Springer Nature 2021 B TEX template

Investigating Annotation Noise for Named
Entity Recognition

Yu Zhu!, Yingchun Ye!, Mengyang Li'%, Ji Zhang® and Ou
Wu!

INational Center for Applied Mathematics, Tianjin University,
Weijin Road, Tianjin, 300072, China.
2Jivantianxia Inc., Jinguan North Second Street, Beijing, 100102,
China.
3Zhejiang Lab, Wenyi West Road, Hangzhou, 311100, Zhejiang,
China.

Contributing authors: yuzhu@tju.edu.cn; yingchunye@tju.edu.cn;
limengyang99@gmail.com; zhangji77Q@Qgmail.com; wuou@tju.edu.cn;

Abstract

Recent studies revealed that even the most widely used benchmark dataset
still contains more than 5% sample-level annotation noise in Named
Entity Recognition (NER). Hence, we investigate annotation noise in
terms of noise detection and noise-robust learning. First, considering that
noisy labels usually occur when few or vague annotation cues appear
in annotated texts and their contexts, an annotation noise detection
model is constructed based on self-context contrastive loss. Second, an
improved Bayesian neural network (BNN) is presented by adding a learn-
able systematic deviation term into the label generation processing of
classical BNN. In addition, two learning strategies of systematic deviation
items based on the output of the noise detection model are proposed.
Experimental results of our proposed noise detection model show an
improvement of up to 7.44% F1 on CoNLLO03 than the existing method.
Extensive experiments on two widely used but noisy benchmarks for
NER, CoNLL03 and WNUT17 demonstrate that our proposed system-
atic deviation BNN has the potential to capture systematic annotation
mistakes, and it can be extended to other areas with annotation noise.

Keywords: Information extraction, Named entity recognition, Noisy labels,
Bayesian neural network
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1 Introduction

1.1 Background

Deep neural models have achieved significant success on named entity recogni-
tion (NER) task [10]. However, the deep neural models can easily overfit the
noisy labels, which negatively affects their generalization ability. Unfortunately,
constructing a large dataset with absolutely clean labels is nearly impossible.
To identify noisy labels and design a robust learning algorithm have received
great attention in machine learning [7] and areas, such as computer vision [15],
natural language processing [46], and so on. This problem is also severely seri-
ous, even if a compiled according to carefully designed professional instructions
for manual annotation NER benchmarks, such as CoNLL03. Wang et al. [41]
conducted a pilot study on the detection of noisy annotations for CoNLLO03.
Their study reveals that about 5.38% of test sentences contain incorrectly anno-
tated entities. Therefore, how to detect noisy labels and design noise-robust
learning methods is an urgent challenge for NER models.

Automatically detecting noisy labels in NER is a challenging task because
identifying them manually is also actually difficult. The reasons for the difficulty
of manually labeling are: (1) that both the entity itself and its context contain
limited annotation cues, and (2) the vague annotation instructions. Recently,
Wang et al. [41] released a corrected test set (CoNLL++!) for CoNLLO3 by
manually correcting 186 sentences containing label mistakes. However, according
to our re-examination in their published test set, their annotations should
be further discussed. Table 1 lists several examples. Taking the first sentence
as an example, both the original and Wang et al. annotations consider that
the words “U.S.” and “British” belong to different categories. Nevertheless,
their categories should be identical in our judgment. In the second example,
we agree with the modification to “Chapman Golf Club” by Wang et al., but
“South African” should be labeled as “LOC” because it is not a modifier. In the
third sentence, another similar example can be found in the test set “... and
Zulu Chief Mangosuthu Buthelezi’s ...” , in which the word “Zulu” is labeled
as “MISC” by Wang et al. According to our understanding of the annotation
instructions of CoNLLO03, no annotation mistakes exist in the third to the sixth
samples in the original test set. Furthermore, several entities have not been
identified by Wang et al., which are discussed in Section 4.5.2.

In addition, there has been few research efforts on noise-robust NER model,
and previous works mostly focuses on weak or distantly supervised [20, 23,
34]. Most of such methods typically depend on additional learning resources,
which is different from our research on annotation noise for NER benchmarks
themselves. CrossWeigh [41] aforementioned is a pioneering work that denoises
NER benchmarks without using extra learning resources. This method is
divided into two stages. In the first stage, it partitions the training data into
several folds and trains independent NER models to detect potential noisy

 https://github.com/pfliu-nlp/Named- Entity- Recognition- NER-Papers/blob/master/
ner_dataset.md
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Table 1: Original and Wang et al. [41] corrected annotations.

Sentences from CoNLLO03 test set Original Corrected (Wang et al.)
... U.S. and British reconnaissance plans had tracked ... LOC/MISC LOC/MISC

... Chapman Golf Club on Friday (South African unless stated):... | LOC/MISC ORG/MISC

... in South Africa ’s volatile Zulu heartland, police said on Friday. MISC LOC

Britain sets conditions to clear American alliance ... MISC LOC

And my mandate is also under Chapter Seven to operate in ... (0] MISC

The BILO stores are located in... MISC ORG

labels in each fold. In the second stage, it reduces the weight of samples on
which the models disagree to train the final NER model. A method of this kind
requires the training dozens of models in the first stage, leading to excessive
space and time complexity. In addition, Xiao and Wang [43] adopted Bayesian
neural networks (BNN) to quantify the model and data uncertainties for NLP
tasks. Zhou and Chen [48] proposed a simple co-regularization framework for
entity-centric information extraction, which consists of several neural models
with identical structures but different parameter initialization. These models
are jointly optimized and regularized to generate similar predictions based on
an agreement loss.

1.2 Motivation and contribution

As discussed above, the test set corrected by Wang et al. [41] still has annotation
mistakes, and the noise detection method proposed by them also requires the
training of a dozen of models using the CrossWeigh strategy. Therefore, a more
effective noise detection strategy with a lightweight training load is essential.

In addition, different from the existing noise-robust NER researches, we
have an new observation that even on benchmarks systematic mislabels may
occur when some annotation instructions are vague or easy to misunderstand.
As shown in Table 1, “MISC” entities can be more easily labeled as “LOC”,
but not vice versa. This phenomenon is also confirmed by Northcutt et al. [28].
They identify label errors in computer vision, natural language, and audio
benchmark datasets and confirm the noise in common benchmark datasets is
indeed primarily systematic mislabeling, not just random noise or lack of signal.
As far as we know, however, the current noise-robust NER works [41, 43, 48]
have not yet explicitly dealt with systematic mislabeling.

In this paper, we propose a novel more space-efficient and time-efficient
annotation noise detection model and a BNN with systematic deviation for
noise-robust NER to address the above challenges. In particular, our pro-
posed annotation noise detection model consists of two sub-models. The first
sub-model focuses on the annotation cues solely from the annotated entities
themselves, whereas the second sub-model focuses on the cues solely from their
contexts. We design a self-context contrastive loss function, which forces the
characteristics to rely merely on the annotated entities themselves or the sur-
rounding texts. We evaluate the proposed noise detection model on CoNLLO03.
The results show an improvement of up to 7.44% F1. For noise-robust NER,
we propose an improved BNN by adding a learnable systematic deviation term
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into the label generation processing of vanilla BNN. We conduct extensive
experiments on two prevalent but noisy benchmarks, CoNLL03 and WNUT17.
The results of introducing our proposed BNN with systematic deviation to dif-
ferent NER baseline models indicate consideration of systematic mislabeling in
NER task can bring significant performance improvements and the prior infor-
mation provided by our proposed noise detection model can further improve
performance. Our contributions are summarised as follows:

o We design a simple annotation noise detection network that constructs
two sub-models based on our novel self-context contrastive loss. One sub-
model aims to detect annotation cues from annotated entities themselves
and the other from contexts.

e We improve the classical BNN by adding a learnable systematic deviation
term into the label generation processing.

e We evaluate our annotation noise detection model on the CoNLLO03 dataset.
Experiments reveal that our model achieves better detection performance,
while the training load is lower than the existing CrossWeigh strategy.

e We evaluate the noise-robust NER model based on BNN with systematic
deviation on various NER baseline models. Experiments indicate that the
introduced systematic deviation does benefit NER model training, and
the results of the noise detection model as prior information can further
improve the performance of the noise-robust NER model.

2 Related work
2.1 NER

NER is often formalized as a sequence tagging task [29] in which each word in
a given text sample is associated with a categorical label.

Before deep learning became prevailing, the most popular sequence tagging
methods for NER were hidden Markov models (HMM) [47] and conditional
random field (CRF) [32, 44]. The hand-crafted features of each word were
directly fed into HMM or CRF to infer tags of each word. As deep learning
is widely used, LSTM [9, 42], CNN [19, 39] and Transformer [38] are used to
better represent each word instead of hand-crafted features [25]. Bidirectional
LSTM-CRF29] is the first to introduce bidirectional Conditional Random
Field layer in deep neural networks for NER. We use this classic network
in the experiment. Recently, the vanilla Transformer is reported to perform
poorly in the NER task [12], which is also confirmed by Yan et al. [13]. They
propose a Transformer-like AdaTrans that incorporated the direction and
relative distance aware attention and the un-scaled attention. Most neural
named entity classifiers use pre-trained word embeddings, such as Word2vec
[26], GloVe [30], and Flair [3]. As pre-trained model BERT [6] achieves state-
of-the-art performances in most NLP tasks, BERT is used to replace LSTM
and CNN in feature representation [23]. We adopt BERT series model in
the experiment. External lexicon knowledge is fused into BERT by Guo et
al.[11]. Heterogeneous knowledge from the linguistic, syntactic and semantic
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perspectives are incorporated to Chinese named entity recognition using graph
by Nie et al[27].

Entity boundaries and types are detected simultaneously in common NER
approaches. There has been some studies [22, 45] which decouples of boundary
detection and named entity type classification and considers boundary detection
as a sub-task in NER.

2.2 Noise-robust learning

Robust machine learning mainly deals with learning under noisy or error
training labels. Several existing studies attempt to discover noisy labels in
training data. Huang et al. [15] designed a novel under-over fitting procedure
to detect label noise. The motivation is that the loss of samples with noisy
labels is usually reduced at the overfitting stage. Shang et al. [35] explored
the noisy factors in relation extraction task and designed an effective noise
detection module in their entire network. Liu et al.[24] introduced flipping and
class probability and utilized Expectation-Maximization algorithm to solve
Gaussian mixture discriminant problem with label noise.

Other studies adopted a weighting strategy to reduce the negative effect of
noisy labels. Jenni and Favaro [16] leveraged meta-learning to determine the
sample weights. A sample with a lower weight is more likely to have a noisy
label. Wang et al. [40] proposed an iterative learning approach, which integrated
noisy label detection and discriminative feature learning in a closed loop. A
reweighting scheme is used to reduce the negative effect of noisy labels during
the loop. Shu et al. [36] proposed a method capable of adaptively learning an
explicit weighting function from data directly. In the text classification, Jindal
et al. [17] introduced a noise model that models the statistics of the label
noise to CNN to better learn the CNN weights and prevent the network from
overfitting to erroneous labels.

Currently, there are three researches on noise-label robust NER, for bench-
mark datasets. CrossWeigh[41] partitioned the training data into several folds,
trained independent NER models to identify the potential noisy labels, and
adjusted the weights of training data accordingly to train the final NER model.
Compared with the CrossWeigh method, our proposed method greatly alle-
viates the waste of space and time when identifying noisy labels. Xiao and
Wang[43] adopted Bayesian neural networks to quantify the model and data
uncertainties for NER task and sentiment analysis task. Due to the existence of
systematic mislabels, we introduce a systematic deviation term into Bayesian
neural networks, which can be initialized with the noise detection result or
initialized from zero. Our proposed systematic deviation-based Bayesian neural
network with zero initialization is as general as the traditional Bayesian neural
network. Zhou and Chen[48] proposed a co-regularization framework consisting
of several neural networks with the same structure but different initializa-
tion, which are jointly optimized for the task-specific losses and regularized to
generate similar predictions based on an agreement loss.
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The above studies suffer from three limitations: (1) While noise-robust
learning in the image field has received much attention, the text field has not.
According to our research, there are only three works mentioned above on noise-
robust NER including CrossWeigh [41], BNN [43], and co-regularization [48].
(2) At present, most of the works focus on the study of sample-level noise
instead of entity-level noise that is the type of noise in the NER task. (3) These
studies mainly assume that the involved training set is clean, and added to
simulated random noise.

2.3 BNN

Recently, some researchers viewed noisy labels as a type of data uncertainty
for training data. BNN is then used in the entire framework to deal with noisy
labels. BNN assumes two kinds of uncertainty in a standard supervised learning
approach [8]. The first refers to the epistemic or model uncertainty, which
assumes that the model parameters are distributed over on a prior distribution,
such as Gaussian. Dropout variational inference is a practical approach for
approximate inference when considering model uncertainty. The second refers to
aleatoric or data uncertainty, which assumes that the predicted output (e.g., y)
is distributed over on a distribution parameterized by the feature representation
of the input (e.g., z). Taking the regression task as an example, the distribution
of the predicted output y conforms to the following Gaussian distribution:

yNN(f(an)vo(x))v (1)

where f(x, W) is the output of employed deep neural network, and o(x) is
the corresponding standard deviation term to be learned for x, that is data
uncertainty. Accordingly, the loss function can be written as:

2

v S @ W) 4 Jog o (2;)?],

o(xi)
(2)
where 1/0(x;) can be viewed as a weight of sample z;. As the value of 1/0(x;)
decreases, y; is more likely a noisy-label. From a cognitive perspective, the
data with high confidence (low noise) should be paid more attention, so this
parameter is trained to capture complex noise patterns in the data.
BNN has been widely studied in computer vision [4, 18], text mining [43],
intelligence management [14], and others. In Section 3.2, BNN with data
uncertainty in classification is briefly reviewed in a random deviation view.

£OV) =~ 3 ogp(ul (01, ),0(2) =~ 3|

K2

3 Methodology

This section first introduces our proposed noise detection method in Section
3.1, then introduces an improved BNN by adding a systematic deviation term
into the label generation processing of classical BNN in Section 3.2.
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1 .. BPEROO 0O 0 00 o .
.. Zieleniec, \who is also vice-premier in the government ...

2 0] o) o O [B-LOC O B-LOC I-LOC
one-day cricket international between Pakistan and New Zealand

9 0 0 0O 0 00 OO
SANTI attracts many forelgners all over the world .

IFLA lattractsmany foreigners all over the world .
NBA [attracts many foreigners all over the world .

.B-MISCO~ 0 O O O 0O o'\‘? 0 -
4 - Italian club had violated regulations by failing to inform Feyenoord ,

Italian club had violated regulations by failing tofinform’  Jack , ...

Fig. 1: Examples of contexts as annotation cues. Green shade: clear cue
information. Purple shade: vague cue information.

3.1 Self-context contrastive loss-based annotation noise
detection

Training and testing data or even validation data may contain label noise.
To detect annotation noise in NER, Wang et al. [41] proposed a CrossWeigh
strategy. CrossWeigh repeatedly divides the training data into ten folds. Each
time, a model is trained from nine folds and the model is run on the rest
fold. The prediction errors for each sample in the rest fold are recorded. After
repeating thirty times (three cross-validation rounds), each training sample
receives three predictions. The number of error predictions for each sample is
used as the error indication value, which is calculated as follows:

r; = Eki, (3)

where ¢ is set as 0.7 and k; is the times of error predictions for the i-th sample
during the cross-validation above. As k; increases, r; decreases, and thus, the
sample label is more likely to be noisy.

The bottleneck of the CrossWeigh strategy is that thirty deep learning
models are necessary to train, indicating that space and time consumption
is expensive. We observed that noisy annotations usually occur for samples
that are difficult to judge for humans. Alternatively, easy-labeling samples are
less likely to have error annotations. Motivated by this intuition, we attempt
to construct a simple model that solely relies on annotated entities or their
contexts.

Fig. 1 shows some examples of contexts as annotation cues. For example,
in the first sentence “Zieleniec, who is also vice-premier in the government ...”,
“Zieleniec” is easy to annotate because its next word “who” is an evident cue
about “PERSON”. In the same vein, “and New Zealand” in the second sentence
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also provides sufficient annotation cues. Nevertheless, in the third group of
sentences “SANTI attracts many foreigners all over the world”, “SANTI” is
difficult to annotate because the word “SANTI” itself and its surrounding
words do not contain evident cues (a game, an organization, or a location?) for
human annotation. Obviously, “IFLA” (organization) and “NBA” (game) in
the following two sentences are also feasible. The last group of sentences also
lack clear annotation cues from contexts. The object of “inform” can be either
a person or an organization, and the preceding “club” does not have a clear
tendency. As a result, the possibility that its label is erroneous becomes higher
than that of the word “Zieleniec” in the first sentence. The fourth sentence in
Table 1 also indicates that if labeled entities and their surrounding texts have
unclear or vague cues, then their labels have higher possibilities to be noisy
labels.

Our noise detection model consists of two sub-models. The first sub-model
focuses on the annotation cues solely from the annotated entities themselves,
whereas the second sub-model focuses on the cues solely from their contexts
(surrounding texts).

We assume that a sentence is represented by s; = {si.1, - ,Sit, ", Sit+i,
-, 8iL,}, Where s; 4, ,8; ;41 are the annotated entity texts and L; is the
sentence length. Both sub-models will learn to predict the label of s; ¢, -, 8; ¢141.

Let y; ¢ be its true label (a one-hot vector), yal(-’lt) be the predicted label by the

first sub-model, and ysgi) be the predicted label by the second sub-model. Both
sub-models share the same network structure as shown in Fig. 2. The input of
the network is a sub-sentence “s; t_5 - - 5; ¢+1145”, which contains the annotated
entity. Alternatively, the window size is a hyper-parameter and is set to eleven.
Taking the first sub-model as an example, at first, all the word embed-
dings in the input sub-sentence are inputted into an encoder (e.g., BILSTM,
Transformer [38]), and the corresponding hidden vectors are obtained:

hglj) = Encoder(s; ;),j =t —>5,--- ,t +1+5. (4)

Subsequently, the hidden vectors (hg}t), e ,hg}t) +l) for the annotated entity

are fed into the attention and softmax layers as follows:

ag}j) = Attention(hz(»}j)),j =t ,t+1,

i+l
yal(,lt) = softmaz[WS" Zt O‘z('lj)hz(‘,lj)]’
=

(5)

where Wél) is the dense layer parameter, and yaglt) is the prediction solely based

on the annotated entity from the first sub-model. Similarly, the prediction solely
based on surrounding texts ysg}t) can also be calculated in the same manner.
We design a self-context contrastive loss function, which forces the charac-

teristics to rely merely on the annotated entities themselves or the surrounding
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Self-context contrastive loss

ya;, Yis ysf'.t
[ Attention ] Attention ]
+ Softmax + Softmax
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Sit+145
Fig. 2: Network structure used in our annotation noise detection.
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texts. The self-context contrastive loss of the first sub-model is as follows:
CLuy =Y CEal) yis) = S CE(ys) yis), (6)

where CE is the cross-entropy loss in this study. Eq.(6) indicates that the
learning goal aims to train a sub-model, which relies merely on the annotated
entities themselves.

Similarly, the self-context contrastive loss of the second sub-model is defined

as follows:
CLw) =Y CE(ys),yi) = > CE(ya?, yis). (7)
The learning goal of the second sub-model aims to train a model that relies
merely on the surrounding texts.
Once the two sub-models above are trained, their output ya;lt) and ysﬁ)
are fused to generate the final output. Let ¢ be the true category of the current

annotated entity. The final output of the entire model is as follows:

vig = (1 —yal) )L —ys),). 8)

If both sub-models predict the correct label ¢, then v will be small; if both
predict the incorrect one, then v will be large. v can be viewed as the score
reflecting on what extent an annotation is a noise. If the score is high, then
more likely, the annotation is an error. This score will be used in the improved
BNN framework in Section 3.2 to further improve the effect of the noise-robust
NER model.
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3.2 Improved BNN for NER

Recently, experiments by Xiao and Wang [43] confirmed that only data uncer-
tainty rather than model uncertainty matters in NER. Noisy label can be seen
as a type of data uncertainty. Recent progress in BNN has made quantify-
ing uncertainty and training more effective machine learning models possible
[21]. BNN provides a theoretical tool to model the relationships among data
uncertainty, model uncertainty, and deep neural networks. However, all exist-
ing BNNs assume that the noise obeys the Gaussian distribution with zero
mean. We assume that the noise obeys the Gaussian distribution with non-
zero mean. This non-zero mean is called systematic deviation. The reason lies
in that annotators may systematically misunderstand the official annotation
guidelines, leading to the occurrence of systematic deviation.

BNN is firstly briefly reviewed in a standard classification manner. A
classification training set is denoted as D = {z;,y;}}¥,, where z; is the i-th
training sample and y; is the target category. Let DNN be a deep neural
network for expected logit representation, which is parameterized by ©. The
expected logit vector is fixed for each training sample once O is fixed. Therefore,
the expected logit vector is represented as follows:

u(x;) = DNN(x;,05). (9)

BNN views the prediction as a label generation process based on the above
expected logit vector. Specifically, BNN assumes that a random deviation (e;)
for p(x;) exists, which conforms to a Gaussian distribution with zero mean as:

ei ~ N(0; o(:)), (10)

where o(x;) is the standard deviation for the random deviation for x; in the
logit space. Subsequently, a logit vector u; is generated for z; as follows:

w; ~ p(z;) + N(0; o(x;)). (11)

Given that w; is the final logit vector for x;, as the value of the standard
deviation o(z;) increases, the possibility that the difference between u; and
p(x;) is also high. With u;, the final predicted category y; is

p; = softmax(u;), (12)
yi ~ categorical(p;),
where p; is the probability over categories of x; and y; is the final predicted
label.

During training, the above label generation process repeats many times
for each training sample. K logit vectors are sampled, and the Monte Carlo
approximation for predicted distribution is calculated as follows:

ul® ~ @) + N(0; o)), (13)
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where pu(z;) and o(z;) as mean and standard deviation functions that maps

input x; to the logit space. ugk) denotes the k-th logit vector sampled. Thereafter,
it is transformed into probabilities using softmax operation. The specific formula
is as follows:

K
1
i = e Z softmax(ugk)), (14)
k=1

where p; is the average of the K softmax distributions calculated by the
K sampled logit vectors. p; is then used as the final predicted distribution.
Consequently, the cross-entropy loss can be calculated as follows:

N
1 — _true
‘CBNN:N;CE(pivyi )- (15)

To apply the above label generation process into NER, Xiao and Wang [43]
adopted an intuitive way that directly discarded the CRF layer in the standard
NER. network?.

As mentioned above, in practical applications, noise deviation may be
systematic rather than random. In NER annotation, systematic deviations may
occur when some annotation instructions are vague or easy to misunderstand.
In this study, a systematic deviation term is introduced into BNN. Specifically,
we can assume that e; conforms to a Gaussian distribution as:

ei ~ N (Api; o (1)), (16)

where Ap; is the systematic deviation term for x;.
Subsequently, given u; and the above Gaussian distribution of e;, a logit
vector u; is generated for x; as follows:

w; ~ p () + N (Apg; o () - (17)

The sampled logit is then fed into the CRF layer/ softmax layer to infer
the final label. The loss function can be written as

N
1 _
»CSdBNN:N E CE(pl, yi™) + Mp;3, (18)
i1

where p/, is similar with p; in Eq.(14) in which uz(-k) is sampled from Eq.(17); the

regularized term is added to prevent the model from estimating meaningless
systematic deviations for all input samples. Fig. 3 shows the main difference
between conventional BNNs and our systematic deviation-based BNN (SABNN).
Mathematically, the difference between conventional BNNs and our improved
BNN is the prior assumption on the expectation of the noise distribution. Fig.

2In our experiments, BILSTM-CRF is not inferior to BiLSTM-BNN. Therefore, we conjectured
that CRF can alleviate partial negative effects of random noise modeled by existing BNN.
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X X
DNN o(x) DNN Apx o(x)
}
p(x) = N(u(x), 0(x) ) () = N (p(x)+A s, 0(x)
l sampled l sampled
LU0 e LU0 k1
] ]
y y
(a) BNN (b) SABNN

Fig. 3: Data (label) generation processes of BNN and SABNN. Ounly data
uncertainty is considered in this study.

4 shows the influence of systematic deviation on prediction. The black solid line
in the figure represents the prediction result considering only random deviation.
Assuming that the random deviation (variance) at sample z; is a black dashed
line, when x; has a systematic deviation (bias), the actual deviation of sample
x; should be a blue dashed line. It can be seen that this will have a greater
impact on the prediction of sample z;. In many real applications (including
NER), systematic deviation assumption used in our BNN is more reasonable.

Existing BNN assumes that the noisy labels appear randomly at each
position of a sentence. Alternatively, no prior knowledge utilizes both the
positions and quantities of noisy labels. Our proposed annotation noise detection
model provides cues for possible positions and quantities of noisy labels. For

\ ‘\\
N AN (X)), o(xi))

r \
\ \

N S

\

1

V) - olx)

Fig. 4: The influence of systematic deviation on prediction. The black solid line
represents the prediction result, and the purple area represents the confidence
interval. The black and blue dashed lines represent random deviation and
actual deviation (with systematic deviation), respectively.
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each position, we can obtain a score (v in Eq. (8)) and a possible noisy indication
vector (1), which is defined as follows:

Nit = C’oncat(ual(-’lt), usgi)), (19)
where ua( ) and usEQt) represent the logit vectors output by the two sub-models
for annotated entity texts and their contexts, respectively. Consequently, we

define the following two strategies to calculate the systematic deviation.
Strategy 1: Noise indication vector-based strategy.

Apiy = Wunie, (20)

where W, is the parameter. That is, Ay; ¢ is transformed from 7 ;.
Strategy 2: The combination of noise indication vector and score.

Apie =Wunie, if vig > Vinreshold- (21)

In this strategy, only the Ay, of words whose corresponding v; ; values are
larger than the vipreshola are learned. The hyper-parameter vipresnord is searched
in 0.2, 0.4, 0.6, 0.8.

4 Experiments

We evaluate the proposed annotation noise detection and noise-robust NER
models?.

4.1 Datasets

Two benchmark datasets and one revision dataset are used, namely,
CoNLLO03 [37], WNUT17 [5] and CoNLL++ [41]. The standard train/dev/test
splits follow the existing studies [2, 31, 41].

CoNLL03/CoNLL++. CoNLL03 (English) is one of the most widely used
NER datasets, which is taken from Reuters news reports between August 1996
and August 1997. It contains four linguistic entity types: person (PER), location
(LOC), organization (ORG), and miscellaneous names (MISC). Table 2 presents
dataset statistics. Other detailed information such as annotation instructions
can refer to the official website*. As described in Section 1, CoNLLA4+ is
a revision of the CoNLL03 by Wang et al. [41]. They manually correct 186
sentences with mistake labels for test set. Table 3 shows the details of CoONLL03
and CoNLL++ test set labels.

WNUT17. WNUT17 is the dataset from the Shared task at the Work-
shop on Noisy User-generated Text 2017 with 6 entities: Person, Location,
Corporation, Product, Creative work, and Group. The dataset takes from three

30ur code is available at https://github.com /ruby-yu-zhu/Annotation_Noise_ZNER
4https://www.clips.uantwerpen.be/conl12003 /ner/
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Table 2: Details of datasets

Dataset Domain Class Type Train Dev Test Entities frequency
Sentence 14987 3466 3684
CoNLLO03 News 4 Token 203621 51362 46435 11.64%

Entity 23499 5942 5648
Sentence 3394 1009 1287

WNUT17  Social Media 6 Token 62730 15733 23394 3.82%
Entity 1975 836 1079

different sources: Reddit, Twitter, YouTube, and StackExchange comments.
Dataset statistics are listed in Table 2.

WNUT17 is more difficult to label than CoNLLO03. The main reasons are
as follows: 1) Lack of capitalization, because social media users unlike news
editors tend to arbitrarily alter the character casing. 2) The classes are more
heterogeneous. The target classes on the WNUT17 cover the CoNLLO03 classes
plus fine-grained classes such as Creative Work (e.g., movie titles, T.V. shows,
etc.), Group (e.g., sports teams, music bands, etc.), and Product [1]. This may
also be the reason why there is currently no research work to evaluate the label
quality of the WNUT17 dataset.

Table 3: Details of CoNLLO03 and CoNLL++ test set labels

Dataset (@) PER LOC ORG MISC
CoNLLO03 40787 1617 1668 1661 702
CoNLL++ 40733 1618 1646 1715 723

4.2 Baseline models

For annotation noise detection, we compare our proposed method with the
mistake estimation module of CrossWeigh [41], which detects the potential
label mistakes through a cross checking process.

For noise-robust NER, the baseline models are as follows:

e BIiLSTM-CRF [29]. Tt is the bidirectional LSTM network with a CRF
layer.

¢ BiLSTM-CRF-CrossWeigh [41]. It is the noise-robust method par-
ticularly for NER. It assigns lower loss weights for possibly noisy
samples.

e BiLSTM-BNN [43]. It is the first method that utilizes BNN for NER.
In this method, the CRF layer is discarded in the classical BILSTM-CRF
structure.

¢ BiLSTM-CRF-BNN. This method is based on the standard BNN (only
random deviation is considered). In this method, CRF is not discarded.

* BERTBASE/LARGE [6]. It is a pre-trained language representation model
based on Transformer.

L4 BERTBASE/LARGE-CI‘OSSWeigh. This method is BERTBASE/LARGE‘
based model with CrossWeigh framework.
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L4 BERTBASE/LARGE'CR [48]. This method is BERTBASE/LARGE'based
model with co-regularization framework.

L4 BERTBASE/LARGE'BNN° This method is BERTBASE/LARGE'based
model with the standard BNN (only random deviation is considered).

¢ DistilBERT[33]. The model distilled from the checkpoint of BERT
model.

¢ DistilBERT-BNN. This method is DistilBERT-based model with the
standard BNN (only random deviation is considered).

4.3 Experimental Settings

For annotation noise detection, GloVe is used and the dimension is 1024. The
dimensions of hidden and attention layers are set as 200 and 400, respectively.
The learning rate is 0.001. The dropout rate is 0.5. Vipreshold 1S set as 0.4.
For BiLSTM-CRF-based model on noise-robust NER, both the pre-trained
GloVe (300d)° and Flair® embeddings are used. All methods based on the
BIiLSTM-CRF network use the open-source FLAIR framework, which imple-
ments the standard BiLSTM-CRF sequence labeling architecture [29] and
supports pre-trained various contextual string embeddings. For BERT-based
model on noise-robust NER, the pre-trained language model BERT is used as the
primary baseline algorithm. We use the bert-base-cased, bert-large-cased
and distilbert-base-cased provided by HuggingFace”. The DistilBERT
model distilled from the BERT model bert-base-cased checkpoint. The details
of the bert-base-cased and bert-large-cased models are shown in Table

4. For hyper-parameters and optimization choices, we mostly follow Devlin et
al. [6].

Table 4: Details of pre-trained model based on BERT

Pre-trained model Layers | Hidden nodes | Heads | Parameters | Case-sensitive

bert-base-cased 12 768 12 110M v

bert-large-cased 24 1024 16 340M v
distilbert-base-cased 6 768 12 65M v

4.4 Evaluation

To evaluate our models, we report the standard metrics for noise detection:
micro-averaged precision, recall, and Fl-score. We use Exact-match F12 for the
noise-robust NER model. The model that achieves the best performance on
the development set is evaluated on the test set with the F1 score. The specific
calculation method is as follows:

Shttps://nlp.stanford.edu/projects/glove/
Shttps://github.com/flairNLP /fair
Thttps://github.com /huggingface/transformers
83eqEval package were used to calculate F1 metric.
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where N is the total number of samples. T'P; represents the number of
correctly identified entities in the i-th sample. F'P; represents the number
of misidentified entities in the i-th sample. F'N; represents the number of
unrecognized entities in the i-th sample.

4.5 Results and analyses
4.5.1 Results on annotation noise detection

The sample-level F1 value the 186 manual corrections of Wang et al. [41] is
the evaluation metric on CoNLL03. Table 5 lists the comparison results. The
results of CrossWeigh are directly from the corresponding paper.

Table 5: Noise detection performance comparison on the manual correction
set of Wang et al. [41].
Method Precision (%) | Recall (%) | F1 (%)

Ours 32.48 75.27 45.38
CrossWeigh 25.13 77.42 37.94

The F1 score of our method is much higher than that achieved by Cross-
Weigh. The recall of our model is slightly lower than that of CrossWeigh. A
possible reason is that some correct annotations in the original CoNLL03 test
set are incorrectly judged by Wang et al. [41] as shown in Table 1. Furthermore,
even for the incorrect annotations in the original test set, their manual cor-
rections still contain errors according to our understanding of the annotation
instructions.

4.5.2 Case study for annotation noise detection

Table 6 lists five examples. Taking the first sample as an example, “Mediter-
ranean” is a “MISC” entity in the sentence because “Mediterranean” is an
adjective. According to the annotation instructions, words derived from a word
which is location should be labeled as “MISC”. The following two examples
are similar to the above. In the fourth sample, according to our understanding,
the words “Babri mosque” should be labeled as a whole. In the fifth exam-
ple, the word “West” should be labeled as “ORG” because in the annotation
instructions, “ORG” contains “political unions of countries”. Indeed, we are
unsure about our corrections. For example, “Babri mosque” may be a “LOC”
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Table 6: Error annotations in original CoNLLO03.

Sentences from CoNLLO3 test set Original Corrected Our model
Mediterranean oil products were steady ... 0] LOC MISC
Midcontinent prices were similarly lower ... 0] LOC MISC

... Indonesia’s Busang vast gold deposit. ORG LOC MISC

... in remembrance of the Babri mosque ... 0 MISC (Babri) | MISC (Babri mosque)
... between the West and developing countries ... 0] LOC ORG

Table 7: Missed annotations in original and corrected CoNLLO03.

Sentences from CoNLLO3 test set Original/Corrected | Our model
NORDIC SKIING-WORLD CUP 0 MISC
NFL AMERICAN FOOTBALL-STANDINGS AFTER ... 0 MISC
... in distillate-hungry Northeastern markets... (0] MISC
Two ships loaded on the East Coast, three waited to load... (0] LOC
... as milder weather moved into the Southwest. 0] LOC

entity. Therefore, this study does not intend to provide a new correction set
because the official annotation instructions are still vague for us in some places.
Compiling an absolutely accurate NER training corpus is quite difficult.

In addition, our noise detection model locates missed annotated entities
that are not detected by CrossWeigh. Table 7 lists some examples. Taking the
second sample as an example, the word “AMERICAN” should be labeled as
“MISC”, whereas this word is labeled “O” in the original set. Among the missed
annotations, “MISC” and “LOC” entities occupy the most. The reason is that
the annotation instructions for “MISC” and “LOC” are highly similar in many
cases.

4.5.3 Results on noise-robust NER

As describe in Section 3.2, we train and evaluate six main model variations:

e BiLSTM-CRF-SdBNN. This method is the classical method BiLSTM-
CRF with our systematic deviation-based BNN.

¢ BiLSTM-CRF-SdBNN1. This method is the classical method with our
proposed SABNN when Strategy 1 (Eq. (20)) is used.

e BiLSTM-CRF-SdBNNZ2. This method is the classical method with our
proposed SABNN when Strategy 2 (Eq. (21)) is used.

* BERTgAse/LaArRcE-SABNN. This method is standard
BERTgAsE/1.arRcE-Dased model with our systematic deviation-based BNN.

* BERTgAse/LaARce-SABNN1. This method is standard
BERTgAsE/LARGE-Dased model with our proposed SIBNN when Strategy
1 (Eq.(20)) is used.

* BERTgAse/LARcE-SABNN2. This method is standard
BERTgAsE/LARGE-Dased model with our proposed SABNN when Strategy
2 (Eq. (21)) is used.
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Table 8: The F1 scores (%) of competing NER methods (GloVe and Flair).
The best results are in bold.

CoNLLO03 CoNLL++ WNUT17

Methods

GloVe Flair GloVe Flair GloVe Flair
BiLSTM-CRF [29] 90.11 92.98 91.10 93.61 37.38 46.16
BiLSTM-CRF-CrossWeigh [41] 90.28 93.02 91.19 93.81 37.28 46.46
BiLSTM-BNN [43] 87.57 92.09 88.29 92.07 31.58 43.67
BiLSTM-CRF-BNN 90.16 92.84 91.09 93.84 37.39 46.88

" BiLSTM-CRF-SdBNN 90.38 ~ 93.05  91.33  93.93 3749  47.64

BiLSTM-CRF-SdBNN1 90.42 93.13 91.41 94.11 37.48 46.68
BiLSTM-CRF-SdBNN2 90.49 93.14 91.49 93.84 37.50 47.00

¢ DistilBERT-SdBNN. This method is DistilBERT-based model with
our systematic deviation-based BNN.

¢ DistilBERT-SdBNN1. This method is DistilBERT-based model with
our proposed SABNN when Strategy 1 (Eq. (20)) is used.

¢ DistilBERT-SdBNN2. This method is DistilBERT-based model with
our proposed SABNN when Strategy 2 (Eq. (21)) is used.

The first three methods are based on GloVe or Flair. In BiLSTM-CRF-
SABNN\SdBNN1\SdBNNZ2, the parameter X is searched in {0.5, 1, 2, 5}.

The overall competing results on the two benchmark datasets (CoNLLO03
and WNUT17) when GloVe and Flair embeddings are used are listed in Table
8. Overall, all the noise-robust methods (except BILSTM-BNN) outperform the
classical network BiLSTM-CRF. The poor performance of BILSM-BNN indi-
cates that enhanced character-level contextualized representations of the CRF
are indeed important. Our three SABNN-based methods achieve better results
than CrossWeigh and BNN. When GloVe is used, BILSTM-CRF-SdBNN2 yields
the highest F1 score. Nevertheless, when Flair is used, the method BiLSTM-
CRF-SdBNN achieves the highest F1 score on WNUT17, indicating that prior
information according to the Strategies 1 and 2 may be not beneficial in some
situations. In general, SABNN-based methods with the noise detection results
as prior information work better, but SABNN without prior information is a
new general BNN.

We also test the above models on CoNLL++. The results of methods with
the two embeddings (GloVe and Flair) on this corrected test set, too, are shown
in Table 8. The performances of nearly all involved competing methods are
increased than on CoNLLO03. The SABNN-based methods still perform better
than others.

To verify the effectiveness of our proposed BNN with systematic devia-
tion, we further incorporate pre-trained language model BERTgAsE/LARGE
and DistilBERT. In order to reduce the impact of randomness, we ran all
of our experiments three times, and an average F1 score is reported. For
some hyper-parameters of BERT-based models, we mostly follow Devlin
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Table 9: The F1 scores (%) of competing NER methods (BERTpasE,
BERTpaArGE and DistilBERT). The results with * reported in Zhou et al.[48].
The best results are in bold.

Methods CoNLL03 CoNLL03++ WNUT17
BERTgASE [6] 91.96* 92.91* 46.67
BERTpAsg-CrossWeigh 92.15* 93.03* -
BERTpBAse-CR [48] 92.53* 93.48* -
BERTgAsg-BNN 92.42 93.65 46.71

" BERTpase-SABNN 92,98 9412 47.47
BERTgAsE-SAdBNN1 93.21 94.30 47.16
BERTgAsg-SAdBNN2 93.15 94.48 47.79
BERTLARGE[] 02.24* 93.22* 49.08
BERT [ ArgE-CrossWeigh 92.49* 93.61* -
BERT,ArcE-CR[48] 92.82* 94.04* -
BERT1 ArRcE-BNN 93.03 94.44 49.24

" BERTpARGE-SABNN 93.64 95.03 51.21
BERTLARGE-SdBNN1 93.72 95.39 50.97
BERT,ArGE-SdBNN2 93.78 95.46 51.26
DistilBERT [33] 89.84 90.92 44.49
DistilBERT-BNN 90.28 91.51 44.83

" DistilBERT-SdBNN ~ ~ 90.95 92.03 4556
DistilBERT-SdBNN1 90.97 92.34 45.58
DistilBERT-SdBNN2 91.01 92.44 45.86

et al. [6]. In BERTgAsE/r.ARGE-SABNN\SABNN1\SdBNN2 and DistilIBERT-
SABNN\SdBNN1\SdBNN2, the parameter A is searched in {0.25, 0.5, 1, 2,
5}.

All experimental results of BERTgasE/LarcE and DistilBERT as base-
line model on the two benchmark datasets (CoNLL03 and WNUT17) are
shown in Table 9. Two main observations are obtained. Firstly, our SABNN-
based methods achieve better results than BERT. For example, our model
BERT Arge-SdBNN2 incorporating systematic deviation to improve over the
BERTArgE model by 1.54% and 2.18% on ConLL03 and WNUT17, respec-
tively. Secondly, our model is more suitable for datasets that are difficult to
label. Compared with corresponding BNN models, our best model based on
GloVe, Flair, BERTgasg, BERTLArgE and DistilBERT increase by 0.33%,
0.3%, 0.79%, 0.75% and 0.73% on CoNLLO03, and increase by 0.11%, 0.76%,
1.08%, 2.02% and 1.03% on WNUT17, respectively. Our models improves sig-
nificantly on WNUT17 that are more difficult to label. We tend to attribute the
improvements brought by our models as follows: the WNUT17 dataset collected
from social media is more difficult to label than the CoNLLO03 dataset collected
from the news. Our model can correct the larger systematical deviation caused
by the increasing labeling difficulty.

Fig.5 shows the model performance for different entity types on CoNLL03
dataset in BERTgasg-based model. It can been seen that our proposed three
models systematical deviation-based models (SABNN, SABNN1 and SdBNN2)
achieve large improvements in MISC and ORG classes. This is consistent with
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Fig. 5: The impact of structural changes on various entity types in BERTgAsg-
based model

our observation in Section 4.5.2 that MISC and ORG classes are prone to
systematic mislabels.

Table 9 also shows the test results of the competing methods on CoNLL++.
The performances of almost all involved competing methods are increased than
on CoNLLO03. Our proposed BERT | Arar-SdBNN2 achieves the best result on
this corrected test set. Compared with the methods based on GloVe and Flair,
the performances are greatly improved.

In summary, the consistent improvements to the baseline (BiLSTM-CRF
and BERT') show that our method is optional in NER, especially for noisy texts
that are difficult to label by human experts. In addition, compared with the
BNN-based models that only consider the random deviation, the improvements
of our models indicate that the introduced systematic deviation is indeed useful.

4.5.4 Impact of the regularization coefficient A

A is the regularization coefficient in Eq.(18). L2 regularization is often referred
to as weight decay, which can prevent the model from estimating meaningless
systematic deviation terms for all input samples. The larger the A, the greater
the inhibition effect on the systematic deviation terms. To verify the influence
of A on the experimental results of the model, we adjusted A in the range of
{0, 0.25, 0.5, 1, 2, 5}. The results based on the BERTAsg-SdBNN model on
the CoNLL03 and WNUT17 datasets are shown in Fig.6. Fig.6 (a) shows the
experimental results under different A values on the CoNLLO03 dataset. It can
be seen that when A is less than 1, the model performance gradually increases
with the increase of A. When A is greater than 1, the model performance shows
a downward trend. The experimental results on the WNUT17 dataset (Fig. 6
(b)) also reflect a similar trend.

When the value of A is small, increasing A\ can suppress the system deviation
term and prevent over-fitting. When the value of A is large, the increase of A
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(a) CoNLLO3 (b) WNUT17

Fig. 6: Experimental results with different A based on the BERTgagg-SdBNN
model

causes the system deviation term to fail to function, which reduces the model’s
ability to model the systematic mislabels.

5 Discussion

5.1 Implications of annotation noise detection

The time consumption of our proposed annotation noise detection model is
significantly lower than compared model (CrossWeigh), which requires multiple
cross checking. On our NVIDIA 3080Ti GPU server, the training time for the
30 models in CrossWeigh is 44.45 hours, whereas that for our two sub-models
is 20.25 hours contained parameter tuning. On a new corpus, if CrossWeigh
requires tuning, our actual time can be less than 50% of that for CrossWeigh.
If the corpus is larger, the saved time can be more meaningful. Therefore, our
model is more efficient and occupies less space for model parameters.

5.2 Implications of improved BNIN

We further discuss the user annotation noise in human labeling. An annotator
can be viewed as an “annotation machine”. Assuming that professional annota-
tion instructions are given, if an annotator has a serious attitude for the task,
the random deviation will be small. However, if the labeling task is difficult
(professional instructions may also contain controversial or vague descriptions),
a non-trivial systematic deviation may occur. This can also explain why the
performance of conventional BNN with random deviation is worse than that
with systematic deviation.

In addition, the improved BNN with learnable systematic deviation terms
is a general model similar to the vanilla BNN. Our improved BNN model can
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be used in any other areas that are prone to systematic understanding bias,
such as the classical image classification ImageNet dataset and object detection
COCO dataset.

6 Conclusions

In this paper, an annotation noise detection model is constructed based on the
annotation cues contained in annotated entities and their surrounding texts by
leveraging a novel self-context contrastive loss. The annotation noise detection
model we proposed is reduced by half in the time consumption compared to
CrossWeigh’s noise detection model, and the F1 score has increased by more
than 7%. In addition, by adding a systematic deviation to the existing BNN, a
new general BNN is presented. Experimental results on two prevalent but noisy
NER benchmark datasets indicate the effectiveness of our proposed SABNN.
Compared with noise-robust NER models that do not consider systematic
mislabels, such as CrossWeigh, CR and BNN models, the performance of
our proposed SABNN model is significantly improved under the BiLSTM-
CRF and BERT baseline models. We analyze the annotation examples in
the CoNLLO3 test set and confirm that the named entity recognition task is
prone to systematic mislabeling. The inconsistency among original annotations,
CrossWeight corrections, and our corrections shows the huge challenge of NER
annotations.
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