Cui Ning and Yaohong Wang*
Low-Regularity Integrator for the Davey-

Stewartson System: Elliptic-Elliptic Case

Abstract: In this paper, we introduce a first-order low-regularity integrator for the Davey—Stewartson system
in the elliptic-elliptic case. It only requires the boundedness of one additional derivative of the solution to be
first-order convergent. By rigorous error analysis, we show that the scheme provides first-order accuracy in
HY(T4) for rough initial data in H*!(T9) with y > 4.
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1 Introduction

The Davey-Stewartson (DS) systems, originally introduced by Davey and Stewartson [6] in the context
of water waves, have extensive applications in ferromagnetism [16], plasma physics [32] and nonlinear
optics [21]. Higher-dimensional cases are also attractive [22, 25, 33]. In dimensionless form, they are
generally read as the following systems for the amplitude u(¢; x, y) and the mean velocity potential v(¢; x, y):

{iut + Ay + Pty = —alul®u + byuvy,

2
VUxx + Uyy = b ([ul)x,

where A, u, v, a, by, b, are real constants and A > O, b1b, > 0. According to the signs of y and v, the DS
systems is classified as

(i) -elliptic-elliptic or E-E: u > 0, v > 0;

(ii) elliptic-hyperbolic or DS-I: 4 > 0, v < 0;

(iii) hyperbolic-elliptic or DS-II: u < 0, v > 0;

(iv) hyperbolic-hyperbolic: u < 0, v < 0.

Note that the last case does not occur in the context of water surface waves.

The Cauchy problem for DS systems is widely studied. Ghidaglia and Saut [7] proved the existence,
uniqueness and continuous dependence with respect to the data for E-E, DS-I and DS-II cases; see also [4, 5].
Tsutsumi [26] obtained the LP-decay estimates of solutions of the DS-I case for 2 < p < co; see also[8, 9].
Recently, Nachman, Regev and Tataru [20] proved the global well-posedness and scattering for defocusing
DS-II using a Plancherel theorem. Linares and Ponce [17], Hayashi and Saut [10] used dispersive methods to
establish the local well-posedness and global existence. Lu and Wu [18] used a variational approach to give
a dichotomy of blow-up and scattering for the elliptic-elliptic generalized DS systems; see also [23].

In the context of numerical approaches, splitting methods are popular for smooth initial conditions.
Besse, Mauser and Stimming [2] showed numerical results for the blow-up of focusing E-E and for exact soli-
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ton type solutions of DS-II by time splitting spectral method; see also [27, 28]. Besides, Besse [1] introduced
a new numerical scheme for the nonlinear Schrédinger equation and the Davey-Stewartson systems as the
first source for the relaxation scheme. Klein and Stoilov [14] discussed spectral algorithms for the numer-
ical scattering for the defocusing DS-II with initial data having compact support on a disk; see also [12, 13].
Muslu [19] studied blow-up solutions for the purely elliptic generalized Davey—Stewartson system by using
a relaxation numerical method. White and Weideman [28] presented the numerical simulations of dromions
for DS-I and DS-II by split-step Fourier method; see also [27].

Recently, the DS systems with rough data initial condition have also gained a lot of attention in the con-
text of numerical integrations. The concept of the low-regularity integrator is introduced to express a series
of numerical methods which bring down the regularity requirement in Sobolev space sense. The systems
can be viewed as a family of nonlinear Schrédinger (NLS) type equations. For NLS equations, Ostermann
and Schratz [24] proved first-order convergence in H” for solutions in H'*! with y > d/2 of the derived low-
regularity exponential type integrators. For cubic NLS equations, Knoller, Ostermann and Schratz [15] pre-
sented a new type of integrator, which showed in one dimension and in high dimensions the second-order
convergence in HY for solutions in H+? and H*> respectively. Wu and Yao [31] proposed a new scheme which
provides the first-order accuracy without loss of regularity in the one-dimensional case, that is, the first-order
convergence in H” for H-data. For the KdV equation, Hofmanova and Schratz [11] gave a first-order numer-
ical scheme in H! for initial value from H>, and Wu and Zhao [29, 30] proposed a new class of embedded
low-regularity integrators, which obtain the first-order and the second-order accuracy in H” for initial data
in H*! and HY*3 respectively.

Inspired by the above low-regularity results [15, 24], we derive a numerical scheme which only requires
the boundedness of one additional derivative of the solution with rough initial data to get the first-order
convergence.

In this paper, we only focus on the E-E case in which we set y = v = 1, under the rough initial data on
a torus,

{iut +Au = —alul®u + biuvy,, t>0,x=(x1,...,xq) € T9, 1)

~Av = by (Jul*)y, ,
wherea > 0, b = b1by >0, T = (0, 27), u = u(t, x): Rt x T? - C is the unknown and the given initial data
is uo(x) = u(0, x) € H(T9) with some 0 < y < oco. Here u is the (complex) amplitude of the wave and v is the
(real) velocity potential of the wave movement.

The paper is organized as follows. We construct the detailed numerical integrator and introduce the main
convergence theorem in Section 2. The first-order convergence analysis is given in Section 3. The numerical
experiments are presented to validate the numerical scheme in Section 4, and concluding remarks will be
made in Section 5.

2 Numerical Integrator

2.1 Notation

Firstly, We present some notation and tools for future derivation and analysis. Weuse A < Bor B > A to denote
the statement that A < CB for some large absolute constant C > O which may vary from line to line, and we
denote A ~Bfor A< B< A.Fork :=(kq,...,kq) € T4, x := (x1,...,xq) € T?, we denote

k-x=kixi++kaxg, |kI*>=1ki|>+---+|kal’.

The Fourier transform of a function f on T4 is defined by

s 1
-~ @2md

J e xf(x) dx.
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For f € L2(T%), we denote its Fourier expansion by f(x) = Y kezd f « €%, Furthermore, we define the operator
(=A)~! for some function f(x) on T4 as

J— kI72fi ifk+0,
(Ca)if = k™ f 1 #
0 if k = 0.

Let HY(T9) be the Sobolev space of H functions defined on the d-dimensional torus T¢, and its norm | - ||z
is defined as
Wy pey = D (L4 IKD? Ifil.
kezd
Throughout the paper, we will exploit the well known bilinear estimate [|fgllgr < Cy,allfllnvlIgllsy, which holds
fory > % and some constant Cy 4 > 0. Moreover, we will make frequent use of the isometric property of the
free Schrodinger group e'®, e flmv = |Iflay forall f € HY and t € R. Furthermore, we define a function

‘-1 240
o(z) = z ’ (2.1)
1, z=0.

2.2 Construction of the Numerical Integrator

For simplicity of notation, in the following, we shall omit the spatial variable x of the involved time-space
dependent functions, e.g. u(t) = u(t, x). In addition, we denote T > 0 as the time step and ¢, = nt as the time
steps.
For the DS system in the E-E case (1.1), we can reduce the system to a non-local Schrédinger equation
iur + Au + uE(|ul*) = 0,
v = -b0x, A ul?,

where the operator E is defined by
Ef =(a+boy, A", b=b1b,. 2.2)

Using Duhamel’s formula, we have

t
u(t) = eug(x) +1i J ey E(lu(s)|?) ds.
0

We introduce the twisted variable

w(t) := e Py(t). (2.3)
Note that the twisted variable satisfies
orw(t) = ie e w(t) - E(le™®w(t)|?)], w(0) = uo, (2.4)
with the mild solution given by
T
W(tne1) = W(tn) +1i J e tntSA[ltat)hyy (¢, 4 5) . E(|e!t*9Pw(t, + 5)?)] ds. (2.5)
0

Since we only need first-order convergent scheme, we can simplify the above scheme using w(t, + s) = w(ty)
and get
W(tni1) = w(tn) + @"(w(tn)) + RY,

where

T
(I)n(w(tn)) — lj efi(tn+S)A[ei(tn+S)AW(tn) . E(|ei(tn+S)AW(tn)|2)] ds
0



and

T
RI = l-j-e—i(tn+s)A[ei(tn+s)AW(tn +5)- E(Jel ™ y(t, + 5)12)
0

= ey (ty) - E(|e" P w(ty)|?)] ds. (2.6)

Here R can be treated as a high-order term without additional regularity assumption. By Fourier expansion,

we get
T

j 2 - . . )
o"wita) =i Y Y [a PP Vg B 2 J IO HIP-KP-1IP) g 2.7)
o lj + k|2
€z jk,lez 0
Q=j+k+l

where we set Wj = Wj(tn), Wi = Wk(tn) and Wy = Wy(t,) for short. And we denote a = |Q]? + |j| - |k|? - |I]?

and B = 2j-k+2j-1+2k-1.Then we have a = 2|j|? + B.
The integration in (2.7) cannot be transformed into the physical space directly. Inspired by [24], we only

choose the dominant quadratic term 2|j|? so that the integration can be carried out fully in Fourier space as
T
J 2’ gg = T2itlj|?).
0

Hence we have

) k)2 - )
"w(t) =iy Y e’t"“[a+b(]|;:—k|12) Wi €T o(2itlji?) + R
Qezd j k,lez?

;):jszﬁ

= ite A [eltnBw(ty) - E(@(-2iTA) eitnBw(ty) - e w(ty))] + RY,

where
T
) ; i1+ k)1 . Sl
RE=i ) ) e”""‘[a + b% Wiy e ®x J 21l (gisB _ 1) ds (2.8)
Qezd j k,lezd J+ 0
Q=j+k+l

and R} can also be treated as a high-order term. However, one loss of spatial derivative comes when we drop
this term.
For convenience, let us denote

WN(f) = ite bl f . E((~2iTA) eitidf - eitidf)]. (2.9)
By dropping high-order terms, we would get
W(tni1) = w(tn) + P (W(tn)).
Hence we finish the construction of the first-order numerical integrator
Wt = w4 iTemitb[eltnd . E(p(=2iTA) eitrbwn - et Bw™)], 0> 0, wP = uo, (2.10)

where w" = w"(x).
By reversing the twisted variable (2.3) in (2.10), we deduce the scheme of the first-order low-regularity
integrator (LRI) for solving DS system (1.1): denoting u™ = u"(x) as the numerical solution,

ut = eyl yirel™ Ut E(p(-2itA)unt - u™t)) (2.11)

forn=1,2,3,...,with ¢in(2.1) and E in (2.2).
Based on DS system (1.1), we can write the numerical solution of v: denoting v™ = v"(x) as the numerical
solution, forn=1,2,3, ...,
V" = b0y, AT U2, (2.12)

The proposed schemes (2.11) and (2.12) are fully explicit and efficient.



2.3 Main Convergence Results

We now state the main result for the convergence of the proposed LRI schemes.

Theorem 2.1. Let u" and v™ be the numerical solution of DS system (1.1) obtained from LRI schemes (2.11)
and (2.12) up to some fixed time T > 0. Under the assumption uy(x) € H"*1(T4) for some y> 4 there exist
constants Ty > 0 and C > 0 such that, for any 0 < T < T¢, we have

T
T

lu(ty) —u"lgr < Ct and |v(ty) - v"||g+ <Ct, n=0,1,...,—, (2.13)

where the constants 1o and C depend only on T and supos<7|u(t)llgr+1.

Remark 2.2. For initial data in H**!, we see that LRI scheme (2.11) for u can get the first-order convergence
rate in H, while LRI scheme (2.12) for v can get first-order convergence rate in H'*1.

Remark 2.3. As shown above, the construction of the numerical integrator is independent of the non-local
operator E. Our scheme can be easily extended to the Cauchy problem

{iut +Au+g(u) =0,

2.14
u(0) = u(0, x), ( )

where g(u) is chosen to be a combined nonlinearity, defined as
g(w) = A E(lul®)u + Az ful®u + A3 (W = |ul?)u,

Aj e R forj=1,2,3, and the third term is a Hartree type nonlinear term. Here W is an even, real-valued
potential, and W € LI(R?) + L (R?) with ¢ > 1. It was proved in [3] that problem (2.14) is locally well-posed
in HS(RY) whens > 4 - 1.
Let us denote
fQul?) = AE(ul®) + A2 [ul® + AW = Jul?;

then we have g(u) = f(Ju|?)u. Based on the reduction above, we can construct a similar numerical integrator
for (2.14),
ut = eyt 4 irel™ [t fp(=2itA)un-t - utt)],

with the first-order accuracy

T
lu(ty) —u"|gy < Ct, n=0,1,..., pp

Remark 2.4. Schemes (2.11), (2.12) work for the whole space problem with decaying functions too. Taking
the solitary wave case, we can choose a large torus so that boundary errors are negligible.

3 The First-Order Convergence Analysis

In this section, we will provide the rigorous proof of the convergence result. Since the twisted variable in (2.3)
is isometric in the Sobolev space HY, we will prove the convergence result (2.13) for the mild solution w(t,;1)
(2.5) and w1 (2.10).

Recalling the derivation of the scheme in Section 2, we write that

W(tns1) = W(tn) + P (W(ty)) + RT + RE and  w™! = w" + ¥ (w").
Then we have w(tp1) — w1 = L™ + 8", where
LT=RT+RE and 8" = w(ty) + ¥ (w(tp)) — w" =¥ (w").

Then we will analyze the local error and the stability of the numerical propagator in the following. We
start with some useful lemmas.



Lemma 3.1. Let y > g. Assume that ug € H'*1; then there exist constants Ty and C > O such that, for any
0 < T < 7o, the estimate | R} | gy + | Rl < CT2 holds, where To and C depend only on T and supo < |W(t)l 1.

Proof. Firstly, by the definition of RY in (2.6), we have

T
IR gy < Jllei(t"+s)AW(tn +5) - E(lei @8 w(t, + 5)2)
0 _ ei(tn+S)AW(tn) . E(|ei(tn+S)AW(tn)|2)"Hy ds

T
< juw(tn +5) = w(tn)lmy - 1E(e P w(t, + $)[*) |y ds
0

T
+ jnw(tn)nm NEe @R w(t, + 5)17) - E(e™ P w(ty) 1)y ds.
0

Since |Efllgy < Ifllay, then for y > ‘51, we have
T
IR ay < J||W(tn +8) = w(tn)llay w(ty + S)||%1y ds
0 T
+ j||W(tn)||HY 1w (tn + )1* = [w(tn)|* |y ds
T 0
< J||W(tn +8) = w(tn)lay w(ty + S)||12.1y ds
0

+ J||W(tn)||Hy(||W(tn + Sy + 1wty ) Iw(tn +5) = witn)llny ds.
0

By (2.4), we have

Iw(tn +5) = w(tn)llay < |10:w(tn + O)llar dt

Iw(tn + Ol Iw(tn + Ol dt

S

6[

S

J| ety (it + 0) - E(le" 0% w(ty + 01| dt
0

S

('!

C (3.1)

< Cs sup [lw(tn + t)"Hy
0<t<s

Together with (3.1), we obtain
IR gy < CT2 sup [w(t)llzy,- (3.2)
0<t<T

Next, according to the definition of R} in (2.8), we get

T 2
) k o
IR0, = ¥ @+ Y et(ax b%]w,wkw, el J e2isUP (ei5h _ 1) ds
Qezd joklez? i | 0
Q=j+k+l
Since a > 0, b > 0, then we know that
|a+b(]|;+llz|12) <a+b<C.

Combining with |e# - 1| ~ |sp]|, we have
T
Wiy J sBds
0

2

IR3Fy < C Y @a+1ep> Y

Qezd j.k,lezd
Q=j+k+l



Recall that § = 2j - k + 2j - k + 2k - 1; then we have
1Bl < C(1 + [JD(L + [KkD)(1 + [1).
Furthermore, we obtain

IR31Z, < C7* Y @+1@DY Y [+ G + KDL+ [V - [l - il

Qezd j.k,lezd
Q=j+k+l
< C7* sup [w(Ol5y.- (33)
0<t<T
Estimates (3.2) and (3.3) give the desired estimate and finish the proof of the lemma. O

By Lemma 3.1, we will show the local error £™ and have the following lemma.

Lemma 3.2 (Local Error). Lety > %. Assume that ug € H"*1; then there exist constants 7o and C > 0 such that,
forany 0 < 1 < t9, theinequality | L™y < Ct? holds, where o and C depend only on T and supg< 7w (t) ||z

Proof. Based on the definition of £", we have [|[£"|py < |R]llay + RS |gy. Using Lemma 3.1, |£™gy < Ct?,
where C depends on supg<rllw(t)|lgv+1. This finishes the proof of lemma. O

For the numerical propagator W"(f) defined in (2.9), we have the following stability result.

Lemma 3.3 (Stability). Let y > %. Assume that up € H'*1; then there exist constants 1o and C > O such that,
for any 0 < T < 19, the following inequality holds:

I8™lay < (1 + CT)[w(tn) = W'y + CTlw(ta) — w13y,
where 1 and C depend only on T and supy<7|w(t)|lny.

Proof. According to the definition of 8", we have
18" sy < Iw(tn) = w"llay + 1™ (W(tn)) = ¥ (W") 1y
Recall that _
W(f) = ite” B[ eltnA . E(@(=2iTA) eitnBf . eitnlf)].
Then we have
" (w(tn)) =" (W")llgy
< |e'Aw(t,) ~E(<p(—2iTA)eitnA—w(t,,)~ eltbw(ty)) - eltnbwn -E((p(—ZiTA)W . eit"AW”)||Hy
< TIw(tn) = Wl - [E(@(=2iTA) eltnbw(ty) - ePw(ty))|
+ 7)) w - E[@(-2iTA) eitndw(ty) - €"®w(ty) — p(-2iTA) eiltrbwn - et |,
< Crlw(tn) = W'l - letrdw(ty) - e w(ty) iy
+ CTIW |y | p(=20TA) eltrbw(ty) - ePw(ty) — @(=2iTA) eitsdwn . eltnd ||,
< Ctlw(tn) = Wl Iw(t)lizy + CT(Iw(tn) = w"llmy + [W(tn)lmy)
- (lw(tn) = w™lgy Iw(t) gy + W™ gy Iw(tn) = w*llay)
< Ctlw(tn) = Wl Iw(t)lizy + CT(lw(tn) = W llgy + [W(tn)lar)
“(Iw(tn) = Wl lw(t)lly + lw(ta) — w™liFy)

< Ctlw(ty) - w"llmy + CTlw(ty) - w"lI3,,

where C depends on supg<7llw(t)llay.
Hence we have
18" lsy < (1 + COIW(tn) = W'y + CTlw(tn) — w"lI3;,.

This proves this lemma. O



Together with the local error estimate and the stability result, we give the proof of Theorem 2.1. From
Lemma 3.2 and 3.3, we have

Iw(tns1) = w™ gy < CT% + (1 + CO)W(tn) = W™y + CTIW(tn) - W" 17,5

wheren=0,1,2,..., % —1and C depends on T and supg<<rllw(t)|lgr+.
By iteration and Gronwall’s inequality, we get
= ; T
Iw(tni1) =W < €2 Y (1+CrY < Cr, n=0,1,2,..., —-1.
j=0

Since the twisting of variable (2.3) is isometric, we get the first estimate in (2.13).
From DS system (1.1), we know that v(t) = —b, axlA‘llu(t)lz. Meanwhile, by using the first estimate in
(2.13), we have

v (tn) = v™lar < I=badx, A~ (lu(tn)® = [u"|?) |y
< Clllu(tn)l* = "y < Cllu(tn) — u"lm (lu(ta) = u™ gy + lu(ty)lay) < Ct,

where C depends on T and supg<7llu(t)llgr+1. This proves Theorem 2.1.

4 Numerical Experiments

In this section, we present the numerical experiments of scheme (2.11) to justify the convergence theorem.
Without loss of generality, we only test the 2-dimensional case, i.e. d = 2. Since vy, is calculated via equation
(2.12), which will not lose any regularity and keeps first-order convergence (see Theorem 2.1), we only need to
test u,, in this section. To get an initial datum with the desired regularity, we construct ug(x) by the following
strategy [24]. Choose N as an even integer, and discretize the spatial domain T with grid points x]l =1 ZW”
forl=0,...,Nandj =1, 2. Take a uniformly distributed random vector rand(N, 1) € [0, 1]Y and an N x 2
vector U whose elements are defined as

u' =rand(N, 1) +irand(N,1) (I=0,...,N, j=1,2).

In our numerical experiments, we set

|ax N|_yu 2
Uolx) = —MM———— y xeT .
el PRGN

where the pseudo-differential operator |0x y|™ for y > O reads as follows:

i kY ifk #0,
(I0x, Nk =
NERT 10 ifk=o,

for Fourier modes k = (k1, k), and kj = -, ..., & — 1 forj = 1, 2. Thus we get up € H(T?) forany y > 0.

We present the numerical error u™ — ur in the L2-norm and HY~'-norm at the final time t, = T = 2.0
under initial data with different regularities y = 3 and y = 4, and the space resolutions N are chosen to be 26,
27 and 28, where the reference solution uf is obtained numerically by scheme (2.11) with T = 107> Figure 1
and Figure 2 validate the first-order convergence in both L%-norm and H?~!-norm.

5 Conclusion

In this work, we have numerically studied the DS system in the E-E case on the torus under rough initial data.
By some rigorous tools from harmonic analysis, we established the sharp convergence theorem of the low-
regularity integrator. The theoretical result shows that the presented integrator can reach first-order accuracy
in the space HY with initial data from H"*! for any y > %.
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