH, thenG′ = L1 or L2, andG has noo-eligible
vertices. This implies thatG = L1 or L2. Now we assume thatG′ has a tenth vertex.

Let A be the region containing{a1,a2,a3} andB be the region containing{b1,b2,
b3}. For li = T , let Ci be the region containing{ai,bi,ci}; and if l1 = 3, then letC1

1
andC2

1 be the regions containing{a1,c1
1} and{b1,c1

1}, respectively.

Claim 2 |V (A)|= |V (B)|= |V (Ci)|= 3; and if l1 = 3, then |V (C1
1)|= |V (C2

1)|= 2.
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Proof Suppose that|V (A)| ≥ 4. Letx be a vertex inV (A)\{a1,a2,a3}. Then the sub-
graphs ofG′ induced by{a2,a1,x,b2,b3,c3} and by{a3,a1,x,b3,b2,c2} are Z3’s.
This implies thatb2 andb3 are heavy inG′. Since there are two verticesa1,x nonad-
jacent tob2 andb3, b2 andb3 have at least two common neighbors inG′. Let y be a
common neighbor ofb2 andb3 in G′ other thanb1. Theny ∈V (B), and the subgraphs
of G′ induced by{b2,b1,y,a2,a3,c3} is a Z3. Thusa2 is heavy inG′. By Lemma 1
(3), a2 andb3 are associated, a contradiction. Thus we conclude that|V (A)|= 3, and
similarly, |V (B)|= 3.

Suppose that|V (Ci)| ≥ 4 for li = T . We assume up to symmetry that|V (C2)| ≥
4. Let x be a vertex inV (C2)\{a2,b2,c2}. Then the subgraph ofG′ induced by
{a2,c2,x,a3,b3,b1} is a Z3, implying thata3 is heavy inG. If l1 = T , then the sub-
graph ofG′ induced by{b2,c2,x,b1,a1,a3} is aZ3; if l1 = 3, then the subgraph ofG′

induced by{b2,c2,x,b1,c1,a1} is a Z3. In any case, we haveb1 is heavy inG′. But
a3 andb1 are dissociated inG, a contradiction.

Suppose thatl1 = 3 and|V (C1
1)| ≥ 3. Let x be a vertex inV (C1

1)\{a1,c1
1}. Then

the subgraphs ofG′ induced by{a1,c1
1,x,a2,b2,b3} and by{c1

1,a1,x,b1,b2,c2} are
Z3’s. This implies thata2 andb1 are heavy inG′. But a2 andb1 are dissociated, a
contradiction. Thus we conclude that|V (C1

1)|= 2, and similarly,|V (C2
1)|= 2. ⊓⊔

In the following, we setS = {v ∈V (G′) : NG′(v)∩V (H) 6= /0}.

Claim 3 l1 = 3, and for x ∈ S, xc2,xc3 ∈ E(G′).

Proof By Claim 2, all the neighbors ofa1,a2,a3,b1,b2,b3 andc1
1 (if l1 = 3) are inH.

Note thatG′ has at least 10 vertices. The verticesa1,a2,a3,b1,b2,b3 andc1
1 (if l1 = 3)

are not heavy inG′.
Let x be a vertex inS. Suppose thatl1 = T . Note thatx cannot be adjacent to all the

three verticesc1,c2,c3. We assume up to symmetry thatxc1 ∈ E(G′) andxc2 /∈E(G′).
Then the subgraph ofG′ induced by{a2,b2,c2,a1,c1,x} is aZ3, implyinga1 is heavy
in G′, a contradiction. Thus we conclude thatl1 = 3.

Suppose that one edge ofxc2,xc3 is not in E(G′), say xc2 /∈ E(G′). Then the
subgraph ofG′ induced by{a2,b2,c2,a3,c3,x} is aZ3, implying a3 is heavy inG′, a
contradiction. Thus we conclude thatxc2,xc3 ∈ E(G′). ⊓⊔

Let x be a vertex inS. By Claim 3,xc2,xc3 ∈ E(G′). If G′ has only ten vertices,
thenC = a1a2a3c3xc2b2b3b1c1

1a1 is a Hamilton cycle ofG′, a contradiction. Suppose
now thatG′ has an eleventh vertex. SinceG′ is 2-connected, letx′ be a vertex in
S\{x}. By Claim 3,x′c2,x′c3 ∈ E(G′). Thusxx′ ∈ E(G′). Note thatNG′(x) is neither
a clique nor a disjoint union of two cliques ofG′. This implies thatx is ano-eligible
vertex ofG′, a contradiction.

The proof is complete. ⊓⊔
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8. B. Li, Z. Ryjáček, Y. Wang, S. Zhang, Pairs of heavy subgraphs for Hamiltonicity of 2-connected

graphs, SIAM J. Discrete Math. 26, 1088–1103 (2012)
9. B. Ning, S. Zhang, Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs,

Discrete Math. 313, 1715–1725 (2013)
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