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Abstract

Let X be the (reflecting) diffusion process generated by L := A+VV on a complete
connected Riemannian manifold M possibly with a boundary OM, where V € C'(M)
such that p(dz) := ¢ ®)dz is a probability measure. We estimate the convergence rate
for the empirical measure p; := % fg 0x.ds under the Wasserstein distance. As a typical
example, when M = R? and V(z) = ¢; — co|z|P for some constants ¢; € R, co > 0 and
p > 1, the explicit upper and lower bounds are present for the convergence rate, which
are of sharp order when either d < @ ord>4 and p — 0.
AMS subject Classification: 60D05, 58J65.
Keywords: Empirical measure, diffusion process, Wasserstein distance, Riemannian mani-
fold.

1 Introduction

Let M be a d-dimensional complete connected Riemannian manifold, possibly with a bound-
ary OM. Let V € C'(M) such that Zy := [,,e"@ds < oo, where dz := vol(dz) stands for
the Riemannian volume measure. Then p(dz) := Z;,'eV(®dxz is a probability measure, and
the (reflecting if OM exists) diffusion process X; generated by L := A + VV is reversible
with stationary distribution p. When M is compact, the convergence rate of the empirical

measure
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under the Wasserstein distance is investigated in [19]. More precisely, let p be the Riemannian
distance on M, and let

Wa(un,pp) = inf - o0l 2y

be the associated L?-Warsserstein distance for probability measures on M, where € (uy, o)
is the class of all couplings of p; and py. For two positive functions &,7n of ¢, we denote

() ~n(t) if ¢t < 58 < ¢ holds for some constant ¢ > 1 and large t > 0. Accordlng to

[19], for large ¢ > 0 we have

1, if d <3,
E[Wy (1, p)*] ~ { t~'logt, if d =4,
tam, it d > 5,

where the lower bound estimate on E[Wy(uy, 1)?] for d = 4 is only derived for a typical
example that M is the 4-dimensional torus and V' = 0. Moreover, when OM is either convex
or empty, we have
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(1.1) hm t]E[W2 s o 2—2
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where {); };>1 are all non-trivial eigenvalues of —L (with Neumann boundary condition if 0M
exists) listed in the increasing order counting multiplicities. See [17, 18] for further studies
on the conditional empirical measure of the L-diffusion process with absorbing boundary.

In this note, we investigate the convergence rate of E[Wy (s, 1)?] for non-compact Rie-
mannian manifold M.

1.1 Upper bound estimate

We first present a result on the upper bound estimate of EY[Wy(uy, i1)?], where E¥ is the
expectation for the diffusion process with initial distribution v. When v = ¢, is a Dirac
measure, we simply denote E* = E% .

Let pi(x,y) be the heat kernel of the (Neumann) Markov semigroup P, generated by L.
We will assume

(1.2) (1) ::/ pe(z, x)p(dx) < oo, t>0.
M
By [12, Theorem 3.3] (see also [14, Theorem 3.3.19]) and the spectral representation of heat

kernel, (1.2) holds if and only if L has discrete spectrum such that all eigenvalues {\; };>¢ of
—L listed in the increasing order satisfy

o0
Ze”\it < oo, t>0.
i=0

Since M is connected, the trivial eigenvalue \y = 0 is simple, so that
(1.3) A= inf {u([VFP) : f € CHOD,u(f) = 0,u(f?) = 1} > 0.
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The first non-trivial eigenvalue \; is called the spectral gap of L, and (1.3) is known as the
Poincaré inequality.
In particular, (1.2) holds if P, is ultracontractive, i.e.

sup pt(x7y> = |’PtHL1(u)—>L°°(u) <00, t> 0.
z,yeM

Since (t) is decreasing in ¢, (1.2) implies

(1.4) —1+/ ds/ t)dt < oo, €€ (0,1].

Moreover, let

(1.5) a(e) = E'[p(Xo, Xe)’] = /Mp(x,y)Qpe(fCay)u(dx)u(dy)? e>0.

Finally, for any £ > 1, let &2, ={v € &£ :v = hyu, ||h ]| < k}, where & is the set of all
probability measures on M.

Theorem 1.1. Assume (1.2).
(1) For any k> 1,
1.6 lim su {t sup E"[Wo (1, }
(1.6) msup (t sup B W, Z 3

If P, is ultracontractive, then

SN

t—o00

(1.7) lim sup {tE (W (g, } Z/\é

holds for v € & satisfying

(1.8) /01 ds/ME” (2, X.)%] u(de) < oo

(2) There exists a constant ¢ > 0 such that

(1.9) sup E"Wa (py, p)* < ck inf {a(e)+t7'8(e)}, t,k>1.

vEPy, 56(0 1]

If P, is ultracontravtive, then there exists a constant ¢ > 0 such that for any v € &
andt > 1,

L10) Bl < {3 [ Bl 7)) ds +_int {ae) + 0560}

Since the conditions (1.2), (1.5) and (1.8) are less explicit, for the convenience of appli-
cations we present the following consequence of Theorem 1.1.
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Corollary 1.2. Assume that OM = () or OM is convex outside a compact set. Let V = Vi+Vs
for some functions V1, Vs € CY(M) such that

(1.11) Ricy, := Ric — Hessy, > =K, [|[VV2|e < K

holds for some constant K > 0, where Ric is the Ricci curvature and Hess denotes the
Hessian tensor. For any t,e > 0, let

5(1) ::/M%, B(e) :zl—i—/alds/::y(r)dr

(1) There exists a constant ¢ > 0 such that

(1.12) sup BV [Wo(ue, p)?) < ck inf {e+t7'8(e)}, k> 1.
vED), 56(0,1]

(2) If || Pe*||os < 00 for At > 0, then for anyt > 1 and v € 2,

(1.13) B [Wo (1, 11)?] < c[fluqvvﬁ) + inf {e+ flﬁ(e)}].

1.2 Lower bound estimate

Consider the modified L'-Warsserstein distance

Wip, po) == inf / {1 A p(z,y)}r(de, dy) < Wa(pr, po)-
Mx M

TEL (p1,12)
We have the following result.
Theorem 1.3. (1) In general, there exists a constant ¢ > 0 such that
(1.14) EA W, (pg, )% > ct™, ¢t > 1.
If (1.3) holds, then

(1.15) h;nmf {tE (W1 (2, 1) ]} >0, ve .
—00
(2) Let OM be empty or convex, and let d > 3. If u(|VV|) < oo and
(1.16) Ric > -K, V<K
holds for some constant K > 0, then there exists a constant ¢ > 0 such that
(1.17) inf BY[Wi(ue, )] > c(kt)" 72, kot > 1,
veZy,

and moreover

(1.18) lim inf {tﬁE”[Wl(pt,u)]} >0, d>4ve 2.
— 00

(3) Assume that P, is ultracontractive, OM 1is either empty or convex, and Ric—Hessy > K
for some constant K € R. Then

(1.19) lim inf inf{ t R (W (g, } Z%

t—oo vED
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Remark 1.1. According to Theorem 1.1(1) and Theorem 1.3(3), when P, is ultracontrac-
tive, M is either empty or convex, and Ric — Hessy > K for some constant K € R, we
have

- 2 fn ] -1l 2 : -1l 2 - 8
ZA— < timinf {¢7'E"(Wa(n, p)?] | < lim sup {1~ B (Wl p)?] } < ZA— ve .
Because of (1.1) derived in [19] in the compact setting, we may hope that the same limit
formula holds for the present non-compact setting. In particular, for the one-dimensional

Ornstein-Uhlenbeck process where M = R,V (z) = —3|z|> and A; = i,i > 1, we would guess

= 2
I { E* 2 } =32
tLr& 2 [WQ(ut7ﬂ> ] — 72
However, there is essential difficulty to prove the exact upper bound estimate as thedcor—
responding calculations in [19] heavily depend on the estimate || Pi||11(u)—roe( < ct™2 for

some constant ¢ > 0 and all ¢ € (0, 1], which is available only when M is compact.

1.3 Example

To illustrate Corollary 1.2 and Theorem 1.3, we consider a class of specific models, where
the convergence rate is sharp when d < 2= as both upper and lower bounds behave as ¢!,
and is asymptotically sharp when d > 4 and p — oo for which both upper and lower bounds
are of order ¢~ 2. The assertions will be proved in Section 4.

Example 1.4. Let M = R? and V(z) = —kl|z|* + W (z) for some constants k > 0, > 1,
and some function W € C*(M) with |[VW s < o00.

(1) There exists a constant ¢ > 0 such that for any t,k > 1, we have

a—1)
ckt™ (;£2>a+2, if 4l — 1) < dav,
(1.20) sup EY [Wo (e, 11)?] < 4 ckt='log(1+1t), if 4(a — 1) = da,
ek ckt™1, if 4(a — 1) > dav.

(2) If a > 2, then there exists a constant ¢ > 0 such that for any t > 1,

(a=1)
B [0 ey <dn
2 ; .
(1.21) Sélﬂgi I |x|zéa_1) S gt tog(l+1t), ifd(a—1) =da,
’ ct™ if 4(a — 1) > da.

(3) For any probability measure v, there exists a constant ¢ > 0 such that for large t > 0,

o -2
EV[WQ(/J%’ /J“)Q] Z ]EV[Wl (H’ta H’)z] 2 ct 2v=2),



2 Proofs of Theorem 1.1 and Corollary 1.2

By the spectral representation, the heat kernel of P, is formulated as
(2.1) pe(x,y) —1—{—26“@ )oi(y), t>0,2,y e M,

where {¢;};>1 are the associated unit eigenfunctions with respect to the non-trivial eigen-
values {\;};>1 of —L, with the Neumann boundary condition if OM exists.
We will use the following inequality due to [9, Theorem 2]

(2.2) Wo(fp, 1) <4p(V(=L)"'(f =D}, f>0,u(f)=1,

which is proved using an idea due to [2], see Theorem A.1 below for an extension to the
upper bound on W, (fiu, fopr). To apply (2.2), we consider the modified empirical measures

(23) Het = fe,t/ub7 € > Oat > 07

where, according to (2.1),

24)  fu: 1/ps<Xs,- —1+Ze‘“& o, Ei(t) /qﬁz

t

Proof of Theorem 1.1. (1) It suffices to prove for >°°°. A\;? < oco. In this case, by [19, (2.19)]

i=1""
whose proof works under the condition (1.2), we find a constant ¢ > 0 such that

ck: > 1
- 7 Z Ae2ehi”
i=1 Vi

sup
vEPy,

tE [u(|(—L )7%<fst — 1) Z )\2625>\

This together with (2.2) yields

.8 ¢k
(2.5) t sup EY[Wo(pueys, 1)?] < Z _2 Z A2’

veEPy,

To approximate j; using p. ., for any n > 1 let

1

2

Wo(p1, o) == inf (/ {n/\p(x,y)Q}ﬂ(dx,dy)) . 1, iy € P
TEE (1,12) MxM

Given v € £, let (X7)s>0 be the (reflecting, if OM # () diffusion process generated by L

with initial distribution 7, and let vP; denote the distribution of X7. By the continuity of

the diffusion process and the dominated convergence theorem, we have

limsup Wy ,,(YP.,7)* =0, n>1,v€ Z.
el0



Observing that p., = . P., we have

lim sup WQ,n(:uE,ta ;ut)z =0, n=>1,t>0.
el0

Since Wy, (ttes, 1) < m and v < ku for v € 22, this and the dominated convergence
theorem yield

limsup sup EYWa ,, (ptes, p1)* < klimsup E¥Woy,,, (pe s, p11)* =0, n > 1, > 0.
el0 vePy el0

Combining this with (2.5) and applying the triangle inequality of Wy ,,, we derive

. 2
t sup BY[Wa,, (1, 11)?] < tlimsup sup {WQ,n(,UE,tvut> + WQ,n(Mt,aN)}
veEPy, €l0 veEPy

Therefore, for any ¢ > 0 we have

8 k= 4
2.6 t sup EY[Wy(pe, 11)?] =t sup EY[Ws,, (e, 1)?] < - + = 5
(2.6) sup (W (pte, 1)) Lo (W (pte; 1)) ;E; vt ;E; ¥
which implies (1.6).
Next, when P; is ultracontractive, we have
o)== sup p(z,y) <oo, €>0.

t>ex,yeM

Then the distribution v, of X, starting at v is in the class P5). For any ¢ € (0, 1], let

1 t+e
[L&t = - / 5)(5 ds.
t €

By the Markov property and (2.6), we obtain

Sl\')

t—o00 t—o00 /\

: v = v, - 8
(27)  limsup {tB[Ws(jiey, 1)?] } = limsup { (B [Ws (s, 0]} < Z =
On the other hand, since

I e
W:;/5m&m®+;/&&m®€%%ﬂw’
0 €

and since the conditional distribution of X, given X is bounded above by §(1)u for ¢t > 1,
we have

(B (W (e, fie)?] < (E” / ol y)?n(de, dy)

MxM
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_ /E]E”[p(XS,XS+t)2}ds < 5(1) / E [1(o(X,,)?)]ds = ..

0 0

Combining this with (1.8), (2.7), and applying the triangle inequality of Wy, we arrive at

lim sup {tIE” (W (fe, M)z]}

t—o00

< lim
el0 t—00
8

2

=1

3 _1
(1+7)limsup {tE”[sze,t, u)2]} (147 %)
2

(2) By (1.3), we have

(2.8) JIRs =< e [ F—unPan, 10,5 € 120,

By (2.1)-(2.3), and noting that L¢; = —\;¢; with {¢;};>1 being orthonormal in L?(u), we
obtain

(2.9) Walpte p1)* < 4p(|V(=L) ' (fer — 1) —42)\ e 2NE

Below we prove the desired assertions respectively.
Since for v € &, we have EV < EE#, it suffices to prove for v = p. Since p is Pp-invariant
and u(¢?) = 1, we have

(2.10) E"i(Xs,)°] = u(¢F) = 1
Next, the Markov property yields

E“(¢i(X52)|X51) = P82—81¢i(X51) = e_ki(82_81)¢i(X81)7 S2 > S1.
Combining this with (2.10) and the definition of &;(¢), we obtain

BAJ6i(2) / s, / EA[04(Xo)6:( X )]s

/ dSl/ EM gb, 51 _/\ (s2=s1) dSQ ~ t)\

Substituting into (2.9) gives

(2.11) L AT §ZA Za-2he 322/ ds/ g,

Noting that (2.8) and the semigroup property imply
pute) = 1= [ o) = 1P(s) = [ 1Ppy (o))~ 1Putay)
M M
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/M Ips(2,9) — 1P p(dy) = ¢ py(e,2) — 1},

we deduce from (2.1) that

S = [ fpulei) < ) £ [ (oo) - tde) < (1)
= M M
Therefore, by (2.11) and that (t) is decreasing in ¢, we find a constant ¢; > 0 such that

EX* W (e, )] < —/ ds/ e My (t)dt

(2.12) < 3t2 </ Y (t )dt+7(1)/ —Mdt)d + 321(1) / ds/ e M7 dr
€ s 1 1 s
C1
S 76(6)7 €c (O’ 1]
On the other hand, (2.3) and (2.9) imply that the measure

(e, dy) = 7 [ {Bx (o)p. (X ptdy) Yo

is a coupling of y, and ji.;. Combining this with the fact that ;1 is P-invariant, we obtain

B (Wi e < 7B [ s [ X)X hulas) = )
By (2.12) and the triangle inequality of Wy, this yields
B4 (W (11, 1) ]<2 1nf {a + et B(e) }
Therefore, (1.9) holds for some constant ¢ > 0 and v = p.
Finally, let P, be ultracontractive. Then there exists a constant ¢; > 0 such that

(2.13) suppi(z,y) < ¢, w,y € M.
t>1

So, the distribution of X; has a distribution v; < cjpu. Let iy = % f(f 0x,,,ds. It is easy to
see that

I I
(2.14) ™= ;/ O(Xs, X, 10)d8 + ;/ O(x,,x,)ds € € (e fir),
0 1
so that (2.13) yields
1 ! c !
(2.15) E" [Wo(pr, fir)?] < ;E”/ | X — Xl *ds < %E/ p(p(Xs,-)?)ds.
0 0

On the other hand, by the Markov property and (1.9), we find a constant ¢, > 0 such that
E"[Wa(fi, 1)) = B [Wa(p, 10)?] < €2 Hlf {CM )+t B(e )}

Combining this with (2.15) and using the triangle 1nequahty of Wy, we prove (1.10) for some
constant ¢ > 0. [



Proof of Corollary 1.2. (1) By [16, Lemma 3.5.6] and comparing P, with the semigroup
generated by A + VV), see for instance [6, (2.8)], (1.11) implies that the Harnack inequality

(2.16) (Pof (2))* < {Pf2(y)}e O Py € Mt € (0,1]
holds for some constant C' > 0. Therefore, by [15, Theorem 1.4.1] with ®(r) = r? and
U(z,y) =C+ Ct 'p(z,y)? we obtain

1 3C

Pl 1) :u(sfgil(af(x)) = e OO u(dy) = u(Blr,v/a1)

t e (0,1],x € M.

This implies

(2.17) v(t) < e93(t), te (0,2

On the other hand, by (1.11) and Itd6’s formula due to [7], there exists constant C; > 0
such that

dp(ﬂf, Xt)2 < |:Cl (1 + ,O(I, Xt)2) + |VV(:E)|2] dt + 2\/§p(l', Xt)dbt,
where b; is a one-dimensional Brownian motion. So, there exists a constant C5 > 0 such that
(2.18)  E’[p(x, X1)%] < (Cy +v([VVPNte“ < Cy(1 4+ v(|VV ), t€0,1],z € M.

Then there exists a constant ¢ > 0 such that

sup/ ]E"p(x,XE)Qu(dx)gk/ Erp(z, X.)?u(d)
veZr J M M

< Ook(14 u(|VV|*))e < cke, € (0,1],k > 1.

Combining this with (2.17), we prove the first assertion by Theorem 1.1(2). The second
assertion follows from (2.18) and Theorem 1.1(2), since P, is ultracontractive provided
| PeM3 || s < 00 for At > 0, see for instance [16, Theorem 3.5.5]. O

3 Proof of Theorem 1.3

(1) We first prove that for any 0 # f € L?*(u),

/ f(X ] /oou((Psf)Q)ds > 0.

As shown in [3, Lemma 2.8] that the Markov property and the symmetry of P, in L*(u)

imply
—E“[ / F(X.)ds } -] s, / (X, Py f(Xo)ldss

(3.2) / ds; / ((Peazss f)?)ds = / n((Psf)?)ds / t_sdr

:‘-1/ (t — 28)u((P.f)?)ds, t> 0,

t—oo t

(3.1) lim E“[

t
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) _ (sz 51’ s1+82) This lmphes (3 1) On the
— 0 and | f ]l v IIVflloo < 1. Then

where we have used the variable transform (s,
other hand, we take 0 # f € L?(u) with p(f

f)=
~ 1
tEF W (g, 10) ; [

Combining this with (3.1), we prove (1.14) for some constant ¢ > 0.
If (1.3) holds, then

(3.3) 1Pf = ()2 < e f = u(Pllzzg, 20, f € L2 (n).
Let v = h,u € & with h, € L*(u). Similarly to (3.2), for any f € L*(u) with u(f) =0, we

have
e L] fron )

1 ity ]| [ oxad Jutan
-2 /0 s, /Sju({hu—1}P51{fP52_81f})d52
-2 / s [ (Pt = D) (P D
A [, / 1By = Dl 20 Pa—ss llzgodse

Taking 0 # f € L*(p) with u(f) =0 and || f|ls V ||V f||leo < 1, by combining this with (3.1)

and (3.3), we derive
[rewsed ]

> 4/ w(|Psf?)ds >0, v = h,p with h, € L*(p).
0

lim inf [t]E”[Wl(ut, 0 ]} > hm 1nf{ E”[
t—o00

(3.4)

Next, let i, = ftH dx.ds, t > 0. By (2.14) we have

(3.5) Wil ) < [ Apaprdndy) =
MxM

Noting that for any # € M we have v, := py(z,-)p with pi(z,-) € L*(u), by the Markov
property and (3.4), we obtain

lim inf {t]Ew[Wl(ﬂt, ,LL>2]} = lim inf [tE”"‘ (W1 (s, M)Q]} > 0.
t—00 t—o0
Combining this with (3.5) and the triangle inequality leads to

lim inf {tEx[Wl(ut, 0| ]} >0, ve M.

t—o0
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Therefore, by Fatou’s lemma, for any v € & we have

t—o00 t—o00

2/M(liminf{tEx[Wl(ut,uf]})u(dx)>(),

lim inf {ﬂE”[Wl (pet, ,u)Z]} = lim inf /M {tEx[Wl(,ut, M)Q]}V(dl‘)

t—o0

which implies (1.15).
(2) Let d > 3, and let OM be empty or convex. By (1.16), we have Ric > —K for some
constant K > 0. Then the Laplacian comparison theorem implies (see [4])

~

Ap(z,)(y) < VE@—T)coth |VE/[d= 1) p(x,y)| < Cpla,y) 7, (w.y) € M

for some constant C' > 0, where M := {(z,y) : 2,y € M,z # y,x ¢ cut(y)}, and cut(y) is
the cut-locus of y. So,

~

Combining this with the It6’s formula due to [7], we obtain
dp(Xo, Xt) S \/§dbt + {’VV(Xt)’ + C,O(Xo, Xt) + C,O(Xo, Xt)il}dt + dlt,

where b; is a one-dimensional Brownian motion, and [; is the local time of X; at the initial
value X, which is an increasing process supported on {t > 0 : X; = Xy}. Thus, we find a
constant C'; > 0 such that

{ p(Xo, Xy)?
1 + p(X(b Xt)

2} < O (1 + [VV(X)|)dt + dM,

for some martingale M;. Since p is P-invariant, this implies
E*{p(Xo, Xo) A1} < Co{1+ p(IVV)}t, t>0,2€ M

for some constant Cy > 0. Therefore, for any N € N and ¢; := (i — 1)t/N, the probability

measure
i 1 Y 1L ftin
uN = N ;:1 5Xti = ? ;:1:/ti 5th‘ ds

satisfies

Ty g 1 5[t 2
BM G ) < 5 3 / B (p(X,,, X,) A 1)2ds
— Jt
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for some constant C3 > 0. So,

- o Cykt
(3.6) sup BY (Wi (fin, )] < KEF W (i, ie)?] < =

. N E>1.
veEPy N

On the other hand, by Ric > —K and V' < K in (1.16) and using the volume comparison
theorem, we find a constant Cy > 1 such that

u(B(z,7)) < Cyr?, e M,rel0,1],

where B(x,r) :=={y € M : p(z,y) A1 < r}. Since p is a probability measure, this inequality
holds for all » > 0. Therefore, by [8, Proposition 4.2], there exists a constant C5 > 0 such
that

Wilfin, p) > CsN~a, N > 1.

Combining this with (3.6) and using the triangle inequality for W;, we obtain

sup E”[Wy (s, )] > CsN~a — \/C5ktN"2, N,k > 1.

veEPy

maximizing in N > 1, we find a constant ¢ > 0 such that (1.17) holds.
Now, let d > 4. To prove (1.18) for general probability measure v, we consider the shift

empirical measure
1 t+1
[ = —/ ox.ds, t>1,
t )y ‘

and the probability measures

]-B(a:,l)

T D AW T M.
ve(B(r, 1)) T E

Vg 1= 5xP1 = pl(xa )Ma Vg1 =

By the Markov property, we obtain

B Wi o) = B Wiass)] = | B/ G )l )
M
> /( )Ey[Wl(uuu)]Pl(%y)u(dy) = vo(B(a, 1))E™ Wi (jur, )],
B(x,1
Noting that h(z) := sup,ep (1) P1(z,y) < 0o, this and (1.17) yield

B2 [Wy (fie, )] > g(m)tfd%?, g(x) := cv,(B(x, 1))h(m)7ﬁ,x e M,t>1.

Consequently, for any probability measure v,

EY W (i 1)] = /M B2 (W (e, )l(da) > v(g) 2, ¢ 1.

Combining this with (3.5) and noting that d > 4 implies e > ¢t73 for t > 1, we find a
constant ¢, > 0 such that when ¢ is large enough,
1

B Wi (e, 1)) = B [Wh (e, 1) — W (fie, pae)| > e(v)t™a=2.

13



(3) According to [19, Theorem 2.1], for any € € (0, 1] we have

(3.7) lim inf {t inf E*[Waq(puet, 1 } Z )\262&

t—o00

On the other hand, by [16, Theorem 3.3.2], the conditions that Ric — Hessy > K and OM
is empty or convex imply

Wo(per, 1)? < e 2 KWy (g, p)*, > 0.

Combining this with (3.7), we derive

2€K
lim inf {t inf E*[Wo(pu, 1) } Z )\2625/\ , €€ (0,1].

t—o00 zeM

By letting € | 0 we finish the proof.

4 Proof of Example 1.4

(1) Taking V; € C*°(R?) such that V;(x) = —x|z|* for |z| > 1, and writing Vo =V +W -V},
we see that (1.11) holds for some constant K € R. By Corollary 1.2, it suffices to estimate
J(t). For any z € R? with |2| > 1, and any ¢t € (0,1], let ; = ﬁ(|a¢| — 1Vt). We find a
constant ¢; > 0 and some point z € B(z, v/t) such that

(4.1) /L(B(JJ, \/z)) > / fn\ylath(y)dy > clt%e*n(\ﬂ*%t%)aJrW(z)_
(xt 4\[)
Since |z| > 1, t € (0,1] and a > 1, we find a constant ¢ > 0 such that

||
ol = (i = 5/4)" =a [ v

m|7%t7

Oét% |'/:C| a-l a—142
<7> > colz|* 2.

(4.2)
>

Moreover,
W(z) =W ()] < [VWllao|z = 2| < [VW]|a, t € (0,1],2 € B(a,t2).
Combining this with (4.1) and (4.2), we find a ¢3 > 0 such that
p(B(x, V1)) > cyteFT el @) 0 1] € RY.

Noting that —x|z|* + 2|W (x)| is bounded from above, we find constants ¢4, ¢5 > 0 such that

o0
/ _pdr) t—i/ pllemer™ M 4 < I — T, ¢ e (0, 1),
jwj>1 (B (ﬂm/%)) 1
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On the other hand, there exists a constant ¢ > 0 such that u(B(z,r)) > cer? for |z < 1
and r € (0, 1]. In conclusion, there exists a constant ¢; > 0 such that

d ___od ___od
y(t) == /Rd % <ost T 4 < et T, te (0,1

Thus, there exists a constant cg > 0 such that for any ¢ € (0, 1],

085 ~aas D if 2 <

2(a 1)?
Ble )<1+66/ ds/ T < eslog(1+27), 2= gty
Cs, lf2> 2(a n°

2(a—1)

By taking e = ¢~ @2a+2 a2 if4(a—1) <da,e =t'if4(a—1) =da,and e | 0if 4(a—1) > da,
we derive

ct™ (;S;allz’, if 4(a — 1) < dav,
(4.3) seln()fl] {e + t'B(e )} < et tlog(l+1), if4(a—1) = da,
et if 4(a — 1) > da

for some constant ¢ > 0. Therefore, (1.20) follows from Corollary 1.2(1).
(2) Next, by [10, Corollary 3.3], when a > 2 the Markov semigroup P generated by
A — KkV|-|* is ultracontractive with

c —a/(a=2)
(4.4) 1P| 11 o) s Lo (g < €11 t>0

for some constant ¢; > 0, where yo(dr) := Z~te™#*I*dz is probability measure with normal-
ized constant Z > 0. According to the correspondence between the ultracontractivity and
the log-Sobolev inequality, see [5], (4.4) holds if and only if there exists a constant co > 0
such that

po(f21og f2) < rue(IVfI?) 4+ ca(L+17572), 7> 0, puo(f%) = 1.

Replacing f by fe? and using |[VW/|s < oo which implies u(e"V) < oo for any ¢ > 0 due
to a > 1, we find constants c3 such that

108 1) < W) 20019 1)+ 2ATWIE + a1 575

< (7108 1) + S log u(e®™) + 2rp(V 1) + 2 VIV I, + (1 +775%3)
= %”(f log f%) + 2rp(|V f1?) + es(1 +r752), r>0,u(f%) =1,

where in the second line we have used the Young inequality [1, Lemma 2.4]

1(f?g) < p(f?log f2) +logpu(e?), u(f?) =1,9 € L'(f*n).

Hence, for some constant ¢4 > 0 we have
p(flog f2) < ru(|VFP) +ea(l+r752), 7> 0, u(f?) =1

15



By the above mentioned correspondence of the log-Sobolev inequality and semigroup esti-
mate, this implies

c —a/(a=2)
”PtHLI(u)HL‘X’(M) <e s(1+t : ), t>0

for some constant ¢5 > 0. In particular, this and p(eM*) < oo imply ||Pe || < oo for
t,A > 0, so that by Corollary 1.2(2), (1.21) follows from (4.3) and the fact that |VV (x)]* <
(1 + |z|*@=Y) holds for some constant ¢ > 0.

(3) By [11, Corollary 1.4], the Poincaré inequality (1.3) holds for some constant A\; > 0.
Moreover, it is trivial that the condition (1.16) holds for some constant K > 0. So, the
desired lower bound estimate is implied by Theorem 1.3.

Acknowledgement. The author would like to thank the referees for useful comments and
careful corrections.
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Upper bound estimate on W, (fix, fou)

For p > 1, let W, be the LP-Wasserstein distance induced by p, i.e.

Wy (1, p2) = inf )||P||Lp(n)-

TEE (1,12

According to [9, Theorem 2], for any probability density f of u, we have

(A1)

W (fp, )P < pPu(IV(=L)~'(f = DIP).

The idea of the proof goes back to [2], in which the following estimate is presented for
probability density functions fi, fo:

(A.2)

L)' (f = )l
M (f1, f)

Wz(f1M17f2M2)2§/ IV du,
M
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where . (a,b) := hwaW for a # b, and A (a,a) = 1{zspya”'. In general, for p > 1,
denote #, = .# if p =2, and when p # 2 let

a* P —p*P

Mp(a,b) = l{a/\b>0}< for a #b, My(a,a) = 1{a>0}a1_p.

2—p)(a—"b)

In this Appendix, we extend estimates (A.1) and (A.2) as follows, which might be useful for
further studies.

Theorem A.1. For any probability density functions fi and fo with respect to pu such that
JiVvfa>0,

Wolhin b’ <m1n{ 2”1/ - f1+§33p_1f1 dp pp/ - = H)P dp,

IV(=L)*(fo — fi)]? }
/ fl,f2> duey-

Proof. 1t suffices to prove for p > 1. Let Lip,(M) be the set of bounded Lipschitz continuous
functions on M. Consider the Hamilton-Jacobi semigroup (Qt)~o on Lip,(M):

Qo= inf {o(x) + ——pla, 7'}, t> 0,0 € Lip,(M).

ptr—t

Then for any ¢ € Lip, (M), Qoo := limy o Qi = ¢, ||[VQ:id||~ is locally bounded in ¢ > 0,

and ;¢ solves the Hamilton-Jacobi equation
d p— 1 _r_
A. —_— = —— p—1 t .
(43) Q0= TV, 1> 0
Let ¢ = -E. For any f € C}(M), and any increasing function § € C*((0,1)) such that

0o := limy_,o 05 = 0,6, := lim,_,; 0, = 1, by (A.3) and the integration by parts formula, we
obtain

(@) = () = [ S+ 0.0~ 1) Jas
= /1 ds/ 0 (fa — [1)Qsf — it Qs(qu — ) |VQSf|q}du

/ds/ 9/ “(fy — fl),stf>—f1+05(qf2_fl>

— oL
/'V 2= S /[f1+95(f2—f1)]p1d8’

where the last step is due to Young’s inequality ab < a?/p+b?/q for a,b > 0. By Kantorovich
duality formula

VQufI" pdp

%Wp(,ubﬁ@)p = sup {“1(Q1f) - MQ(f)}’

feCi (M)
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and noting that

f1+98(f2 _fl) = f1+f2 _esfl - (1 _es)fQ

_ O (A=65)f
== )
> (f1 4 fo) min{l — 6,,6,},
we derive
! |05]P V(- — fa)lP
ad) Wy < [ O [ FESRE R,
By taking

05 = 1o, 11(8)277's” + L1 y(s){1 = 271 (1 = )7},

which satisfies
0, = p2* ' min{s,1 — s}*"!, min{f,,1 - 6,} = 2" "' min{s, 1 — s}?,

we deduce from (A.4) that

p p—1 | fl)l
Wy (fup, fop)? < p"2 / f1+f2)p ——du.
Next, (A.4) with 6, =1 — (1 — s)? implies
(fl/ub,fzup<10”/| _Q%_ﬁ”
1
Finally, with 6, = s we deduce from (A.4) that
(=L)2(f — AP
)P dge.
W (fips fap) </ YATND Iz

Then the proof is finished.
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