
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl.2013;00:1–13
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla

Finding the Extreme Z-Eigenvalues of Tensors via a Sequential
SDPs Method

Shenglong Hu13, Zheng-Hai Huang12∗ and Liqun Qi3

1Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P.R. China.
2The Center for Applied Mathematics of Tianjin University, Tianjin University, Tianjin 300072, P.R. China.

3Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

SUMMARY

In this paper, we first introduce the tensor conic linear programming (TCLP for short) which is a
generalization of the space tensor conic linear programming introduced by Qi and Ye [1]. Then, an
approximation method, by using a sequence of semidefinite programming problems, is proposed to solve
the TCLP. In particular, we reformulate the extreme Z-eigenvalue problem as a special TCLP. It gives a
numerical algorithm to compute the extreme Z-eigenvalue ofan even order tensor with dimension larger than
three, which is discussed in the literature. Numerical experiments show the efficiency of the the proposed
method. Copyrightc© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tensors appear in physics, mechanics, statistics and so on.When a basis for the tensor space is
chosen, there is a one to one correspondence between tensorsand multi-way arrays. Recently, higher
order three-dimensional tensors have been extensively investigated and used in many applications
(see [1] and references therein), especially in the diffusion magnetic resonance imaging [2–9].
Meanwhile, higher order tensors with dimension larger thanthree are frequently involved in some
numerical computations of engineering science [10–15], which are worth investigating. However,
there lacks a unified model and efficient numerical schemes for such problems.

Very recently, Qi and Ye [1] proposed a mathematical model, namedspace tensor conic linear
programming(STLP for short), to give a unification for various optimization problems with higher
order three-dimensional tensors appeared in the literature. Based on the analysis on the space tensor
cone, Qi and Ye established fundamental properties of the STLP, including the duality theory.

In this paper, we first give a unified model for the tensor programming involving higher order
higher-dimensional tensors, which is denoted by the TCLP for short. Then, an approximation
method, by using a sequence of semidefinite programming problems, is proposed to solve the TCLP.
We call this method asthe sequential SDPs method, and abbreviate it asT-SSMfor convenience. The
prefix letter “T” represents tensors. We show that the eigenvalue problem of even order symmetric
tensors [12, 13] is strongly related to the TCLP. Actually, the extreme Z-eigenvalue problem for
even order symmetric tensors is a special case of the TCLP. Wenote that there are many problems
which are just reformulations of the extreme Z-eigenvaluesof a tensor [14,16], such as the best rank
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one approximation problem. Since TCLP provides a unification for the computations involving the
extreme Z-eigenvalues of even order symmetric tensors, itsnumerical scheme is applicable and
useful. We use T-SSM to solve the extreme Z-eigenvalue problem for even order symmetric tensors
in this paper. It gives a method for computing the extreme Z-eigenvalues of even order symmetric
tensors with dimensions larger than three, which improves the literature [8, 14]. The numerical
experiments demonstrate that the proposed method is efficient.

The rest of this paper is organized as follows. Some preliminaries and the TCLP model are
presented in the next section. In Section 3, we describe the sequential SDPs method for the TCLP.
Then, in Section 4, we discuss the problem of the extreme Z-eigenvalues of even order symmetric
tensors and report some preliminary numerical results by the T-SSM. Some final remarks are given
in the last section.

2. PRELIMINARIES

In this section, we present the model of the TCLP and some duality results for it. For the convenience
of the subsequent analysis, we give some notation first.

Notation A realm-th ordern-dimensional (m is a positive even number throughout this paper)
tensorD consists ofnm real entries:di1,...,im ∈ ℜ, where ij ∈ {1, . . . , n} for j ∈ {1, . . . ,m}.
The tensorD is called symmetric if its entries are invariant under any permutation of its
indices. Let T (m) denote the set of allm-th order n-dimensional real symmetric tensors.
For any C = (ci1,...,im), D = (di1,...,im) ∈ T (m), their inner product is defined asC •D =
∑n

i1,...,im=1 ci1,...,imdi1,...,im , and the Hilbert-Schmidt norm induced by the inner product is

defined by‖D‖ =
√
D •D. Given a vectorx = (x1, . . . , xn)

T ∈ ℜn, a tensorD ∈ T (m) defines
a homogeneous polynomial through:

d(x) =

n
∑

i1,...,im=1

di1,...,imxi1 · · ·xim . (1)

We denote the degree of a polynomialf by deg(f). A polynomial is homogenous of degreek if each
of its monomials has degreek. Then,d defined above is homogenous and has deg(d) = m. We use0
to denote a tensor with its all entries being zeros. It definesa polynomial0, which can be viewed as
a polynomial of arbitrary degree. The aboved is said to be positive semidefinite, ifd(x) ≥ 0 holds
for all x ∈ ℜn, andd is said to be positive definite, ifd(x) > 0 holds for allx ∈ ℜn\{0}. Obviously,
for nonzero tensors,m being an even integer is a necessity for positive semidefiniteness. Define

S(m) := {D ∈ T (m) | d(x) ≥ 0, ∀x ∈ ℜn} . (2)

Then,S(m) is a pointed closed convex cone with nonempty interior, which can be proved in a
similar way as those given in [1, 8]. The partial order induced byS(m) is denoted by�, i.e.,
C � D meansC −D ∈ S(m) for anyC,D ∈ T (m). It is easy to see thatX � 0 if and only if
the homogeneous polynomial defined by the tensorX is positive semidefinite. In this case, we say
that the tensorX is positive semidefinite.

With the above notation, the TCLP is defined as:

min A0 •X
s.t. X ∈ F := {X | Ai •X = bi, ∀i ∈ {1, 2, . . . , p}, X � 0} , (3)

wherep is a positive integer,A0, A1, . . . , Ap ∈ T (m), andb1, . . . , bp ∈ ℜ. It is easy to see that, when
m = 3, the TCLP reduces to the STLP introduced in [1].

The dual programming problem of (3) is:

max bT y
s.t. (y, S) ∈ D :=

{

(y, S) | ∑p
i=1 yiAi + S = A0, y ∈ ℜp, S ∈ S∗(m)

}

,
(4)

whereS∗(m) is the dual cone ofS(m). SinceS(m) is a closed, convex, pointed cone with nonempty
interior, so isS∗(m). We useintS(m) (respectively,intS∗(m)) to denote the interior ofS(m)
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(respectively,S∗(m)). If the objective function of (3) is bounded below over its feasible set, then we
say that (3) is bounded below, and if there existsX ∈ intS(m) such thatX is feasible to (3), then
we say that (3) is strictly feasible. Similar concepts are defined for (4).

From the theory of conic optimization problems [17], there is no difficulty to obtain the following
results, whose proofs are hence omitted.

Theorem 2.1
Let the optimization problems be defined as in (3) and (4). Denote

a∗ := inf
X∈F

A0 •X and b∗ := sup
(y,S)∈D

bTy.

Suppose thatX ∈ F 6= ∅ and(y, S) ∈ D 6= ∅. Then,

• (weak duality)bT y ≤ A0 •X .
• (strong duality) Suppose that (3) is bounded below and strictly feasible (respectively, (4) is

bounded above and strictly feasible), thena∗ = b∗ and (4) (respectively, (3)) is solvable.
• (complementarity slackness condition) Ifa∗ = b∗, thenX is optimal for (3) and (y, S) is

optimal for (4) if and only if the complementarity slackness condition holds, i.e.,X • S = 0.
• (optimality condition) IfbT y = A0 •X , thenX is optimal for (3) and(y, S) is optimal for

(4).

We state the following assumption, and assume it holds throughout this paper.

Assumption 2.1
Suppose that both optimization problems (3) and (4) are strictly feasible.

Under the above assumption, both the feasible sets of (3) and (4) have nonempty relative interiors.
The following is a well known result in convex analysis [18].

Lemma 2.1
If A is a convex set with nonempty relative interior, then for anyconvex setB with rl(A) ⊆ B ⊆
cl(A), we have rl(A) = rl(B) = rl(cl(B)) and cl(B) = cl(A). Here cl(·) and rl(·) denotes the closure
hull and the relative interior of a set respectively.

Although the TCLP is a convex optimization problem, it is hard to solve. Up to now, there exists
no algorithm to solve the TCLP. It is of great interest and importance for giving a numerical scheme
to solve such a tensorial optimization problem due to the many applications in statistic, medical
imaging, engineering science, and so on. In the next section, we provide a framework based on
semidefinite programming to solve the TCLP. Such a frameworkis an approximation solution
method for the TCLP (3) in the sense that, theoretically, it can find a feasible solution to (3) with
the distance between its objective value and the optimal value of (3) being within a given precision.

The Z-eigenvalue problem, especially the extreme Z-eigenvalue problem, is somewhat the corner
stone in medical imaging and control optimization. This problem has also direct applications in the
best rank one approximation of higher order tensors [16]. We show in Section 4 that the extreme Z-
eigenvalue problem of even order tensors is a special TCLP (3). Thus, the proposed method serves
as a useful tool for solving it.

3. DESCRIPTION OF THE T-SSM

In this section, we give the detailed description of the sequential SDPs method (the T-SSM) to solve
the TCLP.

By a similar proof as the one in [1, Theorem 1], we have

intS(m) = {D ∈ T (m) | d(x) > 0, ∀x ∈ ℜn \ {0}} . (5)

Letℜ[x] be the polynomial ring of multivariate polynomials in the variablex with coefficients in the
field ℜ of real numbers. A polynomialp ∈ ℜ[x] is called SOS (short for sum of squares), ifp(x) =
∑t

i=1 p
2
i (x) for some polynomialspi ∈ ℜ[x] and some integert. Denote byg(x) :=

∑n
i=1 x

2
i .

The following result is a direct consequence of Reznick’s theorem [19, Corollary 3.18].
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Theorem 3.2
Let intS(m) be defined as (5) and d(x) as (1) for a tensorD. If D ∈ intS(m), then for some
sufficiently large integerr ≥ 0, g(x)rd(x) is SOS.

With Theorem3.2, define

K(m) := {D ∈ T (m) | g(x)rd(x) is SOS for somer ≥ 0}. (6)

We have the following result.

Theorem 3.3
Let K(m) be defined as (6). The setK(m) is a convex cone, and intS(m) ⊆ K(m) ⊆ S(m).

Proof. The statement thatK(m) is a cone is trivial. In the following, we show that it is also convex.
If both tensorsD1 andD2 are inK(m), then bothg(x)rd1(x) andg(x)sd2(x) are sums of squares
for some integersr ands respectively. Sinceg(x) is a sum of squares and the product of two SOS
polynomials is again SOS, we see thatg(x)r+s(d1(x) + d2(x)) is SOS. Consequently, by (1), we
see thatD1 +D2 ∈ K(m).

Next, we prove the chain of inclusions. The inclusion intS(m) ⊆ K(m) follows from Theorem
3.2immediately. Hence, it needs only to prove the other one. LetD ∈ K(m), theng(x)rd(x) is SOS
for somer by the definition ofK(m) given in (6). Consequently,g(x)rd(x) ≥ 0 for all x ∈ ℜn.
Sinceg(x) > 0 for any nonzerox ∈ ℜn, we have thatd(x) ≥ 0 for any nonzerox ∈ ℜn. Hence,D
is positive semidefinite andD ∈ S(m) by (2). The proof is complete. 2

Theorem 3.4
K(m)∗=S(m)∗.

Proof. From Theorem3.3and the result in [18, Page 121] which is known as bi-polar theorem, we
have thatK(m)∗∗=cl(K(m))=S(m)=S(m)∗∗ . Again by the same result in [18, Page 121], we have
K(m)∗=K(m)∗∗∗=S(m)∗∗∗=S(m)∗. The proof is complete. 2

From Theorem3.3, we obtain that cl(K(m)) = S(m). Thus, the following optimization problem
is an approximation of the optimization problem (3):

inf A0 •X
s.t. Ai •X = bi, ∀i = 1, 2, . . . , p,

X ∈ K(m).
(7)

Hence, instead of (3), we can solve optimization problem (7) by some numerical algorithms to find
a feasible solution such that the distance between its objective value and the optimal value of (7),
hence (3), being within a given precision. Moreover, we can choose this feasible solution as an
approximation solution of (3).

In the following, we discuss the promised sequential SDPs method for solving the optimization
problem (7) and prove the convergent result. LetN denote the set of all nonnegative integers, and
Sh
+ denote the set of allh× h real positive semidefinite symmetric matrices. For ans ∈ N , the

total number of monomials with its degree beings in the variablesxi (i ∈ {1, . . . , n}) is denoted
by t(s); it is Cs

n+s−1. The corresponding monomials vector is denoted byvs(x), which is ordered
lexicographically. Then,vs(x) can be written as

vs(x) :=
(

xs
1, x

s−1
1 x2, . . . , x

s
2, . . . , x

s
n

)T
. (8)

Consequently, the following result is immediate.

Theorem 3.5
A homogenous polynomialp of positive degree2s ∈ N is SOS if and only ifp(x) = vs(x)

THvs(x),
wherevs(x) is given by (8) andH ∈ St(s)

+ .

In Theorem3.5, the matrixH is given by

H :=







h2s,0,...,0 h2s−1,1,...,0 h2s−1,0,...,1 . . . hs,0,...,0,s

h2s−1,1,...,0 h2s−1,2,...,0 h2s−2,1,1,...,0 . . . hs−1,1,...,s

. . .
hs,0,...,s hs−1,1,...,s hs−1,0,...,s+1 . . . h0,0,...,0,2s






.

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2013)
Prepared usingnlaauth.cls DOI: 10.1002/nla



SEQUENTIAL SDP FOR THE EXTREME Z-EIGENVALUE 5

The subscript ofh corresponds to the multidegree of the monomial inv2s(x). For example,
h2s−1,1,...,0 corresponds to the monomialx2s−1

1 x2. Whenn = 3, we have

H =















h4,0,0 h3,1,0 h3,0,1 h2,2,0 h2,1,1 h2,0,2

h3,1,0 h2,2,0 h2,1,1 h1,3,0 h1,2,1 h1,1,2

h3,0,1 h2,1,1 h2,0,2 h1,2,1 h1,1,2 h1,0,3

h2,2,0 h1,3,0 h1,2,1 h0,4,0 h0,3,1 h0,2,2

h2,1,1 h1,2,1 h1,1,2 h0,3,1 h0,2,2 h0,1,3

h2,0,2 h1,1,2 h1,0,3 h0,2,2 h0,1,3 h0,0,4















.

We see that some monomials correspond to multiple entries ofthe matrixH.
Theorem3.5is fundamental, with which we can parameterize the coneK(m); and hence, get the

sequential SDPs. To this end, we introduce operatorsV , W andM first.

V : For any positives ∈ N , define an operatorV : ℜt(s)×t(s) → ℜt(2s) such that[V(H)]i is the
coefficient of thei-th monomial in the vectorv2s(x) of the polynomialvs(x)THvs(x), for any
H ∈ ℜt(s)×t(s).

W : For any positives ∈ N , define an operatorW such that it maps a homogenous polynomialp
of degrees to a vector inℜt(s) satisfyingp(x) = vs(x)

TW(p).
M : For any positives ∈ N , we defined an operatorM : ℜt(2s) → T (2s). To this end, some

notation is necessary. For thet(2s) independent elements of a tensorD ∈ T (2s), we order
them in a vectorw2s(D) use the lexicographic order of the indices of the elements ofD.
Actually, the monomials associated to this order are in the same order of the monomials of
d(x) in the vectorv2s(x). We call thei-th element in the vectorw2s(D) the i-th independent
element ofD. Define operatorM : ℜt(2s) → T (2s), such that for anyy ∈ ℜt(2s), M sends
yi/u(i) to thei-th independent element of the tensorM(y) ∈ T (2s), whereu(i) is the total
number of thei-th independent element ofM(y) among itsn2s elements.

Obviously, all the operatorsV , W andM are linear, and they are dependent on the integers.
However, for the convenience of the subsequent discussion,we omit the parameters and the value
of s will be clear from the content. It is also easy to see that operatorsW andM are invertible.

With the operators defined above and Theorem3.5, the setK(m) can be written as

K(m) :=
{

D ∈ T (m)
∣

∣

∣ W [g(x)sd(x)] = V(Q), s ∈ N , Q ∈ St(s+m/2)
+

}

. (9)

By using the description ofK(m) given in (9) and the optimization problem (7), an approximation
optimization problem of the TCLP can be given by

inf A0 •X
s.t. Ai •X = bi, ∀i = 1, 2, . . . , p,

V(Q) = W [g(x)sd(x)],
M◦W(d(x)) = X,

s ∈ N , Q ∈ St(s+m/2)
+ .

(10)

In this problem, the variables are the tensorX , the integers and the positive semidefinite matrix
Q. There are altogetherp+ t(m+ 2s) linear constraints, since we can embed the linear constraints
M◦W(d(x)) = X into the constraintsV(Q) = W [g(x)sd(x)] by parameterizingd(x) with X .

The optimization problem (10) is still hard to solve, since it involves the positive semidefinite
matrix variableQ with indeterminate sizet(s+m/2). However, for every fixeds ∈ N , the
optimization problem (10) becomes

SDP (s)

inf A0 •X
s.t. Ai •X = bi, ∀i = 1, 2, . . . , p,

V(Q) = W [g(x)sd(x)],
M◦W(d(x)) = X,

Q ∈ St(s+m/2)
+ .

(11)

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2013)
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In the constraints of the problem (11), V(Q) is linear in the variableQ,W [g(x)sd(x)] is linear in the
coefficients ofd(x) ass is fixed, andM◦W(d(x)) is linear in the coefficients ofd(x) asM◦W is
linear. Consequently, the problem (11) is a linear semidefinite programming problem (SDP). Hence,
it can be solved efficiently in polynomial time [20].

For every integers ∈ N , we define

K(m)s :=
{

D ∈ T (m)
∣

∣

∣ W [g(x)sd(x)] = V(Q), Q ∈ St(s+m/2)
+

}

. (12)

Consequently, for everys ∈ N , we get an SDP which is an approximation to the original TCLP
asK(m)s is an approximation ofK(m) and henceS(m). Thus, we get a sequential SDPs as
{SDP (s), s ∈ N}. The SDP(s) is called thes-th order relaxation of the TCLP. It is hence expected
that for solve this sequential SDPs alongs → ∞, the optimal values of the SDPs converge to the
original optimal value of the TCLP. Note that by Theorem2.1 and Assumption2.1, the TCLP has
finite optimal value and is solvable. In this following, we will prove that the optimal values of the
SDPs do converge to the optimal value of the TCLP. Then, this numerical scheme works, at least
theoretically. It is called the sequential SDPs method for the TCLP. We abbreviate it as T-SSM.

We first show that the approximations ofK(m)s (s ∈ N ) to K(m) form an ascending chain, and
converge toK(m).

Theorem 3.6
Let K(m)s be defined by (12), then we have

(i) K(m)s ⊆ K(m)s+1 for everys ∈ N , and
(ii) lims→∞ K(m)s=

⋃∞

s=0 K(m)s=K(m).

Proof. We show thatK(m)s ⊆ K(m)s+1 and the other results follow from the definitions ofK(m)s
andK(m) immediately.

Let s ∈ N be fixed. Suppose thatD ∈ K(m)s. Then,g(x)sd(x) is SOS by Theorem3.5and (12).
This, together with the fact thatg(x) is SOS, implies thatg(x)s+1d(x) is SOS. Consequently, by
Theorem3.5again,D ∈ K(m)s+1. 2

It is interesting to investigate whether this ascending chain stops finitely or not.

Theorem 3.7
Let K(m)s be defined by (12), then we have

(i) K(m)∗s ⊃ K(m)∗s+1 for everys ∈ N , and
(ii) lims→∞ K(m)∗s=∩∞

s=0K(m)∗s=K(m)∗.

Proof. The results follow from the definitions ofK(m)∗s andK(m)∗, and Theorem3.6immediately.
2

Theorem3.6 indicates that the optimal value of the SDP(s) given in (11) tends to the one of (7),
hence the original TCLP, ass tends to∞. We show the detailed proof in the following theorem.

Theorem 3.8
Suppose that Assumption2.1holds. Denote the optimal value of the SDP(s) (11) by p(s). Then, we
havep(s) → p∗ ass → ∞.

Proof. Note that the problem SDP(s) (11) is just the problem (10) with the coneK(m) in (10) being
replaced by the coneK(m)s. Since Assumption2.1 holds, there exists anX ∈ intS(m) which is
feasible to (3), and also to (10). In fact, by Theorem3.3, we haveX ∈ K(m). Thus, by Theorem
3.6, it follows that there exists a positive integers0 such thatX ∈ K(m)s0 . Furthermore, it is easy
to see from Theorem3.6that∞ > p(s0) ≥ p(s) whens ≥ s0.

From Theorem3.6, we have thatK(m)s ⊆ K(m) for all s ∈ N . Then,K(m) ⊆ S(m), together
with the fact that both (3) and (4) are strictly feasible (hence solvable), implies thatp(s) ≥ p∗ > −∞.
By Theorem3.6, we know thatK(m)s → K(m) ass → ∞. Hence,p(s) → p∗ ass → ∞. Actually,
(3) is solvable by Assumption2.1and Theorem2.1. Since the relative interior of the feasible set of
(3) is nonempty, there exists a sequence of points{X(k)} in the relative interior of the feasible set

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2013)
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of (3), which are also in the relative interior of the feasible setof (10) by Lemma 1, converges to an
optimal solution of (3). Denote the corresponding objective value ofX(k) by pk. Sincepk → p∗, for
anyε > 0, there exists ak(ε) such that for anyk ≥ k(ε), pk − p∗ ≤ ε. ForX(k(ε)) ∈ K(m), there
exists ans(ε) such thatX(k(ε)) ∈ K(m)s(ε) by Theorem3.6. Hence,p(s(ε)) − p∗ ≤ ε. Consequently,
we have thatp(s) → p∗ ass → ∞.

The proof is complete. 2

Therefore, by Theorem3.8 we can, theoretically, solve a sequence of SDPs given as (11) by
increasings to obtain an approximation solution of the original TCLP up to a priori fixed precision.
For every problem SDP(s), we can find a feasibleX(s) ∈ K(m)s ⊂ K(m) ⊂ S(m) whose objective
value is sufficiently close top(s) by solving the SDP(s) (11). Sincep(s) → p∗, for a sufficiently
large s, p(s) is sufficiently close top∗, and henceX(s) ∈ K(m)s ⊂ K(m) ⊂ S(m) severs as an
approximation solution to (3). Note that such anX(s) is feasible to (3) as well. While, as the size
of the resulting SDPs increases drastically, it is impossible in practical computation to increases
arbitrarily large due to the present ability to solve SDP. Moreover, we do not know in advance for
which s, p(s) would be within the given accuracy region ofp∗. Consequently, Theorem3.8 only
serves as a theoretical result.

4. FINDING THE EXTREME Z-EIGENVALUES

In this section, we consider how to find the extreme Z-eigenvalues of an even order symmetric tensor.
Such a problem is crucial in many applications [14, 16]. We transform the extreme Z-eigenvalue
problem into a special TCLP, and then use the T-SSM to solve it. This section partitions into two
subsections. The concept of the Z-eigenvalues of tensors and the reformulation of the extreme Z-
eigenvalue problem are given in Subsection 4.1, and the numerical computation is given in the other
subsection.

4.1. The extreme Z-eigenvalues

In this subsection, we reformulate the extreme Z-eigenvalues of an even order symmetric tensor
into a TCLP. We first recall the concept of the Z-eigenvalues of tensors. For extensive discussions
on eigenvalues of tensors, please refer to [12–14, 16, 21–26] and references therein. For anm-th
ordern-dimensional symmetric tensorD and a vectorx ∈ ℜn, we denote byDxm−1 a vector in
ℜn with its i-th coordinate being

∑n
i2,...,im=1 dii2...imxi2 · · ·xim , andDxm the inner product of the

vectorsx andDxm. Given the tensorD, a Z-eigenvalue pair(λ, x) ∈ ℜ × ℜn means a solution to
the following system

{

Dxm−1 = λx,
xTx = 1.

Obviously,λ = Dxm for a Z-eigenvalue pair(λ, x) of D. In many applications, it is crucial to
compute the largest or the smallest Z-eigenvalues of a giventensorD.

Note that the largest and the smallest Z-eigenvalues ofD are the optimal values of the following
optimization problems:

max Dxm

s.t. xTx = 1,
(13)

and

min Dxm

s.t. xTx = 1,
(14)

respectively.
In the following, we will focus on optimization problem (14), since (13) can be easily handled if

we know a method to solve (14). We first notice that (14) is equivalent to

max γ
s.t. Dxm ≥ γ, ∀x ∈ {x ∈ ℜn | xTx = 1}. (15)
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Define anm-th ordern-dimensional tensorE asE = I ⊗ I ⊗ · · · ⊗ I (for m/2 times), whereI is
then× n identity matrix. So,Dxm ≥ γ, ∀x ∈ {x ∈ ℜn | xTx = 1} is the same asD − γE ∈ S(m),
which is the same to sayD − γE � 0. Hence, (15) is a special TCLP given by

max γ
s.t. D − γE � 0,

which is further equivalent to

min γ
s.t. D + γE � 0.

(16)

Since the optimization problem (16) is a special TCLP, it can be solved by using the T-SSM. For
any s ∈ N , by replacing the constraintD + γE � 0 with D + γE � 0 ∈ K(m)s, we get thes-th
order relaxation problem of (16). Let us write out it explicitly as:

SDP (s)

inf γ

s.t. V(Q)− γW(g(x)s+m/2) = W [g(x)sd(x)],

Q ∈ St(s+m/2)
+ .

(17)

Note that for any given tensorD ∈ T (m), the vectorW [g(x)sd(x)] is a constant vector. Here are
the main parameters of the SDP(s) above.

• It hast(m+ 2s) linear constraints.
• The positive semidefinite matrix variable is of dimensiont(m/2 + s).

Recall that forn dimensional tensors,t(k) = Ck
n+k−1 for k ∈ N . Hence, the size of the SDP(s)

increases drastically when(m,n, s) increases. In the tables of the next subsection, we show the
number of the linear constraints (Lin) and the dimension of the matrix variable (Dim) for every
computed case.

4.2. Numerical computation

In this subsection, we present some preliminary numerical results for solving (16) by using the T-
SSM. We just follow the discussions in the above subsection to develop the code. We implement the
optimization problem (17) in Matlab on our PC. The PC is with CPU of 2.4 GHz and RAM of 2.0
GB. We use SDPT3 [27] to solve the resulting conic linear programming problem which has both
free variable and positive semidefinite variable.

Firstly, we test three examples of tensors to show that the T-SSM can work very well.

Example 4.1
The first example is a6-th order 3-dimensional tensor. The corresponding tensor is made up of the
coefficients of the following polynomial (Stengle’s form) taken from [28]:

hSte(x) = x3
1x

3
3 + (x2

2x3 − x3
1 − x1x

2
3)

2.

It is well known thathSte is a positive semidefinite polynomial but not SOS. We denote the
corresponding tensor asTSte. It is easy to see that the Z-eigenvalue system ofTSte is







1
6 [3x

2
1x

3
3 + 2(x2

2x3 − x3
1 − x1x

2
3)(−3x2

1 − x2
3)] = λx1,

1
6 [2(x

2
2x3 − x3

1 − x1x
2
3)(2x2)] = λx2,

1
6 [3x

3
1x

2
3 + 2(x2

2x3 − x3
1 − x1x

2
3)(x

2
2 − 2x1x3)] = λx3,

(18)

where x2
1 + x2

2 + x2
3 = 1. From (18), we see thatλ = 0 is a Z-eigenvalue ofTSte with the

corresponding Z-eigenvector being(0, 1, 0)T . Furthermore,λ = 0 is the smallest Z-eigenvalue of
TSte sincehSte(x) ≥ 0. We use the T-SSM to find approximations for the smallest Z-eigenvalue
of TSte with s ∈ {0, 1, 2, 3}. The computed results are listed in Table I. In the table,it means the
iteration number of the SDP solver,cpu means the total time in seconds spent for both setting up
the problem and solving it,opt means the approximation value computed, andvol means the norm
of the violation of the constraints of the approximation solution. From the table, we see that the
method can find a good approximation solution, even for the zero order relaxation.
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Table I. Computation results for Example4.1

m n s Lin Dim it cpu opt vol
6 3 0 28 10 15 1.203 -1.7466e-0051.5047e-011
6 3 1 45 15 19 1.563 -1.3928e-0091.4234e-010
6 3 2 66 21 20 2.000 -6.3799e-0101.7391e-010
6 3 3 91 28 23 3.453 -2.5448e-0103.5135e-010

Example 4.2
In this example, fourth order four-dimensional positive semidefinite symmetric tensors are randomly
generated. To generate a positive semidefinite symmetric tensor, we first randomly generate a vector
x. Then form a fourth order rank one tensorx⊗ · · · ⊗ x. By definition, this tensor is positive
semidefinite. We take a sum of15 such randomly generated rank one tensors to form a positive
semidefinite symmetric tensor. We test the T-SSM with such tensors. In the following, we display the
computation results for one of the simulations as an example. The coefficients of the polynomial
d(x) in the order of the monomials vectorv4(x) are put in the following vector

(0.6795, 0.5696, 0.7268,−0.4051, 2.4625, 1.4716, 2.1854, 2.0333,−1.1188, 2.0347,
0.6176, 3.9182,−0.7433, 2.8720, 2.4059,−1.1220, 0.2469,−0.5837, 0.9269,−0.6628,
1.2701, 0.7049, 1.3213, 2.5168,−0.4932, 1.9971, 0.2712, 0.6999,−0.9938, 0.9199,

0.7409,−0.3241, 1.6088,−1.0541, 0.5114).

The computed approximation values of thes-th order relaxations fors ∈ {0, 1, 2, 3, 4} are the same
0.1706.

Example 4.3
This example is similar to Example4.2, except for fourth order five-dimensional tensors. The taken
example is as follows. The coefficients of the polynomiald(x) in the order of monomials vector
v4(x) are put in the following vector

(2.3525,−0.7663,−2.0847, 1.8713, 2.4123, 1.0810, 0.0019, 1.8585, 0.3500, 2.8223,
−1.2591,−1.1789, 4.1955, 4.5213, 4.3148,−0.2060,−0.3665,−0.4879,−0.5095, 0.0551,
0.2353, 0.1936,−1.2513,−0.5995, 0.0117,−1.5205, 1.4961,−0.7163,−1.2764, 0.0210,

−0.7210, 1.2239, 0.3303, 2.9108, 1.2443, 0.3552, 0.8959, 0.5733,−0.8267, 1.4233,
0.3718,−2.4382, 0.8745,−0.4801, 1.8166, 0.7590, 0.4976,−2.3369, 0.4780,−0.9982,
2.1721, 0.4117, 0.0751, 1.0824,−0.5833, 0.6672,−0.6814,−0.2190, 1.2729,−1.2632,
2.2729,−0.4839,−0.7655,−2.1708,−1.9507, 0.9113, 0.6238, 3.8270, 2.7994, 2.2072).

The computed approximation values of thes-th order relaxations fors ∈ {0, 1, 2, 3} are the same
0.0508.

Secondly, we present in the following three systems of preliminary numerical results for some
randomly generated symmetric tensors.

(I) We compare the accuracy of the T-SSM with the roots findingmethod proposed in [14] by
randomly generated4-th order3-dimensional symmetric tensors. The reason why we use3-
dimensional tensors is that the roots finding method can onlybe applied to3-dimensional
tensors. We uses = 0 in the numerical computation, since Hilbert’s result say thatK(4)0 =
K(4) in this case [28]. The numerical results are listed in Table II. In the table,r means that the
corresponding tensor is equal to a sum ofr positive semidefinite rank one tensors generated
similarly to Example4.2; while r = 0 means that every entry of the corresponding tensor is
randomly generated, hence it is indefinite in general. We list ten simulations forr = 0, and
four for each other values ofr. it, opt andvol are the same as those in Example4.1. cpu1
is the the total cpu time of the T-SSM in seconds spent for bothsetting up the problem and
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solving it; andcpu2 for the roots finding method. Finally,Root is the smallest Z-eigenvalue
computed through the roots finding method.

(II) We test the numerical behaviors of the T-SSM for randomly generated positive semidefinite
symmetric tensors. The positive semidefinite symmetric tensors are generated similarly to
those in Example4.2. The results are listed in Table III. The parameters(m,n, r, s) of the
tested cases are clear from the table. For each case, we simulate ten times to get the average
number of iterations (it), the average cpu time spent for both setting up the problem and
solving it (cpu), the average approximation value computed by the T-SSM (opt) and the
average violation of the constraints (vol).

(III) We test the T-SSM for positive semidefinite symmetric tensors with the smallest Z-eigenvalues
being zeros. The tensors are generated similarly to those inExample4.2with the summation
of the rank one tensors being the number of its dimension minus one. Consequently, the
generated tensors are positive semidefinite and with the smallest Z-eigenvalues being zeros.
We call that the proposed method can successfully solve the extreme Z-eigenvalue problem if
the approximation value computed has absolute value less than10−8. In this case, we put the
smallest relaxation orders into the corresponding cross ofm andn in Table IV. If the problem
setting is out of the memory of our PC, we put a “-” in the corresponding cross.

Table II. Comparisons of roots finding method (Lin=15 and Dim=6)

r it cpu1 opt vol cpu2 Root
0 11 1.094 -8.4506e-0014.3178e-0131.125 -8.4506e-001
0 11 0.969 -7.2252e-0011.3786e-0111.078 -7.2252e-001
0 11 1.078 -4.5716e-0014.4230e-0141.094 -4.5716e-001
0 12 1.016 -3.8369e-0014.9058e-0141.125 -3.8369e-001
0 11 0.938 -7.4017e-0013.4039e-0131.172 -7.4017e-001
0 12 1.109 -6.3362e-0011.3135e-0111.109 -6.3362e-001
0 11 1.063 -5.8289e-0014.4416e-0111.109 -5.8289e-001
0 12 1.125 -2.5095e-0015.3866e-0111.156 -2.5095e-001
0 11 1.109 -2.5795e-0018.6319e-0151.109 -2.5795e-001
0 12 1.188 -1.5701e-0012.0914e-0142.938 -1.5701e-001

1 19 1.156 -5.1666e-0092.1909e-0101.125 -2.3823e-022
1 16 1.063 -3.8401e-0092.6203e-0111.094 -1.3764e-021
1 17 1.156 -2.8225e-0095.2696e-0111.125 -4.3368e-019
1 17 1.219 -3.0147e-0093.6141e-0111.094 -8.6736e-018
5 11 1.141 1.2166e-0021.8395e-0141.094 1.2166e-002
5 15 1.281 6.2471e-0021.2187e-0121.172 6.2471e-002
5 11 1.141 8.0927e-0029.7049e-0151.156 8.0927e-002
5 11 1.188 8.8725e-0023.2066e-0131.109 8.8725e-002
10 11 1.078 3.9850e-0012.0244e-0141.094 3.9850e-001
10 12 1.234 2.2917e-0018.8872e-0151.141 2.2917e-001
10 13 1.281 3.1400e-0014.0493e-0151.109 3.1400e-001
10 12 1.172 8.1200e-0023.4809e-0141.172 8.1200e-002
15 12 1.281 2.5545e-0019.9169e-0121.203 2.5545e-001
15 11 1.266 1.3178e-0011.5459e-0141.156 1.3178e-001
15 11 1.234 2.8711e-0012.2521e-0141.094 2.8711e-001
15 11 1.234 2.1930e-0018.2069e-0141.125 2.1930e-001

From Tables II-IV, we have the following observations:

• From Table II, we see that the T-SSM can find the smallest Z-eigenvalues with high accuracy
for three dimensional tensors. For the rows corresponding to rank one tensors (the optimal
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Table III. Positive semidefinite tensors

m n r s Lin Dim it cpu opt vol
6 3 5 0 28 10 15.3 0.822 2.2712e-0031.2264e-012
6 3 5 1 45 15 15.8 1.052 1.6621e-0039.8237e-013
6 3 5 2 66 21 17.2 1.522 1.8533e-0039.5328e-012
8 3 5 0 45 15 17.5 1.261 2.4100e-0044.1855e-010
8 3 5 1 66 21 18.4 1.719 3.6409e-0053.4950e-010
8 3 5 2 91 28 19.5 2.802 8.8981e-0044.8231e-011
10 3 5 0 66 21 18.1 2.077 1.7700e-0044.7274e-011
10 3 5 1 91 28 18.8 3.267 5.2268e-0054.5275e-009
10 3 5 2 120 36 19.9 4.622 7.3900e-0061.2359e-009
16 3 5 0 153 45 23.2 11.063 2.2106e-0071.7308e-008
16 3 5 1 190 55 23.3 12.220 4.9569e-0091.3141e-008
16 3 10 0 153 45 23.9 16.255 3.3441e-0052.5583e-010
16 3 10 1 190 55 26.1 17.430 1.2871e-0042.5695e-010
20 3 10 0 231 66 27.7 38.175 4.0633e-0076.7615e-009
24 3 15 0 325 91 33.1 113.817 5.1880e-0072.3918e-009
4 4 5 0 35 10 14.7 0.892 7.8790e-0033.7801e-012
4 4 5 1 84 20 16.1 1.852 5.5990e-0037.8961e-012
4 4 5 2 165 35 19.2 5.819 5.1730e-0039.7661e-012
4 6 10 0 126 21 16.4 6.377 7.8242e-0034.1298e-012
4 6 10 1 462 56 18.8 35.897 1.9803e-0021.1370e-011
4 8 15 0 330 36 17.9 53.856 1.4943e-0021.0850e-011
6 4 15 0 84 20 16.6 4.314 2.0749e-0021.0611e-012
6 5 15 0 210 35 18.0 21.472 1.9167e-0021.9113e-011
6 6 15 0 462 56 20.8 109.661 5.4306e-0038.6242e-012

Table IV. The order of relaxation

m\n 3 4 5 6 7 8 9 10
4 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 - -
8 0 0 0 0 - - - -
10 0 0 0 - - - - -
12 0 0 - - - - - -
14 0 0 - - - - - -
16 0 0 - - - - - -
18 0 - - - - - - -
20 0 - - - - - - -
22 0 - - - - - - -
24 1 - - - - - - -

value would be zero), we see that theopt is of magnitude10−9, while that forRoot is 10−20.
That is because the former is based on SDPT3 which terminatesonce the duality gap being
smaller than10−8, while the latter is a direct method. However, both are with high accuracy
to the true value zero.

• From Table III, we see that the T-SSM can find the smallest Z-eigenvalues of positive
semidefinite symmetric tensors in few iterations and cpu time. Note that for the case(m,n) =
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(24, 3) in this table, the number of linear constraints of the corresponding SDP is 325. For
(m,n) = (6, 6), the number of linear constraints of the corresponding SDP is 462. Hence, it
takes a bit more time to solve these problems.

• From Table IV, we see that many cases can be solved with low order relaxation (s = 0 mostly).
For the failed cases, take(m,n) = (6, 9) as an example. The number of linear constraints of
the SDP is 3003 and the dimension of the positive semidefinitematrix variable is 165. Such a
problem size for SDP is not small. This problem is out of the reach of our PC.

From the numerical results presented above, we see that the T-SSM performs quite well. Hence,
it would serve as a research tool for analyzing tensors and its related problems.

5. FINAL REMARKS

In this paper, we introduced the TCLP which is a generalization of the STLP proposed by Qi and
Ye [1]. For the numerical method to the TCLP, we proposed a sequential SDPs method to solve the
TCLP. It is abbreviated as T-SSM. In particular, we reformulated the extreme Z-eigenvalue problem
for even order symmetric tensors as a special TCLP. Some preliminary numerical results for finding
the smallest Z-eigenvalue of an even order symmetric tensorbased on the T-SSM were reported. The
numerical results showed the potential application for both practical use and theoretical research of
the T-SSM in various applications.

There are also some problems need to be further studied: (i) The T-SSM is essentially an SOS
relaxation method [29,30]. It is well-known that such methods cannot handle larger size problems.
Then, how to improve the performance of the T-SSM? (ii) The extreme Z-eigenvalue problem for
odd order tensors are not included in the framework of the TCLP, since we cannot define positive
semidefiniteness for odd order tensors. (iii) Whether it is possible to develop some techniques based
on the T-SSM to find out all the Z-eigenvalues of a given tensoror not?
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