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Abstract Let G be a k-connected graph with & > 2. In this paper we first
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classical theorem of Erdés and Gallai on the existence of long cycles under the
average degree condition.
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1 Introduction

We use Bondy and Murty [2] for terminology and notations not defined here
and consider finite simple graphs only.

Let G be a graph and H a subgraph of G. We use V(H) and E(H) to
denote the set of vertices and edges of H, respectively, and use e(H) for the
number of the edges of H. For a vertex v € V(G), Ng(v) denotes the set, and
dgr(v) the number, of neighbors of v in H. We call dy(v) the degree of v in
H. Let x and z be two distinct vertices of G. A path connecting x and z is
called an (z, z)-path. For a subset Y of V(G), an (z, z)-path passing through
all the vertices in Y is called an (z,Y, 2)-path, and a cycle passing through
all the vertices in Y is called a Y-cycle. If Y contains only one vertex y, an
(z,{y}, 2)-path and a {y}-cycle are simply denoted by an (z,y, z)-path and a
y-cycle, respectively. The distance between z and z in H, denoted by dg(z, 2),
is the length of a shortest (z, z)-path with all its internal vertices in H. If no
such a path exists, we define dy(x, z) = oco. The codistance between x and z
in H, denoted by dj;(z, z), is the length of a longest (z, z)-path with all its
internal vertices in H. If no such a path exists, we define d};(x,z) = 0. We
remark that in the definitions of dy(x, 2) and d%;(z, z), the vertices = and z
is not necessarily in H. When no confusion occurs, we use N(v), d(v), d(z, 2)
and d*(z, z) instead of Ng(v), dg(v), dg(z, z) and d§(z, z), respectively.

Long path and cycle problems are interesting and important in graph the-
ory and have been deeply studied, see [1,7]. The following theorem by Erdé&s
and Gallai [5] opened the study on long paths with specified end vertices.

Theorem 1 (Erd8s and Gallai [5]) Let G be a 2-connected graph and x and
z be two distinct vertices of G. If d(v) > d for every vertex v € V(G)\{x, 2},
then G contains an (z, z)-path of length at least d.

Theorem 1 has a stronger extension due to Enomoto [4].

Theorem 2 (Enomoto [4]) Let G be a 2-connected graph and x and z be
two distinct vertices of G. If d(v) > d for every vertex v € V(G)\{z, z}, then
for every given vertex y € V(G)\{z,z}, G contains an (z,y, z)-path of length
at least d.

Another direction of extending Theorem 1 is to weaken the minimum de-
gree condition to the average degree condition. Fan [6] finished this work as
follows.

Theorem 3 (Fan [6]) Let G be a 2-connected graph and x and z be two
distinct vertices of G. If the average degree of the vertices other than x and z
is at least v, then G contains an (z, z)-path of length at least r.

The following graph shows that one cannot replace the minimum degree
condition in Theorem 2 by the average degree condition. Let H be the complete
graph on n— 1 vertices and x, z € V(H), and G be the graph obtained from H
by adding a new vertex y and two edges xy, yz. Then the length of the longest
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(z,y, z)-path in G is 2, less than the average degree of the vertices other than
z and z when n > 5.
Our first result in this paper is a generalization of Theorem 3.

Theorem 4 Let G be a k-connected graph with k > 2, and x and z be two
distinct vertices of G. If the average degree of the vertices other than x and z
is at least r, then for any subset Y of V(G) with |Y| =k — 2, G contains an
(z,Y, z)-path of length at least r.

We remark here that the size of Y cannot be replaced by k — 1. Let H be
a complete graph on n — k+ 1 vertices with n > 3k and uy = z,ug,...,up = 2
be k vertices of H, and Y = {y1, y2,...,yx—1} be a set of vertices not in V(H).
We construct a graph G with V(G) = V(H)UY and E(G) = E(H) U {w;y; :
1<i<k1<j<k—1}. Then G is a k-connected graph and the longest
(z,Y, z)-path has length 2k — 1, which is less than

2vevioniz W) (k=Dk+(k=2)(n—1)+(n—2k+1)(n—k)

n—2 n—2
n? —2kn +n + 3k% — 3k
n—2 '

Besides, the complete graph K, with n > k + 1 shows that the bound r on
the length of the (z,Y, z)-path is sharp.

There also exist results on long cycles passing through specified vertices
in graphs. Theorem 5 shows the existence of long cycles in 2-connected graph
under the minimum degree condition, and Theorem 6 extends Theorem 5 to
graphs with higher connectivity.

Theorem 5 (Locke [8]) Let G be a 2-connected graph. If the minimum degree
of G is at least d, then for any two vertices y1 and yo of G, G contains either
a {y1,y2}-cycle of length at least 2d or a Hamilton cycle.

Theorem 6 (Egawa, Glas and Locke [3]) Let G be a k-connected graph
with k > 2. If the minimum degree of G is at least d, then for any subset' Y
of V(G) with |Y| =k, G contains either a Y-cycle of length at least 2d or a
Hamilton cycle.

On the existence of long cycles in graphs with a given number of edges,
Erdds and Gallai [5] gave the following result.

Theorem 7 (Erd8s and Gallai [5]) Let G be a 2-edge-connected graph on
n vertices. Then G contains a cycle of length at least 2e(G)/(n — 1).

In this paper, as an application of Theorem 4, we give the following theorem
on long cycles passing through specified vertices of graphs with a given number
of vertices and edges.

Theorem 8 Let G be a k-connected graph on n vertices with k > 2. Then for
any subset Y of V(G) with |Y| = k—1, G contains a Y -cycle of length at least
2e(@)/(n —1).
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In Theorem 8, one cannot expect a cycle passing through k specified
vertices of length at least 2e(G)/(n — 1). Let H be a complete graph on
n — k vertices with n > 3k and wy,us,...,ur be k vertices of H, and Y =
{v1,v2,...,v;} be a set of vertices not in V/(H). We construct a graph G with
V(@) =V(H)UY and E(G) = E(H)U{uw; : 1 <4,j < k}. Then G is a
k-connected graph and the longest Y-cycle has length 2k, which is less than

2¢(G)  (n—k)(n—k—1)+2k?
n—1 n—1 '

In the following section we will give some further notations and preliminary
results that will be used later. The proofs of Theorems 4 and 8 are given in
Sections 3 and 4, respectively.

2 Preliminaries

Let G be a graph and P, H two disjoint subgraphs of G. We use E(P, H) to
denote the set, and e(P, H) the number, of edges with one vertex in P and
the other in H. If E(P,H) # (), then we call P and H are joined. We use
Np(H) to denote the set of vertices in P which are joined to H. If z is a
vertex in G — P, we say that x is locally k-connected to P (in G) if there are k
paths connecting = and vertices in P such that any two of them have only the
vertex = in common. We say that H is locally k-connected to P (in G) if for
every vertex x € V(H), x is locally k-connected to P. Note that if H is locally
k-connected to P, then H is locally [-connected to P for all [, 0 <[ < k; and,
if G is k-connected and |V (P)| > k, then H is locally k-connected to P in G.
The following propositions on local k-connectedness are proved in [6].

Proposition 1 (Fan [6]) Let H and P be two disjoint subgraphs of a graph G.
If H is locally k-connected to P in the subgraph induced by V(H)UV (P), then
E(P,H) contains an independent set of t edges, where t > min{k, |V (H)|}.

Proposition 2 (Fan [6]) Let H and P be two disjoint subgraphs of a graph
G. Let u € Np(H) and G’ be the graph obtained from G by deleting all edges
from u to H. If H is locally k-connected to P in G, then H is locally (k —1)-
connected to P in G'.

Proposition 3 (Fan [6]) Let H and P be two disjoint subgraphs of a graph
G, and B a block of H. Let H' be the subgraph obtained from H by contracting
B. If H s locally k-connected to P in G, then H' is also locally k-connected
to P in the resulting graph.

Next we introduce the concept of local maximality for paths.

Let P be a path of a graph G, and u,v € V(P). We use Pu,v] to denote
the segment of P from u to v, and P(u,v) the segment obtained from P[u, v]
by deleting the two end vertices v and v. Let H be a component of G — P.
We say that P is a locally longest path with respect to H if we cannot obtain



Long paths and cycles passing through specified vertices 5

a longer path than P by replacing the segment Plu,v] by a (u,v)-path with
all its internal vertices in H for any u,v € V(G). In other words, P is locally
longest with respect to H if, for any u,v € V(P),

e(Plu,v]) > dj(u,v).

If Pis an (z,Y, z)-path of G, where z,2z € V(G) and Y C V(G), then we
say that P is a locally longest (x,Y, z)-path with respect to H if we cannot
obtain an (z,Y, z)-path longer than P by replacing the segment Plu,v] with
Y NV (P(u,v)) =0 by a (u,v)-path with all its internal vertices in H. Note
that if P is a longest path (longest (z,Y, z)-path) in a graph G, then, of course,
P is a locally longest path (locally longest (z,Y, z)-path) with respect to any
component of G — P. If two vertices v and v’ in V(P) are joined to H by
two independent edges, then we call {u,u'} a strong attached pair of H to
P. A strong attachment of H to P (in G) is a subset T' = {uy,ug,...,us} C
Np(H), where u;, 1 < i < t, are in order along P, such that each ordered
pair {u;, ui+1}, 1 <i <t -1, is a strong attached pair of H to P. A strong
attachment T of H to P is mazimum if T has maximum cardinality over all
strong attachments of H to P.
The following result due to Fan is useful in our proofs.

Lemma 1 (Fan [6]) Let G be a graph and P an (z,z)-path of G. Suppose
that H is a component of G—P and T = {u1,us, ..., u} is a maximum strong
attachment of H to P. Set S = Np(H)\T. Then the following statements are
true:

(1) Every vertez in S is adjacent to exactly one vertex in H.

(2) For each segment Plu;,u;i+1], 1 <1i <t —1, suppose that

Np(H) NV (Pluj, uit1]) = {ag, a1, . .., aq, ag41},

where ag = u;, ag+1 = Ui+1 and a;, 0 < j < g+ 1, are in order along P. Then
there is a subscript m, 0 < m < q, such that

Nu(aj) = Nu(ao), for 0 <j <m,

and
Ny(a;) = Ng(ag1), form+1<j<qg+1.

Besides, if
Np(H)NV(Plz,u1]) = {a1,...,aq, ag+1},

where, agy1 = uy, then
NH(CLj) = NH(CLq+1), fOT 1 S] <q+1;

and if
Np(H)NV(Plu, 2]) = {ao,a1,--., a4},

where, ag = uy, then

Nu(aj) = Nu(ao), for0<j<gq.
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(3) If H is locally k-connected to P in G, then
t > min{k, h + da},

where h = |V (H)| and dz is the number of vertices in Np(H) each of which
has at least two neighbors in H.

Lemma 1 (2) is somewhat different from that in [6], but the proofs of them
are similar.
For a path P, we use [(P) to denote the length of P.

Lemma 2 Let G be a graph, P an (z,Y, z)-path of G, where z,z € V(G) and
Y c V(G), H a component of G — P and T = {u1,us,...,u} a mazimum
strong attachment of H to P. Set S = Np(H)\T and s = |S|. Suppose that P
is a locally longest (x,Y, z)-path with respect to H, and 0 = |{x,z} N Np(H)|.
Set
T, = {u; € T\{u¢} : Y NV (P(uj,uit1)) = 0} and t, = |T|.
Then
WP) > > di(uiuigr) +2(s +t —t,) — 0.
u €T

Proof If t = 0, then s = 0 and the statement is trivially true. Suppose now
that ¢t > 1.
Consider a segment Plu;, u;y1], 1 <i <t — 1. Suppose that

NP(H) N V(P[ui,uiﬂ]) = {ao, A1y, Qg aq+1},

where ¢ = |S NV (Plui, wit1])|, ao = i, ag41 = Uit1, and a;, 0 < j < g+ 1,
are in order along P.

If Y NV(P(ui,uir1)) = 0, then by Lemma 1 (2), there is a subscript m,
0 <m < g, such that

Ni(ag) = Nu(am) and Ng(ag11) = Na(am41).

Therefore
g (am, ami1) = di(ao, age1) = dpy (us, wit)-

Since P is a locally longest (x,Y, z)-path with respect to H, we have

q q

l( uuuerl § agaajJrl —dH(amaaerl +§ dH a’Jva’J+1)
j=0
Jj#m

= di(ui,uirr) + Y dig(aj, aj11),
i=0
J#Fm

Note that d};(a;,a;+1) > 2, for every j, 0 < j < g. We have

U(Pluiy wiv1]) > diy(wi, uiv1) + 2q.
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Y NV(P(u;,uiq1)) # 0, then noting that [(Pla;, a;+1]) > 2, we have
q
1(Plui, uir]) =Y U(Plaj, a;41]) > 2q + 2.
j=0
Besides, consider the two segments P[x,u1] and Plut, z]. Suppose that
Np(H)NV(Plz,u1]) = {ag,a1,-..,am}

and

NP(H) n V(P[ut7 ]) = {anﬂ-laam-i-% s 7aq+1}7

where m = |[S NV (Plz,u1])], g — m = |SNV(Plug, 2])|, am = t1, Gmy1 =
u, and aj, 0 < j < ¢+ 1 are in order along P. Note that {(P[z,ao]) +
l(Plag41,2]) > 2 — 0 and l(Pla;,aj+1]) > 2, for every 0 < j < g, and j # m,
we have
U(Plz,u1]) + I(Plug, 2]) > 29+ 2 — 6.
Thus summing over the lengths of all the segments, yields
t—1
U(P) = I(Pla,ur)) + > U(Plus, uira]) + U(Plug, 2])
i=1

> 2(|SNV(Plz,u1])| + SNV (Plug, 2])|) +2 — 0

Z (dy (wiswiv1) +2[S NV (Plug, uiya])])

+ Z @[S NV (Plus, wiv1])| +2)

= Z A (wi, uip1) +2(s+t —t,) — 6.
u €T

This ends the proof.

For a strong attachment T = {1, uz,...,u}, the pairs {uj,ujy1}, 1 <
7 <t—1, are called strong attached pairs supported by T, and we call a strong
attached pair {uj,uj+1} of H to P transitive if Y NV (P(uj,ujr1)) = 0.

A connected graph is separable if it has at least one cut-vertex.

Lemma 3 Let G be a graph and P an (x, z)-path of G. Suppose that H is a
separable component of G — P, B is an endblock of H, b is the cut vertex of
H contained in B, and M = B —b. Let T = {u1,us,...,u} be a mazimum
strong attachment of H to P. If H is locally k-connected to P, then

(1) INp(M)NT| > min{k —1,m + ds}; and

(2) there exist at least min{k — 1,m + d,} strong attached pairs supported by
T which are joined to M,

where m = |V(M)| and df is the number of vertices in Np(M) each of which
has at least two neighbors in H.
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Proof Since H is locally k-connected to P, |V(P)| > k. It is easy to know that
M is locally (k— 1)-connected to P in the subgraph induced by V(P)UV (M).
By Proposition 1, there are min{k — 1, m} independent edges in E(P, M). Let
viw;, 1 < i <min{k — 1, m} be such edges, where v; € V(P) and w; € V(M).

If v; has at least two neighbors in H, then by Lemma 1 (1), v; € T. If v;
has only one neighbor w; in H, then by Lemma 1 (2), there exists a vertex
v; (maybe equal to v;) in T which also has only one neighbor w; in H. This
implies that |[Np(M)NT| > min{k — 1, m}.

Now, we prove (1) by induction on dj. If d;, = 0, then by the analysis
above, the assertion is true. Thus we assume that d > 1.

Let u; be a vertex in Np (M) which has at least two neighbors in H (u; is of
course in T by Lemma 1 (1)). Let G’ be the graph obtained from G by deleting
all edges from u; to H. By Proposition 2, H is locally (k — 1)-connected to P
in G.

If u; = wy or uy, or {uj_1,u;j4+1} is joined to H by two independent edges,
then 77 = T\{u;} is a strong attachment of H to P in G’. Since u, is joined
to at least two vertices of H in G, any strong attachment of H to P in G’
together with u; is a strong attachment of H to P in G. Since [T'| =t —1, we
see that 7" is a maximum strong attachment of H to P in G’. By the induction
hypothesis,

INp(M)NT'| > min{k — 2,m +d) — 1}.

Therefore
INp(M)NT|>min{k —1,m+d,},

as required.
If uj € {ug,...,us—1}, and {u;—1,u;41} are not joined to H by two inde-
pendent edges, i.e.,

Ny (uj-1) = Nu(ujs1) = {w},
for some w € V(H), then
T/ = T\{uj,uj+1} = {’U,l, ey Uj—1,Uj42, - - - ,ut}

is a strong attachment of H to P in G'. We prove now that 7’ is maximum by
showing that any strong attachment of H to P in G’ has cardinality at most
t—2=|T"|.

Let v1,v2 (3 u;) be the two vertices in Np(H) which are closest to u; on
P, say v; preceding, and vy following, u; on P (but not necessarily adjacent
to uj on P). Since |Ng(u;)| > 2, it follows from Lemma 1 (2) that

Nu(v1) = N (uj—1) = {w} = Nu(uj41) = Nu(v2).

By the choices of v1 and vg, for any maximum strong attachment {a1, as, ..., ap}
of H to Pin G’, there is an integer [, 0 < [ < p, such that v, vy € V(P[a;, ai41]),
where ap = = and ap41 = 2. Since Ng(vi) = {w} = Ng(v2), it follows from
Lemma 1 (2) that either Ng(a;) or Ny(aj+1) = {w}. The former implies a
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strong attachment {a1,...,a;, u;,v2, aiy1,...,ap}, the latter a strong attach-
ment {a1,...,a;,v1,u;,041,...,0p}, of H to P in G; in either case we have
that p + 2 < ¢, that is, p < t — 2 = |T”|. This shows that 7’ is a maximum
strong attachment of H to P in G’, as claimed. As before, by the induction
hypothesis,

INp(M)NT'| > min{k — 2,m +dj — 1}.

Consequently
INp(M)NT|>min{k —1,m +d,},

which completes the proof of (1).

Now we prove (2). Clearly for every vertex u; € Np(M) N T\{u}, the
strong attached pair {u;,u 11} supported by T' is joined to M. If |[Np(M) N
T\{u¢}| > min{k — 1,m + d5}, then the assertion is true. By (1), we assume
that [Np(M)NT| =min{k —1,m+ds} and u, € Np(M)NT.

By Lemma 1 (3), ¢t > min{k,h + d2} > min{k — 1,m + d}} + 1. This
implies that there exists at least one vertex in T\Np(M). We chose a vertex
u; € T\Np(M) such that u;y1 € Np(M)NT. Then {u;, u;+1} together with
{u;, w41} for u; € Np(M)UT\{u,} are min{k — 1, m + d5} strong attached
pairs supported by T joined to M.

Let P, H, B, M be defined as in Lemma 3. In the following, we call a strong
attached pair which is joined to M a good pair (with respect to M). Let
{u;,u;41} be a strong attached pair. If one of the vertices in {w;,u 41} is
joined to M, and the other to H — M, then we call it a better pair (with
respect to M); and if one of the vertices in {u;, u;11} is joined to M, and the
other to H — B, then we call it a best pair (with respect to M).

3 Proof of Theorem 4

If £ = 2, then the assertion is Theorem 3. So we assume that £ > 3. Since
G is k-connected and |Y| = k — 2, G contains an (x,Y, z)-path. In order to
prove the theorem, we choose a longest (x,Y, z)-path P in G. Clearly |V (P)| >
|Y| + 2 = k. Moreover, by the k-connectedness of G, for each component H of
G — P, H is locally k-connected to P, and P is a locally longest (z,Y, z)-path
with respect to H. So it is sufficient to prove that:

Proposition 4 Let G be a graph, P an (z,Y, z)-path of G, where z,z € V(G),
Y C V(G), and |Y| = k — 2. Suppose that the average degree of vertices in
V(G)\{x, z} is r. If for each component H of G — P, H is locally k-connected
to P, and P is a locally longest (x,Y, z)-path with respect to H, then I(P) > r.

Proof We prove this proposition by induction on |[V(G— P)|. If V(G — P) = {),
noting that r < |[V(G)| — 1, the result is trivially true. So we assume that
V(G — P) # 0. Let H be a component of G — P.
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Let d = |Np(H)|, 0 = |{z,2} N Np(H)| and Np(H) = {v1,v9,...,v4},
where v;, 1 <1 < d, are in order along P. Then, we have

d—1

I(P) = I(Plz,n]) + Zl(P[vi,viH]) + I(Pvg, 2]).

It is easy to know that [(Plx,v1]) + I(Plvg, 2]) > 2 — 0 and I(Plv;, vi41]) > 2
for 1 <i <d— 1. Thus, we have
I(P)>2d— 6.

Note that d > k by the local k-connectedness of H to P and clearly 6 < 2.
If r < 2k —2, then we have [(P) > 2k —2 > r, and the proof is complete. Thus
we assume that

r> 2k —2. (1)

Besides, if d > (r + 0)/2, then [(P) > r, and we complete the proof. Thus, we
assume that

d< (r+6)/2. 2)

Let T = {u1,us,...,u;} be a maximum strong attachment of H to P. Set
S = Np(H)\T and s = |S| (note that s + ¢ = d). Let T, = {u; € T\{w:} :
Y NV (P(ui, uit1)) = 0} and t, = |T;|.

Clearly, for every transitive strong attached pair {u;, u;+1}, where u; € T},
we have

A (uj, uje1) > 2. (3)
We distinguish two cases:
Case 1 H is nonseparable.

Let h = |[V(H)| and r’ the average degree of vertices in V(H). If v'h + e(P —
{z,z}, H) < rh, then we consider the graph G’ obtained from G by deleting
the component H. Note that

> de() =r(IV(G)| -2) —1'h—e(P - {x,2},H)
veV (G )\{z,z}
>r(|V(G)|—2)—rh
r(V(G)] - 2).

By the induction hypothesis, we have I[(P) > r, and the proof is complete.
Thus we assume that

r'h+e(P—{z,z2},H) > rh. (4)

We use d; to denote the number of vertices in Np(H) which have only one
neighbor in V(H), da = d — dy, 0; to denote the number of vertices in {z, z}
which have only one neighbor in V/(H) and 6 = 0 — 6.
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Clearly,

r’"h < h(h—1+ds)+dy and e(P — {z, 2}, H) < h(da2 — 62) + d1 — 6;.
Thus, by (4), we have

h(h —1+42dy — 03) +2d; — 01 > r'h +e(P — {x, 2z}, H) > rh.
Note that dy = d — ds and 6, = 0 — 05, we have
h(h —1+2ds — 03) +2d — 2dy — 0 + 02 > rh.
By (2), we have
h(h—142dy —02) + (r+6) —2dy — 6 + 03 > rh.

Thus,
(h—=1)(h+2dy —r—062) >0.
This implies that h > 2 and h + 2ds > r 4+ 02 > 7, and then 2h + 2dy > r + 2.
By (1), we have 2h + 2da > 2k, that is
h+ds > k. (5)

By (5) and Lemma 1 (3), ¢ > k. Since |Y| < k — 2, there exists at least one
transitive strong attached pair (up, up+1) supported by T', where u, € T.

Let G’ be the subgraph induced by V(H) U {up, upt1}. If upups1 ¢ E(G),
we add the edge upup1 in G’. Thus G’ is 2-connected, and by (4),

S dew) = S d(v) — e(Np(H)\{up ups1}, H)
veV(G)N\{up,upt1} vEV (H)
=r'h—e(Np(H)\{up, ups1}, H)
> 1 — (P = {, 2}, H) - e(Np(H)\{ups tps1}, H).
Noting that
e(P—{z,z},H) < (s+t—0)h, and
e(Np(H)\{up, upy1}, H) < (s +1t—2)h,
we have
S dew)=rh—(s+t—0h—(s+t—2)h
veV (G )\{up,upt1}
=(r—2s8—2t+6+2)h.

By Theorem 3, G’ contains a (uy, upt+1)-path of length at least r — 2s —
2t + 6 + 2, which implies that

dir(Up, Upp1) > 17— 28 — 2t + 6 + 2. (6)

Substituting (6) for d};(up, up+1) in Lemma 2 and (3) for the other terms, we
have

I(P)>(r—2s=2t+04+2)+2(t, —1)+2(s+t—t,)—0>r
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Case 2 H is separable.

Let B be an endblock of H, b the cut vertex of H contained in B, M = B—b,
m = |[V(M)], and 7"’ the average degree of the vertices in V(M).

If r"m+e(P —{z,z}, M)+ dp(b) < rm, then we consider the graph G’
obtained from G by contracting B. Let H’' be the component of G’ — P obtained
from H by contracting B. By Proposition 3, H' is locally k-connected to P.
Clearly P is a locally longest (z,Y, z)-path with respect to H', and

Yoo de = Y dw) —r"m—e(P—{z,2}, M) — du(b)
veV(G)\{z,z} veV(G)\{z,z}
>r(|V(G)| —2) —rm
=r(|V(G")] - 2).

By the induction hypothesis, [(P) > r, and the proof is complete. Thus we
assume that

r'm +e(P — {x,z}, M) + da(b) > rm. (7)

Let dy = |Np(H)\Np(M)|, di be the number of vertices in Np(M) which
have only one neighbor in V(H), d, = d—dy—d}; 6y = |{z, 2}NNp(H)\Np(M)|,
6} be the number of vertices in {z, 2} N Np(M) which have only one neighbor
in V(H) and 05 = 6 — 6}, — 0.

Now we prove that

m+dy > k—1. (8)

Let B’ be an endblock of H other than B, b’ the cut vertex of H contained
in B', M' = B' -t/ and m’ = |V(M")].

By the local k-connectedness of H to P, [Np(M')| > k—1.1f [Np(M")\Np(M)| <
m, then dy > [INp(M)NNp(M")| > k—1—m, and m+d) >k —1, and (8)
holds. Thus we assume that |[Np(M')\Np(M)| > m + 1. So we have

dy >m + 1. (9)
Clearly,
r'm < m(m+ dy) + dj,
e(P —{x,z}, M) <m(dy — 0) +d; — 0], and
Thus, by (7),

m(m +2dy+1—65)+2d] — 607 > r"m+e(P —{x,z}, M) + dpr(b) > rm.
Noting that d} = d — df, — d, and 0] = 0 — 0 — 0, we have

m(m + 2dy + 1 — 605) + 2d — 2d;, — 2d, — 0 + 6 + 65 > rm.
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By (2) and (9), we have
m(m+2dy +1—05) + (r+0) —2(m+ 1) —2dy — 0 + 0, + 05 > rm.

Thus,
(m—1)(m+2dy —r—65) >2—6,>0.

This implies that m > 2 and m+2d5 > r+ 64 > r, and then 2m+2d}, > r+2.
By (1), 2m + 2d}, > 2k, that is m + d, > k, and (8) holds.

By Lemma 3 (2), there exist at least kK — 1 good pairs supported by T with
respect to M. Since |Y| = k — 2, there exists at least one transitive good pair
{tup, upy1} with respect to M. Similarly there exists at least one transitive
good pair {ug, uq41} with respect to M.

First we assume that there is a transitive best pair supported by T with
respect to M or M’. Without loss of generality, we assume that {u,, up41} is a
best pair, where u, € Np(M) and u,11 € Np(H — B). Consider the subgraph
G’ induced by V(B) U {u,}. If u,b ¢ E(G), we add the edge upb in G'. Thus
G’ is 2-connected, and by (7),

S dew) = YD dw) - e(Np(H)\{uy}, M)

veV (G )\{up,b} veV (M)
r"m —e(Np(H)\{up}, M)

> rm —e(P —{x,2}, M) — du(b) — e(Np(H)\{up}, M).
Note that

e(P—{z,z}, M) < (s +t—0)m,

dp(b) <m, and

e(Np(H)\{up}, M) < (s +t = 1)m.
We have

Z de(v)>rm—(s+t—0m—-—m—(s+t—1)m
veV (G")\{up,b}
=(r—2s—2t+0)m.

By Theorem 3, G’ contains a (up, b)-path of length at least r — 2s — 2t + 6.
It is clear that there is a (b, up41)-path in H — M of length at least 2, which
implies that

Ay (Up, Upp1) > 17— 25 — 2t + 6 + 2. (10)

Substituting (10) for d}; (up, up+1) in Lemma 2 and (3) for the other terms,
we have

I(P)>(r—25s—=2t+0+2)+2(t, — 1)+ 2(s+t—t,)—0>r,

as required.
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So, we assume that there are no transitive best pairs supported by 17" with
respect to M or M’.

Now we assume that there is a transitive better pair (but not best pair)
supported by T with respect to M or M’'. Without loss of generality, we
assume that {u,, upt1} is a better pair, where u, € Np(M) and u,11 € Np(b).
Consider the subgraph G’ induced by V(B)U{u,}. If up,b ¢ E(G), we add the
edge upb in G'. Thus G’ is 2-connected and

Z dar(v) > rm —e(P —{z,z}, M) — dp(b) — e(Np(H)\{up}, M).
veV (G )\{up,b}

Note that

e(P—A{z,z},M) < (s+t—0)m, and

and since at least one vertex of u, and ugy; is not joined to M (otherwise,
{tg, ug+1} will be a best pair), we have

e(Np(H)\{up}, M) < (s+t—2)m.
Thus we have

Z de(v)Zrm—(s+t—0m—m—(s+t—2)m
veV (G")\{up,b}
=(r—2s—2t+6+1)m.

By Theorem 3, G’ contains a (u,, b)-path of length at least r—2s—2t+60+1,
and then, by buy+1 € E(G),

Ay (Up, Upp1) > 17— 25 — 2t + 6 + 2.

Thus we also have [(P) > r.

So, we assume that there are no transitive better pairs supported by T
with respect to M or M'. Thus {up, upt1} N {ug, ug+1} = 0, and {up, upt1}
and {ug, ug+1} are two distinct strong attached pairs.

Note that u, and u,41 are joined to M by two independent edges. Consider
the subgraph G’ induced by V (B) U {up, up+1}. If upupi1 ¢ E(G), we add the
edge upupt1 in G'. Thus G’ is 2-connected, and by (7),

Z dG/ (U)

UGV(G,)\{“pvup+l}

= > dw) = e(Np(H)\{tp, tpi1}, M) + dar(b) + [{up, upi1} 0 Np(b)]
veV (M)

=r"m+du(b) — e(Np(H)\{up, ups1}, M) + [{up, upi1} N Np(b)|

>rm —e(P —{z, 2}, M) — e(Np(H)\{tp, ups1}, M).
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Note that
e(P—A{z,z},M) < (s+t—6)m,

and since neither u, and ugy1 has neighbors in M (otherwise {ug, ug4+1} will
be a better pair), we have

e(Np(H)\{up, upi1}, M) < (s + ¢ — 4)m.
Thus, we have
Z de/(v) >rm—(s+t—0m—(s+t—4)m
veV (G )\{up,upt1}
=(r—2s—2t+6+4)m.

By Theorem 3, G’ contains a (up, up+1)-path of length at least (r — 2s —
2t+0+4)m/(1+m) > (r—2s—2t+60+4)/2 (note that m > 1), which implies
that

di(up,upy1) > (r—2s — 2t + 60 +4)/2.
and similarly,
dir(ug, uge1) > (r—2s — 2t 4+ 0 +4)/2.
Then,
di (up, upy1) + dp(ug, ugr1) > 1 — 25 — 2t + 0 + 4.
Thus, by Lemma 2, we have
I(P)>(r—2s—=2t+04+4)+2(t, —2)+2(s+t—t,)—0>r

The proof is complete.

4 Proof of Theorem 8

By the k-connectedness of G, it contains a Y-cycle. If 2e(G)/(n—1) < 3, then
the result is trivially true. Thus we assume that 2¢(G)/(n — 1) > 3.

We choose a vertex y € Y, and construct a graph G’ such that V(G') =
V(@G)U{y'}, where ¢’ ¢ V(G) and E(G') = E(G)U{vy’ : v € Ng(y)}. Clearly,
G’ is k-connected. Besides, we have that

e(G') = e(G) + da(y) and da (y) = da (y') = da(y),

and the order of G’ is n+ 1. Now, by Theorem 4, there exists a (y, Y\{y},y')-
path P of length at least

2e(G") —da/(y) —dar(y) _ 2(e(G) +da(y) —2da(y) _ 2e(G)
(n+1)—2 N n—1 Con—1"
Let uy’ be the last edge of P. Then uy € E(G) and C = Py, uluy is a cycle

of G passing through all the vertices in Y of length at least 2¢(G)/(n — 1),
which completes the proof.
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