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Abstract. A new harmonic analysis technique by using the Littlewood–Paley dyadic de-
composition is developed for constructing low-regularity integrators for the one-dimensional
cubic nonlinear Schrödinger equation in a bounded domain under the Neumann bound-
ary condition, when the frequency analysis based on the Fourier series cannot be used. In
particular, a low-regularity integrator is constructively designed through the consistency
analysis by the Littlewood–Paley decomposition of the solution, in order to have almost
first-order convergence (up to a logarithmic factor) in the L2 norm for H1 initial data.
A spectral method in space, using fast Fourier transform with O(N lnN) operations at
every time level, is constructed without requiring any CFL condition, where N is the
degrees of freedom in the spatial discretization. The proposed fully discrete method is
proved to have an L2-norm error bound of O(τ [ln(1/τ)]2 + N−1) for H1 initial data,
where τ is the time stepsize.

1. Introduction

Classical time discretization methods for the nonlinear Schrödinger (NLS) equation typi-
cally requires the initial data to be in Hγ+2m in order to have mth-order convergence in Hγ

(for sufficiently large γ > 0), where Hγ+2m denotes the conventional Sobolev space and m is a
positive integer. This requirement is optimal for the Strang splitting methods [5, 18], the Lie
splitting method [9], and classical exponential integrators [7]. The finite difference methods
generally require more regularity of the initial data, i.e., one temporal derivative on the solution
generally requires the initial data to have two spatial derivatives to satisfy certain compatibility
conditions; see [24,26].

Recently, a low-regularity type exponential integrator was introduced in [8, 21] to reduce
the regularity requirement in solving nonlinear dispersive equations under periodic boundary
conditions. For γ > d

2 , where d denotes the dimension of space, such low-regularity integrators

can have first-order convergence in Hγ for initial data in Hγ+1. In one dimension, a low-
regularity integrator was proposed in [27] with first-order convergence in Hγ for initial data
in Hγ when γ > 3

2 . These results imply that it is possible to develop first-order convergent

numerical methods when the regularity of the solution is strictly below H2. A second-order
low-regularity integrator for the NLS equation was constructed in [10], which requires the initial
data to be in Hγ+2 and Hγ+3, γ > d

2 when d = 1 and d ≥ 2, respectively.
The techniques were also used in developing low-regularity integrators for other nonlinear

dispersive equations, including the nonlinear Dirac equations and the KdV equations; see [16,
21,22,25,28,29]. Lower-order convergence of the numerical solution when the regularity of the
solution is below H1 was analyzed by using the discrete Bourgain spaces introduced in [20]. A
fully discrete low-regularity integrator for the NLS equation with a Fourier spectral method in
space was constructed in [15], with computational cost O(N lnN) at every time level and has
first-order convergence (up to a logarithmic factor) in both time and space for H1 initial data,
where N is the degree of freedom in the spatial discretization. All these results require periodic
boundary conditions, as the numerical methods were constructed by using the twisted-variable
techniques based on the Fourier series expansion of the solution in the Duhamel formula.
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Under general boundary conditions (including periodic, Dirichlet and Neumann boundary
conditions), a general framework of low-regularity integrators was introduced in [23] based on the
semigroup techniques without using Fourier series expansion of the solution. In one dimension,
it is shown that the numerical solution of the NLS equation can have first-order convergence

when the initial data is in H
5
4 . Generalisations of these schemes have been completed in recent

works by using combinatorial objects that are decorated trees for writing low regularity schemes
for a large class of PDEs; see [2, 3]. Under the Dirichlet or Neumann boundary condition, the
following results still remain open:

• The construction of a first-order low-regularity integrator which only requires the initial
data to be in H1;

• The extension to fully discrete low-regularity integrators under the same regularity re-
quirement.

Note that the harmonic analysis techniques in [15] is on the frequency domain and therefore
significantly relies on the following property of the eigenfunctions of periodic Laplacian:

eik1xeik2x = ei(k1+k2)x for k1, k2 ∈ N,
while this property does not hold for the eigenfunctions of the Neumann Laplacian, i.e.,

cos(k1x) cos(k2x) 6= cos[(k1 + k2)x] for k1, k2 ≥ 1.

As a result, the frequency analysis techniques in [15] can not be used under the Neumann
boundary condition.

The objective of this article is to fill in this gap for the one-dimensional NLS equation under
the Neumann boundary condition, by constructing a fully discrete low-regularity integrator
which has computational cost O(N lnN) at every time level and first-order convergence (up
to a logarithmic factor) in both time and space for H1 initial data. We shall construct and
analyze a new method by developing new harmonic analysis techniques on the physical domain,
utilizing the Littlewood–Paley dyadic decomposition of the solution. More specifically, in the
variation-of-constants formula

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0
ei(τ−s)∂

2
x [|u(tn + s)|2u(tn + s)]ds,

we approximate the function u(tn + s) by eis∂
2
xu(tn) as usual and therefore obtain the following

expression of the solution:

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0
ei(τ−s)∂

2
x [e−is∂

2
x ū(tn)eis∂

2
xu(tn)eis∂

2
xu(tn)]ds+Rn1 .

The remainder Rn1 can be estimated as usual, with ‖Rn1‖H1 ≤ Cτ2‖u‖5L∞(0,T ;H1). This is

the same as starting stage in the construction of the low-regularity integrators in [2, 15, 23].
The main idea of this article is to rewrite the above formula into the following form:

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0
Bn(s, u(tn))ds+Rn1

with

Bn(s, u(tn)) = ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
xv(s)

]
and v(s) = e−is∂

2
x
(
eis∂

2
xu(tn)

)2
,

and then decompose Bn(s, u(tn)) into the following three parts:

Bn(s, u(tn)) =Bn
1 (s, u(tn)) + eiτ∂

2
xBn

2 (s, u(tn)) + rn2 (s)

with

Bn
1 (s, u(tn)) = ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
;

Bn
2 (s, u(tn)) = ū(tn) (v(s)− v(0))

rn2 (s) = ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(v(s)− v(0))

]
− eiτ∂2x

[
ū(tn)(v(s)− v(0))

]
,

where rn2 (s) is a remainder to be dropped in the numerical scheme. In this decomposition,
Bn

1 (s, u(tn)) is an approximation of Bn(s, u(tn)) by the commutator technique in [23], i.e., ap-

proximating v(s) = e−is∂
2
x
(
eis∂

2
xu(tn)

)2
by v(0) in the expression ofBn(s, u(tn)) yieldsBn

1 (s, u(tn))
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with the remainder

ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(v(s)− v(0))

]
.

We further approximate this remainder by eiτ∂
2
xBn

2 (s, u(tn)). This leads to the new remainder
Rn2 =

∫ τ
0 r

n
2 (s)ds. This further approximation, as well as the discovery of the closed forms of∫ τ

0
Bn

1 (s, u(tn))ds and

∫ τ

0
Bn

2 (s, u(tn))ds, (1.1)

is inspired by the frequency analysis in [15]. The resulting remainder Rn2 =
∫ τ

0 r
n
2 (s)ds can be

estimated by distributing the derivatives more equally to the functions in the product through
the analysis using the Littlewood-Paley decomposition. The technical parts of this article are
the derivation of the closed forms for the two integrals in (1.1), the error analysis for the time
discretization by the Littlewood-Paley decomposition, as well as the construction and analysis
of the spatial discretization with rigorous error estimates.

The construction of the low-regularity integrators in [2, 23] treat general nonlinearities by
using the fundamental theorem of calculus and by exploring the cancellation of the highest-order
derivative using commutators, while the low-regularity integrator constructed in this article is
constructively designed based on more detailed analysis of a specific form of nonlinearities, such
as the cubic nonlinearity in the NLS equation, by combining the commutator approach in [23]
and the frequency analysis in [15] (as mentioned above), as well as the error analysis using the
Littlewood–Paley decomposition. As a result, the scheme constructed in this article can further
weaken the regularity condition for a specific form of nonlinearity, while the schemes in [2, 23]
work well for more general nonlinearities.

In the construction of spatial discretization, several techniques are introduced to resolve
the incompatibility between the low-regularity integrator and the Neumann boundary condition.
These techniques can also be used for the construction of spatial discretization methods for other
low-regularity integrators under the Neumann boundary condition.

The rest of this article is organised as follows. The fully discrete low-regularity integrator
and the main theorem are presented in Section 2. The construction of the time discretization
method and the analysis of its consistency error are presented in Section 4. The construction
of the spatial discretization method and the analysis of its consistency error are presented in
section Section 5. The stability and error analysis for the fully discrete method are presented in
Section 6. Numerical results are provided in Section 7 to support the theoretical analysis and
to illustrate the performance of the proposed numerical method.

2. The main results

Let Hs, s ∈ R, be the conventional Sobolev space of functions on the domain Ω = (0, π).
We consider the one-dimensional cubic NLS equation

i∂tu(t, x) + ∂2
xu(t, x) = λ|u(t, x)|2u(t, x) for x ∈ Ω and t ∈ (0, T ],

∂xu(t, x) = 0 for x ∈ ∂Ω and t ∈ (0, T ],

u(0, x) = u0(x) for x ∈ Ω,

(2.1)

on the bounded domain Ω, where λ = −1 and 1 correspond to the focusing and defocusing
cases, respectively.

Let SN and CN be the finite-dimensional subspaces of L2(Ω) defined by

SN =
{
f ∈ L2 : f =

N∑
k=1

f̂k sin(kx)
}

and CN =
{
f ∈ L2 : f =

N∑
k=0

f̂k cos(kx)
}
,

and denote by ∂−2
x the inverse of the Neumann Laplacian in the sense of Fourier cosine multiplier

on Ω. For any f =
∑N

k=0 f̂k cos(kx), with the Fourier cosine coefficients f̂k, k = 0, . . . , N , stored
in the computer, one can easily compute the Fourier cosine coefficients of ∂−2

x f ∈ CN and
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eis∂
2
xf ∈ CN by

∂−2
x f := −

N∑
k=1

k−2f̂k cos(kx) and eis∂
2
xf :=

N∑
k=0

e−isk
2
f̂k cos(kx) (2.2)

and the Fourier sine coefficients of ∂xf ∈ SN by

∂xf = −
N∑
k=1

kf̂k sin(kx). (2.3)

If f, g ∈ SN then the fg ∈ C2N ∩H1
0 . And if f, g ∈ CN then the fg ∈ C2N .

Let IN : H1 → CN be the trigonometric cosine interpolation operator, i.e., INf is obtained
by first extending f to be an even function on the torus [−π, π] and then applying the standard
(2N + 1)-term trigonometric interpolation on the torus; see [15, eq. (2.5)]. The trigonometric
interpolation of the even function would yield a cosine series which, restricted to Ω = (0, π),
is the function INf . To be more precise, given f ∈ H1(0, π), we denote its even extension as

f̃ ∈ {u ∈ H1(−π, π) : u(−π) = u(π)} ∼= H1(T). Then IN : H1(0, π)→ CN is defined as

INf(x) :=
N∑

k=−N
eikxf̃k for f̃k =

1

2N + 1

N∑
n=−N

e−ikxn f̃(xn)

where

xn =
2πn

2N + 1
for n = −N, ..., N.

Since f̃ is an even function, we have f̃k = f̃−k, and this leads to INf ∈ CN . Furthermore we
define the averaging operator

Sf :=
1

π

∫
Ω
f(x)dx (2.4)

and the projection operator

ΠNf :=

N∑
k=0

f̂k cos(kx) for f =

∞∑
k=0

f̂k cos(kx).

Let tn = nτ , n = 0, 1, . . . , L, be a sequence of time levels with stepsize τ and L = [T/τ ].
The fully discrete low-regularity integrator for (2.1) constructed in this paper is defined as
follows: Let u0

N = INu
0, and for given unN ∈ CN compute un+1

N ∈ CN by

un+1
N = eiτ∂

2
xunN + ÂN1 (τ, unN )− ÂN1 (0, unN ) + eiτ∂

2
xÂN2 (τ, unN )− eiτ∂2xÂN2 (0, unN ), (2.5)

where

ÂN1 (s, unN ) =
1

2
λei(τ−s)∂

2
xΠN∂

−2
x ∂x

[
∂x∂

−2
x e−is∂

2
x ūnN e

is∂2xΠN (unNu
n
N )
]

− isλS[unNΠN (unNu
n
N )]

− isλSunNΠN (eiτ∂
2
x(unNu

n
N )− S(unNu

n
N )), (2.6)

ÂN2 (s, unN ) =
λ

2
ΠN

[
ūnN e−is∂

2
xΠN

(
∂x∂

−2
x eis∂

2
xunN

)2]
+ isλΠN

(
unNΠN (unNu

n
N )
)

− 2isλSunNΠN (|unN |2)

+ isλ(SunN )2unN . (2.7)

The construction of the method is presented in Section 4. From (2.5)–(2.7) we see that the
method only requires computing several functions of the following two types:

• ∂−2
x f, ∂xf and e±iτ∂

2
xf for some function f ∈ C2N ,

• fg, fh, and hk for some functions f, g ∈ CN , and h, k ∈ SN .
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The coefficients of Fourier cosine series of the first type of functions can be computed exactly
by (2.2)–(2.3). The coefficients of Fourier sine series of the second type of functions can be
computed exactly by using the (4N+1)-point fast Fourier transform (FFT). For example, we can
extend f and h to be odd and even functions on the torus (−π, π) and then apply the (4N + 1)-
point FFT (first evaluate, then do trigonometric interpolation at (4N + 1) equidistant points)
to compute the Fourier coefficients of the odd function fh exactly. Hence, the computational
cost is O(N lnN) at every time level.

The convergence of the proposed fully discrete method in (2.5) is presented in the following
theorem.

Theorem 2.1. If u0 ∈ H1 then there exist positive constants τ0, N0 and C such that for τ ≤ τ0

and N ≥ N0 the numerical solution given by (2.5) has the following error bound:

max
1≤n≤L

‖u(tn, ·)− unN‖L2 ≤ C
(
τ [ln(1/τ)]2 +N−1

)
, (2.8)

where L := bT/τc and the constants τ0, N0 and C depend only on T and ‖u0‖H1.

The rest of this paper is devoted to the construction of the method (2.5) and the proof of
Theorem 2.1.

3. Preliminary results

In this section, we introduce the basic notation and harmonic analysis results to be used
in the construction and analysis of the numerical method.

3.1. Notation

Let Hs be the conventional Sobolev space on Ω = (0, π), with L2 = H0. The sesquilinear
inner product and norm on L2 are denoted by

(f, g) =

∫
Ω
f(x)g(x) dx and ‖f‖L2 =

√
(f, f),

respectively. Moreover we define the dotted Sobolev space on Ω = (0, π) as

Ḣs(Ω) =
{ ∞∑
k=0

f̂k cos(kx) : |f̂0|2 +

∞∑
k=1

|k|2s|f̂k|
2
<∞

}
, (3.1)

and we will specify its norm in the next section.

3.2. Eigenfunctions expansion and the Ḣs norm

We consider the Neumann Laplacian ∆ : D(A) → L2, where A = −∆ has the following
domain:

D(A) = {v ∈ H2 : ∂xv(x) = 0 at x = 0, π}.
Any f ∈ L2 can be expanded into a series of the eigenfunctions of A, i.e.,

f =
∞∑
k=0

f̂k cos(kx) with f̂k =
2

π

∫
Ω
f(x) cos(kx)dx. (3.2)

It is straightforward to verify that

∂xf = −
∞∑
k=1

kf̂k sin(kx) for f ∈ H1 = D(A
1
2 ),

∂2
xf = −

∞∑
k=1

k2f̂k cos(kx) for f ∈ D(A),

∂2
x∂
−2
x f = Pf :=

∞∑
k=1

f̂k cos(kx) for f ∈ L2
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where
Pf = f − Sf, with S defined in (2.4).

and

‖f‖2Hs ∼ |f̂0|2 +
∞∑
k=1

|k|2s|f̂k|2 for f ∈ Ḣs and s = 0, 1, 2, (3.3)

where Ḣ0 = L2, Ḣ1 = H1 and Ḣ2 = D(A).
Following [19, Definition 2.1, 2.3], we define the complex interpolation spaces as below. Let

D be the strip {z = x+ iy ∈ C : 0 ≤ x ≤ 1} and X,Y be two Banach spaces. Let F(X,Y ) be
the space of all functions f : D → X + Y such that

(i) f is holomorphic in the interior of D and continuous and bounded up to its boundary,
with values in X + Y .

(ii) t 7→ f(it) ∈ Cb(R;X), t 7→ f(1 + it) ∈ Cb(R;Y ), and

‖f‖F(X,Y ) = max{sup
t∈R
‖f(it)‖X , sup

t∈R
‖f(1 + it)‖Y } < +∞.

Then the complex interpolation space (X,Y )[θ], with θ ∈ [0, 1], is defined through the traces
on the real axis of the functions in F(X,Y ), i.e., (X,Y )[θ] := {f(θ) : f ∈ F(X,Y )} with the
following quotient norm:

‖a‖(X,Y )[θ] := inf
f∈F(X,Y ),f(θ)=a

‖f‖F(X,Y ).

For s ∈ [0, 2], Ḣs coincides with the complex interpolation space (L2, Ḣ2)[s/2], with the
following norm:

‖f‖Ḣs =

(
|f̂0|2 +

∞∑
k=1

|k|2s|f̂k|2
) 1

2

for f ∈ Ḣs. (3.4)

This is equivalent to the conventional Hs norm, but has the following useful property (with
equality instead of equivalence):

‖eit∂2xf‖Ḣs = ‖f‖Ḣs . (3.5)

Property (3.5) will be used in the stability estimates for the numerical method.

3.3. Littlewood–Paley type decomposition

We denote by N the set of nonnegative integers. For N ∈ N and f =
∑∞

k=0 f̂k cos(kx), we
define the following several projection operators on L2:

ΠNf :=
N∑
k=0

f̂k cos(kx), Π>Nf := f −ΠNf and PNf := Π2Nf −ΠNf,

with P0f := Π1f . The following estimates are consequences of (3.3).

Lemma 3.1. For s = 0, 1, 2, the following inequalities hold:∥∥ΠNf
∥∥
Hs . N

s‖f‖L2 for f ∈ L2, (3.6)∥∥Π>Nf
∥∥
L2 . N

−s‖f‖Hs for f ∈ Ḣs, (3.7)∥∥PNf∥∥Hs . N
s‖f‖L2 for f ∈ L2. (3.8)

If we denote by Nd = {0} ∪ {2k : k ∈ N} the set of dyadic integers, then the following
Littlewood–Paley type dyadic decomposition holds:

f =
∑
N∈Nd

PNf for f ∈ L2. (3.9)

and

‖f‖2
Ḣs =

∑
N∈Nd

‖PNf‖2Ḣs for f ∈ Ḣs for s ∈ [0, 2]. (3.10)
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The following Kato–Ponce inequality and Gagliardo–Nirenberg interpolation inequality will
be used in the analysis of the consistency error.

Lemma 3.2 (The Kato–Ponce inequality [11]). If s > 1
2 then

‖fg‖Hs . ‖f‖Hs‖g‖Hs ∀ f, g ∈ Hs.

Lemma 3.3 (Gagliardo–Nirenberg interpolation inequality [1]).

‖f‖L∞ . ‖f‖
1
2

L2‖f‖
1
2

H1 ∀ f ∈ H1.

Remark 3.4. A powerful general Leibniz rule for fractional Laplacian operators has been re-
cently established in the deep work of Li [?]. See also [?] for a remarkable new effective maximum
principle which is developed for the first time for general spectral methods.

3.4. Accuracy of trigonometric interpolation

The following trigonometric interpolation error estimate will be used in the construction
of the spatial discretization.

Lemma 3.5 (Trigonometric interpolation error). Let f ∈ Ḣβ with β ∈ [0, 2]. Then the following
estimate holds for N ≥ 1:∥∥f − INf∥∥Hα . N

α−β∥∥f∥∥
Hβ if 0 ≤ α ≤ β .

Proof. If f ∈ Ḣβ with β ∈ [0, 2], then its even extension f̃ is in Hβ(T), where T is the one-

dimensional torus [−π, π] that identifies the two endpoints −π and π. For the function f̃ ∈
Hβ(T) the trigonometric interpolation ĨN on the torus [−π, π] has the following standard error
bound (see [12, Theorem 11.8]):∥∥f̃ − ĨN f̃∥∥Hα(T)

. Nα−β∥∥f̃∥∥
Hβ(T)

. Nα−β∥∥f∥∥
Hβ when 0 ≤ α ≤ β.

Since INf is defined as the restriction of ĨN f̃ to Ω = (0, π) (see the definition in Section 2), the
above estimate implies the desired result of Lemma 3.5. �

3.5. Global well-posedness of NLS equation (2.1) in Ḣ1 ∼= H1

The Neumann boundary condition does not make sense when we consider low regularity
solution, say H1. Thus we need to find a suitable substitute function space. The space Ḣs,
defined by Fourier cosine multipliers, is an appropriate candidate in the sense that for large
s, s ≥ 2 for example, the derivative of the cosine Fourier series, which is a sine Fourier series,
converges uniformly and thus vanishes at the boundary. Therefore, the functions in Ḣ2 satisfy
the Neumann boundary condition. By the complex interpolation theory, see [6, Theorem 2.3]

with the identifications L2 ∼= B0
2,2 and Ḣ2 = D(A) ∼= B2

2,2,B therein, the following relation holds:

Ḣs = (L2, Ḣ2)[s/2] = (B0
2,2, B

2
2,2,B)[s/2] = Bs

2,2,B for s ∈ (3/2, 2],

Ḣs = (L2, Ḣ2)[s/2] = Hs for s ∈ [0, 3/2),

where Bs
p,q,B(Ω) := {u ∈ Bs

p,q(Ω) : ∂xu(x) = 0 at x = 0, π} with s > 1 + 1/p denoting the

subset of Besov space on Ω = (0, π) with gradient vanishing on the boundary. In particular,

the functions in Ḣs, with s > 3/2, satisfies the Neumann boundary condition. Similar results
for real interpolation spaces with boundary conditions can be found in [17].

Analogous to unbounded domain and torus cases, we have the following global well-
posedness result.

Theorem 3.6. For u0 ∈ H1, there exists a unique solution u ∈ C([0, T ]; Ḣ1), with any T > 0,
satisfying the integral equation:

u(t) = eit∂
2
xu0 − iλ

∫ t

0
ei(t−s)∂

2
x
(
|u(s)|2u(s)

)
ds. (3.11)
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Proof. By the norm equivalence of Hs and Ḣs with s ∈ [0, 2], we know that Ḣ1 is an algebra
under pointwise product. Follow the standard arguments in [4], then the local existence and
uniqueness of solution follow directly from Banach fixed point theorem. Moreover the maximal
local existence time Tloc = Tloc(‖u0‖Ḣ1) depends only on the Ḣ1 norm of the initial data.

Furthermore the global existence is a consequence of mass and energy conservation. Since
the cubic nonlinearity is L2 subcritical in one dimension, the global existence holds uncondi-
tionally for both focusing and defocusing cases. �

4. Construction and analysis of the time-stepping method

In this section we construct the numerical method through analysing the consistency error
in approximating the Duhamel formula.

4.1. Construction of the time-stepping method

From Theorem 3.6 we know that the NLS equation (2.1), with initial value u0 ∈ H1, has a
unique solution u ∈ C([0, T ];H1) satisfying Duhamel’s formula:

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0
ei(τ−s)∂

2
x [|u(tn + s)|2u(tn + s)]ds. (4.1)

Moreover, the solution satisfies the mass conservation law

1

π

∫
Ω
|u(t, x)|2 dx =

1

π

∫
Ω
|u0(x)|2 dx for t > 0. (4.2)

For the simplicity of notation, we denote the mass of the solution by

M :=
1

π

∫
Ω
|u0(x)|2 dx. (4.3)

Through approximating the function u(tn + s) in the integral of (4.1) by eis∂
2
xu(tn), we

obtain

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0
ei(τ−s)∂

2
x [e−is∂

2
x ū(tn)eis∂

2
xu(tn)eis∂

2
xu(tn)]ds+Rn1 , (4.4)

with

Rn1 := iλ

∫ τ

0
ei(τ−s)∂

2
x
[
|eis∂2xu(tn)|2eis∂2xu(tn)− |u(tn + s)|2u(tn + s)

]
ds. (4.5)

The remainder Rn1 will be dropped in the numerical scheme. By using the Kato–Ponce inequality
in Lemma 3.2, it is straightforward to verify that for α ∈ (1

2 , 1]

‖Rn1‖Hα .
∫ τ

0
(‖u(tn + s)‖2Hα + ‖eis∂2xu(tn)‖2Hα)‖eis∂2xu(tn)− u(tn + s)‖Hαds.

The term ‖eis∂2xu(tn)− u(tn + s)‖H1 can be estimated by applying Lemma 3.2 to (4.1), i.e.,

‖u(tn+1)− eiτ∂2xu(tn)‖H1 .

∥∥∥∥∫ τ

0
ei(τ−s)∂

2
x [|u(tn + s)|2u(tn + s)]ds

∥∥∥∥
H1

. τ‖u‖3C([0,T ];H1). (4.6)

The two estimates above imply that

‖Rn1‖H1 . τ2‖u‖5L∞(0,T ;H1). (4.7)

We further rewrite (4.4) as

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0
Bn(s, u(tn))ds+Rn1

with

Bn(s, u(tn)) = ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
xv(s)

]
and v(s) = e−is∂

2
x
(
eis∂

2
xu(tn)

)2
. (4.8)
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The motivation for the definition of v(s) will become clear in Section 4.4 in the analysis of
the consistency error, i.e., this choice of definition allows us to explore more cancellation in
estimating the remainder of the numerical scheme. With the above definition, we have

Bn(s, u(tn)) = ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
+ ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(v(s)− v(0))

]
=: Bn

1 (s, u(tn)) + eiτ∂
2
xBn

2 (s, u(tn)) + rn2 (s) (4.9)

with

Bn
1 (s, u(tn)) = ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
;

Bn
2 (s, u(tn)) = ū(tn) (v(s)− v(0))

rn2 (s) = ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(v(s)− v(0))

]
− eiτ∂2x

[
ū(tn)(v(s)− v(0))

]
,

and therefore

u(tn+1) = eiτ∂
2
xu(tn)− iλ

∫ τ

0
Bn

1 (s, u(tn))ds− iλ
∫ τ

0
eiτ∂

2
xBn

2 (s, u(tn))ds+Rn1 +Rn2 , (4.10)

with

Rn2 = −iλ
∫ τ

0
rn2 (s)ds. (4.11)

We shall approximate (4.10) by integrating Bn
1 (s, u(tn)) and Bn

2 (s, u(tn)) analytically, and drop-
ping the remainders Rn1 and Rn2 .

The remainder Rn1 is already estimated in (4.7). From the definition of rn2 (s) in (4.9), i.e.,

rn2 (s) = ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(v(s)− v(0))

]
− eiτ∂2x

[
ū(tn)(v(s)− v(0))

]
,

it is easy to see that

‖Rn2‖H1 .
∫ τ

0
‖rn2 (s)‖H1ds . τ‖u‖3L∞(0,T ;H1). (4.12)

This estimate is, however, not sufficient to prove the first-order convergence of the numerical
solution. A higher-order estimate of ‖Rn2‖L2 is presented in Lemma 4.5 and Section 4.4 by using
the bilinear Littlewood–Paley decomposition.

4.2. The anti-derivative of Bn
1 (s, u(tn))

To proceed to the construction of anti-derivatives, we need the following two lemmas to
justify the afterward calculus of Fréchet derivatives.

Lemma 4.1. For any f ∈ Ḣ1 ∼= H1, the Fréchet derivative d
dse

is∂2xf exists in (H1)′, i.e., the

dual space of H1, and it holds that

d

ds
eis∂

2
xf = (−i∂xeis∂

2
xf, ∂x·) ∈ (H1)′. (4.13)

Proof. We first construct g(s) :=
∞∑
k=0

e−isk
2
(−ik2)f̂k ∈ (H1)′. Then for any φ ∈ H1 we have

(g, φ) =

∞∑
k=0

e−isk
2
(−ik2)f̂kφ̂k

=
∞∑
k=0

e−isk
2
(−ik)f̂kkφ̂k

= −i(∂xeis∂
2
xf, ∂xφ), (4.14)

thus g = (−i∂xeis∂
2
xf, ∂x·) ∈ (H1)′.
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By definition, it suffices to show the following limit exists and is zero

lim
h→0

sup
‖v‖H1≤1

(
ei(s+h)∂2x − eis∂2x

h
f − g, v

)
L2

= lim
h→0

sup
‖v‖H1≤1

lim
N→+∞

N∑
k=0

(
e−i(s+h)k2 − e−isk2

h
+ e−isk

2
ik2

)
f̂kv̂k

= lim
h→0

sup
‖v‖H1≤1

(
K∑
k=0

+
∞∑

k=K+1

)(1− e−iξh,kk2)e−isk
2
ikf̂kkv̂k for some |ξh,k| ≤ |h|. (4.15)

We can choose K large enough such that the residual term is small (uniformly w.r.t. h and
v). On the other hand, for the first K + 1 sums, a sufficiently small h can be chosen so that

e−iξh,kk
2 −1 is small (uniformly w.r.t. v and k = 0, ...,K). These altogether show that the limit

exists and is zero. This proves that limh→0
ei(s+h)∂

2
x−eis∂2x
h f = g in (H1)′. �

Lemma 4.2. The following Fréchet derivative exists in L2 and the identity

d

ds
∂−2
x ∂x[∂x∂

−2
x e−is∂

2
xu(tn)eis∂

2
xv(0)] =− i(1− S)

[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
+ i(1− S)

[
∂x∂

−2
x e−is∂

2
x ū(tn) ∂xe

is∂2xv(0)
]

+ iSū(tn)(eis∂
2
xv(0)− Sv(0)) (4.16)

holds, where the averaging operator S is defined in (2.4).

Proof. Take difference quotient and we obtain

1

h
∂−2
x ∂x[∂x∂

−2
x e−i(s+h)∂2xu(tn)ei(s+h)∂2xv(0)]− 1

h
∂−2
x ∂x[∂x∂

−2
x e−is∂

2
xu(tn)eis∂

2
xv(0)]

=∂−2
x ∂x[∂x∂

−2
x

e−i(s+h)∂2x − e−is∂2x
h

u(tn)ei(s+h)∂2xv(0)] + ∂−2
x ∂x[∂x∂

−2
x e−is∂

2
xu(tn)

ei(s+h)∂2x − eis∂2x
h

v(0)].

(4.17)

To simplify the notation, we useA(φ, h)
φ−→
h
B(φ, h) to denote the relation limh→0 sup‖φ‖L2≤1 |A(φ, h)−

B(φ, h)| = 0. Thus upon testing (4.17) by φ, we have

−
(
∂x∂

−2
x

e−i(s+h)∂2x − e−is∂2x
h

u(tn)ei(s+h)∂2xv(0), ∂x∂
−2
x φ

)
−
(
∂x∂

−2
x e−is∂

2
xu(tn)

ei(s+h)∂2x − eis∂2x
h

v(0), ∂x∂
−2
x φ

)
= +

(e−i(s+h)∂2x − e−is∂2x
h

u(tn), ∂−2
x ∂x[e−i(s+h)∂2xv(0)∂x∂

−2
x φ]

)
−
(ei(s+h)∂2x − eis∂2x

h
v(0), ∂x∂

−2
x eis∂

2
xu(tn)∂x∂

−2
x φ

)
φ−→
h

+ i
(
∂xe
−is∂2xu(tn), ∂x∂

−2
x ∂x[e−is∂

2
xv(0)∂x∂

−2
x φ]

)
+ i
(
∂xe

is∂2xv(0), ∂x[∂x∂
−2
x eis∂

2
xu(tn)∂x∂

−2
x φ]

)
(c.f. proof of Lemma 4.1)

=− i
(
e−is∂

2
xu(tn), (1− S)∂x[e−is∂

2
xv(0)∂x∂

−2
x φ]

)
+ i
(
∂xe

is∂2xv(0), (1− S)eis∂
2
xu(tn)∂x∂

−2
x φ+ ∂x∂

−2
x eis∂

2
xu(tn)(1− S)φ

)
=− i

(
e−is∂

2
xu(tn), ∂xe

−is∂2xv(0)∂x∂
−2
x φ+ e−is∂

2
xv(0)(1− S)φ

)
− i
(
eis∂

2
xv(0), ∂xe

is∂2xu(tn)∂x∂
−2
x φ+ (1− S)eis∂

2
xu(tn)(1− S)φ

)
+ i
(
∂xe

is∂2xv(0), ∂x∂
−2
x eis∂

2
xu(tn)(1− S)φ

)
,
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where in the first and last equality we have used integration by parts. This is legitimate in view
of the boundary condition (∂x∂

−2
x f)(z) = 0 at z = 0 and z = π for any f ∈ L2. We have also

used the relation S(∂xg) = 0 with g ∈ H1
0 . By using integration by parts again, we obtain

− i
(
e−is∂

2
xu(tn), ∂xe

−is∂2xv(0)∂x∂
−2
x φ+ e−is∂

2
xv(0)(1− S)φ

)
− i
(
eis∂

2
xv(0), ∂xe

is∂2xu(tn)∂x∂
−2
x φ+ (1− S)eis∂

2
xu(tn)(1− S)φ

)
+ i
(
∂xe

is∂2xv(0), ∂x∂
−2
x eis∂

2
xu(tn)(1− S)φ

)
= + i

(
∂xe
−is∂2xu(tn), e−is∂

2
xv(0)∂x∂

−2
x φ

)
− i
(
eis∂

2
xv(0), ∂xe

is∂2xu(tn)∂x∂
−2
x φ+ (1− S)eis∂

2
xu(tn)(1− S)φ

)
+ i
(
∂xe

is∂2xv(0), ∂x∂
−2
x eis∂

2
xu(tn)(1− S)φ

)
=− i

(
eis∂

2
xv(0), (1− S)eis∂

2
xu(tn)(1− S)φ

)
+ i
(
∂xe

is∂2xv(0), ∂x∂
−2
x eis∂

2
xu(tn)(1− S)φ

)
=−

(
i(1− S)

[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
, φ
)

+
(
i(1− S)

[
∂x∂

−2
x e−is∂

2
x ū(tn) ∂xe

is∂2xv(0)
]
, φ
)

+
(
iSū(tn)(eis∂

2
xv(0)− Sv(0)), φ

)
, (use the relation (u, Sv) = (Su, v))

which, by definition, is exactly what we want to prove. �

Now we are in a position to construct the anti-derivatives.

Lemma 4.3.

−
∫ τ

0
iλBn

1 (s, u(tn))ds = A1(τ, u(tn))−A1(0, u(tn)), (4.18)

where

A1(s, u(tn)) :=
1

2
λei(τ−s)∂

2
x∂−2
x ∂x

[
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
− isλS

[
ū(tn) v(0)

]
− isλSū(tn)(eiτ∂

2
xv(0)− Sv(0)). (4.19)

Proof. In order to find an anti-derivative of Bn
1 (s, u(tn)) we consider the function

Ã1(s, u(tn)) :=
1

2
λei(τ−s)∂

2
x∂−2
x ∂x

[
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
, (4.20)

whose L2 Fréchet derivative satisfies the following identity:

d

ds
Ã1(s, u(tn))

= − 1

2
iλei(τ−s)∂

2
x∂2
x∂
−2
x ∂x

[
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
(4.21a)

+
1

2
iλei(τ−s)∂

2
x
d

ds

[
∂−2
x ∂x

(
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
xv(0)

)]
. (4.21b)

For the terms in (4.21), applying lemma 4.2 we have that

(4.21a) =− 1

2
iλei(τ−s)∂

2
x(1− S)∂x

[
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
=− 1

2
iλei(τ−s)∂

2
x(1− S)

[
(1− S)e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
− 1

2
iλei(τ−s)∂

2
x(1− S)

[
∂x∂

−2
x e−is∂

2
x ū(tn) ∂xe

is∂2xv(0)
]

=− 1

2
iλei(τ−s)∂

2
x(1− S)

[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
+

1

2
iλSū(tn)

(
eiτ∂

2
xv(0)− Sv(0)

)
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− 1

2
iλei(τ−s)∂

2
x(1− S)

[
∂x∂

−2
x e−is∂

2
x ū(tn) ∂xe

is∂2xv(0)
]

(4.21b) =− 1

2
iλei(τ−s)∂

2
x(1− S)

[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
+

1

2
iλei(τ−s)∂

2
x(1− S)

[
∂x∂

−2
x e−is∂

2
x ū(tn) ∂xe

is∂2xv(0)
]

+
1

2
iλSū(tn)(eiτ∂

2
xv(0)− Sv(0)).

Collecting two equalities above, we obtain

d

ds
Ã1(s, u(tn)) = − iλei(τ−s)∂2x(1− S)

[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
+ iλSū(tn)(eiτ∂

2
xv(0)− Sv(0))

= − iλei(τ−s)∂2x
[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
+ iλS

[
ū(tn) v(0)

]
+ iλSū(tn)(eiτ∂

2
xv(0)− Sv(0))

= − iλBn
1 (s, u(tn))

+ iλS
[
ū(tn) v(0)

]
+ iλSū(tn)(eiτ∂

2
xv(0)− Sv(0)). (4.22)

Integrating this equality yields

−
∫ τ

0
iλBn

1 (s, u(tn))ds

= Ã1(τ, u(tn))− Ã1(0, u(tn))− iτλS
[
ū(tn) v(0)

]
− iτλSū(tn)(eiτ∂

2
xv(0)− Sv(0)). (4.23)

This implies (4.18) in view of the definition of A1(s, u(tn)) in (4.19). �

4.3. The anti-derivative of Bn
2 (s, u(tn))

Lemma 4.4.

−iλ
∫ τ

0
Bn

2 (s, u(tn))ds = A2(τ, u(tn))−A2(0, u(tn)), (4.24)

where

A2(s, u(tn)) :=
λ

2

[
ū(tn)e−is∂

2
x
(
∂x∂

−2
x eis∂

2
xu(tn)

)2]
+ isλ|u(tn)|2u(tn)

− 2isλ|u(tn)|2Su(tn) + isλ[Su(tn)]2ū(tn). (4.25)

Proof. We consider the derivative of the function

Ã2(s, u(tn)) =
λ

2

[
ū(tn)e−is∂

2
x
(
∂x∂

−2
x eis∂

2
xu(tn)

)2]
, (4.26)

which satisfies the following identity:

d

ds
Ã2(s, u(tn)) =iλ

[
ū(tn)e−is∂

2
x
(
∂x∂

−2
x ∂2

xe
is∂2xu(tn) ∂x∂

−2
x eis∂

2
xu(tn)

)]
− i

2
λ
[
ū(tn)e−is∂

2
x∂2
x

(
∂x∂

−2
x eis∂

2
xu(tn) ∂x∂

−2
x eis∂

2
xu(tn)

)]
=iλ

[
ū(tn)e−is∂

2
x
(
∂xe

is∂2xu(tn) ∂x∂
−2
x eis∂

2
xu(tn)

)]
− iλ

[
ū(tn)e−is∂

2
x
(
∂xe

is∂2xu(tn) ∂x∂
−2
x eis∂

2
xu(tn)

)]
− iλ

[
ū(tn)e−is∂

2
x
(
(1− S)eis∂

2
xu(tn) (1− S)eis∂

2
xu(tn)

)]
=− iλ

[
ū(tn)e−is∂

2
x
(
(1− S)eis∂

2
xu(tn) (1− S)eis∂

2
xu(tn)

)]
(4.27)

=− iλ
[
ū(tn)e−is∂

2
x
(
eis∂

2
xu(tn) eis∂

2
xu(tn)

)]
+ 2iλ|u(tn)|2Su(tn)− iλ[Su(tn)]2ū(tn)

=− iλBn
2 (s, u(tn))− iλ|u(tn)|2u(tn) + 2iλ|u(tn)|2Su(tn)− iλ[Su(tn)]2ū(tn).
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Integrating the identity above and using the definition in (4.25)–(4.26), we obtain (4.24). �

Therefore,

u(tn+1) = eiτ∂
2
xu(tn) +A1(τ, u(tn))−A1(0, u(tn))

+ eiτ∂
2
x [A2(τ, u(tn))−A2(0, u(tn))] +Rn1 +Rn2 . (4.28)

In the next subsection we shall prove the following result.

Lemma 4.5.
‖Rn2‖L2 . τ2[ln(1/τ)]2‖u(tn)‖3H1 .

In view of (4.7) and Lemma 4.5, dropping Rn1 and Rn2 from (4.28) yields a temporally
semidiscrete low-regularity integrator with first-order consistency error (up to a logarithmic
factor):

un+1 = eiτ∂
2
xun +A1(τ, un))−A1(0, un) + eiτ∂

2
x [A2(τ, un)−A2(0, un)], (4.29)

where the expressions of A1(s, un) and A2(s, un) are defined in (4.19) and (4.25), respectively.
The spatial discretization of the semidiscrete method (4.29) is presented in Section 5.

4.4. Proof of Lemma 4.5

The main difficulty in the construction of temporally semidiscrete low-regularity integrator
is the analysis of the remainder Rn2 defined in (4.11). In this subsection, we present estimates
for ‖Rn2‖L2 by using the Littlewood–Paley dyadic decomposition of u(tn), i.e.,

u(tn) =
∑
N∈Nd

PNu(tn).

By using such a dyadic decomposition, we rewrite v(s) = e−is∂
2
x(eis∂

2
xu(tn)eis∂

2
xu(tn)) as

v(s) =
∑
N1,N2

e−is∂
2
x
(
eis∂

2
xPN1u(tn) · eis∂2xPN2u(tn)

)
= (2

∑
N1>N2

+
∑

N1=N2

)e−is∂
2
x
(
eis∂

2
xPN1u(tn) · eis∂2xPN2u(tn)

)
(symmetry between N1 and N2)

= (2
∑

N1>N2

+
∑

N1=N2

)vN1,N2(s), (4.30)

where

vN1,N2(s) := e−is∂
2
x
(
eis∂

2
xPN1u(tn) · eis∂2xPN2u(tn)

)
.

The summation in (4.30) is over all dyadic integers N1, N2 ∈ Nd satisfying the conditions under
the summation symbol (the same below). Substituting (4.30) into the expression

rn2 (s) = ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(v(s)− v(0))

]
− eiτ∂2x

[
ū(tn)(v(s)− v(0))

]
,

we have

e−iτ∂
2
xrn2 (s) = (2

∑
N1>N2

+
∑

N1=N2

)
{
e−is∂

2
x

[
e−is∂

2
x ū(tn) eis∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)]
−
[
ū(tn)

(
vN1,N2(s)− vN1,N2(0)

)]}
:= (2

∑
N1>N2

+
∑

N1=N2

)
(
r1
N1,N2

(s) + r2
N1,N2

(s)
)
, (4.31)

where

r1
N1,N2

(s) =e−is∂
2
x

[
e−is∂

2
xΠN2 ū(tn) eis∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)]
−
[
ΠN2 ū(tn)

(
vN1,N2(s)− vN1,N2(0)

)]
,

r2
N1,N2

(s) =e−is∂
2
x

[
e−is∂

2
xΠ>N2 ū(tn) eis∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)]
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−
[
Π>N2 ū(tn)

(
vN1,N2(s)− vN1,N2(0)

)]
.

We shall prove the following results.∥∥r1
N1,N2

(s)
∥∥
L2 +

∥∥r2
N1,N2

(s)
∥∥
L2 . |N1|−1|N2|−

1
2 ‖u(tn)‖3H1 , (4.32)∥∥r1

N1,N2
(s)
∥∥
L2 +

∥∥r2
N1,N2

(s)
∥∥
L2 . τ‖u(tn)‖3H1 . (4.33)

Assuming for a moment that (4.32)–(4.33) hold, the geometric average between (4.32) and
(4.33) yields∥∥r1

N1,N2
(s)
∥∥
L2 +

∥∥r2
N1,N2

(s)
∥∥
L2 . τ

1−θ|N1|−θ|N2|−
θ
2 ‖u(tn)‖3H1 ∀ θ ∈ [0, 1],

which furthermore implies that∥∥rn2 (s)
∥∥
L2 =

∥∥e−iτ∂2xrn2 (s)
∥∥
L2

.
∑

N1≥N2

(∥∥r1
N1,N2

(s)
∥∥
L2 +

∥∥r2
N1,N2

(s)
∥∥
L2

)
.
∑

N1≥N2

τ1−θ|N1|−θ|N2|−
θ
2 ‖u(tn)‖3H1

.
∑
N2

τ1−θ

1− 2−θ
|N2|−

3θ
2 ‖u(tn)‖3H1

.
τ1−θ

(1− 2−θ)(1− 2−3θ/2)
‖u(tn)‖3H1

.
τ1−θ

(1− 2−θ)2
‖u(tn)‖3H1 .

As a result, we have∥∥Rn2∥∥L2 .
∫ τ

0

∥∥rn2 (s)
∥∥
L2ds .

τ2−θ

(1− 2−θ)2
‖u(tn)‖3H1 ∀ θ ∈ (0, 1].

Choosing θ = 1/ ln(1/τ) in the inequality above, we obtain the desired result of Lemma 4.5:∥∥Rn2∥∥L2 . τ
2[ln(1/τ)]2‖u(tn)‖3H1 .

It remains to prove (4.32)–(4.33).
Proof of (4.32): By the Sobolev and Hölder inequalities, we have∥∥r1
N1,N2

(s)
∥∥
L2 .(‖e−is∂2xΠN2u(tn)‖L∞ + ‖ΠN2u(tn)‖L∞)‖vN1,N2(s)− vN1,N2(0)‖L2

.‖u(tn)‖H1‖vN1,N2(s)− vN1,N2(0)‖L2

.‖u(tn)‖H1

∥∥e−is∂2x(eis∂
2
xPN1u(tn) · eis∂2xPN2u(tn))− PN1u(tn) · PN2u(tn)

∥∥
L2

.‖u(tn)‖H1‖eis∂2xPN1u(tn)‖L2‖eis∂2xPN2u(tn)‖L∞

+ ‖u(tn)‖H1‖PN1u(tn)‖L2‖PN2u(tn)‖L∞)

.‖u(tn)‖H1‖PN1u(tn)‖L2‖eis∂2xPN2u(tn)‖
1
2

H1‖eis∂
2
xPN2u(tn)‖

1
2

L2

+ ‖u(tn)‖H1‖PN1u(tn)‖L2‖PN2u(tn)‖
1
2

H1‖PN2u(tn)‖
1
2

L2

.‖u(tn)‖H1‖PN1u(tn)‖L2‖PN2u(tn)‖
1
2

H1‖PN2u(tn)‖
1
2

L2

.|N1|−1|N2|−
1
2 ‖u(tn)‖3H1 ,

and similarly∥∥r2
N1,N2

(s)
∥∥
L2 .(‖e−is∂2xΠ>N2u(tn)‖L∞ + ‖Π>N2u(tn)‖L∞)‖vN1,N2(s)− vN1,N2(0)‖L2

.(‖e−is∂2xΠ>N2u(tn)‖H1 + ‖Π>N2u(tn)‖H1)‖vN1,N2(s)− vN1,N2(0)‖L2

.‖u(tn)‖H1‖vN1,N2(s)− vN1,N2(0)‖L2
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.|N1|−1|N2|−
1
2 ‖u(tn)‖3H1 ,

where the last inequality follows in the same way as that for
∥∥r1
N1,N2

(s)
∥∥
L2 .

Proof of (4.33) for
∥∥r1
N1,N2

(s)
∥∥
L2 : We rewrite r1

N1,N2
(s) as

r1
N1,N2

(s) =

∫ s

0

d

dρ

{
e−iρ∂

2
x

[
e−iρ∂

2
xΠN2 ū(tn) eiρ∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)]}
dρ

=− i
∫ s

0

{
e−iρ∂

2
x∂2
x

[
e−iρ∂

2
xΠN2 ū(tn) eiρ∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)]}
dρ

− i
∫ s

0

{
e−iρ∂

2
x

[
∂2
xe
−iρ∂2xΠN2 ū(tn) eiρ∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)]}
dρ

+ i

∫ s

0

{
e−iρ∂

2
x

[
e−iρ∂

2
xΠN2 ū(tn) ∂2

xe
iρ∂2x
(
vN1,N2(s)− vN1,N2(0)

)]}
dρ.

By denoting f = e−iρ∂
2
xΠN2 ū(tn), g = eiρ∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)
, and using the identity

−(fg)′′ − f ′′g + fg′′ = (−f ′′g − 2f ′g′ − fg′′)− f ′′g + fg′′ = −2f ′′g − 2f ′g′,

we obtain

r1
N1,N2

(s) = −2i

∫ s

0

{
e−iρ∂

2
x

[
∂2
xe
−iρ∂2xΠN2 ū(tn) eiρ∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)]}
dρ

−2i

∫ s

0

{
e−iρ∂

2
x

[
∂xe
−iρ∂2xΠN2 ū(tn) ∂x

[
eiρ∂

2
x
(
vN1,N2(s)− vN1,N2(0)

)]]}
dρ.

By using the Sobolev interpolation inequality in Lemma 3.3, we have∥∥r1
N1,N2

(s)
∥∥
L2 .

∫ s

0

∥∥∂2
xe
−iρ∂2xΠN2 ū(tn)

∥∥
L2

∥∥eiρ∂2x(vN1,N2(s)− vN1,N2(0)
)∥∥
L∞dρ

+

∫ s

0

∥∥∂xe−iρ∂2xΠN2 ū(tn)
∥∥
L∞

∥∥∂x[eiρ∂2x(vN1,N2(s)− vN1,N2(0)
)]∥∥

L2dρ

.
∫ s

0

∥∥ΠN2 ū(tn)
∥∥
H2

∥∥vN1,N2(s)− vN1,N2(0)
∥∥ 1

2

L2

∥∥vN1,N2(s)− vN1,N2(0)
∥∥ 1

2

H1dρ

+

∫ s

0

∥∥ΠN2 ū(tn)
∥∥ 1

2

H1

∥∥ΠN2 ū(tn)
∥∥ 1

2

H2

∥∥vN1,N2(s)− vN1,N2(0)
∥∥
H1dρ

.
∫ s

0
N2

∥∥u(tn)
∥∥
H1

∥∥vN1,N2(s)− vN1,N2(0)
∥∥ 1

2

L2

∥∥vN1,N2(s)− vN1,N2(0)
∥∥ 1

2

H1dρ

+

∫ s

0
N

1
2

2

∥∥u(tn)
∥∥
H1

∥∥vN1,N2(s)− vN1,N2(0)
∥∥
H1dρ, (4.34)

where the last inequality follows from using (3.6). By using the Sobolev interpolation inequality
again, we have∥∥vN1,N2(s)

∥∥
H1

=
∥∥eis∂2xPN1u(tn) eis∂

2
xPN2u(tn)

∥∥
H1

. ‖eis∂2xPN1u(tn)‖H1‖eis∂2xPN2u(tn)‖L∞ + ‖eis∂2xPN1u(tn)‖L∞‖eis∂2xPN2u(tn)‖H1

. ‖eis∂2xPN1u(tn)‖H1‖eis∂2xPN2u(tn)‖
1
2

H1‖eis∂
2
xPN2u(tn)‖

1
2

L2

+ ‖eis∂2xPN1u(tn)‖
1
2

L2‖eis∂
2
xPN1u(tn)‖

1
2

H1‖eis∂
2
xPN2u(tn)‖H1

. N
− 1

2
2 ‖u(tn)‖2H1 (here we have used (3.7) and N1 ≥ N2)

and ∥∥vN1,N2(s)
∥∥
L2 =

∥∥eis∂2xPN1u(tn) eis∂
2
xPN2u(tn)

∥∥
L2

. ‖eis∂2xPN1u(tn)‖L2‖eis∂2xPN2u(tn)‖L∞

. ‖eis∂2xPN1u(tn)‖L2‖eis∂2xPN2u(tn)‖
1
2

L2‖eis∂
2
xPN2u(tn)‖

1
2

H1
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. N
− 3

2
2 ‖u(tn)‖2H1 (here we have used (3.7) and N1 ≥ N2).

Setting s = 0 in the two estimates above yields

N2

∥∥vN1,N2(0)
∥∥
L2 +

∥∥vN1,N2(0)
∥∥
H1 . N

− 1
2

2 ‖u(tn)‖2H1 .

By substituting the three estimates above into (4.34), we obtain∥∥r1
N1,N2

(s)
∥∥
L2 .

∫ s

0
‖u(tn)‖3H1dρ . τ‖u(tn)‖3H1 for s ∈ [0, τ ].

Proof of (4.33) for
∥∥r2
N1,N2

(s)
∥∥
L2 : We rewrite r2

N1,N2
(s) by

r2
N1,N2

(s) = e−is∂
2
x

[
e−is∂

2
xΠ>N2 ū(tn) eis∂

2
x

∫ s

0

d

dρ
vN1,N2(ρ)dρ

]
(4.35)

−Π>N2 ū(tn)

∫ s

0

d

dρ
vN1,N2(ρ)dρ. (4.36)

It is easy to verify that

d

dρ
vN1,N2(ρ) =

d

dρ

(
e−iρ∂

2
x
(
eiρ∂

2
xPN1u(tn) · eiρ∂2xPN2u(tn)

))
=− 2ie−iρ∂

2
x
(
∂xe

iρ∂2xPN1u(tn) ∂xe
iρ∂2xPN2u(tn)

)
,

where the last equality uses the identity (fg)′′ − f ′′g− fg′′ = 2f ′g′ with f = eiρ∂
2
xPN1u(tn) and

g = eiρ∂
2
xPN2u(tn). Hence,∥∥∥ d

dρ
vN1,N2(ρ)

∥∥∥
L2
.
∥∥∂xeiρ∂2xPN1u(tn)

∥∥
L2

∥∥∂xeiρ∂2xPN2u(tn)
)∥∥
L∞

.
∥∥∂xeiρ∂2xPN1u(tn)

∥∥
L2

∥∥∂xeiρ∂2xPN2u(tn)
)∥∥ 1

2

L2

∥∥∂xeiρ∂2xPN2u(tn)
)∥∥ 1

2

H1

.
∥∥PN1u(tn)

∥∥
H1

∥∥PN2u(tn)
∥∥ 1

2

H1

∥∥PN2u(tn)‖
1
2

H2

.N
1
2

2 ‖u(tn)‖2H1 .

Since

‖e−is∂2xΠ>N2 ū(tn)‖L∞ . ‖e−is∂2xΠ>N2 ū(tn)‖
1
2

L2‖e−is∂
2
xΠ>N2 ū(tn)‖

1
2

H1 . N
− 1

2
2 ‖u(tn)‖H1 ,

substituting the two estimates above into (4.35) yields

‖r2
N1,N2

(s)‖L2 .
∫ s

0
N
− 1

2
2 ‖u(tn)‖H1N

1
2

2 ‖u(tn)‖2H1dρ . τ
∥∥u(tn)

∥∥3

H1 for s ∈ [0, τ ].

The proof of Lemma 4.5 is complete. �

5. Spatial discretization of the low-regularity integrator

In this section, we construct a spectral method for the spatial discretization of (4.29) with
computational cost O(N lnN) at every time level and first-order accuracy for H1 initial data.
Our spectral method is based on approximating the following two terms in (4.28),

A1(τ, u(tn))−A1(0, u(tn)) and A2(τ, u(tn))−A2(0, u(tn)),

by truncated cosine series that can be computed by FFT. For simplicity, we still use the notation

v(s) = e−is∂
2
x(eis∂

2
xu(tn))2 defined in (4.8).

5.1. Approximation to A1(τ, u(tn)).

Since Bn
1 (s, u(tn)) = ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
is in H1 for s ∈ [0, τ ], it follows from

(4.18) that

A1(τ, u(tn))−A1(0, u(tn)) = −
∫ τ

0
iλBn

1 (s, u(tn))ds ∈ H1.
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In view of the expression

A1(s, u(tn)) =
1

2
λei(τ−s)∂

2
x∂−2
x ∂x

[
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
− isλS

[
ū(tn) v(0)

]
− isλSū(tn)(eiτ∂

2
xv(0)− Sv(0)),

we define

AN1 (s, u(tn)) =
1

2
λei(τ−s)∂

2
x∂−2
x ∂x

[
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
xΠNv(0)

]
− isλS

[
ū(tn) ΠNv(0)

]
− isλSū(tn)(eiτ∂

2
xv(0)− Sv(0)), (5.1)

and approximate A1(τ, u(tn))−A1(0, u(tn)) by

ΠN [AN1 (τ, u(tn))−AN1 (0, u(tn))]. (5.2)

Remark 5.1. Before proving the error in approximating A1(τ, u(tn))−A1(0, u(tn)) with (5.2),
we drop a comment on the construction of this approximation. Since u(tn)2 ∈ H1, it follows
that

(
see Lemma 3.1

)
‖u(tn)2 −ΠN (u(tn)2)‖L2 . N−1‖u(tn)2‖H1 . N−1‖u(tn)‖2H1 . (5.3)

In practical computation, ∂x∂
−2
x e−is∂

2
x ū(tn) eis∂

2
x(u(tn)2) would be approximated by

w = ∂x∂
−2
x e−is∂

2
x ūn eis∂

2
xΠN [(un)2], where un ∈ CN is a cosine series with frequency bounded by

N , and therefore ∂x∂
−2
x e−is∂

2
x ūn is a sine series with frequency bounded by N . Since w is the

product between the sine series ∂x∂
−2
x e−is∂

2
x ūn and the cosine series eis∂

2
xΠN [(un)2], it follows

that w is a sine series with frequency bounded by 2N . As a result, ∂−2
x ∂xw can be computed

as a cosine series.

Now we prove that (5.2) indeed approximates A1(τ, u(tn)) − A1(0, u(tn)) with a desired
error bound, i.e.,∥∥A1(τ, u(tn))−A1(0, u(tn))−ΠN [AN1 (τ, u(tn))−AN1 (0, u(tn))]

∥∥
L2

. τN−1‖u(tn)‖3H1 . (5.4)

This can be proved by decomposing the error into the following two parts:∥∥A1(τ, u(tn))−A1(0, u(tn))−ΠN [AN1 (τ, u(tn))−AN1 (0, u(tn))]
∥∥
L2

.
∥∥A1(τ, u(tn))−A1(0, u(tn))−ΠN [A1(τ, u(tn))−A1(0, u(tn))]

∥∥
L2

+
∥∥ΠN [A1(τ, u(tn))−A1(0, u(tn))]−ΠN [AN1 (τ, u(tn))−AN1 (0, u(tn))]

∥∥
L2

.
∥∥A1(τ, u(tn))−A1(0, u(tn))−ΠN [A1(τ, u(tn))−A1(0, u(tn))]

∥∥
L2

+
∥∥[A1(τ, u(tn))−AN1 (τ, u(tn))]− [A1(0, u(tn))−AN1 (0, u(tn))]

∥∥
L2 . (5.5)

The two parts on the right-hand side of (5.5) are estimated below.
First, by using the identity in (4.18) we have

A1(τ, u(tn))−A1(0, u(tn))−ΠN [A1(τ, u(tn))−A1(0, u(tn))]

= −
∫ τ

0
iλBn

1 (s, u(tn))ds+ ΠN

∫ τ

0
iλBn

1 (s, u(tn))ds

= −iλ
∫ τ

0
(1−ΠN )Bn

1 (s, u(tn))ds

= −iλ
∫ τ

0
(1−ΠN )

(
ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

])
ds. (5.6)

Since the function w = ei(τ−s)∂
2
x
[
e−is∂

2
x ū(tn) eis∂

2
xv(0)

]
is in H1, it follows from Lemma 3.1 that

‖(1−ΠN )w‖L2 . N−1‖w‖H1

and therefore

‖A1(τ, u(tn))−A1(0, u(tn))−ΠN [A1(τ, u(tn))−A1(0, u(tn))]‖L2
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.
∫ τ

0
N−1

∥∥ei(τ−s)∂2x[e−is∂2x ū(tn) eis∂
2
xv(0)

]∥∥
H1ds

. τN−1‖u(tn)‖3H1 . (5.7)

Second, since

A1(s, u(tn))−AN1 (s, u(tn))

=
1

2
λei(τ−s)∂

2
x∂−2
x ∂x

[
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
x(1−ΠN )v(0)

]
− isλS

[
ū(tn) (1−ΠN )v(0)

]
(5.8)

it follows that

A1(τ, u(tn))−AN1 (τ, u(tn))− [A1(0, u(tn))−AN1 (0, u(tn))]

=

∫ τ

0

[
d

ds

1

2
λei(τ−s)∂

2
x∂−2
x ∂x

[
∂x∂

−2
x e−is∂

2
x ū(tn) eis∂

2
x(1−ΠN )(u(tn)2)

]]
ds

− iτλS
[
ū(tn) (1−ΠN )v(0)

]
= − iλ

∫ τ

0
ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(1−ΠN )(u(tn)2)

]
ds

+ iτλSu(tn)
(
eiτ∂

2
x(1−ΠN )v(0)− S(1−ΠN )v(0)

)
, (5.9)

where we have used formula (4.22) with v(0) replaced by (1 − ΠN )
(
u(tn)2

)
. Since S(1 −

ΠN )v(0) = 0, it follows that∥∥A1(τ, u(tn))−AN1 (τ, u(tn))− [A1(0, u(tn))−AN1 (0, u(tn))]
∥∥
L2

.
∫ τ

0
‖e−is∂2x ū(tn)‖L∞‖(1−ΠN )(u(tn)2)‖L2ds

+ iτλ|Su(tn)|‖(1−ΠN )v(0)‖L2

. τN−1‖u(tn)‖3H1 . (5.10)

Finally, substituting (5.7) and (5.10) into (5.5) yields the desired error bound in (5.4).

5.2. Approximation to A2(τ, u(tn)).

In order to approximately compute the expression

A2(s, u(tn)) =
λ

2

[
ū(tn)e−is∂

2
x
(
∂x∂

−2
x eis∂

2
xu(tn)

)2]
+ isλ

[
|u(tn)|2u(tn)

]
− 2isλ

[
|u(tn)|2Su(tn)

]
+ isλ

[
(Su(tn))2u(tn)

]
,

by truncated Fourier cosine series and FFT, we define an approximation of A2(s, u(tn)) by

AN2 (s, u(tn)) :=
λ

2

[
ū(tn) e−is∂

2
xΠN

(
∂x∂

−2
x eis∂

2
xu(tn)

)2]
+ isλ

[
ū(tn) ΠN

(
u(tn)2

)]
− 2isλ

[
|u(tn)|2Su(tn)

]
+ isλ

[
(Su(tn))2u(tn)

]
(5.11)

and approximate A2(τ, u(tn))−A2(0, u(tn)) by

ΠN [AN2 (τ, u(tn))−AN2 (0, u(tn))]. (5.12)

We shall prove the following error bound for this approximation:∥∥A2(τ, u(tn))−A2(0, u(tn))−ΠN [AN2 (τ, u(tn))−AN2 (0, u(tn))]
∥∥
L2

. τN−1‖u(tn)‖3H1 . (5.13)

The proof of (5.13) is divided into the following several parts.
First, by using the triangle inequality, we decompose the left-hand side of (5.13) into∥∥A2(τ, u(tn))−A2(0, u(tn))−ΠN [AN2 (τ, u(tn))−AN2 (0, u(tn))]

∥∥
L2

.
∥∥A2(τ, u(tn))−A2(0, u(tn))−ΠN [A2(τ, u(tn))−A2(0, u(tn))]

∥∥
L2
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+
∥∥ΠN [A2(τ, u(tn))−A2(0, u(tn))]−ΠN [AN2 (τ, u(tn))−AN2 (0, u(tn))]

∥∥
L2

.
∥∥(1−ΠN )[A2(τ, u(tn))−A2(0, u(tn))]

∥∥
L2

+
∥∥[A2(τ, u(tn))−AN2 (τ, u(tn))]− [A2(0, u(tn))−AN2 (0, u(tn))]

∥∥
L2 . (5.14)

Analogous to (5.7), we have

‖(1−ΠN )[A2(τ, u(tn))−A2(0, u(tn))]‖L2

.
∫ τ

0
N−1

∥∥ei(τ−s)∂2xu(tn)(v(s)− v(0))
∥∥
H1ds

. τN−1‖u(tn)‖3H1 . (5.15)

Second, we note that

A2(s, u(tn))−AN2 (s, u(tn))

=
1

2
λ
[
u(tn)e−is∂

2
x(1−ΠN )(∂x∂

−2
x eis∂

2
xu(tn))2

]
+ isλu(tn)(1−ΠN )|u(tn)|2. (5.16)

By using formula (4.27) with an additional operator 1−ΠN , we obtain

d

ds
(A2(s, u(tn))−AN2 (s, u(tn)))

= − iλ
[
u(tn)e−is∂

2
x(1−ΠN )[(1− S)eis∂

2
xu(tn)]2

+ iλu(tn)(1−ΠN )
(
u(tn)2

)
= − iλ

[
u(tn)e−is∂

2
x(1−ΠN )[eis∂

2
xu(tn)]2

]
+ 2iλSu(tn)u(tn)(1−ΠN )u(tn)

+ iλu(tn)(1−ΠN )|u(tn)|2. (5.17)

Therefore, we obtain∥∥A2(τ, u(tn))−AN2 (τ, u(tn))− [A2(0, u(tn))−AN2 (0, u(tn))]
∥∥
L2

.
∫ τ

0
‖ d
ds

(A2(s, u(tn))−AN2 (s, u(tn)))‖L2ds

. τN−1‖u(tn)‖3H1 . (5.18)

Substituting (5.15)–(5.18) into (5.14) yields the desired estimate (5.13).

5.3. The fully discrete method

In view of the error bounds in (5.4) and (5.13), we can rewrite (4.28) as

u(tn+1) = eiτ∂
2
xu(tn) + ΠN [AN1 (τ, u(tn)))−AN1 (0, u(tn))]

+ eiτ∂
2
xΠN [AN2 (τ, u(tn))−AN2 (0, u(tn))]

+Rn1 +Rn2 +Rn3 , (5.19)

where the remainders Rn1 , Rn2 and

Rn3 =A1(τ, u(tn))−A1(0, u(tn))−ΠN [AN1 (τ, u(tn))−AN1 (0, u(tn))]

+ eiτ∂
2
x [A2(τ, u(tn))−A2(0, u(tn))]− eiτ∂2xΠN [AN2 (τ, u(tn))−AN2 (0, u(tn))] (5.20)

satisfy the following estimates:

‖Rn1‖L2 + ‖Rn2‖L2 . τ2‖u(tn)‖5H1 + τ2[ln(1/τ)]2‖u(tn)‖3H1 ,

‖Rn3‖L2 . τN−1‖u(tn)‖3H1 . (5.21)
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By dropping the remainders Rn1 , Rn2 and Rn3 in (5.19), we define the following fully discrete

method: For given unN ∈ CN , compute un+1
N ∈ CN by

un+1
N = eiτ∂

2
xunN + ΠN [AN1 (τ, unN ))−AN1 (0, unN )] + eiτ∂

2
xΠN [AN2 (τ, unN )−AN2 (0, unN )], (5.22)

where the expressions of AN1 (s, unN ) and AN2 (s, unN ) are defined in (5.1) and (5.11), respectively.

The method (5.22) can be equivalently written as (2.5), where ÂN1 (s, unN ) = ΠNA
N
1 (s, unN ) and

ÂN2 (s, unN ) = ΠNA
N
2 (s, unN ) are written into a form which is more convenient for computation.

6. Proof of Theorem 2.1

We define a nonlinear functional ΦN
τ : H1 → H1 which satisfies un+1

N = ΦN
τ (unN ) for the

numerical solutions un defined in (5.22), i.e.,

ΦN
τ (u) := eiτ∂

2
xu+ ΠN [AN1 (τ, u)−AN1 (0, u)] + eiτ∂

2
xΠN [AN2 (τ, u)−AN2 (0, u)]. (6.1)

The proof of the convergence is based on the following two results:∥∥u(tn+1)− ΦN
τ (u(tn))

∥∥
L2 ≤ C

(
τ2[ln(1/τ)]2 + τN−1

)
, (6.2)∥∥ΦN

τ (unN )− ΦN
τ (u(tn))

∥∥
L2 ≤ (1 + Cτ)‖unN − u(tn)‖L2 + CτN−1, (6.3)

where the constant C depends only on T and ‖u‖C([0,T ];H1). Estimates (6.2) and (6.3) can be
regarded as the local truncation error and the stability estimate, respectively. By using these
estimates and the triangle inequality, we have

‖un+1
N − u(tn+1)‖L2 = ‖ΦN

τ (unN )− u(tn+1)‖L2

≤‖ΦN
τ (unN )− ΦN

τ (u(tn))‖L2 + ‖ΦN
τ (u(tn))− u(tn+1)‖L2

≤ (1 + Cτ)‖unN − u(tn)‖L2 + C
(
τ2[ln(1/τ)]2 + τN−1

)
.

Then iterating this inequality yields the desired error bound in (2.8).
The proof of the local truncation error (6.2) is relatively simple. From (5.19)–(5.21) we

immediately see that∥∥u(tn+1)− ΦN
τ (u(tn))

∥∥
L2 . ‖Rn1‖L2 + ‖Rn2‖L2 + ‖Rn3‖L2 ≤ C(τ2[ln(1/τ)]2 + τN−1),

which implies (6.2).
The proof the stability estimate (6.3) is presented in Section 6.3, which requires the bound-

edness of numerical solutions in H1 uniformly with respect to the stepsize τ , while the proof of
such H1 estimate requires the boundedness of numerical solutions in Hγ for some γ ∈ (1

2 , 1).

The proof of such Hγ and H1 estimates are presented in the next two subsections, respectively.

6.1. Boundedness of numerical solutions in Hγ for γ ∈ (1
2 , 1)

In this subsection we prove the following lemma.

Lemma 6.1. Let u0 ∈ H1, L := bT/τc and γ ∈ (1
2 , 1). Then there exist positive constants τ0,

N0 and C depending only on ‖u0‖H1, T and γ, such that for τ ≤ τ0 and N ≥ N0 the numerical
solution given by (5.22) has the following error bound:

max
1≤n≤L

‖u(tn, ·)− unN‖Hγ≤ C(τ [ln(1/τ)]2 +N−1)1−γ , (6.4)

max
1≤n≤L

‖unN‖Hγ≤ C. (6.5)

Proof. By using the triangle inequality it is easy to see that (6.5) is a consequence of (6.4).
Therefore, it suffices to prove (6.4).

We prove the following bound for the local truncation error:∥∥u(tn+1)− ΦN
τ (u(tn))

∥∥
Hγ . τ(τ [ln(1/τ)]2 +N−1)1−γ . (6.6)

Indeed, from (5.19)–(5.21) we see that∥∥u(tn+1)− ΦN
τ (u(tn))

∥∥
H1 . ‖Rn1‖H1 + ‖Rn2‖H1 + ‖Rn3‖H1 . τ + ‖Rn3‖H1 , (6.7)
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where we have used the estimates of ‖Rn1‖H1 and ‖Rn2‖H1 in (4.7) and (4.12), respectively. The
bound for ‖Rn3‖H1 can be obtained by estimating each term in (5.20). For example, by using
the identities (4.18) and (4.24) we have

‖A1(τ, u(tn))−A1(0, u(tn))‖H1 =

∥∥∥∥∫ τ

0
iλBn

1 (s, u(tn))ds

∥∥∥∥
H1

. τ sup
s∈[0,τ ]

‖Bn
1 (s, u(tn))‖H1

. τ‖u‖3L∞(0,T ;H1) (6.8)

and

‖A2(τ, u(tn))−A2(0, u(tn))‖H1 =

∥∥∥∥∫ τ

0
iλBn

2 (s, u(tn))ds

∥∥∥∥
H1

. τ sup
s∈[0,τ ]

‖Bn
2 (s, u(tn))‖H1

. τ‖u‖3L∞(0,T ;H1). (6.9)

The term ‖AN1 (τ, u(tn))−AN1 (0, u(tn))‖H1 in (5.20) can be estimated by applying H1 norm to
(5.9) and using (6.8). The term ‖AN2 (τ, u(tn)) − AN2 (0, u(tn))‖H1 in (5.20) can be estimated
similarly. Substituting these estimates into (5.20) yields

‖Rn3‖H1 . τ, (6.10)

which together with (6.7) implies the following bound for the local truncation error:∥∥u(tn+1)− ΦN
τ (u(tn))

∥∥
H1 . τ. (6.11)

Then (6.6) can be obtained by using the Sobolev interpolation between (6.2) and (6.11).
Second, we prove the following stability estimate in the Hγ norm:∥∥ΦN

τ (unN )− ΦN
τ (u(tn))

∥∥
Hγ ≤ (1 + Cτ)‖unN − u(tn)‖Hγ + Cτ‖unN − u(tn)‖3Hγ . (6.12)

From the definition of ΦN
τ (u) in (6.1) we see that

ΦN
τ (unN )− ΦN

τ (u(tn))

= eiτ∂
2
x(unN − u(tn))

+ ΠN [AN1 (τ, unN )−AN1 (0, unN )− (AN1 (τ, u(tn))−AN1 (0, u(tn)))]

+ eiτ∂
2
xΠN [AN2 (τ, unN )−AN2 (0, unN )− (AN2 (τ, u(tn))−AN2 (0, u(tn)))]

=: J1 + ΠNJ2 + eiτ∂
2
xΠNJ3. (6.13)

By using the equivalent norm in (3.4) and its property (3.5), we have

‖J1‖Ḣγ = ‖u(tn)− unN‖Ḣγ . (6.14)

In order to estimate ‖J2‖Hγ , we use identities (5.9) and (4.18) , which implies that

− [AN1 (τ, u(tn))−AN1 (0, u(tn))]

=
(
A1(τ, u(tn))−AN1 (τ, u(tn))− [A1(0, u(tn))−AN1 (0, u(tn))]

)
− [A1(τ, u(tn))−A1(0, u(tn))]

= − iλ
∫ τ

0
ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(1−ΠN )(u(tn)2)

]
ds

+ iτλSu(tn)eiτ∂
2
x(1−ΠN )[u(tn)2]

+ iλ

∫ τ

0
ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
x(u(tn)2)

]
ds

= + iλ

∫ τ

0
ei(τ−s)∂

2
x
[
e−is∂

2
x ū(tn) eis∂

2
xΠN (u(tn)2)

]
ds

+ iτλSu(tn)eiτ∂
2
x(1−ΠN )[u(tn)2]

=: J21(u(tn)) + J22(u(tn)). (6.15)
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By using this expression we obtain that

J2 =
2∑

k=1

[J2k(u(tn))− J2k(u
n
N )]. (6.16)

It is straightforward to show that

‖J2k(u(tn))− J2k(u
n
N )‖Hγ . τ(‖u(tn)‖2Hγ + ‖unN‖2Hγ )‖u(tn)− unN‖Hγ for k = 1, 2. (6.17)

Substituting the estimates of ‖J2k(u(tn))− J2k(u
n
N )‖Hγ , k = 1, 2, into (6.16) yields that

‖J2‖Hγ . τ‖u(tn)− unN‖Hγ (‖u(tn)‖2Hγ + ‖unN‖2Hγ ). (6.18)

Note that ‖eiτ∂2xΠNJ3‖Hγ . ‖J3‖Hγ for γ ∈ (1
2 , 1). The term ‖J3‖Hγ can be estimated

similarly as ‖J2‖Hγ by using identity (5.16) and (5.17), which implies that

− [AN2 (τ, u(tn))−AN2 (0, u(tn))]

=
[
A2(τ, u(tn))−A2(0, u(tn))

]
− [AN2 (τ, u(tn))−AN2 (0, u(tn))]−

[
A2(τ, u(tn))−A2(0, u(tn))

]
= − iλ

∫ τ

0
u(tn)e−is∂

2
x(1−ΠN )[eis∂

2
xu(tn)]2ds

+ 2iτλeis∂
2
xSu(tn)u(tn)(1−ΠN )u(tn)

+ iτλu(tn)(1−ΠN )[u(tn)2]

+ iλ

∫ τ

0
u(tn)e−is∂

2
x [eis∂

2
xu(tn)]2ds

= + iλ

∫ τ

0
u(tn)e−is∂

2
xΠN [eis∂

2
xu(tn)]2ds

+ 2iτλeis∂
2
xSu(tn)u(tn)(1−ΠN )u(tn)

+ iτλu(tn)(1−ΠN )[u(tn)2]

=: J31(u(tn)) + J32(u(tn)) + J33(u(tn)), (6.19)

By using this expression we see that

J3 =

3∑
k=1

[J3k(u(tn))− J3k(u
n
N )]. (6.20)

Similarly as the estimates for ‖J2k(u(tn))− J2k(u
n
N )‖Hγ , it is straightforward to verify that

‖J3k(u(tn))− J3k(u
n
N )‖Hγ . τ(‖u(tn)‖2Hγ + ‖unN‖2Hγ )‖u(tn)− unN‖Hγ for k = 1, 2, 3.

Hence we obtain

‖J3‖Hγ . τ‖u(tn)− unN‖Hγ (‖u(tn)‖2Hγ + ‖unN‖2Hγ ). (6.21)

Then, substituting the estimates of ‖J1‖Ḣγ , ‖J2‖Hγ and ‖J3‖Hγ into (6.13) and using the
equivalence between ‖ · ‖Ḣγ and ‖ · ‖Hγ , we obtain

‖ΦN
τ (unN )− ΦN

τ (u(tn))‖Ḣγ ≤ [1 + Cτ(‖u(tn)‖2
Ḣγ + ‖unN‖2Ḣγ )]‖u(tn)− unN‖Ḣγ

≤ (1 + Cτ)‖u(tn)− unN‖Ḣγ + Cτ‖u(tn)− unN‖3Ḣγ . (6.22)

Hence, from (6.6) and (6.22) we obtain that (using the triangle inequality)

‖u(tn+1)− un+1
N ‖Ḣγ

≤ (1 + Cτ)‖u(tn)− unN‖Ḣγ + Cτ‖u(tn)− unN‖3Ḣγ + Cτ(τ [ln(1/τ)]2 +N−1)1−γ .

By using the discrete Gronwall’s inequalities, Lemma 3.5 and the equivalence between ‖ · ‖Ḣγ

and ‖ · ‖Hγ , we obtain for sufficiently small τ and sufficiently large N

‖u(tn+1)− un+1
N ‖Hγ . (τ [ln(1/τ)]2 +N−1)1−γ .

This completes the proof of Lemma 6.1. �
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6.2. Boundedness of numerical solutions in H1

Lemma 6.2. Let u0 ∈ H1 and L := bT/τc. Then there exist positive constants τ0, N0 and
C depending only on ‖u0‖H1 and T , such that for τ ≤ τ0 and N ≥ N0 the numerical solution
given by (5.22) has the following error bound:

max
1≤n≤L

‖unN‖H1≤ C. (6.23)

Proof. Let ηnN = u(tn)− unN . We need to prove the following results:

‖J2‖H1 . τ‖ηnN‖H1 , (6.24)

‖J3‖H1 . τ‖ηnN‖H1 . (6.25)

If (6.24)–(6.25) hold, substituting the two estimates above into (6.13) would yield

‖ΦN
τ (unN )− ΦN

τ (u(tn))‖Ḣ1 ≤ ‖ηnN‖Ḣ1 + Cτ‖ηnN‖Ḣ1 , (6.26)

and therefore (since un+1
N = ΦN

τ (unN ))

‖un+1
N − ΦN

τ (u(tn))‖Ḣ1 ≤ ‖ηnN‖Ḣ1 + Cτ‖ηnN‖Ḣ1 . (6.27)

From (6.11) we also know that

‖u(tn+1)− ΦN
τ (u(tn))‖H1 . τ. (6.28)

By using the triangle inequality, we have

‖ηn+1
N ‖Ḣ1 = ‖u(tn+1)− un+1

N ‖Ḣ1

≤ ‖u(tn+1)− ΦN
τ (u(tn))‖Ḣ1 + ‖un+1

N − ΦN
τ (u(tn))‖Ḣ1

≤ ‖ηnN‖Ḣ1 + Cτ‖ηnN‖Ḣ1 + Cτ. (6.29)

By using Gronwall’s inequality, we obtain

max
1≤n≤L

‖ηnN‖Ḣ1 . 1. (6.30)

This proves the desired result in (6.23). It remains to prove (6.24)–(6.25).
We prove (6.24) by using the expression in (6.16). From Lemma 6.1 we already know that

max
1≤n≤L

‖unN‖Hγ . 1 for any γ ∈ (1
2 , 1). By using this result with any fixed γ ∈ (1

2 , 1), from the

expression of J21(u) in (6.15) we derive that

‖J21(u(tn))− J21(unN )‖H1

.
∫ τ

0

∥∥e−is∂2x ū(tn) eis∂
2
xΠN [u(tn)2]− e−is∂2x ūnN eis∂

2
xΠN [(unN )2]

∥∥
H1ds

.
∫ τ

0

∥∥e−is∂2x ū(tn) eis∂
2
xΠN [u(tn)2]− e−is∂2x(ū(tn)− η̄nN ) eis∂

2
xΠN [(u(tn)− ηnN )2]

∥∥
H1ds

.
∫ τ

0

∥∥e−is∂2x ū(tn) eis∂
2
xΠN [u(tn)ηnN ]

∥∥
H1ds

+

∫ τ

0

∥∥e−is∂2x ū(tn) eis∂
2
xΠN [(ηnN )2]

∥∥
H1ds

+

∫ τ

0

∥∥e−is∂2x η̄nN eis∂2xΠN [u(tn)2]
∥∥
H1ds

+

∫ τ

0

∥∥e−is∂2x η̄nN eis∂2xΠN [u(tn)ηnN ]
∥∥
H1ds

+

∫ τ

0

∥∥e−is∂2x η̄nN eis∂2xΠN [(ηnN )2]
∥∥
H1ds

.
∫ τ

0
‖ηnN‖H1ds+

∫ τ

0
‖ηnN‖Hγ‖ηnN‖H1ds+

∫ τ

0
‖ηnN‖H1ds

+

∫ τ

0
(‖ηnN‖H1‖u(tn)ηnN‖Hγ + ‖ηnN‖Hγ‖u(tn)ηnN‖H1)ds
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+

∫ τ

0
(‖ηnN‖H1‖(ηnN )2‖Hγ + ‖ηnN‖Hγ‖(ηnN )2‖H1)ds

. τ‖ηnN‖H1 . (6.31)

The other terms ‖J22(u(tn)) − J22(unN )‖H1 can also be estimated similarly as ‖J21(u(tn)) −
J21(unN )‖H1 by using the expressions in (6.15), by expressing unN as u(tn) − ηnN and apply the
following result: for any product of three functions f, g, h,

‖fgh‖H1 ≤ ‖f‖H1‖g‖Hγ‖h‖Hγ + ‖f‖Hγ‖g‖H1‖h‖Hγ + ‖f‖Hγ‖g‖Hγ‖h‖H1 . (6.32)

Namely, the H1 norm only acts on one term in a product, and the other two terms involving
Hγ norm would be bounded according to Lemma 6.1. In this way, the following results can be
shown:

2∑
k=1

‖J2k(u(tn))− J2k(u
n
N )‖H1 . τ‖ηnN‖H1 . (6.33)

This proves (6.24), and (6.25) can be proved similarly by using identity (6.19). �

6.3. Stability estimates

Similarly as the Hγ-norm estimates in (6.18)–(6.21), by using the expressions in (6.16) and
(6.20) it is straightforward to verify that

‖J2‖L2 . τ(‖u(tn)‖2Hγ + ‖unN‖2Hγ )‖u(tn)− unN‖L2 , (6.34)

‖J3‖L2 . τ(‖u(tn)‖2Hγ + ‖unN‖2Hγ )‖u(tn)− unN‖L2 , (6.35)

which holds for any fixed γ ∈ (1
2 , 1). Therefore, we have

‖J2‖L2 + ‖ΠNJ3‖L2 . τN−1 + τ‖u(tn)− unN‖L2 . (6.36)

Note that (6.14) still holds for s = 0, i.e.,

‖J1‖L2 = ‖u(tn)− unN‖L2 . (6.37)

By substituting the estimates of ‖J1‖L2 , ‖J2‖L2 and ‖ΠNJ3‖L2 into (6.13) we obtain the desired
stability estimate in (6.3). This completes the proof of Theorem 2.1. �

7. Numerical examples

Example 7.1. We consider the NLS equation (2.1) with λ = −1. The initial value is given by

u0(x) =
∞∑
k=1

cos(kx)

|k|0.51+α
, (7.1)

which satisfies that u0 ∈ Hα and u0 /∈ Hα−0.01. For α = 1, 2, we solve the problem by the
proposed method (2.5) and denote by uτ,N the numerical solution with time stepsize τ and
degrees of freedom N (in the spatial discretization). We compare the numerical solution with
the reference solution uref

τ,N , which is computed by using the following general low-regularity

integrator proposed in [23] (with spatial discretization by the trigonometric interpolation):

un+1
N = eiτ∂

2
xunN − iλeiτ∂

2
xIN

[
IN (unNu

n
N )
(
τSūnN +

i

2
(e−i2τ∂

2
x − 1)∂−2

x ūnN
)]
. (7.2)

The time stepsize of the reference solution is set to τref = 2−16. Further decreasing the time
stepsize in the reference solution does not affect the numerical results.

We present the temporal discretization errors ‖uτ,N − uref
τref ,N

‖L2 for both H2 and H1 ini-
tial data with sufficiently large N in Tables 1–2, which show that the errors from the spatial
discretization is negligibly small in observing the temporal convergence rates, i.e., almost first-
order convergent as τ → 0. This is consistent with the theoretical result proved in Theorem
2.1.
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Table 1. Temporal discretization error ‖uτ,N − uref
τref ,N

‖L2 at T = 1

with α = 2 in (7.1) (for H2 initial data).

N = 28 N = 29 N = 210

τ = 2−6 8.466E–03 8.466E–03 8.466E–03

τ = 2−7 4.271E–03 4.271E–03 4.271E–03

τ = 2−8 2.157E–03 2.157E–03 2.157E–03

convergence rate O(τ0.99) O(τ0.99) O(τ0.99)

Table 2. Temporal discretization error ‖uτ,N − uref
τref ,N

‖L2 at T = 1

with α = 1 in (7.1) (for H1 initial data).

N = 28 N = 29 N = 210

τ = 2−5 6.488E–02 6.506E–02 6.511E–02

τ = 2−6 3.222E–02 3.252E–02 3.260E–02

τ = 2−7 1.570E–02 1.631E–02 1.645E–02

convergence rate O(τ1.00) O(τ1.02) O(τ0.99)

We present the spatial discretization errors ‖uτ,N − uref
τ,Nref

‖L2 for both H2 and H1 initial
data in Tables 3–4 for several sufficiently small stepsize τ with Nref = 1024. From the numerical
results we can see that the error from temporal discretization is negligibly small in observing
the spatial convergence rates, i.e., αth-order convergence for Hα initial data. This is consistent
with the result proved in Theorem 2.1 in the case α = 1. The numerical results for α = 2
indicate that the convergence order of the spatial discretization increases as the regularity of
the initial data increases (though this is not proved in Theorem 2.1).

Table 3. Spatial discretization error ‖uτ,N − uref
τ,Nref

‖L2 at T = 1

with α = 2 in (7.1) (for H2 initial data).

τ = 2−14 τ = 2−15 τ = 2−16

N = 8 7.436E–03 7.436E–03 7.436E–03

N = 16 1.893E–03 1.892E–03 1.892E–03

N = 32 4.788E–04 4.731E–04 4.712E–04

convergence rate O(N−1.98) O(N−1.99) O(N−1.99)

Table 4. Spatial discretization error ‖uτ,N − uref
τ,Nref

‖L2 at T = 1

with α = 1 in (7.1) (for H1 initial data).

τ = 2−12 τ = 2−13 τ = 2−14

N = 16 4.262E–02 4.264E–02 4.266E–02

N = 32 2.130E–02 2.127E–02 2.127E–02

N = 64 1.068E–02 1.058E–02 1.056E–02

convergence rate O(N−1.00) O(N−1.01) O(N−1.00)

Example 7.2. It is known that the general low-regularity integrator proposed in [23] can
weaken the regularity condition for a general nonlinear function f(u, ū), not only for the cubic
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nonlinearity f(u, ū) = |u|2u. For comparison, we present the numerical solutions given by our
proposed method and the general low-regularity integrator proposed in [23] in Figure 1 for both
H1 and H2 initial data, with N = 210 degrees of freedom in space which is sufficiently large for
observing the convergence order in time. The H1 and H2 initial values are generated by (7.1)
with α = 1 and α = 2, respectively.

The numerical results show that, for the specific cubic nonlinearity f(u, ū) = |u|2u, the
method proposed in this article by using the Littlewood–Paley decomposition technique can
achieve higher-order convergence for H1 initial data. Both the methods have first-order con-
vergence for H2 initial data. For general nonlinearities and general boundary conditions, the
method in [23] is the only known low-regularity integrator so far.

(a) H1 initial data (b) H2 initial data

Figure 1. L2 errors of the numerical solutions given by different methods where
the final time is set to be T = 1.0 and the reference timesteps are τref = 2−16, and
the reference solutions are computed from (7.2), i.e., the general low-regularity
integrator proposed in [23]. The method proposed in this article is in blue, the
method of [23] is in yellow.

8. Conclusion

We have constructed a new low-regularity trigonometric cosine integrator for solving the
one-dimensional NLS equation in a bounded domain under the Neumann boundary condition.
In this case, the frequency analysis in the literature cannot be used for the consistency analysis.
The method developed in this article is constructively designed through the consistency analysis
by using the Littlewood–Paley decomposition of the solution, in order to have almost first-order
convergence for H1 initial data. We have shown that the proposed method has an error bound
of O(τ [ln(1/τ)]2 + N−1) for H1 initial data, and can be implemented by using FFT with a
computational cost of O(N lnN) at every time level. The approach developed in this article
relies on the Littlewood–Paley decomposition of the solution for specific problems and specific
boundary conditions. The construction of such low-regularity integrators for other nonlinearities
and the Dirichlet boundary condition is still challenging.

References

[1] R. A. Adams and J. J. F. Fournier: Sobolev Spaces. Second Edition, Academic Press, Amster-
dam, 2003.

[2] YA. Bronsard, Y. Bruned, and K. Schratz: Low regularity integrators via decorated trees. arXiv
preprint arXiv:2202.01171, 2022.

[3] Y. Bruned and K. Schratz: Resonance based schemes for dispersive equations via decorated trees.
Forum of Mathematics, Pi, 10, E2. doi:10.1017/fmp.2021.13.



27

[4] T. Cazenave: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics 10, Amer-
ican Mathematical Society, 2003.

[5] J. Eilinghoff, R. Schnaubelt, and K. Schratz: Fractional error estimates of splitting schemes for the
nonlinear Schrödinger equation. J. Math. Anal. Appl. 442 (2016), pp. 740–760.

[6] D. Guidetti: On interpolation with boundary conditions. Math. Z. 207 (1991), pp. 439–460.
[7] M. Hochbruck and A. Ostermann: Exponential integrators. Acta Numerica 19 (2010), pp. 209–286.
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