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Abstract

This study focuses on a reverse question answering (QA) procedure, in which
machines proactively raise questions and humans supply the answers. This
procedure exists in many real human-machine interaction applications. How-
ever, a crucial problem in human-machine interaction is answer understand-
ing. Existing solutions have relied on mandatory option term selections to
avoid automatic answer understanding. However, these solutions have led to
unnatural human-computer interaction and negatively affected user experi-
ence. Thus, we propose a novel deep answer understanding network, AntNet,
for reverse QA. The network consists of three new modules, namely, a skele-
ton attention for questions, a relevance-aware representation of answers, and
a multi-hop-based fusion. Furthermore, to alleviate the negative influences of
some quite difficult human answers, an improved self-paced learning strategy
is proposed to train the AntNet by assigning different weights to training sam-
ples according to their learning difficulties. Given that answer understanding
for reverse QA has not been explored, a new data corpus is compiled in this
study. Experimental results indicate that our proposed network is signifi-
cantly better than existing methods and those modified from classical natu-
ral language processing deep models. The effectiveness of the three modules
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and the improved self-paced learning strategy is also verified.

Keywords: Question answering (QA), Reverse QA, Answer understanding,
Attention, Self-paced learning

1. Introduction

Automatic question answering (QA) is a crucial component in many
human-machine interaction systems, such as intelligent customer service, be-
cause it can provide a natural means for humans to acquire information [1, 2].
In recent years, QA has received increasing attention in academic research
and industry communities [3, 4, 5]. Questions are solely raised by humans,
and answers are returned by machines in a conventional QA scenario, such as
frequently asked questions (FAQ). The manner of selecting the best-matched
answer is the key problem in this scenario [6].

Nevertheless, machines are also required to determine human needs or
perceive human states in human-machine interaction systems. In such sce-
narios, machines proactively raise questions, and humans supply the answers.
This procedure is called reverse QA. Although this process has received min-
imal attention in previous literature, it is common in commercial intelligent
customer service systems. Fig. 1 shows a reverse QA example from Facebook
Job Bot1. In nearly all commercial systems, the answer items (e.g., “Find
jobs,” “Profile,” “Job alert,” and “Info” in Fig. 1) are fixed, and humans are
only allowed to select at least one of the fixed candidate items. This strategy
is an engineering solution, in which the interaction between users and AI
systems is unnatural.

To ensure a natural human-machine interaction and improve user experi-
ence, humans should be allowed to type any texts similar to natural conver-
sations in daily life. Furthermore, machines must automatically understand
the meaning of human answers without requiring them to choose fixed op-
tions, as shown in Fig. 1. To date, the automatic answer understanding in
reverse QA has not been explored2.

1https://www.facebook.com/pg/jobbot.me/about/?ref=page_internal.
2To our knowledge, only our early work [7] explored this issue. This study is an

extension of our early work [7]. Nevertheless, a larger data corpus is compiled, and an
entire new deep neural network is proposed.
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Figure 1: Reverse QA in a commercial human-AI interaction system. Users cannot type
texts for machine questions. They are only allowed to select option items (e.g., “Find
jobs”).

This study proposes a new deep neural network, namely, the answer un-
derstanding network (AntNet), on the basis of the observations on a new data
corpus and inspired by the related studies, such as aspect-based sentiment
analysis [8, 9]. Furthermore, considering that some training samples are more
difficult to train than others, an improved self-paced learning strategy which
assigns different weights to different training samples during the training is
proposed.

Given a machine-question and human-answer pair, AntNet extracts dense
feature vectors for the question and the answer, and then fuses the two ex-
tracted vectors. A high-level dense feature vector is obtained and fed into
a softmax layer for final answer understanding. Three new modules are in-
cluded in AntNet. The first and second modules are the skeleton attention
for questions and the relevance-aware representation of answers, respectively.
The primary goal of the two modules is to exclude less important or disturb-
ing information in questions and answers. The third module is the multi-hop-
based fusion that is used to fuse answer and question vectors. The improved
self-paced learning strategy is utilized in training to control the learning fo-
cus of easy and hard samples in training. Our proposed network is compared
with existing methods and those modified from classical natural language
processing deep models, such as Transformer [10]. The effectiveness of the
improved SPL strategy is also verified.

A large data corpus3 is constructed to facilitate the investigation of answer
understanding in reverse QA. The experimental results indicate that AntNet

3https://github.com/NlpResearchs/AntNet-ReverseQA
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significantly outperforms the competing methods, and the improved SPL
strategy further improves the performance of AntNet.

Our contributions are summarized as follows:

• A new problem, namely, human answer understanding for machine
question, is initiated. A new corpus is also constructed for this new
problem.

• A new deep neural network is proposed for the new problem. Our
network contains standard modules widely used in existing related net-
works, such as the multi-hop attention module. New modules are also
designed to better represent the input question and answer sentences,
such as the skeleton attention and the relevance-aware answer repre-
sentation modules.

• A new learning strategy is proposed to give priority to easy samples at
first and then give priority to hard samples gradually during training.

2. Related Work

The most related study to reverse QA is question answering (QA). QA
covers a wide range of tasks according to the application context. First,
this section briefly reviews four related tasks, namely, text matching-based
answer selection, multi-choice reading comprehension, question generation,
and named entity recognition. Second, reverse QA is reviewed, and the
differences between answer understanding in reverse QA and the three QA
tasks are discussed.

2.1. Text matching-based answer selection

QA aims to return appropriate answers to users’ questions. Therefore, the
answers are usually selected from a corpus containing questions and answers
on the basis of a text-matching model in many studies. In some studies,
the model calculates the matching scores between the answers and questions
in the corpus. The answers to questions with the highest matching score
are then selected to return to users. Some other studies directly infer the
matching score between the question and each candidate’s answer.

In traditional QA methods, features of questions and answers are ex-
tracted using conventional methods, such as tf-idf [11], lexical cues [12], and
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word order [13]. Thereafter, a similarity scoring function, such as cosine, is
used to calculate the matching score.

In deep QA methods, the features of questions and answers are extracted
using deep learning methods, such as convolutional neural network (CNN),
LSTM, and Transformer [14, 15, 10]. An end-to-end framework is usually
used to combine the deep feature extraction and successive matching function
training [16, 17].

Inspired by the advantage of translation in modeling the relationship
between words, Xue et al.[18] used a translation-based approach to solve the
problem of mismatching. Subsequently, popular neural networks like CNN
and LSTM were used in this task[19, 20]. Tay et al.[21] proposed a recurrent
network using temporal gates to learn the interactions between question-
answer pairs.

2.2. Multiple-choice reading comprehension

Multiple-choice reading comprehension (MCRC) aims to select the best
answer from a set of options given a question and a passage. Unlike machine
reading comprehension, in which the expected answer is directly contained in
a given passage, answers in MCRC are non-extractive and may not appear
in the original passage, thereby enabling rich types of questions, such as
commonsense reasoning and passage summarization [22].

Numerous studies on MCRC model the relationship among the triplet of
three sequences, namely, passage (P), question (Q) and answer (A), with a
matching module to determine the answer. Zhu et al. [23] used hierarchical
attention flow to explicitly model the option correlations, which are ignored
in previous works. Zhang et al. [24] leveraged the bidirectional matching
strategy to gather the correlation information among the triplet {P, Q, A}.
The gated mechanism was then introduced to fuse the representations. In
the matching process, Ran et al. [25] compared options at a word level to
effectively collect option correlation information.

2.3. Question generation

Many QA algorithms require labeled QA pairs as training data. Although
labeled data sets, such as the WikiQA dataset [26] for (text) QA have been
proposed, these data sets are still with limited sizes because labeling is consid-
erably expensive. This situation motivated the design of question generation
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to generate natural language questions from information, in which the gen-
erated questions can be answered by the contents [27, 28]. In this manner, a
large-scale QA corpus can be constructed.

Early research in question generation tackled question generation with a
rule-based approach [29] or an overgenerate-and-rank approach [30], which re-
lied heavily on well-designed rules or manually crafted features, respectively.
To overcome these limitations, Du et al. [31] introduced a deep sequence-to-
sequence learning approach to generate questions. Rao et al. [32] introduced
generative adversarial networks (GANs) to generate questions that are sig-
nificantly beneficial and specific to the context.

2.4. Named entity recognition

Named entity recognition (NER) is a fundamental task in natural lan-
guage processing and is widely used in many applications, such as QA, text
summarization, and machine translation [33, 34]. NER is mainly used to
extract named entities from text, including persons, locations, and organi-
zations. Recently, research on NER mainly has focused on low-resource,
discontinuous and nested entities [35, 36, 37]. Ji et al. [38] proposed a novel
bundling learning paradigm for the NER task, which does not need addi-
tional data annotations compared with multi-task learning. Liu et al. [39]
proposed attention-informed mixed-language training, which achieves signif-
icant performance improvements with very few word pairs. Wang et al. [40]
addressed discontinuous NER by finding the maximal cliques in the graph
and connecting the spans in each clique. A two-stage entity identifier was
proposed by Shen et al. [41] to address nested entity recognition.

The difference between NER and our answer understanding is mainly
reflected in three aspects. First, their input data are different. In NER, only
the concerned sentences are used as input, whereas in answer understanding,
both the question and concerned answer sentences are used as input. Second,
their corresponding classification problems are different. NER is a multi-
class single-label classification problem, whereas answer understanding is a
(non-standard) multi-class multi-label classification problem. Third, their
main challenges are different. In answer understanding, irrelevant content
and casually colloquial expressions are the main challenges, but low-resource,
discontinuous and nested NER are the main challenges in the NER literature
recently.
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2.5. Reverse QA

Apart from meeting users’ information requirements, machines in some
real applications, such as telephone surveys and commercial intelligent cus-
tomer service systems, are also required to proactively acquire the precise
needs or feedback of users [42]. Accordingly, machines may choose to proac-
tively raise questions to users and then analyze their answers. That is, ma-
chines are the questioners, and humans are the answerers. This process is
a reverse of some text match-based QA processes (e.g., FAQ) and is called
reverse QA in this study. Fig. 2 shows conventional FAQ and reverse QA
processes.

Figure 2: The difference between text match-based QA (e.g., FAQ) (a) and reverse QA
(b).

The difference between answer understanding in reverse QA and text
matching-based answer selection in QA is as follows. Text matching-based
answer selection is a text retrieval approach, and the evaluation metrics (e.g.,
mean average precision (MAP) and mean reciprocal rank (MRR)) used for
retrieval are usually applied. Consequently, the idea of learning to rank is
typically adopted. Nevertheless, the answer understanding in reverse QA
is transformed into an answer classification task. Fig. 3 shows the main
difference between answer retrieval in text match-based answer selection in
FAQ and answer classification in reverse QA4.

The difference between answer understanding in reverse QA and the
multi-choice reading comprehension (MCRC) in QA is as follows. First, from
the viewpoint of classification, MCRC is a single-label classification task,
whereas answer understanding (for multi-choice questions) in this study is a

4However, answer understanding investigated in this study is still a standard NLP task.
Thus, text matching can also be utilized. Our preliminary experimental results show that
a simple text matching module does not improve the performance of our proposed AntNet.
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Figure 3: The main difference between answer selection in FAQ and answer understanding
in reverse QA.

multi-label classification task5. Second, the option texts in MCRC are inde-
pendent of other inputs (i.e., paragraphs and questions), whereas the option
terms in this study are contained in the questions. Text matching is the key
part of MCRC.

Question generation is apparently different from answer understanding
investigated in this study. Nevertheless, inspired by question generation,
answer generation will be explored in our future study to alleviate the labeling
load.

3. Problem and Data

We first provide an analysis for answer understanding in reverse QA be-
cause it is rarely investigated.

3.1. Problem analysis

The primary difficulty in answer understanding results from the open-
ness of the corresponding question. For example, the three machine ques-
tions (MQ) are as follows:

• MQ1: Do you like sports?

5Considering a machine question-human answer pair “Q: Which day can you come
here, Monday, Tuesday, or Wednesday? A: Monday or Wednesday.” The option terms
“Monday” and “Wednesday” are the correct answers. In MCRC, only one answer is correct
among the involved options.
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• MQ2: Which sport do you like best, swimming, climbing, or football?

• MQ3: Which sport do you like?

MQ1 is a true/false (T/F) question, MQ2 is a multi-choice (MC) question,
and MQ3 is nearly an open question. The difficulty of understanding the
answers to these three questions is increasing. The answers for MQ3 are
relatively difficult to understand considering the following answer examples:
(1) “It depends on the weather,” (2) “Competitive sports,” and (3) “Water
sports.”

This study considers the T/F and MC questions. Consequently, an-
swer understanding becomes a classification problem. The next subsection
presents a formal description.

3.2. Problem formalization

As previously mentioned in Section 2.5, answer understanding for multi-
choice (MC) questions can be categorized as a multi-label classification task.
However, the number of categories for candidate labels for each question
equals the number of option items contained in the question. Therefore,
the number of categories for each question is likely to be different. The
multi-label classification problem is usually transformed into one of the three
existing problems, namely, binary classification, label ranking, and multi-
class classification [43]. To tackle varied numbers of label categories, the
strategy of the transformation to binary classification6 is leveraged.

Let O be the option term set for a question. In MC questions, O is
defined as the set of concrete option terms. For instance, O is defined as
{“swimming,” “climbing,” and “playing football”} for MQ2; in T/F ques-
tions, O is defined as {“yes”} to ensure consistency with the format of MC
questions.

We first illuminate how answer understanding is transformed into answer
classification with concrete examples. The (answer) label set L is defined
as {“true,” “false,” “uncertain”}. Let qi be the question and oi,k be the
k-th option term of qi. Each question can have arbitrary numbers of an-
swers given by users. Let si,j be the j-th answer for qi. For MQ1, given
an answer si,j, answer understanding aims to classify {qi, si,j, oi,k} into one
of the labels in the set L. oi,k (oi,k ∈ O) is “yes” here. For MQ2, given

6Triple classification is actually used in this study.
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an answer si,j, answer understanding equals three sub-classification tasks,
i.e., the classification of {qi, si,j, “swimming”}, {qi, si,j, “climbing”}, and
{qi, si,j, “playing football”} into one of the labels in the label set L.

The answer classification for T/F and MC questions can be further for-
malized as follows:

We aim to predict the category li,j,k (li,j,k ∈ L) of the triplet {qi, si,j, oi,k}
by considering the machine-question and human-answer pair {qi, si,j}, the
corresponding option term oi,k of the question, and a predefined answer-label
set L.

The number of option terms is only one (as O = {“yes”}) in T/F ques-
tions. Thus, o in the triplet can be omitted in such question type.

3.3. Data construction

Existing QA and text classification benchmark data sets are inappropriate
for training and evaluating reverse QA models. Thus, two data sets are
compiled with a standard labeling process. The MC questions we studied
are limited in the type that the options appear in the question, which we call
option-contained MC questions.

For the two data sets, the questions are constructed as follows. First,
seven domains are selected, namely, encyclopedia, insurance, personal, pur-
chases, leisure interests, medical health, and exercise. A total of 30 graduate
students, specifically 15 males and 15 females, are invited to participate in
the data compiling using Email advertising from our laboratory. All the par-
ticipants are Chinese and range in age from 22 to 31. Considering that the
question and answer generations are not difficult to understand, we did not
give special instructions to the participants. Each participant was allowed
to construct 50 to 60 questions. Finally, 1543 questions are obtained after
deleting some invalid questions. The numbers of T/F and MC questions are
536 and 1007, respectively.

The questions are equally and randomly assigned to the 30 participants.
Each question was given 18 to 25 answers. The participants also labeled the
answers they generated considering that the other participants did not know
what exactly the answer means. A new data corpus was obtained. Table 1
shows the details. The data corpus contains two data sets, namely, TData
and MData. TData contains 536 T/F questions and 10,817 answers. Each
question is associated with 20.18 answers on average. The average question
length is 14.89, and the average answer length is 7.83. MData contains 1,007
MC questions and 23,445 answers. Each question is associated with 23.28
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answers on average. The average question length is 22.82, and the average
answer length is 7.84.

Table 1: Statistics of TData and MData. “Average Number” means the average number
of answers corresponding to a question.

Data Set
Question
Number

Answer
Number

Average
Number

Average
Question Length

Average
Answer Length

TData 536 10,817 20.18 14.89 7.83
MData 1007 23,445 23.28 22.82 7.84

For the TData, the types of answers are roughly divided into affirmative,
negative, uncertain, and unrelated. Given that the uncertain and unrelated
answers are similar in function to the question, we classify them as the same
class. Each sample consists of three components: question (i.e., qi), answer
(i.e., sij), and the associated label (lij) for them. The total number of sam-
ples is 10,817. For the MData, the number of option terms for each MC
question is different and cannot be categorized uniformly. Thus, we add the
option information to the MC questions and get a series of transformed MC
questions, as described in Section 3.2. Therefore, the same answer to the
same question will have different labels for different option terms. Each sam-
ple consists of four components: question, option, answer, and label. The
transformed MC training samples are 59,794. The type distribution of the
samples is shown in Table 2.

Table 2: Type distribution of samples in TData and MData.

Data Set
Samples

Total Affirmative Negative Uncertain
TData 10,817 4,610 4,452 1,755
MData 59,794 20,929 28,876 9,989

Some illustrative examples for T/F and MC questions are showed in Ta-
ble 3. In TData, the categories of answers A1, A3, and A5 are easy to judge.
However, the machine has difficulty understanding the true meaning of an-
swers A2, A4, and A6. For example, answer A2 is a true answer to Q1, but
can easily be identified as a false answer. The MC questions are the same.
For the A10 answer to Q5 in MData, the human does not directly answer
what kind of ball game he likes but answers who his favorite football star is.
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The human means he likes football, which is hard for a machine to judge.
Thus, understanding users’ answers is not a trivial task. The main challenge
for the classification investigated in the study is that the representation of
human answers is irregular. Furthermore, human answers often contain slang
or colloquial words, which heavily increase the difficulty of the task.

Table 3: Some illustrative examples for T/F and MC questions.
Dataset Question Human answer Label

TData

Q1:今晚的音乐剧你觉得好不好？
A1:这是我看过的最棒的音乐剧

True

(Do you think tonight’s musical is good?)
(This is the best musical I’ve ever seen.)

A2:和这个比，其他的都是垃圾
True

(Compared with this, everything else is rubbish.)

Q2：您觉得就业压力大吗？
A3:一点也不大

False

(Do you think the employment pressure is high or not?)
(Not at all.)

A4:头发都掉完了，你说呢
True

(The hair is all gone. What do you think?)

Q3：运动前会做准备运动吗？
A5:运动前必备操作

True

(Do you warm up before exercise?)
(This is a must before exercise.)
A6：不做准备运动不怕拉伤吗

True
(Aren’t you afraid of strain if you don’t warm up?)

MData

Q4: 面对新奇的运动方式你会尝试了解还是默默离开？
A7: 应该会默默离开 “True” for “leave silently” and

(In the face of novel sports, will you try to understand or leave silently?)
(I should leave silently.) “False” for “try to understand”

A8: 别人尝试过我再尝试 “True” for “leave silently” and
(I will try what others have tried.) “False” for “try to understand”

Q5: 羽毛球、乒乓球、足球您更喜欢哪个？
A9: 羽毛球 “True” for “badminton”;

(Which do you prefer: badminton, table tennis or football?)
(Badminton.) “False” for both “table tennis” and “football”

A10:我想要向梅西学习 “True” for “football”;
(I want to learn from Messi.) “False” for both “badminton” and “table tennis”

Q6: 您希望在大城市工作还是小城市？
A11: 大城市 “True” for “a big city” and

(Would you like to work in a big city or a small city?)
(A big city.) “False” for “a small city”

A12:这年头还有人愿意去小城市？ “True” for “a big city” and
(Is anyone still willing to go to a small city these days?) “False” for “a small city”

4. Methodology

Section 3.2 describes that answer understanding is transformed into an
answer classification problem. The first step is obtaining the deep represen-
tations of the machine-question and human-answer pair and a given option
term. In addition, questions provide the context for answer understanding.
The final dense representation should consider the contextual dependency
between questions and answers.

The related research in text classification and aspect-based sentiment
analysis inspired us to propose a new deep model called AntNet. Fig. 4
shows the main structure of this model.

The experimental data are in Chinese. Thus, the word means “the Chi-
nese word” in the following subsections.

The AntNet input is the triplet {qi, si,j, oi,k}, where oi,k is indicated by
an indicator vector. The indicator is set to a zero vector for all samples
in T/F questions, and the option indicator is set to a one-hot vector in
MC questions. The left part of AntNet deals with the input of qi and oi,k
to generate two representations. The first representation characterizes the
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Figure 4: The structure of AntNet.

combination of qi and oi,k
7, whereas the second representation characterizes

important information, which is called skeleton (Chinese) words for questions
in this study. The first and second representations are called full and skeleton
representations, respectively.

The lower-right portion deals with the input of answers, and the output
is a set of hidden dense vectors for answers. In this part, a relevance-aware
module is used to substantially characterize the relevance cues contained in
the answers, which consider that users may return irrelevant texts.

The upper-right portion deals with the contextual dependency between
questions and answers to obtain an overall dense feature vector, which is fed
into the final decision softmax layer. A multi-hop attention mechanism is
used in this part.

The following subsections introduce the details of the three parts and the
improved SPL strategy proposed by us.

4.1. Skeleton attention

Question texts usually contain redundant8 or even disturbed words, which
may negatively influence answer understanding. The skeleton information in
a question should be extracted. Skeleton information refers to words that
directly affect how users respond.

Skeleton information extraction can be performed in a supervised man-
ner. Alternatively, skeleton words are manually labeled for a set of training

7oi,k is indicated by {Ii,1,k, · · · , Ii,M,k} in Fig. 4.2, which will be mentioned in detail in
Section 4.2.

8These words may be used for enhancing the interestingness of the interaction.
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text samples. These training samples are then fed into a sequence labeling
model for training. The trained sequence labeling model can be used to ex-
tract skeleton words for new texts. Nevertheless, it is difficult to provide an
explicit and formal definition for skeleton words, thus making human labeling
difficult. Therefore, this study proposes an attention-based manner.

In this study, a training sample is a triplet {qi, si,j, oi,k}, where qi is the
i-th question, si,j is the j-th answer for qi, and oi,k is the k-th option term
for qi. The primary difference between this study and conventional clas-
sification studies lies in the fact that many training samples in this study
share the same element “qi”. That is, each question (qi) corresponds to mul-
tiple answers (si,1, · · · , si,j, · · · , si,J), leading to multiple training samples
for qi and a fixed option term oi,k, including {qi, si,1, oi,k}, · · · , {qi, si,J , oi,k}.
Let qi = {qi,1, · · · , qi,m, · · · , qi,Mi

} be the i-th question, where Mi is the
word-level length of the question and qi,m is the m-th word of qi. Let
si,j = {si,j,1, · · · , si,j,n, · · · , si,j,Nij

} be the j-th answer for qi, where Nij is
the word-level length of the answer and si,j,n is the n-th word of si,j. An
attention score can be calculated for qi,m. The calculation pipeline is shown
in Fig. 5, and the calculation is described as follows:

ω(qi,m) =
1

J

J∑
j=1

1

Nij

Nij∑
n=1

sim(qi,m, si,j,n), (1)

where sim(qi,m, si,j,n) = q̃Ti,mWss̃i,j,n calculates the similarity of two words
according to their word embeddings, q̃i,m represents the embedding vector of
the word qi,m, s̃i,j,n represents the embedding vector of the word si,j,n, the
matrix Ws are learned during training, and J is the number of answers to
i-th question.

Figure 5: Skeleton attention score calculation pipeline.
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The scores calculated by Eq. 1 are then normalized as attention scores.
Fig. 6 shows several questions and their associated attention scores on each
Chinese word calculated using Eq. 1. The words with higher scores are key
words in their corresponding questions. The scores of such words as “您
(you),” “是 (is),” and “还是 (or)” are low in most sentences. The words that
are directly related to user options, such as “跑步 (run),” “兴趣 (interest),”
“质量 (quality),” and “在家 (at home)” have high scores. Fig. 7 shows a
question with associated attention scores for four different answers on each
Chinese word. In the attention scores of the question corresponding to the
first answer, “更 (more),” “看重 (value),” and “质量 (quality)” are closely
related to the answer, resulting in a high attention score. Similarly, in the
attention scores of the question corresponding to the second and fourth an-
swer, “价格 (price)” and “质量 (quality)” have high scores. In the attention
scores of the question corresponding to the third answer, the word “价格
(price)” has the highest attention score. No explicit contents are related to
the question in the third answer. Thus, the scores for each word are not
much different. Nonetheless, the attention scores for “价格 (price)” and “质
量 (quality)” are ranked first and second, respectively.

Figure 6: Attention scores for words in five questions. All the data in this study are
in Chinese. To facilitate English readers, the Chinese words in the above questions are
translated into English.

4.2. Question representation

AntNet considers two-level representations. The first-level representation
(i.e., skeleton representation) characterizes the skeleton information in the
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Figure 7: Attention scores for words in a question for four different answers. All the data
in this study are in Chinese. To facilitate English readers, the Chinese words in the above
question and answers are translated into English.

question, whereas the second-level representation (i.e., full representation)
characterizes the entire question. The two representation vectors are calcu-
lated as follows.

The given training sample is represented by an input triplet {qi, si,j, oi,k}
and its label li,j,k. Let Ii,m,k be an indication vector for whether the word
qi,m is in oi,k

9. If qi,m is in oi,k, then Ii,m,k = 1; otherwise Ii,m,k = 0.
After the encoding of BiLSTM on qi, the hidden representation of each

word of qi (given oi,k) is defined as follows:

hQ
i,m,k = BiLSTMQ(hQ

i,m−1,k, h
Q
i,m+1,k, q̃i,m, Ii,m,k), (2)

where hQ
i,m,k ∈ Rd.

Given that the skeleton attention is calculated using Eq. 1, the skeleton
representation for a question qi (given oi,k) is calculated as follows:

uQ
i,k =

∑
qi,m∈qi

ω(qi,m)hQ
i,m,k/

∑
qi,m∈qi

ω(qi,m), (3)

where ω(qi,m) is the skeleton attention for the m-th word of the i-th question,
and ω(qi,m) is calculated by Eq. 1.

The full representation vQi,k of qi (given the involved option term oi,k) is

calculated on the basis of attention scores {attQi,m,k}
Mi
m=1 for each word qi,m.

9Some option terms are phrases.
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The calculation is described as follows:

aQi,m,k = wT
a h

Q
i,m,k

attQi,m,k =
exp(aQi,m,k)∑Mi

m=1 exp(a
Q
i,m,k)

(4)

vQi,k =
∑Mi

m=1 att
Q
i,m,kh

Q
i,m,k,

where wa ∈ Rd, aQi,m,k, att
Q
i,m,k ∈ R, vQi,k ∈ Rd. wa is a learnable vector and it

can be viewed as the query vector in the attention calculation. hQ
i,m,k is the

key as well as the value vector simultaneously.

4.3. Relevance-aware answer representation

BiLSTM is also utilized to generate the hidden vectors of answer texts
with the following calculation:

hA
i,j,n = BiLSTMA(hA

i,j,n−1, h
A
i,j,n+1, s̃i,j,n), (5)

where hA
i,j,n (∈ Rd) is the hidden vector of the n-th word of the j-th answer

to the i-th question, and s̃i,j,n represents the embedding vector of the word
si,j,n. To maintain the naturalness of the entire interaction, users can return
their answers in arbitrary forms and with arbitrary contents. Therefore,
some irrelevant texts are included in some answers, even if these answers do
not belong to the “irrelevant” category. Thus, a score (denoted as pAi,j,k,n) is
calculated to measure the relevance between each word in the answer texts
(i.e., si,j,n) and each option term in the question (i.e., oi,k) using the following
equation:

pAi,j,k,n = sigmoid(Wp[h
A
i,j,n, u

Q
i,k] + bp), (6)

where uQ
i,k is the skeleton representation of a question qi for a option term

oi,k; Wp and bp are learnable parameters.
The length of pAi,j,k,n is substantially smaller than hA

i,j,n in our practical
implementation. Consequently, the proportion of the pAi,j,k,n part is relatively
small in the concatenated vectors, thereby limiting the advantages of the
relevance vectors. We adopt the trick used in [44] in our implementation.
The length of pAi,j,k,n is enlarged as follows:

EA
i,j,k,n = pAi,j,k,n ⊗ 1Ne×1, (7)
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where 1Ne×1 is an Ne-dimensional vector, EA
i,j,k,n is the enlarged vector, and

parameter Ne is used to increase the length of pAi,j,k,n. Fig. 8 shows the steps of
the relevance score calculation and dimensionality enlarging. Experimental
results validate the effectiveness of the dimensionality increment for pAi,j,k,n.

The relevance score vector is concatenated with the hidden vectors for
each word as follows:

h′A
i,j,k,n =

[
hA
i,j,n

EA
i,j,k,n

]
, (8)

where h′A
i,j,k,n ∈ Rd+Ne is the updated hidden representation of each answer

word.

Figure 8: The relevance score calculation and dimension enlarging.

4.4. Multi-hop-based fusion

The representations (i.e., uQ
i,k, vQi,k, and h′A

i,j,k) are fused to obtain the final
representation of the entire triplet {qi, si,j, oi,k}.

Inspired by ABSA [45], a multi-hop-based question-answer fusion module
is introduced. This module can substantially represent the input machine-
question and human-answer pair and the associated option term.

The vectors uQ
i,k and vQi,k are separately input into the multi-hop-based

fusion module. Fig. 9 shows the multi-hop-based fusion. The left part and
the right part are the iterative approaches for vQi,k and uQ

i,k, respectively, given

h′A
i,j,k.

The calculation with vQi,k and h′A
i,j,k is used as an example. Let Fi,j,k(0) =

vQi,k be the input question representation. The first hop (hop 1 in Fig. 9) is
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Figure 9: Multi-hop-based fusion for the involved question (two feature vectors uQ
i,k and

vQi,k) and answer (h′A
i,j,k).

computed as follows:

Fi,j,k(0) = vQi,k

m
(1)
i,j,k,n = W

(1)
m tanh(W

(1)
h h′A

i,j,k,n + W
(1)
x Fi,j,k(0) + b(1))

a
(1)
n =

exp(m
(1)
i,j,k,n)∑Ni,j

n=1 exp(m
(1)
i,j,k,n)

(9)

x′ =
∑Ni,j

n=1 a
(1)
n h′A

i,j,k,n,

where W
(1)
m , W

(1)
h , W

(1)
x , and b(1) are learnable parameters.

An active module is used to obtain the following new vector:

Fi,j,k(1) = tanh(Wf1x
′ + bf ) + Wf2Fi,j,k(0), (10)

where Wf1, Wf2, and bf are learnable parameters. Fi,j,k(1) is also the input
of the second hop (hop 2 in Fig. 9).

The preceding step is iterated T times to obtain the feature vector Fi,j,k(T ).

Lastly, Fi,j,k(T ) from the full representation vQi,k and Si,j,k(T ) from the skele-

ton question representation uQ
i,k are concatenated into one representation

vector:

vi,j,k =

[
Fi,j,k(T )
Si,j,k(T )

]
. (11)
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The predicted label is calculated as follows:

l′i,j,k = softmax(Wvi,j,k + b), (12)

where W and b are learnable parameters.
Given the predicted and ground truth labels, AntNet can be learned with

the following cross-entropy loss function:

loss = −
∑
i,j,k

li,j,klogl
′
i,j,k. (13)

4.5. The improved self-paced learning strategy

As described in Section 3.3, irrelevant answers and answers containing
slang or colloquial words heavily increase the difficulty of the model train-
ing. To alleviate the negative influences of some quite difficult answers,
a self-paced learning strategy is utilized. Self-paced learning (SPL) [46] is
motivated by the human learning procedure that preliminary knowledge is
studied in the junior stage, and sophisticated knowledge is studied in the
senior stage. In SPL, easy training samples (i.e., samples with low training
losses) are assigned with high weights, and hard samples (i.e., samples with
high training losses) are with low weights in the early training stage. The
weights of hard samples are gradually increased to be equal to easy samples
with the increase of the training epoch. Let vi ∈ {0, 1} be the weight of
the training sample xi. In the k-th epoch, the optimization with SPL is as
follows:

min
Θ

∑
i

vil(f(xi,Θ), yi)

s.t. vi =

{
1 if l (f (xi,Θ), yi) <

1
K

0 otherwise
,

(14)

where f (xi,Θ) is the model parameterized by Θ, l (f (xi,Θ) , yi) is the loss
of the i-th sample, and K is a hyper-parameter. K determines the number
of samples to be considered, and the value of K is iteratively reduced. The
objective function indicates that the weights of samples are set to 0 when
losses are larger than 1

K , and more samples will participate in the model
training when the value of 1

K is increased.
SPL is an easy-first weighting strategy. Contrarily, in some other sample

weighting strategies, such as Focal loss [47], hard samples are assigned (rela-
tively) high weights. The effectiveness of these hard-first weighting methods
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is also verified on numerous learning tasks. Motivated by these hard-first
methods, we propose an improved SPL weighting strategy. In our improved
SPL, easy training samples (i.e., samples with low training losses) are still
assigned with high weights, and hard samples (i.e., samples with high train-
ing losses) are still with low weights in the early training stage. Nevertheless,
the weights of hard samples are gradually increased to be larger than easy
samples with the increase of the training epoch. Alternatively, easy-first
weighting is leveraged in the early training stage, and hard-first weighting is
leveraged in the late training stage. In the k-th epoch, the optimization with
our improved SPL strategy is as follows:

min
Θ

∑
i

vil(f(xi,Θ), yi)

s.t. vi = 1

1+e−α(li−τ)sign(k−k0)

τ = k+sign(k0−k)k0
k0

τ0

, (15)

where α, k0, and τ0 are hyper-parameters; li = l(f(xi,Θ), yi). When k ≤ k0,
the weights of easy examples are larger than those of hard samples. When
k > k0, the weights of easy examples are smaller than those of hard samples.

Figure 10: The curve of SPL when the threshold is 0.5.
We plot the weight curves of SPL and the improved SPL to show the

difference. Fig. 10 shows the curve of SPL when the loss locates in [0, 1].
Fig. 11 shows the curves of the improved SPL. Easy samples have higher
weights than hard ones before the 10th epoch, whereas their weights are
smaller than hard ones after the 10th epoch.
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Figure 11: The curves of the improved SPL when α is set to 10, k0 is set to 10, and τ0 is
set to 0.5.

5. Experiments

This section presents the evaluation of the proposed AntNet and the
improved SPL strategy.

5.1. Evaluation of AntNet

For AntNet, the entire network and the three key modules, namely, skele-
ton attention for questions, relevance-aware representation of answers, and
multi-hop-based fusion, are evaluated.

5.1.1. Competing methods

Several classical and state-of-the-art deep model-based algorithms are
used and listed as follows:

• BiLSTM (A): The standard BiLSTM is used to encode the answer
texts directly, and the dense vector is used for answer classification.

• BiLSTM (Q+A): The standard BiLSTM is also used for the question
and answer texts.

• RAM [8]: RAM leverages the hidden vectors of BiLSTM as memory
vectors. Then, GRU is used to construct a multi-hop-based fusion
for memory and input target vectors. The final dense vector contains
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information from sentences and targets. This study takes question texts
as target texts.

• ATAE [48]: ATAE is based on BiLSTM and proposed for target-based
sentiment analysis. The target vector is concatenated with the word
embedding of each word. In this experiment, the question texts are
taken as the target texts.

• Transformer (A): The standard Transformer is used to encode the
answer texts directly, and the averaging pooling of the hidden vectors
of the last layer is used for answer classification.

• Transformer (Q+A): Questions and answers are concatenated and
input into the standard transformer.

• Semi-IAN [7]: Semi-interactive attention network (Semi-IAN) is our
early proposed network related to answer understanding in reverse QA.
The interaction between questions and answers are modeled. Semi-
IAN is based on an ABSA network called interactive attention network
(IAN) [45].

• (Python) Regularized Matching (RM): This method is an engi-
neering solution that matches pre-defined key words or phrases or their
combinations.

Our proposed method consists of several new modules. To investigate the
validity of three major components, namely, skeleton attention, relevance-
aware answer representation, and multi-hop-based fusion, we test AntNet
with or without these components. The variants of our method are listed as
follows:

• AntNet: The entire AntNet with all introduced key components.

• AntNet-SA: The AntNet without the skeleton attention.

• AntNet-RR: The AntNet without the relevance-aware representation.

• AntNet-MF: The AntNet without the multi-hop-based fusion.

• AntNet-SA-RR: The AntNet without the skeleton attention and the
relevance-aware representation.
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• AntNet-RR-MF: The AntNet without the relevance-attention repre-
sentation and the multi-hop-based fusion.

• AntNet-MF-SA: The AntNet without the multi-hop-based fusion and
the skeleton attention.

Given that the answer understanding for reverse QA is investigated from
a classification perspective, the classification accuracy and F1 score are used
as the performance metrics.

5.1.2. Implement details

Two data sets, namely, TData and MData, are involved in our experi-
ment. They are divided according to the following rules:

(1) Each data corpus is divided into two parts with a 4:1 proportion. Four
folds are used for training, and the remainder is used for testing.

(2) 10% of samples in the training data are used as validation data.
For all deep learning methods, the lengths of questions and answers are

truncated to 33. The dropout rate is set to 0.2. We use 256-dimension
Word2Vector embeddings trained on our own corpus. Out-of-vocabulary
words are randomly initialized with word embeddings. The dimension of the
word vector pre-trained by BERT is 768. We minimize the loss function
using the Adam optimizer [49].

For BiLSTM and ATAE, the epochs, batch size, learning rate, and the
dimension of hidden vectors are set to 32, 32, 5e-4, and 300, respectively.
For RAM, the epochs, batch size, learning rate, and the dimension of hidden
vectors are set to 32, 16, 5e-4, and 128, respectively. The number of hops is
set to three. For Transformer, the epochs, batch size, learning rate, and the
dimension of hidden vectors are set to 24, 16, 5e-3, and 128, respectively. For
Semi-IAN, the epochs, batch size, learning rate, and the dimension of hidden
vectors are set to 32, 16, 5e-4, and 128, respectively. In ρ-hot encoding, the
size k is searched in {1, 2, 4, ..., 16}; the parameter ρ is searched in {0.1, 0.2,
..., 1}. For AntNet, the epochs, batch size, learning rate, and the dimension
of hidden vectors are set to 32, 16, 5e-4, and 128, respectively. The number
of hops is set to three and five in TData and MData, respectively. All the
mentioned models are trained with Tensorflow.

5.1.3. Evaluation of the entire AntNet network

Table 4 presents the main results (classification accuracies and F1 scores)
of the competing methods on the two data sets. AntNet achieves the highest
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accuracies on both data sets. Compared with the state-of-the-art network,
Transformer, the results are significantly improved. The relatively poor per-
formance of Transformer may result from the small training size.

Table 4: Experiments on TData and MData.

Method
TData MData

Accuracy F1 Accuracy F1

BiLSTM (A) 0.7375 0.7196 0.6701 0.6681
BiLSTM (Q+A) 0.7196 0.6982 0.6738 0.6868
RAM 0.7503 0.7435 0.7036 0.6860
ATAE 0.7458 0.7361 0.7064 0.7446
Transformer (A) 0.7435 0.7343 0.6741 0.6525
Transformer (Q+A) 0.7167 0.6911 0.6966 0.6537
Semi-IAN 0.7485 0.7427 0.7086 0.6871
AntNet 0.7986 0.7923 0.8419 0.8517

The existing answer understanding method (i.e., Semi-IAN) is inferior to
RAM. Semi-IAN is a slight variation of the ABSA network IAN. Given that
RAM is also an ABSA method, RAM unsurprisingly outperforms Semi-IAN.
Among these methods, the RM method has the lowest accuracy of 50.38%
on average. Therefore, a machine learning-based approach is essential.

Table 5: Experiments on TData with DuReader yes/no Data.

Method Accuracy F1

BiLSTM (A) 0.7445 0.7334
BiLSTM (Q+A) 0.7454 0.7423
RAM 0.7701 0.7674
ATAE 0.7492 0.7201
Transformer (A) 0.7529 0.7436
Transformer (Q+A) 0.7267 0.7126
Semi-IAN 0.7523 0.7485
AntNet 0.8045 0.8048

An existing QA corpus DuReader [50] is used to pre-train the involved
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Table 6: Experiments on TData and MData with BERT.

Method
TData MData

Accuracy F1 Accuracy F1

BiLSTM (A) 0.7492 0.7369 0.6864 0.6721
BiLSTM (Q+A) 0.7511 0.7442 0.6857 0.6932
RAM 0.7723 0.7693 0.7237 0.6981
ATAE 0.7521 0.7233 0.7103 0.7557
Transformer (A) 0.7601 0.7529 0.6863 0.6704
Transformer (Q+A) 0.7355 0.7221 0.7069 0.6839
Semi-IAN 0.7607 0.7563 0.7118 0.6992
AntNet 0.8136 0.8067 0.8614 0.8705

models. DuReader10 is a large-scale real-world Chinese dataset with three
types of questions, namely, “description,” “entity,” and “yes/no”. The “yes/no”
samples contain the information required for T/F questions, but the option
term is missing for MC questions. Thus, the corpus can only be used for
pre-training for T/F questions. Table 5 shows the results. The performances
of all the competing methods are improved, although the increase is not
significant.

Furthermore, a pre-trained model BERT [51] is also used in our experi-
ments, and the experimental results are shown in Table 6. The performances
of all the competing methods are improved compared to those in Table 4.

5.1.4. Evaluation of the different modules of AntNet

This subsection verifies the usefulness of the three introduced key mod-
ules, namely, skeleton representation of questions, relevance-aware represen-
tation of answers, and multi-hop-based fusion. The involved competing meth-
ods are AntNet-SA, AntNet-RR, AntNet-MF, AntNet-SA-RR, AntNet-SA-
MF, AntNet-RR-MF, and the entire network AntNet.

Table 7 shows the competing results on the two data sets: TData and
MData. All variations without a certain type of key module achieve inferior
accuracies compared with the full version of AntNet. The performances of
the variations without two key modules decrease heavily. These comparisons
indicate that the three key modules are beneficial in answer understanding.

The comparison of the three variations shows that AntNet-SA-MF (AntNet

10http://ai.baidu.com/broad/download?dataset=dureader
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Table 7: Results of AntNet and its variations (without certain key modules) on TData
and MData.

Method
TData MData

Accuracy F1 Accuracy F1

AntNet 0.8045 0.8048 0.8419 0.8517
-SA 0.7863 0.7774 0.8238 0.8374
-RR 0.7907 0.7790 0.7107 0.7094
-MF 0.7740 0.7551 0.7050 0.6897
-SA-RR 0.7760 0.7681 0.7033 0.7026
-SA-MF 0.7686 0.7494 0.6809 0.6736
-RR-MF 0.7714 0.7523 0.6943 0.6915

without SA and MF) obtains the lowest accuracies. On MData, the accu-
racy achieved by AntNet-SA-MF is approximately 16.1% lower than that by
AntNet.

Figure 12: Understanding accuracies under the different values of dimension augmenta-
tion (i.e., Ne) for relevance-aware representation.

In the relevance-aware representation, the dimension of the relevance
score is augmented by using Eq. (7). We perform an experiment to investi-
gate the performances of AntNet under different augment parameters Ne in
Eq. (7). Fig. 12 shows the accuracies of AntNet according to different Ne

values. With the increase of the value of Ne, the understanding accuracies
on both sets demonstrate an increasing trend. When the values equal 13 and
19, AntNet achieves the maximum accuracies on both data sets.

In the multi-hop module, the number of hops is also an important param-
eter. We perform experiments to explore the relationship between hop count
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Figure 13: Accuracies under the different numbers of hops for multi-hop-based fusion.

and final accuracy. Fig. 13 shows the accuracies of AntNet under different
numbers of hops.

The number of hops also influences the final performance. The highest
value (when the number equals three) is nearly 2% higher than the lowest
value (when the number equals nine) on TData. On MData, the overall trend
increases, and the accuracy is the highest when the number equals five.

5.2. Evaluation of the improved SPL

To evaluate the performance of the improved SPL strategy, we compare
SPL and the improved SPL on TData and MData. Word2Vector and BERT
are adopted, and the results are presented in Table 8.

For SPL, the initial weight of K is searched in {5, 10, 15}, and is reduced
by a factor 1.2 at each iteration. For the improved SPL, α is searched in {5,
10}, τ0 is searched in {0.5, 1.5}, and k0 is set to 10. Other parameter settings
are the same as those in Section 5.1.2.

The experimental results show that the improved SPL strategy is effec-
tive. Compared with AntNet with SPL, AntNet with the improved SPL also
shows significant improvement.For AntNet pre-trained on DuReader, SPL and the improved SPL are
also compared. The results in Table 9 show that the improved SPL strategy
is effective.

In the improved SPL, α, τ0, and k0 are important parameters. We per-
form experiments to explore the relationship between α and accuracy, the
relationship between τ0 and accuracy, and the relationship between k0 and
accuracy. Figs. 14, 15, and 16 show the accuracies of AntNet under different
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Table 8: Results of AntNet with SPL and the improved SPL on TData and MData

Embedding Method
TData MData

Accuracy F1 Accuracy F1

Word2Vector
AntNet 0.7986 0.7923 0.8419 0.8517

AntNet with SPL 0.8133 0.7997 0.8492 0.8556
AntNet with the improved SPL 0.8249 0.8154 0.8641 0.8733

BERT
AntNet 0.8136 0.8067 0.8614 0.8705

AntNet with SPL 0.8226 0.8146 0.8707 0.8796
AntNet with the improved SPL 0.8393 0.8270 0.8832 0.8901

Table 9: Results of AntNet with SPL and the improved SPL on TData with DuReader.

Method Accuracy F1

AntNet 0.8045 0.8048
AntNet with SPL 0.8177 0.8089

AntNet with the improved SPL 0.8298 0.8196

Figure 14: Accuracies under the different value of α.
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Figure 15: Accuracies under the different value of τ0.

Figure 16: Accuracies under the different value of k0.
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values of α, τ0, and k0.
The values of α, τ0, and k0 all influence the final performance. For TData

and MData, when α is greater than 5 and 10, the accuracies gradually de-
crease, respectively; when τ0 is greater than 0.5 and 1.5, the accuracies grad-
ually decrease, respectively; when k0 equals 10, AntNet with the improved
SPL achieves the best results on both data sets.
5.3. Discussion

We empirically analyze the error understanding answers in the test set to
scrutinize the performance of AntNet substantially. The results show that
errors are prone to occur for answers containing implicit preference infor-
mation. In particular, once the implicit information contains negative or
positive words, they are likely to be error judged. Table 10 shows several
examples of answers containing implicit information. The first question be-
longs to the MC type. Thus, each label should correspond to an option term
such as “skirts” and “pants.”

Table 10: Examples in which human answers contain implicit relevance hints.

Machine question Human answer Label

你是喜欢裙子还是裤子?
(Do you like skirts or pants?)

我不挑.
(I am not picky.)

“True” for both “skirts” and “pants”

您周末喜欢逛街还是打游戏?
(Do you like shopping or playing

games on weekends?)

我是女生哎!
(I’m a girl.)

“True” for “shopping” and
“False” for “playing games”

您平时喜欢喝热水还是凉水?
(Do you like hot or cold water?)

我爱喝苏打水.
(I like to drink soda.)

“False” for both “hot” and “cold water”

您习惯晨跑还是夜跑?
(Are you used to running in the

morning or at night?)

我喜欢看别人跑.
(I like to watch others run.)

“False” for both “in
the morning” and “at night”

The fourth question-answer pair is used as an example. The answer does
not provide a direct reply to the question. In fact, the answer means that
the user neither likes to run in the morning or night. Future work will focus
on extracting additional hints for users’ choices.

Attention is the core of deep neural networks in NLP [10]. The following
example is visualized to facilitate the analysis of the effectiveness of the
multi-hop attention used in this study.

In hop1 shown in Fig. 17, the attention score for the Chinese word “怎
么(how)” is small. Nevertheless, in hop4, its attention score becomes high,
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Figure 17: Multi-hop attention scores for an answer sentence.

Figure 18: Accuracies under the different proportions of training data on TData.
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which is reasonable because the Chinese word is quite important for answer
understanding.

We also investigate the relationship between training data and model
performances. Fig. 18 shows the variations of performances under different
proportions of training data on TData. With the increase of training data,
the performances of the three methods, AntNet, BiLSTM, and semiIAN, also
increased. Nevertheless, when the training data is small, the performance of
AntNet is also relatively good. Similar observations are obtained on MData.

6. Conclusion

The automatic understanding of human answers in reverse QA can make
interactions natural and improve user experiences. However, this topic re-
ceives little attention in the previous literature. This study compiles a rela-
tively large data corpus for answer understanding in reverse QA. An effective
deep neural network called AntNet is proposed to understand the answers
for the two most common types of questions. We also propose an improved
self-paced learning strategy to improve the performance of AntNet further.

AntNet utilizes two types of questions and a relevance-aware presentation
for answer texts. The multi-hop-based fusion module is used to model the
contextual dependency between questions and answers. The improved SPL
method combines the hard-first and the easy-first weighting strategies. The
experimental results indicate that AntNet is significantly better than the
existing method and state-of-the-art NLP models with direct variations. The
improved SPL improves the performance of AntNet.
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