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Abstract—The application of DNA as a powerful tool for
storing digital information in chemically synthesized molecules
has undergone continuous development. To explore its potential
and limitations, we model the DNA storage channel as a cascade
of a series of parallel and independent DNA noisy synchronization
error channels and a shuffling-sampling channel, and derive novel
lower and upper capacity bounds through a purely information-
theoretic approach. Our results reveal the potential of DNA
storage density and can be used to guide the design of error
correction codes.

Index Terms—DNA-based storage systems, Synchronization
error channels, Channel capacity.

I. INTRODUCTION

IN the digital era of exploding quantities of data, break-
through technologies are desired to achieve low-cost and

low-consumption storage. DNA, the molecule encoding bio-
logical information, becomes an encouraging storage medium
owing to its longevity and high information density. In recent
years, researches and applications of this field have been
widely concerned and studied [1], [2].

As shown in Fig. 1, in a typical DNA-based storage system,
the data are first segmented into small pieces due to the limit
of the synthesizing and sequencing technologies, then encoded
into quaternary codewords via error correction codes [3], [4],
and subsequently synthesized into DNA strands and stored.
The data recovery process includes strand amplification, PCR
experiments (polymerase chain reaction), random extraction,
and sequencing, which finally output duplicate, disordered, and
incorrect readouts.

Fig. 1. The outline of the DNA-based storage system.

Based on thorough assessments of the error sources and
ratios under various experimental setups [5], there are typically
three categories of errors in the aforementioned processes.
Firstly, since the short DNA strands stored in test tubes are spa-
tially disordered, the context of readouts cannot be intuitively
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derived from the order of receipt as in the communications
field. Second, there are duplicates and unread DNA strands
(called dropouts) due to the unstable and non-uniform number
of synthesis and sequencing times of DNA strands. These
two sources of error happen at the molecular level. Third,
insertions, deletions, and substitutions are introduced at the
nucleotide level during DNA synthesis and sequencing.

Nucleotide deletions are mainly caused by insufficient bio-
chemical reactions. Whereas nucleotide insertions are mainly
caused by overreaction, possibly a series of random nu-
cleotides. These two errors are named synchronization errors
in the classical communication channels. While nucleotide
substitutions are mainly due to mutations. To characterize such
errors, we model the transmission of each DNA strand as a
DNA noisy synchronization error channel (DNSEC). Under
different biochemical experimental conditions, the proportion
of errors is various. Nevertheless, the common feature is
a significant proportion of synchronization errors. The error
analysis in [1], [5] showed that synchronization errors account
for at least half of the errors.

Unfortunately, synchronization errors have not been taken
into consideration in previous studies of DNA storage chan-
nels; only substitutions have been studied. Shomorony and
Heckel first characterized the random selecting and sequencing
process as a shuffling-sampling channel (SSC) and derived the
DNA storage channel capacity by cascading a binary symmet-
ric channel (BEC) and a SSC [6]. Lenz et al. [7] extended
this work and derived an upper bound for the cases when
readout are duplicated and have substitution errors. However,
these capacity bounds are overestimated significantly since
synchronization errors are not accounted for.

For synchronization errors, the information coding theorem
has been established by Dobrushin in [8]. See [9] for a recent
survey. Previous work has deduced capacity bounds for many
special synchronization error channels, such as the deletion
channel (where pi = ps = 0) and the sticky channel (where
pd = ps = 0 and insertions are the same as the input).

For deletion channels, Diggavi and Grossglauser obtained
a lower bound of the deletion channel using an appropriate
decoder, i.e., by detecting the unique correspondence of an
output sequence and all subsequences of some original se-
quence [10]. For sticky channels, it is feasible to calculate
its capacity by the equivalent capacity per unit cost [11],
or only calculate its error-free capacity [12]. However, most
previous work has focused on channels with a finite number
of synchronization errors. Despite there being many methods
to estimate capacity bounds for these channels, there are no
significant improvements in capacity bounds for channels with
substitutions, deletions, and geometrically random insertions
of which we are aware.
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We clarify that the DNA channel is distinct from the noisy
permutation channel introduced in [13]. Three assumptions
of [13] that make its model different from ours: (i). no
synchronization errors are introduced at the nucleotide level;
(ii). no dropouts are introduced at the molecular level; (iii).
the input alphabet is finite. Furthermore, our main problem is
the fundamental limits of the asymptotic results in terms of
achievable rate under a vanishing error probability formalism.

In this letter, we provide a new channel model for the DNA-
based storage system and obtain its capacity. The channel
capacity refers to the maximum of all rates where reliable
transmission is possible, and it further represents the maximum
number of bits that could be reliably stored in a single DNA
molecule (called storage capacity). Our main contributions to
this work are as follows.
• We model the DNA storage channel as a cascade of a

set of DNA noisy synchronization error channels and a
shuffling-sampling channel. Such a channel can character-
ize nucleotide errors, dropouts, and disorders, thereby it
is more comprehensive and accurate than previous work.
To the best of our knowledge, it is the first work on
synchronization errors for DNA storage.

• We drive the upper and lower capacity bounds of the
above channel through a purely information-theoretic
approach. This work is the first to obtain a non-trivial
capacity bound for DNSECs, and further obtains a novel
capacity bound for DNA storage channels. While our
work deals only with a few asymptotic results on informa-
tion rates, we think that this model is useful for designing
error correction codes for DNA storage in general.

II. DNA STORAGE CHANNEL MODEL

A DNA strand is composed of four nucleotides (Adenine,
Cytosine, Guanine, and Thymine) and can be treated as a
sequence on a four-letter alphabet Σ. We use upper case
letters to represent random variables, while their realizations
are depicted in lower case.

Based on the common characteristics of current biochemical
technologies of DNA synthesis and sequencing, we conclude
that the inputs of the DNA channel are quaternary codewords
and the outputs are duplicate, disordered, and erroneous qua-
ternary sequences. Since conventionally a clustering algorithm
is applied to obtain consensus sequences before decoding [14],
we assume that each original DNA strand corresponds to at
most one received sequence, that is, no duplicate.

Fig. 2. The mathematical model of the DNA storage channel.

The mathematical model of the our channel is shown in
Fig. 2. It can be seen as a cascaded channel, where the inner
channel is the DNSEC, and the outer channel is the SSC. Let
Xn

1 , X
n
2 , . . . , X

n
m denotes m inputs, where each Xn

i ∈ Σn.

Fig. 3. A single use of the DNSEC.

In the inner channel, the input Xn
i is translated into Y Ni

i

via a DNSEC. Here, N denotes the number of received bits,
which is a random variable depending on the realization of
the insertion/deletion process. For illustration, the transition
process characterizing a single use of the channel is shown in
Fig. 3. Each input symbol is either deleted or transmitted. If
transmitted, multiple random symbols might insert ahead of it
with geometric probabilities, and the symbol may also be sub-
stituted. Here, since a deletion followed by an insertion makes
a substitution error, we assume that the deletion does not occur
after insertions in our model, which is different from models
described in [15]. We denote the deletion, insertion, and
substitution probabilities as pd, pi, and ps, respectively, and
assume that errors are independent and identically distributed
(i.i.d.). The transmission probability is pt = (1− pi)(1− pd)
for normalization.

A single use of the DNSEC is characterized by an input al-
phabet Σ, an output alphabet Y = ∪∞r=0Σ

r, and a conditional
probability distribution p(~y|x) for every x ∈ Σ and ~y ∈ Y .
The transition probabilities are

p(~y|x)=

pd, ~y=ε;
( 1

4pi)
r−1pt(1−ps), ~y=∗x∈Σr, r≥1,

( 1
4pi)

r−1pt
1
3ps, ~y=∗x′∈Σr, x′ 6=x, r≥1,

(1)

where ε denotes the empty sequence and ∗ denotes a (r− 1)-
length sequence with random symbols. Given n inputs xn =
x1x2 · · ·xn ∈ Σn, the output of each xi is denoted as ~yi.
The overall output is the in-order concatenation of ~yi without
delimiters, rewritten as Y N = (y1, y2, . . . , yN ) ∈ ΣN .

In the outer channel, (Y N1
1 , Y N2

2 , . . . , Y Nm
m ) is the input,

and the output is (S
N ′

1
1 , S

N ′
2

2 , . . . , S
N ′

M

M ). The model of the
SSC is an extension of the work by Shomorony and Heckel
[6]. Specifically, it samples each input sequence independently
with a uniform probability and outputs the samples in shuffled
order. This results in that each output has no direct information
to point to their corresponding original input, and some inputs
are lost. Hence, the dropout error makes M ≤ m, and each
N ′i is independent of Ni due to the shuffle.

III. CAPACITY BOUNDS FOR DNA-BASED STORAGE
CHANNELS

We use n and m to denote the length and number of
original DNA strands, respectively. Then β is a positive
constant which represents limm,n→∞

n
logm . Let pd, pi and

ps denote deletion, insertion, and substitution probabilities,
respectively. Let q denote the probability that a given sequence
is never sampled in the SSC. We use CDNA to represent the
DNA storage channel capacity. For notation convenience, let
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(a)+ , max{a, 0}, and H(p) , −p log p− (1− p) log(1− p)
with 0 log 0 = 0.

Theorem 1. The capacity of the DNA storage channel can be
bounded as
(

(1−q)
(
Cinn−

1

β

))+

≤CDNA ≤
(

(1−q)
(
Cinn−

1

β

))+

, (2)

where

Cinn= (1−pd)(2−H(ps)−ps log 3)−H(pd)− 1−pd

1−pi
H(pi),

Cinn= (1−pd) (2−H(ps)−ps log 3)− 1−pd

1−pi
H(pi). (3)

Proof. Since the transmission of DNA strands is modeled as
the cascade channel introduced in Section II, we first calculate
the capacity of the inner channel (i.e., the DNSEC), denoted
as Cinn, and then extend the result to the cascade case.

According to Dobrushin [8], the capacity of synchronization
error channels can be obtained by maximizing the mutual
information. To be specific, since∑

~y∈Y

|~y| · p(~y|x) = 0 · pd +

∞∑
r=1

rptp
r−1
i =

1− pd

1− pi
, (4)

which shows that
∑
~y∈Y |~y|·p(~y|x) is bounded as long as pi 6=

1. Thus, the capacity of the inner channel can be estimated via
the mutual information, it follows that

Cinn = lim
n→∞

max
PXn

I(Xn;Y N )

n
. (5)

We calculate the mutual information by revealing some side-
information about the input to the receiver, drawing inspiration
from works on [16]. Firstly, through estimating the mutual
information when inputs are independent and uniformly dis-
tributed (i.u.d.), we obtain the lower/upper bound of Cinn,
denoted as Cinn.

Lemma 1. The lower bound of the DNSEC is

Cinn=

(
(1−pd)(2−H(ps)−ps log 3)−H(pd)− 1−pd

1−pi
H(pi)

)+

,

and can be achieved with an i.u.d. input.

Proof. The proof follows the assumption that the input dis-
tribution is uniform. We first introduce an auxiliary sequence
Dn = (D1, D2, . . . , Dn), where Di ∈ Z uniquely determines
the length of ~Yi. This auxiliary sequence is not observed for
the decoder. And D1, D2, . . . , Dn are i.i.d. with the probability
distribution

Pr[D = r] =

{
pd, r = 0;
ptp

r−1
i , r ≥ 1.

(6)

According to the chain rule of information, we have

I(Xn;Y N ) = I(Xn;Y N , Dn)− I(Xn;Dn|Y N ). (7)

Here, since Dn indicates deletion and insertion error positions,
Xn → (Y N , Dn) induces a memoryless channel with the
erasure probability pd and the substitution probability ps, it
follows that

I(Xn;Y N , Dn) = n(1− pd)(2−H(ps)− ps log 3), (8)

where the equal sign is met since Xn and Dn are independent,
and X1, X2, . . . , Xn are i.u.d..

For the second term of (7), we have

I(Xn;Dn|Y N )=H(Dn|Y N )−H(Dn|Xn, Y N ). (9)

With an i.u.d. input, the output is also i.u.d., thereby the only
information obtained from Y N about Dn is the length of the
overall output, which is equivalent to the sum of Dn. Hence,

H(Dn|Y N ) =

∞∑
j=0

Pr[N = j]H(Dn|N = j). (10)

To obtain H(Dn|N = j), we consider the method
of types. For any sequence dn = (d1, d2, . . . , dn),
which satisfies

∑n
i=1 di = j, denote its type as

P
(j)
dn = (P

(j)
dn (0), P

(j)
dn (1), . . . , P

(j)
dn (j)), where P

(j)
dn (i) =

N(i|dn)/n (i.e., N(i|dn) is the number of times the
symbol i occurs in the sequence dn). Let P(j)

n ={(
P

(j)
n (0), P

(j)
n (1), . . . , P

(j)
n (j)

)
∈ Rj+1 : P

(j)
n (i) ≥

0,
∑j
i=1 P

(j)
n (i) = 1,

∑j
i=1 iP

(j)
n (i) = j/n

}
denote the set

of types with denominator n, which is the subset of the
probability simplex in Rj+1. It is obvious that P (j)

dn ∈ P
(j)
n .

Let 4(P ) = {xn ∈ Nn : Pxn = P} denote the type class of
P , it follows that

∣∣∪dn:
∑
di=j4(P

(j)
dn )
∣∣ =

∣∣P(j)
n

∣∣ =
(
n+j−1
n−1

)
.

We now use the size and the probability of type classes to
evaluate (10),

(10) =

∞∑
j=0

∑
P

(j)
dn
∈P(j)

n

Pr[P
(j)
dn ] log

∣∣P(j)
n

∣∣. (11)

For any type Pdn , the probability of the type class 4(Pdn) is
2−nD(Pdn ||PD). According to the law of large numbers, we
have D(Pdn ||PD) → 0 with probability 1. It follows that
the probability of the strongly typical set A(n)

ε =
{
dn :∣∣N(i|dn)/n−pd(i)

∣∣ < ε
}

goes to 1 as n→∞. Thus, we can
use PD in (6) to estimate the properties of the sequence Dn,
it follows that

(11) = log
(

(1−ε)2n(H(D)−ε)
)

+o(n)

= nH(D)+o(n)

= nH(pd) +
1− pd

1− pi
H(pi)+o(n). (12)

According to the non-negativity of entropy, we have
H(Dn|Xn, Y N ) ≥ 0 to estimate the upper bound of (9).

To sum up, the capacity can be lower bounded by plugging
the results of (8) and (9) into (7), and is achievable via an
i.u.d. input.

Next we drive the upper bound of the inner channel, denoted
as Cinn.

Lemma 2. The upper bound of the DNSEC is

Cinn =

(
(1−pd) (2−H(ps)−ps log 3)− 1−pd

1−pi
H(pi)

)+

.

Proof. As shown in [16], the side-information Dn will not
decrease the capacity due to Xn → (~Y1, ~Y2, . . . , ~Yn) → Y N
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forms a Markov chain. Thus the mutual information can be
calculated via

I(Xn;Y N ) ≤I(Xn; ~Y1, ~Y2, . . . , ~Yn)

=

n∑
i=1

(
H(~Yi)−H(~Yi|Xi)

)
. (13)

Since ~Yi has a probability pd to be an erasure, it follows that

H(~Yi) ≤ 2
1− pd

1− pi
+H(pd). (14)

Then, according to the transition probability (1), we have

H(~Yi|Xi)

=−pd log pd −
∞∑
r=0

(
pri pt(1−ps) log(

pi

4
)rpt(1−ps)

+pri ptps log(
pi

4
)rpt

ps

3

)
=H(pd)+

1−pd

1−pi
(H(pi)+2pi)+(1−pd) (H(ps)+ps log 3) .

Hence, it follows that,

lim
n→∞

I(Xn;Y N )

n

≤(1−pd) (2−H(ps)−ps log 3)− 1−pd

1−pi
H(pi). (15)

Let us now address the evaluation of the above capacity
bounds. When pi = 0, Lemma 1 coincides with the lower
bound provided in [10]. However, the decoding technique
provided in [10] (i.e., a common subsequence detection rule)
cannot be applied to our model due to random insertions.
An interesting finding is that when pd = ps = 0, our
proof shows that the i.u.d. input can achieve the capacity
of geometric random-insertion channels. The study of this
channel capacity is lacking. Our proof is reasonable because
the uniform distribution maximizes the entropy. And Dn

can be determined through trellis-structure decoding [17], so
that H(Dn|Xn, Y N ) tends to zero with the decoding error
probability goes to zero.

Armed with the above descriptions of the inner channel,
we now drive the overall channel capacity. In the context
of concatenated error correction coding schemes, the outer
decoding corrects the residual of the inner decoding. Based
on this consideration, we use Reinn to represent the rate of the
inner code, in which the average error probability is denoted
as P einn. We have

nReinn ≤ 1 + P einnnR
e
inn + I(Xn;Y N ). (16)

Back to the overall channel, we use Xmn = Xn
1 X

n
2 . . . X

n
m

to represent the input, and SMN = SN1
1 SN2

2 . . . SNM

M to
represent the output. Let Rall denote the achievable rate of
the overall channel with the overall average error probability
P eall goes to zero. Given that SMN is output out-of-order,
we introduce a side-information ΠM = (Π1,Π2, . . . ,ΠM ) to

represent the index of SMN (i.e., SNi(n)
i is transmitted from

Xn
Πi

). Hence,

mnRall
(a)
=H(Xmn)

(b)

≤I(Xmn;SMN ) +H(Xmn|X̂mn)

(c)
=I(Xmn,ΠM ;SMN )− I(ΠM ;SMN |Xmn)

+H(Xmn|X̂mn), (17)

where (a) follows from the assumption that Xmn is uniform
over {1, 2, . . . , 2mnR}, (b) is the data-processing inequality,
and (c) is the chain rule for information.

We now calculate the first term of (17). Given the index
sequence ΠM , (Xmn,ΠM ) → SMN can be seen as the
DMC with the input alphabet GF(2nR

e
inn) and the substitution

probability P einn. For this channel, it follows that

I(Xmn,ΠM ;SMN )

≤(1−q)m
(
nReinn−H(P einn)−P einn log(2nR

e
inn−1)

)
,

(18)

where the equal sign is met when input are i.u.d.. It could be
achievable when symbols in each Xn are i.u.d..

For the second term of (17), we have I(ΠM ;SMN |Xmn) =
H(ΠM |Xmn)−H(ΠM |SMN , Xmn). Here,

H(ΠM |Xmn)

(a)
=

m∑
i=1

Pr[M = i] log
m!

(m− i)!

(b)
=

m∑
i=1

Pr[M = i]

(
i logm+ (m− i) log

m

m− i

)
+ o(m)

(c)
=(1− q)m logm+ o(m), (19)

where (a) follows the fact that ΠM is independent of Xmn

and ΠM is chosen uniformly at random from all vectors
in {1, . . . ,m} with distinct elements, (b) follows from the
Stirling approximation, and (c) is Jensen’s inequality,
m∑
i=1

Pr[M = i](m− i) log
m

m− i
≤ (1− q)m log

1

q
= o(m).

Our last task is to estimate H(ΠM |SMN , Xmn). As the
idea provided in [5], given Xmn and SMN , we estimate the
permutation Π̂M by mapping each output and corresponding
input. To be specific, it is assumed that Πi = j if the decoding
result of SNi is Xn

j . From SMN , we make an estimate X̂mn,
and let P eall be the maximum error probability of the overall
decoding, so that Pr[XMN 6= X̂MN ] = P eall. Under this error
probability, we have Pr[ΠM 6= Π̂M ] = P eall. From Fano’s
inequality, it follows that

H(ΠM |SMN , Xmn)≤ H(ΠM |Π̂M )

= H(P eall) + P eall(1− q)m logm. (20)

For the last term of (17), according to Fano’s inequality, we
have

H(Xmn|X̂mn) ≤ 1 +mnRallP
e
all. (21)
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Finally, by plugging results of (16), (18), (19), (20), and
(21) into (17), the achievable rate of the DNA storage channel
(2) can be obtained as m,n→∞ and P eall → 0.

IV. NUMERICAL RESULTS

In this section, comparisons between the proposed bounds
and the existing DNA storage channel bounds are given.
The error probabilities we refer to come from two recent
instructive articles. Nguyen et al. [1] stored DNA data by
nanoscale electrode wells, in which error analysis showed
that pd = 6.3%, pi = 0.45%, and ps = 0.94%. Winston et
al. [2] presented a new combinatorial PCR method, in which
a filtering process resulted in an average of 4.5% of strands
being lost.

Fig. 4. Capacity bounds, when q = 1/β = 0. The star mark points to the
storage capacity in [1].

We first focus on channels with q = 0 and 1/β = 0,
that is, no information loss in the outer channel. And we
assume pd : pi : ps = 10 : 1 : 2 to simulate the
error probabilities. The capacity bounds (2) are reported in
Fig. 4. The proposed bounds significantly tighten the reference
benchmark, namely, the capacity bound of the DNA storage
channel from [6]. These curves indicate that DNA channel
capacity is appreciably overestimated if synchronization errors
are neglected.

Fig. 5. Capacity bounds, when q = 4.5%, pd = 6.3%, pi = 0.45%, and
ps = 0.94%.

Next, we focus on capacity loss due to the disordered
permutation in the outer channel. Consistent with the con-
clusion in [6], [7], our proof shows that a simple index-
based coding scheme is optimal for the outer code even taking
synchronization errors. There has also been research on how to
design these indexes, namely, primer sets [18]. The index leads
to a drop in capacity by at least 1/β. For large β, information
is difficult to transmit reliably over the channel, as shown
in Fig. 5. Thus, the capacity in (2) is only non-trivial if the
sequence length scales as n = Θ(logm).

V. CONCLUSION

In this work, we presented a new model for DNA storage
channel, which is a cascade of a series of parallel and
independent channels and a shuffling-sampling channel, and
derived its lower and upper capacity bounds. The presented
upper bound was obtained by exploiting an auxiliary system
where suitable side information is revealed to the receiver, and
by computing the relevant capacity via suitable information-
theoretical inequalities. The lower bound was obtained by
exploiting the same auxiliary system and was achievable via
an i.u.d. input. To the best of our knowledge, it is the first work
on the DNA storage channel that considers synchronization er-
rors, which provided tighter capacity bounds on DNA storage
channels. It further facilitates the exploration of fundamental
theoretical questions, e.g., establishing error correction coding
schemes for the DNA-based storage system.
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