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Abstract: We continue our study [8] on the Cauchy problem for the three-dimensional
magnetic Zakharov system

iE; + AE — nE + i(E A B(E)) = 0,
nt:—V-V,

V;=-Vn - V|E? (Z5M)
AB —inV x V x (EAE) + 6B =0,
with initial data
E(0,z) = Eo(x), n(0,z) =no(x), V(0,z) = Vy(z). (ZSM —1)

Let (E,n, V) € C([0,T), H'(R®) x L?*(R?) x L*(R?)) be a blow-up solution to the
Cauchy problem (ZSM)-(ZSM-1), and let T' < co be its blow-up time. Then (E,n)
satisfies the space-time integral estimate

/OT [< - In(t,z qda:) (/ E(t,z ]2qd:z:> rdt:dl_oo’ (E—1)

where > Z, €€ (0 f} and ¢ = W € (2 ] The estimate (E-1) implies that,
for a < 1,

b (7= 0% (|0 + B0 g )| = +oc.

In particular, if (E,n, V) is a radially symmetric solution to (ZSM)-(ZSM-1), then

su T — )% (|1n()|Lop) + [E@)? = +00,
2 [ = 0% (a0 + [BO) o)) |

where a € (0,1) and D = {z € R?: |z] < 1}.
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1 Introduction

The main purpose of this work is to study the blow-up rate for a blow-up solution of the
magnetic Zakharov system. We establish space-time integral estimates on the blow-up
solution. Specifically, in the present paper we continue our study [8] on the 3D Magnetic
Zakharov system

iE, + AE —nE+ i(EAB(E)) =0,

ny = -V V,

V, = —Vn - VIEP, (1.1)
AB —inV xVx (EAE) + 6B =0,

with initial data
E(0,z) = Eo(z), n(0,z) =no(x), V(0,z) = Vy(z), (1.2)

where (E,n,V) : (t,z) € [0,T) x R? — C*> x R x R® 7 and ¢ are two real constants
with n > 0, § < 0, A denotes the exterior product of vector-valued functions, and E the
complex conjugate of E (see [14]). The Zakharov system (1.1) describes the spontaneous
generation of a magnetic field in a cold plasma. E represents the slowly varying complex
amplitude of the high-frequency electric field, B the self-generated magnetic field, and n
the fluctuation of the electron density from its equilibrium [7, 13, 14, 22, 23].

Using Fourier transform, we can solve the fourth equation in (1.1) and can obtain that
if E € H'(R3), then B(E) € L?(R3) and

B(E) = 7! |§|§—77_5(§A(§A.F(EAE))) , (B-1)

where F and F~! mean the Fourier transform and the Fourier inverse transform, respec-
tively (see [14, 17, 18, 19]).

For the Zakharov system (1.1), on one hand, it is a system with a nonlocal operator.
On the other hand, it is a Hamiltonian system, and for (Eg, ng, Vo) € H'(R3) x L*(R?) x
L*(R?), we have two conservation laws:

e [?-norm:
1Bl Z2s) = I EollZ2ges) (1.3)
e Fnergy:
H(t) = H(0), (1.4)
where

1 1
H(t) = / (|VE|2 + =n]* + =|V|? +nyE|2) dx
RS 2 2

Ui 1 — = (2
+—/ e [}5 - FEAE)| - £ |FEANE)| } dg. (1.5)
2 Jps [€]? =6
We first recall some known results about the system (1.1) without any magnetic field
effect which provides the fluid modeling of the interaction between Langmuir and ion-
acoustic waves [22]:
iE; + AE — nE = 0,
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Sulem proved in [21] the global existence of a weak solution for certain small initial data
in two and three dimensions, supposing in particular, n, € H~*(R%) (H~'(R?%) denotes
the homogeneous Sobolev space, H~*(R?%) = {u € S'(R?) : %a(g) € L*(RY)} ). With
the same assumptions, they also established local existence and uniqueness of a smooth
solution (E,n) with

(E,n) € L* (0,T; H™(RY)) x L> (0,T; H™ ' (R%)) for m > 3.

In [11, 12], Glangetas and Merle studied the existence of self-similar blow-up solution-
s, concentration properties of blow-up solutions and instability of periodic solutions for
the Zakharov system (Z-S) under the Hamiltonian case in R2. In [16], Merle established
the blow-up results of virial type for (Z-S) in two and three space dimensions. The so-
lution was shown to be globally well-defined in one space dimension [21], and in two
space dimensions for small initial data [1]. In [20], the authors proved the local well-
posedness (in time) of the Cauchy problem for (Z-S) if initial data satisfied (Eqg, ng, V) €
H?(R?®) x H'(R?) x H*(R?). Later, Bourgain-Colliander [5] and Ginibre-Tsutsumi-Velo
[10] obtained some results on the local well-posedness through using a method introduced
by Bourgain in [2, 3, 4] for nonlinear dispersive equations. In [10], the authors also
proved that the Cauchy problem for (Z-S) is locally (in time) wellposed for initial data
(Eo,no,n1) € H*(R?) x HY(R?) x H'"1(R?) provided that [ > 0 and 2k — (I + 1) > 0,
and the solution satisfied (E,n,n,) € C ([0,T); H*(R) x H'(R?) x H'"'(R%)). For the
system (Z-S) in the Hamiltonian case, Masselin in [15] provided an integral estimate on
space and time for n.

We now return to mention some known results on the Cauchy problem (1.1)-(1.2).
From results of Laurey [14], the global existence of a weak solution, the local existence
and uniqueness of a smooth solution for the system were achieved for space dimension 2
and 3. Concerning the singularity of solutions to the Cauchy problem (1.1)-(1.2), Gan-
Guo-Han-Zhang [8] established the following blow-up result.

Proposition 1.1. Let n > 0 and 6 < 0. Assume that for all time, the solutions
(E,n,V)(t) of the Cauchy problem (1.1)-(1.2) are radially symmetric and #H(0) < 0.
Then we have the following alternatives:

i) (E,n, V)(t) blows up in finite time.

ii) (E,n, V)(t) blows up in infinite time in H'(R3) x L?(R3) x L?(R?). That is, (E,n, V)(t)
is defined for all ¢, and

}LH% [(E,n, V)(t)|H1(]R3)><L2(R3)><L2(]R3) = +oo. (B-U)

O

In addition, Gan-Guo-Huang in [9] constructed a kind of blow-up solutions, established
the existence of blow-up solutions through considering an elliptic system, showed the
nonlinear instability of periodic solutions, studied the concentration properties of blow-
up solutions and obtained the global existence of weak solutions.

We now mention some notations which will be imposed in the present paper.
Notations. Let D = {z € R?: |z| <1}. For an ¢ € (0, 1] fixed, let ¢ = ﬁ € (3,2]
and p € [4,6) defined by the relation % + % = 1. In particular, if ¢ = 1, then ¢ = 2 and
p = 4. Throughout this paper, C' denotes any positive constant which depends only on ¢,

and |(E07 o, VO)’Hl(R3)><L2(R3)><L2(R3)'



In this paper we shall be interested in the blow-up rate of the blow-up solutions to the
Cauchy problem for the system (1.1), and establish the integral estimate on space and
time for n and E.

The following one theorem and two corollaries are the main results of the paper.
Theorem 1.1. Forn > 0and § <0, let (E,n, V) € C([0,T); H(R?) x L*(R?) x L*(R3))
be a blow-up solution to the Cauchy problem (1.1)-(1.2). We assume that (E, n, V) blows
up at time 7' (T < c0). If v > L, then

/OT [( . |n(t,x)|qu>}1 + ( g |E(t,x)|2qu) é] Wdt = 4o00. (1.6)

Theorem 1.1 implies the conclusion below.
Corollary 1.1. Forn > 0and 6 <0, let (E,n, V) € C([0,T); H'(R3) x L*(R3) x L*(R?))
be a blow-up solution to the Cauchy problem (1.1)-(1.2), and that 7" < oo be its blow-up
time. Then for a < 1, there holds that

sup [(T . t)as <|n(t)|Lq(R3) + |E(t)|%2q(R5)>i| - +OO (17)
te[0,T)

In particular, if (E,n, V) is a radially symmetric solution to the Cauchy problem (1.1)-
(1.2), we then achieve the following estimates of n in LY(D) and E in L?(D).
Corollary 1.2. Forn > 0and 6 <0, let (E,n, V) € C([0,T); H'(R?) x L*(R3) x L*(R?))
be a radially symmetric solution of the Cauchy problem (1.1)-(1.2), and that 7" < oo be
its blow-up time. Then for a € (0, 3), there holds that

2up (= 0% (11(Olse) + B O o)) = +oc. (18)

It is difficult to construct a kind of blow-up solutions for the system (1.1) in three
space dimensions although the authors in [8] have established an existence result of the
blow-up solutions for the Cauchy problem (1.1)-(1.2) . Fortunately, for some special forms
of E, n and B in the system (1.1), we can construct a kind of blow-up solutions to the
system (1.1). Let’s here give a brief remark.

Remark 1.1. We consider the Zakharov system (1.1) in the cylindrical coordinate
(r,0,z). We can construct the following blow-up solutions:

4 5 | )
B=(B0.8). Bt = L0 (7 ) e

T—t"T—t

n(t,z) = W N(W “Z), (1.9)

T—t"T—t

. . 2
B=(0,B,0), B(t,z)=— M(W W),

where

P(r,2) = P <m z) N(r,2) = N (m z) M(r,2) = M (m z)
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are real radially symmetric functions on R? x R in the cylindrical coordinate and w > 0.
In addition, (P, N, M) satisfies the following system:

( AP—-P—-NP+MP=0,

N (r?N,, +1zN,, + 2rN,, + 22N,

(1.10)
+6(rN, + 2N.) + 6N) — AN = A(|P)?),
| AM +6(T — t)°X°M = nA(|P?),
where \ = é Furthermore, let
- €17 2
=0 (st ),
(1.10) then reduces to
( 1 €17 2
AP — PnF (|§|2 — 5(T—t)2)\2]:<P )) +P=NP,
(1.11)

AN (r?N, + 12N, + 2rN,, + 2°N,,

\ +6(rN, + zN.) + 6N) — AN = A(|P]?).

For VT > 0, 0 <t < T fixed, the existence of solutions to the system (1.11) in H}(R?) x
L?(R3) may be obtained by referring papers [11, 12]. We will discuss this topic in our
future work. Here, we assume that there exists a solution for the system (1.11) to establish
the main results of the present paper. In particular, if (P, N) € H}Y(R?) x L?(R3) is a
solution to (1.11), then (E, n) defined in (1.9) is a blow-up solution to the Cauchy problem
(1.1)-(1.2). When § =0, (1.11) reduces to

AP —nP3*+ P = NP,
A2(r®’N,. +7zN,, + 2rN,, + 2°N,. (1.12)

+6(rN, + zN,) + 6N) — AN = A(|P]?).

If (P,N) € H'R3) x L?(R3) is a solution to (1.12), then (E,n) defined in (1.9) is a
self-similar blow-up solution to the Cauchy problem (1.1)-(1.2) with § = 0. It is worth
mentioning that in two space dimensions, we have constructed a special kind of blow-up
solutions to the system (1.1) (see [9]) .

We will give the formal derivation of the blow-up solution (1.9) to the Cauchy problem
(1.1)-(1.2) in Appendix A.

2 Preliminaries

In order to prove Theorem 1.1, Corollary 1.1 and Corollary 1.2, we give some key
ingredients.



Lemma 2.1. Forn > 0and § <0, let € € (0, 3] be fixed, ¢ = ﬁ € (2,2] and %—l—% = 1.
Then the following estimates hold.
(i) If ¢ € H'(R3) is radially symmetric, then ¢ € L>(R3\ D) and

|20 s\y < CIVO|L2w3) |23 (2.1)

(i) If 2 is a domain in R? with sufficiently smooth boundary and ¢ € H'(f2), then
¢ € LP(Q), and
|0l Lri) < C|V¢|;fm|¢|z2(9y (2.2)

In particular ¢ € L*(2), and

3 1

(iii) Let U(t) = €2 and % + z% = 1. There then exists a constant C' > 0 such that for
any ¢ € L” (R?), and for any ¢ > 0,

C
‘U(t)¢|LP(]R3) < tl__€|¢’Lp’(R3)- (2-4>

Proof. (i) From [6], it follows that

sup Je662)] < €161 e [0l (25)
TE

for ¢ € H'(R?). Note that D = {z € R?: |z| < 1} and (2.5), for ¢ € L*(R?®\ D), we
achieve

1 1
‘¢’L°°(]R3\]D>) < SU?R [z]|g(x)] < Suﬂg [z]|g(x)] < C‘¢’z2(R3)’V¢‘i2(R3)'
e

z€R3\D

With an eye on exploiting (2.5), we obtain (2.1).
(ii) With the aid of Gagliardo-Nirenberg inequality, we conclude (2.2) and (2.3).
(iii) Note that p’ = L5, ¢ = ﬁ and ]23 + % =1, (2.4) follows immediately from the
standard semigroup theory arguments. O
One can of course obtain the limit estimates of a blow-up solution for the Cauchy
problem (1.1)-(1.2).
Lemma 2.2. Forn > 0,6 <0, let (E,n, V) be a blow-up solution to the Cauchy problem

(1.1)-(1.2) in HY(R?) x L*(R3) x L?(R3), and let T' (T < oo) be the blow-up time. Then

lim [E(t)[ 14gs) = +o0, (2.6)
lim [VE()|2(s) = +o0c. (2.7)

Proof. We first show (2.6). Suppose for contradiction that there is a sequence {t;} with
tr < T satistying klim tr =T such that
—00

lim [E ()] ps(es) < C (2.8)



for any k and for a constant C' > 0. From (1.4), (1.5) and Hoélder’s inequality we have

2 fR3 (e, 2

< H(0) + |fR3 n(ty, z )|E(tk,x)]2dx|
+4 fo s [P 1FEAD - |6 FEAD) de (2.9
< H(0) + [n(te)z2ms) B (k) [Fasy + 7 Jos [(EAE)(t)[da

< H(0) + In(te) 2o (k) Loy + 3B(E) 7o)

Hence |n(tx)|r2s) is bounded.
On the other hand, combining (2.9) with (1.4) and (1.5) yields that

Jio IVE(t, 2)Pdo + 3 [0 (0 (t, 7) + [V (t, 2)[*)da
< H(0) + [n(te) | L2 (B () Lo sy + 5B L es) (2.10)
<C.

But this together with (2.9) contradicts the blow-up assumption. Thus (2.6) holds true.

(2.7) follows easily from (2.3) and (2.6). O
The following estimates play an important role to the proofs of Theorem 1.1, Corollary

1.1 and Corollary 1.2.

Lemma 2.3. For n > 0 and 6 < 0, there exists a positive constant C' such that for any

te[0,7),

E()|se) < C [1 -/ t g (a1 e ) [ >|LP<R3)ds] - 21

In particular,
t 1 )
|E(t>|L4(R3) S C |:1 —|—/ m <|7’L(S)|L2(R3) + |E($)|L4(]R3)) |E(S)|L4(R3)d8:| . (2.12)
0

Proof. Consider the Cauchy problem

iE, + AE —nE 4+ i(EAB(E)) =0,

B(E) - 71 [ (61 (A F (BAT))].
E(O,:E) = ED( )a

it is easy to write down its formal solution as follows by integrating the corresponding
equations and then applying the corresponding initial value condition.

E(t) = Ut)Ey — i /0 Ut — s) [n(s)E(s) — i(E(s) AB(E(s))]ds.  (2.13)



Here, U(t) = "2 is the unitary semigroup generated by the free Schrédinger equation
iE; + AE = 0 in the Hilbert space H*(R?) (k € R). Applying the Minkowski inequality,
we then have

B0 @s) < U Eo|Lres)
+ fg \U(t — s)n(s)E(s)|rrmrs)ds (2.14)

+ [y 1U(t = 5)(E A B(E))| o es)ds.

On the other hand,

C
Ut = () aweuey < 17— eV ey (2.15)
C
Ut —s)(EA B(E))|LP(R3) < WKE A B(E))‘LI”(R?’)J (2.16)
where £ + 5 =1, 24+ 2 =1, 2+ =1— > = . By Holder’s inequality, the right-hand
side of (2.15) and (2.16) can be bounded as
[7($)E(S)| o sy < [12(5)| o) [E(5)] o (es), (2.17)

|(EAB(E))| v )

— [EAF g (€A (EAF (EAE)))] . (2.18)
< CIR(S) ey [B5) B
Combining (2.15) with (2.16), (2.17) and (2.18) yields that
C
Ut — s)n(s)E(s)|rr@s) < m|n(s)|Lq(R3)]E(s)|Lp(R3), (2.19)
EAB(E < Ik E(s);
Ut — s)(EAB(E))|1res) < m! (8)] ez [E() |20 m3)- (2.20)
With the aid of (2.2) we have
UBoles) < ClUMEo 0|V (U E) s,
(2.21)

< O|E0|L2(R3 |VEO|L2(R3

(2.14)-(2.21) then yield the desired inequality (2.11). In particular, we obtain (2.12) by

: _1
choosing € = 7. O

3 Proofs of the Main Results

We are now in the position to prove Theorem 1.1, Corollary 1.1 and Corollary 1.2.
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3.1 Proof of Theorem 1.1.

Suppose for contradiction that there exists v > % such that

/OT [( - In(t,x qua:> (/ E(t,z |2de) rdt < +00. (3.1)

Applying Lemma 2.3 we have

! 1
|E<t)’LP(R3) S C <1 +/O m(ln(S)‘Lq(RS) + |E(S>|%2q(R3)>|E(S)|Lp(R3)dS) y (32)

where 1 —5—1—%/ <1 and |n(s)|pams) + |E(s)[7 1203y € L7(0,T). By Gronwall lemma, there
exists a constant C' > 0 such that

Indeed, from (3.2) Gronwall lemma implies that

t
() < Coxp [ fy gt (100)] o) + [B(s) s ) s

< Cexp { [fg (|n(3)|Lq(R3) + |E(5)\%2Q<R3))7 dSi|“1/

[5Gy T

1029) 0 if the right hand side of the above inequality is bounded.

which requires that 1— o
That is, v > %
We now need to divide the remaining proof into two cases:

Case 1: ¢ = i'

Case 2: ¢ € (0, 7).
Let us first consider Case 1: € = 7. In this case, noting that ¢ = ( and —|— =1,

we have p = 4 and ¢ = 2. (3.3) then contradicts Lemma 2.2. Hence for any ’y > 4 one
always has

/OT [( - In(t, )| d:c) (/ IE(t,z 4dx) rdt—Jroo. (3.4)

We now consider Case 2: ¢ € (0, 1). In this case, from (1.4) and (1.5) we have
3 Jes In(t, ) Pdx

)+ | s n(t, 2)|E(t, 2)[*da|

- - (3.5)
+4 o s [ 1FEAB - e FEAB)] d

< H(0) + [n ()| o) B[ zs) + CIE() 74 ey,

9



Where%+%:1,n>0and5§0.
Since

[E(0)[13ms) < 1B L0 es) (Lo o)

< (B arqzsy + I0(0) 20w ) B oy, (3.6)

using (3.3), a direct computation allows one to achieve
1 2 2
5 (1n(0)]2ges) + (B0 1qan)
< [n(t)[72me) + B 1agms) (3.7)

<C (|n(t)|L‘I(R3) + |E(t)|%2<I(R3)> :

We then have

T , N
/0 (In(®)l sy + BORa)

T
Y
<C [ (1nOleree) + B ) dt < +o0. (35)

In view of 2y > 2 > 8, (3.8) contradicts the estimate (3.4), which completes the proof of
the space-time estimate (1.6). O

3.2 Proof of Corollary 1.1.

We show Corollary 1.1 by contradiction.
Assume that there is a constant C' such that for a < 1,

(T o t)as (|n(t)|Lq(]R3) + |E(t)|%2q(R3)) S C (39)
A simple computation yields that for v > %,

T y T
/0 (1n(0) gy + (B Bargen)) < © /0 (T — )= dt. (3.10)

That is, for a < 1, € € (0, }L] fixed and for v > %, there holds the following inequality:

T
v
| (Ol + B ) e < €T <
0

which contradicts (1.6) in Theorem 1.1. This shows (1.7), which completes the proof of
Corollary 1.1. ]

10



3.3 Proof of Corollary 1.2.

We prove Corollary 1.2 by contradiction here. For a € (0,3), assume that (E,n, V)
is a radially symmetric blow-up solution to the Cauchy problem (1.1)-(1.2) such that

(E,n, V) € H(R3) x L*(R?) x L*(R3), and
2
In(t) o) + [E(@)[720m) < T
for all t € [0,T). We first claim the following estimate:
(1) 2@s) + [B(E) |74 (gsy < W
Indeed, combining (1.4) with (1.5) yields that
Jes IVE(t, z) 2z + £ [0 In(t, 2)|?dx

< H(0) + | [y n(t, ) [E(t, z)|*dx|
+ ‘IM\D n(t, z)|E(t, m)|2dx‘

=\ |2
+ [ |£|\§2‘ L | FEAE)| de.

Note that ]% + é = 1, from Hélder’s inequality, (2.2) and (3.11) we have

|fDn(t>$)|E(t,x)]2dx|

LS

< (f]D) In(t x)|qu) (f]D) [E(t ;U)|pd!17>

< IVE(t, )35

T t ae L2 (]R3)

On the other hand, from (1.3) and (2.1) we conclude
oot @) E(t 2)[da

<3 ap [Nt @)% de + 3 fRS\D |E(t, )[*dz

<
< 4 Jpop Int, ) 2dz + C|VE(L)] 12s),
and , .
7 Jrs |g|\§2|_5 | F(EAE)|"d¢

< C fo [B(t,2) |
< CfRf‘"\]D) |E(t, z)|*dz + C’fD |E(t, z)|*dx
< C|VE(T,)|L2(R3) + #

11

Jr
%f R3\D n(t, z)[*dx + 2|E( I (R3)\D) ’E( )|L2(R3)
Jr

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



Combining (3.13), (3.14), (3.15) and (3.16) together yields that
Jes IVE(t, 2)[Pdz + £ [os [n(t, 2)|?dx
< H(0) + 755 IVE®) 12 55)
+3 fn@\m) n(t, ) Pdz
+O|VE()|2z2) + 7y
A computation shows that
(Jes IVE(L, :L’)|2dx)E
H(0)|VE[ 5 gs) + oripyee
+|VE|%, 1é3) + 7= t)2as |VE|L2 ]R3
According to Lemma 2.2, for € € (0, 1] we have

lim [VE[7 g,y =0,  lim |VE|L2 = =0,

which together with (3.18) implies that

( ]VE(t,:c)|2dx> < _C¢ -
- (T — 1)
Combining (3.19) with (2.3) gives

C
E(t)|;4 3<—30.
| ()|L(R)_(T—t)§

On the other hand, from (1.4), (1.5) and (3.20) one has
2
L (10(0) ey + B(E) s

< 3 (In()Bages) + Bl

< ’H(O) +C (|n( )|L2 R3) | + ‘E( ) LA(R3 ) |E< ) L4(R3)

<HO) + (IOl + E®) Bagps)) —or

(T—t) 4

which concludes that

In(t)| z2@s) + [E(t)[Faggsy < T_n%

12

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)



That is, the estimate (3.12) holds. Therefore, for v € (4, %) with a < % we have

T v
[ (10l + O o) e < o

This contradicts Theorem 1.1, and hence we have proven that

C
1n()| Law) + [E() 7200y > T =ty (3.23)
We are now in the position to prove that
\n(t)]Lq(D) + |E<t)’%2q(]D)) —4ooast—T (324)

by contradiction. Assume that there exists ¢, — 1" such that
|n(tk)|Lq(D) —|— |E(tk)|%2q(]])) S C (325)
From (1.4) and (1.5) we have
Jes IVE(ty, 2)|2dx + 5 [os In(te, ) [Pz

< H(0) + | [, n(te, 2)|E(ty, z)|*dz|

(3.26)
+ [ Jron b, ) [E(ty, 2) Pda

2 =12
+1 Jos g5 | FEAE)[ de.
Applying Lemma 2.1, Holder’s inequality and the relation % +% =1, forn > 0and <0,
we conclude the following three estimates:
| Jo (e, @) By, @) Pd| < n(ts)| o) Bt [75m)
(3.27)
< CIVE(t) 39 23

L2(R3)’
‘fﬂ@\@ n(tkn I)|E(tk7 l‘)|2dl"

<3 fRS\D n(t, ©)[dz + 5 fRS\D |E(ty, 2)|'dz
(3.28)

<3 b} fRB\]D) |TL ey @ )’2d$ + 2|E(tk> Loo(R3\D) |E(tk>|%2(R3)

< % fRs\D [n(ty, x)|*dx + C|VE(ty)|r2m®s),

and

3 Jua i [FEAB)| dg
< Jos |E(tg, )| da
< C’fR3\D |E(ty, x)|*dz + C [, |E(ty, z)|*dx (3.29)
< C|E(tk) Lo (R3\D) |E<tk)|L2 (R3) +C
< |VE(t)|r2@s) + C.

13



Combining (3.26) with (3.27), (3.28) and (3.29) yields that

3 [VE(ty, z)[*dzr < H(0) + C|VE(ty)| 12y + CIVE(ts)| 2rs) + C. (3.30)
-
That is,
VE(t) [Fomsy < H(O)VE(t) 7585 +C
(3.31)
+O|VE(t) |75 gs) + CIVE(t) |72 s)-
By Lemma 2.2, for € € (0, ;) we have
e—2 : 2e—
tilin IVE(te) %2(R3) =0, t}clinT IVE(tx) LQ(ﬂé3) =0,
which together with (3.31) implies that
IVE(ty) 722 < C. (3.32)
(3.32) contradicts Lemma 2.2.
This completes the proof of Corollary 1.2. U

Appendix A

We consider the cauchy problem of the 3D magnetic Zakharov system

iE; + AE — nE +i(EAB) =0,
ntt—An:A’EP, B (A— 1)
AB — inV x (V x (EAE)) + 6B =0,

with initial condition
E(O,IE) = EO(I‘)7 n(O,x) :TL()(J]), nt(()?x) :nl(‘r) (A_2)

Here, we give the formal derivation of the blow-up solution (1.9) for (A-1)-(A-2) in the
cylindrical coordinate (r,0,z) on (¢,T]. Let

E=(E,0,iE), Bt z)= e ((T T t)ﬁ) G T—1)
b wr wz
7)o (g ) )
B=(0,5,0), Bts)=——" M( wr____we )
( (T =ty \(T'=1)7 (T —1)f

where w > 01s a constant, P(r, z) = P(y/a% + 23,2), N(r,z) = N(\/a? + 23,2), M(r,z) =
M (/2% + 2%, 2) are real radially symmetric functions on R? x R in the cylindrical coordi-
nate, «, 3, a,b, c,0 are parameters to be determined later. Supposing that the Zakharov
system (A-1) has the above formal solution (A-3), we first make some formal computa-
tions in order to derive an elliptical system, whose existence will be considered in our

14



forthcoming work.

Set
_ a _ wTr Wz _ i(T—t)”
A= P P(@—wwau¢w) C=cm

A computation shows that

=g ()~

0 wr wz B
Bt_atp<(T—t)5’(T—t)f3>_T—t(TPTJFZPZ)’

_2
ot
It follows from (A-3) that

Elt(t7 $) :AtBC —+ ABtC —+ ABOt

Ct (ei(Tft)f’) — ei(Tft)“ ieo- (T . t)afll

a , - a B , -
= . p.edTY) . P.+zP,) - Tt
T =)o e +(T—t)°‘ T—t(r +2zP,)-e
a (T—t)° . o—1
+(T e P-e i (T —1)
oi(T—t)°
:m ((T — t)_aa(ozP —I— ﬂ’f‘PT —f— 6ZPZ) — iaaP) .
That is,
oi(T—1)°
iElt = m - a - (Z(T — t)_U(OéP—l-ﬁTPT + 5ZPZ) +UP>,
T —1) (A—4)
iEy, = i(Eyy, 0,iEy) = (1B, 0, —Eyy).
Extra calculation yields that
( a wr wz A
AE, =A P (r=1)7
: <@—wa QT—w”G“¢W)e )
a . wr wz
— z(T—t)"AP
T—1)0° QT—WW@—wJ
2
- (r ai)aﬁﬁ AP e
B aw? (1) <P n 1P L p >
- (T—t)a+2ﬁe rr r T zzZ |
AE = (AFE,0,iAE)).

\
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The coupled terms nE and EAB can also be written as

( ab A
— _P.N.T-t)°
nky = (T—t)a+2°ép N -e ,
nk = (nEl,O,iaEl), (A—6)
i j k N ~
E/\B = det El 9 ZEl = (—ZElB, O, ElB>
\ 0O B 0
Next we calculate some terms about n, where
b wr wz
= N . A-T
= (o ) A=

Let
b

P GZN(@TW%ffw>'

A simple computation yields
D, — 0 b o 2a-b
Tt \(T—t)2) (T — )2+’

D 0 2a0- b _ 20(2a+1)b
T ot (T — t)2+1 - (T — t>2(o¢+1)’

Ge= % (N ((Tuirt)ﬁ’ (Tﬁ)ﬂ)) - Tﬁ—t<TNT +N)

1
- T (B2 Now 12Ny 4 2rNoy + 22Nos) + BB + DN, + 2V2)).
The detail of Gy is a little complex and will be given at the end of the appendix. We
further have

ng = DuG + 2D,Gy + DGy

20(2a + 1)b 2ah 16}
= TN 4. :
(T _ t)2(a+1) + (T _ t)2°‘+1 T —

B(8+ 1N, + 2NV.) )

(T —1)Fen <2a(2a + 1N + B(da+ B+ 1)(rN, + 2N.)

+62<T2NTT + TZer + ZTNZ’I‘ + 22N22>> '
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1
= gy (Mo + e M)

On the other hand, a computation claims

2
— ) — — a
[E[> = E-E = (B, 0,iE)) - (E1,0, —iE)) = 2| Ey[* = Q(T——t)Qa|P|2’ (A —10)

) (A—11)

A(EP) = AQIE)

:ZAQT—WQP<@—wWarww>
2a’w?

= WA(\PP)-

We finally calculate the terms on magnetic field B, where

~ ~ C wr wz
B =(0,B,0), B(tz)= M .
0.B.0), Bt ()
We claim

(A—12)

1
= gy (Mor M M),

AB = (0,AB,0).
Due to
i j ok
EAE=det| By 0 4B | =(0,2i|E]*0)
E, 0 —iE,
and

2 2,,2

. 2\ o 2y o a 2\ _ o a“w 9
A B ) = 2iA(|Ey2) = 2iA (—(T_t)mm ) = 2 AP,

one achieves

V x (Vx (EAE)) = (0, —A(2i|E1[?),0) = (0, —Zi%A(}ﬂ), 0) . (A—13)
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Compiling the above computations, we can rewrite the first equation in (A-1) as

iEy, + AE, —nE, + E;B = 0. (A —14)
The second equation in the Zakharov system (A-1) is a scalar equation in R

However, the third equation in the Zakharov system (A-1) is vector-valued in C?, and it
can be written as

AB + inA(2i|Ey|?) + 0B = 0. (A —16)
Therefore, taking (A-4)-(A-12) into equations (A-14)-(A-16), we derive
( i (T—1)7
m (anP + Z(T - t)_"a(ozP + ,BTPT + Z_Pz))

oi(T—t)° , oi(T—t)°

+—(T ~ fjer2p aw*AP — —(T ~fjorEa abPN
i (T—1)7

+mGCPM = 0,

+B%(r?Npy + 12Ny, + 27N, + 2°N.2))

bw?

- (T — t)2(eth) AN

2a%w? )
- (T — t)2(a+6)A(P ):

cw? c a’w?

Mo M =2 A(PP).
L (T _ t)2(a+5) +0o (T _ t)Za n(T _ t)2(a+6) (’ ’ )

1
Here, AP = P,.+—P,+ P, as the operator A was calculated in the cylindrical coordinate.
r

In order to get a related elliptical system, the coefficients in (A-17) need to satisfy the
following conditions:
at+l—oc=a+208=a+ 2«

2(a+1) =2(a+f),
which implies that « = 8 = 1,0 = —1. Let b = ¢ = 2a*® = w?, Equations (A-17) reduce to
( AP—P - NP+ MP=0,
A(r?’N,, +7zN,, + 2rN,, + 2°N,.

(A —18)
+6(rN, + zN.) + 6N) — AN = A(|P]?),

AM + 8(T — t)2X2M = nA(|P]?),

18



1
where A = — and w > 0.
w

2
Let M =nF! <] F(P?) |, then (P, N) solves the following system:
§7 = 6(T —1)*A°

;

2
AP — PpF! <|§I2 — a|(§:|r — t)2>\2]-"(P2)> +P=NP,

A2(r?’N,, +1zN,, + 2rN,, + 22N, (A-19)

+6(rN, + 2N.) + 6N) — AN = A(|PJ?).

\

The existence of solutions for (A-19) will be discussed in our next work.
At the end of this appendix, we will calculate G; and Gy;. Firstly, the derivative G is

_ 0 wr wz
G =5 (N ((Tft)ﬁ’ (Tft)ﬁ)>
o > + Ny <(Twzt)ﬁ) (A —20)

= Ny - Wr T t)6+1+N/ W2z A t)6+17

=N 5 (o

where N| denotes the partial derivative of N (o, ®) with respect to its first variable o, and
N} the partial derivative of N (o, e) with respect to its second variable e. In view of

No= N7 & () + Vg0 = N

(T— ) (T-1)7

N, = N!0+ N} Z(( t)> Nj o,

we have 5
Gt = T _ t(?”NT + ZNZ).
Next, it follows from (A-20) that the second order derivative Gy is
Gtt (N, (Tw;)i+1> <N/ (thz)ﬁg+1 )

_ 9N} wrpB / wrf
=S o TN ((T t)ﬁ+1>

ON. w
+ 58 - i + Ny § ()

<N{/1 (Tw:)BJrl + N{/2 (wa)%Jrl) (TL_U:)%H

+N7 -wrB(B+1) (Tﬂ})ﬂn

+ (N 2l + Ny ) i
+Ny - wrB(B + 1) e
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Since

— " w? _ " w?
NT‘T N11 (T t)QB 9 NTZ N12 (T t)2B 9

Now = Ny, N.. = Ny

(T t)267 (T t)2B’
we derive
1
Gy = 1) (52(7“2NM + 72Ny, + 2rN,, + 2°N.,) + B(B + 1)(rN, + zNz)) )
OJ
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