A NOTE ON THE DIFFERENTIAL CALCULUS OF
HOCHSCHILD THEORY FOR A.-ALGEBRAS

YOUMING CHEN, WEIGUO LYU, SONG YANG

ABSTRACT. We show by constructing explicit homotopy operators that the Hochschild (co)homology of an
Axc-algebra of Stasheff admits a differential calculus structure. As an application, we reproduce a result of
Tradler which says that the Hochschild cohomology of a cyclic As-algebra admits a Batalin-Vilkovisky algebra
structure.

1. INTRODUCTION

In differential geometry, on a smooth manifold M, we have the following classical structures (¢f. Kobayashi
and Nomizu [I3 Proposition 3.10]):

(a) the space of polyvector fields, under the wedge product and Schouten bracket, forms a Gerstenhaber
(also called super-Poisson) algebra;

(b) the space of differential forms, together with the exterior differential and wedge product, forms a com-
mutative differential graded algebra; and

(c) vector fields act on differential forms by Lie derivative and by contraction, which satisfies the following
two identities:

Lx=doutx +tx od, [Lx,Ly] = lX,Y]; (1.1)

where X, Y are vector fields on M, Lx is the Lie derivative and ¢x is the contraction.

There are analogous statements in the holomorphic, symplectic and even in the non-commutative geometry.
For instance, given an associative algebra A, which is viewed as a non-commutative “space”, the Hochschild
cohomology HH®(A, A) and Hochschild homology HH,(A, A) play the roles of polyvector fields and differential
forms on this space, and the Connes cyclic operator on HH4(A, A) substitutes the de Rham differential. One
may similarly define a version of contraction and Lie derivative as in the smooth manifolds case, which satisfy
. This was first obtained by Daletskii-Gelfand-Tsygan [3], and summarized by Tamarkin-Tsygan in [22].
According to Tamarkin-Tsygan, a pair of spaces satisfying the above (a), (b) and (c) form a structure of
differential calculus, a notion introduced in the same paper. In this note, we first show a similar result:

Theorem 1.1. Let A be an Aso-algebra over a field K. Then the Hochschild cohomology and homology of A,
(HH. (A’ A)? HH.(A7 A)7 U7 [_7 _]7 ﬁa B)

is a differential calculus, where U is the cup product, N is the cap product, [—, —] is the Gerstenhaber Lie bracket
and B is the Connes differential.

This result is known to experts Dolgushev-Tamarkin-Tsygan [5] and has been essentially laid out by Kont-
sevich in his article Formal (non)commutative symplectic geometry, and was also explained in Section 7 of his
work Notes on Ay-algebras, A, -categories and noncommutative geometry [14], joint with Soibelman. We here
give all necessary calculations required to prove , which seems to be rarely found in the literature.

Another motivation for us to show the above result is that it is related to the study of Calabi-Yau algebras,
a notion introduced by Ginzburg in [I1], where he also showed that, for a Calabi-Yau algebra, say A, there is a
Batalin- Vilkovisky algebra structure on its Hochschild cohomology. The proof is heavily based on the differential
calculus structure on the Hochschild (co)homology of A (see also []).

On the other hand, for a Calabi-Yau algebra, if it is Koszul (see Priddy [20]), then its Koszul dual algebra is
a cyclic associative algebra (that is, an associative algebra with a cyclically invariant non-degenerate pairing).
Tradler showed in [24] that there is also a Batalin-Vilkovisky algebra structure on the Hochschild cohomology
of such cyclic associative algebra. Recently in [2], Chen, the third author and Zhou proved that for a Koszul
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Calabi-Yau algebra the Batalin-Vilkovisky algebras on the Hochschild cohomology of A and on that of its Koszul
dual are isomorphic.

To understand the Batalin-Vilkovisky algebra structure on Calabi-Yau algebra in a more general setting, such
as N-Koszul Calabi-Yau algebras in the sense of Berger ([I]), or even more generally, exact complete Calabi-Yau
algebras in the sense of Van den Bergh (]25]), one is led to understand the differential calculus structure on
cyclic Ay.-algebras (that is, A..-algebras with a cyclically invariant non-degenerate pairing), since in both of
these two cases, the “Koszul dual” of these types of Calabi-Yau algebras are cyclic A..-algebras.

Corollary 1.2 (Tradler [24]). If A is a cyclic As-algebra, that is, A is a finite dimensional A -algebra with a
cyclically invariant non-degenerate pairing, then the Hochschild cohomology HH® (A, A) has a Batalin-Vilkovisky
algebra structure.

This corollary is originally due to Tradler [24, Theorem 2]. Here we give an alternative proof, which is in
the same spirit of Menichi [18] for finite dimensional symmetric algebras from the differential calculus point of
view.

Convention. Throughout the note, we work over a ground field K. All algebras are associative algebras over
K with unit. All vector spaces, their tensors and morphisms etc. are over K.
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2. GERSTENHABER ALGEBRAS AND DIFFERENTIAL CALCULI

In this section, we recall the definitions of differential calculus and some of its applications. Let us start with
Gerstenhaber algebras.

Definition 2.1 (Gerstenhaber [0]). A Gerstenhaber algebra is a quaternion (H®,U,[—,—],1), where H® is a
N-graded vector space and 1 € H°, such that:

(1) (H*,V) is a graded commutative algebra with unit 1 € H;
(2) (H*,[—,—]) is a graded Lie algebra of degree —1, i.e.

1, 9] = ~(~1)=la= g,
and a graded Jacobi identity
(=) W=D, gl b+ (=1) W=D g, p), £+ (=1) =D R, £, g] = 0;
(3) The Lie bracket [—, —] is a derivation with respect to the product U, i.e.

[f,gUR] = [f,g] Uh+ (1)1 I=D g [£, ],

for arbitrary homogenous elements f, g, h € H®, where |f| is the degree of the homogenous element f.

Definition 2.2 (Tamarkin-Tsygan [22]). Let H® be a N-graded vector space and H, be Z-graded vector space.
A differential calculus is the data

(H.a Hh U, [_a _]a ]la n, B)
such that:
(1) (H*,U,[—,—],1) is a Gerstenhaber algebra;
(2) H, is a graded module over (H*,U) through the map
N:H"®H, > Hpp, fOp— fNp,

for p € Hy, and f € H™, i.e. if we define ¢4(p) := f N p, then tpug = tyig;
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(3) there exists a map B : Hy — Hey; such that B? = 0, and

[tf, Lglgr = [£.q]:

where L, := (B, tg]gr = By — (—1)l914, B, for f, g homogenous elements of H°.

Hochschild [12] introduced the cohomology theory of associative algebras. But the Hochschild cohomology
ring of a K-algebra is a Gerstenhaber algebra, which was first discovered by Gerstenhaber in [6]. Given a
K-algebra A, its Hochschild cohomology groups are defined as HH" (A, A) = Ext’j. (4, A) for n > 0, where
A¢ = A ®g A°P is the enveloping algebra of A. There exists a projective resolution of A as A°-module, the so
called normalized bar resolution Bar,(A) which is given by Bar,(A) = A ® % ® A, where A = A/(K - 14),
that is,

Bars(A): 5 ARAT @AY A AY oA 5 AAR AL AD2(S A),

where the map p: A ® A — A is the multiplication of A, and the differential d,. is given by
(@@ @+ @Ay @ Apy1) = A0a1 R A @ - @ Ty @ Qg1
r—1 .
+ Z(—l)lao a1 ®- - Qa;—1 ®a;0;41 ®Ai12 X - Qar Q Apy1
i=1
+ (—l)rao Ra1 Q- Q®ar_1® QprQp41-
The Hochschild cohomology complex is C*(A, A) = Hom 4. (Bars(A), A). Note that C"(A, A) = Hom e (A ®
A% @ A, A) = Homg(A"", A) for each r > 0. We also identify C°(A, A) with A. Thus C*(A, A) has the
following form:

C.(A, A): A ﬁ) HomK(Z’ A) NI HOmK(Z(@T’ A) L HomK(Z®(T+1)

A) =
It is not difficult to give the definition of 4°, in fact, for any f in Hom]K(ZQM7 A), the map 6"(f) is defined by

()@@ @T) = (—1) ey f(@ @ @ T)

r
+ Z(*l)ﬂrrilf(ail@ ®ai—1 ®¥aii QAig2 Q- ®m)
=1

+fa® @) argr.
Moreover, the cup product fUg e C™t" (A A) = HomK(Z®(m+n),A) for f € C™(A,A) and g € C"(A, A) is
given by
(fUg@ @ @Umin) =g9@ Q- @) - f(An1 @ @ Upin)-
One can prove that this cup product induces a well-defined product in Hochschild cohomology
U: HH™(A, A) x HH"(A, A) — HH™ " (A, A).

As a consequence, the graded K-vector space HH®* (A4, A) = Ganzo HH"(A, A) is a graded commutative algebra
with unit 14([6], Corollary 1]).

Furthermore, the Lie bracket is defined as follows. Let f € C™(A, A) and g € C"(A, A). If m,n > 1, then
for 1 <i < m, define f o; g € C™T"~1(A, A) by

(foig)@r®  Rnin1) =f@1® Q84 1290 Q  QTin 1) DUtn® @ Cnin_1),

if m > 1 and n =0, then g € A and define

(foig)(@i®  @na) =f@® QaG_1QFRT X ® Am_1),

for any other case, set f o; g to be zero. Now we define

m

fogi=> (-1)"N Vo g

i=1

and
[f, 1= fag = (=)D Ngar.
Such bracket [ , ] induces a well-defined Lie bracket in Hochschild cohomology
[, ]: HH™(A, A) x HH"(A, A) — HH™ " 1(A4, A).
Tt is well known that (HH®(A4, A), U, [ , ], 14) is a Gerstenhaber algebra ([0, Page 267]).
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Meanwhile, the Hochschild chain complex is defined by Ce(A, A) := A ® 4e Bare(A). Note that C,.(A, A) =
ARye (A® ¥ ® A2 AR Z®r, and the differential is given by
r—1
b(ao ®Kar Q- -- ®07=) = Z(—l)iao Q- Qa;—1 ®aiai+1 & 542 ®---Qa, + (—1)Tara0 Rar Q- Qar_1.
=0
For f € C"™(A,A) and ap ® a1 @ - - @ Gy, € Cr(A, A), the cap product is

fNla@a @ Ra,) =af(@®  @0n) Q@An1 @ R ay,
while the Connes differential is defined by

Blag®@@® - ®a) =y (-)"107G® 06 0% Q- @ TG1.
i=0
Originally, the differential calculus on Hochschild cohomology and homology of associative algebras was
obtained by Daletskii-Gelfand-Tsygan [3]; see also Tamarkin-Tsygan [22].

Theorem 2.3 (Daletskii-Gelfand-Tsygan, [3]). Let A be an associative algebra. Denote by HH®(A, A) and
HH, (A, A) the Hochschild cohomology and homology of A respectively. Then

(HH. (Aa A)v HHO(Av A)7 Uv [7a 7]5 ﬂ, B)
is a differential calculus, where U is the cup product, N is the cap product, [—, —] is the Gerstenhaber Lie bracket
and B is the Connes differential.
Let (H*,H,,U,[—,—],1,N, B) be a differential calculus. Consider H, := Homg(H_,,K) the graded dual

space of H,. Then we can define the following two operations:
fif:H’.—>H’.7|f|, B':H, — H, |,
rp(Q)() == (D)), B (Q)(1) = (1) HQ(Bu)

for any arbitrary homogenous elements f € H®, u € Hy and © € H, defined as well as the map N : H" @ H], —
H/,_,, by fn' Q:=ks(Q). Then we have the following proposition.

Proposition 2.4. The data (H*, H,, U, [—, —], 1,1, B’) is a differential calculus.
Proof. Note that (H®,U,[—, —],1) is a Gerstenhaber algebra and B’> = 0. First, we have
(kerg) (1) = Kp(rg()(n) = (=)D (@) (1pp)
(,1)7\1‘\\gHIQ\(\fHIgI)Q(LgLfM) — (fl)lf\\g\+IQ\(|f\+|g|)Q(LgUfu)

(=)0 () (1) = 706 () (1),

for arbitrary homogenous elements f,g € H®, € Hq and Q € HJ.
Next, we verify the condition (3) of the Definition Let Ly := [B',K4] = B'tg — (—1)l9lk,B’, then we
have

Ly()(p) = (B'rg — (—1)¥ 5, B") () (1)
= (= 1)1 oliey () (Bpa) — (~1) 102D B/ () (1)
- (_1)IQ\—\9\+|9|IQ\Q(L9(BM)) _ (_1)\9\\Q|+\QIQ(B(L9M))
_(_1)\QI+IgHQIQ(Lgu)’

and from this we get that
R L)) = (gL = ()WL ) (@) ()
_1)\fl(ﬂ\—|g|+1)L;(Q)(qu) + (_1)\Q|(1+|g|)ﬁf(g)(Lgu)
_1)(\f|+|g|+1)lﬂ\+|f|(|g|+1)+1Q(LquM) + (_1)(If\+|g|+1)|Q\Q(Lquu)
,1)(\f|+|g|+1)IQ\Q([Lf7Lg]u)
_1)(\f|+|9|+1)|9\Q(L[ﬁg]'u)
= K (D))

The proposition now follows. O



For finite dimensional associative algebras, we have the following result.

Corollary 2.5 (Menichi [I9], Remark 17). Let A be a finite dimensional algebra, and denote by HH®(A, A’)
the Hochschild cohomology of A with value in A’ := Homg (A, K). Then the data (HH®*(A, A), HH*(A, A"), U,
[—, =], 1a, NV, B’) is a differential calculus.

Proof. For finite dimensional algebra A, we have HH®*(A4, A") = HH,(A, A)’. Thus by Proposition this
corollary holds. O

3. DIFFERENTIAL CALCULI WITH DUALITY AND BATALIN-VILKOVISKY ALGEBRAS

In this section we consider a refined version of differential calculus which is called differential calculus with
duality.

Definition 3.1 (Lambre [16]). A differential calculus (H®,H,, U, [—, —],1,N, B) is called a differential calculus
with duality if there exists an element (called volume form) n € Hy for some integer d such that B(n) = 0 and
the map

(—)=—-nNn:H*—Hy_,

is an H*-module isomorphism. In this situation, the map 0 is called the Van den Bergh-Poincaré duality.
This structure is strongly related to the so-called Batalin-Vilkovisky algebras.

Definition 3.2. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra (H®, U, [—,—], 1) with a linear map
A : H®* — H*"! such that A% =0, A(1) =0 and

.9 = (D! (A(fUg) = Af) Ug = (-1VIFUA()),
for arbitrary homogeneous elements f, g € H®.

Given a differential calculus with duality (H®, He, U, [—, =], 1,N, B,7n), the following commutative diagram

He A Hofl

Hye ————Hg_et1

defines an operator A := —0~! o B o 0, which is called the Batalin- Vilkovisky operator. In particular, we have
the following result due to Lambre which is important in constructing the Batalin-Vilkovisky algebra from
differential calculus structures (cf. Lambre [16, Theorem 1.6]).

Theorem 3.3 (Lambre [I6]). Let (H*,Hq, U, [—,—],1,N, B,n) be a differential calculus with duality. Then the
quintuple (H*, U, [, ],1,A) is a Batalin-Vilkovisky algebra.
Proof. Take A := —97'B09, and let f € H?, g € H?, z € H,,.
Claim:

[f,9]U07 (z) = ()P VA(GU (fFUIT!(2) + (1)1 f U (gU AT (2)) 3.1)

—fUA(gUIT(2) + ()P VI NgUA(FUITH(2)). .
Indeed, by the equation [1g, Lf]gr = t[4,f, We can obtain the equation:
[foalNz= (=P B(fn(9N2)+ fN(BlgN=z)) (3.2)

= (=) N B(fN2) = ()79 0 (£ 0 B(2)).
Since 0 is an H*-module isomorphism and apply 0~! to the equation (3.2)), we can obtain this claim.
Let z =1, then 97 1(2) =97 (n) =1 € H®, s0

A(l) = -0"*Boo(n) = =0~ 'B(n) =0,
and
AoA=0"'Boo"'Bo=0""BBJ=0.
By the equation (3.1]), we have that

[f,9] = (—1)P"DA(gU f) — FUA(g) + (1)@ D= Dgu A(f)
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- (_1)p(q71)+qu(f Ug)— fUA(g) + (_1)(?*1)(q*1)+q(p*1)A(f) Ug
= (=D(A(fug) —A(f)Ug— (=1)"f UA(g)).
Thus we have the theorem. O
Note that not all associative algebras admit the structure of differential calculus with duality on its Hochschild
(co)homology. In the literature, there are two main classes of associative algebras having this property: Calabi-
Yau algebras and finite dimensional symmetric algebras. The notion of Calabi-Yau algebras is introduced by
Ginzburg [I1]. More precisely, an algebra A is called Calabi- Yau algebra of dimension d if A has a finite length
resolution of finitely generated projective A°-modules, and there is an isomorphism RHom 4. (A, A%) = A[—d)]

in the derived category of A°-modules. The following result is due to Ginzburg [I1, Theorem 3.4.3]; see also
Lambre [16].

Theorem 3.4 (Ginzburg [I1]). Let A be a Calabi-Yau algebra of dimension d. Then
(HH®*(A, A),HH,(A, A),U,[, ],14,N, B)
is differential calculus with duality, and therefore there is a Batalin-Vilkovisky algebra on HH*(A, A).

Another version of differential calculus with duality is defined on the Hochschild (co)homology of symmetric
algebras. Recall a finite dimensional algebra A is symmetric if there exists a nondegenerate bilinear form
(—,—): A® A — K such that (ab,c) = (a,bc) and (a,b) = (b, a) for arbitrary elements a,b,c € A.

Theorem 3.5 (Tradler [24], Menichi [I8]). Let A be a symmetric algebra. Then
(HH.(A7 A)7 HH*® (Aa Al)7 Uv [_a _]7 1A7 ﬂ/, B/)
is differential calculus with duality, and therefore there is a Batalin-Vilkovisky algebra on HH®(A, A).

Following this line, there are some interesting relevant works. Indeed, there is a “twisted” version of Theorem
and Theorem which are obtained recently by Kowalzig and Krdhmer [15] and Lambre, Zhou and
Zimmermann [I7] respectively. More generally, Menichi [I8] considered the algebras over a cyclic operad with
multiplication and showed their cohomology gives rise to a Batalin-Vilkovisky algebra structure.

4. HOCHSCHILD (CO)HOMOLOGY OF A,,-ALGEBRAS

In this section, we review the definitions of Hochschild (co)homology for A.-algebras, and give a proof of the
Gerstenhaber algebra structure on their Hochschild cohomology. Let us start with the definition of A,,-algebras.

Definition 4.1 (Stasheff [21]). An A, -algebra over K is a graded vector space A := @, ., A; with K-linear
maps my, : A®" — A of degree n — 2 for each n > 1, called the A..-operators, satisfying the following A..-

relations
i+ ki -y @l
> (=1 (id® @ my @ id®') =0,
n=jFhti>1
J,1>0,k>1
that is,
n n—k
ke +kj+j+kl _
E (=)  my o a(an, s ag, (g, GGak), Gkt Gn) =0, (4.1)
k=1 j=0

where n; = |a1|+---+aj|+jand n=7+k+ 1L

(o)
Recall that the bar construction B(A) of A is the tensor coalgebra @(SA)®” with the coproduct
n=0

A[ala"' 7a'n] = Z[ala"' aa’i] 02y [ai-i-lv"' 7an]a

i=0
where [ay, -, a,] denotes the element (sa;) ®- - @ (sa,) € (sA)®", and s is the suspension with degree |s| = 1.
For simplicity, we also write [a;1 ] = (sa1) ® --- ® (say,) and a1, 1= a1 ® - - - ® a,, with some abuse of notation.

Given an Ay-algebra (A, {my,}n>1), we denote by C*(4, A) := Hom(B(A), A) the Hochchild cochain of
A. Notice that we consider the graded-version Hom and total degree. The standard algebraic structures on
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Hochchild cochain complex (and induces on Hochchild cohomology) of A..-algebra may obtain from its brace
algebra (see Gerstenhaber-Voronov [7]). Let us recall that the braces are the maps

C*(A,A) x - x C* (A, A) = C* (A A), (f, froo 5 fu) = Fs 5 fad

given as follows: for any homogeneous elements [a1,- - ,a,] € B(A4), f{f1, -, fe}[a1, - ,an] is given by
k
>° mi (Lf1l+1)
2(71)1:1 l f[ala e 7f1[ai1+17 T 7aj1}7 e afk[aik+la e ,Cij}, e aan]a

where the sum run over all 0 < 47 < j; < -+ < i < jr < n, and 7; = Zizl |as| 4+ i. Clearly, the degree of

F{f1, -, fu} satisfies |f{f1, -, fetl = |f| + |fil+ -+ |fx]| + k. If K =1, then we denote that fog := f{g},
actually, it is just the pre-Lie operator introduced by Gerstenhaber [6]:

Hotlanl = D (=179 flay ;, glaiia j], ajgn).
0<i<j<n
For any homogeneous elements f,g € C*(A, A), the Gerstenhaber Lie bracket of f,g is given by
[f,g] :== fog — (_1)(\f|+1)(\g|+1)gaf.
By [Getzler 9], Lemma 1.2], with the formula
(fog)sh — fa(goh) = flg. h} + (~1){eH DI £{p, g}, (4.2)

we know that (C*(A, A),[—,—]) is a graded Lie algebra of degree 1. Note that the space of coderivations
Coder(B(A)) is a graded Lie algebra with bracket the graded commutator, and there is an isomorphisms of
graded Lie algebra between sC®(A4, A) and Coder(B(A)) (see [Getzler-Jones [§], Proposition 1.2]). Since B(A)
is cofree, the coderivation is determined by its corestriction to degree 1, and we have the following equivalent
definition:

Definition 4.2 (Stasheff [21]). An A -algebra A is a graded vector space A equipped with a codifferential
D: B(A) — B(A)
(i.e. a coderivation of degree |D| = —1 with Do D =0 and D(1) = 0).
In the following, if (A, {m,}n>1) is an A-algebra in Deﬁnition then we denote by (A, m) its associated
Aso-algebra in Definition with |m| = —2. In fact, we consider the following composition: Coder(B(A)) =

sC* (A, A) Lt C*(A, A), a codifferential D € Coder(B(A)) of degree —1 corresponds to a Hochschild cochain
m € C*(A, A) of degree —2. The condition D? = 0 corresponds to mom = 0 which can be translated to the
equation (4.1]) in the definition of As.-algebras. The cup product on C*(A, A) is given by

fUg:= (~)l g, 7).
for any homogeneous elements f,g € C*(A, A). Clearly, |f Ug| = |f|+ |g]-

Definition 4.3. Let (A,m) be an A-algebra. An A, -bimodule M of A is a graded vector space with
operations
bij: A" @M@ A% — M, i,5 >0

of degree i + j — 1 such that for any integers k and [, any homogeneous element w € M,

k
0= Z (1) bg i1 (@ jo1,mi (@i 5-1) W, Q)
=1 j=1
1

k
+Z (=1)%2bg i1 (@ g—iy bi j(Ah—ig1, o W, hgg)y e s Ayl

i=0 j—0
I l—it1
0
+ E (=1)%bgi—ir1(ar, - W, hgjm1, M Qg j kit j—1)s > Chopl)s
i=1 j=1

where
01 =icj+j—1+iuk+1—i—j),

Op=(i+j—Der—ith—i+(1—j)i+j-1),
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03 Zi(5k+]‘_1 + |w|)+k—j+l(l—z—j+1)
and ; := Y |a;|. We denote by (M,b) the As-bimodule M.
=1
Remark 4.4. An A.-algebra A itself is naturally an A..-bimodule of A. Meanwhile, for an A..-bimodule M
of A, its dual M’ of M is still an A..-bimodule of A.

Now we recall the definition of the Hochschild cohomology of A..-algebras with value in an A,.-bimodules.

Definition 4.5. Let (A, m) be an A-algebra and (M, b) be an A..-bimodule over (A4, m). Then the Hochschild
cohomology HH® (A, M) of A with value in M is given by the cohomology of the Hochschild cochain complex

(C*(4, M), )
where C*(A, M) := Hom(B(A), M), the differential §(f) := bof — (—1)//I*1 fom, for f € Hom(B(A), M) and
bof[aq’... ,an] = Z (_1)ni(‘f|+1)bi)n7j[al7... ,f[ai+1’... 7aj]’... 7aln]’
0<i<j<n
fomlay, - an] = Z (=) flax, - s mlaizr, - a5), -+ anl,
0<i<j<n

where 17; = . (Ja,| + 1). Especially, when M = A, 6(f) = [m, f] = maf — (=1)/1+1 fom.
r=1
An important feature of the Hochschild cochain complex C®(A, A) of an A,.-algebra A is that it also admits
an Asc-algebra structure (see [Getzler [9], Proposition 1.7]). From this A..-algebra structure we have the
following equations:

m{[ma f]’g} + (_1)|f‘+1m{f7 [m’g]} + [mvm{fv g}] =0, (43)
m{[m. f1.9.0} + (=D m{f, [m, g, b} + (DY Flm{f, g, [m, n]}
+m{m{f’ 9}7 h} + (_1)‘f‘+1m{f7 m{97 h}} + [m’ m{fug’ h}] =0, (44)

for any homogenous elements f,g,h € C*(A, A). In particular, we have
Proposition 4.6. Let (A, m) be an Ax-algebra, then (C*(A, A),[, ],0) is a differential graded Lie algebra.
Proof. By the equation , (C*(A,A),[, ]) is a graded Lie algebra. We only need to show that
Olf,9) =18f, 9]+ (=1)"*[f, 9],
for any f,g € C*(A, A). Equivalently, we need to prove
[m, [, gl = [[m, f1, 9] + (=D, [m, g]).

Then the proposition follows by the graded Jacobi identity. (]
Lemma 4.7. Let f,g € C*(A, A), then we have that
0fog = 8(fog) + (=111 fodg = m{f, g} + (=) IF VD, 1.
Proof. Using the equation , we have that
LHS = [m, f]5g — [m, fog] + (=1)/I* fa[m, g]
= (m5f)sg — (~1)/1*1 (fom)sg — md(fog)
+ (=1)H191(fog)5m — (—1)1 fa(mog) — (~1) 71419l f(gom)
= [(m5f)3g — md(fag)] + (=1)![(fom)sg — f5(m5g)]
+ (=)l f5g)5m — fo(gom)]
=m{f, g} + (=)W Vm{g, 1} + (1)W1 {m, g} + (=1)¥*" f{g,m}]

+ (=) f{g,m} + (=) f{m, g}]
— RHS.

Hence we have the lemma. O



Corollary 4.8. Let f,g € C*(A, A), then we have that
8fag —o(fog) + (~1)V1* fasg = (1)1 (fug = (~)Vg U f).
Proof. By the Lemma [£.7] we have that
LHS = (_1)\f|(\g\+1)g uf— (_1)|f|f Ug
=RHS
and thus we have the corollary. O

Proposition 4.9. Let (A,m) be an A-algebra, then (C*(A, A),U,0) is a differential graded algebra which is
commutative up to homotopy.

Proof. By the equation , we have that
3(fug)=38fug+(=Dfudg,
for any f,g € C*(A, A). According to equation , we can obtain that
(FUg)Uh=fU(guh) = (=1)*@(m{h,g. f}) +m{oh,g, f} + (~D)""'m{h.bg. £} + (D)l m{n,g.of}),

where a = (—1)‘hmg"1)+(‘9‘+|h|)(|f‘*1). By the Corollary the cup product is commutative up to homotopy
and hence we have the proposition. [

In [6], Gerstenhaber proved that there is a Gerstenhaber algebra on Hochschid cohomology of an associative
algebra. Analogously, there is a similar Gerstenhaber algebra on Hochschid cohomology of an A., algebra,
which was first observed by Getzler-Jones in [10].

Lemma 4.10. Let (A,m) be an A -algebra, then we have that
HUu f2Yofs = FU fas S5} (GO WRIEDUREDRER gy fo} 4 () (RHEDIR I £ g fy £}

+ (~)EEDURID U fi6 fs, o} + F{f1, f20 15} o
(Fofo{for fs} = fLfrs for S} + () INITVARIEV £y i, fo} 4 (Z1)IRHBDARITU L f £, f1} 16)
+ f{fifa, fs} + (1) INIEVURIED £ fy fiofs} + fo(fi{f, f51) '
forany f, f1, f2, fs € C*(4, A).
Proof. It follows by straight-forward computation. O
Theorem 4.11 ([10], [7]). Let (A, m) be an Ax-algebra, then (HH®*(A, A),[, |,U) is a Gerstenhaber algebra.

Now let us recall the definition of Hochschild homology of an A..-algebra and the Connes differential; for
more details, we refer to Getzler-Jones [g].

Definition 4.12. Let (A4, m) be an A.-algebra, and set C4(A, A) := A® B(A). Then the Hochschild homology
HH.(A, A) of A is the homology of the Hochschild chain complex (Co(A, A),b) where the differential b is given

by
baofar, - an) = S ()M mlay e aao, o agllagin e i
0<j<i<n
+ Z (71)’01‘&0[0’17“' 7ai7m[ai+17'” 7a“j]aaj+17"' 7an]7
0<i<j<n

where 7; = ZZZO(\aS| +1).

An element e € Ag is called a strict unit if my[ay,--- ,a;,€,a;401,+ ,an—1] = 0, for n # 2; and male,a] =
(=1)llmyla, e] = a.

Definition 4.13. Suppose that (4, m) is an A-algebra with a strict unit. Then the Connes differential
B:C.(A4,A) = C4(A, A),

is given by
n

B(ao[a’l? o ’an]) = Z(_l)m(nn_ni)e[ai+17 crt o, Qpn, 00,01, 0 7ai];
i=0
for any agplai, - ,an] € Co(A, A), where n; = Zizo(\as| +1).
9



It is not difficult to see B2 = 0 up to homotopy and Bb + bB = 0.
Remark 4.14. If we define
t(ao[alﬂ e 70%]) = (_l)Tm(nn—nO)al[Q% crt,Qp, a0]7

and
T(e[aOa crt,Qp, 6, 6]) = (_1)?70(7771*770)6[%’ o, Qp, 6, e7a0]a

then B? = 0 up to homotopy, that is,
Bn+an = bn+38n + Sn—lb'ru

where
n+1 n

sn(aolar, -+ an)) = > TI1® Y ' @1®1)(elag, -, an, e €])
j=0 i=0

n+1 n

- Z Tj(Z(_l)ni—l(nn_nifl)e[ai, e Qp, Ggy G, € €))
j=0 =0
n

= Z(_l)mil(nn_mil){e[ai7 o Qp, Gyttt Gi—1, 6,6]

=0
n—1i
E n—1)(Mitj—1—Ni—
+ (71)(77 Y(Mitj—1—m l)e[ai+j,...an,a0,... s Qi—1,€,€8,Qf, "+ ,ai—‘rj—l
i=1
—1(lan|+1
+ (_1)% 1(jan] )C[a(),"' ,Ai—1,€,€,Q5 " "+ 7an]
n+1
+ § (_1)77'i+j—n—?("]n_rli+j—n—2)e[ai+jin71’_._ yAi—1,€,€,Q5, "+ ,An, A0, " * 7ai+j7n71]}~
j=n—1i+2

5. PROOF OF THE MAIN THEOREM

5.1. Differential calculus operators. In the last part of previous section, we recalled the definition of the
Connes differential. Now we give another two differential calculus operators: the contraction (or cap product)
and the Lie derivative.

Given an A..-algebra (A, m). For any homogeneous elements = = aglas,...,a;] € Co(A, A) and fi,..., fx €
C*(A, A), the contraction {f1,---, fr} N is defined by

k
7]t(7ln—"7t)+ Z (W7L_77t+77i7-_1)(|f7‘|+1)
Z(—l) r=1 m[at+17"' y Gy A0, A1, " 0
fl[ai1+17 e 5aj1]ﬂ e ’fk[a’ik+17 e aajk]a o aas][as+la e >at]7

where the sum runs over all 0 < s <t <nand 0 <4y <j; < -+ < i < jrp < n.

Definition 5.1. Assume that (4, m) is an A..-algebra. For any homogeneous element f € C*(A, A), the cap
product ¢ is given by

vp(z) == fNa,
for any homogeneous elements x € Cq(A, A).

In fact, the cap product is well-defined in homology level by the following lemma.
Lemma 5.2. Assume that (A, m) is an Ax-algebra. Then we have
t5f = [bytflgri=bory — (=1)¥lip0b,
for any homogenous element f € C*(A, A).
Proof. Denote

0 = (me — ne)ne + (e — me + 4, — D]
= (e —ne)ne + (ke — me +m5, — V([ f] +1).

Let « := ag[ag k). Then we have that

L5f33 = L[m’f]x
10



=> (=1 mlaei1k, a0, [, fllai 115,) - allasird]
= Z(—l)e“’”f’“l)(lf‘_l)m[atﬂ,k,ao, comlag 1y @i )y asl[ass]

+ Z(_1)0+77i2_77i1+‘f|m[at+1’k7 ag, - 7f[ai1+17 to am[a’inrl,jz]v T vajJ? e aas][as+17t]‘

We also have that
bipr = b(Z(_l)fm[atJrl,kv ag, - ,f[(li1+1,j1], s as]as )
=Y (=St imla, g a0, flaisa g asllasen, o mlas i) al

+ Y (=1)FFm e DO m gy, mlag ks aose s Fla g ] as) s ag[ag1 0]

and

vpbr =0 (O (=) M mag, 11k, a0 4, )[ag,010] + (1) aolar i, miai ) a5, 01])

= Z(_l)(nk—nn)ml-s—(ml—m)nn+(nk—771,-5-711-2)(\fl—l)m[at+17 .

Mm@ 416,00, 5]y flaig1g,], s as]asta,d
4 Z(_l)ml+(77k—77t)(77t—1)+(77k—77t+77i2—1)(|f|—1)m[at+1 ky GOy s
flai1,5)s - smlai 415, 5 as][asy]
+ Z(,l)ml Jr(ﬁk*ﬁt)(?h*1)+(771«*77t+7h‘2*1)(|f|*1)m[at+1 Ey G0y
f[ai2+17 T 7m[ai1+1,j1], to aajz]a to 7as][as+1,t}
+ Z(_]_)ml +(771c—77t)(77t—1)+(77k—77t+77i2)(\f‘_l)m[at+1 E,Q,
m[ai1+1,j1]7 T 7f[ai2+17j2]7 T 7aSHas+1,t]
+ Z(_l)ml +me=ne) e =D+ (e =metnio =D =Dy g, ) 4 oag, -,

flais+1,5)s s asllasa, -+ smlai 41,5, adl
+ Z(_l)nil+(77k—7]t—1)77t+(77k—nt+n12)(‘f|_1)m[at+1’ oo
m[ai1+17j1]7 cr A, a0, af[aiz-i-l,jz]a to vaSHa’S-i-l,t]'
Then we can obtain that
vsp = bug 4+ (=D lpb = (=1)5(mom)[ars1k, a0, flas 41,3]s - a5 @i ]

Hence we prove this lemma. O
Proposition 5.3. Let (4, m) be an A -algebra, then the (HH4 (A, A),N) is a graded module over (HH®(A, A),U),
that is to say, there exists a linear map
N:HHP(A,A) ® HH, (A, A) — HH,_,(A4,A)
pRxr = pnai=,(x),
satisfies
bouy = bply),
for p e HH*(A, A), v € HH*(A, A) and x := apla1,,] € HHe(A4, A).
Proof. It suffices to verify the identity

tou = oty = (=DM s = (D suy + (Db + (1)Pbegy ). (5.1)
We first compute the terms in equation (5.1) one by one. Denote
€= (me = ne)ne + (e — e + M3, — D(ll + [¥] + 1),
Let = := ag[ag k). Then we first have
toup® = 3 _(=1)Smlar1 ka0, U Plai, 115], 5 as)[assr]
= Z(_l)H(mz—ml)(\w\—1)+(m‘3—ml)(Icp\—l)+w(¢—1)m[at+1 s GOy

mlai, 41, @iy 41 4]s s Vlis gl ag ] as][astd
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Meanwhile, let
0 := (me — ne)me + (ke — ne + 15, — 1) (] = 1).
Then we have that

bplyp T = ch(Z(—l)gm[atH,k’ao, s lai ) s asl[ast])
= Z(_1)9+(m—771'2)(nk—m+m'2+|1/)|)+(mc—mz+m3+\w\—1)(\w\—1)m[ai2+1 M1 g ag, -
'(/J[ai1+1,j1]> T ’aS]’ T 790[ai3+1,j3]7 e ’aj2][aj2+1,i2}'
Furthermore, we take
Ci= (e —ne)ne + (mk —me +miy — D[] = 1) + (qe — 7 + 13, — D],

and we have that

L5030 = {2, 5(,0} Nz

= Z at+1 k> @0, - ,1//[ai1+1,j1],"' 75@[ai2+1,j2],"' 7as][as+1,t]
- Z (-1 <+(mS—mz)(lsal—Dm[aHLk,ao,... clai 115, s
mlai,11, 5 Qi) agl e as]lasia ]
+ Z(—l)“"is’”i2+|“"‘m[at+17k,ao, s blai 1)
Plaiy+1, -+ s mlaigr1 ], s agl - as][astal-

Now we denote
= (m —me)me + (e — e +miy — DIY[+ (e — me +mi, — D (|| — 1),
and we have that

Lsy,ppT = {0, so} N

= (1) mla1 ka0, 0@, 115, ] 5 Plaia )y as][asi ]
— Z T+ iz =iy ) ([]=1) mlasy1 gk, ao, - M@ 41,
w[ai3+1,“' 7aj3]7'“ »ajl]a“' 7‘»0[ai2+1,j2]7"' ,as][as+1,t]
+ Z(_l)Tws_mlﬂw‘m[atﬂ,k,ao,'" s Plag 41,
m[ai3+17 . 7(13‘3]7 . ’ajl]’ S a‘P[ai2+1,j2], o 703][as+1,t]~

We also have that
b = 1y oy O (D)0 mag 1 g, a0 4, ][0, 41,0,

+ Y (=1 agla i, mlai, 11,5, a5 11.4])

— Z(fl nkfml)’liﬁr(ml*ﬂt)nn+(nk*nt+m2)(|¢|*1)+(77k*7h+7h‘3)(\S9|*1)m[at_H, cee

m[ai1+1,kﬂ Qo, "~ 7aj1]7 e 7¢[ai2+1,j2]7 T 790[ai3+1,j3]7 e 7a8][a8+1,t]
+ Z(_l)ml + (e =m10) (e = 1)+ (1 =1+, =1 (191 =1)+ (k=16 +7i5 =1) (|0 =1)

V[aiyr1,g5]s 5 lais1gsls - smlai 415, ], 5 as][assa e
+ Z(_l)ml+(nk—m)(nt—l)+(nk—m+m2—1)(\w|—1)+(nk—m+m3—1)(\s0|—1)

V[@iyt1,45]s s laigrs o smlai 1], s agls s as]asta,d

+ Z(_l)ml+(77k*Wt)(ﬂt*l)Jr(TIk*ﬂtﬂLmz)(|¢|*1)+(77k*nt+ﬂi3)(\€9|fl)m[at+1 Ey G0y

mlai, 11,5, ], Vi 1,g)s o Oligt1,gs]s 5 Gs][s1,6]
+ Z(*l)ml + (e =mt) (Nt = 1)+ (M —ne+n55 — 1) (|9 | = 1)+ (ke —me +1i5 —1) ([0 = 1)

¢[ai2+1,j2]» s ,90[%3“,]'3}7 ce 7as][as+1a T 7m[ai1+1,j1]7 ce ,at]

+ Z(_l)nil+(77k_77t_1)77t+(77k_77t+77i2)(|¢|_1)+(77k_77t+77i3)(“Pl_l)m[at+1’ e

m[ai1+1,j1]7 Ak, A0, 7¢[ai2+1,j2], e ;So[a/i3+1,j3]7 o 7as][as+1,t]~
12
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+ Z(_l)ml+(nk—m)(m—l)+(m—m+m2—1)(\w|—1)+(m—m+m3)(Iw\—l)m[aﬂ_l s GOy

@[aiz-i-lv e 7m[ai1+1,j1]v e 7aj2]7 e 790[ai3+17j3]’ e 70’8][a$+17t}
+ Z(,l)ml+(77k777t)(77t71)+(nrm+m2*1)(\¢|71)+(nrnt+m3)(Iw\*l)m[aﬂ_l s GOy
Vlaiyr1gos s mlai v14,]s s @laigrigsl, - s as)[asya -
Finally, we denote
p = (e —ne)ne + (ke — 0 + 15 — (Y] = 1) + (e — 1 + 173, — D (|| — 1),
and we can also compute that
bLpp o = b (=1)mlacin, a0, ¥lai115,) 5 Plai 1l asl[asy)
= Z(_l)ﬁnk*nﬁnm+|w|+|wlflm[at+1 5 G0,
¢[ai1+1,j1]7 T 7@[ai2+1,j2]ﬂ T 7a8][a5+17 T vm[ai3+1>j3]ﬂ T 7at}
+ Z(_1)p+(nk—m+ms+\s0|+\w\—1)(nk+\¢|+\w|)m[ai3+1 e m[aig1 g, G0,
Ylai+1,), 0 @laiig] s as], s agllags ).
Hence we can obtain that
toup = oty = (=DM gy sy — (=D suy + (1Pl o3+ (1) Plbugy 1)
+ Z(_1)(nwm)m+(nrnt+m1*1)(\w\*1)+(nrm+m2*1)(\¢I*1)+Iw|(lw\*1)+1m5m[
Ylai 41,50, 5 Plait1,5]s 5 asl{ast,]
= (D g0y = (CDMegpspy + (1)l opb+ (1) by, o]
This finishes the proof of the proposition.

Next, we give the definition of Lie derivative acting on Hochschild chain complex of A, -algebras.

Definition 5.4. Let (A, m) be an A -algebra. The Lie derivative is given by

Li(aolar, -+ ,an]): = Z (—1)("i_1)(|f‘+1)a0[a1»'" s @iy flaivs, - a5],- 5 an)]
0<i<j<n
+ S (eI fla a0, agllaga, ),
0<j<i<n

at-‘rl,ka ag, - -

for any homogenous elements f € C*(A, A) and = = aplay,...,a,] € Co(A, A). In particular, taking f = m,

then Ly = —b.
Proposition 5.5. Let (A,m) be an A -algebra, then we have that
Ly = [Biplgr i= Buy — (‘DMLWB’
for any o € HH®*(A, A).
Proof. We only need to prove that
L,x — Buyx + (=1)¥l,Bx = bS,x — S5z — (—1)191S bz,
for  := apla1,x] € HHqe(A, A), where
Sew =Y (=D)%elariin, a0, s plas y15] - ad,
the sum runs over 0 < iy < j; <t <k, and
€= (e = n)me + (e — ne + i, — (Il = 1).
We compute the terms in equation one by one. Firstly,
Buoz = B(Y (1) mlari1k, a0, @lai41.5,), s allasiae])
- Z(_1)5+(77k77]t+"7i2+‘tpl)(nt7’ni2)e[ai2+17t’m[at+17k’ao, R

@[ai1+l,j1]7 T aas]a to 7ai2][ai2+1,j2]'
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Secondly,
1B = 1,(Y (=1) ™M elag ik, ao])
=Y (=) plag g ao, ) (a1,
+Z 1) =0 gla g (@41, ao,i)-
Thirdly, denote
Ci= (e — ne +mi,) ([0 = 1).
Then we have that
Sipbx - S‘P(Z(*]‘)(nkiml)mlm[aiﬁ-l,ka ag, -« -+ aajl][ajl-i-l,il]
+ (=1)"aola1,iy, mlai, 41,5, -+ 5 ax])
_ Z (77k Niq )Niq + (e —niq +1¢—1)(Mi; =) +C [
‘p[ainrl,Jé]’ T 7at]
+ Z(_l)ml +ome—ne) (= D4CHel=telg, ) 4ag, -
Plais+1,5,)s - smlai 41,5, ad
+ Z(_l)m‘l+(m~fnt)(nt71)+é‘+|<ﬁlfle[at+1 GOy
@[ai2+17 to ﬂm[ai1+17j1]a e a’j2]ﬂ t aat}
+Z(—l)""l+(”k”’f’l)(m’l)“e[aHLk,ao,-'- ,
m[ai1+1,j1]a to 7(»0[ai2+1,j2]7 T 7at}
+ Z(_l)ml+(nk—m—1)m+ce[at+h... ,
m[ai1+1,j1];"' y Ak, GOy " - ° ,w[aizﬂ,jg],'“ 7at]~
We set
7= (e — )0 + (e — e 4+ 03, — D (el = 1),

and then we have that

bSWCC = Z(_l)Tb(e[atJrl ky @0y - 7(»0[ai1+1,j1]7 T 7atD

- Z el l)wrmﬁml71)m[80[ai1+1,j1]a6][aj1+1,k7a0,i1]
—I—Z mle, aollar, -+, @lai 41,5, 5 ax]
+ Z (-1 7'-%-771'2—711,—16[at+17 .. 7m[ai2+17j2}7 e
A, ag, " " - 7¢[ai1+1,j1]7 e 7at]

+ D ()T e ag g, mai ks G0 ,)
@[aiﬁ-l,jl]v T 70Jt]

1 T+Niy *ﬁt*le[

2
2

(=
(=

+ Z( 1>T+7]k—771,+77i2_1e[at+1)k7 ag, - - ,m[ai2+1, o a‘P[ai1+1,j1a - 7aj2], -
(=

>

LT elag sy g, ao, o mlaiye1gs)s s lan g adl

1)T+77k_77t+77i2+|‘P‘e[at+17k’ao’ e ,w[ai1+1’j1]7 e ,m[ai2+1,j2]’ P 7at].

Lastly, we take
p = (e —ne)ne + (e — ne +mi, — o],
and we have that
S&Px = Z(fl)pm[aH-Lkv ag, -« - 7550[ai1+17j1]7 T >at]

—Z DPmlat1k, a0, m{e}ai 41,50, adl
14
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+ > (1) mlag g, a0, o{mbai 115], 5 ad)

= Z (=) =m)el=Dnla, 0 ag, - mlag 11, 5 Qlai1l s ag ] ail
+ Z(_l)p+ni2 _m1+|¢|m[at+1,kv ag, - - v(p[a‘ilJrlv T ’m[ai2+1,j2]a to 7aj1]7 T vat]‘
It is not difficult to check the equation (5.2]) according to the above computation. O

5.2. Proof of Theorem We are now in a position to prove Theorem [I.1]

Proof of Theorem[I.1, By Theorem [{.11} Proposition and Proposition it is sufficient to show that the
identity

Lo tlor = (=11 gy, (5:3)
holds for any ¢, € HH®*(A, A).
We only need to prove that

Lotypx — (,1)(Iw\71)lw\Lwwa _ (*1)@'7%[%1&]
= bH%lz,J? - (—1)'“0‘+|¢‘H¢7¢bx - H&p’w]} - (—1)‘¢|H¢,5w1‘,
for  := apla1 k] € HHqe(A, A), where

(5.4)

Hypx = Z(_l)cw[ai2+1,k7 @og, - - 7¢[ai1+1’j1}> T ’ajz][aszrl,iz]‘
Here the sum runs over 0 < 47 < j; < jo <is <k, and

We compute the terms in equation ([5.4) one by one. Firstly, denote

0 := (e — ne)ne + (ke — me +mi, — 1)(J0] = 1),

and then we have that

Lgtyr = Ly(Y (1) mlars1 ka0, Plai 415), - asl[asire])

=Y (=) WD D mla, g a0, lan )y asllasen - @lanag) - ad)

+ Z(_]_)a‘f‘(”]k—77t+7h'2+|1/’|)(77t—77i2)+\¢|—1¢[ai2+1’t7 m[at+1’k’ Qo, - 7w[ai1+17j1]7 T 7G‘S]ﬂ T 7aj2][aj2+1,i2]'

Secondly, we have that
vy Lpw = 1p(Y (1)~ DU Daglay 5 lai, 11,5,], -+ ai]

+ (_1)(77’“7771.1)nilJrltp‘il(P[ailJrl ks @0y - ajl][aj1+17i1D

- Z (m1 D) (ol=1)+ (e —n0) (e +leo| = 1)+ (e —ne+niy — )(\d)l—l)m[atJr1 s GOy

Ylaiyt1,4o)s s as)@srr, 5 0lai1,4,]5 0 ad)

+Z 1) (i1 =D Ul =1+ (e =me) (e Flipl = 1)+ (=1t = DY mlas i 4, a0,

Ylais+1s a5 ], ag], 0 as][asag]

+ Z 1) s =D Ul =D+ (e =me) (e Flipl 1)+ (e =metmia +e) (1] 1) mlai1 ks ao, -
Plaiy+1,, ] s PlAint1,55)s s as][ast ]

+ Z )1 =D Uel =D+ (me=ne) (et lel =D+ (me=netnio =DV g, ) 4oag, - -
w[ainrl,jz] T ’So[ailJrl,jl]v to 7as] [aSJrl,t}

+ Z (mlfl \¢|*1)+(nk*m+\¢|*1)(m+lw\71)+(nrm+m2+Iw\)(\¢|*1)m[at+1,... ,

<P[az'1+1,j1},"' , Aky Ay~ * 7¢[ai2+1,j2}7"' 7as][as+1,t]

+ Z(_l)(nk—ml)ml+|sa|—1+(mc—m1+m+|sa|—1)(m1 —n)+ e —netmiy HeD(VI=Dpg, 0 o

olai 116,005, ], 5 Vl@isr1,5.], - asl[@sye]-
Thirdly, denote
&= (e — me)ne + (e — ne +miy, — 1)(Joo] + [2]),
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and then we have that

o = (1) mlarir a0, [0, )i 41,5]s -+ as][asia ]

— Z(—1)5+(”"2_ml)(lw‘_l)m[atﬂ,k,ao,-~- ol 1y V[ g)s s aq ], as)[asi )
3 (g A DA DD g g
Vlai11, s Plaintipl s anl, s as]lassd.
Next, we have that
bH, yx = Z(_l){+(ni2_"7713)(nk_niz+77713+|<P‘+|"/)|)m[a7;3+17i2’ Olairr1.k, a0,

Vlait1:) e a5] s ags][ag41,6)
+ Z(*l)ﬁn’“*m?+"i3+|“"+|w|<,0[a12+1,k, ag, -,
Vlai 115 apllag e mlagr), e

Continually, we have that

80 1/be - 4/7 w(z(_l)(nk_ml)mlm[a’i1+1,k7 ag, - - 7aj1][aj1+1,i1]
+ (=1)"1aola1 i, mlai, 41,5, ], -, ax])

— Z(_l)(nk*ml Vg A (i —Nio) (M —Niqg iy — 1)+ (M —1iq +1ig) ([0 —=1)

Y[ig+1,gs)s > o) (Ao 11,1,)
+ Z(,Uml +(77k*"7i2)("7i2*1)+(nk*"7i2+7h‘3*1)(|w|71)¢[ai2+1)k7 ag, - ,

Vlaig1,4s]s 5 apllag41, o mlas 1], @)

+ Z(_l)ml +(77k_7h'2)(77i2_1)+(nk_7h'2+77i3_1)(|w|_1)<’0[ai2+17k’ ag, -
Vlaig1,gs)s s mlai v @] [ag4,0]

+ Z(_l)ml -S-(m—niz)(nig—1)-5-(%—mz-S-mg,—1)(|1/J|—1)90[@1.2“&7 ag, -
Ylaig+1s - smlas 41 ] ag] e ag]ag40.0,]

+ Z(_l)ml+(nrm2)(m271)+(m*mz+m3)(\w\*1)4p[aiz+1’k’ ag, -,
mlai+15.]s 5 Ylaigr1ge]s s aa]ag,41,0)

+ Z(fl)"ilH"’C*%*1)”1'2*(’7’“7"1‘2*"13)(W*l)cp[aiﬁl,m[a¢1+1,j1], NI T

Ylais+15s], 5 a5 ]050 41,0

We can also obtain that
Hyppw =Y (=1)°0plai, 41k, a0, ¥lai,1150)++  a5,)[a5,11,0,)
= Z m{gp} Qig+1,k> A0, " " ﬂw[ai1+1,j1]7 T 7aj2}[aj2+1,i2}

+ Z(il)CJrWl(p{m}[ah%*l,k’ ag, - - vqp[ailJrle]v T 7aj2Haj2+1,i2]

= Z CJF MNig — "712)(‘4p|71)m[ai2+17 e 7@[ai3+1,j3]7 e Ak, 00,0,
w[aiﬁ-l jl] e ajz][ajz-i-lJz]
+Z C+ MNig — nzg)(lﬁolfl)m[aiz_i_l’... ,w[ai3+17k7a07... ,aj3],... ,

w[ai1+1»]'1]7 T 7aj2][aj2+1,i2]

+ Z(_1)<+(m3 _”'iz)(|“’|_1)m[ai2+17 o P[ig 1k GOy
"/)[airﬂ,jl]? U 7aj3]’ e 7a’j2}[a’j2+1,i2]

+ Z(—1)<+(""'_""2+m3+W—1)(|“"‘_1)m[ai2+17k,Clo, o Ylan 1)

Plaiz+1,gs)y 5 5] [AG,41,45]

+( ig TN 1
+Z 1)SH0me =i nig)(le|—=1) M[@iyt1 k@05 5 Plist1s]s
16
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VYlai 11,50 ag,][ag,41,0,]

4 Z(_I)C‘F(nk*niQ+7]i3)(|90|*1)m[ai2+17k7 ag, Qg1

Ylai+1g. s agls s a)ag,41,6)
+ Z(*UHWHW‘**%<P[az‘2+1a oM@ )y ak, a0,
Ylai+15.] 0 g ]ag41,0,]
+ Z(_1)<+\¢I+m3—m2w[aizﬂ’... M Qi1 ks G0y s @],
Ylai+1,5]s 5 @ l@go 41,40
+Z(‘UGWH%_%sﬁ[ai2+17"' s M[@ig 11k, Q05"
Vlaiir1g:ls s agls s @A, 41,0)

+ Z(_I)CJF‘Wrnkimz+m3+|¢‘71<p[ai2+1,ka ag, - - ,77[1[(11'14_17]'1], )
m[ai3+1,j3]a e aajz][ajz-i-l,iz]

+ Z(,l)CJr??k*szrmgso[ai2+17k’ao’ RN [T

"/}[ai1+1,j1]’ T 7a’j2][aj2+1,i2]
+ Z(_l)<+77k_77'£2+77i3So[ai2+1’k, ag, - .- um[ai3+17 Tty
w[ai1+1,j1]’ T 7aj3]’ e 7aj2}[aj2+1,i2]'

Lastly, denote

¢ = (e — Miy) iy + (e — My + 13y — 1)),

we compute that

’

HLP,(S’L/J:C = Z<_1)< (p[ai2+1,ka ag, - - 75w[a’i1+1,j1]7 e 7aj2}[aj2+1,i2}
= Z(_l)g O = (W glaz, 4 ka0, mlag 41,0+
w[ai3+1,j3]7 e 7aj1]7 T 7a’j2][a’j2+1,i2]

+ Z(_l)c,—"_"“3 _ni1+|¢‘@[ai2+l,ka ag, * - 7’(/}[ai1+17 Tty

Mmlaisi1gsls 5@l ag a1
Through comparing the two sides in equation (5.4) according the above computations, we have done. ]

Corollary 5.6. For any homogenous elements ¢, € HH®*(A, A), [B, L,|gr = 0 and [Ly, Ly|gr = Ly -

Proof. By Proposition we obtain Bo L, = (—=1)¥*1B o, 0 B = (-1)¥I*1L, 0 B, and then by equation

" we get [Ly, Lylgr = [[B, tolgrs Lylgr = (_1)|w‘(‘w‘+l)[[BaLw}graLv]gr + [B, [tps Lplgrlgr = [BvL[w’w]]gr =
Lig - .

6. HOCHSCHILD COHOMOLOGY OF CYCLIC A,,-ALGEBRAS

We start with the definition of cyclic A..-algebras.

Definition 6.1. Let (A, m) be a finite dimensional A.-algebra with strict unit. An Ay -cyclic structure of
degree d on A is a non-degenerate bilinear form

(—,—) 1 Alll® All] = K
of degree —d (i.e. |a| + |b] = d — 2, if (sa, sb) # 0), such that
(sa, sb) = —(—1)(|“‘+1)(“’|+1)(sb7 sa),

and

n41
(lax]+1) v;(\ai\ﬂ)

(smlay, -+ ,an], san1) = (—1) (smlag, -+ ,ant1], sa1)

for any homogenous elements a; € A and integer n > 0.
17



Remark 6.2. There exists a non-shifted version of cyclic A..-algebra, see [25] Section 11]. An As-cyclic
structure of degree d on A is a non-degenerate bilinear form

(-, =Y A A—-K
of degree —d, such that

<aa b>/ = (_1)‘(1‘“)' <b’ a>/7

and

n+1
n+tlail- 32 (lail)
<m[a17"' 7an]7an+1>l = (_1) i=2 <m[a27"' 7an+1]7a1>/

for any homogenous elements a; € A and integer n > 0. In fact, in the Definition if we take (a,b)’ :=
(—1)lel(sa, sb), then we can obtain the non-shifted version. In this note, we adopt the shifted version since the
sign rules in this case are just the Koszul sign convention.

Proposition 6.3. Let A be a cyclic Ax-algebra of degree d. Then the Hochschild data
(HH®(A, A),HH®* (A, A"), U, [—, -], B, Q)

is a differential calculus with duality, where HH® (A, A’) is the Hochschild cohomology of A with value in A -
bimodule A, and Q € HHY(A, A') is a volume form.

Proof. By Theorem and Proposition we obtain that (HH®(A, A),HH®*(4, A"),U,n’,[—, =], B’) is a dif-
ferential calculus. The only thing left is to show the existence of the duality. That is:

Claim 6.4. There exists an element Q € HHY(A, A’), such that
HH®(A, A) — HHY (A, A'), f+ ks (Q)
18 an isomorphism.

In fact, the cyclic structure of A induces an isomorphism ® : A — A’ given by
(I>(a)(b) = (_1)|a| <Sa7 Sb>7

and an isomorphism of complexes ¢ : C*(A, A) — C*(A, A’) given by ¢(f) := ®o f, and a duality C*(A4, A’) =
(Co(A, A)) given by o(f)(z) := (=1)l®l/H+D (saq, sf[ay, -, an]). Now we show that

plgU f) = (=)D £ o o(g).
Given any = = aglay -+ ,a,] € Co(A, A) and f,g € C*(A, A), we have

e(gU f)(z)
= Z( )Iaol(\f|+\q\+1)+|f|(|0| 1)+m(|f\+1)+m(|q|+1)<Sa0’ smlai, -, flait1, - ,aj], s glasyt, s ad, - an))
= Z( )Igl(\fl 1) +’h(|f‘+1)+’75(|9|+1)+|a0|<a0,sm[a1,~~- flaic, 4], sglasst, o yadl, e an))
= Z( 1)|9|(\f| D4ni(1f1+1)+ns(lgl+1)+ (Iao|+1)(nn+|f\+\9|)<5m[a1’ oo flaist, s ag]s e s glaset, s ad, e an], sag)
where 1} = > (|a;| + 1), and

i=1

(f N o(9)) (@) = (=)D o(g) (1)
= (- )\f\(\g\+d)+(7m—m)m-&-(nn—m-&-m—1)(\f|+1) .
9 (Zm[at-i-h"' y Ap,y QQ,y * * 7f[ai+17"' ,a'j]a"' 7as][as+1,"' aat])

= Z(_l)\f\(\g\+d)+(77n—m)m-ﬁ-(nn—m-%m—1)(\f|+1)+(|9\+1)(nn—nt+ns+\f|+1) .

<Sm[at+17 5, 0p, A0, 0 7f[ai+17 e aaj]7 e 7as]7 Sg[as+17 T ;at]>
— Z(_l)\f\(\9\+d)+(17n*nt)nﬁ(mfnﬁm71)(\f|+1)+(|g\+1)(nnfm+ns+\f|+1)+(|at+1|+1)(nn+|f\+\g|+1) .

<Sm[at7 o, Qp, A0, 0 7f[a’i+17 e 7aj]7 e 7g[as+17 e 7at]]a 8at+1>
— Z(fl)\f\(\9\+d)+(n7ﬁnt)nt+(nn*m+m*1)(\f|+1)+(|9\+1)(nn*nt+ns+\f|+1)+(nn*m+|ao|+1)(nn+|f|+\g\+1).

<Sm[a17"‘ af[aiJrlv"' vaj]7”' 7g[as+17"‘ »at]f“ 7an]38a0>

— (_1)\f\(\g\+d)<p(g U f)(z).
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Picking the map id : k — ke lying in C°(A, A), where e is the strict unit, then we have

o(f) = )V 2 = (-1 k()

where ) denotes the element ¢(id) lying in C%(A, A’). This proves the claim, and Proposition (6.3 follows. [

Theorem 6.5 (Tradler [24]). If A is a cyclic Ax-algebra, that is, A is a finite dimensional A -algebra with a
cyclically invariant non-degenerate pairing, then the Hochschild cohomology HH® (A, A) has a Batalin- Vilkovisky
algebra structure.

Proof. This theorem is direct from Theorem and Proposition [6.3 (]
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