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HODGE COHOMOLOGY ON BLOW-UPS ALONG SUBVARIETIES

SHENG RAO, SONG YANG, XIANGDONG YANG, AND XUN YU

Abstract. We establish a blow-up formula for Hodge cohomology of locally free sheaves on

smooth proper varieties over an algebraically closed field of positive characteristic. For this,

we introduce a notion of relative Hodge sheaves and study their behavior under blow-ups

along smooth centers. In particular, as an application, we study the blow-up invariance

of the E2-degeneracy of the Hochschild–Kostant–Rosenberg spectral sequence for smooth

proper varieties.
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1. Introduction

1.1. Motivation and results. Let X be a smooth proper variety over an algebraically

closed field k of arbitrary characteristic. Consider the Hodge–de Rham spectral sequence

Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q
DR (X/k), (1.1)

where H•
DR(X/k) is the algebraic de Rham cohomology and Ωp

X is the sheaf of regular dif-

ferential p-forms on X. If k = C, we set Xan as the associated compact complex manifold

of X. If X is projective, then Xan is Kähler; by Hodge theory and Serre’s GAGA [35], the

Hodge symmetry and the E1-degeneracy of Hodge–de Rham spectral sequence (1.1) holds

here. If X is non-projective, then Xan is non-Kähler; based on the Chow’s Lemma and

Hironaka’s resolution of singularities [22], Deligne [12, (5.3)] showed the Hodge symmetry

and the E1-degeneracy of (1.1) hold then; intrinsically, such Xan is a Moishezon manifold

and thus satisfies the ∂∂̄-Lemma which in turn implies the Hodge symmetry and the E1-

degeneracy (cf. [13, 40]). More generally, if k is of characteristic char(k) = 0, using Lefschetz

principle, Deligne [12, (5.5)] showed that the Hodge symmetry and the E1-degeneracy also

hold; see also Deligne–Illusie [15, 2.7]. Furthermore, Deligne–Illusie [15] showed that the
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E1-degeneracy still holds if char(k) ≥ dim X and X lifts to the ring W2(k) of Witt vectors

of length 2. However, in general, the Hodge symmetry and the E1-degeneracy fail in positive

characteristic and for compact complex manifolds. In [33, Theorem 1.6], we derived the blow-

up invariance of the E1-degeneracy of (1.1) for compact complex manifolds by obtaining a

blow-up formula of Dolbeault cohomology. Let Z be a smooth closed subvariety of X and

X̃ the blow-up of X along the center Z. By the blow-up invariance of a property, we mean

that such a property holds for X and Z if and only if so does for the blowing up variety

X̃. In positive characteristic, although the liftability to W2(k) possibly fails under blow-ups

of higher dimensional varieties by Liedtke–Satriano [29], Achinger–Zdanowicz [2, Corollary

2.9.(1)] obtained the blow-up invariance of the E1-degeneracy of (1.1) by using the blow-

up formulae of algebraic de Rham and total Hodge cohomologies via Voevodsky’s blow-up

formula [39, (3.5.3)] of motives.

In a more general setting, consider a locally free sheaf E on X which is endowed with an

integrable connection. We denote by H l
DR(X/k; E) the l-th algebraic de Rham cohomology

of X with coefficients in E (see [19]). Then one has the twisted Hodge–de Rham spectral

sequence:

Ep,q
1 = Hq(X,Ωp

X ⊗ E) =⇒ Hp+q
DR (X/k; E). (1.2)

In general, the twisted Hodge–de Rham spectral sequence does not degenerate at the E1-term.

So a natural problem is:

Problem 1.1. Does the blow-up invariance of the E1-degeneracy for the twisted Hodge–de

Rham spectral sequence hold for smooth proper varieties over k of positive characteristic?

Motivated by Problem 1.1, we prove a blow-up formula for Hodge cohomology of locally

free sheaves. For this purpose we will introduce a notion of relative Hodge sheaves associated

to the pair of a smooth proper variety and its smooth closed subvariety. Suppose that X is

a smooth proper variety together with a smooth closed subvariety j : Y →֒ X. The kernel

sheaf ker
(
Ωp
X

j#
→ j∗Ω

p
Y

)
is called the p-th relative Hodge sheaf Kp

Y of X with respect to Y

(Definition 3.1). Via studying explicitly relations of relative Hodge sheaves under blow-ups,

we derive the main result.

Theorem 1.2. Let X be an n-dimensional smooth proper variety over an algebraically closed

field k of arbitrary characteristic, ι : Z →֒ X a smooth closed subvariety of codimension c ≥ 2

and π : X̃ −→ X the blow-up of X along Z with the exceptional divisor E. For any locally

free sheaf V on X, the following statements are true:

(i) For the cohomology of relative Hodge sheaves Kp
Z and Kp

E, the pullback of regular

differential forms induces a natural isomorphism:

π# : Hq(X,Kp
Z ⊗V)

≃
−→ Hq(X̃,Kp

E ⊗π∗ V), for any 0 ≤ p, q ≤ n. (1.3)

(ii) There exists an isomorphism

Hq(X̃,Ωp

X̃
⊗ π∗ V) ∼= Hq(X,Ωp

X ⊗ V)⊕
c−1⊕

i=1

Hq−i(Z,Ωp−i
Z ⊗ ι∗ V) (1.4)

for any 0 ≤ p, q ≤ n.
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In [34, Theorem 1.2], using a notion of relative Dolbeault sheaves and the Dolbeault reso-

lutions, we proved the blow-up formula (1.4) for compact complex manifolds. Furthermore, if

X is a smooth proper variety over C, then the isomorphism (1.4) can be obtained by Serre’s

GAGA and [34, Theorem 1.2]; hence, the characteristic zero case can be handled by the

Lefschetz principle. On a smooth variety X over an algebraically closed field k of arbitrary

characteristic, there is no Dolbeault resolution of Ωp
X analogous to that on complex manifolds

since the Zariski topology is coarser than the complex topology. So the proof in [34] does

not hold step-by-step for general smooth varieties; however, we will see that the basic idea

in [34, 42] still holds.

In particular, applying Theorem 1.2 to torsion line bundles provides us with a useful

perspective to understand an interesting problem by Esnault–Ogus [17, Question 2.1], see

Lemma 5.6. Moreover, if the locally free sheaf V in Theorem 1.2 is the structure sheaf, then

we have the blow-up formula for (p, q)-Hodge cohomology which is implicitly contained in

[18, 2]. Namely, there exists an isomorphism

Hq(X̃,Ωp

X̃
) ∼= Hq(X,Ωp

X)⊕
c−1⊕

i=1

Hq−i(Z,Ωp−i
Z ) (1.5)

of Hodge cohomology.

Similarly, we have the Hochschild–Kostant–Rosenberg spectral sequence (for short HKR

spectral sequence):

Ep,q
2 = Hq(X,Ωp

X) =⇒ HHp−q(X),

where the differential dr has bi-degree (r − 1, r) and HH•(X) is the Hochschild homology

of X. In characteristic zero, the HKR spectral sequence is known to degenerate at E2

for smooth proper varieties. The HKR spectral sequence also degenerates at E2 over k of

characteristic char(k) ≥ dim X by Yekutieli [43] and Antieau–Vezzosi [5]. However, when

dim X > char(k) > 0, Antieau–Bhatt–Mathew [3] showed that the HKR spectral sequence

does not generally degenerate at E2 (cf. Antieau–Bragg [4]). Moreover, here arises a similarly

natural

Problem 1.3. Does the blow-up invariance of the E2-degeneracy of the HKR spectral se-

quence hold for smooth proper varieties over k of positive characteristic?

Based on Orlov’s blow-up formula [31] for derived categories and the decomposition of

Hochschild cohomology [27] under semiorthogonal decompositions, as a direct corollary of

(1.5), we confirm Problem 1.3 as:

Theorem 1.4 (= Corollary 5.19). With the same setting as in Theorem 1.2, the E2-degeneracy

of the HKR spectral sequence holds for X̃ if and only if it holds for X and Z.

Moreover, the blow-up invariance [2, Corollary 2.9.(1)] of the E1-degeneracy of Hodge–de

Rham spectral sequence (1.1) is also a direct result of (1.5) and the blow-up formula [2,

Corollary 2.8.(3)] of algebraic de Rham cohomology. In particular, based on the examples

by Antieau–Bhatt–Mathew, Theorem 1.4 enables us to construct new examples of smooth

proper varieties satisfying the non-degeneracy of the HKR spectral sequence at E2-page; see

Remark 5.23 and analogous Remark 5.25.
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1.2. Strategy of the proof. We outline the basic idea of the proof for Theorem 1.2 as

follows. First of all, we introduce a notion of relative Hodge sheaves Kp
Z associated to a pair

(X,Z). Secondly, for the blow-up pairs (X̃, E) and (X,Z) with E the exceptional divisor,

we shall establish a natural commutative ladder of cohomology:

· · · // Hq(X,Kp
Z ⊗V)

π#

��

// Hq(X,Ωp
X ⊗ V)

π#

��

// Hq(Z,Ωp
Z ⊗ ι∗ V)

ρ#

��

// Hq+1(X,Kp
Z ⊗V)

π#

��

// · · ·

· · · // Hq(X̃,Kp
E ⊗π∗ V) // Hq(X̃,Ωp

X̃
⊗ π∗ V) // Hq(E,Ωp

E ⊗ ι̃∗π∗ V) // Hq+1(X̃,Kp
E ⊗π∗ V) // · · · .

Furthermore, in the above diagram, the first and fourth column morphisms

π# : H•(X,Kp
Z ⊗V) −→ H•(X̃, π−1(Kp

Z ⊗V)) −→ H•(X̃,Kp
E ⊗π∗ V)

are isomorphisms, proved in Theorem 3.5 as an important property of relative Hodge sheaves,

and the second one is injective (Lemma 4.1). Hence, the third one is injective by the Four

Lemma. Finally, Theorem 1.2 follows from basic homological algebra and the projective

bundle formula of Hodge cohomology of locally free sheaves.

1.3. Related works. This is a continuity of our previous works on the blow-up formulae

of Dolbeault, Bott–Chern and twisted de Rham cohomologies ([33, 34, 42, 10]). In [33, 42],

from birational point of view, we tried to understand the birational invariance of the ∂∂̄-

Lemma and the E1-degeneracy of (1.1) for compact complex manifolds. To obtain the blow-

up invariance of these two properties, we develop the blow-up formulae of Bott–Chern and

Dolbeault cohomologies. As a consequence, we obtain that they are birational properties of

compact complex threefolds and fourfolds, respectively, by applying the weak factorization

theorem [1, 41]. Prior to the relative Hodge sheaves, the notion of relative Dolbeault sheaves

for a pair of a complex manifold and its closed complex submanifold has been introduced in

[34, 42] and plays a dominant role in [34, 42, 10].

Before that, based upon the detailed study of Leray spectral sequences, the blow-up formula

of étale cohomology H i
et(−,Zl) on smooth schemes has been obtained in [14, XVIII, Theorem

2.2.2]. It is worth noticing that the explicit calculation of Riπ∗ Zl which is similar to Lemma

2.5 was also used; the interested readers may refer to the proof of [36, Theorem 10] and

[34, Appendix B] for a comparison. Afterwards, using a different method, Barbieri-Viale [6]

obtained the blow-up formula of twisted cohomology theory in the sense of Bloch–Ogus [7],

e.g., étale cohomology, Deligne–Beilinson cohomology and algebraic de Rham cohomology in

characteristic zero.

1.4. Notation and conventions. For simplicity, we always assume that k is an algebraically

closed field of arbitrary characteristic. The experiment shows that our arguments are likely

to hold over any field of arbitrary characteristic.

Throughout this paper, a variety is an integral separated scheme of finite type over k and

a locally free sheaf is of finite rank. Let X be a smooth proper variety and V a locally free

sheaf on X. We fix some notations for later use:

– OX = the structure sheaf of X;

– ΩX (or Ω1
X) = the cotangent sheaf of X;
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– Ωp
X := ∧pΩX = the sheaf of regular differential p-forms on X;

– ωX := Ωdim X
X = the canonical sheaf of X;

– F(V) := F ⊗V = the tensor over OX , where F is a sheaf of OX-module;

– hl(X,F) := dim H l(X,F) = the dimension as k-vector space;

– P(E) := Proj(Sym E∨) = the projective bundle of a locally free sheaf E .

2. Preliminaries

In this section, we give a rapid review on some basic results on sheaf cohomology theory

(such as Iversen [25, II. 7] and Kashiwara–Schapira [26, §2.6]) and the construction of blow-

ups of smooth proper varieties.

2.1. Sheaf cohomology. Let f : (Y,RY ) −→ (X,RX ) be a morphism of ringed spaces. We

denote by D+(RX) (resp. D−(RX)) the bounded below (resp. above) derived category of

RX-modules. Then one has the following standard functors:

– Rf∗ : D
+(RY ) → D+(RX) = the right derived functor of the direct image functor f∗;

– Lf∗ : D−(RX) → D−(RY ) = the left derived functor of the inverse image functor f∗;

– f−1 = the topological inverse image functor.

Let X and Y be two smooth proper varieties and f : Y −→ X a morphism between them.

Since the abelian category of f−1OX -modules has enough injective objects, there exists a

right derived functor of the direct image f∗ denoted by

Rf∗ : D
+(f−1OX) −→ D+(OX).

Note that the topological inverse image functor f−1 is exact. It naturally extends to a functor

on derived categories

f−1 : D+(OX) −→ D+(f−1OX),

which is the left adjoint of the derived functor Rf∗. Therefore, for any objects E• ∈ D+(OX)

and F• ∈ D+(f−1OX), there is an isomorphism

HomD+(OX)(E
•, Rf∗F

•) ∼= HomD+(f−1 OX)(f
−1 E•,F•) (2.1)

which is functorial for E• and F•. Due to the naturality of isomorphisms in (2.1), the

morphism above gives rise to a natural transformation

id −→ Rf∗f
−1 (2.2)

in D+(OX) (cf. [26, (2.6.16)]). In particular, for a distinguished triangle

E• // F• // G• // E•[1],

in D+(OX), we can construct a morphism of distinguished triangles

E•

��

// F•

��

// G•

��

// E•[1]

��

Rf∗f
−1 E• // Rf∗f

−1F• // Rf∗f
−1G• // Rf∗f

−1 E•[1]

(2.3)
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in the derived category D+(OX). Since RΓ(Y,−) = RΓ(X,Rf∗(−)), applying the derived

functor RΓ(X,−) to (2.3), we get a commutative ladder of long exact sequences of hyperco-

homology groups

· · · // H
l(X, E•)

��

// H
l(X,F •)

��

// H
l(X,G•)

��

// H
l+1(X, E•)

��

// · · ·

· · · // H
l(Y, f−1 E•) // H

l(Y, f−1F•) // H
l(Y, f−1G•) // H

l+1(Y, f−1 E•) // · · · .

(2.4)

Remark 2.1. Alternatively, one can construct the commutative diagrams (2.4) and (4.7)

below by using the Čech (hyper)cohomology theory; for instance, see Serre’s GAGA [35, §

11]. The advantage of the categorical construction above is to avoid some involved local

calculations.

In complex differential geometry, each sheaf of holomorphic differential forms on a com-

plex manifold admits a canonical resolution: the Dolbeault resolution. As a result, by the

Dolbeault Theorem, the pullback of differential forms naturally induces a morphism of Dol-

beault cohomology groups. In algebraic geometry, the regular differential forms on a variety

can be considered as the counterpart of differential forms in complex differential geometry.

By contrast, the sheaf of regular differential forms has no analog of the Dolbeault resolution,

since the Zariski topology is coarser than the complex topology. Naturally, given a morphism

of smooth proper varieties one may wonder how to define a natural morphism of sheaves of

regular differential forms and the induced morphism of their cohomology groups under this

morphism. The rest of this subsection is devoted to explain the induced morphism of sheaves

of regular differential forms on smooth varieties (see (2.6)) and the induced morphisms of

Hodge cohomology groups (see (2.7)).

Assume that V is a locally free sheaf on X and let f : Y −→ X be a morphism of smooth

proper varieties. For the sheaves Ωp
X and Ωp

Y , there is a natural commutative diagram

f−1Ωp
X(V)

��

α

&&
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

f−1f∗Ω
p
Y (f

∗ V) // Ωp
Y (f

∗ V).

(2.5)

In the derived category D+(OX), combining (2.5) with the functorial morphism (2.2) for

Ωp
X(V) yields a natural morphism

f# : Ωp
X(V) −→ Rf∗f

−1Ωp
X(V)

Rf∗(α)
−→ Rf∗Ω

p
Y (f

∗ V), (2.6)

which gives rise to a morphism of cohomology groups

f# : Hq(X,Ωp
X(V)) −→ Hq(Y, f−1Ωp

X(V)) −→ Hq(Y,Ωp
Y (f

∗ V)). (2.7)

Remark 2.2. If f : Y −→ X is a morphism of smooth proper varieties and V is a locally

free sheaf on X, then one can define a similar natural morphism

β : f∗Ωp
X(V) −→ Ωp

Y (f
∗ V)

of OY -modules, and hence there is a corresponding morphism of Hodge cohomology groups.
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2.2. Blow-ups. Let X be a smooth proper variety of dimension n ≥ 2 and ι : Z →֒ X a

smooth closed subvariety of codimension c ≥ 2. Denote by IZ ⊂ OX the coherent sheaf of

ideals corresponding to Z. Then the blow-up X̃ of X along Z is defined to be

X̃ := BlZX = Proj

(⊕

d≥0

Id
Z

)
,

where Id
Z is the d-th power of the ideal I and I0 := OX . By definition, there is a natural

morphism π : X̃ −→ X such that π : π−1(U) −→ U is biregularly isomorphic, where

U := X − Z. We say that π is the blow-up morphism and E := π−1(Z) is the exceptional

divisor. Moreover, there is a commutative diagram

E

ρ

��

�

� ι̃
// X̃

π
��

Z �

� ι
// X.

(2.8)

Let NZ/X be the normal bundle of rank c of Z in X. In fact, the exceptional divisor E is equal

to the projectivization of NZ/X , i.e., E = P(NZ/X). Moreover, the morphism ρ : E −→ Z is

the projective fibration of E over the center Z and the following basic properties hold:

(i) the new variety X̃ is a smooth proper variety;

(ii) the blow-up morphism π is projective;

(iii) OX̃(−E) is very ample relative to π and OX̃(−E)|E ∼= OE(1), where OE(1) is the

Grothendieck line bundle of E.

Now we consider the (higher) direct image of the structure sheaf under the blow-up mor-

phism. There hold π# : OX
≃

−→ π∗OX̃ and Riπ∗OX̃ = 0 for i > 0 (cf. [21, Chapter V,

Proposition 3.4]). As a result, for a locally free sheaf of OX-modules V, there hold isomor-

phisms

Hq(X,V) ∼= Hq(X̃, π∗ V)

for any q ≥ 0. In a more general setting, if f : X̃ −→ X is a projective birational morphism

of smooth varieties, then we also have OX
≃
−→ f∗OX̃ and Rif∗OX̃ = 0 for any i > 0 (see

[22] and [9]).

A natural problem comes to mind: What about the sheaf of regular differential forms of

degree p such that 0 < p < n? In fact, one can show that there holds the isomorphism

H0(X,Ωp
X(V)) ∼= H0(X̃,Ωp

X̃
(π∗ V))

for any 0 < p < n. Hence, the Hodge cohomologies of types (p, 0) and (0, q) are invari-

ant under the blow-up morphism. However, for the general types the invariance of Hodge

cohomology does not hold anymore. The reason lies in the fact that the center has some

contributions to the Hodge cohomology of the blowing up variety.

Example 2.3. Here is a simple example from [21, Chapter V, Exercise 5.3]. Let X be a

smooth proper surface and π : X̃ −→ X the blow-up of X at a closed point p ∈ X. For any

locally free sheaf V of rank r on X, there exists a short exact sequence of sheaves

0 // π∗Ω1
X(V) // Ω1

X̃
(π∗ V) // Ω1

X̃/X
(π∗ V) // 0. (2.9)
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First, for any l ≥ 0, we claim the following isomorphism as k-vector spaces:

H l(X̃, π∗Ω1
X(V)) ∼= H l(X,Ω1

X(V)). (2.10)

Consider the direct image (resp. higher direct images) of the sheaf π∗Ω1
X(V) along π. From

the projection formula we have π∗(π
∗Ω1

X(V)) ∼= Ω1
X(V) and Riπ∗(π

∗Ω1
X(V)) = 0 for any

i ≥ 1. Using the Leray spectral sequence for π∗(π
∗Ω1

X(V)), it is a direct consequence that

(2.10) holds. As X̃ is the pointed blow-up of X, we have Ω1
X̃/X

∼= ι̃∗Ω
1
E. Observe that

Ω1
X̃/X

(π∗ V) ∼= ι̃∗(Ω
1
E)

⊕r from the projection formula. Hence, we get

H l(X̃,Ω1
X̃/X

(π∗ V)) ∼= H l(X̃, ι̃∗(Ω
1
E)

⊕r) ∼= H l(P1, (Ω1
P1)

⊕r) =

{
k⊕r, l = 1;

0, l 6= 1,
(2.11)

since E ∼= P
1. Consider the long exact sequence of sheaf cohomology groups from (2.9). By

(2.10), and (2.11), we obtain a short exact sequence of k-vector spaces

0 // H1(X,Ω1
X(V)) // H1(X̃,Ω1

X̃
(π∗ V)) // k⊕r // 0

and hence the isomorphism

H1(X̃,Ω1
X̃
(π∗ V)) ∼= H1(X,Ω1

X(V))⊕ k⊕r.

Remark 2.4. Suppose that X is a smooth projective surface over a field K (not necessarily

algebraically closed). Consider the blow-up π : X̃ −→ X of X at a closed point x ∈ X.

Similarly, for any locally free sheaf V of rank r on X, one still has

H1(X̃,Ω1
X̃
(π∗ V)) ∼= H1(X,Ω1

X(V))⊕K(x)⊕r,

where K(x) := OX, x /mx is the residue field of x on X.

In general, from (2.8) we have the following important lemma for the proof of the Hodge

blow-up formula later.

Lemma 2.5. For any 0 ≤ p ≤ n, we have:

(i) π# : Ωp
X

≃
−→ π∗Ω

p

X̃
;

(ii) ρ# : Ωp
Z

≃
−→ ρ∗Ω

p
E;

(iii) ι̃# : Riπ∗Ω
p

X̃

≃
−→ ι∗R

iρ∗Ω
p
E for any i ≥ 1.

This third isomorphism in Lemma 2.5 is first addressed by Gros [18, Chapter IV, Theorem

1.2.1] for i > 1 over an arbitrary base scheme. In their paper [20, (3.3) Proposition], Guillén–

Navarro Aznar improved it to i ≥ 1 in characteristic zero. It came as a surprise to us that it

still holds in positive characteristic. The main reason why this is possible is that the proof

of this isomorphism is essentially based upon some principles from sheaf cohomology theory

which are independent on the ground field. For reader’s convenience, we present a complete

proof here but do not claim any originality.

Proof of Lemma 2.5. Based on the Algebraic Hartogs Theorem [21, Chapter II, Proposition

6.3A] and local trivialization of projective bundles, the proofs of the assertions (i) and (ii)

are quite similar to [34, Lemma 4.1.(i)-(ii)].
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Now we consider the assertion (iii). First, note that there exist two standard short exact

sequences associated with the exceptional divisor E in X̃:

0 // OX̃(−E) // OX̃
// ι̃∗OE

// 0 (2.12)

and

0 // N∨

E/X̃
// ι̃∗ΩX̃

// ΩE
// 0, (2.13)

where N∨

E/X̃
∼= OE(1) ∼= ι̃∗OX̃(−E). Write OX̃(1) := OX̃(−E) and thus OE(1) = ι̃∗OX̃(1).

Twisting (2.12) with Ωp

X̃
⊗OX̃(m) gives rise to a short exact sequence

0 // Ωp

X̃
⊗OX̃(m+ 1) // Ωp

X̃
⊗OX̃(m) // Ωp

X̃
⊗ ι̃∗ OE(m) // 0. (2.14)

Since NE/X̃ is an invertible sheaf, taking p-th exterior wedge of (2.13) and then twisting it

with OE(m), one gets another short exact sequence

0 // Ωp−1
E ⊗OE(m+ 1) // ι̃∗Ωp

X̃
⊗OE(m) // Ωp

E ⊗OE(m) // 0. (2.15)

Due to the projection formula, for any m ≥ 0, one has

Riπ∗(Ω
p

X̃
⊗ ι̃∗ OE(m))

≃
−→ Riπ∗(ι̃∗(ι̃

∗Ωp

X̃
⊗OE(m)))

∼= Ri(π ◦ ι̃)∗(ι̃
∗Ωp

X̃
⊗OE(m))

∼= Ri(ι ◦ ρ)∗(ι̃
∗Ωp

X̃
⊗OE(m))

∼= ι∗R
iρ∗(ι̃

∗Ωp

X̃
⊗OE(m)). (2.16)

The second isomorphism in (2.16) comes from the fact Rj ι̃∗(ι̃
∗Ωp

X̃
⊗ OE(m)) = 0 for any

j > 0 since ι̃ is a closed immersion, and the Grothendieck spectral sequence

Ei,j
2 = Riπ∗(R

j ι̃∗(ι̃
∗Ωp

X̃
⊗OE(m))) =⇒ Ri+j(π ◦ ι̃)∗(ι̃

∗Ωp

X̃
⊗OE(m)).

Claim 2.6. For any i ≥ 1 and m ≥ 1, Riπ∗(Ω
p

X̃
⊗ ι̃∗OE(m)) = 0.

Proof. From the isomorphism (2.16), it suffices to show Riρ∗(ι̃
∗Ωp

X̃
⊗ OE(m)) = 0 for any

m ≥ 1 and i ≥ 1. Our first goal is to show Riρ∗(Ω
p
E ⊗OE(m)) = 0 and then the vanishing of

the term Riρ∗(ι̃
∗Ωp

X̃
⊗OE(m)) follows from the exactness of the long exact sequence of the

higher direct images for (2.15). Actually, this is a local problem over the center Z. Note that

E is the projectivization of NZ/X which admits local triviality. Without loss of generality,

we assume that Z = SpecA is a smooth variety and E = SpecA × P
c−1
k is a product space.

By the Künneth formula, we have

H i(E,Ωp
E ⊗OE(m)) ∼=

⊕

0≤r≤p

0≤s≤i

H i−s(SpecA,Ωr
SpecA)⊗Hs(Pc−1,Ωp−r

Pc−1 ⊗OPc−1(m))

∼=
⊕

0≤r≤p

H0(SpecA,Ωr
SpecA)⊗H i(Pc−1,Ωp−r

Pc−1 ⊗OPc−1(m))

since there holds H i−s(SpecA,Ωr
SpecA) = 0 when i − s > 0. Moreover, the Bott formula

implies that the cohomology group H i(Pc−1,Ωp−r
Pc−1 ⊗ OPc−1(m)) vanishes for any i ≥ 1 and

m ≥ 1, see [8, Proposition 14.4] or [23, Theorem 4.5]. This implies H i(E,Ωp
E ⊗OE(m)) = 0
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for any i ≥ 1 and m ≥ 1 and therefore, from definition, we are led to the conclusion that the

higher direct images Riρ∗(Ω
p
E ⊗OE(m)) vanish. �

Consider the long exact sequence of the higher direct images of (2.15) for m = 0. Because

Riρ∗(Ω
p
E ⊗OE(1)) = 0 for every i ≥ 1, the exactness of the long exact sequence implies the

isomorphism Riρ∗ι̃
∗Ωp

X̃

≃
−→ Riρ∗Ω

p
E . Set m = 0 in (2.16) and therefore we get

Riπ∗(Ω
p

X̃
⊗ ι̃∗ OE)

≃
−→ ι∗R

iρ∗ι̃
∗Ωp

X̃

≃
−→ ι∗R

iρ∗Ω
p
E.

Consequently, to complete the proof, it is sufficient to show

Riπ∗Ω
p

X̃

≃
−→ Riπ∗(Ω

p

X̃
⊗ ι̃∗ OE). (2.17)

Now consider the long exact sequence of the higher direct images for (2.14). Thanks to Claim

2.6, the morphism

Riπ∗(Ω
p

X̃
⊗OX̃(m+ 1)) −→ Riπ∗

(
Ωp

X̃
⊗OX̃(m)) (2.18)

is surjective for any m ≥ 1. Observe that OX̃(1) is very ample with respect to the projective

morphism π. According to the relative Serre vanishing theorem [21, Chapter III, Theorem

8.8 (c)], there is a positive integer l0 such that for any l ≥ l0,

Riπ∗(Ω
p

X̃
⊗OX̃(l)) = 0. (2.19)

From (2.18) and (2.19), by induction we have

Riπ∗
(
Ωp

X̃
⊗OX̃(1)) = 0. (2.20)

Finally, let us turn back to the long exact sequence of the higher direct images of (2.14) for

m = 0. It follows from (2.20) that the isomorphism (2.17) holds and this completes the proof

of Lemma 2.5. �

3. Relative Hodge sheaves

In this section, we introduce the notion of relative Hodge sheaves and prove the isomor-

phism (1.3) in Theorem 1.2.

Let X be a smooth proper variety of dimension n and ι : Z →֒ X a smooth closed

subvariety. From definition of closed subvariety, there is a natural surjective morphism

ι# : OX −→ ι∗ OZ (3.1)

and the kernel of ι# is the coherent sheaf of ideals IZ of Z in X. As a consequence, there

exists a natural short exact sequence of coherent OX -modules

0 // IZ // OX
ι#
// ι∗OZ

// 0.

In fact, the notion of relative Hodge sheaves is a generalization of the ideal sheaf IZ above.

Generally, we consider the sheaves of regular differential p-forms over X and Z.

Definition 3.1. For any 0 ≤ p ≤ n, the p-th relative Hodge sheaf associated to the pair

(X,Z) is defined to be the kernel sheaf

Kp
Z := ker

(
Ωp
X

ι#
−→ ι∗Ω

p
Z

)
, (3.2)

where ι# is the natural pullback of regular differential p-forms.
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Note that K0
Z is the ideal sheaf IZ and Kp

Z = Ωp
X if p > dimZ. Moreover, we have the

following lemma.

Lemma 3.2. For any 0 ≤ p ≤ n, there exists a short exact sequence

0 // Kp
Z

// Ωp
X

ι#
// ι∗Ω

p
Z

// 0 (3.3)

of OX -modules.

Proof. It suffices to show that the morphism ι# in (3.2) is surjective. In fact, this is a direct

consequence of local calculation and the surjectivity of (3.1). �

From now on, we assume that X is a smooth proper variety over k and ι : Z →֒ X is a

smooth closed subvariety of codimension c ≥ 2. Let π : X̃ → X be the blow-up of X along

Z and ι̃ : E →֒ X̃ the exceptional divisor. Set ρ = π|E : E → Z. Analogous to (3.3), there is

a short exact sequence of OX̃-modules associated with the pair (X̃, E):

0 // Kp
E

// Ωp

X̃

ι#
// ι̃∗Ω

p
E

// 0. (3.4)

Observe that X̃ −E is isomorphic to X −Z. Intuitively, the relative Hodge sheaves Kp
E and

Kp
Z are “geometrically” dependent on X̃ −E and X −Z, respectively. This implies that Kp

E

should be the “same” as Kp
Z in some sense. The following lemma explains such an “equality”.

Lemma 3.3. Let V be a locally free sheaf over X and set Ṽ := π∗ V. Then we have an

isomorphism π# : Kp
Z(V)

≃
−→ π∗K

p
E(Ṽ) and Riπ∗ K

p
E(Ṽ) = 0 for any i ≥ 1.

Proof. Note that ι and ι̃ are closed inclusions. Due to Lemma 2.5 and the commutativity of

the blow-up diagram π ◦ ι̃ = ι ◦ ρ, we obtain the following canonical isomorphisms

Riπ∗Ω
p

X̃

≃
−→ ι∗R

iρ∗Ω
p
E
∼= Ri(ι ◦ ρ)∗Ω

p
E
∼= Ri(π ◦ ι̃)∗Ω

p
E
∼= Riπ∗ι̃∗Ω

p
E (3.5)

for each i ≥ 1. As a consequence, applying the projection formula to (3.5) yields an isomor-

phism

Riπ∗Ω
p

X̃
(Ṽ)

≃
−→ Riπ∗ι̃∗Ω

p
E(ι̃

∗Ṽ) (3.6)

for each i ≥ 1. Via tensoring (3.4) with the locally free sheaf Ṽ, we get a short exact sequence

0 // Kp
E(Ṽ)

// Ωp

X̃
(Ṽ)

ι̃#
// ι̃∗Ω

p
E(ι̃

∗Ṽ) // 0. (3.7)

Consider the higher direct images of (3.7) along π. Then there is a long exact sequence

0 π∗K
p
E(Ṽ) π∗Ω

p

X̃
(Ṽ) π∗ι̃∗Ω

p
E(ι̃

∗Ṽ)

R1π∗ K
p
E(Ṽ) R1π∗Ω

p

X̃
(Ṽ) R1π∗ι̃∗Ω

p
E(ι̃

∗Ṽ ) −→ · · · .

(3.8)

Combining (3.6) with the exactness of the sequence (3.8), we get Riπ∗K
p
E(Ṽ) = 0 for any

i ≥ 2. Now we claim π# : Kp
Z(V)

≃
−→ π∗K

p
E(Ṽ) and R1π∗K

p
E(Ṽ) = 0. By Lemma 2.5, the
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blow-up diagram (2.8) gives a commutative diagram

0 // Kp
Z(V)

π#

��

// Ωp
X(V)

π# ∼=
��

ι#
// ι∗Ω

p
Z(ι

∗ V)

ρ# ∼=
��

// 0

0 // π∗ K
p
E(Ṽ)

// π∗Ω
p

X̃
(Ṽ)

ι̃#
// π∗ι̃∗Ω

p
E(ι̃

∗Ṽ).

(3.9)

The commutativity of (3.9) implies that the morphism ι̃# in (3.9) is surjective and therefore

there holds the isomorphism π# : Kp
Z(V)

≃
−→ π∗K

p
E(Ṽ). Also, from the exactness of (3.8)

and the surjectivity of ι̃#, we get R1π∗ K
p
E(Ṽ) = 0 and this completes the proof. �

Remark 3.4. Consider the 0-th relative Hodge sheaf, i.e., the ideal sheaf IZ . For any a ≥ 0

and i > 0, one can show that the following results hold:

π∗ OX̃(−aE) ∼= Ia
Z and Riπ∗OX̃(−aE) = 0,

where Ia
Z is a-th power of the ideal sheaf IZ (cf. [28, Lemma 4.3.16]). In general, without

the assumption of smoothness for X, one has to be content with large values of a (cf. [28,

Lemma 5.4.24]).

The following theorem about the cohomology of relative Hodge sheaves is crucial for the

proof in the next section.

Theorem 3.5 ( = Theorem 1.2, (1.3)). For any integer l ≥ 0, the induced morphism

π# : H l(X,Kp
Z(V)) −→ H l(X̃, π−1 Kp

Z(V)) −→ H l(X̃,Kp
E(Ṽ))

is an isomorphism.

Proof. Similar to (2.5), there is a natural composition morphism,

π−1 Kp
Z(V)

��

α

%%
❏

❏

❏

❏

❏

❏

❏

❏

❏

π−1π∗ K
p
E(Ṽ)

// Kp
E(Ṽ)

(3.10)

of f−1OX-modules. Likewise, we have the induced morphism as (2.6)

Kp
Z(V) −→ Rπ∗π

−1 Kp
Z(V) −→ Rπ∗K

p
E(Ṽ)

in the derived category D+(OX) and hence the induced morphism of cohomology groups

π# : H l(X,Kp
Z(V)) −→ H l(X̃, π−1 Kp

Z(V))
α

−→ H l(X̃,Kp
E(Ṽ)).

Applying (2.2) to π∗ K
p
E(Ṽ) with respect to π, one obtains a natural morphism

π∗ K
p
E(Ṽ) −→ Rπ∗π

−1π∗K
p
E(Ṽ)

in D+(OX). The isomorphism π# : Kp
Z(V)

≃
−→ π∗ K

p
E(Ṽ) in Lemma 3.3, the functorial

property of (2.2) and the commutativity of (3.10) yield a commutative diagram with vertical
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isomorphisms

H l(X,Kp
Z(V))

∼=
��

// H l(X̃, π−1 Kp
Z(V))

∼=
�� ((◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

H l(X,π∗ K
p
E(Ṽ))

// H l(X̃, π−1π∗K
p
E(Ṽ))

// H l(X̃,Kp
E(Ṽ)).

(3.11)

To show that π# is an isomorphism, we consider the Leray spectral sequence of Kp
E(Ṽ)

under the blow-up morphism π : X̃ −→ X. Then there exists a spectral sequence {Er} with

the E2-terms

Es,t
2 = Hs(X,Rtπ∗K

p
E(Ṽ)),

converging to a limit term of Es,l−s
∞ which is a graded piece of the graded vector space

H l(X̃,Kp
E(Ṽ)) with respect to a given filtration. Moreover, from a standard result in spectral

sequence theory [16, (13.8) Theorem of Chapter IV], the edge morphism

H l(X,π∗ K
p
E(Ṽ)) ։ El,0

∞ →֒ H l(X̃,Kp
E(Ṽ))

is indeed the composition morphism

H l(X,π∗ K
p
E(Ṽ)) −→ H l(X̃, π−1π∗K

p
E(Ṽ)) −→ H l(X̃,Kp

E(Ṽ)). (3.12)

Again by Lemma 3.3, we have Riπ∗ K
p
E(Ṽ) = 0 for i ≥ 1 and hence Es,t

2 = 0 for any t ≥ 1. It

follows that the edge morphism (3.12) is an isomorphism. As a result, from the commutative

diagram (3.11) we obtain that the morphism

π# : H l(X,Kp
Z(V)) −→ H l(X̃, π−1 Kp

Z(V)) −→ H l(X̃,Kp
E(Ṽ))

is an isomorphism and the proof is now complete. �

Remark 3.6. Abstractly, as a direct consequence of Lemma 3.3 and the degeneracy of

the Leray spectral sequence at E2, we get an isomorphism between H l(X,Kp
Z(V)) and

H l(X̃,Kp
E(Ṽ)) as vector spaces over k. The main reason why we use the argument in The-

orem 3.5 is that the abstract isomorphism above is not canonical. However, in our proof of

the Hodge blow-up formula below we need a canonical isomorphism from H l(X,Kp
Z(V)) to

H l(X̃,Kp
E(Ṽ)) which is induced by the blow-up morphism π.

4. Blow-up formula of Hodge cohomology

The purpose of this section is to explain the sheaf-theoretic proof of blow-up formula (1.4)

of Hodge cohomology in Theorem 1.2.

Suppose that V is a locally free sheaf over X. We will show that the blow-up diagram (2.8)

yields a commutative diagram of Hodge cohomology groups:

Hq(X,Ωp
X(V))

π#

��

ι#
// Hq(Z,Ωp

Z(ι
∗ V))

ρ#

��

Hq(X̃,Ωp

X̃
(Ṽ))

ι̃#
// Hq(E,Ωp

E(ι̃
∗Ṽ)),

(4.1)

where Ṽ = π∗ V. To obtain the Hodge blow-up formula, one needs to show that π# and ρ#

in (4.1) are injective and then verify that the morphism ι̃# induces an isomorphism from the
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co-kernel of π# to the co-kernel of ρ#. Finally, to describe the term coker (ρ#) explicitly,

we establish the projective bundle formula for Hodge cohomology. The trick of the proof is

to plug the square (4.1) into a commutative diagram of long exact sequences containing the

terms of sheaf cohomology of relative Hodge sheaves. Then we can apply some results in

homological algebra to complete the argument.

We divide the proof into three steps.

Step 1. Consider the pair (X,Z). According to Lemma 3.2, there is a natural short exact

sequence of sheaves over X:

0 // Kp
Z

// Ωp
X

ι#
// ι∗Ω

p
Z

// 0.

Twisting the sequence above with V and using the projection formula gives rise to a short

exact sequence

0 // Kp
Z(V)

// Ωp
X(V)

ι#
// ι∗Ω

p
Z(ι

∗ V) // 0. (4.2)

So, following the construction (2.4), we get a commutative ladder of long exact sequences

from (4.2):

· · · // Hq(X,Kp
Z(V))

��

// Hq(X,Ωp
X(V))

��

// Hq(X, ι∗Ω
p
Z(ι

∗ V))

��

// Hq+1(X,Kp
Z(V))

��

// · · ·

· · · // Hq(X̃, π−1 Kp
Z(V))

// Hq(X̃, π−1Ωp
X(V)) // Hq(X̃, π−1ι∗Ω

p
Z(ι

∗ V)) // Hq+1(X̃, π−1 Kp
Z(V))

// · · · .

(4.3)

Moreover, because the topological inverse image functor π−1 is exact, applying π−1 to (4.2)

yields a short exact sequence of π−1 OX-modules

0 // π−1Kp
Z(V)

// π−1Ωp
X(V) // π−1ι∗Ω

p
Z(ι

∗ V) // 0.

Via a straightforward checking, we can show that the blow-up diagram (2.8) induces a com-

mutative diagram of short exact sequences

0 // π−1Kp
Z(V)

π#

��

// π−1Ωp
X(V)

π#

��

ι#
// π−1ι∗Ω

p
Z(ι

∗ V)

ρ#

��

// 0

0 // Kp
E(Ṽ)

// Ωp

X̃
(Ṽ)

ι̃#
// ι̃∗Ω

p
E(ι̃

∗Ṽ) // 0,

where the morphisms (−)# are induced by the pullbacks of regular differential forms. Taking

the cohomology functor H•(X̃,−) to the diagram above, we obtain a commutative ladder of

long exact sequences

· · · // Hq(X̃, π−1 Kp
Z(V))

��

// Hq(X̃, π−1Ωp
X(V))

��

// Hq(X̃, π−1ι∗Ω
p
Z(ι

∗ V))

��

// Hq+1(X̃, π−1 Kp
Z(V))

��

// · · ·

· · · // Hq(X̃,Kp
E(Ṽ))

// Hq(X̃,Ωp

X̃
(Ṽ)) // Hq(X̃, ι̃∗Ω

p
E(ι̃

∗Ṽ)) // Hq+1(X̃,Kp
E(Ṽ))

// · · ·

(4.4)

Since ι and ι̃ are closed inclusions, we have

Hq(X, ι∗Ω
p
Z(ι

∗ V)) = Hq(Z,Ωp
Z(ι

∗ V)) (4.5)
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and

Hq(X̃, ι̃∗Ω
p
E(ι̃

∗Ṽ)) = Hq(E,Ωp
E(ι̃

∗Ṽ)). (4.6)

From (4.3)-(4.6), we get the desired commutative ladder of long exact sequences

· · · // Hq(X,Kp
Z(V))

π#

��

// Hq(X,Ωp
X(V))

π#

��

// Hq(Z,Ωp
Z(ι

∗ V))

ρ#

��

// Hq+1(X,Kp
Z(V))

π#

��

// · · ·

· · · // Hq(X̃,Kp
E(Ṽ))

// Hq(X̃,Ωp

X̃
(Ṽ))

ι̃#
// Hq(E,Ωp

E(ι̃
∗Ṽ)) // Hq+1(X̃,Kp

E(Ṽ))
// · · ·

(4.7)

Step 2. According to Theorem 3.5, we see that the first and the fourth column maps in (4.7)

are isomorphisms. Now we verify the injectivity of the second column map in (4.7). The

basic idea used here is attributed to Deligne [12, Proposition 4.3].

Lemma 4.1. For any integer q ≥ 0, the induced morphism

π# : Hq(X,Ωp
X(V)) −→ Hq(X̃, π−1Ωp

X(V)) −→ Hq(X̃,Ωp

X̃
(Ṽ))

is injective.

Proof. Note that Ωn−p
X (V) is a locally free sheaf over X. The pullback π∗ induces a natural

morphism

π∗Ωn−p
X (V) = Lπ∗Ωn−p

X (V) −→ Ωn−p

X̃
(Ṽ). (4.8)

Recall the definition of Grothendieck’s duality functor π!. For any object E in the bounded

derived category of coherent sheaves Db(Coh(X)), the duality of E is defined to be

π! E := ωX̃ ⊗ π∗ω∨
X ⊗ Lπ∗ E ∼= RHomX̃(Lπ∗ωX , Lπ∗ E ⊗ωX̃),

which is an object in Db(Coh(X̃)). Set E = Ωp
X(V) and then we have

π!Ωp
X(V) = RHomX̃(Lπ∗Ωn−p

X , Ṽ ⊗ ωX̃). (4.9)

According to the canonical isomorphisms

Ωp

X̃
(Ṽ) ∼= (Ωn−p

X̃
)∨ ⊗ Ṽ ⊗ ωX̃

∼= RHomX̃(Ωn−p

X̃
, Ṽ ⊗ ωX̃)

and also (4.9), the morphism (4.8) gives rise to a morphism

Ωp

X̃
(Ṽ) −→ π!Ωp

X(V). (4.10)

In particular, since π! is the right adjoint functor of Rπ∗ there is a natural isomorphism

Hom(Rπ∗Ω
p

X̃
(Ṽ),Ωp

X(V)) ∼= Hom(Ωp

X̃
(Ṽ), π!Ωp

X(V)).

Consequently, there exists a morphism Tr : Rπ∗Ω
p

X̃
(Ṽ) −→ Ωp

X(V) corresponding to the

morphism (4.10); furthermore, we have a composition morphism

Tr ◦ π# : Ωp
X(V) −→ Rπ∗π

−1Ωp
X(V) −→ Rπ∗Ω

p

X̃
(Ṽ) −→ Ωp

X(V) (4.11)

in the derived category D+(OX), and hence it is a morphism of locally free sheaves. Note

that X̃ − E is isomorphic to X − Z under the blow-up morphism π. It follows that the

morphism (4.11) is the identity on the dense open subset X − Z. As a result, the induced

morphism of cohomology

Tr ◦ π# : Hq(X,Ωp
X(V)) −→ Hq(X̃,Ωp

X̃
(Ṽ)) −→ Hq(X,Ωp

X(V))
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is the identity and thus we are led to the conclusion that the morphism π# is injective. �

Now we are in a position to state the abstract Hodge blow-up formula. From Lemma 4.1

and Theorem 3.5, the Four Lemma implies that ρ# in (4.7) is injective too. Note that (4.7)

is a commutative ladder of finite-dimensional k-vector spaces. A standard diagram-chasing,

such as [34, Proposition 5.1], shows that ι̃# in (4.7) induces an isomorphism of k-vector

spaces:

coker π# ∼= coker ρ#,

and thus by the commutative ladder (4.7), we have the abstract blow-up formula:

Hq(X̃,Ωp

X̃
(Ṽ)) ∼= Hq(X,Ωp

X(V))⊕ coker ρ#. (4.12)

Step 3. We will give the projective bundle formula of Hodge cohomology of locally free

sheaves which is indeed well-known to experts. Consider the projective bundle ρ : E −→ Z.

Then there is a canonical isomorphism

c−1⊕

i=0

Ωp−i
Z [−i]

≃
−→ Rρ∗Ω

p
E. (4.13)

In fact, one can show this by essentially using the higher direct images of the relative sheaf

Ωi
E/Z ([14, XI, Theorem 1.1]); for example, see [18, page 22, (4.2.7)] for more details. In

general, let W be a locally free sheaf over Z. Twist (4.13) with W and then the projection

formula leads a canonical isomorphism

c−1⊕

i=0

Ωp−i
Z ⊗W[−i]

≃
−→ Rρ∗(Ω

p
E ⊗ ρ∗W). (4.14)

Taking cohomology Hq(Z,−) of (4.14), we get the following isomorphisms

Hq(E,Ωp
E ⊗ ρ∗W) ∼= Hq(Z,Rρ∗(Ω

p
E ⊗ ρ∗W))

∼= Hq(Z,

c−1⊕

i=0

Ωp−i
Z ⊗W[−i])

∼=

c−1⊕

i=0

Hq−i(Z,Ωp−i
Z ⊗W).

Set W = ι∗ V and then together with the abstract blow-up formula (4.12), we are led to the

final explicit blow-up formula

Hq(X̃,Ωp

X̃
(Ṽ)) ∼= Hq(X,Ωp

X(V))⊕
c−1⊕

i=1

Hq−i(Z,Ωp−i
Z ⊗ ι∗ V).

Remark 4.2. It is of importance to notice that Lemma 4.1 is slightly different from Deligne

[12, Proposition 4.3]. In [12, Proposition 4.3], Deligne considered the induced morphism

π∗ : Hq(X,Ωp
X) → Hq(X̃, π∗Ωp

X) → Hq(X̃,Ωp

X̃
).

The morphism above seems not compatible with the diagram (4.7) very well. The main reason

lies in the fact that the inverse image functor π∗ is not exact and π∗Ωp
X is not isomorphic to

π−1Ωp
X in general.
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5. Applications

In this section, we mainly focus on the applications of Theorem 1.2 in positive characteristic

to the blow-up invariance of the degeneracy of spectral sequences.

Let us fix several notations. Here X is always a smooth proper variety over an algebraically

closed field k of positive characteristic. Let ι : Z →֒ X be a smooth closed subvariety of

codimension c ≥ 2 and π : X̃ −→ X the blow-up of X along Z. In the Subsections 5.1 and

5.2, the index l will always denote an arbitrary nonnegative integer in [0, 2 dimX].

5.1. Hodge cohomology of locally free sheaves. We will obtain the blow-up formula of

total Hodge cohomology of locally free sheaves and discuss its applications.

Definition 5.1. Let X be a smooth proper variety and V a locally free sheaf on X. Denote

by

H l
Hdg(X;V) :=

⊕

p+q=l

Hq(X,Ωp
X ⊗ V)

the l-th total Hodge cohomology of X with coefficients in V. In particular, if V = OX , then we

call H l
Hdg(X) := H l

Hdg(X;OX) the l-th total Hodge cohomology of X. Notice that the term

“total Hodge cohomology” here is often called “Hodge cohomology” in many other literatures.

Recently, Achinger–Zdanowicz [2] obtained the blow-up formula of total Hodge cohomology

by using Voevodsky’s blow-up formula of motives (cf. [39, (3.5.3)]).

Proposition 5.2 ([2, Corollary 2.8.(4)]). There is an isomorphism

H l
Hdg(X̃) ∼= H l

Hdg(X)⊕
c−1⊕

i=1

H l−2i
Hdg (Z)

of total Hodge cohomology.

As an application of Theorem 1.2, we generalize this result to be as follows.

Proposition 5.3. There exists an isomorphism

H l
Hdg(X̃ ;π∗ V) ∼= H l

Hdg(X;V)⊕
c−1⊕

i=1

H l−2i
Hdg (Z; ι∗ V)

of total Hodge cohomology of locally free sheaves.

Proof. By the definition of total Hodge cohomology of locally free sheaves, this is a direct

consequence of Theorem 1.2. �

Furthermore, we will apply Proposition 5.3 to the following interesting problem under

blow-ups.

Problem 5.4 (cf. [17, Question 2.1]). Let X be a smooth projective variety over k. Let L be

an invertible sheaf on X and m a positive integer such that L⊗m ∼= OX . Is

dim H l
Hdg(X;L⊗j) = dim H l

Hdg(X;L) (5.1)

for every j relatively prime to m?
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Remark 5.5. In [32, Proposition 3.5], in the case of char(k) = 0, Pink–Roessler showed

that the answer to Problem 5.4 is affirmative; see also a different proof of Esnault–Ogus

[17, Proposition 2.2]. In positive characteristic, Pink–Roessler posed [32, Conjecture 5.1]: if

dim X ≤ char(k) and X is liftable over the ring W2(k) of 2-Witt vectors, then Problem 5.4

is true. They proved it in this case for (m, char(k)) = 1 ([32, Theorem 3.2]); see for example

[11] for a higher dimensional generalization.

In [17, Remark 3.9], it was illustrated that, by Riemann–Roch theorem, Problem 5.4 holds

for smooth curves without any assumption. In higher dimensional cases, so far, we merely

know that there is a positive answer of Esnault–Ogus [17, Theorem 3.6] for m = char(k) and

X ordinary. In general, this problem seems difficult to be handled.

As an application of Proposition 5.3, one gets the following observation.

Lemma 5.6. With the same assumptions as in Problem 5.4, if the equality (5.1) holds for

(X,L) and (Z, ι∗L), then so does for (X̃, π∗L).

Proof. Suppose that there is a positive integer m such that (π∗L)⊗m ∼= OX̃ . By the projection

formula, we have

OX
∼= π∗ OX̃

∼= π∗π
∗L⊗m ∼= L⊗m ⊗ π∗OX̃

∼= L⊗m

and hence (ι∗L)⊗m ∼= OZ . By the hypothesis that (5.1) holds for (X,L) and (Z, ι∗L),

Proposition 5.3 yields

dim H l
Hdg(X̃; (π∗L)⊗j) = dim H l

Hdg(X;L⊗j) +
c−1∑

i=1

dim H l−2i
Hdg (Z; (ι∗L)⊗j)

= dim H l
Hdg(X;L) +

c−1∑

i=1

dim H l−2i
Hdg (Z; ι∗L)

= dim H l
Hdg(X̃ ;π∗L)

for relatively prime j and m. Hence, the equality (5.1) holds for (X̃, π∗L). �

Using this lemma, one can construct many new examples such that the equality (5.1) holds.

Example 5.7. With X as in the example of [17, Theorem 3.6], if L⊗char(k) ∼= OX , Lemma

5.6 implies that (5.1) holds for the blow-up (X̃, π∗L) of (X,L) at points or smooth curves.

Specifically, in the three-dimensional case, one has

Corollary 5.8. Let X be a smooth projective threefold and L an invertible sheaf on X. Then

the equality (5.1) holds for (X̃, π∗L) if and only if it holds for (X,L).

Proof. If the equality (5.1) holds for (X,L), then it holds for (X̃, π∗L) by Lemma 5.6 since

it holds for points and smooth curves as shown in Example 5.7.

Conversely, suppose that (5.1) holds for (X̃, π∗L) and (π∗L)⊗m ∼= OX̃ . Recall again that

(5.1) holds for points and smooth curves, and thus Proposition 5.3 gives

dim H l
Hdg(X;L⊗j) = dim H l

Hdg(X̃ ; (π∗L)⊗j)−
c−1∑

i=1

dim H l−2i
Hdg (Z; (ι∗L)⊗j)
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= dim H l
Hdg(X̃ ;π∗L)−

c−1∑

i=1

dim H l−2i
Hdg (Z; ι∗L)

= dim H l
Hdg(X;L)

for relatively prime j and m. �

5.2. Algebraic de Rham cohomology. Let X be a smooth projective variety over k and E

an algebraic vector bundle on X with an integrable connection. We denote by H l
DR(X/k; E)

the l-th algebraic de Rham cohomology of X with coefficients in E (see Grothendieck [19]).

We also have the twisted Hodge–de Rham spectral sequence

Ep,q
1 = Hq(X,Ωp

X/k ⊗ E) =⇒ Hp+q
DR (X/k; E). (5.2)

Then the twisted Hodge–de Rham spectral sequence (5.2) degenerates at E1 if and only if

dim H l
Hdg(X; E) = dim H l

DR(X/k; E)

for every integer l ≥ 0. Naturally, we can ask the following:

Problem 5.9. Is there an isomorphism

H l
DR(X̃/k;π∗ E) ∼= H l

DR(X/k; E)⊕
c−1⊕

i=1

H l−2i
DR (Z/k; ι∗ E) (5.3)

of algebraic de Rham cohomology in positive characteristic?

Remark 5.10. Over the complex number field, the answer to this problem is a consequence

of Serre’s GAGA, Grothendieck–Deligne’s comparison theorem and [10, Theorem 1.1].

If the answer to Problem 5.9 is affirmative, then Proposition 5.3 yields the following.

Corollary 5.11. Suppose that (5.3) holds. Then the E1-degeneracy of the twisted Hodge–de

Rham spectral sequence (5.2) holds for (X, E) and (Z, ι∗ E) if and only if so does for (X̃, π∗ E).

Proof. Suppose that the isomorphism (5.3) holds. Then, by Proposition 5.3, we have

dim H l
DR(X̃/k;π∗ E)− dim H l

Hdg(X̃;π∗ E)
︸ ︷︷ ︸

≤0

= dim H l
DR(X/k; E)− dim H l

Hdg(X; E)
︸ ︷︷ ︸

≤0

+

c−1∑

i=1

(
dim H l

DR(Z/k; ι
∗ E)− dim H l−2i

Hdg (Z; ι∗ E)
︸ ︷︷ ︸

≤0

)
.

Hence, the corollary follows. �

Finally, we say a few words on the birational invariance for E1-degeneracy of the Hodge–de

Rham spectral sequence (1.1). In positive characteristic, Mumford [30] gave several explicit

examples of smooth projective surfaces with non-closed global 1-forms; this means the exterior

derivative

d : H0(X,Ω1
X) −→ H0(X,Ω2

X)

is non-zero, which implies that the Hodge–de Rham spectral sequence (1.1) does not degen-

erate at E1. This also means that, in general, the E1-degeneracy of Hodge–de Rham spectral

sequence (1.1) is not a birational property of smooth projective varieties of dimension ≥ 4.

Furthermore, we have the following observation for smooth projective surfaces.
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Corollary 5.12. The E1-degeneracy of the Hodge–de Rham spectral sequence (1.1) is a

birational property of smooth projective surfaces over k of positive characteristic.

Proof. Note that the weak factorization theorem holds for smooth projective surfaces, i.e.,

any birational map between smooth projective surfaces is factorized by finite sequences of

blow-ups and blow-downs along points (cf. [21, Chapter V, Theorem 5.5]). Therefore, the

corollary follows from [2, Corollary 2.9.(1)]. �

In positive characteristic, it is known that the Hodge–de Rham spectral sequence degen-

erates at E1 for smooth projective curves (see [15]). Hence, there is a natural problem for

threefolds.

Problem 5.13. Is the E1-degeneracy of the Hodge–de Rham spectral sequence (1.1) a bira-

tional property for smooth proper threefolds over k of positive characteristic?

5.3. Hochschild–Kostant–Rosenberg theorem in positive characteristic. In this sub-

section, we will consider the blow-up invariance of the Hochschild–Kostant–Rosenberg theo-

rem in positive characteristic.

Throughout this subsection, the index l denotes any integer in [− dim X, dim X].

Definition 5.14. Let X be a smooth proper variety over k. The Hochschild complex of X

is defined as

HH•(X) := L∆∗(∆∗ OX)

where ∆ : X −→ X ×k X is the diagonal. For a locally free sheaf V on X, let

HHl(X;V) := H−l(X,HH•(X)⊗ V)

be the Hochschild homology of X with values in V. In particular, if V = OX , then

HHl(X) := HHl(X;OX)

is called the Hochschild homology of X.

We have the Hochschild–Kostant–Rosenberg spectral sequence (for short HKR spectral se-

quence)

Ep,q
2 = Hq(X,Ωp

X) =⇒ HHp−q(X),

with the differential dr having bi-degree (r−1, r). Hence, with hq(X,Ωp
X) := dimk H

q(X,Ωp
X),

one has the following inequality

dim HHl(X) ≤
∑

p−q=l

hq(X,Ωp
X)

for any integer l ∈ [− dim X,dim X]; furthermore, the equality holds if and only if the HKR

spectral sequence degenerates at E2. Following [5], we also say that X satisfies the weak

HKR theorem if the E2-degeneracy of the HKR spectral sequence holds on X. We say that

X satisfies the strong HKR theorem if there exists an isomorphism

HH•(X) ∼=

dim X⊕

p=0

Ωp
X [p],
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in the derived category Db(Coh(X)). Hence, the strong HKR theorem for X implies the weak

HKR theorem on X. Moreover, the strong HKR theorem implies the Hochschild–Kostant–

Rosenberg theorem, namely, there is an isomorphism

HHl(X) ∼=

dim X⊕

p=0

Hp−l(X,Ωp
X )

for every integer − dim X ≤ l ≤ dim X. It is now well-known that the strong HKR theorem

holds in characteristic zero (cf. [37, 43, 38]). In positive characteristic, there is a natural

problem (cf. [5, Question 1.1]):

Problem 5.15. Is the strong HKR theorem true in positive characteristic?

Partially, the answer to this problem is affirmed by [43, Theorem 4.8] and [5, Corollary

1.5] as follows.

Lemma 5.16. Let X be a smooth proper variety over k. If char(k) ≥ dim X, then X satisfies

the strong HKR theorem.

In summary, combining with Theorem 1.2, we have the following result.

Corollary 5.17. Assume that char(k) ≥ dim X. With the same setting as in Theorem 1.2,

there is an isomorphism

HHl(X̃ ;π∗ V) ∼= HHl(X;V)⊕HHl(Z; ι∗ V)⊕(c−1)

for − dim X ≤ l ≤ dim X.

Proof. By Lemma 5.16, for any smooth proper variety Y , we have an isomorphism

HH•(Y )⊗ V ∼=

dim Y⊕

p=0

Ωp
Y ⊗ V[p]

in the derived category. Taking cohomology yields

HHl(Y ;V) ∼=
⊕

p−q=l

Hq(Y,Ωp
Y ⊗ V).

Combining this with Theorem 1.2, we obtain

HHl(X̃ ;π∗ V) ∼=
⊕

p−q=l

Hq(X̃,Ωp

X̃
⊗ π∗ V)

∼=
⊕

p−q=l

(
Hq(X,Ωp

X ⊗ V)⊕
c−1⊕

i=1

Hq−i(Z,Ωp−i
Z ⊗ ι∗ V)

)

∼= HHl(X;V)⊕HHl(Z; ι∗ V)⊕c−1

for any − dim X ≤ l ≤ dim X. �

In the rest of this subsection, we shall study the blow-up invariance of the E2-degeneracy

of the HKR spectral sequence. To this end, we start with the following result.

Lemma 5.18. For every integer − dim X ≤ l ≤ dim X, there holds an isomorphism of

Hochschild homology

HHl(X̃) ∼= HHl(X)⊕HHl(Z)⊕(c−1).
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Proof. It is known that, for any smooth proper variety Y , HHl(Y ) ∼= HHl(D
b(Y )) (cf. [27,

Theorem 4.5]). By Orlov’s blow-up formula [31] (cf. [24, Proposition 11.18]), we have a

semiorthogonal decomposition

Db(X̃) = 〈Lπ∗ Db(X), ι̃∗(OE(1)⊗ ρ∗ Db(Z)), . . . , ι̃∗(OE(c− 1)⊗ ρ∗ Db(Z))〉.

Since the functors ι̃∗(OE(s) ⊗ ρ∗−) for 1 ≤ s ≤ c − 1 and Lπ∗ are full-faithful, ι̃∗(OE(s) ⊗

ρ∗Db(Z)) is equivalent to Db(Z) and Lπ∗ Db(X) is equivalent to Db(X) as triangulated cate-

gories. Therefore, the corollary follows from Kuznetsov’s additivity for Hochschild homology

([27, Theorem 7.3]). �

Corollary 5.19. The weak HKR theorem holds for X and Z if and only if so does for X̃.

Proof. By Lemma 5.18 and (1.5), we have

dim HHl(X̃)−
∑

p−q=l

hq(X̃,Ωp

X̃
)

︸ ︷︷ ︸
≤0

= dim HHl(X)−
∑

p−q=l

hq(X,Ωp
X )

︸ ︷︷ ︸
≤0

+
c−1∑

i=1

(
dim HHl(Z)−

∑

p−q=l

hq−i(Z,Ωp−i
Z

︸ ︷︷ ︸
≤0

)
.

Consequently, this corollary follows from the definition of the weak HKR theorem. �

In particular, we have the following.

Corollary 5.20. If dim Z ≤ char(k) < dim X, then the weak HKR theorem holds for X if

and only if it holds for X̃.

Example 5.21. The weak HKR theorem holds for smooth complete intersections in P
N ; see

for example [5, Example 1.7]. Therefore, for instance, in char(k) = 2, based on the above

corollary and [5, Example 1.4], one may construct many new examples of smooth projective

varieties satisfying the weak HKR theorem by blowing up along points, curves or smooth

surfaces.

Naturally, one may ask the following problem.

Problem 5.22. Suppose that X is a smooth proper variety over k and dim X−2 ≤ char(k) <

dim X. Is the weak HKR theorem a birational property of X?

Remark 5.23. In [3], Antieau–Bhatt–Mathew will show that the HKR spectral sequence

does not generally degenerate at E2 in the case of dim X = 2 · char(k) > 0. This also gives a

negative answer to Problem 5.15. Based on their examples, Corollary 5.19 can provide more

examples such that the HKR spectral sequence does not generally degenerate at E2.

Finally, we have the following observation to construct more higher odd-dimensional ex-

amples such that the HKR spectral sequence does not generally degenerate at E2.

Corollary 5.24. Let X be a smooth proper variety over k and E a locally free sheaf of rank

c on X. Then the weak HKR theorem holds for the projective bundle P(E) if and only if it

holds on X.
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Proof. Similar to Lemma 5.18, by Orlov’s projective bundle formula ([31] or [24]) and Kuznetsov’s

additivity of Hochschild homology, we have

HHl(P(E)) ∼= HHl(X)⊕c.

As a result, we get

dim HHl(P(E))−
∑

p−q=l

hq(P(E),Ωp
P(E)) = c ·

(
dim HHl(X)−

∑

p−q=l

hq(X,Ωp
X )

)
.

Thus, this corollary follows from the definition of the weak HKR theorem. �

Remark 5.25. Combining this with Antieau–Bhatt–Mathew’s examples, one can obtain

odd-dimensional (≥ 5) smooth proper varieties such that the HKR spectral sequence does

not degenerate at E2.
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