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A B S T R A C T
The knowledge contained in academic literature is interesting to mine. Inspired by the idea of
molecular markers tracing in the field of biochemistry, three named entities, namely, methods,
datasets, and metrics, are extracted and used as artificial intelligence (AI) markers for AI
literature. These entities can be used to trace the research process described in the bodies
of papers, which opens up new perspectives for seeking and mining more valuable academic
information. Firstly, the named entity recognition model is used to extract AI markers from large-
scale AI literature. A multi-stage self-paced learning strategy (MSPL) is proposed to address the
negative influence of hard and noisy samples on the model training. Secondly, original papers are
traced for AI markers. Statistical and propagation analyses are performed based on the tracing
results. Finally, the co-occurrences of AI markers are used to achieve clustering. The evolution
within method clusters is explored. The above-mentioned mining based on AI markers yields
many significant findings. For example, the propagation rate of the datasets gradually increases
over time. The methods proposed by China in recent years have an increasing influence on other
countries.

1. Introduction
The literature in the subject of artificial intelligence (AI) has significantly increased with the field’s rapid progress,

and research in the field is having an increasing influence on a variety of fields (Ma et al., 2022b). Sorting out the overall
context of the AI field and exploring the characteristics of its development are crucial for individuals engaged in AI
research, beginners in AI research, and researchers in other disciplines affected by AI. The exploration of AI academic
literature can help these researchers quickly and accurately seek research information and understand research trends.
With the evolution of various methods, datasets, and metrics, their extraction and analysis in AI literature can help
researchers to quickly understand the application and development of these entities, and selecting appropriate entities
for their own research.

In the biological field, molecular markers are frequently used to track the changes in the substances and cells during
the reaction to obtain reaction characteristics and regularities (Zhao et al., 2018a, 2019). For example, Ruben et al.
(1941) used the isotope of oxygen 18𝑂 to mark 𝐻2𝑂 and 𝐶𝑂2 and track the source of 𝑂2 in photosynthesis. Inspired
by this, we observe that methods, datasets, and metrics can play the same role as molecular markers in AI literature
mining. As shown in Fig. 1, when these entities are proposed or cited by different literature, the traces in the specific
research process are formed. Accordingly, the methods, datasets, and metrics, which are in the same granularity, in the
AI literature are used as AI markers. These factors can be leveraged to trace the information reflecting the research
process in the paper bodies. Given that abstracts mainly contain conclusive information and lack information reflecting
the research process, and the bodies of the papers provide the specific process of research, we extract AI markers from
the paper bodies.

In recent years, an increasing number of research has focused on the analysis of the key entities in the AI literature,
such as methods, datasets, and metrics (Wang and Zhang, 2020; Li et al., 2021b; Zhang et al., 2021b). To our knowledge,
there is no study that simultaneously extracts and utilizes these three entities for the analysis of the AI field. In this
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Figure 1: Traces of the AI markers proposed or cited by different literature.

study, large-scale AI papers are collected. The three entities are extracted and linked to analyze the AI field. In addition,
a multi-stage self-paced learning strategy (MSPL) is proposed to address the negative influence of hard and noisy
samples on extraction model training.

In summary, our contributions are as follows:
1) Large-scale AI papers are collected. Method, dataset, and metric entities are extracted from the bodies of the

collected papers.
2) We introduce MSPL to address the negative influence of hard and noisy samples on extraction model training.

This strategy assigns different weights to distinct training samples according to their learning difficulties in various
training stages. To the best of our knowledge, this work is the first to adapt the idea of SPL in named entity recognition
(NER). The experiments show that the proposed MSPL strategy improves the performance of the entity extraction
model.

3) Method, dataset, and metric entities are used as AI markers to explore the development of the AI field, and these
entities are linked for analysis. Numerous significant findings are achieved. The details are as follows.

• The annual development of the AI field is obtained on the basis of the extracted AI markers (methods and
datasets). For example, MNIST (LeCun et al., 1998) ranked first in terms of usage from 2005 to 2014.
ImageNet (Deng et al., 2009) ranked first after 2014.

• Based on the original paper tracing for AI markers, the United States, China, and the United Kingdom are
relatively active countries in the field of AI. The propagation rate of the datasets gradually increases over time.
Based on the propagation analysis of the methods among countries, the methods proposed by China have an
increasing influence on other countries.

• Method roadmaps are constructed on the basis of the method clusters and associated datasets, which can show
the evolution in method clusters.

2. Related work
This study involves several aspects, including extraction and bibliometrics on knowledge entities, structure function

identification, NER, and term function recognition.
2.1. Extraction and bibliometrics on knowledge entities

The existing research on knowledge entities includes a number of aspects, such as methods, datasets, metrics, and
software (Ding et al., 2013b; Zhang et al., 2021a). Zhang et al. (2021a) used a dictionary-based approach to identify
methods in academic papers. Wang and Zhang (2020) manually annotated the algorithm entities in the full text of ACL
Rujing Yao et al.: Preprint submitted to Elsevier Page 2 of 23
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conference papers from 1979 to 2015.A dictionary-based approach was used by Ding et al. (2019) to identify algorithms
from the full text of ACL papers. Wang and Zhang (2018) utilized a dictionary to extract algorithms in papers published
in ACL. CRF and BiLSTM+CRF were used to extract model entities from academic papers (Lei and Wang, 2019).
To recognize dataset entities in academic papers, a method based on distant supervised learning was proposed by Li
et al. (2021b), which is a pioneering study to apply distant learning to dataset recognition. Heddes et al. (2021) used
SciBERT to extract datasets from scientific articles. A metrics-driven mechanism knowledge representation schema
was proposed by Ma et al. (2022b), and the SpERT method was used to jointly extract entities and relations from the
abstracts of AI papers. Zhang et al. (2021b) manually annotated the metric, tool, resource and method entities from
full text of papers published in China National Conference on Computational Linguistics. To extract software entities
from full-text papers, an improved bootstrapping method was proposed (Pan et al., 2015).

Taking the NLP field as an example, Zhang et al. (2021a) compared the mention of algorithms in full-text papers
from an English conference and a Chinese conference. The comparative analysis includes frequency, location, and time
of the algorithms. Wang and Zhang (2020) proposed an equation to measure the influence of an algorithm. The influence
of different algorithms in ACL papers, top 10 algorithms in different ages, and the evolution of influence of various
algorithms were analyzed. The citation frequency and citation time evolution of algorithms were revealed by Ding
et al. (2019). The comparison of the top 10 data mining algorithms in terms of the number of papers, frequency of
algorithms mentioned, and location of algorithms were conducted. In addition, the task of each article is classified and
the most relevant task for each algorithm is obtained (Wang and Zhang, 2018). Zhao et al. (2018b) explored mentions
and citations of datasets in a multidisciplinary full-text corpus. The overview of data mentions and citations was
demonstrated from multiple perspectives, such as sections where datasets are mentioned, trackability of datasets, and
types of data archives. The disciplinary characteristics were also analyzed from many aspects, such as the percentage
of article authors collected data themselves in each discipline. Zhang et al. (2021b) constructed an association network
among metric, tool, resource, and method entities to explore the relevance. The top 50 most frequently used software
and most highly cited software were reported by Pan et al. (2015). Furthermore, they explored the relationship between
the number of mentions and the number of citations. Zhang et al. (2019) extracted software from the full text of
academic articles in PLOS ONE. The cluster analysis was conducted to explore the connections among scientific
software, and the top five clusters with the largest number of software were shown.
2.2. Structure function identification

The identification of structure function in academic literature has attracted the attention of many scholars. Rule-
based methods and machine learning-based methods are the main methods. Kim et al. (2000) identified the title, author,
affiliation, and abstract in academic literature based on 120 rules. Ding et al. (2013a) used section orders and keywords
to identify the structure function of academic papers, and studied the citation distribution of different sections in a
paper. A rule-based system was proposed to identify the structure function of academic articles (Constantin et al.,
2013). With the development of machine learning, an increasing number of researchers use machine learning methods
to identify structure functions. Tuarob et al. (2015) used machine learning algorithms to identify the section boundaries
of academic literature. SVM, Text-CNN, and BERT were used to identify the structure function of academic text (Ji
et al., 2019). Ma et al. (2021) employed a variety of classification models to identify the structure function of academic
literature, and effective characteristics were screened out through experiments. Lu et al. (2018) refined the identification
of structure function into section header, section content, and paragraph. A novel clustering algorithm was proposed
to generate the structure function of a specific domain. Ma et al. (2022a) used traditional machine learning methods
and deep learning methods to train the structure function identification model.
2.3. NER

NER is a crucial task in natural language processing (NLP) and has a wide range of applications, such as question
answering (Mollá et al., 2006), machine translation (Siekmeier et al., 2021), and information extraction (Derczynski
et al., 2015). The methods for NER mainly include rule-based methods and machine learning-based methods.

Rule-based methods manually construct rule templates or dictionaries to match named entities. Hand crafted lexical
resources were exploited to construct a rule-based Greek NER system (Farmakiotou et al., 2000). Riaz (2010) exploited
a rule-based method for NER in Urdu, which outperforms statistical learning models. With the vigorous development
of machine learning, machine learning-based methods have also been used to extract entities in the literature. A feature
generation method using features of complex SRs and simple SRs is proposed, and it can improve the performance
of NER (Cho et al., 2013). Sentence-level and document-level representations were used by Luo et al. (2020) to
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augment the performance of NER. Recently, the main research directions of NER are few-shot learning, nested NER,
and discontinuous NER. A self-describing mechanism is proposed to solve the challenges (limited information and
knowledge mismatch) in few-shot NER. SDNet is also proposed, and a universal knowledge can be obtained by
SDNet (Chen et al., 2022). Retrieval-based span-level graphs were used to link spans and entities to obtain a better span
representation in nested NER (Wan et al., 2022). A span-based model was proposed by Li et al. (2021a) to recognize
discontinuous and overlapped entities.
2.4. Term function recognition

Term function recognition is an information extraction task. Kondo et al. (2009) identified heads, methods, and
goals from research papers’ titles. An unsupervised bootstrapping algorithm is proposed to recognize technologies
and applications from scientific literature (Tsai et al., 2013). Li et al. (2017) designed a novel literature analysis
system named CS-LAS, which can semantically analyze scientific literature from the perspective of term function
recognition. Nanba et al. (2010) considered the extraction of technologies and effects as a sequence-labeling problem,
and extracted them from research papers and patents. Lu et al. (2019) manually annotated the term function of
author-selected keywords, and analyzed the patterns of author-selected keywords. Cheng et al. (2021) transformed
the information extraction task into a specific form of title generation. They proposed a novel method combining a
deep learning and title generation strategy to recognize term function. Lu et al. (2020) designed an effective supervised
neural network method to achieve recognition of the research questions and methods in academic texts. A novel system,
AKMiner, was proposed to extract method and task concepts from academic literatures (Huang and Wan, 2013). New
supervised classifiers were proposed to extract problems and solutions from scientific texts (Heffernan and Teufel,
2018).

3. Data
A large amount of AI literature is necessary for our study. Firstly, this section introduces the literature data we

collected. In addition, two machine learning models are used during the research. Therefore, the section also introduces
the training data of these two models.
3.1. Collected literature data

A total of 122,446 papers published from 2005 to 2019 were collected by using the list of AI journals and
conferences in China Computer Federation (CCF)1 ranks (Tier-A, Tier-B, and Tier-C). The number of papers collected
at each publication venue and the websites for collection are shown Table A1 in Appendix. GROBID2 is utilized to
convert PDF format papers into XML format. The data is obtained by extracting certain pieces of information, including
titles, countries, publication venues, years, bodies, and references, from the papers in XML format. To facilitate reading,
the collected data is called CCF corpus.
3.2. Training data for the chapter classification

The main body of an AI paper generally includes four chapters: introduction, methodology, experiment, and
conclusion. The roles of AI markers in different parts vary. This study introduces a chapter classification strategy
to divide the body of AI literature into the above-mentioned four parts.

A total of 2000 papers in the CCF corpus are randomly selected to train the chapter classifier. The data labeling
process is as follows. Firstly, ten graduate students engaged in AI research are recruited to label the data. The ten
annotators are divided into five groups. In each group, two annotators are asked to independently label the same
data. Secondly, after labeling, we measure the interrater reliability (IRR) between the two annotators in the same way
as Wang and Zhang (2020), and the IRR is 0.90, which shows that our annotations are sufficiently reliable. Thirdly,
the two annotators discuss the differences in the labeling data to determine the final labeling results. Finally, we recruit
another five graduate students engaged in AI research to conduct a thorough check of the labeled data. When at least
four annotators think that the label of a sample is wrong, the label is corrected.

This data corpus is called TCCdata and is used to construct a BiLSTM classifier for chapter classification. The
numbers of chapters and the associated numbers of paragraphs for each chapter in TCCdata are shown in Table 1.

1CCF compiled a list of AI journals and conferences with different ranks. See https://www.ccf.org.cn/en/Bulletin/2019-05-13/
663884.shtml for details.

2https://grobid.readthedocs.io/en/latest/
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Table 1
Numbers of chapters and paragraphs in the TCCdata.

Chapters Paragraphs

Introduction 2918 24,385
Methodology 1004 14,344
Experiment 1961 18,289
Conclusion 2391 6092

Table 2
Numbers of AI markers in the TMEdata.

AI markers

Method Dataset Metric

Training 4737 2526 1046
Validation 815 528 205
Testing 567 298 159

3.3. Training data for the AI marker extraction
A total of 1000 papers from the CCF corpus are randomly selected to learn an AI marker extraction model. The

methodology and the experiment chapters of the 1000 papers are divided into sentences according to punctuation. The
BIO labelling strategy (Ratinov and Roth, 2009) is adopted for the three AI markers, namely, methods, datasets, and
metrics. The methods, datasets, and metrics compiled by JiqiZhixin3 are used to pre-annotate our compiled data, which
can accelerate the human labeling. The human labeling process of this data is the same as that of the TCCdata. The
IRR is 0.81, indicating that our annotations are sufficiently reliable. Finally, 10,410 labelled sentences are obtained
and are called TMEdata.

During the training of the extraction model, the TMEdata is divided into training, validation and testing sets
according to the ratio of 7.5:1.5:1. The details are shown in Table 2.

4. Methodology
Fig. 2 depicts the framework of our work. After the bodies of the paper are obtained in xml format, we firstly

classify the chapters, and then the sentences of the methodology chapter and experiment chapter are obtained.
Subsequently, the sentences are sent to the AI marker extraction model to identify AI markers (i.e., methods, datasets,
and metrics). Thereafter, the original paper tracing and clustering for AI markers are conducted. Finally, the statistical,
propagation, and cluster analyses are used to reveal the development of the AI field. The source code is available at
https://github.com/researchondata/Mining-AI-entities.
4.1. Chapter classification

In the body of an AI paper, the AI markers located in the methodology and the experiment chapters play a substantial
role in the paper. Accordingly, only the AI markers of the methodology and the experiment chapters are extracted.
Simple rule strategies are difficult to use to accurately classify the chapters of the AI literature due to the diversity
of the structure of the AI literature. To train the structure function identification model, traditional machine learning
methods and deep learning methods were utilized by Ma et al. (2022a). The experimental results showed that the
BiLSTM hierarchical network is the most robust model to extract the features of chapter content among the competing
methods. Furthermore, in numerous recent studies, BiLSTM is a frequently adopted model because of its good feature
representation capability (Zhang et al., 2022; Adhikari et al., 2019). Therefore, to improve accuracy and efficiency, the
chapter classification strategy that combines the BiLSTM algorithm and rules is adopted.

3https://www.jiqizhixin.com/sota
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Figure 2: Framework of our work.

4.1.1. Proposed classification strategy
The overall of our strategy is shown in Fig. 3. Rules (e.g. keywords and orders) are firstly used to label the chapters.

In well-matched chapters, the chapter labels are outputted. In unmatched chapters, the paragraphs under the chapters are
inputted into the paragraph-level BiLSTM classifier trained based on the TCCdata for prediction. Next, the paragraph-
level predicted labels in the same chapter are voted, and the labels with the most votes are used as the final label.
Finally, the rule-based and BiLSTM-based results are combined to obtain the final chapter labels of the whole body.

The conventional one-layer BiLSTM architecture is adopted. The dimension of the word vector is 200, the hidden
dimension is 256, and the batch size is 64. Cross entropy is used as the loss function. TCCdata is used as the training
data.

Figure 3: Overall process of chapter classification.

4.1.2. Evaluation results
The TCCData is divided into training, validation, and testing sets according to the ratio of 8:1:1. Three methods,

namely, rule-based, BiLSTM-based, and combining-based, are evaluated. The accuracy is 0.7980 by only using rule
matching. The accuracy is 0.7962 by only using paragraph-level BiLSTM trained on TCCData. The accuracy reached
0.9351 by using the combination.
4.2. AI marker extraction and normalization

The extraction and normalization of AI markers are challenging. Given that a large number of AI literature emerge
every year, the number of new AI markers continues to increase, and the forms vary. No prescribed standard is imposed
for the naming of AI markers. Some common words may also be used as datasets, such as ‘DROP’ in Dua et al. (2019).

Rujing Yao et al.: Preprint submitted to Elsevier Page 6 of 23
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4.2.1. AI marker extraction model
(1) CNN–BiLSTM–SA–CRF
AI marker extraction is a typical NER task (Shang and Ran, 2022). CNN-BiLSTM-CRF is a classic NER model

that has been widely used in numerous studies with good performance (Shang and Ran, 2022; Dai et al., 2019). Self-
attention (Vaswani et al., 2017) can capture the semantic features among words well. Therefore, the network structure of
the AI marker extraction model is based on the CNN-BiLSTM-CRF model and self-attention is used in our extraction
model. SciBERT (Beltagy et al., 2019) is a pretrained language model for scientific text and achieves good performance
on many tasks, including scientific entity extraction. Therefore, SciBERT is used to obtain word-level embedding. The
model structure is shown in Fig. 4.

Figure 4: Structure of the AI marker extraction model.

Firstly, the character-level embedding for each word, 𝑤𝑐ℎ
𝑖 , is obtained through a CNN network. Secondly, the word-

level embedding for each word, 𝑤𝑤𝑑
𝑖 , is obtained through SciBERT (Beltagy et al., 2019). Then, these two embeddings

are concatenated as follows:
𝑤𝑚𝑖𝑥

𝑖 =
[

𝑤𝑐ℎ
𝑖 , 𝑤𝑤𝑑

𝑖
]

. (1)
Subsequently, 𝑤𝑚𝑖𝑥

𝑖 is fed to BiLSTM to capture contextual information.

ℎ⃗𝑖 = 𝐿𝑆𝑇𝑀
(

ℎ⃗𝑖−1, 𝑤𝑚𝑖𝑥
𝑖

)

,
←

ℎ𝑖 = 𝐿𝑆𝑇𝑀
(←

ℎ𝑖+1, 𝑤𝑚𝑖𝑥
𝑖

)

, (2)

where ℎ⃗𝑖 and ←

ℎ𝑖 are the hidden vectors for the 𝑖th word obtained by forward LSTM and backward LSTM, respectively.
Then, ℎ⃗𝑖 and ←

ℎ𝑖 are concatenated as follows:

ℎ𝑖 =
[

ℎ⃗𝑖,
←

ℎ𝑖
]

. (3)

Let 𝐻 = {ℎ𝑖}𝐿𝑖=1, where 𝐿 is the (fixed) sentence length. Next, SA (Vaswani et al., 2017) is used to calculate the
association among words. The final representation for each word is calculated as follows:

𝑄 = 𝐻𝑊 𝑄, 𝐾 = 𝐻𝑊 𝐾 , 𝑉 = 𝐻𝑊 𝑉 , �̃� = Softmax
(

𝑄𝐾𝑇
√

𝑑

)

𝑉 , (4)

where 𝑊 𝑄, 𝑊 𝐾 , and 𝑊 𝑉 are learnable parameters, and 𝑑 is the length of ℎ𝑖.
Finally, �̃� is fed to the CRF (Lafferty et al., 2001) to obtain the label sequence of the sentence.
(2) Multi-stage self-paced learning (MSPL)
Similar to other NER tasks (Zhu and Li, 2022; Wang et al., 2021), the recognition of AI named entities still meets

the challenges, such as limited context and vague boundary. Moreover, noisy labels are nearly inevitable in NER
Rujing Yao et al.: Preprint submitted to Elsevier Page 7 of 23
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benchmark corpus (Wang et al., 2019; Li et al., 2020; Jie et al., 2019). Consequently, some training samples are more
difficult to learn than others. To alleviate the negative influence of some quite difficult training samples, an easy-first
learning strategy, namely, self-paced learning (SPL) (Kumar et al., 2010), is utilized. SPL simulates the mechanism
of human learning, in which easy knowledge is learned first, followed by hard knowledge. In SPL, the samples are
assigned different weights according to their difficulties. In the early training stage, the weights of easy samples (i.e.,
those with small losses below a threshold) are set to one, whereas the weights of hard samples (i.e., those with large
losses) are set to zero. An increasing number of hard samples are involved in the training with the increase in epoch.
The optimization with SPL is shown in Eq. (5).

min
∑

𝑖
𝑣𝑖𝑙𝑖

s.t. 𝑣𝑖 =
{

1 if 𝑙𝑖 <
1
𝐾

0 otherwise
,

(5)

where 𝑣𝑖 is the weight of the 𝑖th sample, 𝑙𝑖 is the loss of the 𝑖th sample, 𝐾 is a hyper-parameter, and the value of 𝐾 is
iteratively reduced in the experiments. When the loss of a sample is less than 1∕𝐾 , 𝑣𝑖 is equal to 1, which means that
this sample is involved in training.

SPL adopts an easy-first weighting strategy. Nevertheless, another opposite strategy, namely, hard-first weighting,
such as Focal Loss (Lin et al., 2017), is also widely leveraged in many deep learning tasks. Numerous experiments and
applications verified the effectiveness of the hard-first weighting strategy. Motivated by these two apparently contradict
weighting strategies, a multi-stage SPL strategy (MSPL) is proposed, which consists of the following three training
stages:

• Stage 1. This stage adopts the easy-first strategy to alleviate the negative influence of the hard samples. Easy
samples (i.e., samples with low training losses) are still assigned with high weights, and hard samples (i.e.,
samples with high training losses) are still with low weights. Accordingly, when the current epoch 𝑡 is smaller
than a threshold 𝑡1, the weights 𝑣𝑖 are defined as follows:

𝑣𝑖 =
1

1 + 𝑒𝑥𝑝[𝛼(𝑙𝑖 − 𝜏)]
, (6)

where 𝜏 is a hyperparameter.
• Stage 2. Equality stage. This training stage adopts the conventional strategy that all training samples have equal

weights (the values are one). Accordingly, when the current epoch 𝑡 locates in [𝑡1, 𝑡2], the weights 𝑣𝑖 are defined
as follows:

𝑣𝑖 ≡ 1. (7)
• Stage 3. This stage adopts the hard-first stage to explore the potentiality of hard samples. Hard samples (i.e.,

samples with relatively high training losses) are assigned with high weights, and easy samples (i.e., samples
with relatively low training losses) are with low weights.

𝑣𝑖 =
1

1 + 𝑒𝑥𝑝[−𝛼(𝑙𝑖 − 𝜏)]
. (8)

In our experiments, the average loss of the current and the last two epochs is utilized to replace 𝑙𝑖 in Eqs. (6) and (8)
to increase the robustness.

To illuminate the difference between SPL and our proposed MSPL, we plot the weighting curves of SPL and MSPL,
as shown in Figs. 5 and 6, respectively. MSPL can implement three various weighting strategies during different training
stages.
4.2.2. Experiments

(1) Competing methods
The following methods are compared in the experiments to select a high-performance NER model for the extraction

of methods, datasets, and metrics from large-scale AI literature.
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Figure 5: Curve of SPL when the threshold is 0.5.

Figure 6: Curves of MSPL when 𝜏 is set to 0.5, 𝛼 is set to 8, and 𝑇 is set to 120.

• BiLSTM–CRF (Glove). Word embedding for each word is obtained through the Glove (Pennington et al., 2014),
and then BiLSTM and CRF are used to obtain the label sequence of every word.

• CNN–BiLSTM–CRF (Glove). Character embedding for each word is obtained through the CNN network. Word
embedding for each word is obtained through the Glove. The above-mentioned two embeddings are co-created
to be fed into BiLSTM and CRF to obtain the label sequence.

• CNN–BiLSTM–SA–CRF (Glove). The difference between this model and CNN–BiLSTM–CRF is that SA is
used to calculate the association among words in this model.

• CNN–BiLSTM–SA–CRF (BERT). A pretrained model, BERT (Devlin et al., 2019), is used to obtain the word
embedding for each word.

• CNN–BiLSTM–SA–CRF (SciBERT). A pretrained model, SciBERT (Beltagy et al., 2019), is used to obtain
the word embedding for each word.

Rujing Yao et al.: Preprint submitted to Elsevier Page 9 of 23
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Table 3
Evaluation results of different NER models.

Model Original Sentences Lowercase Sentences

Precision Recall F1 Precision Recall F1

BiLSTM–CRF (Glove) 0.7854 0.7753 0.7803 0.7644 0.6991 0.7303
CNN–BiLSTM–CRF (Glove) 0.7913 0.7829 0.7871 0.7798 0.7055 0.7408
CNN–BiLSTM–SA–CRF (Glove) 0.8044 0.7868 0.7955 0.7845 0.7651 0.7747
CNN–BiLSTM–SA–CRF (BERT) 0.8078 0.7935 0.8006 0.7974 0.7821 0.7897
CNN–BiLSTM–SA–CRF (SciBERT) 0.8116 0.7989 0.8052 0.8023 0.7894 0.7958
CNN–BiLSTM–SA–CRF+SPL (SciBERT) 0.8165 0.8052 0.8108 0.8056 0.7951 0.8003
CNN–BiLSTM–SA–CRF+MSPL (SciBERT) 0.8197 0.8106 0.8151 0.8098 0.8012 0.8055

• CNN–BiLSTM–SA–CRF+SPL (SciBERT). The difference between this model and CNN–BiLSTM–SA–CRF
(SciBERT) is that SPL is used to decide which samples to participate in training.

• CNN–BiLSTM–SA–CRF+MSPL (SciBERT). MSPL is used to decide which samples to participate in
training.

(2) Experimental settings
In all methods, the maximum sentence length is 100, and the batch size is 16. The hidden dimension of BiLSTM

is 200. The character-level CNN network uses five parallel 3D convolution-activation-max pooling. Each of the five
convolutions uses ten 3D convolution kernels (10 1*1*50, 1*2*50, 1*3*50, 1* 4*50, and 1*5*50). Finally, the results
obtained by five convolutions are spliced to obtain a 50D character embedding for every word. The hidden dimension
of SA is 400. The 300D Glove (Pennington et al., 2014) embedding is used. The configurations of BERT and SciBERT
are in accordance with that of Devlin et al. (2019) and Beltagy et al. (2019), respectively. In SPL, the initial weight
of 𝐾 is set to 4 and is reduced by a factor 1.1 at each iteration. In MSPL, the values of 𝑡1 and 𝑡2 are set as 3𝑇 ∕8 and
5𝑇 ∕8, respectively, where 𝑇 is the number of total epochs and is set to 120. The value of 𝜏 and 𝛼 are set to 0.5 and 8,
respectively.

(3) Evaluation results
The raw and the corresponding lowercase samples are used to train the model. During the test, the test samples

(1040 sentences) and the corresponding 1040 lowercase samples are tested. The evaluation results of the NER models
are shown in Table 3.

Table 3 illustrates that MSPL improves the performance of the model, and CNN–BiLSTM–SA–CRF+MSPL
(SciBERT) outperforms the other NER models. Accordingly, CNN–BiLSTM–SA–CRF+MSPL (SciBERT) is used
to extract methods, datasets, and metrics from large-scale AI literature. To further ensure the reliability of extraction,
we manually compile a dictionary of common methods, datasets, and metrics. After the NER model is used to extract
AI markers, the dictionary is used to supplement unextracted entities and filter wrong entities. After combining with
the dictionary, the F1 of CNN–BiLSTM–SA–CRF+MSPL (SciBERT) is 0.8813, the recall is 0.8792, and the precision
is 0.8834.
4.2.3. AI marker normalization

In a paper, a method/dataset/metric may have multiple expressions. Our normalization approach follows the study
of Wang and Zhang (2020). We compile a dictionary for methods, datasets, and metrics to normalize them. Specifically,
we recruit 30 graduate students engaged in AI research to manually summarize all names of a method/dataset/metric.
Table 4 shows some illustrative examples in our compiled dictionaries.
4.3. Original paper tracing for AI markers

The original papers of the methods and dataset must be traced back to obtain the research trace of a method or
dataset that has been cited by other literature.
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Table 4
Some illustrative examples in our compiled dictionary.

Dictionary Normalized name Abbreviations and aliases

Method

Long Short-Term Memory (LSTM)
LSTM, LSTMs, LSTM based, LSTM-based,

Long Short Term Memory, Long Short-Term Memory,
Long-Short-Term Memory, Long-Short-Term-Memory

Recurrent Neural Net-work (RNN)
RNN, RNNs, RNN based,

RNN-based, Recurrent NN, Recurrent NNs,
Recurrent Neural Network, Recurrent Neural Networks

Support Vector Machine (SVM)
SVM, SVMs, SVM based, SVM-based,

Support Vector Machine, Support Vector Machines,
Support-Vector Machine, Support-Vector Machines

Dataset

CIFAR CIFAR, CIAFR10, CIAFR-10,
CIFAR 10, CIFAR100, CIFAR-100, CIFAR 100

SST SST, SST1, SST-1,
SST2, SST-2, SST5, SST-5

COCO

COCO, MSCOCO, MS COCO, MS-COCO,
Microsoft COCO, Microsoft-COCO, COCO2014,

COCO 2014, COCO-2014,MSCOCO2014, MSCOCO 2014,
MSCOCO-2014, MS COCO 2014, MS COCO2014,

MS-COCO 2014, MS-COCO2014, Microsoft COCO 2014
(The year can be replaced with other numbers.)

Metric

F Measure

F Measure, F-Measure, F measures, F-measures,
F Score, F-Score, F Scores, F-Scores, F1, F-1,

F1 measure, F1 measures, F1-measure, F1-measures,
F-1 measure, F-1 measures, F1 score, F1 scores,

F1-score, F1-scores

Mean Absolute Error (MAE) MAE, Mean absolute error,
MAEs, Mean absolute errors

Adjusted Rand Index (ARI) ARI, Adjusted Rand Index

4.3.1. Tracing approach
When a method or dataset is cited in a paper, the references for the corresponding original papers are often attached

to it. In tracing, the set of papers citing the AI marker is firstly recorded for each AI marker. The sentences where the
AI marker appears are located for each paper in the set. In each sentence, the existence of references in one or two
positions behind the AI marker is checked. If a reference is present, then it is recorded. Finally, the most cited paper
corresponding to each AI marker in the recorded references is selected as the original paper. Although this approach
may produce errors, with such a large amount of data, we believe that the approach is a feasible and effective way to
balance accuracy and cost in solving the problem.
4.3.2. Evaluation results

Using the above-mentioned tracing approach, a total of 5197 methods proposed in CCF corpus and 4166
corresponding original papers are obtained. Moreover, 1296 datasets proposed in CCF corpus and 971 corresponding
original papers are obtained. The results are manually checked and the accuracy is 95.16%.
4.4. Clustering of AI markers

Methods using the same datasets and metrics are likely to solve the same task, but they may not appear in the same
paper. Nonetheless, these methods are of the same type and it is significant to cluster them. Accordingly, we combine
the datasets and metrics through the co-occurrence relationship and then merge the combined {datasets, metrics}
and methods through the co-occurrence relationship to obtain the co-occurrence matrix of {methods, {datasets,
metrics}}. Given the high-dimensional sparseness of the co-occurrence matrix, Nonnegative Matrix Factorization
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(NMF) (Alghamedy and Zhang, 2018; Lee and Seung, 2001) and spectral clustering (Ng et al., 2002) are used together
to build dimensionality reduction and clustering algorithms, and 500 method clusters are obtained4.

5. Results
This section performs statistical analysis, propagation analysis, and method cluster analysis on the basis of the AI

markers in the collected CCF corpus (2005–2019 AI papers).
5.1. Statistics of AI markers

A total of 172,165 machine learning method entities, 16,877 dataset entities, and 1572 metric entities are mined
by extracting the AI markers in the CCF corpus. Only AI markers that are cited more than once are considered in the
analysis.5

This section introduces the analysis of AI markers in terms of the countries and publication venues. The top 10 AI
markers used every year are also described.
5.1.1. Analysis in terms of countries

The number of AI markers proposed by a country can partially reflect its AI research level . The number of methods
and datasets proposed by each country in the CCF corpus from 2005 to 2019 is calculated (Figs. 7 and 8)6.

Figure 7: Distribution of the number of methods in different countries.

Fig. 7 demonstrates that the top three countries according to method quantities are the United States, China, and
the United Kingdom, followed by Germany, France, Canada, Singapore, Australia and so on. In Fig. 8, the top three
countries according to dataset quantities are the United States, China, and the United Kingdom, followed by Germany,
Switzerland, Canada, France, Singapore, Israel and so on. The United States, China, and the United Kingdom are
relatively active countries in the field of AI.

The proposal rates of the methods and datasets for each country are calculated to reduce the effect of the number
of papers published in each country.

The proposal rate 𝑀𝑅𝑐 of the methods of country 𝑐 and the proposal rate 𝐷𝑅𝑐 of the datasets of country 𝑐 are
calculated using Eqs. (9) and (10).

𝑀𝑅𝑐 =
|

|

𝑀𝑐
|

|

|

|

𝐿𝑐
|

|

, (9)
4The number of clusters represents the experimental parameters. It was verified by manually checking the clusters that the results are reasonable

when the number of clusters are the above values.
5Considering the accuracy of the extracted entities, only entities with more than once in all papers are used for analysis.
6The country that proposed a specific AI marker is the country of the first author’s institution of the original paper corresponding to the AI

marker.
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Figure 8: Distribution of the number of datasets in different countries.

𝐷𝑅𝑐 =
|

|

𝐷𝑐
|

|

|

|

𝐿𝑐
|

|

, (10)

where 𝑀𝑐 is the set of methods proposed by country 𝑐, 𝐷𝑐 is the set of datasets proposed by country 𝑐, and 𝐿𝑐 is the
set of papers proposed by country 𝑐.

The proposal rates of the methods of the top 10 countries in terms of the number of proposed methods and those of
the datasets of the top 10 countries with regard to the number of proposed datasets are obtained on the basis of Eqs. (9)
and (10). The results are shown in Fig. 9. The proposal rate of the methods of the United States ranked first. The
proposal rate of Switzerland is the highest, which reflects that Switzerland attaches great importance to AI datasets.
5.1.2. Analysis in terms of the publication venues

To measure the quality of publication venues, the average usage of the entity proposed by each journal is calculated
using Eq. (11).

𝑈𝑣 =

∑

𝑚∈𝑀𝑣

𝐶𝑚

|

|

𝑀𝑣
|

|

+

∑

𝑑∈𝐷𝑣

𝐶𝑑

|

|

𝐷𝑣
|

|

, (11)

where 𝑀𝑣 is the set of methods proposed by publication venue 𝑣, 𝐷𝑣 is the set of datasets proposed by publication
venue 𝑣, 𝐶𝑚 is the number of citations of the original paper of the method 𝑚, and 𝐷𝑚 is the number of citations of the
original paper of the dataset 𝑑.

The top 10 publication venues in terms of average usage of the entity proposed are shown in Fig. 10. IJCV is ranked
first. Furthermore, numerous publication venues are related to the computer vision (CV) field in the top 10, such as
IJCV, TPAMI, CVPR, ICCV, and ECCV, indicating that entities in the CV field are more likely to be used by other
papers. Among the top 10 publication venues, seven publication venues belong to Tier-A in CCF, which reflects that
the quality of most papers in the publication venues of Tier-A is indeed higher than those of papers in Tier-B and
Tier-C.
5.1.3. Annual top 10 AI markers

This section analyses the number of methods and datasets used every year from 2005 to 20197. The number of
methods used every year from 2005 to 2019 is counted. The top 10 popular methods used every year are shown in

7The methods/datasets used every year not only include the methods/datasets really used in the papers but also include the methods/datasets
that are purely mentioned in the methodology and the experiment chapters because all these entities are important to the papers.
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(a) Proposal rates of the methods of the top 10 countries listed in Fig. 7.

(b) Proposal rates of the datasets of the top 10 countries listed in Fig. 8.

Figure 9: Proposal rates of the AI markers of the top 10 countries listed in Figs. 7 and 8. The number of AI markers
proposed by the countries decreased from top to bottom.

Figure 10: Top 10 publication venues in terms of average usage of the entity proposed.
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Fig. 11. In Fig. 11, SVM, a traditional machine learning method, is widely used every year, and ranked first from 2005
to 2016. The proportion of SVM usage decreased after 2016 with the rapid development of deep learning. The deep
learning method, CNN, is most widely used after 2016. Deep learning gains popularity in the AI field. One reason is
that deep learning algorithms can be trained in an end-to-end manner without manual feature extraction. Furthermore,
the deep learning algorithms can better learn the features with large-scale data and achieve excellent performance.

Figure 11: Top 10 methods used every year.

The number of datasets used every year is counted. The top 10 datasets used every year are shown in Fig. 12.
MNIST ranked first from 2005 to 2014. ImageNet ranked first after 2014. The usage of ImageNet has increased over
time. One reason is that ImageNet is large in scale and diversity, and facilitates the development of deep learning. The
KITTI dataset (Geiger et al., 2012) is mainly used in the field of autonomous driving. The proportion of this dataset in
the top 10 datasets gradually increased from 2017 to 2019, indicating that autonomous driving is growing in popularity.
Many of the top 10 datasets are used in the face recognition field, such as Caltech, Yale, CMU PIE, and CelebA. The
dataset proportion of face recognition in the top 10 datasets used every year is counted (Table 5). It can be seen that
face recognition has always been a popular research direction.

Figure 12: Top 10 datasets used every year.
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Table 5
Proportion of datasets of face recognition in the top 10 datasets used every year.

Year Face recognition Proportion

2005 FERET, Yale, CMU PIE, AR Face Database, and Caltech 37.23%
2006 FERET, Caltech, ORL, CMU PIE, XM2VTS, and AR Face Database 56.67%
2007 Caltech, ORL, and CMU PIE 26.18%
2008 Caltech, CMU PIE, FERET, Yale, and AR Face Database 54.15%
2009 Caltech, CMU PIE, and Yale 29.62%
2010 Caltech, FERET, and Yale 29.79%
2011 Caltech, CMU PIE and Yale, and FERET 38.38%
2012 Caltech, Yale, and CMU PIE 29.61%
2013 Caltech, CMU PIE, and Yale 27.74%
2014 Caltech, Yale, CMU PIE, and AR Face Database 36.34%
2015 Caltech and Yale 16.50%
2016 Caltech 8.49%
2017 Caltech and Yale 11.24%
2018 CelebA and Caltech 9.64%
2019 Caltech 4.36%

5.2. Propagation of methods and datasets
This section analyses the propagation of methods among countries8 and the propagation of datasets.

5.2.1. Propagation of methods
Variable 𝑀𝑐 is the set of all the methods proposed by country 𝑐, and 𝑚 ∈ 𝑀𝑐 . The propagation degree of the

methods from country 𝑐 to country 𝑐′ in the time period from year 𝑦 to year 𝑦 + Δ𝑦 is calculated using Eq. (12).

𝑃𝐷𝑐,𝑐′ (Δ𝑦|𝑦) =
∑

𝑚∈𝑀𝑐

|

|

|

𝐿𝐸𝑚
𝑐′ (Δ𝑦|𝑦)

|

|

|

+ |

|

|

𝐿𝑀𝑚
𝑐′ (Δ𝑦|𝑦)

|

|

|

, (12)

where 𝐿𝐸𝑚
𝑐′ (Δ𝑦|𝑦) is the set of papers in country 𝑐′, which cites method m in the experiment chapter in the time period

from year 𝑦 to year 𝑦 + Δ𝑦, 𝐿𝑀𝑚
𝑐′ (Δ𝑦|𝑦) is the set of papers in country 𝑐′, which cites method 𝑚 in the methodology

chapter in the time period from year 𝑦 to year 𝑦 + Δ𝑦, 𝑦 ∈ {2005, 2006,⋯ , 2019}, and Δ𝑦 ∈ {0, 1, 2,⋯ , 14}.
Based on Eq. (12), the propagation degrees of the methods among countries from 2005 to 2009, from 2010 to 2014

and from 2015 to 2019 are calculated. The top 10 propagation degrees among countries at each stage are shown in
Fig. 13.

The methods are mainly propagated from the United States, France, and the United Kingdom to other countries
from 2005 to 2009. The propagation degree of the methods proposed by China gradually increased from 2010 to 2014.
Furthermore, the propagation degree of the methods proposed by China to the United States ranked second place from
2015 to 2019, indicating the rapid development of AI in China in recent years. The propagation degree of the methods
proposed by the United States has been the first from 2005 to 2019.
5.2.2. Propagation of datasets

The propagation rate of the datasets proposed in year 𝑦 in the time period from year 𝑦 to year 𝑦 +Δ𝑦 is calculated
using Eq. (13).

𝑃𝑅 (Δ𝑦|𝑦) =

∑

𝑑∈𝐷𝑦

|

|

𝑈𝑑 (Δ𝑦|𝑦)||

|

|

|

𝐷𝑦
|

|

|

, (13)

8Given that the propagation analysis needs to be traced to the original papers of the methods, the methods and the corresponding original papers
obtained in Section 4.3 are only used for analysis in this section.
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Figure 13: Top 10 propagation degrees of methods among countries from 2005 to 2019. The usage from the same country
is excluded, and the propagation direction is from left to right.

where 𝐷𝑦 is the set of all the datasets proposed in year 𝑦, 𝑈𝑑 (Δ𝑦|𝑦) is the set of the papers that used the dataset 𝑑 in
the time period from year 𝑦 to year 𝑦 + Δ𝑦, and Δ𝑦 ∈ {0, 1, 2}.

Based on Eq. (13), the propagation rates of the datasets are obtained and shown in Fig. 14. The aforementioned
figure demonstrates that the propagation rate gradually increases over time, indicating that researchers pay more and
more attention to datasets.

Figure 14: Propagation rates of datasets.

We also compare the application of the methods on the datasets within a few years after they were proposed.
The large margin nearest neighbour (LMNN) and Transformer methods proposed in 2005 and 2018, respectively, are
considered in the case study. The results are shown in Fig. 15.

Fig. 15 demonstrates that after Transformer was proposed, it was quickly applied to various datasets in 2018 and
2019. LMNN was proposed in 2005. However, the number of datasets applying LMNN was small in 2006 and 2007.
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Moreover, the number and types of applications of Transformer are far more than those of LMNN. This notion reflects
that the propagation has been increased rapidly in recent years. One reason lies in the increasing involvement of
researchers in the field due to the rapid development of deep learning. The depth and breadth of the related studies have
been continuously improved, and multiple datasets have been used to fully validate the performance of the algorithms.
Additionally, deep learning algorithms have become the primary approaches in various AI subfields in recent years,
so that the advances in one subfield can be applied to other subfields quickly.

(a) Application of LMNN to the datasets in 2006 (inner circle) and
2007

(b) Application of Transformer to the datasets in 2018 (inner circle) and
2019

Figure 15: Application of different methods on the datasets. The red point in the centre indicates the method. The inner
and outer circles are composed of many dataset points. In the dataset points, the size of the point indicates the number
of the dataset applied to the method.

5.3. Analysis of method clusters
5.3.1. Roadmap generation for method clusters

A method roadmap describes the evolution of different yet highly correlated methods (Zha et al., 2019). In the
method clusters obtained by the clustering algorithm, each method cluster is composed of different yet highly correlated
methods. In the cluster, if a time-based method evolution map can be built, and the dataset information can be added,
then it will provide enlightening information for related research.

The roadmap generation procedure for a method cluster (the output of the algorithm in Section 4.4) proposed in
the study is as follows:

1) The information of all the methods in the cluster is obtained, including the time of proposal, the chapters where
the method locates in its original paper and the associated datasets used in its original paper9.

2) For each method 𝑀𝑖 in the cluster, the other methods {𝑀1, ...,𝑀𝑛
} mentioned in the experiment chapter of the

original paper of 𝑀𝑖 are found. Path 𝑀𝑖 → 𝑀𝑗 from 𝑀𝑖 to 𝑀𝑗 is constructed, and 𝑀𝑗 ∈
{

𝑀1, ...,𝑀𝑛
}. The edge

between 𝑀𝑖 and 𝑀𝑗 represents the datasets used for the comparison between 𝑀𝑖 and 𝑀𝑗 .3) Continuous paths are combined to obtain the roadmap of the methods in the same method cluster. For example,
if (𝑀1 → 𝑀2

), (𝑀2 → 𝑀3
) and (

𝑀1 → 𝑀3
) exist, then only (

𝑀1 → 𝑀2
) and (

𝑀2 → 𝑀3
) are kept.

The construction of our roadmaps differs from the approach in Zha et al. (2019) in two points: 1) The datasets are
added in our roadmap construction, which provides additional information; 2) the methods are obtained by large-scale
literature mining in our roadmap, and numerous roadmaps can be simultaneously obtained.

9If the original paper is not traced back in Section 4.3, then the earliest paper cited by this method will be used as the original paper.
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5.3.2. Case study for method roadmap
The following common categories of methods are analyzed: representation learning in the knowledge graph and

generative adversarial networks. The roadmaps of the methods in the ‘Trans’ and ‘GAN’ clusters are drawn by using
our roadmap generation algorithm.

Fig. 16 shows the generated roadmap of the methods in the ‘Trans’ cluster. After the survey study conducted by Ji
et al. (2021) is checked, the roadmap generated from our ‘Trans’ cluster covers 76% of the representative methods
in the knowledge graph mentioned in Ji et al. (2021), and contains some other representative methods. For example,
GMatching and KGE are graph embedding methods, and HITS is a link analytical method. The out-degree of the
TransE method is the largest. On the one hand, many methods, such as CTransR and RTRANSE, are inspired by the
TransE method and expand new methods. On the other hand, TransE is a representative method of representation
learning in the knowledge graph, and many newly proposed representation methods in the knowledge graph are often
compared with it. The datasets applied to the methods in the ‘Trans’ cluster can also be seen in Fig. 16.

Figure 16: Roadmap of the methods in the ‘Trans’ cluster. The numbers in the figure indicate the datasets used when
comparing 𝑀𝑖 and 𝑀𝑗 in path 𝑀𝑖 → 𝑀𝑗 . The coloured dots in the figure indicate the years, their sizes denote the sizes of
the out-degrees, and the coloured lines signify the datasets represented by the numbers. The correspondence between the
numbers and the datasets is as follows: 1: WikiLinks; 2: WikiLinks, WordNet, and Freebase; 3: WordNet and Freebase;
4: ClueWeb; 5: Freebase and NYT; 6: ClueWeb and WordNet; 7: ImageNet and WordNet; 8: DBpedia; 9: WordNet and
YAGO; 10: MR; 11: Wiki-One and NELL-One; 12: WordNet; 13: YAGO.

Fig. 17 is the roadmap generated for the ‘GAN’ cluster. After the content of the paper published by Hong et al.
(2019) is checked, the roadmap of the methods in our ‘GAN’ cluster covers 75% of the generative adversarial methods
in Hong et al. (2019). Fig. 17 also shows the year when each method was proposed. For example, GAN and DCGAN
were proposed in 2014 and 2016, respectively. Moreover, the out-degree of the DCGAN method is the largest. On the
one hand, many methods, such as AdaGAN and SNDCGAN, are inspired by the DCGAN method and expand new
methods. On the other hand, DCGAN is a representative method of generative adversarial networks, and many newly
proposed generative adversarial methods are often compared with it. The datasets applied to the methods in the ‘GAN’
cluster can also be seen in Fig. 17.
6. Conclusions and future work

Inspired by the idea of molecular marker tracing in the field of biochemistry, methods, datasets, and metrics are
used as markers for AI literature. The traces of these three named entities in the specific research process are used
to study the development and change of the AI field. Firstly, the AI marker extraction model is used to extract AI
markers from the methodology and the experiment chapters in the collected AI papers. The methods and datasets are
statistically analyzed, and the annual development of the AI field is obtained. Secondly, we trace the original papers
corresponding to methods and datasets. Statistical and propagation analyses are performed on the basis of the original
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Figure 17: Roadmap of the methods in the ‘GAN’ cluster. The numbers in the figure indicate the datasets used when
comparing 𝑀𝑖 and 𝑀𝑗 in path 𝑀𝑖 → 𝑀𝑗 . The coloured dots in the figure indicate the years, their sizes denote the size
of the out-degrees, and the coloured lines signify the datasets represented by the numbers. The correspondence between
the numbers and the datasets is as follows: 1: MNIST, SVHN, and CelebA; 2: CUB and Oxford Flower; 3: CUB, MPII
Human Pose, Caltech, and MHP; 4: ImageNet and SVHN; 5: ImageNet; 6: MNIST, CIFAR, and ImageNet; 7: MNIST; 8:
CelebA; 9: MNIST, CIFAR, and SVHN; 10: SVHN, CIFAR, CelebA, and LSUN Bedroom; 11: LSUN Bedroom; 12: MNIST,
CIFAR, CelebA, and LSUN Bedroom; 13: MNIST and CIFAR; 14: CIFAR and LSUN Bedroom; 15: ImageNet and COCO;
16: MNIST, SVHN, CelebA, and LSUN Bedroom; 17: CelebA and LSUN Bedroom; 18: Chinese poem.

paper tracing results. The results show that the United States, China, and the United Kingdom are relatively active
countries in the field of AI. The propagation rate of the datasets gradually increases over time. The methods proposed
by China in recent years have an increasing influence on other countries. Finally, the datasets and metrics are combined,
and the combined results are combined with methods to get the co-occurrence matrix, which is used for clustering. The
roadmaps of the methods are drawn on the basis of the method clusters and associated datasets to study the evolution
of the methods in the same cluster.

In summary, we construct a large-scale literature dataset, which can be valuable for the community. Then, the
development in the field of AI is explored from the perspectives of methods, datasets, and metrics, which can benefit
help many researchers, such as beginners in AI research, in quickly and accurately finding research information and
understand research trends. In addition, the MSPL strategy is proposed to address the negative influence of hard and
noisy samples in training. The MSPL strategy can also be used in other tasks, such as classification tasks.

Nevertheless, this paper still has some limitations. Firstly, the year-range of papers we collected is limited. We only
collected papers from 2005 to 2019. In the future, we will collect more papers to more fully reflect the development of
the AI field. Secondly, during the tracing the original paper tracing for a specific AI marker, we only consider citation
information. However, the approach may cause some errors. For example, sometimes, a paper cited by an author about
a specific algorithm may be the most famous paper for the algorithm applied to a certain task, rather than the original
paper of the algorithm. In this work, with such a large amount of data, we believe that the approach is a feasible and
effective way to balance accuracy and cost in solving the problem. In the future, we will explore a better way to solve
this problem. Finally, we do not study the development of different AI subfields, such as the similarities and differences
between the NLP field and the CV field, which is also a very important issue. Given that many conferences and journals
publish papers in NLP and CV fields, how to divide the fields of papers is a challenging problem. We will explore this
issue in the future.

In addition to the above-mentioned future research directions, we will also design a better model structure to extract
entities more accurately. Furthermore, we will consider how to utilize recommendation algorithms to recommend
algorithms or datasets to scholars. Finally, we will consider extracting more kinds of entities from AI literature, such
as optimization methods, to achieve a more comprehensive presentation of the AI field.
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Table A1
Information of collected papers.

No. Publication Venue (Abbreviation) Website Number

1 AAAI Conference on Artificial Intelligence (AAAI) http://dblp.uni-trier.de/db/conf/aaai/ 8295
2 Annual Conference on Neural Information Processing Systems (NeurIPS) http://dblp.uni-trier.de/db/conf/nips/ 5604
3 Annual Meeting of the Association for Computational Linguistics (ACL) http://dblp.uni-trier.de/db/conf/acl/ 9207
4 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) http://dblp.uni-trier.de/db/conf/cvpr/ 11049
5 International Conference on Computer Vision (ICCV) http://dblp.uni-trier.de/db/conf/iccv/ 4887
6 International Conference on Machine Learning (ICML) http://dblp.uni-trier.de/db/conf/icml/ 4198
7 International Joint Conference on Artificial Intelligence (IJCAI) http://dblp.uni-trier.de/db/conf/ijcai/ 4228
8 Annual Conference on Computational Learning Theory (COLT) http://dblp.uni-trier.de/db/conf/colt/ 743
9 Conference on Empirical Methods in Natural Language Processing

(EMNLP)
http://dblp.uni-trier.de/db/conf/emnlp/ 3927

10 European Conference on Artificial Intelligence (ECAI) http://dblp.uni-trier.de/db/conf/ecai/ 2582
11 European Conference on Computer Vision (ECCV) http://dblp.uni-trier.de/db/conf/eccv/ 3657
12 International Conference on Case-Based Reasoning and Development (IC-

CBR)
http://dblp.uni-trier.de/db/conf/iccbr/ 515

13 International Conference on Computational Linguistics (COLING) http://dblp.uni-trier.de/db/conf/coling/ 2365
14 International Conference on Principles of Knowledge Representation and

Reasoning (KR)
http://dblp.uni-trier.de/db/conf/kr/ 509

15 International Conference on Uncertainty in Artificial Intelligence (UAI) http://dblp.uni-trier.de/db/conf/uai/ 1320
16 Artificial Intelligence and Statistics (AISTATS) http://dblp.uni-trier.de/db/conf/aistats/ 1822
17 Asian Conference on Computer Vision (ACCV) http://dblp.uni-trier.de/db/conf/accv/ 1857
18 Asian Conference on Machine Learning (ACML) http://dblp.uni-trier.de/db/conf/acml/ 401
19 British Machine Vision Conference (BMVC) http://dblp.uni-trier.de/db/conf/bmvc/ 1692
20 CCF International Conference on Natural Language Processing and Chinese

Computing (NLPCC)
https://dblp.uni-trier.de/db/conf/nlpcc/ 25

21 Conference on Computational Natural Language Learning (CoNLL) http://dblp.uni-trier.de/db/conf/conll 888
22 IEEE International Conference on Tools with Artificial Intelligence (ICTAI) http://dblp.uni-trier.de/db/conf/ictai/ 1987
23 International Conference on Algorithmic Learning Theory (ALT) http://dblp.uni-trier.de/db/conf/alt/ 329
24 International Conference on Artificial Neural Networks (ICANN) http://dblp.uni-trier.de/db/conf/icann/ 1652
25 International Conference on Automatic Face and Gesture Recognition (FG) http://dblp.uni-trier.de/db/conf/fgr/ 900
26 International Conference on Document Analysis and Recognition (ICDAR) http://dblp.uni-trier.de/db/conf/icdar/ 2012
27 International Conference on Inductive Logic Programming (ILP) http://dblp.uni-trier.de/db/conf/ilp/ 354
28 International conference on Knowledge Science, Engineering and Manage-

ment (KSEM)
http://dblp.uni-trier.de/db/conf/ksem/ 585

29 International Conference on Neural Information Processing (ICONIP) http://dblp.uni-trier.de/db/conf/iconip/ 3547
30 International Conference on Pattern Recognition (ICPR) http://dblp.uni-trier.de/db/conf/icpr/ 6298
31 International Joint Conference on Neural Networks (IJCNN) http://dblp.uni-trier.de/db/conf/ijcnn/ 8044
32 Pacific Rim International Conference on Artificial Intelligence (PRICAI) http://dblp.uni-trier.de/db/conf/pricai/ 671
33 The Annual Conference of the North American Chapter of the Association

for Computational Linguistics (NAACL)
http://dblp.uni-trier.de/db/conf/naacl/ 3664

34 IEEE Trans on Pattern Analysis and Machine Intelligence (TPAMI) http://dblp.uni-trier.de/db/journals/pami/ 2889
35 International Journal of Computer Vision (IJCV) http://dblp.uni-trier.de/db/journals/ijcv/ 1292
36 Journal of Machine Learning Research (JMLR) http://dblp.uni-trier.de/db/journals/jmlr/ 824
37 Autonomous Agents and Multi-Agent Systems (AAMAS) http://dblp.uni-trier.de/db/journals/aamas/ 441
38 IEEE Transactions on Audio, Speech, and Language Processing (TASLP) http://dblp.uni-trier.de/db/journals/taslp/ 1644
39 IEEE Transactions on Fuzzy Systems (TFS) http://dblp.uni-trier.de/db/journals/tfs/ 1459
40 Journal of Automated Reasoning http://dblp.uni-trier.de/db/journals/jar/ 459
41 Machine Learning http://dblp.uni-trier.de/db/journals/ml/ 860
42 Applied Intelligence http://dblp.uni-trier.de/db/journals/apin/ 1524
43 AInternational Journal on Document Analysis and Recognition (IJDAR) http://dblp.uni-trier.de/db/journals/ijdar/ 317
44 Machine Translation http://dblp.uni-trier.de/db/journals/mt/ 186
45 Machine Vision and Applications http://dblp.uni-trier.de/db/journals/mva/ 913
46 Natural Computing http://dblp.uni-trier.de/db/journals/nc/ 656
47 Neural Computing & Applications (NCA) http://dblp.uni-trier.de/db/journals/nca/ 3624
48 Neural Processing Letters (NPL) http://dblp.uni-trier.de/db/journals/npl/ 1082
49 Pattern Analysis and Applications (PAA) http://dblp.uni-trier.de/db/journals/paa/ 770
50 Soft Computing http://dblp.uni-trier.de/db/journals/soco/ 3692
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