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Abstract

By using Zvonkin’s transformation and a two-step fixed point argument in distri-
butions, the well-posedness and regularity estimates are derived for singular McKean-
Vlasov SDEs with distribution dependent noise, where the drift contains a term growing
linearly in space and distribution and a locally integrable term independent of distri-
bution, while the noise coefficient is weakly differentiable in space and Lipschitz con-
tinuous in distribution with respect to the sum of Wasserstein and weighted variation
distances. The main results extend existing ones derived for noise coefficients either
independent of distribution, or having nice linear functional derivatives in distribution.
Singular reflecting SDEs with distribution dependent noise are also studied.
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1 Introduction

As a crucial stochastic model characterizing nonlinear Fokker-Planck equations and mean
field particle systems, the following McKean-Vlasov (i.e. distribution dependent) SDE has
been intensively investigated:

(11) dXt = bt(Xt,gxt)dt + Ut(XtagXt)thy t e [O,T],
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where T > 0 is a fixed constant, (W;)cjo,r] is an m-dimensional Brownian motion on a
complete filtration probability space (€2, {F }icpo1), P), Zx, is the law of X;, and for the
space & of probability measures on R? equipped with the weak topology,

b:[0,T] xR x Z - R%Y o:[0,T] x REx & — R'@R™

are measurable. Among many other references, see for instance [1, 2, 5, 6, 9, 10, 13, 14, 16,
18, 27).

When the noise coefficient oy(x, ) = o(x), by using Zvonkin’s transform, the well-
posedness, regularity estimates and exponential ergodicity have been studied in [15, 19, 20]
for the drift by(x, ) containing a time-spatial locally integrable term in f}g(T) for some
(p,q) € A introduced in [22], see (1.3) and (1.4) below.

Concerning singular McKean-Vlasov SDEs, the well-posedness is derived in [6, 27] when
the noise coefficient oy(x, ;) has a nice linear functional derivative in p besides other condi-
tions, where in [6] the drift b,(z, ) is bounded and uniformly Lipschitz continuous in p with
respect to the total variation distance, and in [27] the drift b;(x, p) is Lipschitz continuous in
pr with respect to a weighted variation distance uniformly in (¢, z), and [[b.(-, )| zg(7) < 00
uniformly in p for some (p,q) € A

Comparing with [6, 27], this paper studies (1.1) for o;(z, -) not necessarily having linear
functional derivatives, and for b;(x, ;1) unbounded in ;2 and containing a singular distribution
independent term. For instance, let oy(x, u) = o(p) := f(1)laxa, where k > 1, I5q is the
identity matrix, and f(u) := 1+ pu(| - |*) A 1. Then o is Lipschitz continuous in the k-
Wasserstein distance and hence satisfies assumption (A4;) introduced below, but it does not
have bounded continuous functional derivative required in [?, 27] , according to (2.3) in [6]
and the fact that f is not Lipschitz continuous in the total variation norm.

Instead of the usual fixed point method developed for the well-posedness of distribution
dependent SDEs, we will adopt a two-step fixed point argument by freezing the distribution
variables in b and o respectively.

Let k € [1,00). Then

2= {ue 2 luhi= -1t = ([ |x|’m<cloc>)]i <o0f

is a Polish space under the k*"-Wasserstein distance W:
%
Wk(:uv V) = Inf (/ |$ - y|kﬂ(d$ady)) y MV E ‘@ka
TEE (V) Rd xRd

where € (u, v) is the set of all couplings of p and v. Moreover, &7 is a complete metric space
under the weighted variation norm

|1 = Vlkpar == sup ‘M(f) - V(f)|7 pv € Py.
|FI<T+]

By [17, Theorem 6.15], there exists a constant x > 0 such that
(1.2) i = vllear + Wi, v)* < kllp — v

|k:,va7“7
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where || - ||vqr is the total variation norm. On the other hand, when k& > 1 there is no any
constant ¢ > 0 such that ||p — v|[kpar > ¢Wg (1, v) holds for all u,v € Z.

We call equation (1.1) strongly (weakly) well-posed for distributions in Z, if for any .%#-
measurable initial value X, with Zx, € & (respectively any initial distribution p € Z), it
has a unique strong solution (respectively weak solution) such that Zx € C([0,T]; Z), the
space of continuous maps from [0, 7] to the Polish space (£, Wy). Moreover, we call (1.1)
well-posed for distributions in &7y if it is strongly and weakly well-posed for distributions in
;.. In this case, we denote

Pru = %2, for the solution with Ly, = u € Z.

To measure the singularity of by(x, ) in (t,7), we recall locally integrable functional
spaces introduced in [22]. For any ¢t > s > 0 and p,q € (1,00), we write f € Li([s,t]) if
f:[s,t] x R? — R is measurable with

: ¥
11| 2g1s,) := sup {/ </ ]f(u,x)|pdx> du} < 00,
z€R s B(z,1)

where B(z,1) := {x € R?: |z — 2| < 1} is the unit ball centered at point 2. When s = 0, we
simply denote

(1.3) Lit) = L0, 1)), 1/ llzse = 1f 23 c0.0)-
We will take (p, q) from the space
d 2
(1.4) H o= {(p,q):p,q>2,§+5<1}.
For any € C([0,T]; P%), let
ol (x) = oy(z, pe), OH(x) :=by(x, 1), (t,7) €[0,T) x R™
We make the following assumption.

(Ap) There exist constants K > Ky > 0,1 € N, {(p;,q;) :0< i<} C # and 1< f; €
L& (T) for 0 <4 <[ such that o' (x) and b} (z) := bV (z) + b"°(2) satisfy the following
conditions for all u € C([0,T]; Z).

(1) a* := o*(o")* is invertible with ||a" ||« + ||(a*)!||ee < K and

lim sup sup |ai (x) — ai (y)|| = 0.
b0 pec (0,112 telo,T],Jz—y|<e

(2) bW is locally bounded on [0, 7] x R%, ¢4 is weakly differentiable such that
!
b1 @)] < folt,2) + Kolluellks IVl (@)l <D filt,x),  (t2) € [0,T] x RY,
i=1
6 (2) = b ()| < Klo —yl, t€[0,T)2,y €R"
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This assumption implies the well-posedness of the SDE with drift b}'(x) and noise coefficient
oy (x) for all p,v € C([0,T]; P%), see [15, Theorem 2.1]. To prove the well-posedness of
(1.1), we need the following conditions on the distribution dependence.

(A1) For any t € [0,T],z € R? and u,v € Py,

low(a, 1) — ou(, )|l + ool 1) — bil, )| < Wi, v) ) filt, ).

i=0
Our first result is the following.
Theorem 1.1. Assume (Ag) and (Ay). Then the following assertions hold.

(1) (1.1) is well-posed for distributions in P. Moreover, for any j > k there exists a
constant ¢(j) > 0 such that the solution satisfies

(1.5) ELE}&% X1 |%o| < e(){1+1Xol + (EIXo])F}.

(2) For any N > 0 and j > k, there exists a constant C;n > 0 such that for any two
solutions X of (1.1) with E[| X¢|*] < N,i=1,2,

(1.6)  E( sup X} - X7)
t€[0,T]

Fo) < Crn{1X3 — X3V + (EIIXG - X3P)H}.

Consequently,

(1.7) S Wi (Prut, i) < 2Ck yWi(ph, p?), pts p* € P, (%), 12 (|-1F) < N.
€0,

When Ky = 0, this estimate holds for some constant C; > 0 replacing C;n for any
two solutions for distributions in .

Comparing with (A;), the following assumption allows weaker distribution dependence
for b(x,-) but needs bV = 0 and stronger conditions on o.

(A) b =0, and there exists a constant x > 0 such that the following conditions hold for
allt € [0,T],z,y € R? and p,v € P

l

b1, 1) = bel, )| < { = Vlliwar + Walp,v)} Y filt ),

low(z, )P V [ (ov07) (2, p)|| < K, :
low(z, 1) — oy, V)| < K (lz =y + Wi, v)),
H{oi(z, 1) — oy, )} — {oe(x,v) — or(y, v) }| < K|z — y|Wi(p,v).
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Remark 1.1. It is easy to see that the fourth inequality in (As) holds if oy(x, p) is differ-
entiable in z with

Vo (-, p) () — Vo (-, v) ()| < KWy (i, v), v e Py, xR
Indeed, this implies
How(a, 1) = ouly, w)} —{ou(, v) — oy, v)} ]

/0 {Vooyou(y + sz —y), 1) — Vayou(y + s(z — y),v) }ds

< /0 \\V%yat(y +s(z—y),p) — Veyor(y + s(x — y), y)HdS
< K|z — y|Wi(p, v).

Theorem 1.2. Assume (Ag) and (Az). Then Theorem 1.1(1) holds. If k = 0, then for any
N > 1, there exists a constant C(N) > 0, such that

(1.8) 1P Pl < SOW (), ¢ 0l v o < N

Y
If moreover Ko = 0, then the constant C(N) can be independent of N.

The above two theorems are proved in Sections 2 and 3 respectively, and Theorem 1.1
will be extended in Section 4 to reflecting SDEs.

2 Proof of Theorem 1.1

Let us explain the main idea of the two-step fixed point argument.
Let Xy be #p-measurable with v := Zx, € H. Let

@) = {neC(0,1); P): po=1}.
We solve (1.1) with a fixed distribution parameter € €, in the drift:
(2.1) dX = b (XY, pe)dt + o ( XY, Lxp)dW,, €10, T, X = Xo,
such that the well-posedness of this SDE for distributions in &2 provides a map
€D = Lyr €6,

Then the well-posedness of (1.1) follows if the map ® has a unique fixed point in €.
To solve (2.1), we further fix the distribution parameter v € €, in o such that the SDE
becomes
AXHY = (X1 1)t + oy (XIY, v)dW,, t € [0,T], X2 = X,



which is well-posed under (Ay) according to [15, Theorem 2.1]. This gives a map
(2.2) €. >V Oy = Lyur €F).

So, we first prove that this map has a unique fixed point such that (2.1) is well-posed, then
apply the fixed point theorem to ® to derive the well-posedness of the original SDE (1.1).
For any x > 0, let

Wk,fwar(ula/lQ) = Wk(l/“l?p“Q) + H”MI - MQHk,var, :ulwu2 € ‘@k'

To apply the fixed point theorem, we will use the following complete metrics on %, for > 0
and x > 0:

Wk,m}arﬁ(,ua V) ‘= Ssup e_etwk,nvar(uta Vt)a
te[0,7)

(2.3) Wo(p,v) = sup e "Wy (us, i), p,v € G
t€[0,T]

To prove that ®7 has a unique fixed point in %}, we need to restrict the map to the
following bounded subspaces of €

(2.4) 6" = {nes sup e {1+ | 1) < N} N>
telo,T

and to prove that these spaces are ®7-invariant for large N. This enables us to verify the
contraction of ®7 in € N under a suitable complete metric.

For this purpose, we present the following lemmas. The first one ensures the well-
posedness of (2.1).

Lemma 2.1. Assume (Ay) and that for some constant k > 0,

l
|bt(x7 Vl) - bt<x7y2)‘ S Wk,nva?"(y17y2) Zfl(tax)7

(2.5) l =0

HUt(ilf, Vl) - Ot(:B?V?)H S Wk(’/hV?) ZfZ(t’x)

=0

holds for any vy, vy € Py, t € [0,T] and x € R Then (2.1) is well-posed for distributions in
Py.. Moreover, there exist 6y > 0 and decreasing function [3 : [0y, 00) — (0, 00) with 3(0) | 0
as 0 T oo such that

(2'6) Wkﬁ(q)’y,ua (I)VV) < 5(9>Wk,fwar,0<,ua V), p,ve CKJ’N'

Proof. (a) For the well-posedness, it suffices to prove that ®7# defined in (2.2) has a unique
fixed point in €.



In general, let pi € %JN for some N > 0,7 € 2% i = 1,2. For V' € ‘5,: and initial
value X{ with Lxi = ~%, 1= 1,2, consider the SDEs

(2.7) AX? = b (XDt + oV (X)W, t€[0,T),i=1,2.

According to [15, Theorem 2.1}, under (Ap) these SDEs are well-posed, and by [24, Theorem
2.1], there exist constants ¢, Ao > 0 depending on N via p' € €Y due to

B0 (@) < folt @) + Koll} [,
such that for any A > )y, the PDE
1
(2.8) <8t + §tr{at”lv2})ut + (Vut)bfl = A\u; — bfl’o, tel0,T],ur =0

has a unique solution such that

(2.9) IVl z30 () < o, Nulloo + I VUfloo < %
Let Y} := 0,(X}),i =1,2,0, := id + u;. By 1t6’s formula we obtain
= {0 4+ M H (XDt + ({VO,}or ) (X)) dW,
V2 = {{oV + Ay, + (V@t)(bf’ — B (XP)
+ %[tr«af — @)V (XDt + (V61 }at")(X2) AW,

Let n; := | X! — X?| and
!
= Zfi(r7 X?)v Gr = gr||v2uT(X3)”7

Z V20, || (X)) +ZZfz r, X9, rel0,T].

J=1 =0

Since 0"+ Auy is Lipschitz continuous uniformly in ¢ € [0, T, by (Ag), (2.5) and the maximal
functional inequality in [22, Lemma 2.1], there exists a constant ¢; > 0 depending on N such
that

{6 + A, (X)) = {0 + A, H(XP)| < ey,

{(ve,)®” - b,ﬁ‘ )}<X2)| < 19 Wi suar (1175 117),

|[r{(af" — & )V?u, ] (XD)| < 16, Wi, 7)),

[{(v60)0r 3 (X2) = {(V6,)07 } (X))

< C19rMyr + Clgrwk( Ve, 3) re [Oa T]



So, by It6’s formula, for any 7 > k we find a constant ¢, > 1 depending on N such that
(210) Y} = V2% < e dAs + ealg? + 50 {Weuar (il 12)% + Wi, 1) bt + dM;

holds for some martingale M; with My = 0 and
t
A, = / {1+ g2+ g, + 7. }ds.
0
Since ||Vulo < 5 implies |V, — V2| > Ln;, this implies

¢

77?] < 2\, + 22j77§] + 22j02/ nfjdAr

(2.11) . 0

29, (624 30 (War i 12 + W51, )9 s
0

for some constant ¢c; > 0 and all ¢ € [0, T]. By (2.9), f; € Egg(T) for (p;,q;) € , Krylov’s
and Khasminskii’s estimates (see [24]), we find an increasing function « : (0,00) — (0, 00)
and a decreasing function ¢ : (0, 00) — (0, 00) with €y — 0 as § — oo, such that

E[e”‘ﬂﬁo] <a(r), r>0,

¢
sup E(/ e =) (g2 4 g, )dr
0

te[0,7]

ﬁo) < gy, 6 > 0.

By the stochastic Gronwall inequality and the maximal inequality (see [22]), we find a
constant c3 > 0 depending on N such that (2.11) yields
{E< sup 7]

2
%)}
s€[0,t]

t
S C3E (773] + / (g? + gs){wk,nvar(ﬂi7ﬂi>2j + Wk(yia V52)2J}d5
0

< e + 3 eg { Wi, jvaro(pt', 1) + Wy o(v', %) }.

(2.12)

)

Noting that

by taking j = k we obtain
(2.13) Wio(Lxr, Lx2)F < JGEE] + v 6350{Wk,mvar,9(,ula 12"+ W o (1!, V2)k}-

By taking X} = X2 = Xgand p! = p? =p € ‘g,g’N, when 6 > 0 is large enough such that
C3gp < %, OrHyt = Ly satisfies

1
Wkﬂ(q)’wlyl? CID%'LLVQ) < §Wk7g(y1, 1/2), V1,Vy € %]Z
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Thus, ®* has a unique fixed point in €', so that (2.1) is well-posed for distributions in
..
(b) Taking v* = ®7p’, we have Lx: = &', so that (2.13) becomes

Wi (070!, ®Vp1) < (c380) 2 { Wi wwara (11!, 12) + Wio (70", ®7ps?) }.
Taking 6 > 0 large enough such that czeq, < 1 we prove (2.6) for

Bip) - 0™

1 — (c3eq)2%

Lemma 2.2. Assume (Ay).
(1) There exists a constant Ny > 0 such that for any N > Ny we have ®1€" c €.

(2) Solutions to (1.1) for distributions in &P satisfy (1.5) for any j > k and some
constant c(j) > 0.

Proof. (1) Simply denote M, = fg os(XH, Lxn)dW;. Since ||o]|s < 0o due to (Ap), we have

sup E[|M,|*] < occ.
t€[0,T]

Combining this with Lemma 2.3 below, we find some constants c¢g,c; > 0 such that

E(1+[X{1")
k

+E|M|*

t
<E( + [ Xol") + oE ] / (Kollislle + fols, X¥) + |X¥] + 1)ds
0

t k/2
| e
0

By Gronwall’s inequality, we find ¢y, c3 > 0 such that

t
| e ez as
0

< ez 4 cgN7TF2N e €Nt e [0,T7.

t
< c1+ ¢ +Cl/ E<1+|X;u|k)d87 te [O,T]
0

k/2
E(1+ |X'") < e+ e

Therefore, we find a constant Ny > 0 such that

sup (14 [|®7ul|K)e™ <5+ esNYH2 <N, N> No,pue 6.
te(0,7)

That is, &%) C €N for N > N,



(2) Let X solve (1.1) with v := %y, € P, and denote pu, := Lx,. Then X, = X/
By (Ap) and It6’s formula, for any j > 1 we find a constant ¢; > 0 such that

t

(2.14) [ X" — [ X[ < Cl/ (L IXG X fo(s, Xo) + sl fds + M
0

holds for some martingale M, with d(M), < ¢?|X,|>®~Vdt. Noting that

t
cl/ | X7 fo(s, X )ds < cl< sup | X |23 ! / fo(s, X5)
0

s€[0,t]

1 4 t
< - sup ‘Xs|2j +Cz</ fo(s, X,)ds )
2 5o 0

holds for some constant ¢z > 0, we see that 7, := sup,e( | X |* satisfies

¢ ' t 2j
(2.15) 7 < 2|X0]27+2c1/ {1+n,+ Husuif}derch(/ fo(s,XS)ds) +2 sup M,.
0 0

s€[0,t]

By d(M), < &|X,|>¥-1dt and BDG’s inequality, we find constants cs,c; > 0 such that

t ' 1
o‘*) < C3E|:</ ‘XS|2(2J_1)d3) ’yo}
0

1 t
< JE@|) + e [ {1+ E@lF)ds
0

IE( sup M,

s€[0,t]

Combining this with (2.15) and (2.19) below, we find a constant ¢5 > 0 such that

(2.16) E(n|%0) < 5 + ¢5|Xo|¥ + 65/ {E(ns| %) + |lpsl[ }ds, t € [0, 7).

By Gronwall’s inequality, there exists a constant cg > 0 such that

t
(2.17) E(m\%)gc6+cﬁ\xo|2f+c6/ lpslZds, ¢ € [0, 7).
0

In particular, choosing j = k and applying Jensen’s inequality, we derive

E[ sup | X,|¥ ﬁo} < {E(nt|go)}§

s€[0,t]

< Ve (1+ %ol / sl + 5 sup

s€0t

Noting that ||u]|¥ = E[|X,|*], by taking expectation we obtain

t
Jinlls < B[ sup 1X.] < 2@ (1 +EIX) + o [ s, ¢ 0.7
0

s€[0,t]

10



By Gronwall’s inequality, we find a constant ¢ > 0 such that
ek < e(1 +E[IXo[*]), ¢ € [0,T].
Substituting into (2.17) we prove (1.5). O

Lemma 2.3. Assume (Ao). For any (p,q) € A, there exist a constant co > 1 and a function
c:[1,00) = (0,00) such that for any j > 1 and u € 6, , the solution to (2.1) satisfies

(218) E [efg ‘fs(Xg‘)Fds‘go] co+CO fg ||#s||2ds+co||f||Lq(t ’

219 e [ 1 st) 7| <) (14 A ||us||kds) 1712,

for anyt € [0,T] and f € [:g(t),t € [0, 7).

Proof. Consider the SDE
dX, = bV (X)) dt + o, ( Xy, DY p)dW,, Xo = Xo,t € [0,T].
By Khasminskii’s estimate (see [24]), there exists a constant ¢; > 1 such that

(2.20) E[efg FXDPas| 2] < el

By (Ao),

B f e LP(t),t €0,T].

& = 0y( X, B ) {00 (Xe, @] )0y (X, @7 )"} 1000 (X)
satisfies B
&e| < cafolt, Xi) + callpelle, t€10,T]

for some constant co > 0. Combining this with (2.20), we conclude that

R, := — oot dWe)—5 3 \&,Pds t 0,7
is a martingale satisfying
(2.21) E[R2|.Z) < ecstes o lmslids 4 o 7T
for some constant c3 > 0. By Girsanov’s theorem

t
Wt = Wt —/ SSdS, te [O,T]
0

is m-dimensional Brownian motion under the probability measure Qr := RrP. Since b =
b + b0 we may reformulate the SDE for X, as

dX, = b'(Xy)dt + o( Xy, @] p)dW,, Xy = Xo,t € [0,T],

11



so that the weak uniqueness of (2.1) yields L5, = Zxu. Combining this with (2.20) and
(2.21), we obtain

]E[efg f(s,XéL)2ds‘y0} _ E[Rtefg f(S’Xs)2ds‘ﬁO]
< (B[R, 2|%0]) (e 2/ Xelds )2 <

for some constant ¢4 > 0. This implies (2.18) for some constant ¢y > 1.
By choosing large enough constant C; > 0 such that h(r) := {log(C; + )}’ is concave
for r > 0, using Jensen’s inequality and (2.18) we find a constant C; > 1 increasing in j > 1

such that
90] <E ( [log (Cj + elo fs(Xﬁ)st)]]

5| (/ t Ifs(X5)|2d8>j |#)

. s j N t . J
S [log (Oj + E[efo f+(X$) ds]lﬁO)} S Cj (1 + ”MsHidS + ||f||£q<t)> .
0 P

eC4+C4 Iy ||Ms||kd5+c4HfHLq(t)

Using —L— replacing f, we derive
Mzse

([ inxeras 7] < iz, (e [ s 1)

which implies (2.19). O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (1) Since (1.5) is included in Lemma 2.2, it remains to prove that 7
has a unique fixed point in (57’N for N > N.
Under (4;), (2.5) holds for k =0, so that (2.6) becomes

Wi (7', ®7%) < BO)Wyo(u', 1), 6 > bo.

Taking large enough 6 such that §(f) < 1 we prove the contraction of ®” on the complete
metric space (CKZ’N,WM), so that ®7 has a unique fixed point in ‘ﬁg’N.

(2) Let k = 0 and N > 0. For any two solutions X} of (1.1) with E[|X}|*] < N, they
solve (2.1) for uf = v} = Ly;,i = 1,2. By (1.5), there exists a constant Ky > 0 depending
on N such that p,v € CKQ’K’V. Since k = 0 and (2.13) for large 0 such that \/c;eg < 3, where
0 and c3 depend on N, we obtain

Wio(tz, 1) < 20/CE[1Xg — XG°].

Substituting into (2.12) for k = 0 yields the estimate (1.6) for some constant C; y > 0. When

Ko = 0 we have |00 < fo for any p € C([0,T]; &), so that all the above constants are

uniformly bounded in N, hence (1.6) holds for some constant C; y = C; independent of N.
Finally, by taking j = k and X, X2 such that

gxg = ', gxg =p? E[X; - Xg’k] = Wi (u', 1),
we deduce (1.7) from (1.6). O
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3 Proof of Theorem 1.2

By Lemma 2.1, (2.1) is well-posed so that the map ®” is well-defined on %,'. Moreover,
Lemma 2.2 ensures that %,J’N is ®-invariant for N > Ny. So, for the well-posedness of
(1.1), it suffices to prove the contraction of 7 in €’ N for N > Ny under the metric Wi svar.e
for large 6 > 0. To this end, we will make use of the parametrix expansion for transition
densities.

3.1 Parametrix expansion

For any u € %, and a measurable map I' on %, consider the following SDE:
(3.1) dXH = by (X, pe)dt + o (XM, Typ)dWy, t € [0,T], Xo* = .

Again by [15, Theorem 2.1], (Ag) implies the well-posedness of this SDE. Moreover, by
Theorem 6.2.7(ii)-(iii) in [3], ZLxs» has a density function pj'(z,-) (called transition density)
with respect to the Lebesgue measure. By the standard Markov property of solutions to
(3.1), the solution to (2.1) satisfies

(3.2) Ef(X}) = v(dx) / fo)pt(z,y)dy, te (0,T],f € B(RY,

where %,(R?) is the class of bounded measurable functions on R?. So, to estimate ||®]u —
@) V|| k.var, 1t suffices to calculate |p}'(z,y) —pY (z, y)|, for which we make use of the parametrix
expansion formula.

For any z,z € R%,0 < s <t < T and p € €, let pi(x,-) be the distribution density
function of the random variable

t
X7 =x —i—/ or(z, Lpp)dW,.

Let
t
(3.3) ayy = / (or00)(z, Tpop)dr, 0<s<t<T.
We have
exp[—2{(a") Ny —z),y —
(34) pgf(‘r?y) — p[ <( st) (y ) y >]’ x’y e Rd.

(27)% (det{a"7})?
Obviously, (Ap) and (As) imply

la — a2 < K/ Wi (T pt, Do) dr,

1
K(t =)

(3.5)

K
<@ < 0<s<t<T, prved.

13



Next, for p € 6/, y,z € RYand 0 < s <t < T, let
Hlsu:;fl(yVZ) = Héft(y,Z) = <_bs(y7/1’8)7 fo:’f(,z)(y»
1 * 2
(3.6) + §tr [{(0509) (2, Tsp) = (050) (5, Do)} V2L (-, 2) ()]

H™(y, - / ar / HIS7 () B (y, ')A, > 2,
Rd

By the parabolic equations for the transition densities pi, and p{y, see for instance the
paragraph after Lemma 3.1 in [12], we have the parametrix expansion formula

(3.7) Py, 2) = poy (2 +Z/ dS/dHé‘# Y, 2)pos (2, y)dy.
R

Let

1 2
exp|— =1y — 2l
(3.8) A P | i S S PO
’ (AK7(t —s))2

By multiplying the time parameter With T~ to make it stay in [0, 1], we deduce from [27,
(2.3), (2.4)] with B =p'=1and A = SKT that

t
~ _ 1 _ 1
/ / 5 (0, ) — ) g () — 1) 2K () dy
(39) s R4
< et —5) FHOE DR (1 gl rygeny 0S5 <t<Toge Li(ls, 1)

holds for some constant ¢ > 0 depending on T',d, p,q and K. By the condition on a included
in (Ap), we find a constant ¢; > 0 such that (3.4) implies

Iﬂf—yl“)
B, y) [ 1+
(3.10) Pai ( y)( (t—5)?
<caplzy), y,ze€RL0<s <t <T,y€ Py, puc C[s t]; D).

Lemma 3.1. Assume (Ag) and (Ay). Let pii(x,y) be defined by (3.3) and (3.4) for some
map I : 6 — €. There exists a constant ¢ > 0 independent of T, such that for any
0<s<t<T z,y,z€R,yeE P, and u,v € C([s,t]; P),

(311) <1+ | t:y| )|p (:C7y) pst<x y) Cp;t_xsy /Wk b ry)d
(3.12) VE= |V () (@) + (= ) VL () (@)l < chay(@, y),

Vi —s|Vpei (5 y)(x) = Vogi (- y) (2)]
(3.13) + (t = s)IV2per (5 y) (@) = V2 () (@)

< Cp;t_fsy / Wk r,M,F l/)d
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Proof. (1) For fixed z,y € R and 0 < s <t < T, let

F(p) = ((di)) "y —a),y — ), e O([s,t]; Py).
It is easy to see that
P57 (2, y) — poi (2, y))]
epl-AF()]  expl-1F()
(2m)% (det{al})?  (2m)% (det{al7})?

(3.14)
S [1 + 127

where

1

R 2
I = 1
2

Iy = ———F—
2

Combining this with (Ag) and (As) which imply (3.5), we find a constant ¢; > 0 such that
[P () = F) = [({(al)™" = (a0) " Hy — 2),y — 2}

|y_ /Wk’ T‘/‘”’arl/d

which together with (3.10) and % <11+ |(f y)‘ ) yields that for some constant ¢ > 0,
jz —yl*
1
( * t—s
Again by (3.5), (3.10) and % <11+ ‘x:m ), we find a constant ¢z > 0 such that

—ul? c T
(1+—|m yl )12_ 5 (7,Y) /Wk Ty, Ty)dr.

t—s t—s

~_
~
i
o
V)
’6
CIJ
H
Q@

/Wk T/VL,FI/d

Combining these with (3.14), we arrive at

2
r—y v (ca + ca)ply(a,y)
(1+—‘t | )Ip (x,y) —pof(z,y)] < ! / Wi (Lppe, Typv)dr.

t—s
(2) By (3.4) we have
(3.15) VRl (s y)(@) = (@) My — 2)ples (),
(3.16) Vi (y)(@) = (o) ({(@) M — )} @ {(@) M —2)} = (@) ™).
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So, by (3.5) and (3.10) we find a constant ¢ > 0 such that (3.12) holds. Moreover, (3.15)
implies
Vo (w) () = Vg (- y) (@)
< {(al)™" = (al) "}y — )| Pl (2, y)
+‘ps (CC, ) ps,t(x7y)’ |( g,tz) 1(y—.’ﬂ)‘
) an

Combining this with (3.5), (3.10) and (3.11), we find a constant ¢ > 0 such that

¥4
t
1,2
t

Cpst x y

Ve (u) (@) = Vg (L y) ()] < (s

/Wk r/~L7FVd

Similarly, combining (3.16) with (3.5), (3.10) and (3.11), we find a constant ¢ > 0 such that

Cpst$y

IV2pLy Co)(@) = Vo () (@) < =5 (t—s)

/wk Ty, Ty)dr,

Therefore, (3.13) holds for some constant ¢ > 0. O

For 0 <s<t<T,y€ P, and u,v € C([s,t]; Py), let

(3.17) Asi(p,v) := sup {Wk(Fru,FTV) —|—Wk7,wmq(pr,m)}.

rée(s,t]
Lemma 3.2. Assume (Ag) and (Ag). Let & := 5 (1 - pio - q%) > 0 and denote

Spi= sup (14 [uelle)s Spw =8,V Sy, vip €.
te€(0,T

Then there exists a constant C' > 1 such that for any 0 < s <t < T, y,z € R, p,v € €,
and j > 1,

(3.18) |HY (y,2)] < fols,9)(CS,) (t — 5) 200D (),
\HY/ (y, 2) — HY (y, 2)]
< 3 fo(5,9)(CS, ) (t — 5) 20 DRE (2 ) Ao, v).

Proof. (1) By (3.6), (3.12), (Ag) and (As), we find a constant ¢; > 0 such that for any
0<s<t<T,uecC(0,T);#) and y, z € R,

(3.20) [HY (g, 2)] < et — )72 {1+ i) fo(s, 9) 1P (9, 2).

So, (3.18) holds for j = 1 and C' = ¢;. Thanks to [27, (2.3), (2.4)] with =" =1, A = g
we have

(3.19)

[un

= //d (¢ —u)~2(t = w0V (y, 2) folu, y) (u — 5) 2B, (2, y)dydu
R
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(3.21) <ot —s)77p

where ¢3 1= ¢|| foll zg(s.)- Let C:=1V ¢} V (4c3). If for some j > 1 we have

(HE (49, 2)] < (CS,) fols, )28 (3, 2)(t = 5) 739070

for all y,z € R and 0 < s < t < T, then by combining with (3.20) and (3.21), we arrive at

H+ (g, 2) |</ du/ H (2, 2)HE (g, #)]d2’
< CIVC(S,)" fols,y) I
< CJH( u)]Hfo(s,y)(t— s)” Wpst (y,2).

Therefore, (3.18) holds for all j > 1.

(2) By (3.12), (3.13), (3.5), (Ap) and (Asz), we find a constant ¢ > 0 such that for any

0<s<t<T, uveC(0,T];P) and y,z € RY,
(3.22) [HE(y, 2) = Y (y,2)] < et = ) 2DL (0, 2) S fo(s, 9) M (11, ).
Let, for instance, L = 1+ 4C? + 4¢?, where C is in (3.18). If for some j > 1 we have
[HF (2, 2) — HY (2, 2)] < §(LS,u) fols, )55 (2, 2)(t — 5) 720Dy, v),

for any 0 < s <t < T and z, 2’ € R? then (3.18), (3.21) and (3.22) imply

|HY  y, 2) — Hy! ™ (y, 2)

< [ar [ {imes - il o, 2)

(2 2)] - HE (g, 2) = HE (9, )] b
< (5 + (LS fols, )52 (g, 2)(E — 8) 72N ().

Therefore, (3.19) holds for some constant C' > 0.

[]

We are now ready to prove the following main result in this part, which will be used to
prove the contraction of ®” on the path space over a small time interval. For ¢y € (0,7, let

G = {p € C((0,to); Pr) + pny €ETN}, N =N,

Lemma 3.3. Assume (Ag) and (As). For any N > Ny, there exist Oy > 0,ty € (0,T] such

that )
N
Wk,m}ar,aN ((I) /\tN,u7 (I) /\tN ) S §Wk,m)a7"701\r (ILL'/\tN’ V-/\tN)a yV S %;gtN
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Proof. By (3.10), Lemma 3.1, Lemma 3.2, (3.7), (3.9) and (A3), we find constants ¢y, ¢z, c3 >
0 such that for any 0 > 0 and ty € (0,7 A (QC’N)*%],

~K t
v C1p (.I, Z)
o, 2) = pie2)| < TS [ s
0

&) t
+ ds | {|HL" — HI (v, 2)pg(e,y) + [HE (y, 2)|6s — poal(x,y) by
n=1"0 Re

< Cleetwk,e(r-mﬂ; F-AtV)ﬁgt (ffa Z)

+3 (0 + 1)(CN) Mg, )3+

n=1
¢
1 1
></ /d(t—r) 2 gy (v, 2) fo(r, y)r~2ph, (z, y)dydr
0o Jr
< Cletawkﬁ(F-/\t,UJaF-/\t”)ﬁgt(xvz) + eat® Ao s (11, v) pOt T, 2) Z (n+ 1)(CN)"2=Y
n=1

< Cleetwkﬂ(r-/\tﬂ, F-At”)ﬁéft(xa z) + CBtéAO,t(/% V)Po,t (2, 2)

holds for any z, 2 € Rt € (0,tn], u, v € CKJ’N. Combining this with (3.8), we find a constant
¢4 > 0 such that

sup / / ()@t — ) (@, 2)dzr(d)

lg|<1+|-|* |JR? JRE

< 16" Wy (T opeft, Tnet) / (14 |25, (2, 2)dzr (de)
(323) RdXRd

etBoslur) [ (@ PR (52 )
R4 xR4
S C4eetwk,9(r-/\t,u7 1—‘-/\ty) + C4t5A0,t(:u7 V)a t e (Oa tN]v w, v € (g]g’N'

Taking I' = ®7, by the definition of ®;, (3.23) and (3.17), we find a constant ¢5 > 0 such
that

Wk Kvar. 9((1) /\tNﬂ’a q>’y/\tN )
< C5W7€ 9((1) At (I)W/\tN ) + C5t(]5VWk’,HUaT,9 (:u'/\tz\ﬂ V'/\tN)7 JORZAS CKI;YVN'

By (2.6) with 5(0) — 0 as § — oo, we find large 6 > 0 and small tx € (0, 7] depending on
N such that

Wk,nvarﬂN(q)-W/\tN,uu (I)7AtN ) < Cs (ﬁ(eN) + t(]SV)Wk,nvarﬁN (:U’-/\tNu V'/\tN)

A
—

>~ éwk,nvarﬁ]\; (,u-/\tN y Vint ) .



3.2 Proof of Theorem 1.2

Estimate (1.5) is included in Lemma 2.2(2). It suffices to prove the well-posedness of (1.1)
and estimate (1.8) for k = 0, where C'(N) is bounded in N when Ky = 0.

(a) Well-posedness. By the priori estimate (1.5), there exists a constant C' > 0 such that
for any solution of (1.1) on [0, 7] with Zx, =7,

(3.24) sup Zx, (|- |") < C.

te[0,T

So, we may fix Ny > 0 depending only on C' such that any solution of (1.1) with initial
distribution 7 satisfies Zx. € 6" Mo By Lemma 3.3, there exists # > 0 and t, € (0,77
depending only on Ny such that the map 7, is contractive in CK,Z;éVO under the metric
Wi svare, and hence (1.1) for ¢ € [0,tp] is well-posed for distributions in &7 and (3.24)
holds. Using (tg, X;,) replacing (0, Xj), the same argument implies the well-posedness of
(1.1) for t € [to, (2tg) A T] and that (3.24) holds for (2ty) A T replacing t,. By repeating the
procedure finitely many times, we prove the well-posedness of (1.1) for distributions in .
(b) Estimate (1.8). For any pi € 2, with pi(|-[¥) < N,i=1,2, let

pi=Prub, i=1,2,t€0,T.
By (1.5), there exists a constant Cy > 0 such that

(3.25) sup (p1; + 117)(| - 1¥) < Ch.
te[0,7

So, there exists a constant N depending on Cy such that
e, i=1,2.

Counsider the SDEs

(3.26) AX7" = by (XP', i) + of( XD pd)dW,, X3 =2 e R4t €[0,T],i=1,2.
We have
(327) _Pt* / g zzILLO dl’ tG [O,T],i:172,

According to [20, Theorem 2.1(2)], (3.25) and (Ap) imply

var < “=le—yl, wyeRLte (0,T]i=1,2

Vit

for some constant ¢; > 0 depending on N. Combining this with (3.27) gives

i

||$ tz,i - ng;,z

P/ 1 / "%Xy 1(dy)

= | [ #man - [ 2ian
ar Rd ]Rd

var
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(3.28) < inf / | Les — Ly lowr(da, dy)
R4 x R4

WSA(T T
C1

C1

On the other hand, by (3.27) and (3.23) for u = p', v = p?, k = 0 and T = id, we find
constants co > 0 and ¢y € (0,7 depending on N such that

‘ P g — / Ly pi(dy)
R4

For any ¢ € [ty,T], repeating the above argument for the time interval [t — ¢y, t| replacing
[0,tn] we prove

for some constant ¢ > 0 depending on N. Combining this with (3.28) and (1.7) which holds
since (Ay) with x = 0 implies (A;), we prove (1.8) for some constant C(N) > 0.

Finally, noting that the dependence on N comes from Krylov’s and Khasminskii’s esti-
mates for the solutions, and when Ky = 0 we have [0*°| < f; for all u € 6}, these estimates
are uniform in p. Thus, in this case (1.8) holds for all u,v € & and a constant C' > 0
independent of V.

<y sup Wi(uf, i), te€[0,tn].
var t€[0,T]

< ¢ sup Wi(ui, 1)
var t€(0,717]

P/ g — / | Lxping(dy)
R

4 Extension of Theorem 1.1 to reflecting SDEs

Let D C R be a connected open domain with 0D € C’f L in the following sense: there exists
a constant ro > 0 such that the polar coordinate map

U : 9D x [—ro,19] D (2,7) = z+rn(z) € 04y, D = {z € R : py(z) := dist(z, D) < ro}

is a C?-diffeomorphism, such that ¥~!(z) have bounded and continuous first and second
order derivatives in z € d4,,D, and V?2pg is Lipschitz continuous on O01ro D. B
Consider the following distribution dependent reflecting SDE on the closure D of D:

(4.1) dX; = by( Xy, Zx,)dt + 0u( Xy, Lx,)dW: + n(X,)dl,, te€[0,7T],

where n is the unit inward normal vector field on the boundary 0D and [; is a continuous
adapted increasing process with dl; supported on {t : X; € 0D}. Let IN/g(T) and & be
defined as before for D replacing RY. When o,(x, ) = oy(z) does not depend on ju, the
well-posedness of (4.1) has been proved in [21] under the following assumption, where a} :=

(0207) (-, pir)-
(B) Assumptions (Ag) and (A;) hold for D replacing RY. Moreover, there exists a constant
¢ > 0 such that for any p € C([0,7]; &), the Neumann semigroup {P.;}o<s<i<r

generated by the operator L} := str{a}'V?} 4+ V b,gl) on D satisfies

(4.2) VP! lloo < et — 8) 2|, 0<s<t<T,¢eCi(D), i=1,2

S
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Theorem 4.1. Assume (B) and let 0D € C’bZ’L. Then the assertions in Theorem 1.1 hold
for (4.1) replacing (1.1).

Proof. Let v € &7 and consider the initial value X, with £y, = v. It suffices to prove that
Lemmas 2.1-2.3 hold for ®"p := Zx. with the following reflecting SDE replacing (2.1):

(43) dX# = bt(XtH7 ILLt)dt + O-t(va ng)th + H(X#)dl#, le [Oa T]v X(lf = XO-

(a) Assertions in Lemma 2.1. For 7' € 9, u' € %JLN and ' € ‘K,gi, i = 1,2, instead of
(4.4) we consider the reflecting SDEs

dX] = b (X)dt + o) (X))AW, + n(X)dli, Ly =+t €[0,T],i=1,2.

By [21, Theorem 2.2(ii)], (B) implies the well-posedness of these reflecting SDEs.
Next, according to the proof of [21, Theorem 2.2(ii)], there exists a semimartingale H,
such that
CHX}! - X}* < H, <O|X}! — X}2?, tel0,T]

holds for some constant C' > 1, and instead of (2.10),
dH] < eon? d{ Ay + Uy + 0} + eagf + GO Wi, 1) + Wilw,v?) }dt + dM,

holds for some constant c; > 0 and all ¢ € [0, T].
Then the desired assertions can be proved as in the proof of Lemma 2.1 by using Khas-
minskii’s estimate in [21, Lemma 2.7], as well as the estimate

(4.4) E[e,\(leH?T)] < ec(1+>\2)7 >0

for some constant ¢ > 0 presented in [21, Lemma 2.5], where condition (A$") follows from
(Ap) included in (B), according to [21, Lemma 2.6].
(b) Proof of Lemma 2.2. In the present case (2.14) becomes

t t
|Xt|2j—|X0|2jgc1/ {1+|XS|2]—|—|X5|29‘1fo(s,Xs)+IIMSIIiJ}dH—cl/ | X% dl, + M,
0 0

such that (2.16) reduces to

t t
E(n:|%0) < 5 + ¢5] X0 +c5/ {E(ns|-Z0) + |yus||,§ﬂ}ds+c5/ E(n,|.%o)dl,, te[0,T).
0 0

Combining this with (4.5) for I} = Ip and using Gronwall’s inequality, we derive (2.17).
Then the remainder of the proof is as same as in the proof of Lemma 2.2.

(c) Proof of Lemma 2.3. According to [21, Lemma 2.7], under (B) the estimate (2.20)
holds for the solution to the reflecting SDE:

dXt = bgl) (Xt)dt + O't(Xt7 @z,u)th —+ D(Xt)dlt XO = Xg,t S [0, T]

Then the desired assertion follows as in the original proof.
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