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Abstract: In this paper, we introduce a first-order low-regularity integrator for the Davey–Stewartson system
in the elliptic-elliptic case. It only requires the boundedness of one additional derivative of the solution to be
first-order convergent. By rigorous error analysis, we show that the scheme provides first-order accuracy in
Hγ(�d) for rough initial data in Hγ+�(�d) with γ > d

� .
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� Introduction
The Davey–Stewartson (DS) systems, originally introduced by Davey and Stewartson [�] in the context
of water waves, have extensive applications in ferromagnetism [��], plasma physics [��] and nonlinear
optics [��]. Higher-dimensional cases are also attractive [��, ��, ��]. In dimensionless form, they are
generally read as the following systems for the amplitude u(t; x, y) and the mean velocity potential υ(t; x, y):�iut + λuxx + �uyy = −a|u|�u + b�uυx ,

νυxx + υyy = b�(|u|�)x ,
where λ, �, ν, a, b�, b� are real constants and λ > �, b�b� > �. According to the signs of � and ν, the DS
systems is classified as
(i) elliptic-elliptic or E-E: � > �, ν > �;
(ii) elliptic-hyperbolic or DS-I: � > �, ν < �;
(iii) hyperbolic-elliptic or DS-II: � < �, ν > �;
(iv) hyperbolic-hyperbolic: � < �, ν < �.
Note that the last case does not occur in the context of water surface waves.

The Cauchy problem for DS systems is widely studied. Ghidaglia and Saut [�] proved the existence,
uniqueness and continuous dependence with respect to the data for E-E, DS-I and DS-II cases; see also [�, �].
Tsutsumi [��] obtained the Lp-decay estimates of solutions of the DS-I case for � < p <∞; see also[�, �].
Recently, Nachman, Regev and Tataru [��] proved the global well-posedness and scattering for defocusing
DS-II using a Plancherel theorem. Linares and Ponce [��], Hayashi and Saut [��] used dispersive methods to
establish the local well-posedness and global existence. Lu and Wu [��] used a variational approach to give
a dichotomy of blow-up and scattering for the elliptic-elliptic generalized DS systems; see also [��].

In the context of numerical approaches, splitting methods are popular for smooth initial conditions.
Besse, Mauser and Stimming [�] showed numerical results for the blow-up of focusing E-E and for exact soli-
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ton type solutions of DS-II by time splitting spectral method; see also [��, ��]. Besides, Besse [�] introduced
a new numerical scheme for the nonlinear Schrödinger equation and the Davey–Stewartson systems as the
first source for the relaxation scheme. Klein and Stoilov [��] discussed spectral algorithms for the numer-
ical scattering for the defocusing DS-II with initial data having compact support on a disk; see also [��, ��].
Muslu [��] studied blow-up solutions for the purely elliptic generalized Davey–Stewartson system by using
a relaxation numerical method. White andWeideman [��] presented the numerical simulations of dromions
for DS-I and DS-II by split-step Fourier method; see also [��].

Recently, the DS systems with rough data initial condition have also gained a lot of attention in the con-
text of numerical integrations. The concept of the low-regularity integrator is introduced to express a series
of numerical methods which bring down the regularity requirement in Sobolev space sense. The systems
can be viewed as a family of nonlinear Schrödinger (NLS) type equations. For NLS equations, Ostermann
and Schratz [��] proved first-order convergence in Hγ for solutions in Hγ+� with γ > d/� of the derived low-
regularity exponential type integrators. For cubic NLS equations, Knöller, Ostermann and Schratz [��] pre-
sented a new type of integrator, which showed in one dimension and in high dimensions the second-order
convergence inHγ for solutions inHγ+� andHγ+� respectively.WuandYao [��] proposed anew schemewhich
provides the first-order accuracywithout loss of regularity in the one-dimensional case, that is, the first-order
convergence in Hγ for Hγ-data. For the KdV equation, Hofmanová and Schratz [��] gave a first-order numer-
ical scheme in H� for initial value from H�, and Wu and Zhao [��, ��] proposed a new class of embedded
low-regularity integrators, which obtain the first-order and the second-order accuracy in Hγ for initial data
in Hγ+� and Hγ+� respectively.

Inspired by the above low-regularity results [��, ��], we derive a numerical scheme which only requires
the boundedness of one additional derivative of the solution with rough initial data to get the first-order
convergence.

In this paper, we only focus on the E-E case in which we set � = ν = �, under the rough initial data on
a torus, �iut + �u = −a|u|�u + b�uυx� , t > �, x = (x�, . . . , xd) ∈ �d ,−�υ = b�(|u|�)x� , (�.�)

where a > �, b = b�b� > �, � = (�, �π), u = u(t, x) : �+ ×�d → � is the unknown and the given initial data
is u�(x) = u(�, x) ∈ Hγ(�d)with some � ≤ γ <∞. Here u is the (complex) amplitude of the wave and υ is the
(real) velocity potential of the wave movement.

The paper is organized as follows.We construct the detailed numerical integrator and introduce themain
convergence theorem in Section �. The first-order convergence analysis is given in Section �. The numerical
experiments are presented to validate the numerical scheme in Section �, and concluding remarks will be
made in Section �.

� Numerical Integrator

�.� Notation

Firstly,Wepresent somenotation and tools for future derivation andanalysis.WeuseA � B or B � A to denote
the statement that A ≤ CB for some large absolute constant C > � which may vary from line to line, and we
denote A ∼ B for A � B � A. For k := (k�, . . . , kd) ∈ �d, x := (x�, . . . , xd) ∈ �d, we denote

k ⋅ x = k� x� + ⋅ ⋅ ⋅ + kd xd , |k|� = |k�|� + ⋅ ⋅ ⋅ + |kd|�.
The Fourier transform of a function f on �d is defined by�f k = �(�π)d ��d e−ik⋅x f (x) dx.
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For f ∈ L�(�d), we denote its Fourier expansion by f (x) = ∑k∈zd �f k eik⋅x. Furthermore, we define the operator(−�)−� for some function f (x) on �d as�(−�)−�f = ���|k|−� �f k if k �= �,
� if k = �.

Let Hγ(�d) be the Sobolev space of Hγ functions defined on the d-dimensional torus �d, and its norm � ⋅ �Hγ

is defined as �f ��Hγ(�d) = �
k∈zd(� + |k|)�γ| �f k|�.

Throughout the paper, we will exploit the well known bilinear estimate �fg�Hγ ≤ Cγ,d�f �Hγ�g�Hγ , which holds
for γ > d

� and some constant Cγ,d > �. Moreover, we will make frequent use of the isometric property of the
free Schrödinger group eit�, �eit� f�Hγ = �f �Hγ for all f ∈ Hγ and t ∈ �. Furthermore, we define a function

φ(z) = ��� e
z − �
z , z �= �,

�, z = �. (�.�)

�.� Construction of the Numerical Integrator

For simplicity of notation, in the following, we shall omit the spatial variable x of the involved time-space
dependent functions, e.g. u(t) = u(t, x). In addition, we denote τ > � as the time step and tn = nτ as the time
steps.

For the DS system in the E-E case (�.�), we can reduce the system to a non-local Schrödinger equation�iut + �u + uE(|u|�) = �,
υ = −b�∂x��−�|u|�,

where the operator E is defined by

Ef = (a + b∂�x��−�)f, b = b�b�. (�.�)

Using Duhamel’s formula, we have

u(t) = eit�u�(x) + i t�
�

ei(t−s)�u(s)E(|u(s)|�) ds.
We introduce the twisted variable

w(t) := e−it�u(t). (�.�)

Note that the twisted variable satisfies

∂tw(t) = ie−it��eit�w(t) ⋅ E�|eit�w(t)|���, w(�) = u�, (�.�)

with the mild solution given by

w(tn+�) = w(tn) + i τ�
�

e−i(tn+s)��ei(tn+s)�w(tn + s) ⋅ E�|ei(tn+s)�w(tn + s)|��� ds. (�.�)

Since we only need first-order convergent scheme, we can simplify the above scheme using w(tn + s) ≈ w(tn)
and get

w(tn+�) = w(tn) + Φn(w(tn)) + Rn
� ,

where

Φn(w(tn)) = i τ�
�

e−i(tn+s)��ei(tn+s)�w(tn) ⋅ E�|ei(tn+s)�w(tn)|��� ds
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and

Rn
� = i τ�

�

e−i(tn+s)��ei(tn+s)�w(tn + s) ⋅ E�|ei(tn+s)�w(tn + s)|��− ei(tn+s)�w(tn) ⋅ E�|ei(tn+s)�w(tn)|��� ds. (�.�)

HereRn
� can be treated as a high-order termwithout additional regularity assumption. By Fourier expansion,

we get

Φn(w(tn)) = i �
�∈zd �j,k,l∈zd

�=j+k+l�a + b (j� + k�)
�|j + k|� � ��wj �wk �wl ei�⋅x τ�

�

ei(tn+s)(|�|�+|j|�−|k|�−|l|�) ds, (�.�)

where we set ��wj = ��wj(tn), �wk = �wk(tn) and �wl = �wl(tn) for short. And we denote α = |�|� + |j|� − |k|� − |l|�
and β = �j ⋅ k + �j ⋅ l + �k ⋅ l. Then we have α = �|j|� + β.

The integration in (�.�) cannot be transformed into the physical space directly. Inspired by [��], we only
choose the dominant quadratic term �|j|� so that the integration can be carried out fully in Fourier space as

τ�
�

e�is|j|� ds = τφ(�iτ|j|�).
Hence we have

Φn(w(tn)) = i �
�∈zd �j,k,l∈zd

�=j+k+l e
itnα�a + b (j� + k�)�|j + k|� � ��wj �wk �wl ei�⋅xτφ(�iτ|j|�) + Rn

�

= iτe−itn��eitn�w(tn) ⋅ E�φ(−�iτ�) eitn�w(tn) ⋅ eitn�w(tn)�� + Rn
� ,

where

Rn
� = i �

�∈zd �j,k,l∈zd
�=j+k+l e

itnα�a + b (j� + k�)�|j + k|� � ��wj �wk �wl ei�⋅x τ�
�

e�is|j|� (eisβ − �) ds (�.�)

andRn
� can also be treated as a high-order term. However, one loss of spatial derivative comes when we drop

this term.
For convenience, let us denote

Ψn(f) = iτe−itn��eitn� f ⋅ E�φ(−�iτ�) eitn� f ⋅ eitn� f ��. (�.�)

By dropping high-order terms, we would get

w(tn+�) ≈ w(tn) + Ψn(w(tn)).
Hence we finish the construction of the first-order numerical integrator

wn+� = wn + iτe−itn��eitn�wn ⋅ E�φ(−�iτ�) eitn�wn ⋅ eitn�wn��, n ≥ �, w� = u�, (�.��)

where wn = wn(x).
By reversing the twisted variable (�.�) in (�.��), we deduce the scheme of the first-order low-regularity

integrator (LRI) for solving DS system (�.�): denoting un = un(x) as the numerical solution,

un = eiτ�un−� + iτeiτ��un−� ⋅ E�φ(−�iτ�)un−� ⋅ un−��� (�.��)

for n = �, �, �, . . . , with φ in (�.�) and E in (�.�).
Based onDS system (�.�), we canwrite the numerical solution of υ: denoting υn = υn(x) as the numerical

solution, for n = �, �, �, . . . ,
υn = −b�∂x��−�|un|�. (�.��)

The proposed schemes (�.��) and (�.��) are fully explicit and e�cient.
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�.� Main Convergence Results

We now state the main result for the convergence of the proposed LRI schemes.

Theorem �.�. Let un and υn be the numerical solution of DS system (�.�) obtained from LRI schemes (�.��)
and (�.��) up to some fixed time T > �. Under the assumption u�(x) ∈ Hγ+�(�d) for some γ > d

� , there exist
constants τ� > � and C > � such that, for any � < τ ≤ τ�, we have�u(tn) − un�Hγ ≤ Cτ and �υ(tn) − υn�Hγ+� ≤ Cτ, n = �, �, . . . , Tτ , (�.��)

where the constants τ� and C depend only on T and sup�≤t≤T�u(t)�Hγ+� .
Remark �.�. For initial data in Hγ+�, we see that LRI scheme (�.��) for u can get the first-order convergence
rate in Hγ, while LRI scheme (�.��) for υ can get first-order convergence rate in Hγ+�.
Remark �.�. As shown above, the construction of the numerical integrator is independent of the non-local
operator E. Our scheme can be easily extended to the Cauchy problem�iut + �u + g(u) = �,

u(�) = u(�, x), (�.��)

where g(u) is chosen to be a combined nonlinearity, defined as

g(u) = λ�E(|u|�)u + λ�|u|�u + λ�(W ∗ |u|�)u,
λj ∈ � for j = �, �, �, and the third term is a Hartree type nonlinear term. Here W is an even, real-valued
potential, andW ∈ Lq(�d) + L∞(�d)with q ≥ �. It was proved in [�] that problem (�.��) is locally well-posed
in Hs(�d) when s ≥ d

� − �.
Let us denote

f (|u|�) = λ�E(|u|�) + λ�|u|� + λ�W ∗ |u|�;
then we have g(u) = f (|u|�)u. Based on the reduction above, we can construct a similar numerical integrator
for (�.��),

un = eiτ�un−� + iτeiτ��un−� ⋅ f �φ(−�iτ�)un−� ⋅ un−���,
with the first-order accuracy �u(tn) − un�Hγ ≤ Cτ, n = �, �, . . . , Tτ .
Remark �.�. Schemes (�.��), (�.��) work for the whole space problem with decaying functions too. Taking
the solitary wave case, we can choose a large torus so that boundary errors are negligible.

� The First-Order Convergence Analysis
In this section, wewill provide the rigorous proof of the convergence result. Since the twisted variable in (�.�)
is isometric in the Sobolev space Hγ, we will prove the convergence result (�.��) for themild solution w(tn+�)
(�.�) and wn+� (�.��).

Recalling the derivation of the scheme in Section �, we write that

w(tn+�) = w(tn) + Ψn(w(tn)) + Rn
� + Rn

� and wn+� = wn + Ψn(wn).
Then we have w(tn+�) − wn+� = Ln + Sn, where

Ln = Rn
� + Rn

� and Sn = w(tn) + Ψn(w(tn)) − wn − Ψn(wn).
Then we will analyze the local error and the stability of the numerical propagator in the following. We

start with some useful lemmas.
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Lemma �.�. Let γ > d
� . Assume that u� ∈ Hγ+�; then there exist constants τ� and C > � such that, for any

� < τ ≤ τ�, the estimate �Rn
��Hγ + �Rn

��Hγ ≤ Cτ� holds, where τ� and C depend only on T and sup�≤t≤T�w(t)�Hγ+� .
Proof. Firstly, by the definition of Rn

� in (�.�), we have�Rn
��Hγ ≤ τ�

�

����ei(tn+s)�w(tn + s) ⋅ E�|ei(tn+s)�w(tn + s)|��− ei(tn+s)�w(tn) ⋅ E�|ei(tn+s)�w(tn)|������Hγ ds≤ τ�
�

�w(tn + s) − w(tn)�Hγ ⋅ �E(|ei(tn+s)�w(tn + s)|�)�Hγ ds+ τ�
�

�w(tn)�Hγ ⋅ �E(|ei(tn+s)�w(tn + s)|�) − E(|ei(tn+s)�w(tn)|�)�Hγ ds.

Since �Ef �Hγ ≤ �f �Hγ , then for γ > d
� , we have�Rn

��Hγ ≤ τ�
�

�w(tn + s) − w(tn)�Hγ�w(tn + s)��Hγ ds+ τ�
�

�w(tn)�Hγ�|w(tn + s)|� − |w(tn)|��Hγ ds≤ τ�
�

�w(tn + s) − w(tn)�Hγ�w(tn + s)��Hγ ds+ τ�
�

�w(tn)�Hγ ��w(tn + s)�Hγ + �w(tn)�Hγ ��w(tn + s) − w(tn)�Hγ ds.

By (�.�), we have �w(tn + s) − w(tn)�Hγ ≤ s�
�

�∂tw(tn + t)�Hγ dt

≤ s�
�

����ei(tn+t)�w(tn + t) ⋅ E�|ei(tn+t)�w(tn + t)|������Hγ dt

≤ s�
�

�w(tn + t)�Hγ�w(tn + t)��Hγ dt≤ Cs sup
�≤t≤s�w(tn + t)��Hγ . (�.�)

Together with (�.�), we obtain �Rn
��Hγ ≤ Cτ� sup

�≤t≤T�w(t)��Hγ . (�.�)

Next, according to the definition of Rn
� in (�.�), we get�Rn

���Hγ = �
�∈zd(� + |�|)�γ��������� �j,k,l∈zd

�=j+k+l e
itnα�a + b (j� + k�)�|j + k|� � ��wj �wk �wl ei�⋅x τ�

�

e�is|j|� (eisβ − �) ds����������.
Since a > �, b > �, then we know that �������a + b (j� + k�)�|j + k|� ������� ≤ a + b ≤ C.
Combining with |eisβ − �| ∼ |sβ|, we have�Rn

���Hγ ≤ C �
�∈zd(� + |�|)�γ �j,k,l∈zd

�=j+k+l
��������� ��wj �wk �wl

τ�
�

sβ ds
����������.
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Recall that β = �j ⋅ k + �j ⋅ k + �k ⋅ l; then we have|β| ≤ C(� + |j|)(� + |k|)(� + |l|).
Furthermore, we obtain�Rn

���Hγ ≤ Cτ� �
�∈zd(� + |�|)�γ �j,k,l∈zd

�=j+k+l[(� + |j|)(� + |k|)(� + |l|)| �wj| ⋅ | �wk| ⋅ | �wl|]�
≤ Cτ� sup

�≤t≤T�w(t)��Hγ+� . (�.�)

Estimates (�.�) and (�.�) give the desired estimate and finish the proof of the lemma.

By Lemma �.�, we will show the local error Ln and have the following lemma.

Lemma �.� (Local Error). Let γ > d
� . Assume that u� ∈ Hγ+�; then there exist constants τ� and C > � such that,

for any� < τ ≤ τ�, the inequality �Ln�Hγ ≤ Cτ� holds, where τ� and C depend only on T and sup�≤t≤T�w(t)�Hγ+� .
Proof. Based on the definition of Ln, we have �Ln�Hγ ≤ �Rn

��Hγ + �Rn
��Hγ . Using Lemma �.�, �Ln�Hγ ≤ Cτ�,

where C depends on sup�≤t≤T�w(t)�Hγ+� . This finishes the proof of lemma.

For the numerical propagator Ψn(f) defined in (�.�), we have the following stability result.
Lemma �.� (Stability). Let γ > d

� . Assume that u� ∈ Hγ+�; then there exist constants τ� and C > � such that,
for any � < τ ≤ τ�, the following inequality holds:�Sn�Hγ ≤ (� + Cτ)�w(tn) − wn�Hγ + Cτ�w(tn) − wn��Hγ ,

where τ� and C depend only on T and sup�≤t≤T�w(t)�Hγ .

Proof. According to the definition of Sn, we have�Sn�Hγ ≤ �w(tn) − wn�Hγ + �Ψn(w(tn)) − Ψn(wn)�Hγ .

Recall that
Ψn(f) = iτe−itn��eitn� f ⋅ E�φ(−�iτ�) eitn� f ⋅ eitn� f ��.

Then we have�Ψn(w(tn)) − Ψn(wn)�Hγ≤ τ����eitn�w(tn) ⋅ E�φ(−�iτ�) eitn�w(tn) ⋅ eitn�w(tn)� − eitn�wn ⋅ E�φ(−�iτ�) eitn�wn ⋅ eitn�wn�����Hγ≤ τ�w(tn) − wn�Hγ ⋅ ����E�φ(−�iτ�) eitn�w(tn) ⋅ eitn�w(tn)�����Hγ+ τ����eitn�wn ⋅ E�φ(−�iτ�) eitn�w(tn) ⋅ eitn�w(tn) − φ(−�iτ�) eitn�wn ⋅ eitn�wn�����Hγ≤ Cτ�w(tn) − wn�Hγ ⋅ �eitn�w(tn) ⋅ eitn�w(tn)�Hγ+ Cτ�wn�Hγ
����φ(−�iτ�) eitn�w(tn) ⋅ eitn�w(tn) − φ(−�iτ�) eitn�wn ⋅ eitn�wn����Hγ≤ Cτ�w(tn) − wn�Hγ�w(tn)��Hγ + Cτ��w(tn) − wn�Hγ + �w(tn)�Hγ �⋅ ��w(tn) − wn�Hγ�w(tn)�Hγ + �wn�Hγ�w(tn) − wn�Hγ �≤ Cτ�w(tn) − wn�Hγ�w(tn)��Hγ + Cτ��w(tn) − wn�Hγ + �w(tn)�Hγ �⋅ ��w(tn) − wn�Hγ�w(tn)�Hγ + �w(tn) − wn��Hγ �≤ Cτ�w(tn) − wn�Hγ + Cτ�w(tn) − wn��Hγ ,

where C depends on sup�≤t≤T�w(t)�Hγ .
Hence we have �Sn�Hγ ≤ (� + Cτ)�w(tn) − wn�Hγ + Cτ�w(tn) − wn��Hγ .

This proves this lemma.
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Together with the local error estimate and the stability result, we give the proof of Theorem �.�. From
Lemma �.� and �.�, we have�w(tn+�) − wn+��Hγ ≤ Cτ� + (� + Cτ)�w(tn) − wn�Hγ + Cτ�w(tn) − wn��Hγ ,

where n = �, �, �, . . . , Tτ − � and C depends on T and sup�≤t≤T�w(t)�Hγ+� .
By iteration and Gronwall’s inequality, we get�w(tn+�) − wn+��Hγ ≤ Cτ� n�

j=�(� + Cτ)j ≤ Cτ, n = �, �, �, . . . , Tτ − �.
Since the twisting of variable (�.�) is isometric, we get the first estimate in (�.��).

From DS system (�.�), we know that υ(t) = −b�∂x��−�|u(t)|�. Meanwhile, by using the first estimate in
(�.��), we have�υ(tn) − υn�Hγ+� ≤ �−b�∂x��−��|u(tn)|� − |un|���Hγ+�≤ C�|u(tn)|� − |un|��Hγ ≤ C�u(tn) − un�Hγ ��u(tn) − un�Hγ + �u(tn)�Hγ � ≤ Cτ,
where C depends on T and sup�≤t≤T�u(t)�Hγ+� . This proves Theorem �.�.

� Numerical Experiments
In this section, we present the numerical experiments of scheme (�.��) to justify the convergence theorem.
Without loss of generality, we only test the �-dimensional case, i.e. d = �. Since υn is calculated via equation
(�.��),whichwill not lose any regularity andkeepsfirst-order convergence (see Theorem�.�),we onlyneed to
test un in this section. To get an initial datumwith the desired regularity, we construct u�(x) by the following
strategy [��]. Choose N as an even integer, and discretize the spatial domain � with grid points xjl = l �πN
for l = �, . . . , N and j = �, �. Take a uniformly distributed random vector rand(N, �) ∈ [�, �]N and an N × �
vector U whose elements are defined as

Ul,j = rand(N, �) + i rand(N, �) (l = �, . . . , N, j = �, �).
In our numerical experiments, we set

u�(x) := |∂x,N |−γU�|∂x,N |−γU�L∞ , x ∈ ��,
where the pseudo-di�erential operator |∂x,N |−γ for γ ≥ � reads as follows:(|∂x,N |−γ)k = ���|k|−γ if k �= �,

� if k = �,
for Fourier modes k = (k�, k�), and kj = −N� , . . . , N� − � for j = �, �. Thus we get u� ∈ Hγ(��) for any γ ≥ �.

We present the numerical error un − uref in the L�-norm and Hγ−�-norm at the final time tn = T = �.�
under initial data with di�erent regularities γ = � and γ = �, and the space resolutions N are chosen to be ��,
�� and ��, where the reference solution uref is obtained numerically by scheme (�.��) with τ = ��−�. Figure �
and Figure � validate the first-order convergence in both L�-norm and Hγ−�-norm.

� Conclusion
In this work, we have numerically studied the DS system in the E-E case on the torus under rough initial data.
By some rigorous tools from harmonic analysis, we established the sharp convergence theorem of the low-
regularity integrator. The theoretical result shows that the presented integrator can reach first-order accuracy
in the space Hγ with initial data from Hγ+� for any γ > d

� .
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