Reputation-Based Service Provisioning for Vehicular Fog Computing

Chaogang Tang?, Huaming Wu"*

4School of Computer Science and Technology, China University of Mining and Technology, 221116, Xuzhou, China
bCenter for Applied Mathematics, Tianjin University, 300072, Tianjin, China

Abstract

The startling rise in smart vehicles stimulates the rapid development of new paradigms such as Social Internet of Vehicle (SIoV) and
Vehicular Fog Computing (VFC). Trustworthiness has been regarded as a dominating issue in all the have-to-be-addressed issues in
SIoV, and many reputation-based countermeasures have been adopted to solve the trustiness-related issues in IoV. However, little
attention has been paid to the reputation of vehicles when they provision computational resources in VFC, which is worthy of further
investigation since some fog vehicles pursue more revenues or fewer costs at the expense of delivering poor-quality computing ser-
vices. Such selfish behaviors should be discouraged. In this paper, we put forward a reputation-based service provisioning scheme,
and a reputation management scheme consisting of the decentralized reputation updating and global reputation synchronization in
VEFC, aiming to prevent the fog vehicles from delivering low-quality computing services by maximizing the accumulated reputation
of all the serving fog vehicles in the optimization period. An online approach is adopted to handle the requests in a slot-by-slot

way. The simulation results show its effectiveness and advantages when compared to other existing approaches.
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1. Introduction

There are around 1.5 billion vehicles in the world and the
number of them may skyrocket to 2.8 billion by 2036 [[L]. The
rapid development of Internet of Vehicles (IoV) makes vehi-
cles inter-connected and interactive with each other. IoV that
integrates internal vehicle network, inter-vehicle network and
mobile Internet can perceive information pertaining to vehicu-
lar state and the surroundings [2]]. In the past few years, smart
vehicles have made up a huge part of the market in the automo-
bile industry. Apart from sensing ability, smart vehicles are fur-
ther capable of storage, calculation and analysis, owing to var-
ious vehicle-mounted facilities. In this context, several newly
emergent paradigms have gained widespread attention in both
industry and academia, typically exemplified by SIoV [3] and
VEC [4]. In particular, the former is devoted to the development
of vehicular social abilities such as social communication and
low-cost infotainment service provisioning, which are driven
primarily by strong social instincts in people, even if they be-
come vehicle travelers on the road [5]. The latter concentrates
on computational service provisioning by leveraging the com-
puting power of vehicles.

Among all the have-to-be-addressed issues in SIoV, trust-
worthiness is regarded as the most urgent one, because wire-
less links for information dissemination and multimedia content
sharing are established among unacquainted vehicles/drivers in
vehicular social networks. Many hostile behaviors may exist,
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attempting to damage vehicular social networks, e.g., some ma-
licious vehicles may send bogus or improper messages uninter-
ruptedly to undermine the trustiness of vehicles towards each
other. Against this background, many reputation-based coun-
termeasures have been adopted to solve the trustiness-related
issues in IoV and acquired satisfactory effects such as [6, [7, 8|
9 [10]]. On the other hand, however, researchers seldom apply
reputation-based mechanisms to service provisioning in VFC.
The explosive growth in the Internet of Things (IoT) devices
has led to staggering demands for computational resources, be-
cause these size-limited devices generate a huge amount of data
but cannot process and analyze them by themselves owing to
their limited computational capabilities [11]. Vehicles with idle
computational resources can become a tempting choice for ser-
vice provisioning in this context, and such an observation also
stimulates the fast development of VFC. For instance, smart ve-
hicles deploying services (e.g., related libraries and databases)
can respond and serve the offloading requests from IoT devices
(e.g., smartwatches and wearable health devices). Owing to
the profit-driven factors, vehicles may display selfish behav-
iors, e.g., pursuing more revenues or fewer costs at the expense
of delivering poor-quality computing services. Such irrespon-
sible service delivery from selfish vehicles not only degrades
the Quality of Service (QoS) and Quality of Experience (QoE)
[12]], but also exerts a negative influence on unselfish vehicles
delivering high-quality services as consistently claimed.
Unfortunately, current works seldom consider how to pre-
vent selfish vehicles from delivering low-quality services in VFC,
although there is extensive literature that applies blockchain-
based technologies to the security, privacy and trust issues that
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arise in VFC [13}[14,[15,116]. Despite the merits of blockchain-
based technologies, they do not perfectly suit the scenario of
computation outsourcing and service provisioning in VFC, be-
cause the offloading requests from IoT devices usually have
strict delay requirements. To tackle the above issue, we put for-
ward a lightweight reputation-based mechanism to prevent self-
ish vehicles from delivering low-quality services in VFC. Par-
ticularly, the contributions of the paper are threefold, as given
below:

e We propose a reputation-based service provisioning scheme

in VFC, aiming to prevent fog vehicles from delivering
low-quality computing services. The defined reputation
has considered multiple impressions which come from
both the IoT devices sending the requests and the local
server that allocates the service requests.

¢ A reputation management scheme with the decentralized
reputation updating and global reputation synchroniza-
tion is put forward, which tries to prevent the fog vehi-
cles from tampering with their own reputation values to
mislead the service requestors. The reputation is updated
based on multiple factors to ensure the fairness and ob-
jectivity in the paper.

e We try to maximize the accumulated reputation of all the
serving fog vehicles in the optimization period. Owing
to the feature of the sequential arrival of service requests,
it is difficult to optimally solve it in an oft-line way. We
put forward an online approach to serve the service re-
quest sequentially. The simulation evaluation shows the
advantages compared to other existing approaches.

The rest of this paper is arranged as follows. The literature
review is conducted in Section [2| We give some preliminaries
about the hierarchical end-fog-cloud system architecture where
the reputation-based service provisioning strategy is applied in
Section [3] The system model is introduced in Section [4] and
the optimization problem is formulated in Section 5] Extensive
simulation is conducted in Section [6} followed by the conclu-
sion in Section[7l

2. Related Works

Reputation has been extensively studied in a wide range of
fields [17, [18l [19] 20]], including computer science, sociology,
economics, and psychology. The study has already yielded ex-
tremely useful and fruitful results, and thus it is pretty difficult
to survey all the representative works from various fields [21],
owing to the limitation of space. Accordingly, we only pay at-
tention to the recent works related to our reputation-based ser-
vice provisioning in this paper.

Smart vehicles, which are empowered with computing ca-
pabilities, can shoulder more responsibilities in Vehicular Ad
Hoc Networks (VANETS), e.g., task calculation, event evalu-
ation and information forwarding [22| 23]]. Atwa er al. [1]]

leveraged fog nodes to collect the trust evaluations from ve-
hicles, and proposed a notion of Task-based Experience Rep-
utation (TER), such that different types of tasks can be allo-
cated to the most appropriate vehicles for execution based on
the reputation values of the vehicles. Engoulou et al. [24]] an-
alyzed and summarized some locally perceived factors that can
affect the behaviors of vehicles. Such parameters and factors
usually include speed, acceleration, transmission range, direc-
tion, frequency of a DoS attack, and so on. Then, they strive to
construct a decentralized reputation framework based on these
parameters with the aim to identify malicious vehicles and pre-
vent them from getting access to the internet of vehicles (IoV)
network. A trust game was proposed in [7], wherein investors,
trustworthy trustees, and untrustworthy trustees compete for as-
sets. The assets are owned and supervised by a third party. The
third party has been authorized to modify the reputation value
of each participant.

Indeed, there are malicious vehicles in IoV which try to un-
dermine the IoV network. For instance, some vehicular nodes
will silently drop messages or packets. Such passive response
to the information forwarding is also called a black-hole attack.
Despite solutions applied to handling this black-hole attack,
most of them are either centralized or dependent upon other
nodes’ opinions. Thus, Nabais et al. [8] put forward a decen-
tralized reputation framework in the hope to detect and punish
vehicular nodes with black-hole behaviors in the IoV network.

In addition to the black-hole attack in IoV and VANETS,
there are also other malicious behaviors, e.g., vehicular nodes
can transmit and forward useless and even wrong traffic infor-
mation, so as to let other nodes make wrong decisions on route
planning. To tackle this issue, a reputation-based algorithm is
put forward in [25]] to guide reliable route planning in IoV. The
proposed algorithm can detect suspicious information.

Service caching has gained extensive attention recently for
its advantages in improving the QoS of requested computing
services hosted at vehicles and also QoE of service requestors,
by caching related source codes and data beforehand at the edge
server. However, it requires incentives to motivate the first re-
questor offloading the tasks, since as the first one, the requestor
has to offload the task and pay for the task execution. To tackle
this issue, an SDN-based cache-enabled VEC framework was
proposed in [26]. In particular, they evaluated the contributions
of each vehicular node by its reputation value. In the mean-
while, they leveraged Stackelberg game to model the incentive
mechanism and proved the existence and uniqueness of Stack-
elberg equilibrium for the proposed game.

Reputation-based mechanisms are usually important for se-
curing communications in IoV networks. However, security
and efficiency can seldom be achieved at the same time. There-
fore, Su et al. [27] proposed a centralized reputation manage-
ment framework to identify malicious vehicles in IoV networks.
They have made a bold step in exploring the feasibility of this
framework as well as the potential threats to it. Simulation re-
sults have shown that their scheme can take effect more quickly
and is better than current trust management schemes.

In spite of the explosive growth in the number of vehicles
that can participate in Vehicular Crowd-Sensing (VCS), includ-



ing data analysis, information forwarding, and task calculation,
not all vehicles on the roads are willing to contribute to VCS
systems. In view of this, Yu et al. [9] put forward a reputation-
based incentive approach in a VCS system in which both the
utility of the cloud center and the participants are considered.
In particular, they design a reputation-based reverse combina-
tion auction incentive method. For instance, the reputation of
each participant is incorporated into the incentive approach to
avoid maliciously raising bidding prices. Huang et al. [28]] put
forward a global trust evaluation framework to accurately elim-
inate malicious mobile data collectors (MDCs) for clean data
collection environment. In particular, UAVs are adopted in their
work to validate the data submitted by MDCs. Extensive ex-
periments have revealed the advantages of their approach com-
pared to existing works.

In VANETS, content request and delivery have become the
norm, as the rapid development of smart vehicles [29,[30]. Zhu
et al. [10] categorized the entities in VANETS into Parked Vehi-
cles (PVs), Roadside Unit (RSU) and Moving Vehicles (MVs),
respectively. RSU is responsible for delivering the content re-
quested by MVs and PVs are leveraged for assisting RSU by
storing the content in advance. Owing to the selfishness of
PVs, a reputation-based scheme is used for identifying mali-
cious PVs. Meanwhile, a two-layer auction game is utilized to
model the cooperation among PVs, MVs, and RSUs. This ap-
proach can maximize the utility of RSUs as well as the through-
put of content transmission to a great extent. Nevertheless, it
needs to take a relatively long time to achieve mutually satisfac-
tory results and it also does not consider the privacy of vehicles.
Therefore, it is not suitable for our scenario in this paper.

The above literature does not consider how to evaluate fog
vehicles when they are contributing the computational resources
for serving the service requests. The majority of vehicles as-
sume that the services can be delivered as claimed. However,
malicious vehicles can deliver low-quality services for pursu-
ing their own profits. To the best of our knowledge, this is the
first effort to concentrate on computing service provisioning,
considering the possibility of potentially malicious fog nodes
delivering low-quality services in VFC.

3. Preliminaries

A hierarchical end-fog-cloud system model is presented in
Fig.[I] The end layer mainly consists of size-limited and com-
puting capacity-restricted IoT devices such as smartwatches,
smart bracelets and wearable health devices. A great deal of
data is gathered and plenty of tasks from the IoT devices are
formed. When the IoT devices need to perform these tasks,
they have to request the corresponding services from the fog
layer. The fog layer, as the intermediate layer between the
cloud layer and the end layer, consists of two entities. One is
the roadside units (RSUs) deployed with the fog servers (FS).
The other is the vehicles with idle computational resources and
willing to contribute them in the form of service provisioning.
We thus call them fog vehicles or fog nodes. The fog vehicles
can directly respond to the service requests from the IoT de-
vices. Meanwhile, they can also mitigate the pressure of the fog
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Figure 1: A hierarchical end-fog-cloud system architecture

server when the latter is overloaded. The cloud layer consists
of a remote cloud center residing in the core/backbone network.
Usually, the fog layer and cloud layer work cooperatively to
provide computational resources. For example, the advantage
of the cloud layer is that the powerful computing capabilities
there can support even unlimited resource requests. However,
it comes at the expense of a relatively long response delay. On
the other hand, the fog layer can satisfy the strict delay require-
ment, and thus perfectly suits the time-critical service requests
that the cloud layer does not suit.

In our system model, the two layers assume more respon-
sibilities, e.g., to manage the reputation scheme proposed in
this paper. Computing services can be provisioned in a de-
centralized and centralized way, respectively. For the former,
the offloading links can be directly established after initial bea-
con exchanging between IoT devices and fog vehicles. How-
ever, this way cannot prevent selfish vehicles from delivering
poor-quality services, and they can even tamper with their own
reputation values to attract nearby IoT devices. On the other
hand, the centralized service provisioning in this paper means
that fog vehicles only accept the service requests designated by
RSU covering them. This type of service provisioning may take
time to determine which vehicles are suitable for the requests,
thus yielding relatively long response latency. Nevertheless, the
advantage is that the service execution at fog vehicles can be su-
pervised by RSUs. Thus, it is difficult for fog vehicles to tamper
with their reputation values.

Combining the merits of the two ways for service provi-
sioning, we put forward a reputation-based service provisioning
in VFC, aiming to prevent selfish fog vehicles from delivering
low-quality services in this architecture. Particularly, the repu-
tation for each fog vehicle cannot be manipulated deliberately
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Figure 2: Sequence of interactions to display reputation management and service execution in end-fog-cloud architecture.

by themselves under the supervision of the RSUs. Each time a
fog vehicle finishes serving the service request, it will obtain a
score from RSU to assess its performance during service pro-
visioning. Such a score has considered multiple factors such as
the impressions from IoT devices and RSU, respectively, which
will be elaborated later. Then the score is integrated into the
reputation of the fog vehicle. The reputation of the fog vehicle
is updated by the covering RSU every time it serves the service
request. Generally, the fog vehicle delivering poor-quality com-
puting service will be punished and one delivering high-quality
computing service will be rewarded.

Note that one RSU together with the deployed fog server
can act as a local server and manage the reputation for its cov-
ering fog vehicles. We assume that two neighboring RSUs have
no overlaps, such that a fog vehicle can only be covered by at
most one RSU at the same time. Owing to the high mobility
of vehicles, they may enter or leave the area one RSU serves.
Thus, when one fog vehicle leaves the area, RSU stops updating
its reputation and sends the final value of reputation back to the
cloud center for global reputation synchronization. On the other
hand, when a fog vehicle gets access into the area, the serving
RSU will retrieve the reputation of the vehicle from the cloud
center and dynamically update it according to its performance.
Specifically, Fig. 2] shows the sequence of interactions for rep-

Send Beacon Packet

|

|

|

|

|

|

|

. . I
Supervise execution 1
|

|

|

|

|

|

|

Update
Reputation :
|

Deposit Reputation —’:

utation management and reputation-based service provisioning
in the end-fog-cloud architecture. The presented interactions
among the four entities can be sketched out as follows:

e Each fog vehicle and IoT device register to the cloud cen-
ter with unique identifications (ID) such as Ethernet ad-
dresses. The fog vehicle is assigned with an initial repu-
tation value after registration.

e [ocal server downloads the reputation value from the cloud
center for each fog vehicle that gets access to its serving
area. The reputation of all the fog vehicles is maintained
by the local server. The local server will decide which
fog vehicle to respond to the offloading request when the
service request from IoT device arrives.

e [oT device sends the related data to the fog vehicle and
waits for the execution. Meanwhile, the fog vehicle exe-
cutes the service upon arrival of the service request.

e When the fog vehicle leaves the area, the local server
writes back its reputation value immediately to the cloud
center for global synchronization.

The above decentralized reputation management and ser-
vice provisioning are feasible based on the following assump-
tions. First, the reputation stored in the cloud center cannot be



Table 1: Notations

Notation | Description

m Number of fog vehicles

T Number of discrete time slots

@ The length of each time slot

I(1) The size of service-input data for the request at
time slot ¢

U@ The number of CPU cycles needed to accom-
plish the service at time slot ¢

L) Expected response delay from the IoT device at
time slot ¢

vV The set of fog vehicles

P; The global reputation value of V;

Pi(t) The current reputation of V; in time slot ¢

Simin The minimal processing frequency of V;

Simax The maximal processing frequency of V;

By, The wireless channel bandwidth

Hy, (1) The channel gain between the device and fog
vehicle

Py (1) The transmission power from the device

5%(r) The noise power

(1) The arrival rate of service requests at V; in time
slot ¢

fi(®) The processing frequency of V; in time slot ¢

9 The effectively switched capacitance coeffi-
cient

S The number of cycles to perform one service-
input bit at V;

B The weight attached to the impression of the
IoT devices in time slot  on V;

forged, which is possible since various lightweight encryption
techniques can be applied. Second, the local server (i.e., RSU
with the deployed fog server) is trustworthy, which is also pos-
sible since they are usually deployed by the local government
without selfish interest driving. Third, the fog vehicles are will-
ing to accept the supervisor of the local server, which means
their information such as speed, destination, waiting queue, and
the amount of computational resources are known to the local
server.

One pending issue during the above interaction needs to
be addressed, i.e., how to schedule the service requests for the
fog vehicles to guarantee that 1) the service requests are served
without violating the constraints such as the energy consump-
tion; 2) The fog vehicles are encouraged to deliver high-quality
services, e.g., in terms of response latency, reliability or success
rate. We will expatiate upon it in what follows.

4. System Model

The considered model in this paper consists of m fog ve-
hicles and one local server. The optimization period 7 is di-
vided into T discrete time slots, indexed by 7~ = {0,--- ,T — 1},
and each slot has a duration @. @@ is small enough so that

there is only one service request from IoT devices arriving at
the local server within @w. Denote the service request in time
slot by S(t) = (Z(¢), U(1), L(1)), where I(¢) denotes the size
of service-input data (e.g., the related processing codes) to be
transmitted over the wireless channel, U(¢) is the number of
CPU cycles needed to accomplish the service, and L(?) is the
expected response delay from the perspective of the IoT de-
vice. If the real response delay is not longer than L(f), then
the IoT device sending S(¢) is satisfied. Otherwise, the QoE
begins to decline. Assume that the fog vehicles can provide
computing services under the supervision of the local server,
indexed by V = {Vy,---,V,—1}. Each V; can be represented
by a vector (Pi, fimin, fimax), Where P; is its global reputation
value which can be downloaded from the cloud enter or the
local server, fiin and f; . are the minimal and maximal pro-
cessing frequencies of V;, respectively. Usually, the processing
frequency is an important factor to indicate the amount of com-
putational resources leveraged for serving the service request.
For instance, a larger processing frequency means more com-
putational resources to be used for the service request, as well
as more costs such as energy consumption. As a result, self-
ish fog vehicles pursue profit maximization by reducing costs,
thus delivering low-quality services, e.g., in terms of response
latency. Specifically, some notations of key variables to be used
hereinafter are summarized in Table [Tl

4.1. Delay Model

From the perspective of IoT devices, their QoE for the re-
quested services mainly depends on one metric, i.e., the re-
sponse delay. The devices are satisfied, if the execution result
is returned before the expected response delay. Actually, the
shorter the response delay, the more they are satisfied. In this
paper, the response delay includes three parts in this paper and
they are the transmission delay, the calculation delay and the
returning delay.

4.1.1. Transmission Delay

The transmission delay d,,s(¢) for the requested service in
time slot 7 denotes the time taken to transmit the service-input
data from the IoT device to the fog vehicle, and it can be given

as: 10
t
dys(t) = —=, 1
1rs(1) 0 (H
where 7(7) is the transmission rate for the service-input data in
time slot ¢, given below [31]]:

Pay()Hay (1)

r(#) = Bay(t) logy(1 + 6%(1)

), (2)
where Bg,, Hgy,(f) and P, (t) are the wireless channel band-
width, the channel gain between the device and fog vehicle,
and the transmission power from the device, respectively. 62()
is the noise power.

4.1.2. Calculation Delay
The calculation delay d,;(t) for the requested service in time
slot ¢ denotes the time taken for the fog vehicle to accomplish



the calculation of the service. This delay includes the queue-
ing delay and the execution delay. We denote the two parts by
d,(t) and d,(2), respectively. To simplify the analysis, we as-
sume that the arrival of service requests at each fog vehicle in
time slot ¢ follows a Poisson process with the arrival rate 4;(¢),
i €{0,---,m— 1}. 4;(¢) can be easily estimated based on the
historical statistics. The service rate is f;(#)/U(t), where fi(¢) is
the processing frequency of fog vehicle V; in time slot . Based
on the M/M/1 queueing model, the average queuing delay in
the waiting queue can be expressed as [32]:

A(OU (1)
[ = LOU®))

The execution delay (i.e., the service time) d,(f) is given as:

dy(1) = 3

U@
d.(t) = —. 4
® 70 )
Thus, the calculation delay (i.e., the sojourn time) d;(¢) is [32]:
LOU 1) U@
dL' t = . 5
0 SiOfi() = (OU@) — fiD) ®)

Meanwhile, the energy consumption e;(¢) for accomplishing the
service in time slot ¢ at the fog node V; is expressed as:

eit) = ISUMD) fA(1), ©6)

where 1 is the effectively switched capacitance coefficient, and
¢ is the number of cycles needed to perform one service-input
bit at V;. From this equation, it is obviously observed that the
larger the processing frequency, the more the energy consump-
tion. In other words, more computational resources to be used
bring about more costs for the fog vehicles and fewer profits.
The returning delay denotes the time taken to send back
the execution result to the IoT device. Similar to other works
33} 132]], we also assume that the size of the execution result
is much smaller than that of the service-input data. Hence, we
have omitted the returning delay of the execution result. The
response delay d,,(?) for the service request in time slot ¢ is:

drsp([) = dy(t) + deii(1). @)

To depict the quality of service that one fog vehicle delivers,
we give the following definitions:

Definition 1. Utility Function. A utility function is attached
to a fog vehicle to represent its value to a service requestor.
The corresponding utility value of fog vehicle V; that serves the
service request in time slot t is defined as a measurable gain of
accomplishing the service, given as:

1 if dryp(1) < L(1)
Fimax(O)=6(dysp(1)—L(1))
Fimax(t)

0 if drsp() 2 L) + Fimax(1)/6

Filt) =

®)

if L(1) < drsp(t) < L) + Fimax()/6

Note that F; ,.x(f) > 0, and § > 0. In particular, fog vehicle V;
will obtain a maximum utility if the service request is accom-
plished within its expectation £(). Otherwise, the utility will
decay linearly with a slope of ¢ until it equals to 0, as the re-
sponse latency increases. In other words, the quality of service
that the fog vehicle delivers declines as the value of its utility
function decreases. Generally, the larger the utility value, the
higher the quality of the delivered service.

Definition 2. Expected Utility. The expected utility E(t) is de-
fined as the average utility value of the fog vehicle V; for ac-
complishing the service requests coming from the last K time

slots, given as:
-1

1
&) =+ Fi())- ©))
I

==

Definition 3. Utility Difference. The utility difference of the
fog vehicle V;, denoted by AF(t), is defined as the deviation of
Fi(t) from E;(t), given as:

AFi(1) = Fi(0) — Ei(D). (10)

4.2. Reputation Model

Reputation-based strategies have played an important role
in making service providers constantly provide high-quality ser-
vices. For example, the reputation usually represents the ac-
countability for maintaining their service levels and can thus
affect the offloading decisions to a great extent in VFC. A typ-
cial description about reputation is that it represents an opinion
that people have towards someone or something based on the
observed behaviors or displayed character. In this paper, we
need to think about what the opinion about a fog vehicle is like.
Generally speaking, a computing service is usually provisioned
on demand by a fog vehicle in VFC, and thus the opinion about
the fog vehicle from the outside is typically built upon its per-
formance during service provisioning. Particularly, if a service
request is served better than what it has been expected (e.g., in
terms of response latency), it will bring more value or utility to
the requestors and even irrelevant ones who will in turn have a
better opinion about the fog vehicle. Therefore, we can actually
use utility difference to indicate the opinion about the fog vehi-
cle. Then, we give the following definitions in what follows.

Definition 4. Impression. The impression IMP(t), which de-
notes the opinion of the IoT device that sends S(t) towards the
fog vehicle V; that undertakes S(t), is equal to the utility differ-
ence, given as:

IMP;(f) = AF(D). (11)

Given the above definition, several interesting observations
can be made as follows. First, IM P;(¢) is a real number ranging
from -1 to 1. Second, IMP;(r) will increase if the quality of
delivered service becomes higher, and /M P;(¢) will decrease if
the quality of delivered service becomes lower. Third, IMP;(t)
is 0 if the current utility value equals the average one.



Definition 5. Service Offloading Decision. Service offloading
in this paper refers to the allocation of service requests in VFC
by the local server. Let ¢! be a binary variable to indicate
whether the service request in time slot t is allocated to fog
vehicle Vi, i € {0,---,m — 1}. ¢! = 1, if the request is dis-
tributed to V;; and 0, otherwise. Define ¢; = {go?, s ,goiT’l} as
the offloading decisions of V; for all the service requests along
the timeline 7. Define ¢ = {¢y, - ,¢,_1} as the offloading
decisions of all the vehicles for the service requests along the

timeline 7.

It shall be noted that a fog vehicle may enter or leave the
serving area of the local server in the middle of the optimization
period, owing to its high mobility. For instance, one fog node
V; enters the area after the time slot k. In this case, for the sake
of easy expression and discussion, we assume that the binary
variables of this vehicle for these nonexistent time slots still
exist, i.e., {go?, e ,t,o’j‘.}, and just let them equal zero instead.

Definition 6. Single Reputation. The single reputation of a fog
vehicle V;, denoted by R;(t), is an individual impression of the
current loT device sending the service request in time slot t:

R(0) = ¢ - IMP(0). (12)

Based on the above definition, it is obvious that for an ar-
bitrary time slot, there is only one nonzero value of the single
reputation, since we have assumed that there is only one ser-
vice request within each time slot. Particularly, R;(f) ranges
from -1 to 1. The case R;(#) < O indicates that the current ser-
vice provisioning is worse and deviates a lot from the expected
utility. Each time the fog node serves the service request, the
single reputation should be updated. In addition, we have the
following definition.

Definition 7. Current Reputation. The current reputation of a
fog vehicle V;in time slot t, denoted by P (t), is an overall repu-
tation that comprehensively evaluates the performance when V;
provision computing services so far, and it is iteratively defined
as:

Pit) =Pt = 1) +B; - R(0), 13)

where B; (0 < B; < 1) is the weight attached to the impression
of the IoT devices sending the service request in time slot t on
the fog vehicle V.

Considering the fact that one fog node in VFC may serve
the service requests multiple times, and at the same time, one
IoT device may send service requests multiple times in the op-
timization period, the above weights 5,(¢ € {0,--- ,T — 1}) can
be leveraged for multiple purposes. First, if one service request
allocated to V; is not urgent enough in terms of response la-
tency, the priority level of the service request is supposed to be
relatively low; on the other hand, if one service request allo-
cated to V; is very urgent from the perspective of IoT device,
then the value earned by serving it is supposed to be more than
serving other requests which are not as urgent as it. The lo-
cal server, depending upon different situations, can achieve the

above purpose by adjusting the corresponding weight 3;. Sec-
ond, if the IoT device sending service request S(f) is malicious,
the local server can reduce the value earned by serving S(z),
e.g., by means of lowering the weight, although the identifica-
tion of malicious IoT devices is beyond the scope of this paper.
Last but not least, from the perspective of fog vehicles, they
may show different preferences towards the service requests in
the optimization period, and we can also adjust the weights for
this purpose. It shall be noted that all the impressions can hy-
pothetically have the same weight, since it is not our focus in
this paper.

Eq. (I3) can also be regarded as the update of the reputa-
tion value. Usually, there are two ways to update the reputa-
tion values of fog vehicles. One is that the reputation values of
all the fog vehicles remain unchanged during the optimization
period and are updated only at the end of the optimization pe-
riod. Such an update avoids frequent interactions between the
local server and fog vehicles, thus reducing the great pressure
on the front-haul links between them. However, this way cannot
prevent selfish vehicles from delivering low-quality computing
services. In this paper, we tend to distribute the service requests
to the fog vehicles based on their reputation values which will
be elaborated later. Assume that one fog vehicle V; which has
the highest reputation value gets access to the serving area of
the local server, and V; wants to pursue more profits in the in-
coming optimization period by delivering low-quality services.
Since the service requests are distributed based on their repu-
tations and the reputation values remain unchanged during the
timeline, V; with the highest reputation value can easily be as-
signed with more requests than other fog vehicles. Unfortu-
nately, there are no efficient countermeasures to cope with this
unfair requests distribution, let alone the measures adopted to
prevent this selfish V;.

The other way is to update the reputation values for all the
fog vehicles every time the service request S(7) is served. Al-
though this way undoubtedly incurs frequent interactions be-
tween the local server and vehicle fogs, it can prevent the fog
vehicle say V; from delivering low-quality services. For in-
stance, R;(t) will gradually become smaller with the increasing
number of time slots, since R ;(¢) has been nonpositive along the
time slots. The decreasing reputation value will hinder R;()
from obtaining more service requests. Based on this analysis,
we adopt the second way to update the reputation values for all
the fog vehicles in the optimization period.

In the meanwhile, the local server needs to write the reputa-
tion back to the cloud center based on the following two cases.
One is that fog vehicle V; leaves the serving area of the local
server in the middle of the optimization period. In this case,
the local server writes back the updated reputation value im-
mediately to the cloud center for global synchronization, such
that another local server can download it when V; gets access
to its serving area. The other case is that the optimization pe-
riod is over. In this case, the local server also writes back the
updated reputation values immediately to the cloud center for
global synchronization. For those vehicles which still want to
stay and make a contribution, they still need to download their
own reputation values again either from the local server or the



cloud center.

5. Problem Formulation

The main goal of the reputation-based service provisioning
in VFC is to prevent fog vehicles from delivering low-quality
computing services, when the vehicles are serving the requests.
In the meanwhile, the constraints should be considered such
as the energy consumption and the processing frequencies. In-
tuitively, the fog vehicle with a large value of current reputa-
tion can, as always, deliver high-quality computing services.
Therefore, we strive to maximize the reputation value of each
fog vehicle along the time slots. Specifically, the optimization
problem in this paper can be formulated as follows:

m—1T-1
(Q) max Pi(t)
¢ 90 o
m—1
s.t. nggsl Vie{0,--,T -1} (14)

ei(D) < eimax Vi€{0,--- ,m—1}¥te(0,--- , T -1} (15)

Fimin < fi®) < fimax Vi €10, ,m = 1)Vt €{0,--- , T — 1}
(16)

i ef0, 1} Vie{0,---,m—-1}Vte{0,---, T-1} (17)

where the constraint (I4) guarantees that a service request from
any time slot should be served by at most one fog vehicle. An
extreme case is that none of the fog vehicles are qualified for the
service request, e.g., lack of enough computational resources.
In such a case, the local server will undertake the computation
of the service. Although the fog vehicles are encouraged to de-
liver high-quality services, we allow for the case that the fog
vehicles reserve the computational resources and energy sup-
ply for an emergency. We can achieve this goal by using the
constraints and (17).

Exhaustive search over the potential solution space is pro-
hibitively costly, since it takes the exponential time to determine
the best allocation scheme for the service requests in the entire
optimization period. Even worse, to optimally solve problem
Q requires complete information including future information
about service requests, which can be only realized in an off-line
way. However, it does not suit our scenario in this paper, since
the service requests arrive sequentially, and they are supposed
to be handled right upon its arrival, instead of being handled in
batches. Meanwhile, it is pretty hard to predict service requests
in the future time slots, which indeed necessitates an online ap-
proach to solve the optimization problem.

We notice that the above problem Q is equal to the following
problem K after a straightforward transformation:

T-1m-1
(KX) max Pi(2). (18)
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Note that we do not list the constraints any longer since they
are the same as the problem Q. This problem indicates that we
can optimize the reputation values of all the fog vehicles within
each time slot at the beginning, and then we maximize these
values along the time slots. On one hand, we have transformed
this optimization problem spanning the entire optimization pe-
riod into a series of per-slot deterministic optimization subprob-
lems, such that the service request can be allocated in a slot-by-
slot way. On the other hand, this problem can be solved by the
greedy approach. The locally optimal solutions can constitute
the globally optimal solution in this problem, which can be eas-
ily proven by reductio. Furthermore, it seems easy to find the
optimal solution to the above problem with the time complexity
of O(TM).

However, this problem becomes very complicated if we take
into account the selfishness of vehicles, since we do not know,
a priori, whether the fog vehicle will deliver a high-quality ser-
vice if the service request is distributed to it. Accordingly, there
is a great deal of uncertainty during service provisioning. To
tackle this issue, we put forward a two-phase-based service re-
quest allocation scheme within each time, aiming to answer the
following two questions: 1) which fog vehicle is the most qual-
ified for the service request among all the fog nodes; 2) How
many computational resources are allocated to the service re-
quest for the chosen fog node?

5.1. Fog Node Selection

Our goal in this paper is to encourage fog vehicles to always
deliver high-quality computing services, so the determination
of fog nodes should display the advantages of those vehicles

which deliver high-quality services as consistently claimed. There-

fore, we tend to designate the fog node with the highest rep-
utation value to respond to the service request. One may ar-
gue that it may not be fair enough, since the service requests
arriving in sequence in the optimization period may be allo-
cated to the same fog node with the highest reputation value,
thus dampening the enthusiasm of other vehicles willing to con-
tribute computational resources. We should admit that such an
extreme case indeed exists. For instance, if one fog vehicle
has the highest reputation value and much more computational
resources than other fog nodes, this fog node may earn more
service requests.

However, the proposed reputation-based service provision-
ing has taken into account the fairness issue to a great extent,
based on the following reasons. First, the utility attached to the
fog vehicle is updated each time the fog node finishes serving
the service request. Meanwhile, the reputation based on the
utility value is recorded per time slot. If a fog vehicle with high
original reputation value has been delivering low-quality com-
puting services in the past K time slots, its reputation will in-
creasingly decline. On the other hand, if a fog vehicle with low
original reputation value has been delivering high-quality com-
puting services in the past K time slots, its reputation will in-
creasingly rise. Second, the optimization period is short enough
so that the reputation values of the fog vehicles can be updated
timely. In this context, each fog vehicle has an opportunity to
respond to the service request. Last but not least, in response



Algorithm 1: Procedure for Fog Node Determination
and Resource Distribution (PDD)
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Imput: 7, K, V, 9, ¢, S;, m, 6, Bay, Pgy, Hyy, B

Output: The reputation sum of all the fog nodes

Gather status information from fog vehicles;

Download reputation values from cloud center;

Sort fog nodes in descending order of reputation
values;

Initialize a list H to store the already sorted fog nodes;

Sum = 0;

for each time slot # in 7~ do

Get the fog vehicle V; from the list H in sequence;

Calculate f*(#) using Eq. ;

if £7(t) > fimax then

// Vi is not qualified

Repeat steps 6-7;

else

Calculate €; () based on Eq. @;

if €(1) > e;max then

// Vi is not qualified

Repeat steps 6-7;

else

Disseminate the beacon information to V;;

Designate V; in response to S(7);

Supervise the process of serving the
requests;

Calculate and update its reputation value
Pi;

end

if V; leave area then

Update the reputation of Vj, i.e., Pj;

Write #; back to the cloud center;

end

end
Record the service offloading decision on S;;
Form per-slot offloading decisions {¢),--- , ¢! }:
S =0
for each fog vehicle V; in V do

Calculate #;(¢) based on Eq. ;

S+ =Pi0);
end
Sum+ =5,
end
Return S um;

to the issue of all the service requests that are allocated to the
same fog node, we admit such an extreme case, but there is
not too much to worry about. Each service request has an ex-
pected response delay. If all the services are allocated to the
same fog node, the response latency will increase for some ser-
vice requests, owing to the increasing queueing delay and the
uneven computational resources distribution. Thus, the utility
value of the vehicle may decline due to the constraint violation
(see Eq. (§)), which eventually leads to the decline of the repu-
tation. As a result, the above situation will give other vehicles
opportunities.

5.2. Computational Resources Distribution

When the fog vehicle that serves the service request is de-
termined, another issue comes naturally, i.e., how many compu-
tational resources are supposed to be distributed to the service
request such that a good reputation can be maintained as always
but there are no more costs incurred by service provisioning
such as the energy consumption.

Note that the utility value of one fog node only depends
upon its response delay and the utility value will not increase
anymore as long as the response delay is shorter than the ex-
pected response delay. In other words, it is meaningless to
shorten the response delay after the real response delay reaches
the expected response delay. We can thus calculate the criti-
cal value of the amount of computational resources when the
response delay is equal to the expected response delay. Com-
bining Eq. and Eq. (8), it can be inferred that this critical
value for the computational resources is:

rU()

FO=40UO+ e

19)
which indicates that the best result can be achieved when the
processing frequency of the fog vehicle equals f;(¢) and there
are no more energy consumption incurred for extra computa-
tional resources distribution. Accordingly, the procedure for
fog node determination and computing resource distribution,
denoted by PDD, is shown in Alg. |1} Before the optimization
period begins, the algorithm PDD should conduct some initial-
izations. For instance, the local server needs to gather the infor-
mation on the fog vehicles dwelling on its serving area. Such
information usually includes the amount of computational re-
sources, the destination, the dwelling time and even the repu-
tation values, provided that these vehicles have obtained their
reputation somehow. Then the local server downloads the repu-
tation values of these vehicles from the authorized cloud center.
It shall be noted that, the local server can check whether the
two kinds of reputation values are equal, so as to tag those po-
tentially selfish vehicles. For instance, if the reputation value
gathered from one vehicle (e.g., V;) is higher than that from the
cloud center, the local server can consider V; as a potentially
selfish vehicle. The local server sorts the vehicles in descend-
ing order of reputation values and then stores them by a list H
for subsequent operations.

For the service request in each time slot 7, the local server
gets the first fog vehicle (e.g., V) in H and checks whether



it is qualified for the request by the following several valida-
tions. First, the local server calculates the critical value of the
processing frequency f; () based on Eq. @[) If this critical
value is larger than the threshold of the processing frequency
(i-e., fomax), we regard this vehicle as an unqualified fog node
for the request. Otherwise, given f(¢), we calculate ej(r) based
on Eq. (6) to check whether the critical energy consumption
exceeds the threshold of energy consumption (i.e., €gmqx). If
e(t) > eqmax, this fog vehicle is still considered to be an un-
qualified fog node. In this case, the local server will try another
fog vehicle by getting the vehicle just behind Vj in H and re-
peat the above validations.

The fog vehicle passing the validation process will be no-
ticed by the local server, e.g., by beacon packet dissemination
(line 15). This vehicle will serve the request by allocating the
computational resources to it under the supervision of the lo-
cal server. After completing the service request, its reputation
is updated and recorded at the local server. In the meanwhile,
if one vehicle, say V;, leaves the serving area, the local server
will update the reputation and write it back to the cloud center.
Actually, this procedure can be adopted to solve the problem
K. In particular, the local server records the service offloading
decision in each time slot ¢!(i € {0,---,m — 1}) and calculate
the sum of the reputation values of all the fog nodes within this
time slot (lines 28-32). Then, the total reputation of all the fog
nodes in the entire optimization period can be obtained (line
33).

Table 2: Parameter Settings

’ Parameter \ Value \ Parameter \ Value ‘

T [100,300] m [20,30]

K [1, 100] 0 [1,5]

Simin [1000,1500] | fimax [2000,2500]
I(1) [1,50] U@ [40, 70]
L) [0.1] Pi (0.1]

Fimax [0,1] Bi [0,1]

6. Simulation Evaluation

In this section, we validate the proposed reputation-based
service provisioning scheme via extensive simulation under dif-
ferent scenarios.

6.1. Experimental Settings

For the main parameters involved in the simulation, we ini-
tialize them as follows. The number of fog vehicles varies from
20 to 30, and the number of time slots ranges from 100 to 300.
Each vehicle is assigned with an initial reputation value ranging
from O to 1. Specifically, these parameters are listed in Tab.
All the simulation is run on a notebook with a 1.8 GHz Intel(R)
Core(TM) 15-8250U CPU, 8 GB of RAM, Microsoft Windows
10 Operating System, Python 3.7.

Our simulation includes two parts. On one hand, we will
validate the efficiency and effectiveness of our approach in terms
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of the effects of the involved parameters upon the performance,
given different scenarios. Such parameters usually include the
number of fog vehicles, the slope of the utility function and so
on. On the other hand, we will compare our approach with the
following two approaches:

o Task-based Experience Reputation (TER) [1]: This ap-
proach assigns different tasks with different weights to
indicate their emergency as well as importance. The rep-
utation is calculated using a weighted mean of previous
reputation values.

e [terative Reputation Management (IRM) [27]: This ap-
proach iteratively manages the reputation for a vehicle,
which takes into consideration the accumulated reputa-
tion at each iteration by a constant ratio.

6.2. Parameters Evaluation

The first set of experiments is conducted to validate the ef-
ficiency and effectiveness of the proposed reputation-based ser-
vice approach. The simulation results are shown in Fig.|3| The
influence of the number of vehicles upon the performance is
depicted in Fig. It is obvious that the number of vehicles
affects the performance of PDD greatly in terms of the accu-
mulated reputation. Particularly, given the number of service
requests, the accumulated reputation values for all the fog vehi-
cles will become larger generally. For instance, when the num-
ber of fog vehicles is 30, the overall reputation values are much
better than the two cases when the number of fog vehicles is 20
and 25.

It is interesting that the performance of the case when the
number of fog vehicles is 20 is better than the case when the
number of fog vehicles is 25 most of the time. It is mainly due
to the fact that all the data including the service requests and fog
vehicles in the simulation is generated randomly. Although the
service requests are the same, the fog vehicles are all different
in the three cases. As a result, the above situation may occur
in the simulation. On another hand, as far as one case (e.g.,
m = 20,25, or 30) is concerned, the reputation values may de-
crease as the number of time slots increases. For instance, the
reputation values decrease when the number of time slots is 20
for the case with m = 20 and 25 for the case with m = 30.
Recall that our purpose is to prevent the fog vehicles from de-
livering low-quality services by distributing the service requests
based on the reputation values of fog vehicles. If selfish vehi-
cles deliver low-quality services, the reputation will decline as
the number of time slots increases. Such punishment will hin-
der the fog vehicles from obtaining more service requests.

We investigate the influence of the slopes defined in Eq.
upon the performance of proposed strategy. The simulation re-
sults are shown in Fig.[3(b)] Based on the definition of the util-
ity function for a fog vehicle, the larger the slope, the faster the
utility value declines. As a result, it is understandable that the
performance of the proposed strategy is better than others when
the corresponding slope is smaller than others, which can be
easily observed from the figure. Meanwhile, we can also find
that the accumulated reputation values fluctuate a lot. For in-
stance, when the number of time slots increases from 55 to 62,
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Figure 3: The validation of the influence of involved parameters upon the performance of the approach

the accumulated values decrease sharply for all the four cases.
Such a fluctuation has the same reason as shown in Fig. 3(a)]
The fog vehicles assigned with service requests will be pun-
ished if they deliver the poor-quality services along the time
slots.

In the next, we investigate the relationships between the
utility values and the reputation values of the fog vehicles. The
results are shown in Fig. Specifically, we have taken one
from thirty vehicles as the observation object. Several conclu-
sions can be drawn from this figure. First, the reputation of one
fog vehicle goes up and down, depending on its performance
in each time slot. Second, a sharp rise or decline in the utility
values in the current time slot does not bring about a similar
fluctuation in the reputation values in the current time slot. The
reason is that the definition for reputation is based on the utility
difference (see definition [3), which adopts the expected utility
(i.e., the average utility value of the fog vehicle coming from
the last K time slots) to prevent a sudden rise or decline in the
reputation value. This countermeasure can efficiently handle
the situation where a fog node continuously delivering poor-
quality computing services wants to rise its reputation rapidly
by delivering high-quality computing services several times.

We have conducted another set of experiments to validate
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the relationships between the reputations and the quality of de-
livered computing services. The simulation results are shown
in Fig. 3(d)] In the simulation, we assume that one vehicle with
a good reputation will provide high-quality services along the
time slots with the probabilities of 30%, 60%, and 90%, re-
spectively. All the settings are the same except the probability
of provisioning high-quality computing services. Obviously,
the higher the probability that the fog vehicle provisions high-
quality services, the larger the reputation, and vice versa.

6.3. Performance Comparison

We first evaluate our approach compared to the approach
proposed in [1]]. Herein, we call the approach TER directly
for the sake of easy discussion and reference. As mentioned at
the beginning, TER incorporates the emergency and importance
into the reputation of the tasks, e.g., by assigning them with dif-
ferent weights. The reputation is a weighted mean of previous
reputation values. Actually, we also consider the emergency
and importance of the tasks in our reputation model by using
the weights 5, (t € {0, --- , T — 1}). Furthermore, we adopt util-
ity difference-based impressions to define the reputation instead
of a simple weighted mean of previous reputation values. The
simulation results are shown in Fig.[d]and Fig. 5] respectively.
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Figure 4: Performance comparison with TER w.r.t. reputation

Fig.[@indicates that our reputation values are generally higher
than TER along the time slots. The following reason can ac-
count for this result. The definition for reputation in this paper
is relatively smooth and steady compared to TER. As illustrated
above, it can prevent selfish vehicles which continuously de-
liver poor-quality computing services from rising their reputa-
tion rapidly by delivering high-quality computing services sev-
eral times. On the other hand, it can also prevent some vehicles
with good reputations from lowering their reputation rapidly by
delivering poor-quality computing services several times. In
contrast, TER is unable to achieve such a purpose. Hence, our
approach is better than TER with regards to (w.r.t.) the achieved
reputation values.
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Figure 5: Performance comparison with TER w.r.t. the long-term average re-
sponse delay

In addition, we have evaluated how they respectively func-
tion in preventing selfish vehicles from delivering low-quality
services. The results are shown in Fig.[5] where the y-coordinate
represents the long-term average response delay. In this simu-
lation, we vary the number of time slots from 100 to 300, which
means that there are hundreds of service requests waiting to be
handled. From the figure, we can observe that our approach
is much better than TER in terms of the long-term average
response delay. In other words, our reputation-based service
provisioning can better prevent selfish vehicles and encourage
them to deliver the claimed computing service so as to maintain
a good reputation.

In the next, we have conducted another set of experiments
to evaluate our approach compared to the approach proposed
in [27]. Similarly, we call the approach IRM directly for the
sake of easy discussion and reference. IRM iteratively updates
the reputation for a vehicle, which considers not only the accu-
mulated reputation but also the impression from other vehicles.
To suit our scenario, we need to tailor the reputation update as
follows.

Pj0) =Pt = 1)+ Rj(Op()x;(1), (20)

where p;(¢) is the validated result of vehicle V; in time slot ¢,
and x;(t) denotes the trustworthiness of the local server towards
the fog vehicle V; and the trustworthiness can be regarded as a
probability ranging from O to 1. p;(?) is a binary variable. As
mentioned earlier, the local server will check the two reputation
values of which one is downloaded from the cloud center, and
the other comes from the vehicle during the beacon packet dis-
semination. p;(¢) = 1, if the two values equal; and 0, otherwise.
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Figure 6: Performance comparison with IRM w.r.t. reputation
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Figure 7: Performance comparison with IRM w.r.t. the long-term average re-
sponse delay

The simulation results are shown in Fig. [] and Fig. [7] re-
spectively. The evaluation is similar to the evaluation of TER.
Note that we have compared our approach with TER and IRM,
separately in the simulation, because during the comparison be-
tween TER and PDD, we have assigned different weights to
the impression of the IoT devices sending the service request
in each time slot, and for the comparison between IRM and
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PDD, all the weights are assumed to be the same. From Fig.[6]
we can observe that there are no obvious relationships between
IRM and PDD w.r.t. the reputation values. The two different
ways to update the reputation make their reputation values re-
spectively fluctuate a lot. Furthermore, the reputation values of
TER sometimes are larger than those of PDD, and sometimes
aren’t. However, as far as the long-term average response de-
lay is concerned, our approach is obviously better than IRM,
which can be easily observed from Fig.[7] As the data on ser-
vice requests is generated randomly in each optimize period,
the resulting reputation values often go up and down, which is
acceptable in our opinion.
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Figure 8: Performance comparison with selfish vehicle delivering poor-quality
services

We have conducted the last set of experiments to evaluate
the performance of our approach in comparison with TER and
IRM. The goal is to check their performance in preventing fog
vehicles from delivering the low-quality services. In particular,
we still choose one from thirty fog vehicles as the observation
object. Along the time slots, the probability that this fog vehi-
cle delivers low-quality services increasingly rises in a random
way. Intuitively, the higher the probability that the fog vehicle
delivers low-quality services, the lower the reputation values.
However, due to the difference in reputation updates, the repu-
tation values cannot be compared directly. We then evaluate the
number of times that this fog vehicle serves the service requests
in each optimization period. Generally, the selfish vehicle will
obtain gradually reduced service requests as time goes by. The
corresponding simulation results are shown in Fig.[8] where the
y-coordinate represents the number of times for the fog vehi-
cle serving the service requests. The results have validated our
expectations. Moreover, our approach can achieve better per-
formance than the other two approaches in terms of the decline.

7. Conclusion

Trustworthiness has attracted extensive attention in SIoV,
and many reputation-based approaches are applied to solving
trustworthiness-related issues. Nevertheless, existing works sel-
dom adopt reputation-based mechanisms to handle the trust-
worthiness related issues that arise in VFC. The fog vehicles in
VFC may pursue improper revenues by delivering poor-quality

computing services. Unfortunately, most of the existing works
just assume that vehicles are unselfish and deliver their com-
puting services as claimed. Such an assumption does not al-
ways hold in reality. Considering the selfishness of vehicles,
a reputation-based service provisioning scheme is proposed to
prevent fog vehicles from delivering low-quality computing ser-
vices. In the meanwhile, a reputation management scheme is
adopted, which consists of the decentralized reputation updat-
ing and global reputation synchronization in VFC. We have
formulated the optimization problem to maximize the accumu-
lated reputation of all the serving fog nodes in the optimiza-
tion period. We have also carried out extensive simulation and
the results reveal that our approach outstands other existing ap-
proaches. For the future work, more efficient strategies are re-
quired for improving the fairness and enthusiasm of newly reg-
istered fog vehicles, e.g., by avoiding the selection of the same
fog node in the consecutive time slots.
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