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Abstract: We continue our study [8] on the Cauchy problem for the three-dimensional
magnetic Zakharov system

iEt +∆E− nE+ i(E ∧B(E)) = 0,
nt = −∇ ·V,
Vt = −∇n−∇|E|2,
∆B− iη∇×∇× (E ∧E) + δB = 0,

(ZSM)

with initial data

E(0, x) = E0(x), n(0, x) = n0(x), V(0, x) = V0(x). (ZSM − 1)

Let (E, n,V) ∈ C
(
[0, T ),H1(R3)× L2(R3)× L2(R3)

)
be a blow-up solution to the

Cauchy problem (ZSM)-(ZSM-1), and let T < ∞ be its blow-up time. Then (E, n)
satisfies the space-time integral estimate∫ T

0

[(∫
R3

|n(t, x)|qdx
) 1

q

+

(∫
R3

|E(t, x)|2qdx
) 1

q

]γ
dt = +∞, (E − 1)

where γ > 1
ε , ε ∈

(
0, 14
]
and q = 3

2(1−ε) ∈
(
3
2 , 2
]
. The estimate (E-1) implies that,

for a < 1,

sup
t∈[0,T )

[
(T − t)aε

(
|n(t)|Lq(R3) + |E(t)|2L2q(R3)

)]
= +∞.

In particular, if (E, n,V) is a radially symmetric solution to (ZSM)-(ZSM-1), then

sup
t∈[0,T )

[
(T − t)aε

(
|n(t)|Lq(D) + |E(t)|2L2q(D)

)]
= +∞,

where a ∈ (0, 13) and D =
{
x ∈ R3 : |x| < 1

}
.
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1 Introduction

The main purpose of this work is to study the blow-up rate for a blow-up solution of the
magnetic Zakharov system. We establish space-time integral estimates on the blow-up
solution. Specifically, in the present paper we continue our study [8] on the 3D Magnetic
Zakharov system 

iEt +∆E− nE+ i(E ∧B(E)) = 0,
nt = −∇ ·V,
Vt = −∇n−∇|E|2,
∆B− iη∇×∇× (E ∧ E) + δB = 0,

(1.1)

with initial data

E(0, x) = E0(x), n(0, x) = n0(x), V(0, x) = V0(x), (1.2)

where (E, n,V) : (t, x) ∈ [0, T ) × R3 → C3 × R × R3, η and δ are two real constants
with η > 0, δ ≤ 0, ∧ denotes the exterior product of vector-valued functions, and E the
complex conjugate of E (see [14]). The Zakharov system (1.1) describes the spontaneous
generation of a magnetic field in a cold plasma. E represents the slowly varying complex
amplitude of the high-frequency electric field, B the self-generated magnetic field, and n
the fluctuation of the electron density from its equilibrium [7, 13, 14, 22, 23].

Using Fourier transform, we can solve the fourth equation in (1.1) and can obtain that
if E ∈ H1(R3), then B(E) ∈ L2(R3) and

B(E) = F−1

[
iη

|ξ|2 − δ

(
ξ ∧

(
ξ ∧ F

(
E ∧ E

)))]
, (B − 1)

where F and F−1 mean the Fourier transform and the Fourier inverse transform, respec-
tively (see [14, 17, 18, 19]).

For the Zakharov system (1.1), on one hand, it is a system with a nonlocal operator.
On the other hand, it is a Hamiltonian system, and for (E0, n0,V0) ∈ H1(R3)×L2(R3)×
L2(R3), we have two conservation laws:

• L2-norm:

∥E∥2L2(R3) = ∥E0∥2L2(R3), (1.3)

• Energy:

H(t) = H(0), (1.4)

where

H(t) =

∫
R3

(
|∇E|2 + 1

2
|n|2 + 1

2
|V|2 + n|E|2

)
dx

+
η

2

∫
R3

1

|ξ|2 − δ

[∣∣ξ · F(E ∧ E)
∣∣2 − |ξ|2

∣∣F(E ∧ E)
∣∣2] dξ. (1.5)

We first recall some known results about the system (1.1) without any magnetic field
effect which provides the fluid modeling of the interaction between Langmuir and ion-
acoustic waves [22]: {

iEt +∆E− nE = 0,
ntt −∆n = ∆|E|2. (Z − S)

2



Sulem proved in [21] the global existence of a weak solution for certain small initial data
in two and three dimensions, supposing in particular, n1 ∈ Ḣ−1(Rd) (Ḣ−1(Rd) denotes
the homogeneous Sobolev space, Ḣ−1(Rd) = {u ∈ S ′(Rd) : 1

|ξ| û(ξ) ∈ L2(Rd)} ). With
the same assumptions, they also established local existence and uniqueness of a smooth
solution (E, n) with

(E, n) ∈ L∞ (0, T ;Hm(Rd)
)
× L∞ (0, T ;Hm−1(Rd)

)
for m ≥ 3.

In [11, 12], Glangetas and Merle studied the existence of self-similar blow-up solution-
s, concentration properties of blow-up solutions and instability of periodic solutions for
the Zakharov system (Z-S) under the Hamiltonian case in R2. In [16], Merle established
the blow-up results of virial type for (Z-S) in two and three space dimensions. The so-
lution was shown to be globally well-defined in one space dimension [21], and in two
space dimensions for small initial data [1]. In [20], the authors proved the local well-
posedness (in time) of the Cauchy problem for (Z-S) if initial data satisfied (E0, n0, V0) ∈
H2(R3) × H1(R3) × H1(R3). Later, Bourgain-Colliander [5] and Ginibre-Tsutsumi-Velo
[10] obtained some results on the local well-posedness through using a method introduced
by Bourgain in [2, 3, 4] for nonlinear dispersive equations. In [10], the authors also
proved that the Cauchy problem for (Z-S) is locally (in time) wellposed for initial data
(E0, n0, n1) ∈ Hk(Rd) × H l(Rd) × H l−1(Rd) provided that l ≥ 0 and 2k − (l + 1) ≥ 0,
and the solution satisfied (E, n, nt) ∈ C

(
[0, T );Hk(Rd)×H l(Rd)×H l−1(Rd)

)
. For the

system (Z-S) in the Hamiltonian case, Masselin in [15] provided an integral estimate on
space and time for n.

We now return to mention some known results on the Cauchy problem (1.1)-(1.2).
From results of Laurey [14], the global existence of a weak solution, the local existence
and uniqueness of a smooth solution for the system were achieved for space dimension 2
and 3. Concerning the singularity of solutions to the Cauchy problem (1.1)-(1.2), Gan-
Guo-Han-Zhang [8] established the following blow-up result.
Proposition 1.1. Let η > 0 and δ ≤ 0. Assume that for all time, the solutions
(E, n,V)(t) of the Cauchy problem (1.1)-(1.2) are radially symmetric and H(0) < 0.
Then we have the following alternatives:
i) (E, n,V)(t) blows up in finite time.
ii) (E, n,V)(t) blows up in infinite time in H1(R3)×L2(R3)×L2(R3). That is, (E, n,V)(t)
is defined for all t, and

lim
t→T

|(E, n,V)(t)|H1(R3)×L2(R3)×L2(R3) = +∞. (B − U)

�
In addition, Gan-Guo-Huang in [9] constructed a kind of blow-up solutions, established
the existence of blow-up solutions through considering an elliptic system, showed the
nonlinear instability of periodic solutions, studied the concentration properties of blow-
up solutions and obtained the global existence of weak solutions.

We now mention some notations which will be imposed in the present paper.
Notations. Let D = {x ∈ R3 : |x| < 1}. For an ε ∈ (0, 1

4
] fixed, let q = 3

2(1−ε)
∈ (3

2
, 2]

and p ∈ [4, 6) defined by the relation 2
p
+ 1

q
= 1. In particular, if ε = 1

4
, then q = 2 and

p = 4. Throughout this paper, C denotes any positive constant which depends only on ε,
and |(E0, n0,V0)|H1(R3)×L2(R3)×L2(R3).
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In this paper we shall be interested in the blow-up rate of the blow-up solutions to the
Cauchy problem for the system (1.1), and establish the integral estimate on space and
time for n and E.

The following one theorem and two corollaries are the main results of the paper.
Theorem 1.1. For η > 0 and δ ≤ 0, let (E, n,V) ∈ C ([0, T );H1(R3)× L2(R3)× L2(R3))
be a blow-up solution to the Cauchy problem (1.1)-(1.2). We assume that (E, n,V) blows
up at time T (T < ∞). If γ > 1

ε
, then∫ T

0

[(∫
R3

|n(t, x)|qdx
) 1

q

+

(∫
R3

|E(t, x)|2qdx
) 1

q

]γ
dt = +∞. (1.6)

Theorem 1.1 implies the conclusion below.
Corollary 1.1. For η > 0 and δ ≤ 0, let (E, n,V) ∈ C ([0, T );H1(R3)× L2(R3)× L2(R3))
be a blow-up solution to the Cauchy problem (1.1)-(1.2), and that T < ∞ be its blow-up
time. Then for a < 1, there holds that

sup
t∈[0,T )

[
(T − t)aε

(
|n(t)|Lq(R3) + |E(t)|2L2q(R3)

)]
= +∞. (1.7)

In particular, if (E, n,V) is a radially symmetric solution to the Cauchy problem (1.1)-
(1.2), we then achieve the following estimates of n in Lq(D) and E in L2q(D).
Corollary 1.2. For η > 0 and δ ≤ 0, let (E, n,V) ∈ C ([0, T );H1(R3)× L2(R3)× L2(R3))
be a radially symmetric solution of the Cauchy problem (1.1)-(1.2), and that T < ∞ be
its blow-up time. Then for a ∈ (0, 1

3
), there holds that

sup
t∈[0,T )

[
(T − t)aε

(
|n(t)|Lq(D) + |E(t)|2L2q(D)

)]
= +∞. (1.8)

It is difficult to construct a kind of blow-up solutions for the system (1.1) in three
space dimensions although the authors in [8] have established an existence result of the
blow-up solutions for the Cauchy problem (1.1)-(1.2) . Fortunately, for some special forms
of E, n and B in the system (1.1), we can construct a kind of blow-up solutions to the
system (1.1). Let’s here give a brief remark.
Remark 1.1. We consider the Zakharov system (1.1) in the cylindrical coordinate
(r, θ, z). We can construct the following blow-up solutions:

E = (E1, 0, iE1), E1(t, x) =
ω/

√
2

T − t
P

(
ωr

T − t
,

ωz

T − t

)
ei(T−t)−1

,

n(t, x) =
ω2

(T − t)2
N

(
ωr

T − t
,

ωz

T − t

)
,

B = (0, B̃, 0), B̃(t, x) =
ω2

(T − t)2
M

(
ωr

T − t
,

ωz

T − t

)
,

(1.9)

where

P (r, z) = P

(√
x2
1 + x2

2, z

)
, N(r, z) = N

(√
x2
1 + x2

2, z

)
,M(r, z) = M

(√
x2
1 + x2

2, z

)
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are real radially symmetric functions on R2 × R in the cylindrical coordinate and ω > 0.
In addition, (P,N,M) satisfies the following system:

∆P − P −NP +MP = 0,

λ2(r2Nrr + rzNrz + zrNzr + z2Nzz

+6(rNr + zNz) + 6N)−∆N = ∆(|P |2),

∆M + δ(T − t)2λ2M = η∆(|P |2),

(1.10)

where λ =
1

ω
. Furthermore, let

M = ηF−1

(
|ξ|2

|ξ|2 − δ(T − t)2λ2
F(P 2)

)
,

(1.10) then reduces to

∆P − PηF−1

(
|ξ|2

|ξ|2 − δ(T − t)2λ2
F(P 2)

)
+ P = NP,

λ2(r2Nrr + rzNrz + zrNzr + z2Nzz

+6(rNr + zNz) + 6N)−∆N = ∆(|P |2).

(1.11)

For ∀T > 0, 0 ≤ t < T fixed, the existence of solutions to the system (1.11) in H1
r (R3)×

L2
r(R3) may be obtained by referring papers [11, 12]. We will discuss this topic in our

future work. Here, we assume that there exists a solution for the system (1.11) to establish
the main results of the present paper. In particular, if (P,N) ∈ H1

r (R3) × L2
r(R3) is a

solution to (1.11), then (E, n) defined in (1.9) is a blow-up solution to the Cauchy problem
(1.1)-(1.2). When δ = 0, (1.11) reduces to

∆P − ηP 3 + P = NP,

λ2(r2Nrr + rzNrz + zrNzr + z2Nzz

+6(rNr + zNz) + 6N)−∆N = ∆(|P |2).

(1.12)

If (P,N) ∈ H1
r (R3) × L2

r(R3) is a solution to (1.12), then (E, n) defined in (1.9) is a
self-similar blow-up solution to the Cauchy problem (1.1)-(1.2) with δ = 0. It is worth
mentioning that in two space dimensions, we have constructed a special kind of blow-up
solutions to the system (1.1) (see [9]) .

We will give the formal derivation of the blow-up solution (1.9) to the Cauchy problem
(1.1)-(1.2) in Appendix A.

2 Preliminaries

In order to prove Theorem 1.1, Corollary 1.1 and Corollary 1.2, we give some key
ingredients.
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Lemma 2.1. For η > 0 and δ ≤ 0, let ε ∈ (0, 1
4
] be fixed, q = 3

2(1−ε)
∈ (3

2
, 2] and 2

p
+ 1

q
= 1.

Then the following estimates hold.
(i) If ϕ ∈ H1(R3) is radially symmetric, then ϕ ∈ L∞(R3 \ D) and

|ϕ|2L∞(R3\D) ≤ C|∇ϕ|L2(R3)|ϕ|L2(R3). (2.1)

(ii) If Ω is a domain in R3 with sufficiently smooth boundary and ϕ ∈ H1(Ω), then
ϕ ∈ Lp(Ω), and

|ϕ|Lp(Ω) ≤ C|∇ϕ|1−ε
L2(Ω)|ϕ|

ε
L2(Ω). (2.2)

In particular ϕ ∈ L4(Ω), and

|ϕ|L4(Ω) ≤ C|∇ϕ|
3
4

L2(Ω)|ϕ|
1
4

L2(Ω). (2.3)

(iii) Let U(t) = eit∆ and 1
p
+ 1

p′
= 1. There then exists a constant C > 0 such that for

any ϕ ∈ Lp′(R3), and for any t > 0,

|U(t)ϕ|Lp(R3) ≤
C

t1−ε
|ϕ|Lp′ (R3). (2.4)

Proof. (i) From [6], it follows that

sup
x∈R3

|x||ϕ(x)| ≤ C|ϕ|
1
2

L2(R3)|∇ϕ|
1
2

L2(R3) (2.5)

for ϕ ∈ H1(R3). Note that D = {x ∈ R3 : |x| < 1} and (2.5), for ϕ ∈ L∞(R3 \ D), we
achieve

|ϕ|L∞(R3\D) < sup
x∈R3\D

|x||ϕ(x)| ≤ sup
x∈R3

|x||ϕ(x)| ≤ C|ϕ|
1
2

L2(R3)|∇ϕ|
1
2

L2(R3).

With an eye on exploiting (2.5), we obtain (2.1).
(ii) With the aid of Gagliardo-Nirenberg inequality, we conclude (2.2) and (2.3).
(iii) Note that p′ = p

p−1
, q = 3

2(1−ε)
and 2

p
+ 1

q
= 1, (2.4) follows immediately from the

standard semigroup theory arguments. �
One can of course obtain the limit estimates of a blow-up solution for the Cauchy

problem (1.1)-(1.2).
Lemma 2.2. For η > 0, δ ≤ 0, let (E, n,V) be a blow-up solution to the Cauchy problem
(1.1)-(1.2) in H1(R3)× L2(R3)× L2(R3), and let T (T < ∞) be the blow-up time. Then

lim
t→T

|E(t)|L4(R3) = +∞, (2.6)

lim
t→T

|∇E(t)|L2(R3) = +∞. (2.7)

Proof. We first show (2.6). Suppose for contradiction that there is a sequence {tk} with
tk < T satisfying lim

k→∞
tk = T such that

lim
t→T

|E(tk)|L4(R3) ≤ C (2.8)

6



for any k and for a constant C > 0. From (1.4), (1.5) and Hölder’s inequality we have

1
2

∫
R3 n

2(tk, x)dx

≤ H(0) +
∣∣∫

R3 n(tk, x)|E(tk, x)|2dx
∣∣

+ η
2

∫
R3

1
|ξ|2−δ

[
|ξ|2

∣∣F(E ∧ E)
∣∣2 − ∣∣ξ · F(E ∧ E)

∣∣2] dξ
≤ H(0) + |n(tk)|L2(R3)|E(tk)|2L4(R3) +

η
2

∫
R3 |(E ∧ E)(tk)|2dx

≤ H(0) + |n(tk)|L2(R3)|E(tk)|2L4(R3) +
η
2
|E(tk)|4L4(R3).

(2.9)

Hence |n(tk)|L2(R3) is bounded.
On the other hand, combining (2.9) with (1.4) and (1.5) yields that∫

R3 |∇E(tk, x)|2dx+ 1
2

∫
R3(n

2(tk, x) + |V(tk, x)|2)dx

≤ H(0) + |n(tk)|L2(R3)|E(tk)|2L4(R3) +
η
2
|E(tk)|4L4(R3)

≤ C.

(2.10)

But this together with (2.9) contradicts the blow-up assumption. Thus (2.6) holds true.
(2.7) follows easily from (2.3) and (2.6). �

The following estimates play an important role to the proofs of Theorem 1.1, Corollary
1.1 and Corollary 1.2.
Lemma 2.3. For η > 0 and δ ≤ 0, there exists a positive constant C such that for any
t ∈ [0, T ),

|E(t)|Lp(R3) ≤ C

[
1 +

∫ t

0

1

(t− s)1−ε

(
|n(s)|Lq(R3) + |E(s)|2L2q(R3)

)
|E(s)|Lp(R3)ds

]
. (2.11)

In particular,

|E(t)|L4(R3) ≤ C

[
1 +

∫ t

0

1

(t− s)3/4

(
|n(s)|L2(R3) + |E(s)|2L4(R3)

)
|E(s)|L4(R3)ds

]
. (2.12)

Proof. Consider the Cauchy problem
iEt +∆E− nE+ i(E ∧B(E)) = 0,

B(E) = F−1
[

iη
|ξ|2−δ

(
ξ ∧

(
ξ ∧ F

(
E ∧ E

)))]
,

E(0, x) = E0(x),

it is easy to write down its formal solution as follows by integrating the corresponding
equations and then applying the corresponding initial value condition.

E(t) = U(t)E0 − i

∫ t

0

U(t− s) [n(s)E(s)− i(E(s) ∧B(E(s)))] ds. (2.13)

7



Here, U(t) = eit∆ is the unitary semigroup generated by the free Schrödinger equation
iEt +∆E = 0 in the Hilbert space Hk(R3) (k ∈ R). Applying the Minkowski inequality,
we then have

|E(t)|Lp(R3) ≤ |U(t)E0|Lp(R3)

+
∫ t

0
|U(t− s)n(s)E(s)|Lp(R3)ds

+
∫ t

0
|U(t− s)(E ∧B(E))|Lp(R3)ds.

(2.14)

On the other hand,

|U(t− s)n(s)E(s)|Lp(R3) ≤
C

(t− s)1−ε
|n(s)E(s)|Lp′ (R3), (2.15)

|U(t− s)(E ∧B(E))|Lp(R3) ≤
C

(t− s)1−ε
|(E ∧B(E))|Lp′ (R3), (2.16)

where 1
p
+ 1

p′
= 1, 2

p
+ 1

q
= 1, 1

p
+ 1

q
= 1− 1

p
= 1

p′
. By Hölder’s inequality, the right-hand

side of (2.15) and (2.16) can be bounded as

|n(s)E(s)|Lp′ (R3) ≤ |n(s)|Lq(R3)|E(s)|Lp(R3), (2.17)

|(E ∧B(E))|Lp′ (R3)

=
∣∣∣E ∧ F−1

[
iη

|ξ|2−δ

(
ξ ∧

(
ξ ∧ F

(
E ∧ E

)))]∣∣∣
Lp′ (R3)

≤ C|E(s)|Lp(R3)|E(s)|2L2q(R3).

(2.18)

Combining (2.15) with (2.16), (2.17) and (2.18) yields that

|U(t− s)n(s)E(s)|Lp(R3) ≤
C

(t− s)1−ε
|n(s)|Lq(R3)|E(s)|Lp(R3), (2.19)

|U(t− s)(E ∧B(E))|Lp(R3) ≤
C

(t− s)1−ε
|E(s)|Lp(R3)|E(s)|2L2q(R3). (2.20)

With the aid of (2.2) we have

|U(t)E0|Lp(R3) ≤ C|U(t)E0|εL2(R3)|∇(U(t)E0)|1−ε
L2(R3)

≤ C|E0|εL2(R3)|∇E0|1−ε
L2(R3).

(2.21)

(2.14)-(2.21) then yield the desired inequality (2.11). In particular, we obtain (2.12) by
choosing ε = 1

4
. �

3 Proofs of the Main Results

We are now in the position to prove Theorem 1.1, Corollary 1.1 and Corollary 1.2.
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3.1 Proof of Theorem 1.1.

Suppose for contradiction that there exists γ > 1
ε
such that∫ T

0

[(∫
R3

|n(t, x)|qdx
) 1

q

+

(∫
R3

|E(t, x)|2qdx
) 1

q

]γ
dt < +∞. (3.1)

Applying Lemma 2.3 we have

|E(t)|Lp(R3) ≤ C

(
1 +

∫ t

0

1

(t− s)1−ε
(|n(s)|Lq(R3) + |E(s)|2L2q(R3))|E(s)|Lp(R3)ds

)
, (3.2)

where 1− ε+ 1
γ
< 1 and |n(s)|Lq(R3)+ |E(s)|2L2q(R3) ∈ Lγ(0, T ). By Gronwall lemma, there

exists a constant C > 0 such that

∀t ∈ [0, T ), |E(t)|Lp(R3) ≤ C. (3.3)

Indeed, from (3.2) Gronwall lemma implies that

|E(t)|Lp(R3) ≤ C exp
[∫ t

0
1

(t−s)1−ε

(
|n(s)|Lq(R3) + |E(s)|2L2q(R3)

)
ds
]

≤ C exp

{[∫ t

0

(
|n(s)|Lq(R3) + |E(s)|2L2q(R3)

)γ
ds
] 1

γ

·
[∫ t

0

(
1

(t−s)1−ε

) γ
γ−1

ds

] γ−1
γ

}
,

which requires that 1− γ(1−ε)
γ−1

> 0 if the right hand side of the above inequality is bounded.

That is, γ > 1
ε
.

We now need to divide the remaining proof into two cases:
Case 1: ε = 1

4
;

Case 2: ε ∈ (0, 1
4
).

Let us first consider Case 1: ε = 1
4
. In this case, noting that q = 3

2(1−ε)
and 2

p
+ 1

q
= 1,

we have p = 4 and q = 2. (3.3) then contradicts Lemma 2.2. Hence for any γ > 4, one
always has ∫ T

0

[(∫
R3

|n(t, x)|2dx
) 1

2

+

(∫
R3

|E(t, x)|4dx
) 1

2

]γ
dt = +∞. (3.4)

We now consider Case 2: ε ∈ (0, 1
4
). In this case, from (1.4) and (1.5) we have

1
2

∫
R3 |n(t, x)|2dx

≤ H(0) +
∣∣∫

R3 n(t, x)|E(t, x)|2dx
∣∣

+ η
2

∫
R3

1
|ξ|2−δ

[
|ξ|2

∣∣F(E ∧ E)
∣∣2 − ∣∣ξ · F(E ∧ E)

∣∣2] dξ
≤ H(0) + |n(t)|Lq(R3)|E(t)|2Lp(R3) + C|E(t)|4L4(R3),

(3.5)

9



where 2
p
+ 1

q
= 1, η > 0 and δ ≤ 0.

Since

|E(t)|4L4(R3) ≤ |E(t)|2L2q(R3)|E(t)|2Lp(R3)

≤
(
|E(t)|2L2q(R3) + |n(t)|Lq(R3)

)
|E(t)|2Lp(R3), (3.6)

using (3.3), a direct computation allows one to achieve

1
2

(
|n(t)|L2(R3) + |E(t)|2L4(R3)

)2
≤ |n(t)|2L2(R3) + |E(t)|4L4(R3)

≤ C
(
|n(t)|Lq(R3) + |E(t)|2L2q(R3)

)
.

(3.7)

We then have ∫ T

0

(
|n(t)|L2(R3) + |E(t)|2L4(R3)

)2γ
dt

≤ C

∫ T

0

(
|n(t)|Lq(R3) + |E(t)|2L2q(R3)

)γ
dt < +∞. (3.8)

In view of 2γ > 2
ε
≥ 8, (3.8) contradicts the estimate (3.4), which completes the proof of

the space-time estimate (1.6). �

3.2 Proof of Corollary 1.1.

We show Corollary 1.1 by contradiction.
Assume that there is a constant C such that for a < 1,

(T − t)aε
(
|n(t)|Lq(R3) + |E(t)|2L2q(R3)

)
≤ C. (3.9)

A simple computation yields that for γ > 1
ε
,∫ T

0

(
|n(t)|Lq(R3) + |E(t)|2L2q(R3)

)γ
dt ≤ C

∫ T

0

(T − t)−aεγdt. (3.10)

That is, for a < 1, ε ∈ (0, 1
4
] fixed and for γ > 1

ε
, there holds the following inequality:∫ T

0

(
|n(t)|Lq(R3) + |E(t)|2L2q(R3)

)γ
dt ≤ CT−aεγ+1 ≤ C,

which contradicts (1.6) in Theorem 1.1. This shows (1.7), which completes the proof of
Corollary 1.1. �
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3.3 Proof of Corollary 1.2.

We prove Corollary 1.2 by contradiction here. For a ∈ (0, 1
3
), assume that (E, n,V)

is a radially symmetric blow-up solution to the Cauchy problem (1.1)-(1.2) such that
(E, n,V) ∈ H1(R3)× L2(R3)× L2(R3), and

|n(t)|Lq(D) + |E(t)|2L2q(D) ≤
C

(T − t)aε
(3.11)

for all t ∈ [0, T ). We first claim the following estimate:

|n(t)|L2(R3) + |E(t)|2L4(R3) ≤
C

(T − t)
3
4
a
. (3.12)

Indeed, combining (1.4) with (1.5) yields that∫
R3 |∇E(t, x)|2dx+ 1

2

∫
R3 |n(t, x)|2dx

≤ H(0) +
∣∣∫

D n(t, x)|E(t, x)|
2dx
∣∣

+
∣∣∣∫R3\D n(t, x)|E(t, x)|

2dx
∣∣∣

+η
2

∫
R3

|ξ|2
|ξ|2−δ

∣∣F(E ∧ E)
∣∣2 dξ.

(3.13)

Note that 2
p
+ 1

q
= 1, from Hölder’s inequality, (2.2) and (3.11) we have∣∣∫

D n(t, x)|E(t, x)|
2dx
∣∣

≤
(∫

D |n(t, x)|
qdx
) 1

q
(∫

D |E(t, x)|
pdx
) 2

p

≤ C
(T−t)aε

|∇E(t, x)|2(1−ε)

L2(R3).

(3.14)

On the other hand, from (1.3) and (2.1) we conclude∣∣∣∫R3\D n(t, x)|E(t, x)|
2dx
∣∣∣

≤ 1
2

∫
R3\D |n(t, x)|

2dx+ 1
2

∫
R3\D |E(t, x)|

4dx

≤ 1
2

∫
R3\D |n(t, x)|

2dx+ 1
2
|E(t)|2L∞(R3)\D)|E(t)|2L2(R3)

≤ 1
2

∫
R3\D |n(t, x)|

2dx+ C|∇E(t)|L2(R3),

(3.15)

and
η
2

∫
R3

|ξ|2
|ξ|2−δ

∣∣F(E ∧ E)
∣∣2 dξ

≤ C
∫
R3 |E(t, x)|4dx

≤ C
∫
R3\D |E(t, x)|

4dx+ C
∫
D |E(t, x)|

4dx

≤ C|∇E(t)|L2(R3) +
C

(T−t)2aε
.

(3.16)

11



Combining (3.13), (3.14), (3.15) and (3.16) together yields that∫
R3 |∇E(t, x)|2dx+ 1

2

∫
R3 |n(t, x)|2dx

≤ H(0) + C
(T−t)aε

|∇E(t)|2(1−ε)

L2(R3)

+1
2

∫
R3\D |n(t, x)|

2dx

+C|∇E(t)|L2(R3) +
C

(T−t)2aε
.

(3.17)

A computation shows that(∫
R3 |∇E(t, x)|2dx

)ε
≤ H(0)|∇E|2ε−2

L2(R3) +
C

(T−t)aε

+|∇E|2ε−1
L2(R3) +

C
(T−t)2aε

|∇E|2(ε−1)

L2(R3).

(3.18)

According to Lemma 2.2, for ε ∈ (0, 1
4
] we have

lim
t→T

|∇E|2ε−1
L2(R3) = 0, lim

t→T
|∇E|2(ε−1)

L2(R3) = 0,

which together with (3.18) implies that(∫
R3

|∇E(t, x)|2dx
) 1

2

≤ C

(T − t)
a
2

. (3.19)

Combining (3.19) with (2.3) gives

|E(t)|L4(R3) ≤
C

(T − t)
3a
8

. (3.20)

On the other hand, from (1.4), (1.5) and (3.20) one has

1
4

(
|n(t)|L2(R3) + |E(t)|2L4(R3)

)2
≤ 1

2

(
|n(t)|2L2(R3) + |E(t)|4L4(R3)

)
≤ H(0) + C

(
|n(t)|L2(R3)|+ |E(t)|2L4(R3)

)
|E(t)|2L4(R3)

≤ H(0) +
(
|n(t)|L2(R3) + |E(t)|2L4(R3)

)
C

(T−t)
3a
4

(3.21)

which concludes that

|n(t)|L2(R3) + |E(t)|2L4(R3) ≤
C

(T − t)
3a
4

. (3.22)
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That is, the estimate (3.12) holds. Therefore, for γ ∈ (4, 4
3a
) with a < 1

3
we have∫ T

0

(
|n(t)|L2(R3) + |E(t)|2L4(R3)

)γ
dt < +∞.

This contradicts Theorem 1.1, and hence we have proven that

|n(t)|Lq(D) + |E(t)|2L2q(D) >
C

(T − t)aε
. (3.23)

We are now in the position to prove that

|n(t)|Lq(D) + |E(t)|2L2q(D) → +∞ as t → T (3.24)

by contradiction. Assume that there exists tk → T such that

|n(tk)|Lq(D) + |E(tk)|2L2q(D) ≤ C. (3.25)

From (1.4) and (1.5) we have∫
R3 |∇E(tk, x)|2dx+ 1

2

∫
R3 |n(tk, x)|2dx

≤ H(0) +
∣∣∫

D n(tk, x)|E(tk, x)|
2dx
∣∣

+
∣∣∣∫R3\D n(tk, x)|E(tk, x)|

2dx
∣∣∣

+η
2

∫
R3

|ξ|2
|ξ|2−δ

∣∣F(E ∧ E)
∣∣2 dξ.

(3.26)

Applying Lemma 2.1, Hölder’s inequality and the relation 2
p
+ 1

q
= 1, for η > 0 and δ ≤ 0,

we conclude the following three estimates:∣∣∫
D n(tk, x)|E(tk, x)|

2dx
∣∣ ≤ |n(tk)|Lq(D)|E(tk)|2Lp(D)

≤ C|∇E(tk)|2(1−ε)

L2(R3),

(3.27)

∣∣∣∫R3\D n(tk, x)|E(tk, x)|
2dx
∣∣∣

≤ 1
2

∫
R3\D |n(tk, x)|

2dx+ 1
2

∫
R3\D |E(tk, x)|

4dx

≤ 1
2

∫
R3\D |n(tk, x)|

2dx+ 1
2
|E(tk)|2L∞(R3\D)|E(tk)|2L2(R3)

≤ 1
2

∫
R3\D |n(tk, x)|

2dx+ C|∇E(tk)|L2(R3),

(3.28)

and
η
2

∫
R3

|ξ|2
|ξ|2−δ

∣∣F(E ∧ E)
∣∣2 dξ

≤
∫
R3 |E(tk, x)|4dx

≤ C
∫
R3\D |E(tk, x)|

4dx+ C
∫
D |E(tk, x)|

4dx

≤ C|E(tk)|2L∞(R3\D)|E(tk)|2L2(R3) + C

≤ |∇E(tk)|L2(R3) + C.

(3.29)
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Combining (3.26) with (3.27), (3.28) and (3.29) yields that∫
R3

|∇E(tk, x)|2dx ≤ H(0) + C|∇E(tk)|2−2ε
L2(R3) + C|∇E(tk)|L2(R3) + C. (3.30)

That is,
|∇E(tk)|2εL2(R3) ≤ H(0)|∇E(tk)|2ε−2

L2(R3) + C

+C|∇E(tk)|2ε−1
L2(R3) + C|∇E(tk)|2ε−2

L2(R3).
(3.31)

By Lemma 2.2, for ε ∈ (0, 1
4
) we have

lim
tk→T

|∇E(tk)|2ε−2
L2(R3) = 0, lim

tk→T
|∇E(tk)|2ε−1

L2(R3) = 0,

which together with (3.31) implies that

|∇E(tk)|2L2(R3) ≤ C. (3.32)

(3.32) contradicts Lemma 2.2.
This completes the proof of Corollary 1.2. �

Appendix A

We consider the cauchy problem of the 3D magnetic Zakharov system

iEt +∆E− nE+ i(E ∧B) = 0,
ntt −∆n = ∆|E|2,
∆B− iη∇× (∇× (E ∧ Ē)) + δB = 0,

(A− 1)

with initial condition

E(0, x) = E0(x), n(0, x) = n0(x), nt(0, x) = n1(x). (A− 2)

Here, we give the formal derivation of the blow-up solution (1.9) for (A-1)-(A-2) in the
cylindrical coordinate (r, θ, z) on (t, T ]. Let

E = (E1, 0, iE1), E1(t, x) =
a

(T − t)α
P

(
ωr

(T − t)β
,

ωz

(T − t)β

)
ei(T−t)σ ,

n(t, x) =
b

(T − t)2α
N

(
ωr

(T − t)β
,

ωz

(T − t)β

)
,

B = (0, B̃, 0), B̃(t, x) =
c

(T − t)2α
M

(
ωr

(T − t)β
,

ωz

(T − t)β

)
,

(A− 3)

where ω > 0 is a constant, P (r, z) = P (
√
x2
1 + x2

2, z), N(r, z) = N(
√

x2
1 + x2

2, z),M(r, z) =

M(
√
x2
1 + x2

2, z) are real radially symmetric functions on R2×R in the cylindrical coordi-
nate, α, β, a, b, c, σ are parameters to be determined later. Supposing that the Zakharov
system (A-1) has the above formal solution (A-3), we first make some formal computa-
tions in order to derive an elliptical system, whose existence will be considered in our
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forthcoming work.
Set

A =
a

(T − t)α
, B = P

(
ωr

(T − t)β
,

ωz

(T − t)β

)
, C = ei(T−t)σ .

A computation shows that

At =
∂

∂t

(
a

(T − t)α

)
=

aα

(T − t)α+1
,

Bt =
∂

∂t
P

(
ωr

(T − t)β
,

ωz

(T − t)β

)
=

β

T − t
(rPr + zPz),

Ct =
∂

∂t

(
ei(T−t)σ

)
= ei(T−t)σ · i · σ · (T − t)σ−1.

It follows from (A-3) that

E1t(t, x) =AtBC + ABtC + ABCt

=
aα

(T − t)α+1
· P · ei(T−t)σ +

a

(T − t)α
· β

T − t
(rPr + zPz) · ei(T−t)σ

+
a

(T − t)α
· P · ei(T−t)σ · i · σ · (T − t)σ−1

=
ei(T−t)σ

(T − t)α+1−σ

(
(T − t)−σa(αP + βrPr + βzPz)− iaσP

)
.

That is,

iE1t =
ei(T−t)σ

i(T − t)α+1−σ
· a ·

(
i(T − t)−σ(αP + βrPr + βzPz) + σP

)
,

iEt = i(E1t, 0, iE1t) = (iE1t, 0,−E1t).

(A− 4)

Extra calculation yields that

∆E1 = ∆

(
a

(T − t)α
P

(
ωr

(T − t)β
,

ωz

(T − t)β

)
ei(T−t)σ

)

=
a

(T − t)α
ei(T−t)σ∆P

(
ωr

(T − t)β
,

ωz

(T − t)β

)

=
aω2

(T − t)α+2β
ei(T−t)σ∆P

=
aω2

(T − t)α+2β
ei(T−t)σ

(
Prr +

1

r
Pr + Pzz

)
,

∆E = (∆E1, 0, i∆E1).

(A− 5)
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The coupled terms nE and E∧B can also be written as

nE1 =
ab

(T − t)α+2α
P ·N · ei(T−t)σ ,

nE = (nE1, 0, iσE1),

E∧B = det

∣∣∣∣∣∣
i j k
E1 0 iE1

0 B̃ 0

∣∣∣∣∣∣ = (−iE1B̃, 0, E1B̃).

(A− 6)

Next we calculate some terms about n, where

n =
b

(T − t)2α
N

(
ωr

(T − t)β
,

ωz

(T − t)β

)
. (A− 7)

Let

D =
b

(T − t)2α
, G = N

(
ωr

(T − t)β
,

ωz

(T − t)β

)
.

A simple computation yields

Dt =
∂

∂t

(
b

(T − t)2α

)
=

2α · b
(T − t)2α+1

,

Dtt =
∂

∂t

(
2α · b

(T − t)2α+1

)
=

2α(2α + 1)b

(T − t)2(α+1)
,

Gt =
∂

∂t

(
N

(
ωr

(T − t)β
,

ωz

(T − t)β

))
=

β

T − t

(
rNr + zNz

)
,

Gtt =
∂

∂t

(
β

T − t

(
rNr + aNz

))

=
1

(T − t)2

(
β2(r2Nrr + rzNrz + zrNzr + z2Nzz) + β(β + 1)(rNr + zNz)

)
.

The detail of Gtt is a little complex and will be given at the end of the appendix. We
further have

ntt = DttG+ 2DtGt +DGtt

=
2α(2α + 1)b

(T − t)2(α+1)
N + 2 · 2αb

(T − t)2α+1
· β

T − t
β(β + 1)(rNr + zNz)

)
=

b

(T − t)2(α+1)

(
2α(2α + 1)N + β(4α+ β + 1)(rNr + zNz)

+β2(r2Nrr + rzNrz + zrNzr + z2Nzz)
)
.

(A− 8)
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∆n = ∆

(
b

(T − t)2α
N

(
ωr

(T − t)β
,

ωz

(T − t)β

))

=
bω2

(T − t)2(α+β)
∆N

=
bω2

(T − t)2(α+β)

(
Nrr +

1

r
Nr +Nzz

)
.

(A− 9)
On the other hand, a computation claims

|E|2 = E·E = (E1, 0, iE1) · (E1, 0,−iE1) = 2|E1|2 = 2
a2

(T − t)2α
|P |2, (A− 10)

∆(|E|2) = ∆(2|E1|2)

= 2∆

(
a2

(T − t)2α

∣∣∣∣P ( ωr

(T − t)β
,

ωz

(T − t)β

)∣∣∣∣2
)

=
2a2ω2

(T − t)2(α+β)
∆(|P |2).

(A− 11)

We finally calculate the terms on magnetic field B, where

B = (0, B̃, 0), B̃(t, x) =
c

(T − t)2α
M

(
ωr

(T − t)β
,

ωz

(T − t)β

)
.

We claim

∆B̃ = ∆

(
c

(T − t)2α
M

(
ωr

(T − t)β
,

ωz

(T − t)β

))

=
cω2

(T − t)2(α+β)
∆M

=
cω2

(T − t)2(α+β)

(
Mrr +

1

r
Mr +Mzz

)
,

∆B = (0,∆B̃, 0).

(A− 12)

Due to

E ∧ E = det

∣∣∣∣∣∣
i j k
E1 0 iE1

E1 0 −iE1

∣∣∣∣∣∣ = (0, 2i|E1|2, 0)

and

∆(2i|E1|2) = 2i∆(|E1|2) = 2i∆

(
a2

(T − t)2α
|P |2

)
= 2i

a2ω2

(T − t)2(α+β)
∆(P 2),

one achieves

∇× (∇× (E ∧ E)) = (0,−∆(2i|E1|2), 0) =
(
0,−2i

a2ω2

(T − t)2(α+β)
∆(P 2), 0

)
. (A− 13)
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Compiling the above computations, we can rewrite the first equation in (A-1) as

iE1t +∆E1 − nE1 + E1B̃ = 0. (A− 14)

The second equation in the Zakharov system (A-1) is a scalar equation in R

ntt −∆n = ∆|E|2. (A− 15)

However, the third equation in the Zakharov system (A-1) is vector-valued in C3, and it
can be written as

∆B̃ + iη∆(2i|E1|2) + δB̃ = 0. (A− 16)

Therefore, taking (A-4)-(A-12) into equations (A-14)-(A-16), we derive

ei(T−t)σ

(T − t)α+1−σ
(anP + i(T − t)−σa(αP + βrPr + zPz))

+
ei(T−t)σ

(T − t)α+2β
aω2∆P − ei(T−t)σ

(T − t)α+2α
abPN

+
ei(T−t)σ

(T − t)α+2α
acPM = 0,

b

(T − t)2(α+1)
(2α(2α + 1)N + (4α + β + 1)β(rNr + zNz)

+β2(r2Nrr + rzNrz + zrNzr + z2Nzz))

− bω2

(T − t)2(α+β)
∆N

=
2a2ω2

(T − t)2(α+β)
∆(P 2),

cω2

(T − t)2(α+β)
M + σ

c

(T − t)2α
M = 2η

a2ω2

(T − t)2(α+β)
∆(|P |2).

(A− 17)

Here, ∆P = Prr+
1

r
Pr+Pzz as the operator ∆ was calculated in the cylindrical coordinate.

In order to get a related elliptical system, the coefficients in (A-17) need to satisfy the
following conditions:

α + 1− σ = α + 2β = α + 2α

2(α + 1) = 2(α + β),

which implies that α = β = 1, σ = −1. Let b = c = 2a2 = ω2, Equations (A-17) reduce to

∆P − P −NP +MP = 0,

λ2(r2Nrr + rzNrz + zrNzr + z2Nzz

+6(rNr + zNz) + 6N)−∆N = ∆(|P |2),

∆M + δ(T − t)2λ2M = η∆(|P |2),

(A− 18)
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where λ =
1

ω
and ω > 0.

Let M = ηF−1

(
|ξ|2

|ξ|2 − δ(T − t)2λ2
F(P 2)

)
, then (P,N) solves the following system:

∆P − PηF−1

(
|ξ|2

|ξ|2 − σ(T − t)2λ2
F(P 2)

)
+ P = NP,

λ2(r2Nrr + rzNrz + zrNzr + z2Nzz

+6(rNr + zNz) + 6N)−∆N = ∆(|P |2).

(A− 19)

The existence of solutions for (A-19) will be discussed in our next work.
At the end of this appendix, we will calculate Gt and Gtt. Firstly, the derivative Gt is

Gt = ∂
∂t

(
N
(

ωr
(T−t)β

, ωz
(T−t)β

))
= N ′

1 · ∂
∂t

(
ωr

(T−t)β

)
+N ′

2 · ∂
∂t

(
ωz

(T−t)β

)
= N ′

1 · ωr
β

(T−t)β+1 +N ′
2 · ωz

β
(T−t)β+1 ,

(A− 20)

where N ′
1 denotes the partial derivative of N(◦, •) with respect to its first variable ◦, and

N ′
2 the partial derivative of N(◦, •) with respect to its second variable •. In view of

Nr = N ′
1 · ∂

∂r

(
ωr

(T−t)β

)
+N ′

2 · 0 = N ′
1

ω
(T−t)β

Nz = N ′
1 · 0 +N ′

2 · ∂
∂z

(
ωz

(T−t)β

)
= N ′

2
ω

(T−t)β
,

we have

Gt =
β

T − t
(rNr + zNz).

Next, it follows from (A-20) that the second order derivative Gtt is

Gtt = ∂
∂t

(
N ′

1
ωrβ

(T−t)β+1

)
+ ∂

∂t

(
N ′

2
ωzβ

(T−t)β+1

)
=

∂N ′
1

∂t
· ωrβ
(T−t)β+1 +N ′

1 · ∂
∂t

(
ωrβ

(T−t)β+1

)
+

∂N ′
2

∂t
· ωzβ
(T−t)β+1 +N ′

2 · ∂
∂t

(
ωzβ

(T−t)β+1

)
=
(
N ′′

11
ωrβ

(T−t)β+1 +N ′′
12

ωzβ
(T−t)β+1

)
ωrβ

(T−t)β+1

+N ′
1 · ωrβ(β + 1) 1

(T−t)β+2

+
(
N ′′

21
ωrβ

(T−t)β+1 +N ′′
22

ωzβ
(T−t)β+1

)
ωrβ

(T−t)β+1

+N ′
2 · ωrβ(β + 1) 1

(T−t)β+2 .
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Since
Nrr = N ′′

11
ω2

(T−t)2β
, Nrz = N ′′

12
ω2

(T−t)2β
,

Nzr = N ′′
21

ω2

(T−t)2β
, Nzz = N ′′

22
ω2

(T−t)2β
,

we derive

Gtt =
1

(T − t)2
(
β2(r2Nrr + rzNrz + zrNzr + z2Nzz) + β(β + 1)(rNr + zNz)

)
.
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