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Abstract
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1. Introduction

In the last decade there has been an increasing interest in functional
inequalities relating Sobolev norms with certain other norms and
quantities such as entropy and Kantorovich distances, e.g. see [5], [27],
[29]. In this paper we discuss some interpolation inequalities which
can be viewed as analogs of the classic Hardy–Landau–Littlewood
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inequality
‖f ′‖2

L1 ≤ C‖f‖L1‖f ′′‖L1

as well as the celebrated Otto–Villani HWI inequality∫
f log f dµ ≤

(∫
|∇f |2

f
dµ

)1/2

W2(µ, fµ).

It was noticed in [11], [12] that the Hardy–Landau–Littlewood inequal-
ity can be written as

‖f‖2
L1 ≤ C‖∇f‖L1 ‖f‖K ,

where f belongs to the usual Sobolev class W 1,1 and has zero integral
and ‖f‖K denotes the Kantorovich norm of the signed measure f dx
with zero value on the whole space. Recall that the Kantorovich norm
of a signed measure µ on Rn with µ(Rn) = 0 integrating Lipschitz
functions is defined by

‖µ‖K = sup

{∫
f dµ : f ∈ C∞b (Rn), |∇f | ≤ 1

}
.

In this form this inequality admits natural multidimensional extensions
such as the bound

‖µ‖2 ≤ C‖Dµ‖ ‖µ‖K
established in [11, Theorem 1] for signed Borel measures µ on Rn with
µ(Rn) = 0 possessing a density of class BV, where ‖µ‖ is the total
variation of µ and ‖Dµ‖ is the total variation of the vector measure
Dµ that is the distributional derivative of µ. Next, in our note [12] a
dimension-free version of this bound employing probability reference
measures was established, in particular, for the standard Gaussian
measure γd on Rd we proved that

‖f‖2
L1(γd) ≤ 2‖∇f‖L1(γd)‖fγd‖K

for all smooth functions f ∈ L1(γd) with zero integral against γd.
There are also extensions closely related to the inequalities arising in

the study of some evolution equations (e.g., the Cahn–Hilliard model)
established by Cinti, Kohn, and Otto [14], [18]. In particular, it was
proved in [14, Proposition 1.3] that for any periodic smooth probability
density f on [0, 1]n one has

‖(f − C)+‖θr ≤ C‖∇f‖1W2(dx, f dx),

where

r =
3n+ 2

3n
, θ =

3n+ 2

2n
and W2(dx, f dx) denotes the Kantorovich distance of order 2 between
the probability measures dx and f dx on [0, 1]n. This result was
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generalized by Ledoux [19] in the setting of non-negatively curved
weighted manifolds. Let (M, g) be a complete connected n-dimensional
Riemannian manifold with the Riemannian volume dx and let µ be
a probability measure on M with a smooth density with respect to
dx. The term “smooth function” will mean below a function of class
C∞b (M). The symbol ‖ · ‖q will refer to the norm in Lq(µ). In the
“finite-dimensional” case Ledoux established the following theorem.

Theorem 1.1. (Theorem 1.1 from [19]) Suppose that µ satisfies the
curvature-dimension condition CD(0, N) for some N ≥ 1. Given
p, q ≥ 1, there is a constant C > 0 depending only on p, q,N such
that for any probability measure ν = f · µ with a smooth density f one
has

‖(f − C)+‖θr ≤ C‖∇f‖qWp(µ, ν),

where

r =
1 + 1

p
+ 1

N

1
p

+ 1
q

, θ = r
(1

p
+

1

q

)
= 1 +

1

p
+

1

N
.

In the “infinite-dimensional” case CD(0,∞) the main result from
[19] is summarized in the next theorem.

Theorem 1.2. (Theorem 4.1 from [19]) Suppose that µ satisfies the
curvature-dimension condition CD(0,∞). Given 1 < q ≤ 2, there is
a constant C > 0 depending only on q such that for any probability
measure ν = f · µ with a smooth density f one has

‖(f − C)+‖3/2
r ≤ C‖∇f‖qW2(µ, ν), r =

3q

q + 2
.

Of course, these bounds extend to densities f from the Sobolev
class W q,1(µ) defined as the completion of C∞0 (M) with respect to
the Sobolev norm

‖f‖q,1 := ‖f‖Lq(µ) +
∥∥ |∇f |∥∥

Lq(µ)
,

associated with µ. Using uniformly Lipschitz bump functions on M
(cf. [2, Chapter 2]), it is readily verified that W q,1(µ) coincides with
the class of locally Sobolev functions on M with finite norm ‖f‖q,1.

For the Kantorovich distance of order 1 (Kantorovich norm) it
was proved in [12] that on a smooth weighted Riemannian manifold
(M, g, µ) satisfying the curvature-dimension condition CD(κ,∞) with
κ ≥ 0 for any smooth function f with zero integral the following
inequality holds:

‖f‖1 ≤ inf
τ>0

[
‖f‖K

√
κ

e2κτ − 1
+ ‖∇f‖1

∫
[0,τ ]

√
κ

e2κt − 1
dt

]
,
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where for κ = 0, t > 0 we set

κ

e2κt − 1
:=

1

2t
.

This bound implies that under the condition CD(0,∞) for any two
smooth probability densities f1, f2 the following inequality holds:

‖f1 − f2‖2
1 ≤ 2‖∇f1 −∇f2‖ · ‖f1 · µ− f2 · µ‖K .

In the present paper Theorem 1.2 (Theorem 4.1 from [19]) is
improved in several directions. We show that a stronger inequality
with an extra logarithmic factor on the left-hand side holds true for
all q > 1. Our approach refines the arguments from [14], [19] and
combines them with some ideas from our short notes [12], [13], where
a preliminary version of this result was announced without a proof and
in smaller generality. The main result is contained in the next theorem.

Theorem 1.3. Let (M, g, µ) be a complete connected Riemannian
manifold with a probability measure µ with a smooth density satisfying
the condition CD(0,∞). For every q > 1, there is a constant C > 0
depending only on q such that for any probability measure ν = f · µ
with a smooth density f (or f ∈ W q,1(µ)) one has∥∥(f − C)+

(
1 + logα(1 + (f − C)+)

)∥∥3/2

r
≤ C‖∇f‖qW2(µ, ν),

where

r =
3q

q + 2
, α =

1

3
.

The assertion does not hold if logα(1 + ·) is replaced by any increasing
positive function Φ: [0,∞)→ [0,∞) with

lim
u→∞

Φ(u) log−2/3(1 + u) =∞.

Remark 1.4. It would be interesting to investigate the sharpness of
this inequality, i.e., determine the optimal value of α. Theorem 1.3
essentially states that the optimal value of α belongs to the inter-
val [1/3, 2/3].

The paper is organized as follows. In Section 2 we introduce our
framework and some basic tools, such as the pseudo-Poincaré inequal-
ity, the Kantorovich duality, and the infinite-dimensional Harnack in-
equality. In Section 3 we prove Theorem 1.3. In Section 4 the case
of the Kantorovich distance W1 of order 1 is discussed. In Section 5
we present some extensions to the case of negatively curved weighted
Riemannian manifolds.
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2. Framework and geometric tools

Throughout this paper, we assume that (M, g) is a smooth complete
connected Riemannian manifold and V ∈ C2(M) such that µ(dx) :=
e−V (x)dx is a probability measure, where dx stands for the Riemannian
volume measure, such that L := ∆ − ∇V · ∇ generates a diffusion
semigroup {Pt}t≥0 on L2(µ), which means that {Pt}t≥0 is a symmetric
strongly continuous operator semigroup on L2(µ) and its generator
coincides with L on smooth compactly supported functions, Ptf ≥ 0 if
f ≥ 0 and Pt1 = 1. Consequently, µ is Pt-invariant, i.e.,∫

Ptf dµ =

∫
f dµ ∀ t ≥ 0, f ∈ L2(µ).

This triple (M, g, µ) will be called below a smooth weighted Riemann-
ian manifold.

The curvature-dimension condition CD(K,N) for the operator L,
where K ∈ R, N ≥ 1, is described by the Bochner-type inequality

1

2
L|∇f |2 −∇f · ∇Lf ≥ K|∇f |2 +

1

N
(Lf)2

for all smooth functions f ∈ C∞0 (M). The standard references on this
topic are [4] and [5]. For example, by the classical Bochner formula the
Laplace operator on an n-dimensional Riemannian manifold with Ricci
curvature bounded from below by K satisfies the curvature-dimension
condition CD(K,N) for all N ≥ n. However, many important
diffusion operators are intrinsically of infinite dimension, for example,
for M = Rn the standard Ornstein–Uhlenbeck operator L = ∆− x · ∇
satisfies the condition CD(1,∞), but does not satisfy CD(K,N) with
a finite number N . We recall several results from [3] and [20]. Let us
define the Riesz transform R% by the formula

R% := ∇(%− L)−1/2, % > 0.

Proposition 2.1. Let (M, g, µ) be a smooth weighted Riemannian
manifold satisfying the curvature-dimension condition CD(−%,∞),
% > 0. Then, for each p > 1, there exists a constant Cp > 0 depending
only on p such that for all f ∈ C∞0 one has

‖R%f‖p ≤ Cp‖f‖p.

Proof. This is a well-known result, first proved by Bakry in [3],
for a self-contained exposition and an analytical approach to this
fundamental estimate we refer the reader to the more recent work [15],
see also [20, Theorem 1.4]. �



6

The formulation of Theorem 1.4 in [20] also includes the case % = 0,
but we would like to notice that one has to be careful with the definition
of R0, since the range of

√
−L on C∞0 is not dense in L2(µ).

Proposition 2.2. Let (M, g, µ) be a smooth weighted Riemannian
manifold satisfying the curvature-dimension condition CD(−%,∞) with
some % ≥ 0. For every p > 1, there exists a constant Cp > 0 depending
only on p such that for all f ∈ C∞0 one has

C−1
p ‖∇f‖p ≤ ‖

√
%− Lf‖p ≤

√
%‖f‖p + Cq‖∇f‖p,

where 1/p+ 1/q = 1 and Cp, Cq are the constants provided by Proposi-
tion 2.1.

Proof. For % > 0 this is the statement of Theorem 5.5 from [20] and
in fact the proof of these inequalities was presented in [20] only in
this case and the constants Cp, Cq do not depend on %. The operator
−L is essentially self-adjoint on C∞0 (see, e.g., [5, Corollary 3.2.2]) and
non-negative. Let {Eλ}λ≥0 be the projection-valued measure such that

−L =

∫
[0,∞)

λ dEλ.

Let us fix f ∈ C∞0 . Since f ∈ D(L)∫
[0,∞)

λ2 d〈Eλf, Eλf〉 <∞.

Then by the dominated convergence theorem

lim
%→0+

‖
√
−Lf −

√
%− Lf‖2

2

= lim
%→0+

∫
[0,∞)

(
√
λ−

√
%+ λ)2 d〈Eλf, Eλf〉 = 0,

or, equivalently, lim
%→0+

√
%− Lf =

√
−Lf in L2(µ). Now the case % = 0

easily follows by passing to the limit as %→ 0. �

The next theorem strengthens Proposition 2.2 from [19], established
in the case q ∈ [1, 2]. We thank the anonymous referee for pointing out
that for q > 1 it also follows from [1, Proposition 2.3]. However, we
include a short proof, because in Section 5 we refer to this proof with
some modification in order to cover the negative curvature case.

Theorem 2.3. Let (M, g, µ) be a smooth weighted Riemannian mani-
fold satisfying the curvature-dimension condition CD(0,∞). For every
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q ≥ 1, there exists a positive constant C depending only on q such that
for any smooth function f on M and any t > 0 one has

‖f − Ptf‖q ≤ C
√
t‖∇f‖q.

Proof. For any bounded measurable function h on M we have the
following reverse Poincaré inequality (see [5]):

2s|∇Psh|2 ≤ Ps(h
2)− (Psh)2.

Then by Jensen’s inequality for all q′ ∈ [2,∞] we obtain

‖∇Psh‖q′ ≤
1√
2s
‖h‖q′ . (2.1)

Now one can observe that∫
M

h(f − Ptf) dµ = −
∫ t

0

∫
M

hLPsf dµ ds =

∫ t

0

∫
M

∇Psh · ∇f dµ ds

and by duality it is easy to see that for any q ∈ [1, 2] one has

‖f − Ptf‖q ≤
∫ t

0

1√
2s
‖∇f‖q ds =

√
2t‖∇f‖q.

Now let us consider q > 2. For f ∈ C∞0 and t > 0 we have (in in L2(µ))

Ptf − f =

∫ ∞
0

K(s, t)Ps
√
−Lf ds,

K(s, t) :=
1√
π

(
χs>t

(s− t)1/2
− χs>0

s1/2

)
.

One can easily check that for all t > 0∫ ∞
0

|K(s, t)| ds =
4√
π

√
t.

Taking into account Proposition 2.2, we obtain

‖f − Ptf‖q ≤
∫ ∞

0

|K(s, t)| ‖Ps
√
−Lf‖q ds

≤
∫ ∞

0

|K(s, t)| ‖
√
−Lf‖q ds ≤ C(q)

√
t‖∇f‖q,

which completes the proof. �

Remark 2.4. For the standard Ornstein–Uhlenbeck semigroup {Tt}t≥0

given by the Mehler formula

Ttf(x) :=

∫
Rd

f(e−tx+
√

1− e−2ty) γ(dy)
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the estimate from Theorem 2.3 can be established directly with an
explicit constant:

‖Ttf − f‖q ≤ Kqct‖∇f‖q,

Kq
q :=

∫
R
|x|q γ(dx), ct :=

∫ t

0

e−s√
1− e−2s

ds = arccos(e−t).

Indeed, for f ∈ C∞0 (Rd) one has

f(e−tx+
√

1− e−2ty)− f(x) =

∫ 1

0

d

dτ
f(e−tτx+

√
1− e−2tτy) dτ

= t

∫ 1

0

∇f(e−tτx+
√

1− e−2tτy) ·
(
−e−tτx+

e−2tτ

√
1− e−2tτ

y

)
dτ,

‖Ttf − f‖qq ≤
∫
Rd×Rd

|f(e−tx+
√

1− e−2ty)− f(x)|qγ(dx)γ(dy)

≤ cq−1
t

∫
Rd×Rd

∫
[0,1]

te−tτ√
1− e−2tτ

×
∣∣∣∇f(e−tτx+

√
1− e−2tτy) · (−

√
1− e−2tτx+ e−tτy)

∣∣∣q dτγ(dx)γ(dy)

= cq−1
t

∫ 1

0

te−tτ√
1− e−2tτ

∫
Rd×Rd

|∇f(x) · y|qγ(dy)γ(dx) dτ

= Kq
q c
q
t

∫
Rd

|∇f(x)|qγ(dx),

as announced.

Recall that the Kantorovich distance Wp(µ, ν) of order p ≥ 1 between
two probability measures µ and ν with finite moments of order p is
defined by the formula

Wp(µ, ν)p = inf
σ∈Π(µ,ν)

∫
M×M

d(x, y)p σ(dx, dy),

where inf is taken over all measures σ from the set Π(µ, ν) of Borel
probability measures on M ×M having projections µ and ν onto the
first and second factors, respectively; see [10], [9] or [24] (the case
p = 1 was considered in [16], [17]). Now let us introduce the Hopf–Lax
infimum-convolutions (Qs)s>0 defined by the formula

Qsϕ(x) := inf
y∈M

[
ϕ(y) + dp(x, y)/s

]
, x ∈M, s > 0.



9

The dual description of the Kantorovich metric of order p is given by
the equality

W p
p (µ, ν) = sup

ϕ

(∫
M

Q1ϕdν −
∫
M

ϕdµ

)
,

where the supremum is taken over all bounded continuous functions ϕ,
see [24]. Alternatively, one can use the sup-convolutions defined by

Q̂sϕ(x) := sup
y∈M

[
ϕ(y)− dp(x, y)/s

]
, x ∈M, s > 0,

W p
p (µ, ν) = sup

ϕ

(∫
M

ϕdµ−
∫
M

Q̂1ϕdν

)
.

A crucial role in our considerations in the next section will be played by
the “infinite-dimensional” Harnack inequality that states that, under
the curvature-dimension condition CD(0,∞), for any non-negative
square-integrable function g on M and all t > 0, x, y ∈ M one has
one has

[Ptg(y)]2 ≤ Pt(g
2)(x)ed

2(x,y)/2t. (2.2)

For more information on Harnack inequalities of this type, see [25],
[27], [28], and [6].

3. Main results

We start with establishing a weak-type bound. The next theorem
strengthens Proposition 4.2 from [19] (see also [13]). Set

κ(s) =
s log s

s log s+ 1− s
, s > 1.

It is easy to see that the function κ is decreasing in s ∈ (1,∞) with

lim
s→1+

κ(s) =∞, lim
s→∞

κ(s) = 1.

Theorem 3.1. Let (M, g, µ) be a smooth weighted Riemannian man-
ifold satisfying the condition CD(0,∞). For every q ≥ 1, there exists
a positive constant C depending only on q such that for any probability
measure ν = f · µ with a smooth density f (or f ∈ W q,1(µ)) and any
s > 1 one has

sup
u≥s

[
u3/2 log1/2 u

]
µ(f ≥ 2u)3/(2r) ≤ Cκ1/2(s)‖∇f‖qW2(µ, ν),

where r = 3q
q+2

. On the other hand, the assertion does not hold if log1/2

is rep laced by an increasing positive function Φ: [0,∞)→ [0,∞) with
lim
u→∞

Φ(u) log−1(u) =∞.
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Proof. (a) The proof of the first assertion is inspired by the approach
of Ledoux [19]. For any t > 0 let us represent f as

f = (f − Ptf) + Ptf.

Then for u > 0 we have

µ(f ≥ 2u) ≤ µ
(
|f − Ptf | ≥ u

)
+ µ(Ptf ≥ u).

Taking into account Theorem 2.3 we obtain the estimate

µ(f ≥ 2u) ≤ Cqt
q/2

uq
‖∇f‖qq + µ(Ptf ≥ u).

The next step is to apply the classical entropy inequality∫
M

hPtf dµ ≤
∫
M

Ptf logPtf dµ+ log

∫
M

eh dµ.

Now let us take

h := 1F logPtf,

where

F = {Ptf ≥ u}.
Then∫
M

1FPtf logPtf dµ ≤
∫
M

Ptf logPtf dµ+log

∫
M

[
1+1F (Ptf −1)

]
dµ,∫

F

Ptf logPtf dµ ≤
∫
M

Ptf logPtf dµ+log

[∫
M

1 dµ+

∫
F

(Ptf−1) dµ

]
.

Since for every x ≥ 0 one has log(1 + x) ≤ x, and µ is a probability
measure, we obtain∫

F

Ptf logPtf dµ ≤
∫
M

Ptf logPtf dµ+

∫
F

(Ptf − 1) dµ.

Note that due to [7, Lemma 4.2] or [6, Lemma 1.11] we have∫
M

Ptf logPtf dµ ≤
1

4t
W 2

2 (ν, µ).

This implies the inequality∫
F

(
1 +Ptf [logPtf − 1]

)
dµ ≤

∫
M

Ptf logPtf dµ ≤
1

4t
W 2

2 (ν, µ) ∀ t > 0.

Combining this estimate with the definition and monotonicity of the
function κ we obtain

(u log u)µ(F ) ≤ κ(u)

4t
W 2

2 (ν, µ) ≤ κ(s)

4t
W 2

2 (ν, µ), 1 < s ≤ u.
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Consequently,

µ(f ≥ 2u) ≤ Cqt
q/2

uq
‖∇f‖qq +

κ(s)

4tu log u
W 2

2 (ν, µ).

Optimizing in t > 0 we obtain the desired inequality.
(b) On the other hand, let Φ: [0,∞) → [0,∞) be increasing such

that

lim
u→∞

Φ(u) log−1 u =∞. (3.1)

For any constant C > 0, we intend to disprove the inequality

sup
u≥s

[
u3/2Φ(u)

]
µ(f ≥ 2u)3/(2r) ≤ Cκ1/2(s)‖∇f‖qW2(µ, ν), (3.2)

where ν = f · µ, under the condition CD(0,∞). To this end, we take
M = R and

V (x) = c+

∫ |x|
0

ds

∫ s

0

h(r)dr, x ∈ R,

where h ∈ C∞([0,∞)) is nonnegative such that h|[0,1/2] = 1, h|[1,∞) = 0,

and c ∈ R is such that µ(dx) := exp−V (x) dx is a probability measure.
Then V ∈ C∞(R) with V ′′ ≥ 0 such that the condition CD(0,∞)
holds. Moreover, there exists a constant c0 such that

V (x) = |x|+ c0 wnenever |x| ≥ 1. (3.3)

For all k ≥ 1, we take

fk(x) = δk{(x− k)+ ∧ 1}, δk =

(∫
R
{(x− k)+ ∧ 1}e−V (x) dx

)−1

.

Let νk = fk · µ and take u = 1
2
ek. Then there exist constants c1, c2 > 0

such that

2c1u = c1e
k ≤ δk ≤ c2e

k = 2c2u,

µ(fk ≥ 2u) ≥ c1e
−k = c1(2u)−1,

‖∇f‖q ≤ c2e
(1−1/q)k = c2(2u)1−1/q,

W2(µ, µk) ≤ c2k = c2 log(2u), u =
1

2
ek, k ≥ 1.

Thus, (3.2) with f = fk implies the bound

2−3/2(2u)1−1/qΦ(u) = u3/2Φ(u)(2u)−(q+2)/(2q)

≤ C(2u)1−1/q log(2u), u =
1

2
ek, k ≥ 1.

Therefore, lim infu→∞Φ(u) log−1 u <∞ contrary to (3.1). �
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Remark 3.2. In the Gaussian case, for any probability measure of the
form ν = f · γ with f ∈ W q,1(γ), q ≥ 1 one has

γ(f ≥ 2u) ≤ inf
t>0

[
Kq
q arccosq(e−t)

uq
‖∇f‖qq +

κ(s)

2(e2t − 1)u log u
W 2

2 (ν, γ)

]
for all u ≥ s > 1. Indeed, this follows from Remark 2.4 along the lines
of the proof of Theorem 3.1 where one needs to take into account that
in the Gaussian case we have the bound∫

Rd

Ttf log Ttf dγ ≤
W 2

2 (ν, γ)

2(e2t − 1)
, t > 0.

The next lemma is a reinforcement of the remark made in [19]
regarding Claim B in the proof of Proposition 1.3 from [14]. This
simple observation will be used in the proof of Theorem 1.3.

Lemma 3.3. For all a > 1 and β ≥ 0, any collection {Fk}∞k=1 of
subsets of M and any non-empty set I ⊂ Z+ one has∑

k∈I

(1 + k)βak1Fk
(x) ≤ a

a− 1
sup
k∈I

{
(1 + k)βak1Fk

(x)
}
, x ∈M.

Proof. It suffices to prove this inequality for finite I ⊂ Z+ such that
x ∈ Fk for some k ∈ I. In this case let us set kx := sup Ix, where
Ix := {k ∈ I : x ∈ Fk}. Then for any a > 1 and α ≥ 0

∑
k∈I

(1 + k)βak1Fk
(x) =

∑
k∈Ix

(1 + k)βak ≤ (1 + kx)
β

kx∑
i=0

ak

≤ (1 + kx)
β · a

kx+1 − 1

a− 1
≤ (1 + kx)

β · a
kx+1

a− 1

≤ a

a− 1
sup
k∈I

{
(1 + k)βak1Fk

(x)
}
,

as announced. �

Lemma 3.4. Let a > 1, β ≥ 0 and p ≥ 1. Then for any collection
{F}∞k=1 of Borel subsets of M , every finite non-empty set I ⊂ Z+ and
ε > 0 one has ∫

ϕf dµ ≤ 1

ε
W p
p (µ, fµ) +

a

a− 1

∫
ψε dµ,

where
ϕ(x) =

∑
k∈I

(1 + k)βak1Fk
(x),

ψε(x) =
∑
k∈I

sup
y∈Mk,ε(x)

(1 + k)βak1Fk
(y),
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Mk,ε(x) =
{
y ∈M : d(x, y)p ≤ a

a− 1
(1 + k)βakε

}
.

Proof. By the Kantorovich duality for every ε > 0 we have∫
ϕf dµ ≤ 1

ε
W p
p (µ, fµ) +

∫
Q̂εϕdµ, (3.4)

Q̂εϕ(x) = sup
y∈M

[
ϕ(y)− 1

ε
d(x, y)p

]
.

Applying Lemma 3.3 and letting Λ := a
a−1

we obtain

Q̂εϕ(x) = sup
y∈M

[∑
k∈I

(1 + k)αak1Fk
(y)− 1

ε
d(x, y)p

]
≤ sup

y∈M

[
Λ sup

k∈I
(1 + k)αak1Fk

(y)− 1

ε
d(x, y)p

]
= Λ sup

y∈M
sup
k∈I

[
(1 + k)αak1Fk

(y)− 1

Λε
d(x, y)p

]
= Λ sup

k∈I
sup
y∈M

[
(1 + k)αak1Fk

(y)− 1

Λε
d(x, y)p

]
≤ Λ sup

k∈I
sup

y∈Mk,ε(x)

(1 + k)αak1Fk
(y) ≤ Λ

∑
k∈I

sup
y∈Mk,ε(x)

(1 + k)αak1Fk
(y),

which together with (3.4) completes the proof. �

Now we are ready to prove Theorem 1.3. We use Ledoux’s strategy
from [19] with some modifications. For the reader’s convenience
all the details are presented. The key difference with the proof of
Ledoux concerns the application of Harnack’s inequality (2.2), where
the parameters are “balanced” in such a way that the exponential term
is no longer bounded by a constant.

Proof of Theorem 1.3. (a) We first prove the claimed inequality. For
k ∈ Z+ and tk > 0 let us set

Ak =
{

2k ≤ f < 2k+1
}
, fk = min((f − 2k)+, 2

k),

Fk =
{
Ptkfk ≥ 2k−1

}
, r =

3q

q + 2
, α =

1

3
.
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For k0 ≥ 1 one has∫
M

(f − 2k0+1)r+
(
1 + logrα(1 + (f − 2k0+1)+)

)
dµ

=
∞∑

k=k0+1

∫
Ak

(f − 2k0+1)r+
(
1 + logrα(1 + (f − 2k0+1)+)

)
dµ

≤
∞∑

k=k0+1

2r(k+1)(1 + logrα(1 + 2k+1))µ(Ak)

≤ C

∞∑
k=k0

(1 + k)rα2rkµ(fk ≥ 2k), (3.5)

where we have used the inclusion Ak ⊆ {fk−1 ≥ 2k−1}. The constant C
depends only on q and k0. Now let us observe that for any sufficiently
smooth non-negative function g (which need not be a probability
density) and all u > 0 we have

µ(g ≥ 2u) ≤ µ(g ≥ 2u, Ptg ≤ u) + µ(g ≥ 2u, Ptg ≥ u)

≤ µ
(
|g − Ptg| ≥ u

)
+

1

2u

∫
M

1Fg dµ

≤ Ctq/2

uq
‖∇g‖qq +

1

2u

∫
M

1Fg dµ, (3.6)

where F := {Ptg ≥ u} and the constant C depends only on q. Applying
(3.6) to g = fk and u = 2k−1, t = tk we obtain the bound

µ(fk ≥ 2k) ≤ Ct
q/2
k

2qk

∫
Ak

|∇f |q dµ+
1

2k

∫
M

1Fk
fk dµ

≤ Ct
q/2
k

2qk

∫
Ak

|∇f |q dµ+
1

2k

∫
M

1Fk
f dµ,

where the inequality fk ≤ f has been used. For any k1 ≥ k0 one has

SI :=
∑
k∈I

(1 + k)rα2rkµ(fk ≥ 2k)

≤ C
∑
k∈I

(1 + k)rα2(r−q)kt
q/2
k

∫
Ak

|∇f |q dµ+

∫
M

ϕf dµ, (3.7)

where

I := {k0, . . . , k1}, ϕ :=
∑
k∈I

(1 + k)rα2(r−1)k
1Fk

.
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Let ε be a fixed positive number. Now we can apply Lemma 3.4 to
a = 2r−1, β = αr, p = 2 and obtain the inequality∫

ϕf dµ ≤ 1

ε
W 2

2 (fµ, µ) +
a

a− 1

∫
M

ψε dµ, (3.8)

where
ψε(x) =

∑
k∈I

sup
y∈Mk,ε(x)

(1 + k)rα2(r−1)k
1Fk

(y),

Mk,ε(x) =
{
y ∈M : d(x, y)2 ≤ a

a− 1
(1 + k)rα2(r−1)kε

}
,

Set

η :=
1

log 2
· a

a− 1
.

Let us take tk such that

(1 + k)rα2(r−q)kt
q/2
k = ηq/2εq/2,

that is,

tk =
1

log 2

a

a− 1
(1 + k)−2rα/q22(1−r/q)kε.

By the definition of the set Fk we have the pointwise estimate

1Fk
(y) ≤ 2−2k+2

(
Ptkfk(y)

)2
, y ∈M.

Harnack’s inequality (2.2) for the function fk and y ∈Mk,ε(x) yields

1Fk
(y) ≤ 2−2k+2

(
Ptkfk(y)

)2

≤ 2−2k+2Ptkf
2
k (x) exp

( 1

2tk

a

a− 1
(1 + k)rα2(r−1)kε

)
.

Due to our choice of tk we have

rα + 2rα/q = α(r + 2r/q) =
1

3

( 3q

q + 2
+

6

q + 2

)
= 1,

(r− 1)k− 2(1− r/q)k = (r+ 2r/q − 3)k =
( 3q

q + 2
+

6

q + 2
− 3
)
k = 0.

This leads to the equality

exp
( 1

2tk

a

a− 1
(1 + k)rα2(r−1)kε

)
= 2(1+k)/2.

Then

sup
y∈Mk,ε(x)

1Fk
(y) ≤ 2−2k+2Ptkf

2
k (x)2(1+k)/2 = 2−3k/2+5/2Ptkf

2
k (x).

Since∫
M

Ptkf
2
k dµ =

∫
M

f 2
k dµ ≤ 22kµ(f ≥ 2k) = 22kµ(fk−1 ≥ 2k−1),
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we have∫
sup

Mk,ε(x)

(1 + k)rα2(r−1)k
1Fk

dµ

≤ (1 + k)rα2(r−1)k2k/2+5/2µ(fk−1 ≥ 2k−1)

= (1 + k)rα2rk2−k/2+5/2µ(fk−1 ≥ 2k−1).

Consequently,∫
ϕf dµ ≤ 1

ε
W 2

2 (fµ, µ) +
a

a− 1

∫
M

ψε dµ

=
1

ε
W 2

2 (fµ, µ) +
a

a− 1

∑
k∈I

∫
M

sup
Mk,ε(x)

(1 + k)rα2(r−1)k
1Fk

dµ

≤ 1

ε
W 2

2 (fµ, µ) +
a

a− 1

∑
k∈I

(1 + k)rα2rk2−k/2+5/2µ(fk−1 ≥ 2k−1).

Combining this with (3.7) and taking into account that

(1 + k)rα2(r−q)kt
q/2
k = ηq/2εq/2,

we finally have the following bound for SI :

SI =
∑
k∈I

(1 + k)rα2rkµ(fk ≥ 2k)

≤ Cηq/2εq/2
∑
k∈I

∫
Ak

|∇f |q dµ+
1

ε
W 2

2 (fµ, µ)

+
a

a− 1

∑
k∈I

(1 + k)rα2rk2−k/2+5/2µ(fk−1 ≥ 2k−1)

≤ Cηq/2εq/2
∫
|∇f |q dµ+

1

ε
W 2

2 (fµ, µ)

+ krα0 2r(k0−1)−k0+3µ(f ≥ 2k0)

+ C
a

a− 1

∑
k∈I

(1 + k)rα2rk2−k/2+5/2µ(fk ≥ 2k). (3.9)

where the constant C depends only on q, since

(1 + 1/k)rα ≤ 2rα, k ≥ 1.

We can assume that k0 is sufficiently large and for all k ≥ k0

C
a

a− 1
2−k/2+5/2 ≤ 1

2
.
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Then the last term on the right-hand side of (3.9) can be replaced
with SI/2:

SI ≤ C ′εq/2
∫
|∇f |q dµ+

1

ε
W 2

2 (fµ, µ) + C ′µ(f ≥ 2k0) +
1

2
SI ,

or, equivalently,

1

2
SI ≤ C ′εq/2

∫
|∇f |q dµ+

1

ε
W 2

2 (fµ, µ) + C ′µ(f ≥ 2k0),

the constant C ′ depends only on q and k0. Optimizing in ε and using
the weak-type bound (3.1) we obtain the inequality

S
3/2r
I ≤ C(q, k0)‖∇f‖qW2(µ, ν).

Passing to the limit k1 → ∞ and using (3.5) we derive the claimed
inequality.

(b) For the second assertion, we let Φ be an increasing function such
that

lim
u→∞

Φ(u) log−2/3(1 + u) =∞. (3.10)

For any constant C > 0, we intend to disprove the inequality∥∥(f−C)+

(
1+Φ((f−C)+)

)∥∥3/2

r
≤ C‖∇f‖qW2(µ, ν), ν = f ·µ. (3.11)

To this end, let M = R and let V , µ, νk := fk · µ be taken as in
Step (b) of the proof of Theorem 3.1. By (3.3), we have µ = eV dx and
νk = fk · µ, hence we can find constants c2 > c1 > 0 such that for all
k ≥ 1 one has

c1e
k ≤ δk ≤ c2e

k, W2(µ, νk) ≤ c2k, ‖∇fk‖q ≤ c2e
(1−1/q)k,∥∥(f − C)+

(
1 + F ((f − C)+)

)∥∥3/2

r
≥ c1e

(1−1/q)k{F (ek)}3/2.

Therefore, inequality (3.11) implies that

lim sup
k→∞

k−1{Φ(ek)}3/2 <∞,

which contradicts (3.10). �

4. The Kantorovich distance W1

In this section we show that Theorem 1.1 from [19] admits a
generalization to the case N =∞, although, unlike Theorem 1.3 above,
where the case p = 2 was considered, the inequality does not include
any extra logarithmic factors. It might be possible that this result can
be further improved, we leave this question for future research. It would
be also interesting to find a unified proof of these inequalities covering
the full scale of the Kantorovich metrics Wp with p ≥ 1. Recall that
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the dual representation of the Kantorovich distance W1 is given by the
formula

W1(µ, ν) = sup
ϕ

∫
M

ϕd(µ− ν), (4.1)

where the supremum is taken over all bounded 1-Lipschitz functions ϕ,
see, e.g., [9] or [24]. The next theorem is a generalization of Proposi-
tion 4.3 from [19].

Theorem 4.1. Let (M, g, µ) be a smooth weighted Riemannian mani-
fold satisfying the condition CD(0,∞). For each q ≥ 1, there exists a
positive constant C depending only on q such that for any probability
measure ν = f · µ with a smooth density f (or f ∈ W q,1(µ)) one has

sup
u>0

[
u2 · µ

(
|f − 1| ≥ 2u

)2/r
]
≤ C‖∇f‖qW1(µ, ν), r =

2q

q + 1
.

Proof. For each t > 0 let us represent f − 1 as

f − 1 = f − Ptf + Pt(f − 1).

Then for u > 0 we have

µ
(
|f − 1| ≥ 2u

)
≤ µ

(
|f − Ptf | ≥ u

)
+ µ
(
|Pt(f − 1)| ≥ u

)
≤ µ

(
|f − Ptf | ≥ u

)
+

1

u

∫
M

(1F+ − 1F−)Pt(f − 1) dµ

≤ Ctq/2

uq
‖∇f‖qq +

1

u

∫
M

(1F+ − 1F−)Pt(f − 1) dµ

=
Ctq/2

uq
‖∇f‖qq +

1

u

∫
M

Pt(1F+ − 1F−) d(ν − µ),

where

F+ :=
{
Pt(f − 1) ≥ u

}
, F− :=

{
Pt(f − 1) ≤ −u

}
and C depends only on q. By the gradient estimate (2.1) we have

|∇Pt(1F+ − 1F−)| ≤ 1√
2t
,

hence the Kantorovich duality (4.1) yields the bound∫
M

Pt(1F+ − 1F−) d(ν − µ) ≤ 1√
2t

1

u
W1(µ, ν).

Finally, we have

µ
(
|f − 1| ≥ 2u

)
≤ Ctq/2

uq
‖∇f‖qq +

1√
2t

1

u
W1(µ, ν),

so optimizing in t > 0 we arrive at the desired inequality. �
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From the weak-type bounds provided by Theorem 4.1 we deduce the
corresponding strong ones.

Theorem 4.2. Let (M, g, µ) be a smooth weighted Riemannian mani-
fold satisfying the condition CD(0,∞). For each q > 1, there exists a
positive constant C depending only on q such that for any probability
measure ν = f · µ with a smooth density f (or f ∈ W q,1(µ)) one has∥∥(f − C)+

∥∥2

r
≤ C‖∇f‖qW1(µ, ν), r =

2q

q + 1
.

Proof. Following the lines of the proof of Theorem 1.3, we introduce

Ak =
{

2k ≤ f < 2k+1
}
, fk = min((f − 2k)+, 2

k),

Fk =
{
Ptkfk ≥ 2k−1

}
, r =

2q

q + 1
, a := 2r−1

and establish the inequality∫
M

(
f − 2k0+1

)r
+
dµ ≤ C

∞∑
k=k0

2rkµ(fk ≥ 2k),

where C depends only on q and k0. Next we bound µ(fk ≥ 2k) using
the estimate

µ(fk ≥ 2k) ≤ Ct
q/2
k

2qk

∫
Ak

|∇f |q dµ+
1

2k

∫
M

1Fk
f dµ.

Then for

I := {k0, . . . , k1}, ϕ :=
∑
k∈I

2(r−1)k
1Fk

.

we obtain the chain of inequalities

SI :=
∑
k∈I

2rkµ(fk ≥ 2k)

≤ C
∑
k∈I

2(r−q)kt
q/2
k

∫
Ak

|∇f |q dµ+

∫
M

ϕf dµ

≤ C
∑
k∈I

2(r−q)kt
q/2
k

∫
Ak

|∇f |q dµ+
1

ε
W1(µ, ν)

+
a

a− 1

∑
k∈I

∫
sup

Mk,ε(x)

2(r−1)k
1Fk

dµ,

where

Mk,ε(x) :=
{
y ∈M : d(x, y) ≤ a

a− 1
2(r−1)kε

}
.
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Let us set

η :=
1

log 2
· a

a− 1

and take tk such that

2(r−q)kt
q/2
k = ηq/2εq/2,

that is,

tk =
1

log 2

a

a− 1
22(1−r/q)kε.

Then

1Fk
(y) ≤ 2−2k+2

(
Ptkfk(y)

)2
, y ∈M,

and by Harnack’s inequality applied to the function fk and y ∈Mk,ε(x)
we have

1Fk
(y) ≤ 2−2k+2

(
Ptkfk(y)

)2

≤ 2−2k+2Ptkf
2
k (x) exp

( 1

2tk

a

a− 1
2(r−1)kε

)
.

The definition of tk yields the equality

(r− 1)k− 2(1− r/q)k = (r+ 2r/q − 3)k =
( 3q

q + 2
+

6

q + 2
− 3
)
k = 0.

This leads to the equality

exp
( 1

2tk

a

a− 1
2(r−1)kε

)
= 21/2.

Then

sup
y∈Mk,ε(x)

1Fk
(y) ≤ 2−2k+2Ptkf

2
k (x)21/2 = 2−2k+5/2Ptkf

2
k (x).

Recalling that∫
M

Ptkf
2
k dµ =

∫
M

f 2
k dµ ≤ 22kµ(f ≥ 2k) = 22kµ(fk−1 ≥ 2k−1),

similarly to the proof of Theorem 1.3 we obtain the “recursive”
inequality for all sufficiently large k0:

SI ≤ Cηq/2εq/2
∫
|∇f |q dµ+

1

ε
W1(µ, ν)+2r(k0−1)−k0+3µ

(
f ≥ 2k0

)
+

1

2
SI .

Taking into account Theorem 4.1 it is easy to complete the proof. �

Now let us consider the case q = 1.
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Theorem 4.3. Let (M, g, µ) be a smooth weighted Riemannian mani-
fold satisfying the condition CD(0,∞). Then for each probability mea-
sure ν = f · µ with a smooth density f (or f ∈ W 1,1(µ)) one has∥∥f − 1

∥∥2

1
≤ 2‖∇f‖1W1(µ, ν).

Proof. This inequality is a particular case of the results from [12]. We
present a proof here for the reader’s convenience. For a smooth function
g ∈ C∞0 with ‖g‖∞ ≤ 1 we have∣∣∣∣∫

M

(f − 1)g dµ

∣∣∣∣ =

∣∣∣∣∫
M

(f − 1)Ptg dµ−
∫
M

(f − 1)

∫
[0,t]

d

ds
Psg dµ

∣∣∣∣
≤ W1(ν, µ)‖∇Ptg‖∞ +

∫ t

0

∫
|∇f | |∇Psg| dµ ds

≤ W1(ν, µ)‖∇Ptg‖∞ + ‖∇f‖1

∫
[0,t]

‖∇Psg‖∞ ds

≤ W1(ν, µ)
1√
2t

+ ‖∇f‖1

∫
[0,t]

1√
2s
ds = W1(ν, µ)

1√
2t

+
√

2t‖∇f‖1.

Optimizing in t > 0 we obtain the desired inequality. �

Of course, this theorem covers the case of the standard Gaussian
measure γd on Rd with the usual metric. As already mentioned in
our note [12], in this case the following two-sided inequality holds for
all functions f from the Gaussian Sobolev class W 1,1(γd) having zero
integral against γd:

‖f‖2
L1(γd)

2‖∇f‖L1(γd)

≤ ‖f · γd‖K ≤ ‖∇f‖L1(γd).

In [12, Proposition 1 and Proposition 2] we constructed two examples
showing that the bound from this theorem can fail with any constant if
µ does not satisfy the indicated condition (in one of these examples
µ is a measure on the real line with the usual metric and in the
other example M is a two-dimensional complete connected Riemannian
submanifold in Rd and µ is its Riemannian volume).

The obtained inequalities involving the Kantorovich distance W1 of
order 1 can be combined with the estimate provided by Theorem 1.1
from [19].

Proposition 4.4. Let (M, g, µ) be a smooth Riemannian manifold
satisfying the curvature-dimension condition CD(0, N). Then, given
p, q ≥ 1, there exists a constant C > 0 depending only on p, q,N such
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that for each probability measure ν = f · µ with a smooth density f (or
f ∈ W 1,1(µ)) one has

‖f − 1‖θr ≤ C
(
‖∇f‖qWp(µ, ν) +

[
‖∇f‖1W1(µ, ν)

]θ/(2r))
,

where

r =
1 + 1

p
+ 1

N

1
p

+ 1
q

, θ = 1 +
1

p
+

1

N
.

In particular, for p = q = 1 this becomes

‖f − 1‖2+ 1
N

1+ 1
2N

≤ C‖∇f‖1W1(µ, ν). (4.2)

Proof. By [19, Theorem 1.1] there exists a constant C > 1 such that

‖(f − C)+‖θr ≤ C‖∇f‖qWp(µ, ν) (4.3)

and by Theorem 4.3 we have

‖f − 1‖1 ≤
√

2‖∇f‖1W1(µ, ν). (4.4)

Since f is non-negative, we have the following trivial bound:

|f − 1|r ≤ 2r−1
[
(f − C)+

]r
+ (2C)r−1|f − 1|.

Integrating this inequality over M and applying (4.3) and (4.4) we get
the desired bound. �

Remark 4.5. The inequality (4.2) is sharp in the sense that, whenever
C > 0 and Φ: [0,∞)→ [0,∞) is an increasing function with

lim
u→∞

Φ(u)u−2− 1
N =∞, (4.5)

the following inequality does not hold:

Φ(‖f − 1‖1+ 1
2N

) ≤ C‖∇f‖1W1(µ, ν). (4.6)

Indeed, let M = (S1)N , where S1 is the unit circle, which is equivalent
to [0, 2π) with the periodic boundary. For every n ≥ 1 we set
hn(s) = min{ns, (2− ns)+}, s ∈ [0, 2π) and

fn(x) =
N∏
i=1

hn(xi), x = (x1, · · · , xN) ∈ [0, 2π)N .

Let νn = fn · dx, µ = 1
2π
dx, We have W1(νn, µ) ≤ 2π, and there exist

constants c2 ≥ c1 > 0 such that

‖fn − 1‖1+ 1
2N
≥ c1n

N
2N+1 , ‖∇fn‖1 ≤ c2n, n ≥ 1.

Thus, (4.6) implies that lim infu→∞Φ(u)u−2+ 1
N <∞, which contradicts

(4.5).
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5. Extensions to the negative curvature case

In this section we briefly discuss some extensions for negatively
curved weighted Riemannian manifolds. We assume that (M, g, µ)
satisfies the curvature-dimension condition CD(−%,∞), % > 0 and
that additionally the logarithmic Sobolev inequality holds:∫

M

f 2 log f 2 dµ ≤ 2

λ

∫
M

|∇f |2 dµ (5.1)

for all f ∈ C1(M) with ∫
M

f 2 dµ = 1.

For example, according to [26], under the curvature-dimension condi-
tion CD(−%,∞) the finiteness of the integral∫

M

exp
(
εd2(x0, x)

)
dµ

for some x0 ∈ M and ε > %/2 ensures the validity of the log-Sobolev
inequality 5.1. The main idea of the considerations below is that even
though in this case the curvature bound alone does not guarantee
the required semigroup estimates, nevertheless they can be established
under some additional assumptions about (M, g, µ).

Proposition 5.1. Let (M, g, µ) be a smooth weighted Riemannian
satisfying the curvature-dimension condition CD(−%,∞) with some
% ≥ 0. Assume also that the log-Sobolev inequality (5.1) holds for some
λ > 0. Then for each p ∈ [2,∞) there exists C > 0 depending only on
%, λ, p such that

‖∇Pth‖p ≤
C√
t
‖h‖p, t > 0, h ∈ Lp(M,µ).

Proof. Using the standard approximation arguments one can see that
it is sufficient to establish this inequality just for h ∈ Cb(M). Applying
[25, Corollary 4.2] we obtain the inequality

|∇Pth| ≤
C√
t ∧ 1

(
Pt|h|p

) 1
p .

This implies the bound

‖∇Pth‖p ≤
C√
t ∧ 1

‖h‖p. (5.2)

Now one can observe that the log-Sobolev inequality (5.1) ensures that
the generator of the semigroup {Pt}t≥0 has a spectral gap larger or
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equal to λ, in particular, for any ϕ ∈ L2(µ) with zero integral against
µ one has

‖Ptϕ‖2 ≤ e−λt‖ϕ‖2.

Consequently, for h ∈ Cb(M) we have

‖∇Pth‖2 ≤
Ce−λt√
t ∧ 1

‖h‖2. (5.3)

Combining estimates (5.2), (5.3) and applying the standard interpola-
tion theorem we obtain the desired inequality. �

Theorem 5.2. Let (M, g, µ) be a smooth weighted Riemannian mani-
fold satisfying the curvature-dimension condition CD(−%,∞) with some
% ≥ 0. Assume also that the log-Sobolev inequality (5.1) holds for some
λ > 0. Then, for each q ∈ (1, 2], there exists C > 0 depending only on
%, λ, p such that for all f ∈ W q,1(µ) one has

‖f − Ptf‖q ≤ C
√
t‖∇f‖q, t > 0.

Proof. This follows from Proposition 5.1 along the lines of the proof of
Theorem 2.3. �

Theorem 5.3. Let (M, g, µ) be a smooth weighted Riemannian mani-
fold satisfying the curvature-dimension condition CD(−%,∞) with some
% ≥ 0. Assume also that the log-Sobolev inequality (5.1) holds for some
λ > 0. Then there exists C > 0 depending only on %, λ, p such that for
every probability density f one has∫

M

Ptf logPtf dµ ≤
C

t
W 2

2 (µ, f · µ).

Proof. According to [28] the curvature condition CD(−%,∞) implies
the log-Harnack inequality

Pt log g(x) ≤ logPtg(y) +
% · d2(x, y)

2(1− e−2%t)
.

Applying this inequality to g := Ptf and integrating with respect
to the optimal coupling of the measures f · µ and µ (see, e.g., [22,
Corollary 1.2]) we get the bound∫

M

Ptf logPtf dµ ≤
%

2(1− e−2%t)
W 2

2 (µ, f · µ).

Consequently, for all t ∈ (0, 1) we have∫
M

Ptf logPtf dµ ≤
C

t
W 2

2 (µ, f · µ).
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Next, it is known that the log-Sobolev inequality (5.1) implies the
following bound for any probability density g with respect to µ:∫

M

Ptg logPtg dµ ≤ e−λt
∫
M

g log g dµ.

Applying this inequality to g = P1f , we obtain the estimate∫
M

Ptf logPtf dµ ≤ e−λ(t−1)

∫
M

P1f logP1f dµ

≤ Ce−λtW 2
2 (µ, f · µ), t ≥ 1.

Now it is easy to complete the proof. �

Theorem 5.4. Let (M, g, µ) be a smooth weighted Riemannian mani-
fold satisfying the curvature-dimension condition CD(−%,∞) with some
% ≥ 0. Assume also that the log-Sobolev inequality (5.1) holds for some
λ > 0. Then for each q ∈ (1, 2] there exists C > 0 depending only on
%, λ, q such that for every smooth probability density f (or f ∈ W q,1(µ))
and every s > 1 one has

sup
u≥s

[
u3/2 log1/2 u

]
µ(f ≥ 2u)3/(2r) ≤ Cκ1/2(s)‖∇f‖qW2(µ, ν),

where

r =
3q

q + 2
, κ(s) :=

s log s

s log s+ 1− s
, s > 1.

Proof. This follows from Theorem 5.2 and Theorem 5.3 along the lines
of the proof of Theorem 3.1. �

Let us conclude this section with a generalization of Theorem 4.3.
For a function f ∈ L1(µ) let

‖f − µ(f)‖K = sup
g∈C∞(M), ‖∇g‖∞≤1

∫
M

fg dµ.

When ν = f ·µ is a probability measure, we have W1(µ, ν) = ‖f−1‖K .

Theorem 5.5. Let (M, g, µ) be a smooth weighted Riemannian man-
ifold satisfying the curvature-dimension condition CD(−%,∞), % ≥ 0.
Assume also that the semigroup {Pt}t≥0 satisfies the inequality

‖Ptg‖∞ ≤ ce−λt‖g‖∞,
∫
M

g dµ = 0, t ≥ 0. (5.4)

with some c, λ > 0. Then there exists C > 0 depending only on
%, c, λ such that for every integrable smooth function f with zero integral
against µ one has

‖f‖2
1 ≤ C‖∇f‖1‖f‖K .
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Proof. First, let us remind that for any h ∈ Cb(M) we have the
pointwise inequality (see [25, Corollary 4.2])

|∇Pth| ≤
C√
t ∧ 1

(
Pt|h|2

)1/p
,

consequently,

‖∇Pth‖∞ ≤
C√
t ∧ 1

‖h‖∞.

Next, using our additional assumption about the semigroup {Pt}t≥0 it
readily seen that for t ≥ 1 one has

‖∇Pth‖∞ = ‖∇P1Pt−1h‖∞ ≤ C ′e−λt‖h‖∞.
Combining these two bounds we obtain

‖∇Pth‖∞ ≤
C√
t
‖h‖∞

and, consequently,

‖f − Ptf‖1 ≤ C
√
t‖∇f‖1.

Now it is easy to complete the proof similarly to Theorem 4.3, see also
our short note [12]. �

Remark 5.6. According to [26], the log-Sobolev inequality and the
strong ergodicity (inequality (5.4)) are incomparable, but both follow
from the ultraboundedness: ‖Pt‖1→∞ < ∞ for t > 0. See also [21] for
more details.
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Probabilités XXI, pp. 137–172. Lecture Notes in Math. V. 1247. Springer, Berlin,
1987.
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