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Abstract

We introduce the structure of vacillating Hecke tableaux. By using the Hecke
insertion algorithm developed by Buch, Kresch, Shimozono, Tamvakis and Yong,
we establish a one-to-one correspondence between vacillating Hecke tableaux and
linked partitions, which arise in free probability theory. We define a Hecke diagram
as a Young diagram possibly with a marked corner. A vacillating Hecke tableau is
defined as a sequence of Hecke diagrams subject to a certain condition on addition
and deletion of rook strips. The notion of a rook strip was introduced by Buch in
the study of the Littlewood-Richardson rule for stable Grothendieck polynomials.
We show that the crossing number and the nesting number of a linked partition
can be determined by the maximal number of rows and the maximal number of
columns of diagrams in the corresponding vacillating Hecke tableau. The proof
relies on a theorem due to Thomas and Yong. As consequences, we confirm two
conjectures on the distribution of the crossing number and the nesting number
over linked partitions and ordinary partitions, respectively proposed by de Mier
and Kim.
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1 Introduction

In this paper, we introduce the structure of a vacillating Hecke tableau, which is a se-
quence of Hecke diagrams subject to a certain condition on addition and deletion of rook
strips. A Hecke diagram is defined as a Young diagram possibly with a marked corner,
which arises in the Hecke insertion algorithm developed by Buch, Kresch, Shimozono,
Tamvakis and Yong [2]. Employing vacillating Hecke tableaux, we prove two combinato-
rial conjectures on linked partitions and ordinary partitions of the set [n] = {1, 2, . . . , n},
respectively proposed by de Mier [6] and Kim [8].

The Hecke algorithm provides a combinatorial rule to expand a stable Grothendieck
polynomial in terms of stable Grothendieck polynomials indexed by partitions [2]. Buch
[1] showed that a stable Grothendieck polynomial can be expanded as a linear combina-
tion of stable Grothendieck polynomials indexed by partitions with integer coefficients.
Based on the Hecke algorithm, Buch, Kresch, Shimozono, Tamvakis and Yong [2] found
a combinatorial interpretation of these coefficients in terms of increasing tableaux satis-
fying certain conditions.

On the other hand, linked partitions were introduced by Dykema [7] in the study
of unsymmetrized T-transforms in free probability theory. Using the Hecke algorithm,
we establish a one-to-one correspondence between the set of vacillating Hecke tableaux
of empty shape and length 2n and the set of linked partitions of [n]. We show that
the crossing number and the nesting number of a linked partition can be determined
by the maximal number of rows and the maximal number of columns of diagrams in
the corresponding vacillating Hecke tableau. The proof relies on the following property
of the Hecke algorithm proved by Thomas and Yong [12]. Given a word w of positive
integers, one can construct the insertion tableau of w by successively applying the Hecke
algorithm. Thomas and Yong showed that the length of the longest strictly increasing
subsequences and the length of the longest strictly decreasing subsequences in w can be
read off from its insertion tableau.

The above correspondence implies that the crossing number and the nesting number
have a symmetric joint distribution over linked partitions of [n], as conjectured by de
Mier. When restricted to the front representations of partitions of [n], we are led to the
fact that the crossing number and the nesting number have a symmetric joint distribution
over the front representations of partitions of [n]. This proves a conjecture of Kim.

Recall that a linked partition of [n] is a collection of nonempty subsets B1, B2, . . . , Bk

of [n], called blocks, such that the union of B1, B2, . . . , Bk is [n] and any two distinct
blocks are nearly disjoint. Two distinct blocks Bi and Bj are said to be nearly disjoint
if for any t ∈ Bi ∩Bj, one of the following conditions holds:

(1) t = min(Bi), |Bi| > 1, and t 6= min(Bj),

(2) t = min(Bj), |Bj| > 1, and t 6= min(Bi).
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The linear representation of a linked partition was defined by Chen, Wu and Yan [4].
For a linked partition P of [n], list the n vertices 1, 2, . . . , n in increasing order on a
horizontal line. For a block Bi = {a1, a2, . . . , am} with m ≥ 2 and a1 < a2 < · · · < am,
draw an arc from a1 to aj for j = 2, . . . ,m. For example, the linear representation of
the linked partition {{1, 3, 5}, {2, 6, 10}, {4}, {5, 8, 9}, {6, 7}} is illustrated in Figure 1.1.
By definition, it is easily checked that the linear representation of a linked partition of

1 2 3 4 5 6 7 8 9 10

Figure 1.1: The linear representation of a linked partition.

[n] can be characterized as a simple graph on [n] such that for each vertex i there is at
most one vertex j such that 1 ≤ j < i and j is connected to i.

The crossing number and the nesting number of a linked partition P are defined based
on k-crossings and k-nestings in the linear representation of P , where k is a positive
integer. We use a pair (i, j) with i < j to denote an arc in the linear representation
of P , and we call i and j the left-hand endpoint and the right-hand endpoint of (i, j),
respectively. We say that k arcs (i1, j1),(i2, j2),. . .,(ik, jk) of P form a k-crossing if

i1 < i2 < · · · < ik < j1 < j2 < · · · < jk.

Similarly, we say that (i1, j1),(i2, j2),. . .,(ik, jk) form a k-nesting if

i1 < i2 < · · · < ik < jk < · · · < j2 < j1.

The crossing number cr(P ) of P is defined as the maximal number k such that P has
a k-crossing, and the nesting number ne(P ) of P is the maximal number k such that P
has a k-nesting. For example, for the linked partition in Figure 1.1, we have cr(P ) = 2
and ne(P ) = 3. The distributions of the crossing number and the nesting number over
graphs as well as over fillings of diagrams have been studied in [5, 9, 10].

de Mier [6] posed a conjecture on the equidistribution of the crossing number and
the nesting number over simple graphs on [n] such that for each vertex i there is at most
one vertex j such that 1 ≤ j < i and j is connected to i. Equivalently, we can state this
conjecture in terms of linked partitions.

Conjecture 1.1 For any positive integers i and j, the number of linked partitions P of
[n] with cr(P ) = i and ne(P ) = j equals the number of linked partitions P of [n] with
cr(P ) = j and ne(P ) = i.

Kim [8] conjectured that Conjecture 1.1 also holds when restricted to the set of
partitions of [n]. A partition of [n] is a collection of mutually disjoint nonempty subsets
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whose union is [n]. Clearly, a partition of [n] is a special linked partition of [n] such that
any two distinct blocks are disjoint. For a partition P , the linear representation of P is
also called the front representation of P by Kim [8].

For example, Figure 1.2 is the front representation of the partition

{{1, 3, 5, 8}, {2, 6, 9}, {4}, {7, 10}}. (1.1)

1 2 3 4 5 6 7 8 9 10

Figure 1.2: The front representation of a partition of [10].

Conjecture 1.2 For any positive integers i and j, the number of front representations
of partitions P of [n] with cr(P ) = i and ne(P ) = j equals the number of front represen-
tations of partitions P of [n] with cr(P ) = j and ne(P ) = i.

It should be noted that there is another representation of a partition. For a partition
P of [n], Chen, Deng, Du, Stanley and Yan [3] defined the standard representation of P
as a graph with vertices 1, 2, . . . , n drawn from left to right such that there is an edge
between i and j if i and j are consecutive elements in the same block. For example, Figure
1.3 is the standard representation of the partition given in (1.1). By introducing the

1 2 3 4 5 6 7 8 9 10

Figure 1.3: The standard representation of a partition of [10].

structure of vacillating tableaux, they established a correspondence between vacillating
tableaux and the standard representations of partitions, which implies that the crossing
number and the nesting number have a symmetric joint distribution over the standard
representations of partitions of [n].

This paper is organized as follows. In Section 2, we recall the notion of a rook strip,
and give the definition of a vacillating Hecke tableau. In Section 3, we give an overview
of the Hecke algorithm and obtain a property of this algorithm. Section 4 provides a
bijection between vacillating Hecke tableaux and linked partitions based on the Hecke
algorithm. Moreover, we show that the crossing number and the nesting number of a
linked partition are equal to the maximal number of rows and the maximal number of
columns of diagrams in the corresponding vacillating Hecke tableau. As consequences,
Conjecture 1.1 and Conjecture 1.2 are confirmed.
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2 Vacillating Hecke Tableaux

In this section, we give the definition of a vacillating Hecke tableau. Let λ = (λ1, λ2, . . . , λ`)
be a partition of a positive integer n, that is, λ1 ≥ λ2 ≥ · · · ≥ λ` > 0 and λ1 + λ2 +
· · · + λ` = n. A Young diagram of shape λ is a left-justified array of squares with λi
squares in row i. By a Hecke diagram we mean a Young diagram possibly with a marked
corner. The shape of a Hecke diagram is referred to as the shape of the underlying
Young diagram. For example, Figure 2.1 gives four Hecke diagrams of shape (4, 4, 2, 1),
where we use a bullet to indicate a marked corner. We call a Hecke diagram an ordinary

•
•

•

Figure 2.1: Hecke diagrams with underlying Young diagram (4, 4, 2, 1).

diagram if it does not have a marked corner, and a marked diagram if it has a marked
corner. When λ is a marked diagram with a marked corner c, we also write λ as a pair
(µ, c), where µ is the underlying Young diagram of λ.

To define a vacillating Hecke tableau, we need the notion of a rook strip which
was introduced by Buch [1] in the study of the Littlewood-Richardson rule for stable
Grothendieck polynomials. For two Young diagrams λ and µ such that µ is contained in
λ, the skew diagram λ/µ is the collection of squares of λ that are outside µ. A rook strip
is a skew diagram with at most one square in each row and each column. For example,
in Figure 2.2, the skew diagram (a) is a rook strip, but (b) is not a rook strip.

(a) (b)

Figure 2.2: Examples of skew diagrams.

A vacillating Hecke tableau of empty shape and length 2n is defined to be a sequence
(λ0, λ1, . . . , λ2n) of Hecke diagrams such that

(i) λ0 = λ2n = ∅, and for 1 ≤ i ≤ n, λ2i−1 is an ordinary diagram;

(ii) If λ2i is an ordinary diagram, then λ2i−1 is an ordinary diagram contained in λ2i

such that λ2i−1 = λ2i or λ2i/λ2i−1 is a rook strip, and λ2i+1 is an ordinary diagram
contained in λ2i such that λ2i+1 = λ2i or λ2i/λ2i+1 is a square;
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If λ2i = (µ, c) is a marked diagram, then λ2i−1 is an ordinary diagram contained in
µ such that λ2i−1 = µ or µ/λ2i−1 is a rook strip, and λ2i+1 = µ.

As an example, Figure 2.3 illustrates a vacillating Hecke tableau of empty shape and
length 14.

∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

••
•

Figure 2.3: A vacillating Hecke tableau of empty shape and length 14.

Notice that a vacillating Hecke tableau reduces to a vacillating tableau defined in [3]
if it does not contain any marked corner and each rook strip is a single square.

3 The Hecke insertion algorithm

In this section, we give an overview of the Hecke insertion algorithm developed by Buch,
Kresch, Shimozono, Tamvakis and Yong [2] and a property of this algorithm proved by
Thomas and Yong [12]. We also observe a property that will be used in the proof of the
main theorem of this paper.

The Hecke algorithm is a procedure to insert a positive integer into an increasing
tableau, resulting in a new increasing tableau. Let λ be a partition. By λ we also denote
the Young diagram of shape λ. An increasing tableau T of shape λ is an assignment
of positive integers to the squares of λ such that the numbers are strictly increasing in
each row and each column. Suppose that U is the tableau obtained from T by inserting
a positive integer x. Then U is either of the same shape as T or it has an extra square
compared with T . In the case when U has the same shape as T , it also contains a
special corner where the algorithm terminates and this corner needs to be recorded. A
parameter α ∈ {0, 1} is used to distinguish these two cases. Thus the output of the
Hecke algorithm when applied to T is a triple (U, c, α), where c is a corner of U .

The Hecke algorithm can be described as follows. Assume that T is an increasing
tableau and x is a positive integer. To insert x into T , we begin with the first row of T .
Roughly speaking, an element in this row may be bumped out and then inserted into
the next row. The process is repeated until no more elements are bumped out. More
precisely, let R be the first row of T . We have the following two cases.

Case 1: The integer x is larger than or equal to all entries in R. If adding x as a new
square to the end of R results in an increasing tableau, then U is the resulting tableau,
c is the corner where x is added. We set α = 1 to signify that the corner c is outside the
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shape of T , and the process terminates. As will be seen, although the corner c in the
shape of U is easily recognized in comparison with the shape of T , it is necessary to keep
a record of this case by setting α = 1 to make the construction reversible. If adding x as
a new square to the end of R does not result in an increasing tableau, then let U = T ,
and c be the corner at the bottom of the column of U containing the rightmost square
of R. In this case, we set α = 0 to indicate that the corner c is inside the shape of T ,
and the process terminates.

Case 2: The integer x is strictly smaller than some element in R. Let y be the leftmost
entry in R that is strictly larger than x. If replacing y by x results in an increasing
tableau, then y is bumped out by x and y will be inserted into the next row. If replacing
y by x does not result in an increasing tableau, then keep the row R unchanged and the
element y will also be inserted into the next row.

We iterate the above process to insert the element y into the next row, still denoted
by R. Finally, we get the output (U, c, α) of the insertion algorithm, and we write

U = (T
H←− x) and (U, c, α) = H(T, x).

We give two examples to demonstrate the two cases α = 0 and α = 1 of the insertion
algorithm. Let T be an increasing tableau of shape (4, 3, 2, 2) as given in Figure 3.1. Let

1 2 3 4
2 3 5
4 5
5 7

T =

Figure 3.1: An increasing tableau of shape (4, 3, 2, 2).

x = 1. The process to insert x into T is illustrated in Figure 3.2, where an element in
boldface represents the entry that is bumped out and is to be inserted into the next row.
We see that the resulting tableau U has one more square than T , and so we have α = 1.

For x = 3, we find that the resulting tableau U has the same shape as T , and so we
have α = 0, see Figure 3.3.

The Hecke algorithm is reversible [2]. In other words, given an increasing tableau
U , a corner c of U , and the value of α, there exist a unique increasing tableau T and a

unique positive integer x such that U = (T
H←− x).

Thomas and Yong [12] showed that the Hecke algorithm can be used to determine the
length of the longest strictly increasing and the length of the longest strictly decreasing
subsequences of a word. Let w = w1w2 · · ·wn be a word of positive integers. A subword
of w = w1w2 · · ·wn is a subsequence wi1wi2 · · ·wik , where 1 ≤ i1 < i2 < · · · < ik ≤ n.
A subword wi1wi2 · · ·wik is said to be strictly increasing if wi1 < wi2 < · · · < wik , and
strictly decreasing if wi1 > wi2 > · · · > wik . Let is(w) (resp., de(w)) denote the length
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1 3 4
2 3 5
4 5
5 7

T =

←12
−→

1 2 3 4
2 5
4 5
5 7

←23 −→
1 2 3 4
2 3 5

5
5 7

←34

1 2 3 4
2 3 5
3 5

7

−→

←45

−→

1 2 3 4
2 3 5
3 5
4 7
5

= U

c, α = 1

Figure 3.2: An example of the Hecke insertion algorithm for α = 1.

1 2 3
2 3 5
4 5
5 7

T =

←34
−→

1 2 3 4
2 3
4 5
5 7

←45 −→
1 2 3 4
2 3 4
4 5
5 7

←5

1 2 3 4
2 3 4
4 5
5 7

−→ = U

c, α = 0

Figure 3.3: An example of the Hecke insertion algorithm for α = 0.

of the longest strictly increasing (resp., strictly decreasing) subwords of w. As shown by
Thomas and Yong, is(w) and de(w) are determined by the insertion tableau of w. The
insertion tableau of w is defined by

(· · · ((∅ H←− w1)
H←− w2)

H←− · · · ) H←− wn.

For example, let w = 21131321. The construction of the insertion tableau of w is
given in Figure 3.4.

∅→ 2 → 1
2
→ 1

2
→ 1 3

2
→ 1 3

2
→ 1 3

2
→ 1 2

2 3
→ 1 2

2 3
3

Figure 3.4: The insertion tableau of w = 21131321.

For an increasing tableau T , let c(T ) and r(T ) denote the number of columns and
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the number of rows of T , respectively. Using the jeu de taquin algorithm for increasing
tableaux developed in [11], Thomas and Yong [12] established the following relation.

Theorem 3.1 Let w be a word of positive integers, and T be the insertion tableau of w.
Then is(w) = c(T ) and de(w) = r(T ).

The following theorem gives a property of the insertion tableau.

Theorem 3.2 Let w = w1w2 · · ·wn be a word of positive integers, and k be the maximal
element appearing in w. Let w′ = a1a2 · · · am be the word obtained from w by deleting the
elements equal to k. Assume that T is the insertion tableau of w and T ′ is the insertion
tableau of w′. Then T ′ can be obtained from T by deleting the squares occupied with k.

Proof. Let Q denote the increasing tableau obtained from T by deleting the squares
occupied with the maximal element k. We use induction to prove that T ′ = Q. The
claim is obvious when n = 1. We now assume that n > 1 and that the claim holds for
n− 1. Let P be the insertion tableau of w1w2 · · ·wn−1. Here are two cases.

Case 1: wn = k. By the induction hypothesis, T ′ is obtained from P by deleting the
squares occupied with k. On the other hand, since wn = k is the maximal element of w,
we see that T = P or T is obtained from P by adding a square filled with k at the end
of the first row. This yields that T ′ = Q.

Case 2: wn < k. Let U be the insertion tableau of a1 · · · am−1. By the induction
hypothesis, U is obtained from P by deleting the squares occupied with k. In the
process of inserting wn into P , if no entry equal to k is bumped out and is inserted into
the next row, then it is clear that T ′ = Q.

Otherwise, there is a unique entry k in P that is bumped out and is inserted into the
next row. Let c be the square of P occupied with this entry. Note that c is a corner of
P since P is increasing and k is a maximal entry. Keep in mind that U is obtained from

P by deleting the squares occupied with k. Since T = (P
H←− wn) and T ′ = (U

H←− wn),
for any square C in U , the entry of T ′ in C equals the entry of T in C. Consequently,
to verify T ′ = Q, it suffices to consider the entry of T in the corner c. Assume that this
entry is equal to i. Here are two subcases.

Case 2.1: i = k. In this case, T ′ has the same shape as U . On the other hand, any
square of T outside U is occupied with k. So we have T ′ = Q.

Case 2.2: i < k. In this case, T ′ has the extra corner c compared with U . By the
construction of the Hecke algorithm, we see that the entry of T ′ in the corner c also
equals i. Notice also that except for the corner c, any square of T outside U is occupied
with k. So we are led to the assertion T ′ = Q. This completes the proof.

For example, let w = 21131321. Then we have w′ = 211121. The insertion tableau
T of w is given in Figure 3.4. Meanwhile, the insertion tableau T ′ of w′ is constructed
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in Figure 3.5, which coincides with the tableau obtained from T by deleting the squares
occupied with 3.

∅→ 2 → 1
2
→ 1

2
→ 1

2
→ 1 2

2
→ 1 2

2

Figure 3.5: The insertion tableau of w′ = 211121.

4 Vacillating Hecke tableaux and linked partitions

In this section, we provide a bijection between vacillating Hecke tableaux and linked
partitions. We prove that the crossing number and the nesting number of a linked
partition are equal to the maximal number of rows and the maximal number of columns
of diagrams in the corresponding vacillating Hecke tableau. As a consequence, we show
that the crossing number and the nesting number have a symmetric joint distribution over
linked partitions with fixed left-hand endpoints and right-hand endpoints. This leads
to a proof of Conjecture 1.1. Specializing the bijection to linked partitions containing
no vertex that is both a left-hand endpoint and a right-hand endpoint, we confirm
Conjecture 1.2.

To describe the bijection, by a Hecke tableau we mean an increasing tableau possibly
with a marked corner. In other words, a Hecke tableau can be viewed as an increasing
tableau whose shape is a Hecke diagram. Let λ be a Hecke diagram, and let T be a
Hecke tableau of shape λ. When λ = (µ, c) is a marked diagram, we also express T by
a pair (T ′, c), where T ′ is the underlying increasing tableau of T .

Let V2n be the set of vacillating Hecke tableaux of empty shape and length 2n. We
now give a description of a bijection φ from V2n to the set of linked partitions of [n].

Let V = (λ0, λ1, . . . , λ2n) be a vacillating Hecke tableau of empty shape and length
2n. First, we recursively define a sequence (E0, T0), (E1, T1), . . . , (E2n, T2n), where for
0 ≤ i ≤ 2n, Ei is a set of edges and Ti is a Hecke tableau of shape λi. Let E0 = ∅,
and let T0 be the empty tableau. Assume that i ≥ 1. If λi = λi−1, then we let
(Ei, Ti) = (Ei−1, Ti−1). If λi 6= λi−1, then (Ei, Ti) is constructed according to the parity
of i.

Case 1: i is odd. Let i = 2k− 1. By the definition of a vacillating Hecke tableau, λi is a
diagram without any marked corner. Here are two subcases according to whether λi−1

is an ordinary diagram.

Case 1.1: λi−1 is an ordinary diagram. Then λi is obtained from λi−1 by deleting a corner
c. Setting α = 1, there are a unique increasing tableau T and a unique positive integer
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j such that (Ti−1, c, α) = H(T, j). Let Ti = T and define Ei to be the set obtained from
Ei−1 by adding the edge (j, k).

Case 1.2: λi−1 = (µ, c) is a marked diagram. So we have λi = µ. Setting α = 0, there
are a unique increasing tableau T and a unique positive integer j such that (Ti−1, c, α) =
H(T, j). Let Ti = T and define Ei to be the set obtained from Ei−1 by adding the edge
(j, k).

Case 2: i is even. Let i = 2k. We set Ei = Ei−1. To define Ti, there are two subcases
according to whether λi is an ordinary diagram.

Case 2.1: λi is an ordinary diagram. Then λi/λi−1 is a rook strip. Define Ti to be the
tableau obtained from Ti−1 by filling the squares of λi/λi−1 with k.

Case 2.2: λi = (µ, c) is a marked diagram. Then µ/λi−1 is a rook strip. Let T be the
tableau of shape µ that is obtained from Ti−1 by filling the squares of µ/λi−1 with k.
Define Ti = (T, c).

Finally, we define φ(V ) to be the diagram with n vertices 1, 2, . . . , n listed on a
horizontal line such that there is an arc connecting j and k with j < k if and only if
(j, k) is an edge in E2n. By the above construction, for each vertex k ∈ [n], there is at
most one vertex j with j < k such that (j, k) is an arc in φ(V ). Thus φ(V ) is a linked
partition of [n].

Figure 4.1 gives an illustration of the map φ when applied to the vacillating Hecke
tableau in Figure 2.3, where an entry in boldface indicates a marked corner of a Hecke
tableau.

∅ ∅ 1 1 2 1 2
2

1 2
2

1
2

1 1
2

1
2

2 2 ∅ ∅
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2 2

1 2 3 4 5 6 7

Figure 4.1: An illustration of the bijection φ.

It can be checked that φ is reversible, and hence it is a bijection. Let P be a linked
partition of [n]. To recover the corresponding vacillating Hecke tableau, we first construct
a sequence (T0, T1, ..., T2n) of Hecke tableaux. Let T2n be the empty tableau. Suppose
that T2i has been constructed, where 1 ≤ i ≤ n. We proceed to construct T2i−1 and
T2i−2. To obtain T2i−1, we assume that T is the underlying increasing tableau of T2i. Let
T2i−1 be the tableau obtained from T by deleting the squares (if any) filled with i.

Next we construct the Hecke tableau T2i−2. If i is not a right-hand endpoint of any

11



arc of P , then we set T2i−2 = T2i−1. Otherwise, there is a unique arc (j, i) with j < i of
P . Assume that (U, c, α) = H(T2i−1, j). We set T2i−2 = U if α = 1, and set T2i−2 = (U, c)
if α = 0.

Let λi be the shape of Ti. Finally, the vacillating Hecke tableau φ−1(P ) is given by

(∅ = λ0, λ1, . . . , λ2n = ∅).

The following theorem shows that the crossing number and the nesting number of a
linked partition are determined by the diagrams in the corresponding vacillating Hecke
tableau. For a vacillating Hecke tableau V , let r(V ) be the greatest number of rows
in any diagram λi of V . Similarly, let c(V ) be the greatest number of columns in any
diagram λi of V . We have the following relations.

Theorem 4.1 Let V be a vacillating Hecke tableau in V2n, and let P = φ(V ). Then we
have c(V ) = ne(P ) and r(V ) = cr(P ).

Proof. Let V = (λ0, λ1, . . . , λ2n), and let (T0, T1, . . . , T2n) be the sequence of Hecke
tableaux in the construction of φ. For 0 ≤ i ≤ 2n, let Ui be the underlying increasing
tableau of Ti. We shall generate a sequence (w(0), w(1), . . . , w(2n)) of words such that Ui

is the insertion tableau of w(i).

Let w(2n) be the empty word. Suppose that w(i) has been constructed. Then w(i−1)

is constructed as follows. If Ti−1 = Ti, then we let w(i−1) = w(i). If Ti−1 6= Ti, we have
two cases.

Case 1: i is odd. Let i = 2k − 1. By the construction of φ, we see that Ui−1 is obtained
from Ui by inserting a unique integer j. Define w(i−1) = w(i) j.

Case 2: i is even. Let i = 2k. Again, by the construction of φ, we find that Ui−1 is
obtained from Ui by deleting the squares (if any) filled with k. Define w(i−1) to be the
word obtained from w(i) by removing the elements (if any) equal to k.

We proceed by induction to show that Ui is the insertion tableau of w(i). The claim
is obvious for i = 2n. Assume that the claim is true for i, where 1 ≤ i ≤ 2n. We wish
to prove that it holds for i − 1. If Ti−1 = Ti, then the claim is evident. Let us now
consider the case when Ti−1 6= Ti. If w(i−1) is generated according to Case 1, then the
claim follows directly from the construction of φ. If w(i−1) is generated according to Case
2, then the claim is a consequence of Theorem 3.2. This proves the claim.

Combining the above claim and Theorem 3.1, we obtain that

c(V ) = max
{

is(w(i)) | 0 ≤ i ≤ 2n
}

and
r(V ) = max

{
de(w(i)) | 0 ≤ i ≤ 2n

}
.
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It remains to show that P has a k-crossing (resp., k-nesting) if and only if there exists
a word w(i) that contains a strictly decreasing (resp., increasing) subword of length k.
We shall only give the proof of the statement concerning the relationship between a
k-crossing and a strictly decreasing subword of length k. The same argument applies
to the k-nesting case. Suppose that w(i) = a1a2 · · · at contains a strictly decreasing
subsequence ai1 · · · aik of length k, where 1 ≤ i1 < · · · < ik ≤ t. By the construction of φ
and the construction of the sequence (w(0), w(1), . . . , w(2n)), we deduce that the vertices
ai1 , . . . , aik are left-hand endpoints of P . For 1 ≤ s ≤ k, let bjs be the right-hand
endpoint connected to ais . Again, by the construction of (w(0), w(1), . . . , w(2n)), we see
that

bj1 > bj2 > · · · > bjk . (4.1)

Hence the arcs (ai1 , bj1), . . . , (aik , bjk) form a k-crossing of P .

On the other hand, suppose that P has a k-crossing consisting of arcs

(i1, j1), (i2, j2), . . . , (ik, jk),

where i1 < i2 < · · · < ik < j1 < j2 < · · · < jk. By the construction of the sequence
(w(0), w(1), . . . , w(2n)), it is easily checked that i1i2 · · · ik forms a strictly decreasing sub-
word of w(2j1−1). This completes the proof.

Conjecture 1.1 and Conjecture 1.2 are consequences of the correspondence φ and
Theorem 4.1. In fact, based on the construction of φ and Theorem 4.1 we can deduce
a symmetric distribution property of the crossing number and the nesting number over
linked partitions with fixed sets of left-hand endpoints and right-hand endpoints. For
two subsets S and T of [n], let Ln(S, T ) be the set of linked partitions of [n] such that
S is the set of left-hand endpoints and T is the set of right-hand endpoints. Note that
Ln(S, T ) may be empty.

Let fn,S,T (i, j) be the number of linked partitions P in Ln(S, T ) with cr(P ) = i and
ne(P ) = j. We have the following symmetry property.

Theorem 4.2 Let S and T be two subsets of [n]. For any positive integers i and j, we
have

fn,S,T (i, j) = fn,S,T (j, i).

To prove Theorem 4.2, we establish an involution on the set Ln(S, T ) that exchanges
the crossing number and the nesting number of a linked partition.

Proof of Theorem 4.2. Define the conjugate of a Hecke diagram as the transpose of the
diagram. Taking the conjugate of every Hecke diagram leads to an involution on the set
of vacillating Hecke tableaux (λ0, λ1, . . . , λ2n) of empty shape and length 2n. This yields
an involution, denoted ψ, on the set of linked partitions of [n]. By Theorem 4.1, we find
that ψ exchanges the crossing number and the nesting number of a linked partition.
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It remains to show that ψ preserves the left-hand endpoints and the right-hand
endpoints of a linked partition. Let P be a linked partition of [n], and let (λ0, λ1, . . . , λ2n)
be the corresponding vacillating Hecke tableau. By the construction of φ, we observe
that a vertex i of P is a left-hand endpoint if and only if λ2i has at least one more
square than λ2i−1, and it is a right-hand endpoint if and only if λ2i−2 6= λ2i−1. Hence
the involution ψ preserves the left-hand and the right-hand endpoints. Restricting ψ to
Ln(S, T ) gives an involution on Ln(S, T ). This completes the proof.

Here is an example for the involution ψ. Let P be the linked partition given in Figure
4.1. Then ψ(P ) is the linked partition in Figure 4.2.

1 2 3 4 5 6 7

Figure 4.2: An example for the involution ψ.

To conclude, we note that Conjecture 1.1 follows from Theorem 4.2. Theorem 4.2
also implies Conjecture 1.2. Let P be a linked partition of [n], and let S and T be the
sets of left-hand endpoints and right-hand endpoints of P , respectively. It can be seen
that P is the front representation of a partition of [n] if and only if S∩T = ∅. Hence the
set of front representations of partitions of [n] is the disjoint union of Ln(S, T ), where
(S, T ) ranges over pairs of disjoint subsets of [n]. For any two subsets S and T of [n]
with S ∩ T = ∅, we can apply Theorem 4.2 to deduce that the crossing number and the
nesting number have a symmetric joint distribution over Ln(S, T ). Thus we have proved
Conjecture 1.2.
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[10] S. Poznanović and C.H. Yan, Maximal increasing sequences in fillings of almost-
moon polyominoes, Adv. Appl. Math. 66 (2015), 1–21.

[11] H. Thomas and A. Yong, A jeu de taquin theory for increasing tableaux, with
applications to K-theoretic Schubert calculus, Algebra Number Theory 3 (2009),
121–148.

[12] H. Thomas and A. Yong, Longest increasing subsequences, Plancherel-type mea-
sure and the Hecke insertion algorithm, Adv. Appl. Math. 46 (2011), 610–642.

15


	Introduction
	Vacillating Hecke Tableaux
	The Hecke insertion algorithm
	Vacillating Hecke tableaux and linked partitions

