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1. INTRODUCTION

In the last decade there has been an increasing interest in functional
inequalities relating Sobolev norms with certain other norms and
quantities such as entropy and Kantorovich distances, e.g. see [5], [27],
[29]. In this paper we discuss some interpolation inequalities which
can be viewed as analogs of the classic Hardy—Landau—Littlewood
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inequality
1712 < ALl N e
as well as the celebrated Otto—Villani HWI inequality

2 1/2
/flogfdué (/@du) Wolp, fiu).

It was noticed in [I1], [12] that the Hardy—Landau-Littlewood inequal-
ity can be written as

A7 < CIV Al 1 f Il

where f belongs to the usual Sobolev class W! and has zero integral
and ||f||x denotes the Kantorovich norm of the signed measure fdx
with zero value on the whole space. Recall that the Kantorovich norm
of a signed measure p on R™ with pu(R"™) = 0 integrating Lipschitz
functions is defined by

il = sup{ [ raus g e e, 1911 < 1}.

In this form this inequality admits natural multidimensional extensions
such as the bound

lul® < ClDpll 1l

established in [T1, Theorem 1] for signed Borel measures p on R™ with
u(R™) = 0 possessing a density of class BV, where ||| is the total
variation of p and ||Dpl| is the total variation of the vector measure
Dy that is the distributional derivative of p. Next, in our note [12] a
dimension-free version of this bound employing probability reference
measures was established, in particular, for the standard Gaussian
measure 7, on R? we proved that

1A 12 ) < 20V f Lz | frall

for all smooth functions f € L'(v4) with zero integral against ~g.

There are also extensions closely related to the inequalities arising in
the study of some evolution equations (e.g., the Cahn—Hilliard model)
established by Cinti, Kohn, and Otto [14], [I8]. In particular, it was
proved in [14] Proposition 1.3] that for any periodic smooth probability
density f on [0,1]" one has

I(f = O+l < CIVFILWe(da, f dx),

where

3n+ 2 3n—+ 2
1”:

0 —

3n 2n
and Wy (dzx, f dx) denotes the Kantorovich distance of order 2 between
the probability measures dx and fdz on [0,1]". This result was
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generalized by Ledoux [19] in the setting of non-negatively curved
weighted manifolds. Let (M, g) be a complete connected n-dimensional
Riemannian manifold with the Riemannian volume dx and let p be
a probability measure on M with a smooth density with respect to
dz. The term “smooth function” will mean below a function of class
Cy°(M). The symbol || - ||, will refer to the norm in L?(yx). In the
“finite-dimensional” case Ledoux established the following theorem.

Theorem 1.1. (Theorem 1.1 from [19]) Suppose that p satisfies the
curvature-dimension condition CD(0,N) for some N > 1. Given
p,q > 1, there is a constant C' > 0 depending only on p,q, N such
that for any probability measure v = f - u with a smooth density f one
has

1(f = C)1l2 < CIVFIWy (),

where

r= ,

1+ + % 11 11
1p—1N 9:T<—+_>:1+_+—.

s+ P g p N

In the “infinite-dimensional” case C'D(0,00) the main result from
[19] is summarized in the next theorem.

Theorem 1.2. (Theorem 4.1 from [19]) Suppose that 1 satisfies the
curvature-dimension condition C'D(0,00). Given 1 < q < 2, there is
a constant C > 0 depending only on q such that for any probability
measure v = f - p with a smooth density f one has

3q
—CO) ¥ <C W =
I(f = O [ < CIVFllgWalp, v), 7 P
Of course, these bounds extend to densities f from the Sobolev
class W' (u) defined as the completion of C§°(M) with respect to

the Sobolev norm
1Fllax == I gy + TV ] g

associated with p. Using uniformly Lipschitz bump functions on M
(cf. [2, Chapter 2]), it is readily verified that W%!(u) coincides with
the class of locally Sobolev functions on M with finite norm || f||,1.

For the Kantorovich distance of order 1 (Kantorovich norm) it
was proved in [I2] that on a smooth weighted Riemannian manifold
(M, g, ) satisfying the curvature-dimension condition C'D(k,c0) with
k > 0 for any smooth function f with zero integral the following
inequality holds:

K K
<1 - v
11l < gglllf\lm/ 7+ VI /M N dt] :
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where for Kk = 0,t > 0 we set

K ‘_1
e2st — 1 ot

This bound implies that under the condition C'D(0,00) for any two
smooth probability densities fi, fo the following inequality holds:

1fi—Flf <20VA =Vl Ifi-n—foulk

In the present paper Theorem (Theorem 4.1 from [19]) is
improved in several directions. We show that a stronger inequality
with an extra logarithmic factor on the left-hand side holds true for
all ¢ > 1. Our approach refines the arguments from [I4], [19] and
combines them with some ideas from our short notes [12], [13], where
a preliminary version of this result was announced without a proof and
in smaller generality. The main result is contained in the next theorem.

Theorem 1.3. Let (M,g,u) be a complete connected Riemannian
manifold with a probability measure p with a smooth density satisfying
the condition C'D(0,00). For every q > 1, there is a constant C > 0
depending only on q such that for any probability measure v = f - p
with a smooth density f (or f € W% (p)) one has

1(f = ) (1+10g"(1+ (f = OV N |* < CIV I Walp, v),

where
3q 1

r=—— a=—.

q+2 3
The assertion does not hold if log®(1 + +) is replaced by any increasing
positive function ®: [0,00) — [0, 00) with

lim ®(u)log™*3(1 4 u) = cc.
U—00

Remark 1.4. It would be interesting to investigate the sharpness of
this inequality, i.e., determine the optimal value of . Theorem
essentially states that the optimal value of a belongs to the inter-

val [1/3,2/3].

The paper is organized as follows. In Section 2 we introduce our
framework and some basic tools, such as the pseudo-Poincaré inequal-
ity, the Kantorovich duality, and the infinite-dimensional Harnack in-
equality. In Section 3 we prove Theorem [I.3] In Section 4 the case
of the Kantorovich distance W of order 1 is discussed. In Section 5
we present some extensions to the case of negatively curved weighted
Riemannian manifolds.



2. FRAMEWORK AND GEOMETRIC TOOLS

Throughout this paper, we assume that (M, g) is a smooth complete
connected Riemannian manifold and V' € C?(M) such that u(dz) =
e~V®@)dx is a probability measure, where dz stands for the Riemannian
volume measure, such that L := A — VV - V generates a diffusion
semigroup {P; };>0 on L?*(p), which means that {P,};¢ is a symmetric
strongly continuous operator semigroup on LQ(M) and its generator
coincides with L on smooth compactly supported functions, P, f > 0 if
f > 0and P11 =1. Consequently, i is P,-invariant, i.e.,

/Ptfdu:/fdu Vit >0, feL*p).

This triple (M, g, 1) will be called below a smooth weighted Riemann-
ian manifold.

The curvature-dimension condition C'D(K, N) for the operator L,
where K € R, N > 1, is described by the Bochner-type inequality

SUIVIP = V[ VL > KIVIP + (Lf)

for all smooth functions f € C§°(M). The standard references on this
topic are [4] and [5]. For example, by the classical Bochner formula the
Laplace operator on an n-dimensional Riemannian manifold with Ricci
curvature bounded from below by K satisfies the curvature-dimension
condition CD(K,N) for all N > n. However, many important
diffusion operators are intrinsically of infinite dimension, for example,
for M = R" the standard Ornstein—Uhlenbeck operator L = A —x -V
satisfies the condition C'D(1, c0), but does not satisfy C' D(K, N) with
a finite number N. We recall several results from [3] and [20]. Let us
define the Riesz transform R, by the formula

R,:=V(o— L)™Y2 o>0.

Proposition 2.1. Let (M,g,u) be a smooth weighted Riemannian
manifold satisfying the curvature-dimension condition CD(—p,00),
0> 0. Then, for each p > 1, there exists a constant C,, > 0 depending
only on p such that for all f € C§° one has

IRofllp < Coll £l

Proof. This is a well-known result, first proved by Bakry in [3],
for a self-contained exposition and an analytical approach to this
fundamental estimate we refer the reader to the more recent work [I5],
see also [20, Theorem 1.4]. O



The formulation of Theorem 1.4 in [20] also includes the case ¢ = 0,

but we would like to notice that one has to be careful with the definition
of Ry, since the range of v/—L on C§° is not dense in L*(u).

Proposition 2.2. Let (M, g,u) be a smooth weighted Riemannian
manifold satisfying the curvature-dimension condition C' D(—p, c0) with
some o > 0. For every p > 1, there exists a constant C, > 0 depending
only on p such that for all f € C5° one has

GVl < Ve —Lfll, < Vel flp + Call VI,

where 1/p+1/q =1 and C,, C, are the constants provided by Proposi-
tion 2.11.

Proof. For p > 0 this is the statement of Theorem 5.5 from [20] and
in fact the proof of these inequalities was presented in [20] only in
this case and the constants C),, C;; do not depend on p. The operator
—L is essentially self-adjoint on C§° (see, e.g., [5], Corollary 3.2.2]) and
non-negative. Let {E)} >0 be the projection-valued measure such that

—L = / AdE).
[0,00)
Let us fix f € C§°. Since f € D(L)
/ )\2 d<E)\f, E)\f> < Q.
[0,00)
Then by the dominated convergence theorem
lim |[[v'~Lf—+/o— Lfl3
0—0+
= lim (VA= Vo + N d(E\f, Exf) =0,

Q—>O+ [0700)
or, equivalently, 111%14r Vo—Lf=+—Lfin L*(u). Now the case o = 0
o—
easily follows by passing to the limit as ¢ — 0. U

The next theorem strengthens Proposition 2.2 from [19], established
in the case ¢ € [1,2]. We thank the anonymous referee for pointing out
that for ¢ > 1 it also follows from [I, Proposition 2.3]. However, we
include a short proof, because in Section 5 we refer to this proof with
some modification in order to cover the negative curvature case.

Theorem 2.3. Let (M, g, ) be a smooth weighted Riemannian mani-
fold satisfying the curvature-dimension condition C D(0,00). For every
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q > 1, there exists a positive constant C depending only on q such that
for any smooth function f on M and any t > 0 one has

If = Piflly < CVEIV £l

Proof. For any bounded measurable function h on M we have the
following reverse Poincaré inequality (see [5]):

25|V P,h|* < P,(h?) — (P;h)>.
Then by Jensen’s inequality for all ¢’ € [2, 00] we obtain

IVPhly < [ollgr- (2.1)

1
vor
Now one can observe that

t t

/ h(f — Pf)dpu = —/ / hLP,f duds :/ / VP,h-Vfduds

M 0o Ju 0o Ju
and by duality it is easy to see that for any ¢ € [1,2] one has

t
1
IF =Pl < [ =19 lods = VAT,

Now let us consider ¢ > 2. For f € C5° and t > 0 we have (in in L?(u))

Ptf—f:/oooK(s,t)PS\/—_Lfds,

o 1 Xs>t Xs>0
K(S,t).—ﬁ<(s_t>l/2—sl/2 .

One can easily check that for all £ > 0

oo 4
/0 K(s.B]ds = =i

Taking into account Proposition [2.2] we obtain

If = Pifl, < / K (s5,8)] | Po/=L |, ds
< / K (s, 8)] V=L flly ds < CaVEIV Fla

which completes the proof. 0

Remark 2.4. For the standard Ornstein—Uhlenbeck semigroup {7 }+>¢
given by the Mehler formula

Tfa) = | Fea 4 VI=eTy)(dy
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the estimate from Theorem can be established directly with an
explicit constant:

ITef = Fllg < Eoerl [V £llgs

K= / x| / ds = arccos(e™").
1 [fals A ()
Indeed, for f € C5°(R?) one has

1
fle e+ VI=ey) — f(o) = [ SLf(e a VI ey dr
0

1 —2tT
e
=t Vile Tz +vV1—e2ry). (—e‘”x + — ) dr,
/0 I % y) ——Y

ITef = £ < /R g |f(e '+ V1 — e~2y) — f(x)|"y(dz)y(dy)

—tT
< ct / / 2t
RIxRd J[0,1] V1—e 27

8 ‘Vf ez +VI—e?y) (—VI—e Tz + e*”yﬂq dry(dx)y(dy)

/ \/1—767_2” RA xRd IV f () - yl*y(dy)y(dz) dr

= K / VS @) (de),

Recall that the Kantorovich distance W,,(11, v) of order p > 1 between
two probability measures g and v with finite moments of order p is
defined by the formula

as announced.

W) = nt [ dwy) olde,dy),
o€ll(w,v) J prs M

where inf is taken over all measures o from the set II(u,v) of Borel

probability measures on M x M having projections p and v onto the

first and second factors, respectively; see [10], [9] or [24] (the case

p = 1 was considered in [16], [17]). Now let us introduce the Hopf-Lax

infimum-convolutions (Q;)s~o defined by the formula

Qsp(z) = 1nf [@(y)+dp(x,y)/s ,xeM, s>0.
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The dual description of the Kantorovich metric of order p is given by

the equality
WZ(MW)ZSUP(/ leodv—/ sodu),
] M M

where the supremum is taken over all bounded continuous functions ¢,
see [24]. Alternatively, one can use the sup-convolutions defined by

@Sgo(:c) = sup [go(y) — dp(x,y)/s}, x e M, s>0,

yeM

Wﬁ(uw)=Sl;p</M<pdu—/MleOCZV)-

A crucial role in our considerations in the next section will be played by
the “infinite-dimensional” Harnack inequality that states that, under
the curvature-dimension condition C'D(0,00), for any non-negative
square-integrable function ¢ on M and all ¢ > 0, x,y € M one has
one has

[Pug(y))* < Pi(g?)(z)e” =)/, (2.2)
For more information on Harnack inequalities of this type, see [25],
[27], [28], and [6].
3. MAIN RESULTS

We start with establishing a weak-type bound. The next theorem
strengthens Proposition 4.2 from [19] (see also [13]). Set

K(s) =

It is easy to see that the function x is decreasing in s € (1, 00) with

slog s

—_, s> 1
slogs+1—s §

Sl_1>ranr K(s) = oo, Sli}rgo k(s) = 1.
Theorem 3.1. Let (M, g, 1) be a smooth weighted Riemannian man-
ifold satisfying the condition C'D(0,00). For every q > 1, there exists
a positive constant C depending only on q such that for any probability
measure v = f -y with a smooth density f (or f € W% (u)) and any
s > 1 one has

sup[u??1og 2wl u( > 2u)"/) < OkM2(5) [V f]| Walp. ).

u>s

where r = %. On the other hand, the assertion does not hold if log*/?
is rep laced by an increasing positive function ®: [0, 00) — [0, 00) with
lim ®(u)log ' (u) = oo.

U—00
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Proof. (a) The proof of the first assertion is inspired by the approach
of Ledoux [19]. For any ¢ > 0 let us represent f as

f:(f_Ptf)+Ptf~

Then for v > 0 we have

p(f > 2u) < p(|f = Pif] > w) + p(Prf > ).
Taking into account Theorem [2.3] we obtain the estimate

q/2
u(f = 2u) < G

The next step is to apply the classical entropy inequality

/hPtfdug/ PtflogPtfdu+log/ e dp.
M M M

Now let us take

VG + n(Bf = w).

ud

h:=1rlog P, f,
where

F={PRf>u}.
Then

[ werflogRsan< [ PflogRifduslog [ (1416 - D] du
M M M

/FPthOgPtfdué/MPtflogPtfduHOg{/M1du+/F(Ptf—1)du}-

Since for every x > 0 one has log(1 + x) < z, and p is a probability
measure, we obtain

[ PsogRraus [ RpiosPidn [ (7 - vda
F M F

Note that due to [7, Lemma 4.2] or [0, Lemma 1.11] we have

1
/ Puflog Puf du < W3 (v, ).
M

This implies the inequality

1
/ (14 P.f[log Pf —1]) dp < / Pflog Puf du < W3 p) 1 > 0.
F M

Combining this estimate with the definition and monotonicity of the
function k we obtain

(ulogu)u(F) < %I;)WQZ(V, p) < %:)WQQ(I/, p), 1<s<u.
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Consequently,

Ct1? K(s)
> < 29 q N7 w2 .
7 2 20 < “Ewse 4 22wz,

Optimizing in ¢ > 0 we obtain the desired inequality.
(b) On the other hand, let ®: [0,00) — [0,00) be increasing such
that

lim ®(u)log™' u = co. (3.1)
uU—00
For any constant C' > 0, we intend to disprove the inequality

sup [u/2B(w) | u(f > 207 < Ok () |V FWalp,v), (3.2

u>s

where v = f - u, under the condition C'D(0,00). To this end, we take
M =R and

|z| s
V(z) = c+/ ds/ h(r)dr, z€R,
0 0

where h € C*([0, 00)) is nonnegative such that h|qg1/9) = 1, h|j1,00) = 0,
and ¢ € R is such that p(dz) := exp~"@ dx is a probability measure.
Then V' € C*(R) with V" > 0 such that the condition C'D(0, c0)
holds. Moreover, there exists a constant ¢y such that

V(z) = || + ¢ wnenever |z| > 1. (3.3)
For all £ > 1, we take

fol) = 6uf(x — k)T AL}, O = (/R{(x R AL eV dx) o

Let v, = fi, - and take u = 1eF. Then there exist constants c;,cy > 0

2
such that

201u = cr1ef < 6, < epe® = 2equ,

p(fi > 2u) > cre™ = 1 (2u) 7,

IV flly < coet=H0E = ¢y (2u) =11,

1

W, pr) < ok = colog(2u), u = §€k, kE>1.

Thus, (3.2) with f = fi, implies the bound
273/2(2u) V1D () = ud2® (u)(2u)~1T2/ (20
1
< C(2u)*"V11og(2u), u= §6k,k > 1.

Therefore, liminf,_,. ®(u)log ' u < oo contrary to (3.1). U
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Remark 3.2. In the Gaussian case, for any probability measure of the
form v = f -~ with f € W%!(y), ¢ > 1 one has

qu arccos?(e~") K(s)

v(f > 2u) <inf

t>0

: 19713+ 5 WE(w,)

(e2t — Dulogu *

for all u > s > 1. Indeed, this follows from Remark [2.4] along the lines
of the proof of Theorem [3.1] where one needs to take into account that
in the Gaussian case we have the bound

Wi (v,7)
T, flogT,fdy < —22" ¢>0.
/Rd tf Og tf 7_2<€2t_1)7 >

ud

The next lemma is a reinforcement of the remark made in [19]
regarding Claim B in the proof of Proposition 1.3 from [14]. This
simple observation will be used in the proof of Theorem [1.3]

Lemma 3.3. For all a > 1 and f > 0, any collection {Fy}3°, of
subsets of M and any non-empty set I C Z, one has

Z(l +k)Par1p () < ¢ 1sup{(1+k)5ak]lpk(x)}, x e M.
I
kel

a— 1 ke

Proof. Tt suffices to prove this inequality for finite I C Z, such that
x € F), for some k € I. In this case let us set k, := sup I, where
I,:={ke€l:x € F}. Then for any a > 1 and o > 0

Z(l +k)Pa" 1y () = Z(l + k)P < (1+ kz)ﬁzzak

kel kel
aszrl -1 akz+1
< (14 k)" - < (14 k)" -
< (1+k) a—1 = (14 k) a—1
< % sup {(1+k)Pa"1p (2)},
a—1 per
as announced. O

Lemma 3.4. Leta > 1,8 > 0 and p > 1. Then for any collection
{F}2, of Borel subsets of M, every finite non-empty set I C Z and
e >0 one has

1
/s@fd/t < Wolw, fu)+a%¢1/¢edﬂ,

where

p(z) =Y (1+k)%a 15, (2),

kel

Yo(z) = sup (1+k)°a"Lp (y),
kel YEMy, ()



My (z) = {y e M: d(z,y) < #“1(1 v k)ﬁakg}.

Proof. By the Kantorovich duality for every ¢ > 0 we have

1 ~
/cpfdu < EWZ)’(M, fu) +/Qe¢du,

Gepla) = sup[oly) — Zd(r, )]

yeM

Applying Lemma 3.3 and letting A := —%= we obtain

Quple) = sup[SO(1L+ K01, 1) ~ Zdr. Y |

1
< sup [A sup(1 + k)*a* 1, (y) — gd(x,y)p}

yeM kel
1
= A sup sup [(1 +k)*a* 15 (y) — A—d(;v, y)p}
yeM kel £
1
= Asup sup [(1 + k) 15 (y) — A—d(x, y)p}
kel yeM g

13

< Asup sup (1+k)%F1g (y) < AZ sup (1 + k)" (y),

kel yeM;, o(x) kel YyEMy, o (z)

which together with (3.4)) completes the proof.

O

Now we are ready to prove Theorem [I.3] We use Ledoux’s strategy
from [I9] with some modifications. For the reader’s convenience
all the details are presented. The key difference with the proof of
Ledoux concerns the application of Harnack’s inequality , where
the parameters are “balanced” in such a way that the exponential term

is no longer bounded by a constant.

Proof of Theorem[1.3. (a) We first prove the claimed inequality. For

k € Z, and t; > 0 let us set

A = {28 < f <2} f=min((f — 2%)4,2"),

Bo={Pfi> 271}, r=—L o=
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For kg > 1 one has

/M (f — 251 (14 log™ (1 4+ (F — 29%Y),)) dp

.S / — 2R (14 log™ (1 + (f — 25%1),)) dp

k=ko+1

< Z 2D (1 + log"™ (1 + 251)) u(Ay)
k=ko+1

<O (R > 2, (35)
k=kg

where we have used the inclusion Ay C {f;_; > 2¥~'}. The constant C
depends only on ¢ and k3. Now let us observe that for any sufficiently
smooth non-negative function g (which need not be a probability
density) and all u > 0 we have

(g > 2u) < p(g > 2u, Pg < u)+ pu(g > 2u, Pg > u)

1
<u(lg — Pg| > u) + %/ lrgdu
M

q/2

Ct 1
q
< ||V9||q+2u/Mﬂngu, (3.6)

where F' := {P,g > u} and the constant C' depends only on ¢q. Applying
(3.6) to g = fr and u = 2871 ¢ = t; we obtain the bound

cti/? 1
uihez2) < G [ 9 pta s o [ v e

tQ/2
< i [ v g [ g gan

where the inequality fr < f has been used. For any k; > k¢ one has

Sy i= YU+ B2 u(fy 2 2

kel

<CY (L4 ko2 oRl2 [ V|2 dp +/ of du, (3.7)
kel Ak M

where

Ii={ko,... ka}, @ =Y (L+k)y 20 =Dr1y,

kel
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Let € be a fixed positive number. Now we can apply Lemma to
a=2""' B =ar, p=2and obtain the inequality

1 a
/Spfdﬂ < -W3(fup) + —/ Y. du, (3.8)
€ a—1Jy
where
Ge@) =Y sup (14 k)20 DR (y),
kel YE€Mr,e(x)
My, (ZU) = {y e M: d(x y)2 < L(l + k,)TOcQ(r—l)kg}
- ’ “a—1 ’
Set
1 a
= log2 a—1

Let us take t; such that
(14 k)m‘Z(T_‘Y)ktZ/Q _ nq/2€q/2’

that is,
1 a

- log2a—1
By the definition of the set Fj we have the pointwise estimate

_ 2
Harnack’s inequality (2.2)) for the function f and y € M (x) yields

15 (y) < 27242(P, fi(y))”

— 1 a rao(r—
S 2 2k+2Ptkfz(l’) eXp(Q—tkﬁ(]_ + k) 2( 1)k8> .

tr (1 + k)72ra/q22(1fr/q)k€.

Due to our choice of t;, we have

1,3 6
ra+2ra/q=a(r+2r/q) = §(q+—q2 + m) =1,

(r— 1)k —2(1 —7/q)k = (r + 2r/q — 3)k = (qi+i—3)k=o.

This leads to the equality

1 a
s 1 k ra2(r—1)k ) _ 2(1+k)/2'
eXp(2tka—1( + k) c
Then
sup  Lp (y) < 27°%2P, fR(x)20HR/2 = 2732402 P, 2 ().
yEMk,s(x)
Since

/ P il dp = / fRdp < 2Mu(f > 2%) = 2% pu(fry > 2571,
M M
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we have

/ sup (1 + k) 20=V*1 5 dy

Mk,a(x)
S (1 + k)TQQ(Tf1)k‘2k/2+5/2[u(fk71 2 2/671)
_ (1 + k;)roz2rk2—k/2+5/21u(fk_1 > 2k—1).
Consequently,
/sofdu< W3 (fu, p) / Yo dp
= —WQ(fu I +—Z/ sup (1+ k) rag(r= lkILdeu
kel Y M Mi.e(2)

CL roor — —
< W)+ SO+ Ry > 9,
kel

Combining this with (3.7)) and taking into account that
(1 4 k)m?(riq)ktzﬂ — 77‘1/28‘1/2’
we finally have the following bound for S;:

Sp=Y (L4 k) 2%u(fi > 2%)

kel
1
<Oy VY dp+ —W3(fp, )
kel 7 Ak <

- Z(l + kf)ra2rk2_k/2+5/2,u(fk_1 > 2k—1)
kel

a
+

a —

1
< Cntl?eil? / IV f19dp+ =W3(fi, 1)
15
+ kgazr(kofl)fkoJriBM(f Z 2k0>

a
- 1 k ra27’k2—k/2+5/2 > 2k ] '
wa—l;( + k) p(fi 225, (3.9)

where the constant C' depends only on ¢, since
(1+1/k)"> <2 k>1.
We can assume that kq is sufficiently large and for all k& > kg

O _9-k/2+5/2 <
a—1 -
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Then the last term on the right-hand side of (3.9) can be replaced

1 1
512 O [ 19110+ W) + Ol 2 2 + 350,
or, equivalently,
1 /.q/2 q 1 2 ! ko
591 < C [V dp+ W (s p) + C'plf 2 2%),

the constant C’ depends only on ¢ and kg. Optimizing in € and using
the weak-type bound (3.1)) we obtain the inequality

3/2r
S7*" < Cla k) [V flWalpr.v).
Passing to the limit k&; — oo and using (3.5) we derive the claimed
inequality.
(b) For the second assertion, we let ® be an increasing function such

that
lim ®(u)log™?3(1 4+ u) = oc. (3.10)
U—00

For any constant C' > 0, we intend to disprove the inequality

[(7=Cre(1+@((r =) < CIVALWala,v). v = f-p. (311)
To this end, let M = R and let V, u, v := fr - u be taken as in

Step (b) of the proof of Theorem m By (3.3)), we have p = e" dz and
vy = fr - 1, hence we can find constants ¢, > ¢; > 0 such that for all

k > 1 one has
cre® < 0y < coe®, Wa(p,vr) < ok, IV felly < coe1- 1Dk

I(F = ) (14 F((F = O [} = e VO F(M))2
Therefore, inequality (3.11)) implies that
limsup k1 {®(e")}3/? < oo,

k—o00

which contradicts ((3.10)). O

4. THE KANTOROVICH DISTANCE W;

In this section we show that Theorem 1.1 from [19] admits a
generalization to the case N = oo, although, unlike Theorem [I.3]above,
where the case p = 2 was considered, the inequality does not include
any extra logarithmic factors. It might be possible that this result can
be further improved, we leave this question for future research. It would
be also interesting to find a unified proof of these inequalities covering
the full scale of the Kantorovich metrics W, with p > 1. Recall that
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the dual representation of the Kantorovich distance W is given by the
formula

wumw=$mﬂﬁmm—w, (4.1)

%)

where the supremum is taken over all bounded 1-Lipschitz functions ¢,
see, e.g., [0) or [24]. The next theorem is a generalization of Proposi-
tion 4.3 from [19].

Theorem 4.1. Let (M, g, 1) be a smooth weighted Riemannian mani-
fold satisfying the condition CD(0,00). For each q > 1, there ezists a
positive constant C' depending only on q such that for any probability
measure v = f -y with a smooth density f (or f € W% (u)) one has

r 2q
2 0(1f =11 > 2u0)"| < v W - .
sup - (|f =11 = 20)""| < IV Wi 0), 7= 5

Proof. For each t > 0 let us represent f — 1 as

f=1=f-Pf+h(f-1).

Then for u > 0 we have
p(If =1 >2u) < u(lf = Pifl = u) + u(|PAf = 1)] > u)
SMUf—HﬂZuy+%A;Lu—nFﬂyf—mdu

C qa/2
<S9S+ /Xh;—h»aq_lmﬂ
M

th /2

IVl 5 [ Plle — Lo - ),
where
Fy ={P(f-1)>u}, F.:={P(f—1) < —u}

and C' depends only on ¢. By the gradient estimate ([2.1)) we have
1
VP (1p, —1p )| < NeTh
hence the Kantorovich duality (4.1)) yields the bound

11
/MPt(ILF+ —1p )d(v —p) < ﬁﬂwl(“’ V).

Finally, we have

p(lf =11 > 20) < = vl + 7L—Wm%»

so optimizing in ¢ > 0 we arrive at the desired inequality. 0
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From the weak-type bounds provided by Theorem {4.1| we deduce the
corresponding strong ones.

Theorem 4.2. Let (M, g, 1) be a smooth weighted Riemannian mani-
fold satisfying the condition CD(0,00). For each q > 1, there ezists a
positive constant C depending only on q such that for any probability
measure v = f - i with a smooth density f (or f € W%(u)) one has

(7= 00 < O 7 = 2L

Proof. Following the lines of the proof of Theorem [I.3] we introduce
Ap={2" < f< 2"} fy = min((f —2")4,2"),
2q

Fo=A{P, fi=2""}, r= ,a:=2"""

and establish the inequality

/M(f _ 2k°+1):du <C Z 2Tk,u(fk > Qk)’

k=ko

where C' depends only on ¢ and kg. Next we bound pu(f;, > 2F) using
the estimate

/2
Ct}

1
o= 2) < S [ 19sranee g [ 1nsdn
k

Then for
Ii={ko, ... ka}, o= 207 DRI,

kel
we obtain the chain of inequalities

Spi=Y 2% u(fi > 2)

kel

<CY 22 [ dp+ | of dp
Ap M

kel

1
<CS 20t [ s dpt W)
kel Ak <
a
+ / sup 207 VEL . dp,
a— 1 kz€; Mk,s(x) *

where
a
My(x) == {y e M:d(x,y) < _Q(r—l)kg}_
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Let us set
1 a

( log 2 a—1
and take t; such that
Q(T—Q)ktZ/Q = /292,

that is,

1 a
t, — _22(1—7‘/q)k ]
F log2a—1 ©

Then
i (y) < 272 (P, fi(y))’, y € M,

and by Harnack’s inequality applied to the function f and y € My .(x)
we have

15, (y) < 2722(P, fi(y)®

_ 1 a _,_
<9 2k+2ﬂkfg(x)exp<2_ma_12( Dk&).

The definition of ¢, yields the equality
3q 6
— Dk = 21—/ = (r+2r/g—3)k = (-2 + — —3)k = 0.
(r=1k—=2(1—r/q)k = (r+2r/q—3) PG R
This leads to the equality
1 a

eXp(2_tka—1

2(r—1)k8> _9l/2.

Then

e )ﬂFk (y) < 272P, fi(x)2Y? = 27052, f(x).
yeMy (z

Recalling that

[ Puttdn= [ grin s 2 2 =2 22,
M M

similarly to the proof of Theorem we obtain the “recursive”
inequality for all sufficiently large kq:

1 1
S < Cnft/?e1/? / (VA1 dpat— Wi (p, v) #2700 0TR0 0 (f > 250) 425

Taking into account Theorem it is easy to complete the proof. [

Now let us consider the case ¢ = 1.
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Theorem 4.3. Let (M, g, i) be a smooth weighted Riemannian mani-
fold satisfying the condition CD(0,00). Then for each probability mea-
sure v = f - u with a smooth density f (or f € Wh(u)) one has

1F =11} < 2191, v).

Proof. This inequality is a particular case of the results from [12]. We
present a proof here for the reader’s convenience. For a smooth function
g € C§° with ||g|lc <1 we have

‘/M(f—l)gdu‘:'A(f—l)Ptgdu_A(f_l)/m,t]dispsgdu‘

t
< Wi(, 1)V Pogllo + / / V£ [V Pug| dp ds
0

< Wi(, )|V Paglloe + 1V £ /[ VPl ds
0,t
< W)+ VS L ds = Walv j)—— + V2|V 1]
v, ) —— ——ds = v, ) —— .
>~ 1 1% \/ﬁ 1 [O’t]\/% 1 H \/ﬂ 1

Optimizing in ¢ > 0 we obtain the desired inequality. O

Of course, this theorem covers the case of the standard Gaussian
measure ;5 on R? with the usual metric. As already mentioned in
our note [12], in this case the following two-sided inequality holds for
all functions f from the Gaussian Sobolev class W!(v4) having zero
integral against 7,:

11200
2V fll L1 (v

In [I2] Proposition 1 and Proposition 2] we constructed two examples
showing that the bound from this theorem can fail with any constant if
i does not satisfy the indicated condition (in one of these examples
i is a measure on the real line with the usual metric and in the
other example M is a two-dimensional complete connected Riemannian
submanifold in R? and p is its Riemannian volume).

The obtained inequalities involving the Kantorovich distance W; of
order 1 can be combined with the estimate provided by Theorem 1.1
from [19].

< f-rallx < IV Fllza-

Proposition 4.4. Let (M,g,p) be a smooth Riemannian manifold
satisfying the curvature-dimension condition C'D(0,N). Then, given
p,q > 1, there exists a constant C' > 0 depending only on p,q, N such
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that for each probability measure v = f - p with a smooth density f (or
feWhi(u)) one has

||f - 1”? < C(vaHqWP(M7 V) + U|Vf||1W1(,u, I/)} 9/(2T)>7

where -
I+2+% 1 1
r=—2 N g=1+-+ .
R p N
In particular, for p = q =1 this becomes
24+
1f = 15N < IV WG v). (4.2)
2N
Proof. By [19, Theorem 1.1] there exists a constant C' > 1 such that
I(f = O+l < CIV £ llWap, v) (4.3)
and by Theorem [£.3] we have
1f =1l < V2V LW (s, ). (44)

Since f is non-negative, we have the following trivial bound:
[f =1 <277 (f = )] + (20) 7Y f — 1.

Integrating this inequality over M and applying (4.3]) and (4.4]) we get
the desired bound. U

Remark 4.5. The inequality (4.2)) is sharp in the sense that, whenever
C' >0and ®: [0,00) — [0,00) is an increasing function with

lim ®(u)u >~ = oo, (4.5)

U—00
the following inequality does not hold:
O(lf =y ) < CIVIALWA (8, v). (4.6)

Indeed, let M = (S')", where S! is the unit circle, which is equivalent
to [0,27) with the periodic boundary. For every n > 1 we set
h,(s) = min{ns, (2 —ns)*},s € [0,27) and

folz) = th(xi), x=(x1,-- ,zn) €[0,2m)V.

Let v, = f, -dx, p = % dx, We have Wi(v,, u) < 2w, and there exist
constants co > ¢; > 0 such that

_N
1=y > em®5, [Vfili <en n>1,

Thus, (.6) implies that lim inf,_, ®(u)u"2"~ < oo, which contradicts
[3).
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5. EXTENSIONS TO THE NEGATIVE CURVATURE CASE

In this section we briefly discuss some extensions for negatively
curved weighted Riemannian manifolds. We assume that (M, g, i)
satisfies the curvature-dimension condition C'D(—p,0), 0 > 0 and
that additionally the logarithmic Sobolev inequality holds:

2 2 2 2
/Mf log f d’”LSX/MWf’ du (5.1)

for all f € CY(M) with
/ fPdu=1.
M

For example, according to [26], under the curvature-dimension condi-
tion C'D(—p, c0) the finiteness of the integral

/M exp(ed®(zo, z)) dp

for some xg € M and € > p/2 ensures the validity of the log-Sobolev
inequality [5.1] The main idea of the considerations below is that even
though in this case the curvature bound alone does not guarantee
the required semigroup estimates, nevertheless they can be established
under some additional assumptions about (M, g, u).

Proposition 5.1. Let (M, g,u) be a smooth weighted Riemannian
satisfying the curvature-dimension condition CD(—p,00) with some
0> 0. Assume also that the log-Sobolev inequality holds for some
A > 0. Then for each p € [2,00) there exists C > 0 depending only on
0, A\, p such that

|V Ph|, < t>0, he LP(M, ).

C

—= 1Al
Vi
Proof. Using the standard approximation arguments one can see that
it is sufficient to establish this inequality just for h € C,(M). Applying
[25, Corollary 4.2] we obtain the inequality

C

3=

IV Ph| < —(P[hl?)”.

This implies the bound
C
VEATL

Now one can observe that the log-Sobolev inequality (5.1)) ensures that
the generator of the semigroup {P};>o has a spectral gap larger or

IVEA], < [11lp- (5:2)
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equal to ), in particular, for any ¢ € L?(u) with zero integral against
[ one has

[Piells < e lella-
Consequently, for h € Cy(M) we have
Ce—At
VAL
Combining estimates (5.2), (5.3) and applying the standard interpola-

tion theorem we obtain the desired inequality. O

IVPh|s <

[172]l2- (5.3)

Theorem 5.2. Let (M, g, 1) be a smooth weighted Riemannian mani-
fold satisfying the curvature-dimension condition C'D(—p, 00) with some
0> 0. Assume also that the log-Sobolev inequality holds for some
A > 0. Then, for each q € (1,2], there exists C' > 0 depending only on
0, \, p such that for all f € W% () one has

If = Pifllg < CVE|V £l t> 0.

Proof. This follows from Proposition along the lines of the proof of
Theorem 2.3 O

Theorem 5.3. Let (M, g, 1) be a smooth weighted Riemannian mani-
fold satisfying the curvature-dimension condition C'D(— g, 00) with some
0> 0. Assume also that the log-Sobolev inequality holds for some
A > 0. Then there exists C' > 0 depending only on o, A\, p such that for
every probability density f one has

C
/ Pfloa Puf dyu < Wiy, f - o).
M

Proof. According to [28] the curvature condition C'D(—p,o0) implies
the log-Harnack inequality

0 dQ(x7y>
2(1 — e—2ety’

Applying this inequality to g := P,f and integrating with respect
to the optimal coupling of the measures f - p and u (see, e.g., [22
Corollary 1.2]) we get the bound

Y
Pflog Pf dp < —5—
/M o i dp = 2(1 — e

Consequently, for all £ € (0,1) we have

C
[ Ptos Pt dn < SWHLT ).
M

Pilog g(v) <log Pg(y) +

W3 (s [ 1)
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Next, it is known that the log-Sobolev inequality ({5.1)) implies the
following bound for any probability density g with respect to u:

/ P,glog Pgdp < e‘”/ gloggdp.
M M

Applying this inequality to ¢ = Py f, we obtain the estimate

/ P.flog P.f du < e 1) / Piflog P, f du
M M

< Ce MWi(p, fop), t =1,
Now it is easy to complete the proof. 0

Theorem 5.4. Let (M, g, 1) be a smooth weighted Riemannian mani-
fold satisfying the curvature-dimension condition C'D(— g, 00) with some
0> 0. Assume also that the log-Sobolev inequality holds for some
A > 0. Then for each q € (1,2] there exists C > 0 depending only on
0, \, q such that for every smooth probability density f (or f € W (u))
and every s > 1 one has

sup [u3/2 log'/? U}u(f > 2u)* ) < CRY2(5) ||V £l Walp, v),

u>s
where 5 |
q slog s
= —= = — s> 1.
" q+2’ (s) slogs+1—s’ °
Proof. This follows from Theorem [5.2] and Theorem [5.3] along the lines
of the proof of Theorem [3.1] O

Let us conclude this section with a generalization of Theorem [4.3]
For a function f € L'(p) let

19 =nOle= sw [ pgdn
geC>= (M), ||Vglloo<1J M

When v = f - is a probability measure, we have Wy (p, v) = || f — 1|| k-

Theorem 5.5. Let (M, g, 1) be a smooth weighted Riemannian man-

ifold satisfying the curvature-dimension condition C'D(—p,00), o > 0.
Assume also that the semigroup {P;}i>0 satisfies the inequality

1Pglloo < ce 9]l /M gdu =0, t >0. (5.4)

with some ¢, A > 0. Then there exists C' > 0 depending only on
0, ¢, A such that for every integrable smooth function f with zero integral
against (. one has

IFIIE < CIV AL f Il
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Proof. First, let us remind that for any h € C,(M) we have the
pointwise inequality (see [25, Corollary 4.2])

IVPh| < (R,

C
VIAL
C
VEINL

Next, using our additional assumption about the semigroup {P;};>¢ it
readily seen that for ¢ > 1 one has

IV Phlloo = [V PLP1h]loe < C'e™ |||

Combining these two bounds we obtain

consequently,

IV Pihljoo <

1] co-

IVPhloo < —= Al

C\
Vit
and, consequently,

If = Puflls < CVE|V s

Now it is easy to complete the proof similarly to Theorem [£.3] see also
our short note [12]. O

Remark 5.6. According to [26], the log-Sobolev inequality and the
strong ergodicity (inequality ) are incomparable, but both follow
from the ultraboundedness: || P;||100 < 00 for t > 0. See also [21] for
more details.
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