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Abstract. In this paper, we consider the nonlinear Klein-Gordon equation

∂ttu−∆u+ u = |u|p−1u, t ∈ R, x ∈ Rd,

with 1 < p < 1 + 4
d . The equation has the standing wave solutions uω = eiωtφω

with the frequency ω ∈ (−1, 1), where φω is the solution of

−∆φ+ (1− ω2)φ− φp = 0.

It was proved by Shatah (1983), and Shatah-Strauss (1985) that there exists a
critical frequency ωc ∈ (0, 1) such that the standing waves solution uω is orbitally
stable when ωc < |ω| < 1, and orbitally unstable when |ω| < ωc. Furthermore,
the strong instability for the critical frequency |ω| = ωc in the high dimensions
d ≥ 2 was proved by Ohta-Todorova (2007). In this paper, we settle the only
remaining problem when |ω| = ωc, p > 1, and d = 1, in which case we prove that
the standing waves solution uω is orbitally unstable.

1. Introduction

In this paper, we consider the stability theory of the following nonlinear Klein-
Gordon equation

∂ttu−∆u+ u = |u|p−1u, t ∈ R, x ∈ Rd, (1.1)

with the initial data

u(0, x) = u0(x), ut(0, x) = u1(x). (1.2)

Here d ≥ 1 and 1 < p < 1 + 4
d−2

(1 < p <∞ when d = 1, 2). The H1 × L2-solution
(u, ut) of (1.1)–(1.2) obeys the following charge, momentum and energy conservation
laws,

Q(u, ut) = Im

∫
uūt dx = Q(u0, u1); (1.3)

P (u, ut) = Re

∫
∇uūt dx = P (u0, u1); (1.4)

E(u, ut) =
1

2
‖ut‖2

L2 +
1

2
‖∇u‖2

L2 +
1

2
‖u‖2

L2 −
1

p+ 1
‖u‖p+1

Lp+1 = E(u0, u1). (1.5)

The well-posedness for the Cauchy problem (1.1)–(1.2) is well-understood in the
energy space H1(Rd)×L2(Rd). More precisely, for any (u0, u1) ∈ H1(Rd)×L2(Rd),
there exists a unique solution (u, ut) ∈ C([0, T );H1(Rd) × L2(Rd)) ∩ X of (1.1)–
(1.2), with the maximal lifetime T = T (‖(u0, u1)‖H1×L2). Here X is some suitable
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auxiliary space. We say that the Cauchy problem (1.1)–(1.2) is globally well-posed
when T = ∞, and that it blows up in finite time when T < ∞. See for examples
Ginibre-Velo’s results [6, 7] for the local and global well-posedness, and Payne-
Sattinger [22] for the blow-up. We also refer the readers to [11, 12, 13] and the
references therein for the scattering.

The equation (1.1) has the standing waves solution eiωtφω, where φω is the
ground state solution of the following elliptic equation,

−∆φ+ (1− ω2)φ− φp = 0. (1.6)

When the parameter |ω| < 1, there exists an H1-solution to (1.6), see [26] for
example. Furthermore, there uniquely (up to some symmetries) exists a positive
radial solution φω, say the ground state solution, which decays exponentially at
infinity. Particularly, in one-dimensional case, the solution to (1.6) is unique up to
the symmetries of the rotation and the spatial transformation. See also [1, 4, 5]
for some examples on the existence of the multi-solitary waves of the nonlinear
Klein-Gordon equations.

The stability theory of the standing waves solution eiωtφω of Klein-Gordon
equations has been widely studied. In particular, Berestycki and Cazenave [2] proved
that it is strongly unstable by blow-up when ω = 0 and 1 < p < 1 + 4

d−2
, see also

Shatah [24]. In the case of ω 6= 0, Shatah [23] proved that it is orbitally stable when
1 < p < 1 + 4

d
and ωc < |ω| < 1. Here

ωc =

√
p− 1

4− (d− 1)(p− 1)
.

Later, Shatah and Strauss [25] showed that when 1 < p < 1 + 4
d
, |ω| < ωc or

1+ 4
d
< p < 1+ 4

d−2
, |ω| < 1, the standing waves solution eiωtφω is orbitally unstable.

See also Stuart [27] for the stability of the solitary waves. Hence, the above results
show that ωc is the threshold of dichotomy between stability and instability.

The critical cases, |ω| = ωc when 1 < p < 1 + 4
d
, are degenerate based on the

theory of Grillakis, Shatah and Strauss [8, 9]. These degenerate cases were further
investigated by Comech-Pelinovsky [3], Maeda [15], and Ohta [19]. In particular,
as an application of the theorems established in [3, 15], the standing waves solution
eiωtφω is orbitally unstable in the critical cases |ω| = ωc when 2 ≤ p < 1 + 4

d
.

However, the range 1 < p < 2 in the critical case is not covered in the previously
mentioned works, since the nonlinear term is not regular enough. Furthermore,
Ohta and Todorova [21] proved the strong instability when 1 < p < 1 + 4

d
, |ω| ≤ ωc

or 1 + 4
d
≤ p < 1 + 4

d−2
, |ω| < 1 in high dimensions d ≥ 2, which cover the entire

instability region in the case of d ≥ 2, see also [10, 14, 20] for some companion
results.

As the summary of the results above, the region of index that decides the
stability and instability has been completely proved, except for the final open case:
1 < p < 2, |ω| = ωc and d = 1. The present paper aims to settle this remaining
problem .

Before stating our theorem, we recall some definitions. Let v = ut, ~u = (u, v)T ,

~u0 = (u0, u1)T , and
−→
Φω = (φω, iωφω)T . For ε > 0, we denote the set Uε

(−→
Φω

)
as

Uε
(−→
Φω

)
= {~u ∈ H1(R)× L2(R) : inf

(θ,y)∈R2
‖~u− eiθ

−→
Φω(· − y)‖H1×L2 < ε}.
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Definition 1.1. We say that the solitary wave solution uω = eiωtφω of (1.1) is

stable if for any ε > 0 there exists δ > 0 such that if ‖~u0 −
−→
Φω‖H1×L2 < δ, then the

solution ~u(t) of (1.1) with ~u(0) = ~u0 exists for all t ∈ R, and ~u(t) ∈ Uε
(−→
Φω

)
for all

t ∈ R. Otherwise, uω is said to be unstable.

Then the main result in the present paper is

Theorem 1.2. Let d = 1, 1 < p < 5, ω ∈ (−1, 1) and φω be a solution of (1.6). If

|ω| =
√

p−1
4

, then the standing waves solution eiωtφω is orbitally unstable.

Then together with the results in [23, 25, 3, 15, 21] and Theorem 1.2, we have the
following classification of stability theory for the standing waves solution eiωtφω(x).

Corollary 1.3. Let d ≥ 1, 1 < p < 1 + 4
d
, |ω| < 1. Then

(1) If |ω| > |ωc|, then the standing waves solution eiωtφω(x) is orbitally stable;
(2) If |ω| ≤ |ωc|, then the standing waves solution eiωtφω(x) is orbitally unstable.

The main new ingredient in this paper is that we establish a new monotonic
inequality based on the virial identity and the modulation theory. Our argument
is completely different from [3, 15, 21]. First, our method does not require the
regularity of nonlinear term, while the previous ones in [3, 15] are based on the high-
order derivatives of the Lyapunov functional. Second, we overcome the difficulty that
the virial identity is too weak to prove the blow-up directly in 1D case due to the
lack of symmetry. Ohta and Todorova’s argument in [21] relies heavily on the radial
Sobolev inequality, so it can only handle the higher dimensional case when d ≥ 2.

Now, we briefly describe the framework of proof. We argue by contradiction,
assuming that the solution is close to the standing wave solution for any time.
Then, the modulation argument gives the smallness of perturbation function up to
the rotation, spatial translation and scaling. Finally, we use the localized virial
identity to preclude that both the perturbation function and the scaling parameter
keep the initial sizes for any time, which leads to a contradiction.

There are two observations that play an important role in our argument. The

first one is the flatness of functional E
(−→
Φω

)
+λωQ

(−→
Φω

)
respect to the scaling param-

eter λ in the degenerate case. This gives a nice bound of the perturbation function
ε in the following way,

‖~ε‖2
H1×L2 . |λ− 1|‖~ε0‖H1×L2 + o((λ− 1)2).

Since we assume that the solution is stable, then the square of the perturbation
equation is roughly controlled by its first power at the initial moment. This is
inspired by the work of [16].

The second observation is a specific form of the localized virial identity I(t).
By suitable definition, we can prove that

I ′(t) = P (~u(t))

for some quantity P (~u). Using the modulation theory, we decompose P (~u) as

A(~u0) + 〈B(~Φω), ε〉+ C(~Φω)(λ− 1)+D(~Φω)(λ− 1)2

+O(‖~ε‖2
H1×L2) + o((λ− 1)2).
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Then, we shall prove that the quantity P (~u) satisfies the following structure: there
exist c1 > 0 and c2 > 0 such that

A(~u0) ≥ c1‖ε(0)‖X , D(~Φω) ≥ c2, and 〈B(~Φω), ε〉 = C(~Φω) = 0.

In fact, we are able to obtain the first inequality by combining suitable initial datum
and the conservation laws, the second one by using the structure of P (~u), and the last
identity by choosing suitable orthogonal conditions and applying the conservation
laws. Combining with this structure and the smallness estimate of the perturbation ε
given in the previous observation, we can prove that I(t) goes to infinity as t→ +∞,
which contradicts its uniform boundedness.

The following is the organization of the paper. In Section 2, we give some pre-
liminaries. It includes some basic definitions and properties, the coercivity property
of the Hessian, and the modulation statement. In Section 3, we give the virial iden-
tities, control the remainder function and the scaling parameter, and finally prove
Theorem 1.2.

2. Preliminary

2.1. Notations. For f, g ∈ L2(R) = L2(R,C), we define

〈f, g〉 = Re

∫
R
f(x)g(x) dx

and regard L2(R) as a real Hilbert space. Similarly, for ~f,~g ∈
(
L2(R)

)2
=
(
L2(R,C)

)2
,

we define

〈~f,~g〉 = Re

∫
R

~f(x)T · ~g(x) dx.

For a function f(x), its Lq-norm ‖f‖Lq =
(∫

R
|f(x)|qdx

) 1
q

and its H1-norm

‖f‖H1 = (‖f‖2
L2 + ‖∂xf‖2

L2)
1
2 .

Further, we write X . Y or Y & X to indicate X ≤ CY for some constant
C > 0. We use the notation X ∼ Y whenever X . Y . X. Also, we use O(Y ) to
denote any quantity X such that |X| . Y ; and use o(Y ) to denote any quantity X
such that X/Y → 0, if Y → 0.

2.2. Some basic definitions and properties. In the following, we only consider

one dimension problem and the case of 1 < p < 5, in which ωc =
√

p−1
4

. Let

~u = (u, v)T ,
−→
Φω = (φω, iωφω)T . Recall that the conserved qualities,

Q(~u) = Im

∫
uv̄ dx,

E(~u) =
1

2
‖v‖2

L2 +
1

2
‖ux‖2

L2 +
1

2
‖u‖2

L2 −
1

p+ 1
‖u‖p+1

Lp+1 .

First, we give some basic properties on the charge and energy.

Lemma 2.1. The following equalities hold,
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(1) d
dω
Q
(−→

Φω

) ∣∣∣
ω=±ωc

= 0;

(2) If |ω| = ωc, then (p+ 3)E
(−→

Φω

)
+ 8ωQ

(−→
Φω

)
= 0.

Proof. Note that

Q
(−→

Φω

)
= −ω‖φω‖2

L2 .

Moreover, by rescaling, we find,

φω(x) = (1− ω2)
1
p−1φ0

(√
1− ω2x

)
.

This implies that

Q
(−→

Φω

)
= −ω(1− ω2)

2
p−1
− 1

2‖φ0‖2
L2 .

Hence by a direct computation, we have

d

dω
Q
(−→

Φω

)
= −(1− ω2)

2
p−1
− 3

2

[
1− 4

p− 1
ω2
]
‖φ0‖2

L2 .

This gives (1). For (2), we have

E
(−→

Φω

)
=

1

2
‖∂xφω‖2

L2 +
1

2
(1 + ω2)‖φω‖2

L2 −
1

p+ 1
‖φω‖p+1

Lp+1 .

From the equation (1.6), we obtain that

‖∂xφω‖2
L2 + (1− ω2)‖φω‖2

L2 − ‖φω‖p+1
Lp+1 = 0;

‖∂xφω‖2
L2 − (1− ω2)‖φω‖2

L2 +
2

p+ 1
‖φω‖p+1

Lp+1 = 0.

These give that

E
(−→

Φω

)
=

1

p+ 3

(
p− 1 + 4ω2

)
‖φω‖2

L2 .

Combining the value of Q
(−→

Φω

)
above, we obtain (2). �

Now we define the functional Sω as

Sω(~u) = E(~u) + ωQ(~u).

Then we have

S ′ω(~u) =

(
−uxx + u− |u|p−1u

v

)
+ iω

(
v
−u

)
.

Note that S ′ω(
−→
Φω) = 0. Moreover, for the vector ~f = (f, g)T , a direct computation

shows that

S ′′ω
(−→
Φω

)
~f =

(
−fxx + f − pφp−1

ω Ref − iφp−1
ω Imf

g

)
+ iω

(
g
−f

)
. (2.1)

From the invariance of S ′ω
(−→
Φω

)
in the rotation and spatial transformations, we have

S ′′ω
(−→
Φω

)
i
−→
Φω = 0, S ′′ω

(−→
Φω

)
∂x
−→
Φω = 0. (2.2)

Indeed, from

S ′ω
(
eiθ
−→
Φω(· − y)

)
= 0, for any θ ∈ R, y ∈ R,

we find that

S ′′ω
(−→
Φω

)
i
−→
Φω = ∂θS

′
ω

(
eiθ
−→
Φω

)∣∣∣
θ=0

= 0,
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and

S ′′ω
(−→
Φω

)
∂x
−→
Φω = −∂yS ′ω

(−→
Φω(· − y)

)∣∣∣
y=0

= 0.

This gives (2.2).

Moreover, taking the derivative of S ′ω
(−→
Φω

)
= 0 gives that

S ′′ω
(−→
Φω

)
∂ω
−→
Φω = −Q′

(−→
Φω

)
. (2.3)

Then a consequence of Lemma 2.1 (1) is

Corollary 2.2. Let λ ∈ R+, ω = ±ωc, then

Sλω
(−−→
Φλω

)
− Sλω

(−→
Φω

)
= o
(
(λ− 1)2

)
.

Proof. From the definition and the Taylor’s type expansion,

Sλω
(−−→
Φλω

)
− Sλω

(−→
Φω

)
=Sω

(−−→
Φλω

)
− Sω

(−→
Φω

)
+ (λ− 1)ω

(
Q
(−−→
Φλω

)
−Q

(−→
Φω

))
=

1

2

〈
S ′′ω
(−→
Φω

)(−−→
Φλω −

−→
Φω

)
,
(−−→

Φλω −
−→
Φω

)〉
+ (λ− 1)ω

(
Q
(−−→
Φλω

)
−Q

(−→
Φω

))
+ o
(
(λ− 1)2

)
.

Note that
−−→
Φλω −

−→
Φω = (λ− 1)ω∂ω

−→
Φω + o(λ− 1),

we find that 〈
S ′′ω
(−→
Φω

)(−−→
Φλω −

−→
Φω

)
,
(−−→

Φλω −
−→
Φω

)〉
=(λ− 1)2ω2

〈
S ′′ω
(−→
Φω

)
∂ω
−→
Φω, ∂ω

−→
Φω

〉
+ o
(
(λ− 1)2

)
=− (λ− 1)2ω2

〈
Q′
(−→
Φω

)
, ∂ω
−→
Φω

〉
+ o
(
(λ− 1)2

)
=− (λ− 1)2ω2 d

dλ
Q
(−−→
Φλω

)∣∣∣
λ=1

+ o
(
(λ− 1)2

)
,

where we use (2.3) for the second identity. Using Lemma 2.1 (1), we have

d

dλ
Q
(−−→
Φλω

)∣∣∣
λ=1

= 0.

Hence, 〈
S ′′ω
(−→
Φω

)(−−→
Φλω −

−→
Φω

)
,
(−−→

Φλω −
−→
Φω

)〉
= o
(
(λ− 1)2

)
,

and

Q
(−−→
Φλω

)
−Q

(−→
Φω

)
= o
(
λ− 1

)
.

Thus we obtain the desired estimate. �
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2.3. Coercivity. First, we need the following lemma.

Lemma 2.3. Let ~ψω = (∂ωφω, iω∂ωφω)T ,
−→
Ψω = (2ωφω, 0)T , then

S ′′ω
(−→
Φω

)
~ψω =

−→
Ψω. (2.4)

Moreover, if |ω| = ωc, then 〈
S ′′ω
(−→
Φω

)
~ψω, ~ψω

〉
< 0. (2.5)

Proof. Note that from the equation (1.6), we have(
− ∂xx + (1− ω2)− pφp−1

ω Re− iφp−1
ω Im

)
∂ωφω = 2ωφω.

Then (2.4) follows from a straightforward computation.
For (2.5), we have〈

S ′′ω
(−→
Φω

)
~ψω, ~ψω

〉
=
〈−→

Ψω, ~ψω

〉
= 2ω

∫
φω ∂ωφω dx = ω

d

dω
‖φω‖2

L2

= − d

dω
Q
(−→

Φω

)
− ‖φω‖2

L2 .

Using Lemma 2.1 (1), when |ω| = ωc,〈
S ′′ω
(−→
Φω

)
~ψω, ~ψω

〉
= −‖φω‖2

L2 < 0.

This proves the lemma. �

Now we have the following coercivity property.

Lemma 2.4. Let ω = ±ωc. Suppose that ~ξ ∈ H1(R)× L2(R) satisfies〈
~ξ, i
−→
Φω

〉
=
〈
~ξ, ∂x
−→
Φω

〉
=
〈
~ξ,
−→
Ψω

〉
= 0.

Then 〈
S ′′ω
(−→
Φω

)
~ξ, ~ξ
〉
&
∥∥~ξ∥∥2

H1×L2 .

Proof. First, we show that

Ker
(
S ′′ω
(−→
Φω

))
= Span

{
i
−→
Φω, ∂x

−→
Φω

}
. (2.6)

Indeed, from (2.2), we have{
i
−→
Φω, ∂x

−→
Φω

}
⊂ Ker

(
S ′′ω
(−→
Φω

))
.

Hence, to prove (2.6), we now turn to show that if

S ′′ω
(−→
Φω

)
~f = 0, (2.7)

then

~f = c1i
−→
Φω + c2∂x

−→
Φω. (2.8)

Let ~f = (f, g), then from (2.1), the equality (2.7) is equivalent to{
−fxx + f − pφp−1

ω Ref − iφp−1
ω Imf + iωg = 0,

g − iωf = 0
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This implies that f obeys the equation

−fxx + (1− ω2)f − pφp−1
ω Ref − iφp−1

ω Imf = 0.

Then from Proposition 2.8 in Weinstein [28], we obtain that there exist c1 ∈ R, c2 ∈
R,

f = c1∂xφω + c2iφω.

This yields that
g = iωf = c1iω∂xφω + c2iω · iφω.

Hence we have (2.8) and thus we prove (2.6).
Second, we claim that

S ′′ω
(−→
Φω

)
has exactly one negative eigenvalue. (2.9)

To prove (2.9), we need some well-known facts. It is known that the operator

−∂xx + (1− ω2)− φp−1
ω is non-negative, (2.10)

and the operator
−∂xx + (1− ω2)− pφp−1

ω

has exactly one negative eigenvalue (see Page 489 in Weinstein [28]). That is, there
uniquely exists a pair (λ−1, f−1) ∈ R− ×H1(R) such that

−∂xxf−1 + (1− ω2)f−1 − pφp−1
ω f−1 = λ−1f−1.

Moreover, the formula (2.5) implies that S ′′ω
(−→
Φω

)
at least exists one negative eigen-

value. That is, there is at least one negative eigenvalue and its associated eigenvec-

tor, say (λ̃−1, ~ξ−1) ∈ R− ×H1(R), such that

S ′′ω(
−→
Φω)~ξ−1 = λ̃−1

~ξ−1. (2.11)

Using (2.1), this yields that{
−∂xxξ−1 + ξ−1 − pφp−1

ω Reξ−1 − iφp−1
ω Imξ−1 + iωη−1 = λ̃−1ξ−1,

η−1 − iωξ−1 = λ̃−1η−1,

where ~ξ−1 = (ξ−1, η−1). This further implies that{
−∂xxξ−1 + (1− ω2)ξ−1 − pφp−1

ω Reξ−1 − iφp−1
ω Imξ−1 = λ̃−1

(
ω2

1−λ̃−1
+ 1
)
ξ−1,

η−1 = iω
1−λ̃−1

ξ−1.

Now we use facts (2.10) and (2.11), to obtain that

λ̃−1

( ω2

1− λ̃−1

+ 1
)

= λ−1, and ξ−1 = f−1. (2.12)

Then we find that given λ−1 < 0, there exactly exists one negative solution λ̃−1 < 0,

satisfying the first equation in (2.12). This implies S ′′ω(
−→
Φω) has exactly one negative

eigenvalue. That is, there uniquely exists (λ̃−1, ~ξ−1) satisfying (2.11). This proves
(2.9).

Now we are ready to prove the lemma. Since φω is exponentially localized,

S ′′ω(
−→
Φω) can be considered as compact perturbation of

2

(
−∂xx + 1 iω
−iω 1

)
.
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Therefore its essential spectrum is [2(1− ω2),∞) and by Weyl’s Theorem its spec-
trum in (−∞, 2(1−ω2)) consists of isolated eigenvalues. Without loss of generality,

we may assume that ~ξ−1 is the L2 × L2-normalized eigenvector associated to the
negative eigenvalue λ̃−1, that is

S ′′ω(
−→
Φω)~ξ−1 = λ̃−1

~ξ−1, and ‖~ξ−1‖L2×L2 = 1. (2.13)

According to these, we may write the decomposition of ~ξ along the spectrum of

S ′′ω(
−→
Φω) as

~ξ = a−1
~ξ−1 + a0,1i

−→
Φω + a0,2∂x

−→
Φω + ~η,

with a−1, a0,1, a0,2 ∈ R, and ~η verifying 〈~η, ~ξ−1〉 = 〈~η, i
−→
Φω〉 = 〈~η, ∂x

−→
Φω〉 = 0 and〈

S ′′ω
(−→
Φω

)
~η, ~η
〉
&
∥∥~η∥∥2

H1×L2 . (2.14)

Since 〈~ξ, i
−→
Φω〉 = 〈~ξ, ∂x

−→
Φω〉 = 0, we have a0,1 = a0,2 = 0, and thus

~ξ = a−1
~ξ−1 + ~η. (2.15)

Similarly, noting that 〈 ~ψω, i
−→
Φω〉 = 〈 ~ψω, ∂x

−→
Φω〉 = 0, we write

~ψω = b−1
~ξ−1 + ~g, (2.16)

with b−1 ∈ R and ~g verifying

〈~g, ~ξ−1〉 = 〈~g, i
−→
Φω〉 = 〈~g, ∂x

−→
Φω〉 = 0, and

〈
S ′′ω
(−→
Φω

)
~g,~g
〉
&
∥∥~g∥∥2

H1×L2 .

From (2.15), we find〈
S ′′ω
(−→
Φω

)
~ξ, ~ξ
〉

= λ̃−1a
2
−1 +

〈
S ′′ω
(−→
Φω

)
~η, ~η
〉
. (2.17)

Hence by (2.14), we only need to estimate λ̃−1a
2
−1. To this end, we shall use the

third orthogonality condition.
For simplicity, we denote

δ0 = −
〈
S ′′ω
(−→
Φω

)
~ψω, ~ψω

〉
,

then from (2.5), we have δ0 > 0. Moreover, using (2.16) we obtain the relationship

λ̃−1b
2
−1 = −δ0 − 〈S ′′ω

(−→
Φω

)
~g,~g〉. (2.18)

Furthermore, the formulas (2.4) and (2.16) imply

−→
Ψω = λ̃−1b−1

~ξ−1 + S ′′ω
(−→
Φω

)
~g.

Hence, with combination of (2.15) and the orthogonality condition 〈~ξ,
−→
Ψω〉 = 0, we

have

λ̃−1a−1b−1 + 〈S ′′ω
(−→
Φω

)
~g, ~η〉 = 0. (2.19)
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Together with (2.18) and (2.19), and using the Cauchy-Schwartz inequality, we ob-
tain that

−λ̃−1a
2
−1 =

λ̃2
−1a

2
−1b

2
−1

−λ̃−1b2
−1

=
〈S ′′ω
(−→
Φω

)
~g, ~η〉2

δ0 + 〈S ′′ω
(−→
Φω

)
~g,~g〉

≤
〈S ′′ω
(−→
Φω

)
~η, ~η〉〈S ′′ω

(−→
Φω

)
~g,~g〉

δ0 + 〈S ′′ω
(−→
Φω

)
~g,~g〉

. (2.20)

Hence this combining with (2.17) and (2.14), gives〈
S ′′ω
(−→
Φω

)
~ξ, ~ξ
〉
≥ −
〈S ′′ω
(−→
Φω

)
~η, ~η〉〈S ′′ω

(−→
Φω

)
~g,~g〉

δ0 + 〈S ′′ω
(−→
Φω

)
~g,~g〉

+
〈
S ′′ω
(−→
Φω

)
~η, ~η
〉

= δ0

〈S ′′ω
(−→
Φω

)
~η, ~η〉

δ0 + 〈S ′′ω
(−→
Φω

)
~g,~g〉

&
∥∥~η∥∥2

H1×L2 . (2.21)

Using (2.20) again, and by Hölder’s inequality, we have

a2
−1 .

∥∥~η∥∥2

H1×L2 .

Hence, from (2.15), ∥∥~ξ∥∥2

L2×L2 . a2
−1 +

∥∥~η∥∥2

H1×L2 .
∥∥~η∥∥2

H1×L2 .

This together with (2.21), yields〈
S ′′ω
(−→
Φω

)
~ξ, ~ξ
〉
&
∥∥~ξ∥∥2

L2×L2 . (2.22)

Lastly, from the definition of S ′′ω
(−→
Φω

)
in (2.1), we have∥∥~ξ∥∥2

H1×L2 . 〈S ′′ω
(−→
Φω

)
~ξ, ~ξ〉+ ‖~ξ‖2

L2×L2 .

Therefore, followed from (2.22), we obtain that〈
S ′′ω
(−→
Φω

)
~ξ, ~ξ
〉
&
∥∥~ξ∥∥2

H1×L2 . (2.23)

This finishes the proof of the lemma. �

2.4. Modulation. The modulation method was first introduced by Weinstein [28],
and strengthened by the mathematicians such as Martel, Merle, Raphaël [16, 17, 18].
We use the modulation argument inspired by these works. Particularly, in the Klein-
Gordon setting, we use a similar form established by Bellazzini1, Ghimenti, and Le
Coz in [1], who considered the total linearized action. The following modulation
lemma says that if the standing wave solution is stable, then after suitably choosing
the parameters, the orthogonality conditions in Lemma 2.4 can be verified.

Lemma 2.5. Let ω = ±ωc. There exists ε0 > 0, such that for any ε ∈ (0, ε0), if

~u(t) ∈ Uε(~Φω) for any t ∈ R, then the following properties is verified. There exist
C1-functions

(θ, y) : R2 → R, λ : R→ R+,

such that if we define ~ξ by

~ξ(t) = e−iθ(t)~u
(
t, · − y(t)

)
−
−−−→
Φλ(t)ω, (2.24)
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then ~ξ satisfies the following orthogonality conditions for any t ∈ R,〈
~ξ, i
−−−→
Φλ(t)ω

〉
=
〈
~ξ, ∂x
−−−→
Φλ(t)ω

〉
=
〈
~ξ,
−−−→
Ψλ(t)ω

〉
= 0. (2.25)

Moreover, the following estimates verify

‖~ξ‖H1×L2 + |λ− 1| . ε,

and for any t ∈ R,

|θ̇ − λω|+ |ẏ|+ |λ̇| = O
(∥∥~ξ∥∥

H1×L2

)
.

Proof. Since the argument is standard, see c.f. Proposition 1 in [16] and Proposition
9 in [1], we give the proof much briefly. The existence of the parameters follows from
classical arguments involving the implicit function theorem. More precisely, fixing
t ∈ R and writting ~u = ~u(t) for short, we denote Fj, j = 1, 2, 3 : U1(~Φω)×R×R×R+

by

F1(~u, θ, y, λ) =
〈
~ξ, i
−−→
Φλω

〉
; F2(~u, θ, y, λ) =

〈
~ξ, ∂x
−−→
Φλω

〉
; F3(~u, θ, y, λ) =

〈
~ξ,
−−→
Ψλω

〉
.

Then

Fj
(−→
Φω, 0, 0, 1

)
= 0, for j = 1, 2, 3.

Moreover, a direct computation gives that∣∣∣∣∣∣
∂θF1 ∂yF1 ∂λF1

∂θF2 ∂yF2 ∂λF2

∂θF3 ∂yF3 ∂λF3

∣∣∣∣∣∣
(~u,θ,y,λ)=

(−−→
Φλω ,0,0,1

)
=

∣∣∣∣∣∣∣
−
∥∥−→Φω

∥∥
L2×L2 0 0

0 −
∥∥∂x−→Φω

∥∥
L2×L2 0

0 0 ‖φω‖2
L2

∣∣∣∣∣∣∣ 6= 0.

Therefore, the implicit function theorem implies that there exists ε0 > 0, such that
for any ε ∈ (0, ε0), for any ~u ∈ Uε(~Φω), there exist continuity functions

(θ, y) : Uε(~Φω)→ R2, λ : Uε(~Φω)→ R+,

such that Fj(~u, θ, y, λ) = 0 for j = 1, 2, 3.
The parameters (θ, y, λ) ∈ C1 in time can be followed from the regularization

arguments, see c.f. Lemma 4 in [16]. Now we consider the dynamic of the parame-
ters. From (2.24), we have

~u(t) = eiθ(t)
(
~ξ +
−−−→
Φλ(t)ω

)(
t, ·+ y(t)

)
.

Then using this equality, the equations

ut = v, vt = ∆u− u+ |u|p−1u,

and (1.6), we obtain that

∂t~ξ + i(θ̇ − λω)
(
~ξ +
−−−→
Φλ(t)ω

)
+ ẏ∂x

(
~ξ +
−−−→
Φλ(t)ω

)
+ λ̇ω∂λ

−−−→
Φλ(t)ω = N (~ξ). (2.26)

Here we have used the notations ḟ = ∂tf for the time dependent function f , and

N (~ξ) verifying〈
N (~ξ), ~f

〉
= O

(∥∥~ξ∥∥
H1×L2

)∥∥~f∥∥
H1×L2 , for any f ∈ H1 × L2.
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Now multiplying (2.26) by i
−−−→
Φλ(t)ω, ∂x

−−−→
Φλ(t)ω and

−−−→
Ψλ(t)ω, respectively, integrating by

parts and then using the orthogonal conditions (2.25), we obtain that

(θ̇ − λω)
(
‖
−−→
Φλω‖2

L2×L2 + 〈~ξ,
−−→
Φλω〉

)
+ ẏ〈∂x~ξ, i

−−→
Φλω〉 − λ̇ω〈~ξ, i∂λ

−−→
Φλω〉 = O

(∥∥~ξ∥∥
H1×L2

)
;

(θ̇ − λω)〈i~ξ, ∂x
−−→
Φλω〉+ ẏ

(
‖∂x
−−→
Φλω‖2

L2×L2 + 〈∂x~ξ, ∂x
−−→
Φλω〉

)
− λ̇ω〈~ξ, ∂x∂λ

−−→
Φλω〉 = O

(∥∥~ξ∥∥
H1×L2

)
;

and

(θ̇ − λω)〈i~ξ,
−−→
Ψλω〉+ ẏ〈∂x~ξ,

−−→
Ψλω〉

− λ̇ω
(

2‖φλω‖2
L2 + 〈~ξ, ∂λ

−−→
Ψλω〉

)
= O

(∥∥~ξ∥∥
H1×L2

)
;

With combination of these three estimates, we obtain that

|θ̇ − λω|+ |ẏ|+ |λ̇| = O
(∥∥~ξ∥∥

H1×L2

)
.

This finishes the proof of the lemma. �

3. Proof of the main theorem

3.1. Localized virial identities. To prove main Theorem 1.2, one of the key in-
gredient is the localized virial identities.

Lemma 3.1. Let ϕ ∈ C1(R), then

d

dt
Re

∫
uūt dx =

∫ [
|ut|2 − |ux|2 − |u|2 + |u|p+1

]
dx;

Re

∫
ϕ
d

dt

(
uxūt

)
dx = −1

2

∫
ϕ′
[
|ut|2 + |ux|2 − |u|2 +

2

p+ 1
|u|p+1

]
dx.

Proof. It follows from a direct calculation. See [21] for the details. �

Now we define the smooth cutoff function ϕR ∈ C∞(R) as

ϕR(x) = x, when |x| ≤ R; ϕR(x) = 0, when |x| ≥ 2R,

and |ϕ′R| ≤ 1 for any x ∈ R. Moreover, we denote

I(t) =
4

p− 1
Re

∫
uūt dx+ 2Re

∫
ϕR
(
x− y(t)

)
uxūt dx.

Then from Lemma 3.1 we have the following lemma.

Lemma 3.2. Let R > 0, if |ẏ| . 1, then

I ′(t) =− p+ 3

p− 1
· 2E(u0, u1)− 16ω

p− 1
Q(u0, u1)− 2ẏP (u0, u1) +

8

p− 1
‖ut − iωu‖2

L2

+O
(∫
|x−y(t)|≥R

|ut|2 + |ux|2 + |u|2 + |u|p+1 dx
)
.
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Proof. First, we have

d

dt
Re

∫
ϕR
(
x− y(t)

)
uxūt dx = −ẏRe

∫
ϕ′R
(
x− y(t)

)
uxūt dx

+ Re

∫
ϕR
(
x− y(t)

) d
dt

(
uxūt

)
dx.

Then from Lemma 3.1 and the momentum conservation law, we obtain

d

dt
Re

∫
ϕR
(
x− y(t)

)
uxūt dx = −ẏRe

∫
ϕ′R
(
x− y(t)

)
uxūt dx

− 1

2

∫
ϕ′R
(
x− y(t)

)[
|ut|2 + |ux|2 − |u|2 +

2

p+ 1
|u|p+1

]
dx

= −ẏP (u0, u1)− ẏRe

∫ [
ϕ′R
(
x− y(t)

)
− 1
]
uxūt dx

− 1

2

∫ (
|ut|2 + |ux|2 − |u|2 +

2

p+ 1
|u|p+1

)
dx

− 1

2

∫ [
ϕ′R
(
x− y(t)

)
− 1
](
|ut|2 + |ux|2 − |u|2 +

2

p+ 1
|u|p+1

)
dx.

Since supp
[
ϕ′R
(
x− y(t)

)
− 1
]
⊂ {x : |x− y(t)| ≥ R}, |ϕ′R| ≤ 1 and |ẏ| . 1, we get

d

dt
Re

∫
ϕR
(
x− y(t)

)
uxūt dx

= −ẏP (u0, u1)− 1

2

∫ (
|ut|2 + |ux|2 − |u|2 +

2

p+ 1
|u|p+1

)
dx

+O
(∫
|x−y(t)|≥R

|ut|2 + |ux|2 + |u|2 + |u|p+1 dx
)
.

Moreover, from Lemma 3.1,

d

dt
Re

∫
uūt dx =

∫ [
|ut|2 − |ux|2 − |u|2 + |u|p+1

]
dx.

Combining the two estimates above, we obtain that

I ′(t) =− 2ẏP (u0, u1) +
( 4

p− 1
− 1
)
‖ut‖2

L2 −
p+ 3

p− 1
‖ux‖2

L2

+
p− 5

p− 1
‖u‖2

L2 + 2
p+ 3

p2 − 1
‖u‖p+1

Lp+1

+O
(∫
|x−y(t)|≥R

|ut|2 + |ux|2 + |u|2 + |u|p+1 dx
)
. (3.1)

Note that when |ω| = ωc,( 4

p− 1
− 1
)
‖ut‖2

L2 −
p+ 3

p− 1
‖ux‖2

L2 +
p− 5

p− 1
‖u‖2

L2 + 2
p+ 3

p2 − 1
‖u‖p+1

Lp+1

=
8

p− 1
‖ut − iωu‖2

L2 −
p+ 3

p− 1
· 2E(u0, u1)− 16ω

p− 1
Q(u0, u1).

Inserting this equality into (3.1), we prove the lemma. �
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3.2. The choice of initial data. In this subsection, we choose the initial data such
that it is close to the standing waves solution but leads the instability. We set

~u0 = (1 + a)
−→
Φω. (3.2)

Here, a ∈ (0, a0) is an arbitrary small constant, and a0 will be decided later. Then
we have

Lemma 3.3. Let ~u0 be defined in (3.2), then

P (~u0) = 0,

and

Q(~u0)−Q
(−→

Φω

)
= −2aω‖φω‖2

L2 +O(a2).

Proof. It follows from the definition that P (~u0) = 0. Now consider Q(~u0). We write

Q(~u0)−Q
(−→

Φω

)
=
〈
Q′
(−→

Φω

)
, ~u0 −

−→
Φω

〉
+O

(
‖~u0 −

−→
Φω‖2

H1×L2

)
=− ω 〈φω, u0 − φω〉 − 〈iφω, u1 − iωφω〉+O

(
a2
)

=− 2aω‖φω‖2
L2 +O(a2).

This finishes the proof of the lemma. �

Using the above lemma, we can scale the main part in I ′(t).

Lemma 3.4. Let ~u0 be defined in (3.2), then

−p+ 3

p− 1
· 2E(~u0)− 16ω

p− 1
Q(~u0) =

5− p
p− 1

· 4aω2‖φω‖2
L2 +O(a2).

Proof. Making use of Lemma 2.1 (2), we have

−p+ 3

p− 1
· 2E(~u0)− 16ω

p− 1
Q(~u0)

=− p+ 3

p− 1
· 2
[
E(~u0)− E

(−→
Φω

) ]
− 16ω

p− 1

[
Q(~u0)−Q

(−→
Φω

) ]
− p+ 3

p− 1
· 2E

(−→
Φω

)
− 16ω

p− 1
Q
(−→

Φω

)
=− p+ 3

p− 1
· 2
[
E(~u0)− E

(−→
Φω

) ]
− 16ω

p− 1

[
Q(~u0)−Q

(−→
Φω

) ]
.

Since

E(~u0)− E
(−→

Φω

)
=
[
Sω(~u0)− Sω

(−→
Φω

) ]
− ω

[
Q(~u0)−Q

(−→
Φω

) ]
,

we further write

−p+ 3

p− 1
· 2E(~u0)− 16ω

p− 1
Q(~u0)

=− p+ 3

p− 1
· 2
[
Sω(~u0)− Sω

(−→
Φω

) ]
− 5− p
p− 1

· 2ω
[
Q(~u0)−Q

(−→
Φω

) ]
.

By Taylor’s type extension, we have

Sω(~u0)− Sω
(−→

Φω

)
= O

(
‖~u0 −

−→
Φω‖2

H1×L2

)
= O(a2).

Now using Lemma 3.3, we prove the lemma. �
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Similar computation also gives

Lemma 3.5. Let λ ∈ R+ with λ . 1, ~u0 be defined in (3.2), then

Sλω(~u0)− Sλω
(−→

Φω

)
= −2(λ− 1)aω2‖φω‖2

L2 +O(a2).

Proof. By the definition of Sω, we have

Sλω(~u0)− Sλω
(−→

Φω

)
=Sω(~u0)− Sω

(−→
Φω

)
+ (λ− 1)ω

[
Qω(~u0)−Qω

(−→
Φω

) ]
.

Since

S(~u0)− S
(−→

Φω

)
= O(a2),

then by Lemma 3.3, we prove the lemma. �

Now we control the rest terms of the virial identity in Lemma 3.2. We argue
by contradiction, and suppose that the standing wave solution uω is stable. That
is, for any ε > 0, there exists a constant a0 > 0, such that for any a ∈ (0, a0), if

~u0 ∈ Ua(
−→
Φω), then ~u(t) ∈ Uε(

−→
Φω) for any t ∈ R. We may assume that ~u ∈ Uε(~Φω)

for ε ≤ ε0, where ε0 is determined in Lemma 2.5. Hence by Lemma 2.5, we can
write

u = eiθ(φλω + ξ)(· − y); ut = eiθ(iλωφλω + η)(· − y) (3.3)

with ~ξ = (ξ, η) satisfying the orthogonal conditions (2.25).

3.3. Lower control of ‖ut − iωu‖L2. In this subsection, we prove the following
lemma.

Lemma 3.6. Suppose that ~ξ = (ξ, η) defined in (3.3) satisfying the orthogonal
conditions (2.25), then

‖ut − iωu‖2
L2 =(λ− 1)2ω2‖φω‖2

L2 + ‖η − iωξ‖2
L2

+O
(
|λ− 1|3 + a|λ− 1|+ ‖~ξ‖3

H1×L2

)
.

Proof. By (3.3), we expand it as

‖ut − iωu‖2
L2 =‖iλωφλω + η − iω(φλω + ξ)‖2

L2

=‖i(λ− 1)ωφλω + η − iωξ‖2
L2

=(λ− 1)2ω2‖φλω‖2
L2 + 2(λ− 1)ω

〈
η − iωξ, iφλω

〉
+ ‖η − iωξ‖2

L2 .

Noting that

‖φλω‖2
L2 = ‖φω‖2

L2 +O(|λ− 1|),
then combining with the third orthogonal condition in (2.25), we further get

‖ut − iωu‖2
L2 =(λ− 1)2ω2‖φω‖2

L2 + 2(λ− 1)ω
〈
η, iφλω

〉
+ ‖η − iωξ‖2

L2 +O(|λ− 1|3). (3.4)
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Now we consider the term 〈η, iφλω〉. First, we use the charge conservation law to
obtain

Q
(
~u0

)
−Q

(−→
Φω

)
+Q

(−→
Φω

)
−Q

(−−→
Φλω

)
= Q

(
~u
)
−Q

(−−→
Φλω

)
= −

〈
ξ, λωφλω

〉
−
〈
η, iφλω

〉
+O

(
‖~ξ‖2

H1×L2

)
.

Then by the third orthogonal conditions in (2.25), we have〈
η, iφλω

〉
= Q

(−−→
Φλω

)
−Q

(−→
Φω

)
−
[
Q
(
~u0

)
−Q

(−→
Φω

) ]
+O

(
‖~ξ‖2

H1×L2

)
.

From Lemma 2.1, we have

Q
(−−→

Φλω

)
−Q

(−→
Φω

)
= O

(
|λ− 1|2

)
,

and from Lemma 3.3, we have

Q
(
~u0

)
−Q

(−→
Φω

)
= O(a).

Therefore, we obtain that〈
η, iφλω

〉
= O

(
a+ |λ− 1|2 + ‖~ξ‖2

H1×L2

)
. (3.5)

Now together (3.4) with (3.5), we obtain the desirable result. �

3.4. Upper control of ‖~ξ‖H1×L2. In this subsection, we give the following estimate

on ‖~ξ‖H1×L2 .

Lemma 3.7. Let ~ξ = (ξ, η) be defined in (3.3), then

‖~ξ‖2
H1×L2 = O(a|λ− 1|+ a2) + o

(
(λ− 1)2

)
.

Proof. From the charge and energy conservation laws,

Sλω
(
~u0

)
= Sλω

(
~u
)

= Sλω
(
~u
)
− Sλω

(−−→
Φλω

)
+ Sλω

(−−→
Φλω

)
=

1

2

〈
S ′′λω

(−−→
Φλω

)
~ξ, ~ξ
〉

+ Sλω

(−−→
Φλω

)
+ o
(
‖~ξ‖2

H1×L2

)
.

Hence by Lemma 2.4,

‖~ξ‖2
H1×L2 .

1

2

〈
S ′′λω

(−−→
Φλω

)
~ξ, ~ξ
〉

=
[
Sλω
(
~u0

)
− Sλω

(−→
Φω

) ]
−
[
Sλω

(−−→
Φλω

)
− Sλω

(−→
Φω

) ]
+ o
(
‖~ξ‖2

H1×L2

)
.

By Lemma 3.5,

Sλω(~u0)− Sλω
(−→

Φω

)
= −2(λ− 1)aω2‖φω‖2

L2 +O(a2),

and by Corollary 2.2,

Sλω
(−−→
Φλω

)
− Sλω

(−→
Φω

)
= o
(
(λ− 1)2

)
.

Therefore,

‖~ξ‖2
H1×L2 = O(a|λ− 1|+ a2) + o

(
(λ− 1)2

)
+ o
(
‖~ξ‖2

H1×L2

)
.
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Then, after absorbing the last term by the left-hand side one, we finish the proof of
this lemma. �

3.5. Proof of Theorem 1.2. As discussed above, we assume that ~u ∈ Uε(~Φω), and
thus |λ − 1| . ε. First, we note that from the definition of I(t), we have the time
uniform boundedness of I(t),

sup
t∈R

I(t) . R
(
‖
−→
Φω‖2

H1×L2 + 1
)
. (3.6)

Now we consider the estimate on I ′(t). First, by (3.3), the exponential decaying of
φω and 1

2
≤ λ ≤ 3

2
,∫

|x−y(t)|≥R

[
|ut|2 + |ux|2 + |u|2 + |u|p+1

]
dx

.
∫
|x|≥R

[
|φλω|2 + |∂xφλω|2 + |ξ|2 + |∂xξ|2 + |ξ|p+1 + |η|2

]
dx

= O
(∥∥~ξ∥∥2

H1×L2 +
1

R

)
.

Hence by Lemma 3.2,

I ′(t) =− p+ 3

p− 1
· 2E(u0, u1)− 16ω

p− 1
Q(u0, u1)

− 2ẏP (u0, u1) +
8

p− 1
‖ut − iωu‖2

L2 +O
(∥∥~ξ∥∥2

H1×L2 +
1

R

)
.

Now by Lemma 3.4, Lemma 3.3, and Lemma 3.6, we have

I ′(t) =
5− p
p− 1

· 4aω2‖φω‖2
L2 + (λ− 1)2ω2‖φω‖2

L2 + ‖η − iωξ‖2
L2

+O
(
a2 + a|λ− 1|+ |λ− 1|3 +

∥∥~ξ∥∥2

H1×L2 +
1

R

)
.

Setting R = a−2 and applying Lemma 3.7, we further get

I ′(t) =
5− p
p− 1

· 4aω2‖φω‖2
L2 + (λ− 1)2ω2‖φω‖2

L2 + ‖η − iωξ‖2
L2

+O
(
a2 + a|λ− 1|

)
+ o
(
|λ− 1|2

)
.

Choosing ε and a0 small enough, we obtain that for any a ∈ (0, a0),

I ′(t) ≥5− p
p− 1

· 2aω2‖φω‖2
L2 .

This implies that I(t) → +∞ when t → +∞, which is contradicted with (3.6).
Hence we prove the instability of the standing wave uω and thus give the proof of
Theorem 1.2.

Acknowledgements

The author was partially supported by the NSFC (No. 12171356). The author
would also like to express his deep gratitude to Professor Masaya Maeda for his
helpful private discussion. In particular, he introduced me the references [3, 15, 19],



18 YIFEI WU

and informed me a flaw in [15] that the correlative theorem only applies to the
nonlinear Klein-Gordon equation when p ≥ 2.

References

[1] Bellazzini1, J., Ghimenti, M., and Le Coz, S., Multi-solitary waves for the nonlinear Klein-
Gordon equation, Comm. Partial Differ. Equ., 39 (2014), 1479–1522.

[2] Berestycki, H., and Cazenave, T., Instabilité desétats stationnaires dans leséquations de
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