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SUMMARY

In this paper, we first introduce the tensor conic linear pogning (TCLP for short) which is a
generalization of the space tensor conic linear programnmtroduced by Qi and Yel]. Then, an
approximation method, by using a sequence of semidefiniigramming problems, is proposed to solve
the TCLP. In particular, we reformulate the extreme Z-eigdure problem as a special TCLP. It gives a
numerical algorithm to compute the extreme Z-eigenvalnaven order tensor with dimension larger than
three, which is discussed in the literature. Numerical @rpents show the efficiency of the the proposed
method. Copyright© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tensors appear in physics, mechanics, statistics and sé@/ben a basis for the tensor space is
chosen, there is a one to one correspondence between tandomallti-way arrays. Recently, higher
order three-dimensional tensors have been extensivedgiigated and used in many applications
(see [] and references therein), especially in the diffusion nedignresonance imaging49].
Meanwhile, higher order tensors with dimension larger ttheiee are frequently involved in some
numerical computations of engineering scient@-5], which are worth investigating. However,
there lacks a unified model and efficient numerical schenresuich problems.

Very recently, Qi and Yel] proposed a mathematical model, nanspdce tensor conic linear
programming(STLP for short), to give a unification for various optimimat problems with higher
order three-dimensional tensors appeared in the litexaBased on the analysis on the space tensor
cone, Qi and Ye established fundamental properties of thé>Sicluding the duality theory.

In this paper, we first give a unified model for the tensor pragning involving higher order
higher-dimensional tensors, which is denoted by the TCLPsfwort. Then, an approximation
method, by using a sequence of semidefinite programminderah is proposed to solve the TCLP.
We call this method athe sequential SDPs methaihd abbreviate it a6 SSMor convenience. The
prefix letter “T” represents tensors. We show that the eigkr/problem of even order symmetric
tensors 12,13 is strongly related to the TCLP. Actually, the extreme Gezivalue problem for
even order symmetric tensors is a special case of the TCLROféethat there are many problems
which are just reformulations of the extreme Z-eigenvabfestensor 14,16], such as the best rank
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2 S. HU, Z.-H. HUANG AND L. QI

one approximation problem. Since TCLP provides a unificeftw the computations involving the
extreme Z-eigenvalues of even order symmetric tensorsuitserical scheme is applicable and
useful. We use T-SSM to solve the extreme Z-eigenvalue prolibr even order symmetric tensors
in this paper. It gives a method for computing the extremegémvalues of even order symmetric
tensors with dimensions larger than three, which improwesliterature §, 14]. The numerical
experiments demonstrate that the proposed method is afficie

The rest of this paper is organized as follows. Some prelins and the TCLP model are
presented in the next section. In Section 3, we describestpgemntial SDPs method for the TCLP.
Then, in Section 4, we discuss the problem of the extremey&reialues of even order symmetric
tensors and report some preliminary numerical results 6yl#8SM. Some final remarks are given
in the last section.

2. PRELIMINARIES

In this section, we present the model of the TCLP and sométgduasults for it. For the convenience
of the subsequent analysis, we give some notation first.

Notation A real m-th ordern-dimensional {» is a positive even number throughout this paper)
tensor D consists ofn% real entriesid;, ._,,, € ®, wherei; € {1,...,n} for j e {1,...,m}.
The tensorD is called symmetric if its entries are invariant under anynpgation of its
indices. Let 7 (m) denote the set of alm-th order n-dimensional real symmetric tensors.
For any C = (¢i,..._i,, ), D = (diy..._i,,) € T(m), their inner product is defined a€'e D =
ZZW%:l Ciy...._ipdir._i,., and the Hilbert-Schmidt norm induced by the inner product i
defined by||D|| = v'D e D. Given a vectow = (z1,...,z,) *€ R", a tensorD € T (m) defines
a homogeneous polynomial through:

n

dw) = > di i@y, 1)

i1 cim=1

We denote the degree of a polynomfdly ded /). A polynomial is homogenous of degreé each
of its monomials has degrée Then,d defined above is homogenous and hagdeg m. We used
to denote a tensor with its all entries being zeros. It defangslynomiald, which can be viewed as
a polynomial of arbitrary degree. The aba¥és said to be positive semidefinite,dfz) > 0 holds
for all 2 € ", andd is said to be positive definite,d{(x) > 0 holds for allz € £\ {0}. Obviously,
for nonzero tensorsy being an even integer is a necessity for positive semidefias. Define

S(m):={D €T (m)|d(x) >0, YxeR"}. 2

Then,S(m) is a pointed closed convex cone with nonempty interior, Widan be proved in a
similar way as those given inl[8]. The partial order induced bg(m) is denoted by-, i.e.,
C = D meansC — D € S(m) for any C, D € T(m). It is easy to see thaX = 0 if and only if
the homogeneous polynomial defined by the ted$as positive semidefinite. In this case, we say
that the tensoX is positive semidefinite.

With the above notation, the TCLP is defined as:

min Ape X 3)
st. XeF={X|AeX=0,Viec{l,2,...,p}, X =0},

wherep is a positive integetdy, A, ..., A, € T(m),andb,...,b, € R. Itis easy to see that, when
m = 3, the TCLP reduces to the STLP introducedih [
The dual programming problem ad)(is:

max bYy

s.t. (y,S)ED::{(y,S) | ZleyiAi—i-S:Ao, y € RP, SES*(m)}, “)

whereS*(m) is the dual cone af (m). SinceS(m) is a closed, convex, pointed cone with nonempty
interior, so isS*(m). We useintS(m) (respectively,intS*(m)) to denote the interior o&(m)
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SEQUENTIAL SDP FOR THE EXTREME Z-EIGENVALUE 3

(respectivelyS*(m)). If the objective function of%) is bounded below over its feasible set, then we
say that 8) is bounded below, and if there exists€ intS(m) such thatX is feasible to 8), then
we say thatJ) is strictly feasible. Similar concepts are defined #). (

From the theory of conic optimization problenis], there is no difficulty to obtain the following
results, whose proofs are hence omitted.

Theorem 2.1
Let the optimization problems be defined as3hdnd @). Denote

a* = inf ApeX and b := sup b Y.
XeF (1.8)€D

Suppose thak € F # () and(y, S) € D # ). Then,

o (weak duality)h %y < Ag e X.

e (strong duality) Suppose thad)(is bounded below and strictly feasible (respectively,i¢
bounded above and strictly feasible), then= v* and @) (respectively, §)) is solvable.

e (complementarity slackness condition)df = b*, then X is optimal for @) and (y, S) is
optimal for @) if and only if the complementarity slackness conditiond®li.e.,X ¢ S = 0.

¢ (optimality condition) Ifb %y = A, e X, then X is optimal for @) and(y, S) is optimal for
(4).

We state the following assumption, and assume it holds irout this paper.

Assumption 2.1
Suppose that both optimization probler3 &nd @) are strictly feasible.

Under the above assumption, both the feasible se® aid @) have nonempty relative interiors.
The following is a well known result in convex analysi€].

Lemma 2.1

If A is a convex set with nonempty relative interior, then for aopvex setB with rl(A) C B C
cl(A),we haverlA) =rl(B) =rl(cl(B)) and c| B) = cl(A). Here c(-) and rl-) denotes the closure
hull and the relative interior of a set respectively.

Although the TCLP is a convex optimization problem, it ischéw solve. Up to now, there exists
no algorithm to solve the TCLP. It is of great interest andam@nce for giving a numerical scheme
to solve such a tensorial optimization problem due to theynaplications in statistic, medical
imaging, engineering science, and so on. In the next seaotierprovide a framework based on
semidefinite programming to solve the TCLP. Such a framewsr&n approximation solution
method for the TCLPJ) in the sense that, theoretically, it can find a feasibletgmiuo (3) with
the distance between its objective value and the optimakval 3) being within a given precision.

The Z-eigenvalue problem, especially the extreme Z-eiglelevproblem, is somewhat the corner
stone in medical imaging and control optimization. Thiskpeon has also direct applications in the
best rank one approximation of higher order tensbé [We show in Section 4 that the extreme Z-
eigenvalue problem of even order tensors is a special TGLA fus, the proposed method serves
as a useful tool for solving it.

3. DESCRIPTION OF THE T-SSM

In this section, we give the detailed description of the satjal SDPs method (the T-SSM) to solve
the TCLP.
By a similar proof as the one ii] Theorem 1], we have

iNtS(m) = {D € T(m) | d(z) > 0, Yz € R"\ {0}}. (5)

Let R[x] be the polynomial ring of multivariate polynomials in thetedle = with coefficients in the
field ® of real numbers. A polynomial € R[z] is called SOS (short for sum of squares)(if:) =
S0, p?(x) for some polynomialg; € R[z] and some integer Denote byg(z) := 31", 7.

The following result is a direct consequence of Reznickeotiem [L9, Corollary 3.1_8].

Copyright© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2013)
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4 S. HU, Z.-H. HUANG AND L. QI

Theorem 3.2
Let intS(m) be defined as5) andd(z) as () for a tensorD. If D € intS(m), then for some
sufficiently large integer > 0, g(z)"d(z) is SOS.

With Theorem3.2, define
K(m):={D e T(m) | g(x)"d(z) is SOS for some > 0}. (6)
We have the following result.

Theorem 3.3
Let K (m) be defined asgd). The setK (m) is a convex cone, and ifitm) C K(m) C S(m).

Proof. The statement thdt (m) is a cone is trivial. In the following, we show that it is alsonwex.
If both tensorsD; and D are in K (m), then bothy(z)"d, (x) andg(z)*ds(z) are sums of squares
for some integers ands respectively. Since(x) is a sum of squares and the product of two SOS
polynomials is again SOS, we see thét) " *(d;(x) + d2(x)) is SOS. Consequently, byt) we
see thatD, + D, € K (m).

Next, we prove the chain of inclusions. The inclusiorSipih) C K (m) follows from Theorem
3.2immediately. Hence, it needs only to prove the other onelLet K (m), theng(z)"d(x) is SOS
for somer by the definition of K'(m) given in ©). Consequentlyy(z)"d(xz) > 0 for all x € R™.
Sinceg(z) > 0 for any nonzera: € R", we have thatl(x) > 0 for any nonzera: € ®". Hence,D
is positive semidefinite an® € S(m) by (2). The proof is complete. a

Theorem 3.4
K(m)*=8(m)*.

Proof. From Theoren8.3and the result in]8, Page 121] which is known as bi-polar theorem, we
have thatfs (m)**=cl(K (m))=S(m)=S(m)**. Again by the same result ii§, Page 121], we have
K(m)*=K(m)***=8(m)***=S(m)*. The proof is complete. ad

From Theoren8.3, we obtain that ¢IK (m)) = S(m). Thus, the following optimization problem
is an approximation of the optimization probleB):(

inf A().X
S.t. Ai.X:bi, Vi:1,2,...,p, (7)
X € K(m).

Hence, instead of3), we can solve optimization problem)(by some numerical algorithms to find
a feasible solution such that the distance between its tiigecalue and the optimal value of)(
hence 8), being within a given precision. Moreover, we can choose fibasible solution as an
approximation solution of3).

In the following, we discuss the promised sequential SDPthatkfor solving the optimization
problem {) and prove the convergent result. Liétdenote the set of all nonnegative integers, and
S" denote the set of alt x & real positive semidefinite symmetric matrices. Forsan \/, the
total number of monomials with its degree being the variablese; (i € {1,...,n}) is denoted
by t(s); itis C;,,_,. The corresponding monomials vector is denoted lfy:), which is ordered
lexicographically. Theny,(x) can be written as

5 — s s) ¢
vs(x) = (25,25 "o, . 28, ad) (8)
Consequently, the following result is immediate.

Theorem 3.5
A homogenous polynomialof positive degre@s € N is SOS if and only ifo(z) = vs(x) *Huvs(z),
wherev, () is given by 8) andH € S'*).

In Theorem3.5, the matrixH is given by

hoso..o  has—ti..0 has—ta..1 ... hsa..os
7 hos—11...0 hos—12..0 hos—o11..0 - hs—11i.._s
hs,()_..,s hsfl_]_“_s hsfl_(]_“;s+1 e h()_(]_“_(]_Qs
Copyright© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2013)
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SEQUENTIAL SDP FOR THE EXTREME Z-EIGENVALUE 5

The subscript ofh, corresponds to the multidegree of the monomialin(z). For example,
has_1.1.._o cOrresponds to the monomied*~'z,. Whenn = 3, we have

hioo hiio haor ha2o hari haoo

hsio haso ha11 hizo hizi hiie

| hsa1 hai1 h2o2 hi2i hii2 hias
H—

hooo hizo hia1 hoso hozi ha2e

ho11 hia1 hiie hosi hoo2 hais

hoo2 hiit2 hiaz ho22 hoirs hoos

We see that some monomials correspond to multiple entritreeahatrixH .
TheoremB3.5is fundamental, with which we can parameterize the d§ite:); and hence, get the
sequential SDPs. To this end, we introduce operatpis’ and M first.

V : For any positives € V, define an operatoy : R(9) () — Rt(2s) such thaiV(H)); is the
coefficient of thei-th monomial in the vectar,, () of the polynomiab, (z) *Huv,(x), for any
He %t(s)xt(s)_

W : For any positives € NV, define an operatdn such that it maps a homogenous polynomial
of degrees to a vector in!(®) satisfyingp(z) = v (x) W (p).

M : For any positives € N/, we defined an operatott : ®:(2) — T(2s). To this end, some
notation is necessary. For th€s) independent elements of a tendore 7 (2s), we order
them in a vectorwes (D) use the lexicographic order of the indices of the element®.of
Actually, the monomials associated to this order are in #maesorder of the monomials of
d(x) in the vectorq,(z). We call thei-th element in the vectan,, (D) thei-th independent
element ofD. Define operatopM : R4(2$) — T (2s), such that for any € ®*(>), M sends
y;/u(i) to thei-th independent element of the tenset(y) € 7(2s), whereu(s) is the total
number of the-th independent element 8f((y) among its»?* elements.

Obviously, all the operator®, VW and M are linear, and they are dependent on the integer
However, for the convenience of the subsequent discuss®momit the parameterand the value
of s will be clear from the content. It is also easy to see thataipes)V and M are invertible.

With the operators defined above and TheoBBthe set (m) can be written as

K(m) = {D € T(m) \ Wig(z)*d(z)] = V(Q), s e N, Qe st/ } . 9)

By using the description ok (m) given in ©) and the optimization problent), an approximation
optimization problem of the TCLP can be given by

inf AO o X
s.t. AiOX:bi, Vi:1,2,...,p,
V(Q) = Wlg(z)d(z)], (10)

MoW(d(x)) = X,
seN, Qesltn/?,

In this problem, the variables are the tensorthe integers and the positive semidefinite matrix
Q. There are altogether+ t(m + 2s) linear constraints, since we can embed the linear contdrain
Mo W(d(x)) = X into the constraint¥(Q)) = W(g(z)*d(x)] by parameterizing(x) with X.

The optimization problem1() is still hard to solve, since it involves the positive segdidite
matrix variable@ with indeterminate size(s +m/2). However, for every fixeds € NV, the
optimization problemX0) becomes

inf AO o X
S.t. Ai.X:bi, Vi:1,2,...,p,
SDP(s) V(Q) = Wlg(x)*d(x)], (11)

MoW(d(x)) = X,
Qe st/

Copyright© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2013)
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6 S. HU, Z.-H. HUANG AND L. QI

In the constraints of the problerhi), V(Q) is linear in the variabl&, W[g(x)*d(z)] is linear in the
coefficients ofl(x) ass is fixed, andM o W(d(x)) is linear in the coefficients af(x) asM o W is
linear. Consequently, the problefl] is a linear semidefinite programming problem (SDP). Hence,
it can be solved efficiently in polynomial tim&().

For every integes € N, we define

K(m), = {D & T(m) ‘ Wigla) ()] = V(Q), Q € S /2 |, (12)

Consequently, for every € N, we get an SDP which is an approximation to the original TCLP
as K (m), is an approximation of<(m) and henceS(m). Thus, we get a sequential SDPs as
{SDP(s), se€ N}. The SDP(s)is called theth order relaxation of the TCLP. It is hence expected
that for solve this sequential SDPs along+ co, the optimal values of the SDPs converge to the
original optimal value of the TCLP. Note that by Theor@m and Assumptior2.1, the TCLP has
finite optimal value and is solvable. In this following, wellrove that the optimal values of the
SDPs do converge to the optimal value of the TCLP. Then, thisarical scheme works, at least
theoretically. It is called the sequential SDPs methodtierTCLP. We abbreviate it as T-SSM.

We first show that the approximations &f(m), (s € ) to K (m) form an ascending chain, and
converge tak (m).

Theorem 3.6
Let K (m), be defined byX2), then we have

(i) K(m)s € K(m),,, for everys € N/, and
(i) lims oo K(m)s=Uory K(m)s=K(m).

Proof. We show thaf<(m)s C K(m),+1 and the other results follow from the definitionsiotm).
andK (m) immediately.

Lets € N be fixed. Suppose th& € K (m),. Then,g(z)*d(x) is SOS by Theorer.5and (L2).
This, together with the fact that(x) is SOS, implies thag(x)**1d(z) is SOS. Consequently, by
Theorem3.5again,D € K(m)sy1. a

It is interesting to investigate whether this ascendingrchops finitely or not.

Theorem 3.7
Let K (m), be defined byX2), then we have

(i) K(m)s > K(m):,, foreverys ¢ N/, and
(i) limyoe K (m):=N2 K (m):=K (m)*.

Proof. The results follow from the definitions & (m)* andK (m)*, and Theoren3.6immediately.
O
Theorem3.6 indicates that the optimal value of the SDP(s) givenlif) ¢ends to the one of7j,
hence the original TCLP, astends toco. We show the detailed proof in the following theorem.

Theorem 3.8
Suppose that Assumptiéhl holds. Denote the optimal value of the SDP(s))(by p*). Then, we
havep*) — p* ass — oc.

Proof. Note that the problem SDP(s)) is just the problem(0) with the conei (m) in (10) being
replaced by the con& (m),. Since Assumptior2.1 holds, there exists aX € intS(m) which is
feasible to 8), and also to 10). In fact, by Theoren8.3, we haveX € K(m). Thus, by Theorem
3.6, it follows that there exists a positive integgrsuch thatX € K (m),,. Furthermore, it is easy
to see from Theorerf.6thatoo > p(*0) > p(s) whens > s,.

From Theoren8.6, we have that((m); C K(m) for all s € A/. Then,K (m) C S(m), together
with the fact that both3) and @) are strictly feasible (hence solvable), implies thiat > p* > —oo.
By Theoren3.6, we know thatk (m), — K (m) ass — oo. Hencep(®) — p* ass — oc. Actually,
(3) is solvable by Assumptiof.1and Theoren2.1 Slnce the relative interior of the feasible set of
(3) is nonempty, there exists a sequence of po{ﬁ;fé } in the relative interior of the feasible set

Copyright© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2013)
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SEQUENTIAL SDP FOR THE EXTREME Z-EIGENVALUE 7

of (3), which are also in the relative interior of the feasibledtL0) by Lemma 1, converges to an
optimal solution of 8). Denote the corresponding objective valuexdsf! by p 1 Sincep \— p*, for
anye > 0, there exists a(ag) such that for anyt > k(e), p +— p* < e. For X( ¥ € K(m), there
exists ans(¢) such thatX ( ) € K(m)y(.) by TheorenB.6. Hencep(*(*)) — p* < =. Consequently,
we have thap(®) — p* ass — oc.

The proof is complete. a
Therefore, by Theorem.8 we can, theoretically, solve a sequence of SDPs giverl sbfy
increasings to obtain an approximation solution of the original TCLP agtpriori fixed precision.
For every problem SDP(s), we can find a feasikle) ¢ K (m), ¢ K(m) C S(m) whose objective

value is sufficiently close tp(*) by solving the SDP(s)1(1). Sincep(®) — p*, for a sufficiently
large s, p(®) is sufficiently close tg*, and henceX®) € K(m), C K(m) C S(m) severs as an
approximation solution to3). Note that such aiX (*) is feasible to 8) as well. While, as the size
of the resulting SDPs increases drastically, it is impdedib practical computation to increase
arbitrarily large due to the present ability to solve SDPré&twer, we do not know in advance for
which s, p(*) would be within the given accuracy region pf. Consequently, Theore®.8 only
serves as a theoretical result.

4. FINDING THE EXTREME Z-EIGENVALUES

In this section, we consider how to find the extreme Z-eigkm@gsof an even order symmetric tensor.
Such a problem is crucial in many applicatiorigl,[16]. We transform the extreme Z-eigenvalue
problem into a special TCLP, and then use the T-SSM to solvihis section partitions into two
subsections. The concept of the Z-eigenvalues of tensarshenreformulation of the extreme Z-
eigenvalue problem are given in Subsection 4.1, and the ncaheomputation is given in the other
subsection.

4.1. The extreme Z-eigenvalues

In this subsection, we reformulate the extreme Z-eigemshf an even order symmetric tensor
into a TCLP. We first recall the concept of the Z-eigenvaluetensors. For extensive discussions
on eigenvalues of tensors, please referlts-4, 16, 21-26] and references therein. For anth
ordern-dimensional symmetric tensd? and a vector € R, we denote byDx% ~! a vector in
R™ with its i-th coordinate bein@?}“_im:1 diiy.. i, Tiy - @i, , and Dz the inner product of the
vectorsz and Dz . Given the tensoD, a Z-eigenvalue paif\, z) € ® x & means a solution to
the following system

Dz%—! = Az,
x 9 =1.

Obviously, A = Dz for a Z-eigenvalue paifA, z) of D. In many applications, it is crucial to
compute the largest or the smallest Z-eigenvalues of a gersorD.

Note that the largest and the smallest Z-eigenvalud3 afe the optimal values of the following
optimization problems:

max Dax%

st. xw=1, (13)
and
min  Dax*%
st. xw=1, (14)
respectively.

In the following, we will focus on optimization problemi4), since (3) can be easily handled if
we know a method to solve {). We first notice thatl4) is equivalent to

max vy ‘ (15)
st. Dzt >, Vee{z eR" |z v =1}
Copyright© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2013)
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8 S. HU, Z.-H. HUANG AND L. QI

Define anm-th ordern-dimensional tensaf asE = I ® I ® - -- @ I (for m/2 times), wherd is
then x nidentity matrix. SoDz% > ~,Vax € {x € R" | 2 v = 1} isthe same a® — vE € S(m),
which is the same to sa — vE > 0. Hence, 15) is a special TCLP given by

max vy
st. D—~E =0,

which is further equivalent to

min 7y

st. D+~vE = 0. (16)

Since the optimization problemi§) is a special TCLP, it can be solved by using the T-SSM. For
any s € N, by replacing the constrair? + vE = 0 with D +~+F = 0 € K(m)s, we get thes-th
order relaxation problem ofLg). Let us write out it explicitly as:

inf
SDP(s) st V(Q) — YW(g(x)st4 /) = W]g(x)*d(z)], (17)
Qe st/

Note that for any given tensdp € 7 (m), the vectonV[g(x)*d(z)] is a constant vector. Here are
the main parameters of the SDP(s) above.

e It hast(m + 2s) linear constraints.
e The positive semidefinite matrix variable is of dimensiom /2 + s).

Recall that forn dimensional tensors(k) = Cnl 1, for k € N. Hence, the size of the SDP(s)
increases drastically whefn, n, s) increases. In the tables of the next subsection, we show the
number of the linear constraintkify) and the dimension of the matrix variablBi(n) for every

computed case.

4.2. Numerical computation

In this subsection, we present some preliminary numerasllts for solving 16) by using the T-
SSM. We just follow the discussions in the above subsectiagetvelop the code. We implement the
optimization problem7) in Matlab on our PC. The PC is with CPU of 2.4 GHz and RAM of 2.0
GB. We use SDPT3Z/] to solve the resulting conic linear programming problemahithas both
free variable and positive semidefinite variable.

Firstly, we test three examples of tensors to show that t8&W can work very well.

Example 4.1
The first example is é-th order 3-dimensional tensor. The corresponding tensanade up of the
coefficients of the following polynomial (Stengle’s foraken from P§]:

hste(x) = ahxs + (zirs — 23 — x103)2.

It is well known thathg. is a positive semidefinite polynomial but not SOS. We derae t
corresponding tensor dBs;.. It is easy to see that the Z-eigenvalue systeffsqfis

L8z + 2(a3xs — 2} — m1a3)(—327 —23)] = Aay,
o §l2(232s — 2t — 2123) (222)] = Ao, (18)
L8283 + 2(a3xs — 2} — m123) (23 — 22123)] = Aas,

where 2% + 23 + 23 = 1. From (18), we see that\ = 0 is a Z-eigenvalue ofl’s;. with the
corresponding Z-eigenvector beiri@, 1,0) * Furthermore,\ = 0 is the smallest Z-eigenvalue of
Tsie Sincehgi(xz) > 0. We use the T-SSM to find approximations for the smallesgehealue

of T's;. with s € {0,1,2,3}. The computed results are listed in Table I. In the taiileneans the
iteration number of the SDP solvepu means the total time in seconds spent for both setting up
the problem and solving igpt means the approximation value computed, galdneans the norm

of the violation of the constraints of the approximationuimn. From the table, we see that the
method can find a good approximation solution, even for the aeler relaxation.

Copyright© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2013)
Prepared usingilaauth.cls DOI: 10.1002/nla



SEQUENTIAL SDP FOR THE EXTREME Z-EIGENVALUE 9

Table I. Computation results for Examplel

Lin|Dim| it | cpu opt vol

28| 10 |15/1.203/-1.7466e-0051.5047e-01
45| 15 [19]1.563|-1.3928e-0091.4234e-01
66| 21 |20|2.000 -6.3799e-0101.7391e-01
91| 28 [23|3.453-2.5448e-0103.5135e-01

o ool 3
w| W w| w|>
wlN R oln

L e

Example 4.2

In this example, fourth order four-dimensional positivenggefinite symmetric tensors are randomly
generated. To generate a positive semidefinite symmetsotene first randomly generate a vector
2. Then form a fourth order rank one tensorg --- ® xz. By definition, this tensor is positive
semidefinite. We take a sum I&f such randomly generated rank one tensors to form a positive
semidefinite symmetric tensor. We test the T-SSM with sosbrte In the following, we display the
computation results for one of the simulations as an exanigie coefficients of the polynomial
d(x) in the order of the monomials vector(x) are put in the following vector

(0.6795, 0.5696, 0.7268, —0.4051, 2.4625, 1.4716, 2.1854, 2.0333, —1.1188, 2.0347,
0.6176, 3.9182, —0.7433,2.8720, 2.4059, —1.1220, 0.2469, —0.5837, 0.9269, —0.6628,
1.2701,0.7049, 1.3213,2.5168, —0.4932, 1.9971, 0.2712, 0.6999, —0.9938, 0.9199,
0.7409, —0.3241,1.6088, —1.0541, 0.5114).

The computed approximation values of thih order relaxations fos € {0, 1,2, 3,4} are the same
0.1706.

Example 4.3

This example is similar to Exampfe2, except for fourth order five-dimensional tensors. Thertake
example is as follows. The coefficients of the polynowdiia) in the order of monomials vector
vy (z) are putin the following vector

(2.3525, —0.7663, —2.0847, 1.8713,2.4123, 1.0810, 0.0019, 1.8585, 0.3500, 2.8223,
—1.2591, —1.1789, 4.1955, 4.5213, 4.3148, —0.2060, —0.3665, —0.4879, —0.5095, 0.0551,
0.2353,0.1936, —1.2513, —0.5995, 0.0117, —1.5205, 1.4961, —0.7163, —1.2764, 0.0210,
—0.7210, 1.2239, 0.3303, 2.9108, 1.2443, 0.3552, 0.8959, 0.5733, —0.8267, 1.4233,
0.3718, —2.4382, 0.8745, —0.4801, 1.8166, 0.7590, 0.4976, —2.3369, 0.4780, —0.9982,
2.1721,0.4117,0.0751, 1.0824, —0.5833, 0.6672, —0.6814, —0.2190, 1.2729, —1.2632,
2.2729, —0.4839, —0.7655, —2.1708, —1.9507, 0.9113, 0.6238, 3.8270, 2.7994, 2.2072).

The computed approximation values of thth order relaxations fors € {0, 1,2, 3} are the same
0.0508.

Secondly, we present in the following three systems of prielary numerical results for some
randomly generated symmetric tensors.

() We compare the accuracy of the T-SSM with the roots findireghod proposed inlf] by
randomly generated-th order3-dimensional symmetric tensors. The reason why we3use
dimensional tensors is that the roots finding method can balapplied to3-dimensional
tensors. We use = 0 in the numerical computation, since Hilbert's result sagtthi(4), =
K (4)inthis case28]. The numerical results are listed in Table II. In the tableeans that the
corresponding tensor is equal to a sum-gdositive semidefinite rank one tensors generated
similarly to Example4.2, while » = 0 means that every entry of the corresponding tensor is
randomly generated, hence it is indefinite in general. Wetdis simulations for- = 0, and
four for each other values of it, opt andvol are the same as those in Examglé. cpul
is the the total cpu time of the T-SSM in seconds spent for Betting up the problem and

Copyright© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2013)
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10 S. HU, Z.-H. HUANG AND L. QI

solving it; andcpu? for the roots finding method. FinalliRoot is the smallest Z-eigenvalue
computed through the roots finding method.

(I We test the numerical behaviors of the T-SSM for randpgenerated positive semidefinite
symmetric tensors. The positive semidefinite symmetrisdesnare generated similarly to
those in Examplel.2. The results are listed in Table Ill. The parametgis n, r,s) of the
tested cases are clear from the table. For each case, weagnten times to get the average
number of iterationsi{), the average cpu time spent for both setting up the probledh a
solving it (cpu), the average approximation value computed by the T-S§M) (and the
average violation of the constraint).

(1) We testthe T-SSM for positive semidefinite symmetansors with the smallest Z-eigenvalues
being zeros. The tensors are generated similarly to thosgample4.2 with the summation
of the rank one tensors being the number of its dimension snome. Consequently, the
generated tensors are positive semidefinite and with thleshZ-eigenvalues being zeros.
We call that the proposed method can successfully solvextinense Z-eigenvalue problem if
the approximation value computed has absolute value lass @18, In this case, we put the
smallest relaxation orderinto the corresponding crossaf andn in Table IV. If the problem

setting is out of the memory of our PC, we put-aih the corresponding cross.

Table 1l. Comparisons of roots finding method (Lin=15 and Bén

it

cpul

opt

vol

cpu2

Root

11

1.094

-8.4506e-00

14.3178e-0131.125

-8.4506e-00

11

0.969

-7.2252e-00

11.3786e-0111.078

-7.2252e-00

11

1.078

-4.5716e-00

14.4230e-0141.094

-4.5716e-00

12

1.016

-3.8369e-00

14.9058e-0141.125

-3.8369e-00

11

0.938

-7.4017e-00

13.4039e-0131.172

-7.4017e-00

12

1.109

-6.3362e-00

11.3135e-01]

11.109

-6.3362e-00

11

1.063

-5.8289e-00

14.4416e-01]

11.109

-5.8289¢e-00

12

1.125

-2.5095e-00

15.3866e-01]

11.156

-2.5095e-00

11

1.109

-2.5795e-00

18.6319e-01}

51.109

-2.5795e-00

12

1.188

-1.5701e-00

12.0914e-014

12.938

-1.5701e-00

19

1.156

-5.1666e-00

D2.1909e-01

D1.125

-2.3823e-02}

16

1.063

-3.8401e-00

D2.6203e-01]

11.094

-1.3764e-02

17

1.156

-2.8225e-00

D5.2696e-01]

11.125

-4.3368e-01

17

1.219

-3.0147e-00

D3.6141e-01]

11.094

-8.6736e-01

OO = Iv ===

11

1.141

1.2166e-007

1.8395e-014

11.094

1.2166e-007

QOO P PP RO OO OO o oo oo

15

1.281

6.2471e-007

1.2187e-011

01.172

6.2471e-007

11

1.141

8.0927e-007

9.7049e-011

b1.156

8.0927e-007

al

11

1.188

8.8725e-007

3.2066e-011

31.109

8.8725e-007

10

11

1.078

3.9850e-001

2.0244e-014

11.094

3.9850e-001

10

12

1.234

2.2917e-001

8.8872e-011

b1.141

2.2917e-001

10

13

1.281

3.1400e-001

4.0493e-014

51.109

3.1400e-001

10

12

1.172

8.1200e-007

3.4809e-014

11.172

8.1200e-007

15

12

1.281

2.5545e-001

9.9169e-011

?1.203

2.5545e-001

15

11

1.266

1.3178e-001

1.5459e-014

11.156

1.3178e-001

15

11

1.234

2.8711e-001

2.2521e-014

11.094

2.8711e-001

15

11

1.234

2.1930e-001

8.2069e-01+

11.125

2.1930e-001

From Tables II-IV, we have the following observations:

e From Table II, we see that the T-SSM can find the smallest reiglues with high accuracy
for three dimensional tensors. For the rows correspondingrk one tensors (the optimal
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Table Ill. Positive semidefinite tensors

m|{n| r |s|Lin|Dim| it cpu opt vol

6|3/ 5(0| 28| 10 |15.3] 0.822 |2.2712e-0031.2264e-012
63| 51| 45| 15 |15.8] 1.052 |1.6621e-0089.8237e-013
63|52 66| 21|17.2] 1.522 |1.8533e-0089.5328e-012
83| 5|0| 45| 15 |17.5] 1.261 |2.4100e-0044.1855e-010
83| 5|1 66| 21 |18.4] 1.719 |3.6409e-0053.4950e-010
83| 5(2| 91| 28 |19.5 2.802 |8.8981e-0044.8231e-011
10(3| 5|0| 66 | 21 [18.1] 2.077 |1.7700e-0044.7274e-011
10(3| 5|1 91| 28 [18.8] 3.267 |5.2268e-0054.5275e-009
10({3| 5|2]120] 36 [19.9] 4.622 |7.3900e-0061.2359e-009
16(3| 5|0]153| 45 [23.2| 11.063|2.2106e-0071.7308e-008
16(3| 5|1]190] 55 [23.3] 12.220{4.9569e-0091.3141e-008
16(3|10|0|153| 45 [23.9| 16.255|3.3441e-0052.5583e-010
16(3|10|1|190| 55 [26.1] 17.430{1.2871e-0042.5695e-010
20|3|10|0|231| 66 |27.7| 38.175|4.0633e-0076.7615e-009
2413|15/0(325] 91 {33.1/113.8175.1880e-0072.3918e-009
414|15|0] 35| 10 [14.7] 0.892 |7.8790e-0033.7801e-012
4145|184 | 20 |16.1] 1.852 [5.5990e-0037.8961e-012
414|5]2]165| 35 [19.2] 5.819 |5.1730e-0039.7661e-012
416/10|0]126| 21 |16.4] 6.377 |7.8242e-0034.1298e-012
416/10|1|462| 56 |18.8| 35.897|1.9803e-0021.1370e-011
4 18|15|0]330] 36 [17.9] 53.856(1.4943e-0021.0850e-011
6 |4{15/0| 84 | 20 |16.6] 4.314 |2.0749e-0021.0611e-012
6 |5/15(0|210] 35 |18.0] 21.472|1.9167e-0021.9113e-011
6 |6(15/0(462| 56 |20.8/109.6615.4306e-0088.6242e-012

Table IV. The order of relaxation

m\n

2

6

8

1 OO OO
OOl N
1| O] Of 00

10

12

1Ol O] OO U1

14

16

18

1 OO O|O|O|O|O| ~

20

22

24

P OOOOOoooo oo w

11

value would be zero), we see that th is of magnitudel0—?, while that forRoot is 1072°,

That is because the former is based on SDPT3 which terminatesthe duality gap being
smaller thanl0~8, while the latter is a direct method. However, both are witihraccuracy
to the true value zero.

e From Table Ill, we see that the T-SSM can find the smallestgémialues of positive
semidefinite symmetric tensors in few iterations and cpetiNote that for the cagen, n) =
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12 S. HU, Z.-H. HUANG AND L. QI

(24, 3) in this table, the number of linear constraints of the cqroesling SDP is 325. For
(m,n) = (6,6), the number of linear constraints of the corresponding SD#6R. Hence, it
takes a bit more time to solve these problems.

e From Table IV, we see that many cases can be solved with logr oethxation { = 0 mostly).
For the failed cases, take:,n) = (6,9) as an example. The number of linear constraints of
the SDP is 3003 and the dimension of the positive semidefimitigix variable is 165. Such a
problem size for SDP is not small. This problem is out of theecheof our PC.

From the numerical results presented above, we see that3$MrIperforms quite well. Hence,
it would serve as a research tool for analyzing tensors aneélaéted problems.

5. FINAL REMARKS

In this paper, we introduced the TCLP which is a generaliratif the STLP proposed by Qi and
Ye [1]. For the numerical method to the TCLP, we proposed a se@&iPs method to solve the
TCLP. It is abbreviated as T-SSM. In particular, we reforatedl the extreme Z-eigenvalue problem
for even order symmetric tensors as a special TCLP. Somienimely numerical results for finding
the smallest Z-eigenvalue of an even order symmetric téresserd on the T-SSM were reported. The
numerical results showed the potential application fohkmactical use and theoretical research of
the T-SSM in various applications.

There are also some problems need to be further studiedh@)TISSM is essentially an SOS
relaxation method9, 3(]. It is well-known that such methods cannot handle largee groblems.
Then, how to improve the performance of the T-SSM? (ii) Thizeare Z-eigenvalue problem for
odd order tensors are not included in the framework of the H,Glince we cannot define positive
semidefiniteness for odd order tensors. (iii) Whether ibissible to develop some techniques based
on the T-SSM to find out all the Z-eigenvalues of a given tesarot?
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