A CONSTRUCTIVE LOW-REGULARITY INTEGRATOR
FOR THE 1D CUBIC NONLINEAR SCHRODINGER EQUATION
UNDER THE NEUMANN BOUNDARY CONDITION

GENMING BAI, BUYANG LI, AND YIFEI WU

ABSTRACT. A new harmonic analysis technique by using the Littlewood—Paley dyadic de-
composition is developed for constructing low-regularity integrators for the one-dimensional
cubic nonlinear Schrodinger equation in a bounded domain under the Neumann bound-
ary condition, when the frequency analysis based on the Fourier series cannot be used. In
particular, a low-regularity integrator is constructively designed through the consistency
analysis by the Littlewood—Paley decomposition of the solution, in order to have almost
first-order convergence (up to a logarithmic factor) in the L? norm for H! initial data.
A spectral method in space, using fast Fourier transform with O(N In N') operations at
every time level, is constructed without requiring any CFL condition, where N is the
degrees of freedom in the spatial discretization. The proposed fully discrete method is
proved to have an L2-norm error bound of O(7[In(1/7)]> + N~1) for H! initial data,
where 7 is the time stepsize.

1. Introduction

Classical time discretization methods for the nonlinear Schrodinger (NLS) equation typi-
cally requires the initial data to be in H?*?™ in order to have mth-order convergence in H”
(for sufficiently large v > 0), where HY2™ denotes the conventional Sobolev space and m is a
positive integer. This requirement is optimal for the Strang splitting methods [5,/18], the Lie
splitting method [9], and classical exponential integrators |7]. The finite difference methods
generally require more regularity of the initial data, i.e., one temporal derivative on the solution
generally requires the initial data to have two spatial derivatives to satisfy certain compatibility
conditions; see [24,[26].

Recently, a low-regularity type exponential integrator was introduced in [8,[21] to reduce
the regularity requirement in solving nonlinear dispersive equations under periodic boundary
conditions. For ~ > g, where d denotes the dimension of space, such low-regularity integrators
can have first-order convergence in H? for initial data in H?*!. In one dimension, a low-
regularity integrator was proposed in [27] with first-order convergence in H? for initial data
in HY when v > % These results imply that it is possible to develop first-order convergent
numerical methods when the regularity of the solution is strictly below H2. A second-order
low-regularity integrator for the NLS equation was constructed in [10], which requires the initial
data to be in HYt2 and H'*3,y > % when d = 1 and d > 2, respectively.

The techniques were also used in developing low-regularity integrators for other nonlinear
dispersive equations, including the nonlinear Dirac equations and the KdV equations; see [16,
21,22}25,|28]29]. Lower-order convergence of the numerical solution when the regularity of the
solution is below H' was analyzed by using the discrete Bourgain spaces introduced in [20]. A
fully discrete low-regularity integrator for the NLS equation with a Fourier spectral method in
space was constructed in [15], with computational cost O(N In N) at every time level and has
first-order convergence (up to a logarithmic factor) in both time and space for H! initial data,
where NNV is the degree of freedom in the spatial discretization. All these results require periodic
boundary conditions, as the numerical methods were constructed by using the twisted-variable
techniques based on the Fourier series expansion of the solution in the Duhamel formula.
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Under general boundary conditions (including periodic, Dirichlet and Neumann boundary
conditions), a general framework of low-regularity integrators was introduced in [23] based on the
semigroup techniques without using Fourier series expansion of the solution. In one dimension,
it is shown that the numerical solution of the NLS equation can have first-order convergence
when the initial data is in H1. Generalisations of these schemes have been completed in recent
works by using combinatorial objects that are decorated trees for writing low regularity schemes
for a large class of PDEs; see [|2,3]. Under the Dirichlet or Neumann boundary condition, the
following results still remain open:

e The construction of a first-order low-regularity integrator which only requires the initial
data to be in H';

e The extension to fully discrete low-regularity integrators under the same regularity re-
quirement.

Note that the harmonic analysis techniques in [15] is on the frequency domain and therefore
significantly relies on the following property of the eigenfunctions of periodic Laplacian:

ek gikar _ ilkitk2)r g, ki,ko € N,
while this property does not hold for the eigenfunctions of the Neumann Laplacian, i.e.,
cos(kyz) cos(kox) # cos[(k1 + k2)x| for ki, ko > 1.

As a result, the frequency analysis techniques in [15] can not be used under the Neumann
boundary condition.

The objective of this article is to fill in this gap for the one-dimensional NLS equation under
the Neumann boundary condition, by constructing a fully discrete low-regularity integrator
which has computational cost O(N In N) at every time level and first-order convergence (up
to a logarithmic factor) in both time and space for H! initial data. We shall construct and
analyze a new method by developing new harmonic analysis techniques on the physical domain,
utilizing the Littlewood—Paley dyadic decomposition of the solution. More specifically, in the
variation-of-constants formula

Wtng1) = €% u(ty) — iA / e T [u(t, + 5)[2ulty + s)]ds,
0

we approximate the function u(t, + s) by €*%u(t,) as usual and therefore obtain the following
expression of the solution:

)
wtnin) = R u(ty) — iA / (i(r=9)02 g=isR g4 ois0R 4 ) ei50R (4 Vs 4 R,
0

The remainder R} can be estimated as usual, with ||R}| g < C’7‘2||u||‘zoo(O r.g1y-  This is

the same as starting stage in the construction of the low-regularity integrators in [2,/15,23].
The main idea of this article is to rewrite the above formula into the following form:

wltyin) = €™ u(ty) — iA / B (s, u(t,))ds + R
0

with
B" (s, u(ty)) = T9% [~ 4 (t,) €*%u(s)]  and  w(s) = e 0% (%u(t,))?,

and then decompose B"(s, u(t,

B" (s, u(tn)

) into the following three parts:

)
) =B} (s, ultn)) + €7% BY (s, u(tn)) + 75 ()
with
(tn)) = ot (7=5) )92 [efisagﬂ(tn) eisagv(o)];
(tn)) = u(tn) (v(s) — v(0))

rg(s) = €TI% [ P a(ty) €% (u(s) — v(0))] — €% [a(ta) (v(s) — v(0))],
where 73(s) is a remainder to be dropped in the numerical scheme. In this decomposition,
B} (s, u(ty)) is an approximation of B"(s u(t,)) by the commutator technique in 23], i.e., ap-

proximating v(s) = e % = (e 15074y (¢ n)) by v(0) in the expression of B" (s, u(ty,)) yields B (s, u(ty))

Bi(s,u

By (s,u



with the remainder

=2 ¢ (1) ¢ o 5) — (0))].

We further approximate this remainder by /™0 B (s,u(t,)). This leads to the new remainder
5 = fOT r(s)ds. This further approximation, as well as the discovery of the closed forms of

/T BT(s,u(ty))ds and /T B3 (s, u(ty))ds, (1.1)
0 0

is inspired by the frequency analysis in [15]. The resulting remainder Ry = [ r5(s)ds can be
estimated by distributing the derivatives more equally to the functions in the product through
the analysis using the Littlewood-Paley decomposition. The technical parts of this article are
the derivation of the closed forms for the two integrals in (1.1]), the error analysis for the time
discretization by the Littlewood-Paley decomposition, as well as the construction and analysis
of the spatial discretization with rigorous error estimates.

The construction of the low-regularity integrators in [2,23] treat general nonlinearities by
using the fundamental theorem of calculus and by exploring the cancellation of the highest-order
derivative using commutators, while the low-regularity integrator constructed in this article is
constructively designed based on more detailed analysis of a specific form of nonlinearities, such
as the cubic nonlinearity in the NLS equation, by combining the commutator approach in [23]
and the frequency analysis in [15] (as mentioned above), as well as the error analysis using the
Littlewood—Paley decomposition. As a result, the scheme constructed in this article can further
weaken the regularity condition for a specific form of nonlinearity, while the schemes in [2}23]
work well for more general nonlinearities.

In the construction of spatial discretization, several techniques are introduced to resolve
the incompatibility between the low-regularity integrator and the Neumann boundary condition.
These techniques can also be used for the construction of spatial discretization methods for other
low-regularity integrators under the Neumann boundary condition.

The rest of this article is organised as follows. The fully discrete low-regularity integrator
and the main theorem are presented in Section 2] The construction of the time discretization
method and the analysis of its consistency error are presented in Section [d] The construction
of the spatial discretization method and the analysis of its consistency error are presented in
section Section[5] The stability and error analysis for the fully discrete method are presented in
Section [} Numerical results are provided in Section [7] to support the theoretical analysis and
to illustrate the performance of the proposed numerical method.

2. The main results

Let H®, s € R, be the conventional Sobolev space of functions on the domain Q = (0, 7).
We consider the one-dimensional cubic NLS equation

i0pu(t, z) + 02u(t, x) = Nu(t, z)[*u(t,z) for z € Q and t € (0,T),

Opu(t,z) =0 for z € 9Q and t € (0,71, (2.1)
u(0, z) = u®(x) for z € Q,
on the bounded domain €2, where A = —1 and 1 correspond to the focusing and defocusing

cases, respectively.
Let Sy and Cy be the finite-dimensional subspaces of L?(€2) defined by

N N
SN:{fELQ:f:kasin(kw)} and C’N:{fELQ:f:kacos(ka:)},
k=1 k=0
and denote by 9 2 the inverse of the Neumann Laplacian in the sense of Fourier cosine multiplier

on 2. For any f = Zl]{\;o fk cos(kx), with the Fourier cosine coefficients fk, k=0,...,N, stored
in the computer, one can easily compute the Fourier cosine coefficients of 9;2f € Cy and
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€is9: f € Cy by

N N
02 f = — Z k=2 f, cos(kz) and e f = Z A cos(kx) (2.2)
k=1 k=0
and the Fourier sine coefficients of 0, f € Sy by

N
O f = —Zkfk sin(kx). (2.3)
k=1
If f,g € Sy then the fg € Cony N HY. And if f,g € Cx then the fg € Con.

Let Iy : H' — Cy be the trigonometric cosine interpolation operator, i.e., I f is obtained
by first extending f to be an even function on the torus [—m, 7] and then applying the standard
(2N + 1)-term trigonometric interpolation on the torus; see [15, eq. (2.5)]. The trigonometric
interpolation of the even function would yield a cosine series which, restricted to Q = (0, ),
is the function Iy f. To be more precise, given f € H'(0,7), we denote its even extension as

fe{ue H (—m, ) u(—7) = u(r)} = HY(T). Then Iy : H(0,7) — Cy is defined as

N N
Inf)i= Y0 @R for fim o 3 e e
k=—N n=—N
where
Ty = 2mn for n=—-N,...,N.
2N +1 T

Since fis an even function, we have fk = j’ik, and this leads to Iy f € Cn. Furthermore we
define the averaging operator

Sf:= 1/Qf(x)dx (2.4)

m
and the projection operator

N 00
Iyf:= ka. cos(kx) for f= ka cos(kx).

k=0 k=0
Let t, = nt, n =0,1,..., L, be a sequence of time levels with stepsize 7 and L = [T/7].
The fully discrete low-regularity integrator for (2.1) constructed in this paper is defined as
follows: Let u% = Inu®, and for given u%, € Cy compute uii™! € Cy by
uptt = T+ AN (ry ) — AN (0, u) + TR AY (ruk) = TEAY(0,uR),  (25)
where
~ 1 . A .
AN (s, uly) = 5)\62(7—_8)8%1_[]\[8;2890 [8908;26_’583 'y eIy (uRuy)]
— isAS[uN I N (uRruly)]
— isASTL TN (€770 (wihuy) — S(ubuty)), (2.6)
N A . .
AN (s,ul) = §HN [E”N 6—158§HN (OIG;Qstaiu"Nf]
+ isAy (WhIly (uul))
— 2isASuR Iy (Juf|?)
+ isA(Suly ). (2.7)

The construction of the method is presented in Section From (2.5)—(2.7) we see that the
method only requires computing several functions of the following two types:

o 0;%f, O,f and =IO f for some function f € Copn,
e fg, fh, and hk for some functions f,g € Cy, and h,k € Sn.
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The coefficients of Fourier cosine series of the first type of functions can be computed exactly
by 7. The coeflicients of Fourier sine series of the second type of functions can be
computed exactly by using the (4N +1)-point fast Fourier transform (FFT). For example, we can
extend f and h to be odd and even functions on the torus (—m, 7) and then apply the (4N +1)-
point FFT (first evaluate, then do trigonometric interpolation at (4N + 1) equidistant points)
to compute the Fourier coefficients of the odd function fh exactly. Hence, the computational
cost is O(N In N) at every time level.

The convergence of the proposed fully discrete method in is presented in the following
theorem.

Theorem 2.1. Ifu® € H' then there exist positive constants 19, No and C such that for 7 < 7y
and N > Ny the numerical solution given by (2.5) has the following error bound:

max |u(t,, ) — uhy|ze < C(r[In(1/7)]> + N71), (2.8)

1<n<L
where L := |T/7]| and the constants 79, No and C depend only on T and ||u®|| g1 .

The rest of this paper is devoted to the construction of the method ([2.5) and the proof of
Theorem [2.1]

3. Preliminary results

In this section, we introduce the basic notation and harmonic analysis results to be used
in the construction and analysis of the numerical method.

3.1. Notation

Let H* be the conventional Sobolev space on Q = (0,7), with L? = H?. The sesquilinear
inner product and norm on L? are denoted by

(f.9) = /Q f@)g@)dz and |flz: = V7. ).

respectively. Moreover we define the dotted Sobolev space on 2 = (0,7) as
[e.e] [e.e]
. p p A2
H(Q) = {ka cos(ka) : |fol> + S k1l < oo}, (3.1)
k=0 k=1
and we will specify its norm in the next section.

3.2. Eigenfunctions expansion and the H* norm

We consider the Neumann Laplacian A : D(A) — L%, where A = —A has the following
domain:
D(A)={ve H*: 9,v(z) =0 at 2 =0,7}.
Any f € L? can be expanded into a series of the eigenfunctions of A, i.e.,

o ;2
f= ka cos(kx) with fr = / f(x) cos(kx)dx. (3.2)
T Jo
k=0
It is straightforward to verify that
0of == kfisin(k) for f e H' = D(A?),
k=1
OXf = — Z k2 fy, cos(kx) for f e D(A),
k=1

0202 f = Pf := Z i cos(kx) for f e L?
k=1



where
Pf=f—Sf, with S defined in ({2.4).
and
11 ~ [fol? + D [k fil> for fe H* and s=0,1,2, (33)
k=1

where H? = L2, H' = H' and H?> = D(A).

Following 19, Definition 2.1, 2.3], we define the complex interpolation spaces as below. Let
D be the strip {z=2+iy € C:0 <z <1} and X,Y be two Banach spaces. Let F(X,Y) be
the space of all functions f: D — X 4+ Y such that

(i) f is holomorphic in the interior of D and continuous and bounded up to its boundary,
with values in X +Y.
(ii) t— f(it) € Cp(R; X), t — f(1 +it) € Cp(R;Y), and

11l 7¢xyy = max{sup [ f(it) || x, sup [ (1 +it) [y } < 4o0.
teR teR
Then the complex interpolation space (X,Y ), with 6 € [0,1], is defined through the traces
on the real axis of the functions in F(X,Y), i.e., (X,Y)g = {f(0) : f € F(X,Y)} with the

following quotient norm:

= inf .
HaH(va)[e] feF(X,lir/l),f(O)za HfHJ-‘(X,Y)

For s € [0,2], H® coincides with the complex interpolation space (L%, H %)(s/2» With the
following norm:

I fll s = (\f0|2 +Z |k!2s\fk!2>2 for f e H®. (3.4)
k=1

This is equivalent to the conventional H® norm, but has the following useful property (with
equality instead of equivalence):

52
€% £l 7o = £ 1l gro- (3.5)
Property (3.5 will be used in the stability estimates for the numerical method.

3.3. Littlewood—Paley type decomposition

We denote by N the set of nonnegative integers. For N € Nand f = > 77, fr cos(kx), we
define the following several projection operators on L?:

N
Infi=)Y freos(ke), Msnf:=f-Tyf and Pyf:=Tonf-Tnf,
k=0

with Pyf :=II1 f. The following estimates are consequences of .
Lemma 3.1. For s =0,1,2, the following inequalities hold:
TN f{| e S N°Ifll2 for f e L
TN fll e S N2\ fllas for fe H?,
IPNFll e S NI flle for fe L2

If we denote by Ny = {0} U {2F : k € N} the set of dyadic integers, then the following
Littlewood—Paley type dyadic decomposition holds:

f=Y Pyf for fel® (3.9)
NeNy
and
£, = > IIPvfII5. for feH® for s€0,2]. (3.10)

NeNy
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The following Kato—Ponce inequality and Gagliardo—Nirenberg interpolation inequality will
be used in the analysis of the consistency error.

Lemma 3.2 (The Kato—Ponce inequality |11]). Ifs > % then
Ifgllas S I fllasllglas v fg € H.

Lemma 3.3 (Gagliardo—Nirenberg interpolation inequality [1]).
1 1
F e S WA Y feH.

Remark 3.4. A powerful general Leibniz rule for fractional Laplacian operators has been re-
cently established in the deep work of Li [2]. See also [?] for a remarkable new effective mazimum
principle which is developed for the first time for general spectral methods.

3.4. Accuracy of trigonometric interpolation

The following trigonometric interpolation error estimate will be used in the construction
of the spatial discretization.

Lemma 3.5 (Trigonometric interpolation error). Let f € H? with 5 € [0,2]. Then the following
estimate holds for N > 1:

1f = I fll e S NOfll g i 0 <B.

Proof. If f € HP with 8 € [0,2], then its even extension f is in H?(T), where T is the one-
dimensional torus [—m, 7| that identifies the two endpoints —m and w. For the function f €

HP(T) the trigonometric interpolation Iy on the torus [—7,7] has the following standard error
bound (see |12, Theorem 11.8]):

17 = 7l ooy S 8N gy S Nl when 0< <.

Since Iy f is defined as the restriction of Iy f to Q = (0, 7) (see the definition in Section , the
above estimate implies the desired result of Lemma [3.5 U

3.5. Global well-posedness of NLS equation (2.1) in H'~ H!

The Neumann boundary condition does not make sense when we consider low regularity
solution, say H'. Thus we need to find a suitable substitute function space. The space Hs,
defined by Fourier cosine multipliers, is an appropriate candidate in the sense that for large
s, s > 2 for example, the derivative of the cosine Fourier series, which is a sine Fourier series,
converges uniformly and thus vanishes at the boundary. Therefore, the functions in H? satisfy
the Neumann boundary condition. By the complex interpolation theory, see [6, Theorem 2.3]
with the identifications L* = B9, and H? = D(A) = 32,2,8 therein, the following relation holds:

0 = (L27H2)[s/2} = (Bg,%B%,Z,B)[sﬂ] = BS,Z,B for s € (3/272]’
HS = (L2’H2)[S/2} =H°® for s € [0,3/2),
where By () = {u € By () : dyu(x) = 0 at x = 0,7} with s > 1+ 1/p denoting the

subset of Besov space on Q = (0,7) with gradient vanishing on the boundary. In particular,

the functions in H*, with s > 3/2, satisfies the Neumann boundary condition. Similar results
for real interpolation spaces with boundary conditions can be found in [17].

Analogous to unbounded domain and torus cases, we have the following global well-
posedness result.

Theorem 3.6. For u® € H', there exists a unique solution u € C ([0, T); HY, with any T > 0,
satisfying the integral equation:

t
u(t) = 020 — i)\/ ei(t=5)0z (Ju(s)|*u(s))ds. (3.11)
0
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Proof. By the norm equivalence of H® and H® with s € [0,2], we know that H' is an algebra
under pointwise product. Follow the standard arguments in [4], then the local existence and
uniqueness of solution follow directly from Banach fixed point theorem. Moreover the maximal
local existence time Tj,. = Tjoe(||u°|] 1) depends only on the H I norm of the initial data.
Furthermore the global existence is a consequence of mass and energy conservation. Since
the cubic nonlinearity is L? subcritical in one dimension, the global existence holds uncondi-
tionally for both focusing and defocusing cases. O

4. Construction and analysis of the time-stepping method

In this section we construct the numerical method through analysing the consistency error
in approximating the Duhamel formula.

4.1. Construction of the time-stepping method

From Theorem we know that the NLS equation (2.I), with initial value u° € H!, has a
unique solution u € C([0,T]; H') satisfying Duhamel’s formula:

-
ltyin) = €7 uty) — iA / =9 [yt + 8)[2ultn + 5)]ds. (4.1)
0
Moreover, the solution satisfies the mass conservation law
1 1
/ lu(t, )| dz = / @)z for t> 0. (4.2)
T JQ ™ Ja
For the simplicity of notation, we denote the mass of the solution by
1
M := / [u® ()| da. (4.3)
™ Ja

Through approximating the function u(t, + s) in the integral of (1) by % u(t,), we
obtain

Wtni1) = €% u(ty) — iX / e T [0 g (4,) e u(ty )™ % u(t,)]ds + RY, (4.4)
0
with
=i / =908 [| %5 (1,) 22 u(ty) — |ulty + 5)|*u(tn + s)]ds. (4.5)
0

The remainder R} will be dropped in the numerical scheme. By using the Kato—Ponce inequality
in Lemma it is straightforward to verify that for o € (3, 1]

.
o o
1B e S / (lultn + 8) 3 + 1% u(ta)[Fe)lle**ultn) — ulty + 5| Hads.
0
The term [|e’% wu(t,) — u(t, + )| 1 can be estimated by applying Lemma 3.2 to (£.1)), i.e.,

[u(tnsr) — €% u(tn) |l S \ / T [|u(t,, + 5)[u(t, + 5)]ds
0

H1
S T||U||30([0,T};H1)- (4.6)
The two estimates above imply that
1R |zt S 7 ullEoe 0,151 )- (4.7)
We further rewrite (4.4]) as
u(tne1) = eiTagu(tn) - i)\/ B"(s,u(t,))ds + R}
0

with
B"(s,u(ty)) = el(T=5)02 [e*isagﬁ(tn) eisagv(s)] and wv(s) = e~ is0z (eisagu(tn)f. (4.8)
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The motivation for the definition of v(s) will become clear in Section in the analysis of
the consistency error, i.e., this choice of definition allows us to explore more cancellation in
estimating the remainder of the numerical scheme. With the above definition, we have

Bn(s, u(tn)) _ ei(T—s)@% [e—isagﬂ(tn) eisagv(o)]
+ e’i(T—S)@% [e—isagﬂ(tn) ez‘s@ﬁ (’U(S) _ ’U(O))]
=: BY (s, u(tn)) + ¢ BY (s, u(tn)) + 15 (s) (4.9)

n)) _ ei(T—s)@% [e—isagﬂ(tn) eis@fcv(o)] :
)

) = a(tn) (v(s) — v(0))

and therefore
Wtns1) = €% u(ty) — i / ' B (s, u(ty))ds — i) / ’ "% By (s, u(ty))ds + R} + Ry, (4.10)
with ' '
R} = —i) /0 ' r2(s)ds. (4.11)

We shall approximate (4.10) by integrating B} (s, u(ty)) and Bj (s, u(t,)) analytically, and drop-
ping the remainders R} and R5.
The remainder R} is already estimated in (4.7)). From the definition of 4 (s) in (4.9)), i.e.,

r3(s) = el TTI% [ 1% g (t,) €% (u(s) — v(0))] — €% [a(ta) (v(s) — v(0))],
it is easy to see that

TS /0 Ir5() s S 7lluld e ooy (4.12)

This estimate is, however, not sufficient to prove the first-order convergence of the numerical
solution. A higher-order estimate of | R% |12 is presented in Lemma 4.5 and Section 4.4| by using
the bilinear Littlewood—Paley decomposition.

4.2. The anti-derivative of B} (s, u(t,))
To proceed to the construction of anti-derivatives, we need the following two lemmas to

justify the afterward calculus of Fréchet derivatives.

Lemma 4.1. For any f € H' = H', the Fréchet derwative d%eisagf exists in (H')', i.e., the
dual space of H', and it holds that

d . .
£61885 f=(—i0,e"% f 0,) € (HY. (4.13)
Proof. We first construct g(s) := 3. e ** (—ik?)f, € (H'). Then for any ¢ € H! we have
k=0
S —isk?/ . >
(9:0) = e ™ (—ik?) froy,
k=0

™K (—ik) fik oy

e

i

0
= —i(0,"% £, 0,), (4.14)

thus g = (—i0,€"% f,0,-) € (H')'.
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By definition, it suffices to show the following limit exists and is zero

ei(s+h)07 _ isd3
lim sup f—gv
h—0 ||v|| 1<1 h I2

N —i(s+h)k? _ j—isk?

e 2 S
=lim sup lim Z < + eTisk zk:2> fxUk
h—0 [ o] 1 <1 N—+o0 0 h

= lim sup + Z - e_ighﬁka)e_iSinkﬁk%\k for some [&5, ;| < |A. (4.15)
h—0
||”||Hl<1 k=0 k=K-+1
We can choose K large enough such that the residual term is small (uniformly w.r.t. h and
v). On the other hand, for the first K + 1 sums, a sufficiently small A can be chosen so that

e~énik* _ 1 is small (uniformly w.r.t. v and k = 0, . ) These altogether show that the limit
7,(s+h) 159

exists and is zero. This proves that limp_,o & g€ = f —gin (H'Y. O

Lemma 4.2. The following Fréchet derivative exists in L? and the identity

0,20, (0.0, % () 0(0)] = — i(1 — 8) e Ra(tn) % (0)]
+i(1— 8)[0,0; 2 5% a(t,) 8,0 (0)]
+iSu(ty) (% v(0) — Sv(0)) (4.16)

holds, where the averaging operator S is defined in (2.4]).

Proof. Take difference quotient and we obtain

-2 _—i(s i(s 2 —1is 1502
0720, 10,07 % (1, ) T 0)] — 3 0720,10,07 ¢ (1) o(0)]
—i502

x

—i(s+h)02
h

B i(s o 5 ei(s—l—h)@i _ 61’583
(tn)e TN 0(0)] + O 0, 0,0, e (1) - v(0)]-

(4.17)

g€ —e

=020,0,0;

To simplify the notation, we use A(¢, h) % B(¢, h) to denote the relation limy,_, SUP|| 4|, ,<1 |A(p, h)—

B(¢,h)| = 0. Thus upon testing (4.17) by ¢, we have

e—i(s+h)0Z _ —is03
h

— (8,0, %e "% q(t,)

—z(s—l—h) : e—zs@%

4 (¢ a(tn), 05 20ple % 5(0)0,0; 20))

ei(s+h)07 _ isd;

—( v(0), 8x0;26i885u(tn)6z6;2¢)

— (8,0, U(ty ) CHM%0(0), 0,0, %)

i(s+h)02 _ _isd?
—————0(0),2,0, )

axeisag (0), 950,052 1507 u(t )axé);?qj]) (c.f. proof of Lemma
t), (1 — 8)0y[e%D(0)0,0; 2¢))

— 8)e" ™ u(t)0,0; 2 + 0,0, 2™ Fu(t) (1 — S)9)

e 02 (t,), Dpe*050(0)0,0;, 2 + ¢ % 5(0) (1 — S) )

€ %0(0), "% u(tn) 9,0 26 + (1 — 8)e P u(ty)(1 — S)o)

20(0), 0,0, ¢ u(ty) (1 - 5)¢),
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where in the first and last equality we have used integration by parts. This is legitimate in view
of the boundary condition (0,0, 2f)(z) =0 at z = 0 and z = 7 for any f € L2 We have also
used the relation S(d.g) = 0 with g € Hj. By using integration by parts again, we obtain

— (e ( n), 006 %5(0)0,0; 2 + e~ #%5(0) (1 — §)¢)
— ("% v(0), B, e”axu( tn)0205 20 + (1 — 8)e™ %2 u(t,) (1 — S)g)
(0 xewa ), 020 2P u(t,) (1~ S)g)
( xefzsa (tn —is02 ( )axa;%)
2(6”62 0005 u(t,)0,0, 20 + (1 — S)e* 2 u(t,) (1 — 5)¢)
(
(
(0

)

++

_l’_

50 v(0

xezsé?Q 0) Oy a 2 zs@zu(

—1

(0)

C%e 20(0), 0205 % u(ty) (1 - §)o)
), (1= S)e % u(t,) (1 - S)¢)
( tn)(1 = 8)9)

— (i1 = ) [e7*a(ty) €% 0(0)]. 6)

+ (i(1 — 5)[0,0; _’Sazu( )8$eisa%v(0)],¢)

(zSu(tn)(ewa’EU( 0) — Sv(0)),¢), (use the relation (u, Sv) = (Su,v))

which, by definition, is exactly what we want to prove. O

_l’_

7

7

Now we are in a position to construct the anti-derivatives.

Lemma 4.3.

— [ iAB s ulta)ds = Al u(t)) = A0, (), (4.18)
where ’
Av(s,u(tn)) = %)\ =99 929, [9,0- %% a(ty) % v(0)]
—isAS[a(tn) v(0)] — isASa(tn)(eifaiv(O) — Sv(0)). (4.19)
Proof. In order to find an anti-derivative of B} (s, u(t,)) we consider the function
Ay (s, u(tn)) ::;)\ Ur=9%9-20, (0,0, 2% u(t,) €% v(0)], (4.20)

whose L? Fréchet derivative satisfies the following identity:

i]xl(s,u(tn))

ds
= ;z/\e (=992 528-20), (0,0, 2% au(t,,) €% v (0)] (4.21a)
1 : . )
+ ire % % (0,20, (0,0, 2% u(t,,) €% v(0))]. (4.21D)

For the terms in (4.21)), applying lemma we have that
1 ; ) )
(@2Ta) = — 5Me“f*sﬁf(l — 80, [0,0 2% u(t,,) €% v (0)]

_ %Mem*s)aﬁu —9)[(1 - 8)e PR a(ty) €*%0(0)]

- %Mei“—%u — 8)[0,0; 2% u(t,) 8,5 v(0)]
1 ) ) )
- 5Me%“—s)@é‘iu — 8)[e "% a(t,) ¢*%u(0)]

+ %Msfa(tn)(e”a%v(o) — Sv(0))
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SN 8) (0,0, %% (1) 0,0 (0)]
([E210) = — %Mei“—”%(l — 8)[e "% a(t,) ¢*%u(0)]
+ %Meiﬁ*s)ag(l - 9) [8368;26*"883@(%) &Ee”aﬂ%v(O)]

+ %i)\Sﬂ(tn)(e”aﬂ%v(O) — Su(0)).
Collecting two equalities above, we obtain
LA, u(tn) = — T2 - §) e P (1) 0 0)]
+iAST(t,) (€% v(0) — Sv(0))
_ Mez’(T—s)ag[ —isagﬂ(t )eis{ﬁv(o)}
+iAS[a(tn) v(0)] + iASE(ty) (€% 0(0) — Sv(0))
= —iABy (s, ( n))
+iAS[a(tn) v(0)] + iASE(tn) (€% 0(0) — Sv(0)).
Integrating this equality yields

- /OT iABT (s, u(ty))ds
= Ay (7, ult )) A1(0,u(ty)) —iTAS [a(tn) v(0)] — iT/\Sﬂ(tn)(eiTagv(O) — Sv(0)).
This implies (4 in view of the definition of A;(s,u(t,)) in (4.19).

4.3. The anti-derivative of BY(s,u(t,))

Lemma 4.4.

—M/T B (s, u(by))ds = Aa(r, u(ty)) — As(0, u(ty)),
0

where

Do | >

As(s,ulty)) i= = [a(ty)e % (0,05 2% u(t,))?] + isAlu(tn)Pu(ty)
— 2isA|u(tn)2Su(ty) + isA[Su(ty)]?a(ty).
Proof. We consider the derivative of the function
A A — —isH2 zs 2 2
Ag(s, ultn)) =3 [altn)e % (0,07 %% u(tn)) "],
which satisfies the following identity:

%Ag(s u(ty)) =i[a(t )e*isag (8z6;26£6i883u(tn) axa;%is@%u(tn))]

- %A [ty )e % 02 (9,05 2R u(ty) 0,05 2R u(ty))]
=i [altn)e % (Due™ P ulty) 0,05 2 ulty))]
— iN[atn)e % (pe* % u(ty) 9,0, 2P u(ty))]
—iA[a(ty)e "% (1 — 8)e™%u(t,) (1 — S)e™%u(t,))]
= —iA[aty)e % ((1 = 8)e™%u(t,) (1 — S)e™Pu(t,))]
= —iX[a(ty)e "% (% u(t,) % u(t,))]
+ 2iMu(ty) |2 Su(t,) — iA[Su(ty)]*a(t,)
= — iIABY (s, u(ty)) — iMu(tn)[Pu(ty) + 2iNu(tn)2Su(t,) — iA[Su(t,))?

] ]

|
2|

(&

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

altn)-
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Integrating the identity above and using the definition in (4.25)—(4.26)), we obtain (4.24). O

Therefore,
u(tngr) = €% ulty) + Ai(7,u(tn)) — A1(0, ultn))
+ €% Ay (7, ultn)) — A2(0, u(tn))] + RY + RS. (4.28)
In the next subsection we shall prove the following result.

Lemma 4.5.
[R5 NIz S 72 (1/7)](u(tn) |31

In view of (4.7) and Lemma dropping R} and Ry from (4.28]) yields a temporally
semidiscrete low-regularity integrator with first-order consistency error (up to a logarithmic
factor):

uttl = it yn + Ai(rm,u")) — A1(0,u™) + eiT0% [Ag(T,u") — Aa(0,u™)], (4.29)

where the expressions of Aj(s,u™) and Ay(s,u™) are defined in (4.19)) and (4.25]), respectively.
The spatial discretization of the semidiscrete method (4.29)) is presented in Section

4.4. Proof of Lemma

The main difficulty in the construction of temporally semidiscrete low-regularity integrator
is the analysis of the remainder R% defined in (4.11)). In this subsection, we present estimates
for ||R%|| 2 by using the Littlewood-Paley dyadic decomposition of u(ty), i.e

n) = Z Pyu(ty).

NeNg

By using such a dyadic decomposition we rewrite v(s) = e~ ("% (t, )% u(t,)) as

o) = 3 R Pyultn) R Prgu(e,)

N1,N2
—1582 1382 1502
Z Z 2 Pyyu(tn) - €°% Pyyu(ty))  (symmetry between Ny and Na)
N1>N2
Z Z UNy, N, (8 (4.30)
N1>N2 N1

where
UN1,No (8) = eiisag (eisaileu(tn) : eisa% PNQU(tn))'

The summation in (4.30)) is over all dyadic integers N1, No € Ny satisfying the conditions under
the summation symbol (the same below). Substituting (4.30) into the expression

ri(s) = eI [T 1% 0 (t,,) €% (u(s) — v(0))] — €% [a(ty) (v(s) — v(0))],

we have
17-8 Z Z { —i502 [efisagﬂ(t ) 502 ("UN1,N2( ) "UNl,Ng(O))}
N1>N2 Ni=
- [a(t”) (UNLNQ (8) — UNy,No (0)):| }
Z Z TNl N2 + er NQ( )) (4.31)
N1>N2 Ni=
where

r]lVl,Ng (S) :e—isag [e_isagﬂNza@n) eis@% (UN1,N2 (3) — UN{,No (0>):|
— M a(ta) (o332 (5) = v, (0))

P (8) =€ [T i(tn) €% (un v (5) = v, (0))
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= [T tn) (8, 32 (5) = o 3 (0)]

We shall prove the following results.
I he s () 2 + 17 a9 e S INA I IN2| =2 ) [ (4.32)
75 va () 2+ e nea ()] 2 S Tl e (4-33)
Assuming for a moment that (| - - ) hold, the geometric average between and
- 4.33)) yields
Ik v () 2+ 7R va ()] 2 S 7 N0 IN| =2 k) [ V6 € [0, 1],

which furthermore implies that

52 =lle 05 6)]) o

S/ Z (HTNl,Nz S HL2 + Hr%\h,Nz(S)HL2>

N12>Na
_ _ _6
S Y AN TN fulta) 1
Nj>Ab
it N )

7_179

3
Saoana g )l
71—9
Sl

As a result, we have

—0
183, N/ I3l 2 < 5 )ZHU( Dl Vo€ (0,1).
Choosing § = 1/1In(1/7) in the inequality above we obtain the desired result of Lemma
RS 2 < 7M1/ 7)P lultn) -

It remains to prove - -

Proof of (4.32): By the Sobolev and Hoélder inequalities, we have
175y v (5 HL2 S (e % v, u(tn) | oo + Ty u(tn)l| 2o ) [on, N, (5) — oy, 3, (0)]| 22
Sllultn) [ llvn, vy () = vy, v2 (0)] 22
2 : 92
Sl [|e 5% (€% Py ultn) - €% Prutn)) — Pryultn) - Proyu(t)|
Slluttn) | [|€°% Py u(tn) || 2[l€% Pacyu(t) || s
+ [lwCtn)l | Py, w

SllwCtn) [l 1Py u(t

tn) |l L2 (| Pnzu(tn)|| o)
;.92 1 . 09 1
2 [le"*% Preyu(tn) | 32 €% Py ultn) | 22
1 1
+ )l 1PNy w(tn) | L2l Py w(tn) || gl Py w(tn) || 2

1 1
SllwCtn) L [1Pxy w(tn) || 2l P w(tn) || gl Py wltn) | 2
_ _1
SING N2 72 Ju(ta) 70

(
n)
(
n)

and similarly

82
730 v (8] 2 Sl s pyu(tn) | oo + T nyu(tn) | 2oe) oy, v, (8) — vy v (0) [ 2

Sle™ P2 sy uta) | + T vt L) 08, v (5) = v v (0) ] 22

Slultn)llmllon, vz (s) = v, n, (0)] 22
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1 -
SIN N2 72 ulta) 7,

where the last inequality follows in the same way as that for HT}VL No (s) H Ix
Proof of (4.33)) for HT}VLNQ(S)HLQ: We rewrite r]l\,l,NQ (s) as

°d —1 —1 — %
rh(s) = /0 ap e e I () €% (o, (5) — o, (0))| o
i [ {er R0 e P L () €% (v (5) — v (0)] o
0 B

° -
_ z'/o {e—zpaﬁ [856_206£HN2a(tn) oiP02 (vny,N (8) — vy v, (0)) }dp

S -
i [ {er R [ () 0267 (v i 5) — v (0)]
O .

By denoting f = e % Iy, ii(ty), g = % (vN;,N, (8) — UNp N, (0)), and using the identity

—(f9)" = f"g+ 9" =(=f"9-2f9g - fg") = "9+ fg' =-2f"g—2f'¢,
we obtain

7ﬁjl\fl,Ng (S) = _27’/0 {efipﬁg [a:%eiipagHNza(tn) eipag (UN1,N2 (S) — UNy,No (0))] }dp

—2i/ {e,ipag [8xefip8§HN2,a(tn) 0, [eipai (vny, v, (8) — UN1,N2(0))H }dp.
0

By using the Sobolev interpolation inequality in Lemma [3.3] we have

I ]2 < /0 (|02 P M ()| o €% (0, s (5) — oy ()|
[ o )] 00 [ (o, 3 5) = o, (0)] ]
S [ It v (5) = o0 O) o s () = o s O]
) M) ) s e, 5) = 0 0
S [Vl 5 (5) = 03 0 2, 05) = 0, 0,0

s 1
T /0 NE{[utn)| 1 [one0(5) — 03030 0)]] o, (4.34)

where the last inequality follows from using (3.6)). By using the Sobolev interpolation inequality
again, we have

[y 5 (8) |
= Heisa3 Pryu(ty) ez Pryu(tn)]] 1
< 11€™% Py ultn) || o | €% Pavyu(tn) || 1o + (€% Py, utn) || o €% Py, u(tn) |
< 1622 P u(tn) o %92 Prvyu(tn)] B 2% Prvyu(tn) 22
1165572 Py, () |22 €557 Py, () | 2 165572 Py () 10
< N;%Hu(tn)qul (here we have used and N; > No)
and
lowy e ()] 2 = [[€% Py u(tn) €% Py u(ta) |

. 2 . 2
< [1e™% Pavy u(t)l| 2 [le*% Pryu(tn) | £

) . 092 1 . oo 1
S N1€"% Py ultn) || L2ll€™*% Py ultn )| 22| €7% Pryu(tn) || 7
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_3
<N, ?||u(tn)||%:  (here we have used (3.7) and Ny > No).

Setting s = 0 in the two estimates above yields

1
N2HUN1,N2 (O)HL2 + HUNl,NQ (O)HHl 5 N2 2 Hu(tn)H%11
By substituting the three estimates above into (4.34)), we obtain

705 (8] 2 S/O lu(t) IFnde < Tllultn)llz  for s € [0,7].

Proof of (4.33)) for HTJQVLNQ(S)HLQ: We rewrite T]2V1,N2 (s) by

—is0? | —isd? — 1802 s d
(o) = [ (e ¢ [ Lo, v (o)) (435)
_ *d
Meyat) [ o (o). (4.36)
o dp

It is easy to verify that

d d —ipd2 [ ipO2 ipd?
gy (r) = 3 (7% (% Py, ultn) - €% Pyu(tn) )

— _ 240 (OxeipagPNlu(tn) ameipaﬂ%PNQu(tn)),

where the last equality uses the identity (fg)" — f"g— f¢" =2f'¢g’ with f = eipaﬁleu(tn) and
g = €% Py u(t,). Hence,

< 1927 Py u(tn) || 2 9™ Prvyu(tn)

d
| gy o 00) I,

L2
o . 1 . 1
S 1|0 Prvy () || 2|0 Pryu(tn)) | 72|00 Prvyu(ta)) | 7
1 1
S HPNlu(t")HHl [Pyt || 72 | Py ) 1 32
1
S NG [[ultn) |71
Since
sl N TN S
e 1L Ny ti(tn) lLoe S [le™ % sy tiltn) || 2o lle ™ s vy ultn) || 7o S Ny 2 [lu(tn) |,
substituting the two estimates above into (4.35)) yields
S 1 1
-3 3 3
%, v, () 22 5/0 Ny 2 [lulta) [l N3 [[u(ta) |32 dp S 7llulta) [ for s € [0,7].

The proof of Lemma [£.5]is complete. O

5. Spatial discretization of the low-regularity integrator

In this section, we construct a spectral method for the spatial discretization of (4.29)) with
computational cost O(N In N) at every time level and first-order accuracy for H' initial data.
Our spectral method is based on approximating the following two terms in (4.28)),

Ar(r,u(ty)) — A1(0,u(t,)) and  As(7,u(ty)) — A2(0, u(ty)),

by truncated cosine series that can be computed by FFT. For simplicity, we still use the notation

v(s) = e~ 10 (eisaﬂ%u(tn))2 defined in (4.8)).

5.1. Approximation to A;(7,u(t,)).

Since By (s,u(ty)) = ei(T=5)9; [e‘isaﬂ%ﬂ(tn) eisagv(O)] is in H! for s € [0,7], it follows from

that
Ar(mu(tn)) — A1(0, u(ty)) = — /0 INBY (s, u(ty))ds € H.
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In view of the expression

Ai(s,u(tn)) = SAST9% 920, [8,0- %~ a(t,) ¢*(0)]

2
—isAS[a(tn) v(0)] — isASa(tn)(e”aiu(O) — 5v(0)),

we define
AN (s, u(ty)) :%Ae“H)a%a;?ax (0,0, 2% (t,,) €O Ty (0)]
—isAS[a(t,) Hyv(0)] — isAST(ty) (€% v(0) — Sv(0)), (5.1)
and approximate Ay (7, u(t,)) — A1(0,u(t,)) by
HN[A{V(ﬂ u(tn)) — A{V(O, u(tn))]- (5.2)

Remark 5.1. Before proving the error in approximating A; (7, u(t,)) — A1(0, u(t,)) with (5.2)),

we drop a comment on the construction of this approximation. Since u(t,)? € H*, it follows
that (see Lemma
[u(tn)? =T (u(t)*) 2 S N7 Hulta) g S N7Hultn) 7 (5.3)

In practical computation, 8,0, 2e ~is92 4 (t,) €592 (u(t,)%) would be approximated by
w = 0,0; %e —isd; g ewawHN[( ™)2], where u™ € Cly is a cosine series with frequency bounded by

N, and therefore 9,0, %e —is04" is a sine series with frequency bounded by N. Since w is the

product between the sine series 8,9, 2e =% 4" and the cosine series ¢/5% Iy [(u)2], it follows

that w is a sine series with frequency bounded by 2N. As a result, d; 20, w can be computed
as a cosine series.

Now we prove that ( indeed approximates A;(7,u(ty)) — A1(0,u(t,)) with a desired
error bound, i.e.,

A1) = A1(0,u(6) — T LAY (i) — AV 0, )l 2

S TN Hfu(tn) |3 (5.4)
This can be proved by decomposing the error into the following two partS'

HA1 T, u(ty)) — A1(0,u(t,)) — HN[AN(T u(ty)) — AN(O u(t
SN AT ultn)) — A0, u(tn)) — T [Ar (7, u(tn)) — Ar(0,u(tn))]]]
+ [T [AL (7, u(tn) = A1 (0, u(tn)] — TIN[AY (7, u(tn)) — AN(OU
S| AL (T, ultn)) — AL(0, u(tn)) — T [Ar (7, u(tn)) — A1 (0, u(t HLz
+[[[AL (7, ultn)) = A (7, u(t ))] [A1(0,u(ty)) = AL (0, u(tn))]| 12 (5.5)

The two parts on the right-hand side of ( are estimated below.
First, by using the identity in 1D we have

Av(r,u(tn)) — Ar(0,u(tn)) — TN [AL(T, u(tn)) — A1(0, u(tn))]

T

= —/TZABl (s,u(t ))ds+HN/ iIABT (s, u(ty))ds
0
_ _M/O (1= TIy) B (s, u(ty))ds

— —i) /0 (1- 1) (=% [0 u(t,) €% 0(0)] ) ds. (5.6)

Since the function w = ¢!(T=9)% [e*isaﬂ%a(tn) eisaﬂ%v(O)] is in H!, it follows from Lemma [3.1| that
(1 = Tp)wll 2 S N 7wl e

w2

1P

and therefore
[ A1 (7, u(tn)) — A1(0, u(tn)) — Un[A1 (7, ultn)) — A1(0, ultn))]ll L2
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< /T N-! Hei(T_s)ag [e_isaga(tn) eisaﬁv(o)] HHldS
0
S TN Hlu(tn) 13- (5.7)
Second, since
Ai(s,ultn)) — A7 (s, ultn))
:%)\ UT=9% 920, (0,0, 2% (t,,) €% (1 — TIx )v(0)]
—isAS[u(tn) (1 — Iy )v(0)] (5.8)
it follows that
Ai(ryultn)) = AL (ryu(tn)) = [A1(0, u(tn)) — A (0,u(ty))]

:/ LilA Ur=9% 920, (0,0, 205 u(t,) €% (1 — Ty ) (u(tn)?)] | ds
0

—irAS[a(t) (1 — Iy )o(0)]
_ _ Z)\/ eHT=5) )92 —zsa,%ﬂ(tn) ez’s@fc(l _ HN)(u(tn)2)]d5

FATAST(t,) (7% (1 — TTx)u(0) — S(1 — Tx)v(0)), (5.9)

where we have used formula (4.22) with v(0) replaced by (1 — In)(u(t,)?). Since S(1 —
IIn)v(0) = 0, it follows that

[A1 (7, ultn)) — AL (7, u(tn)) = [A1(0, u(tn)) — AY (0, u(tn))]| 2

S [ e Rt (1 = ) ()20
FTAIST) (1~ T )o(0) | 12
STN Hlultn) |- (5.10)
Finally, substituting (5.7 and (5.10)) into ([5.5)) yields the desired error bound in ([5.4)).

5.2. Approximation to Aa(7,u(t,)).

In order to approximately compute the expression

Ag(s, ul(ty)) :%[ﬂ(t )e =% (9,0, 26 % u(t,))?] + isA[Jults)|2ults)]
— 2is)\[\u(tn)\ Su(tn)] +is)\[(8u(tn))2ﬂ(tn)],

by truncated Fourier cosine series and FFT, we define an approximation of As(s,u(t,)) by
AN (s,u(ty)) = % [(tn) e O Ty (0,0 2% u(ty))?] + isA[a(ts) Ty (u(tn)?)]
— 2isA[Ju(tn) PSu(tn)] + isA[(Su(ta))*u(t)]
and approximate As(7,u(ty)) — A2(0,u(t,)) by
T [A (7, u(tn)) — A3'(0, u(ta))]- (5.12)
We shall prove the following error bound for this approximation:
HAQ T, u(tyn)) — A2(0,u(t,)) — HN[AN(T u(ty)) — AN(O u(t HL2
S TN ulta)l3p- (5.13)

The proof of is divided into the following several parts.
First, by usmg the triangle inequality, we decompose the left-hand side of ([5.13)) into

[ A2(7, ultn)) — A2(0, u(tn)) — Ty [AY (r, u(tn)) — A (0, u(tn))]]]
S Az (r ultn)) — A2(0,u(tn)) — Mn[As(7, ulty)) — Az (0, u(ty

(5.11)

1P



+ HHN [Ag(T,u(ty)) — A2(0, u(t ))] I [AY (7, u(t,)) — AY (0, u(t
SH 1 — HN)[A2(7- u(tn)) AQ(O u HL2
+ || [z (7, u(tn)) — AY (7, u(tn))] — [A2(0 u(tn)) — A3 (0, u(t

|2

)l 2

Analogous to , we have
(1 = Iy) [Aa(7, u(tn)) — A2(0, u(tn))]]| 12
< / N7 =% a(t, ) (v(s) — v(0))]| ;ds
0
S TN Hfu(tn) |31
Second, we note that
Az(s,u(tn)) — A3’ (s, u(tn))
_ %)\ [@(tn)e % (1 — T ) (0,05 2% u(t,))?]
+ isAu(ty ) (1 — TIy)|u(t,) |2
By using formula with an additional operator 1 — Iy, we obtain
@ (sl u(tn)) — AY (5, u(t)
— —iA[u(tn)e % (1 — Tn)[(1 — §)e*Pau(t,)]?
+iNT(tn) (1 — IIN) (u(tn)?)
= —i[a(t)e ™% (1 = Ty [ u(t,))?]
+ 2iASu(tn )u(tn) (1 — Ty )u(tn)
+idu(t,)(1 = TIy) u(t,)]?.
Therefore, we obtain
HAQ(T,U(tn)) — AéV(T,u(tn)) — [A2(0,u(ty)) — AN(O u(ty)) HL2

S [ 15 st u(t)) = AF st )l ods
STN?IHU(tn)H%{l'

Substituting ((5.15)—(5.18]) into (5.14)) yields the desired estimate (5.13)).

5.3. The fully discrete method

In view of the error bounds in and -, we can rewrite as
u(tni) = €% u(t ) + HN[AN(T ulty))) — AT (0, U( ))]
+ e TIN[AY (7, ultn)) — A (0, u(tn))]
+ R} + Ry + RS,
where the remainders RY, Ry and
RY = Ai (7, ultn)) — A1(0,u(tn)) — TIN[AY (7, u(tn)) — AT (0, u(tn))]
+ €T [Aa (7 ultn)) — A2(0, u(ta))] — €T Iy [AY (r,u(ta)) — A5 (0, u(tn)
satisfy the following estimates:
IR 2 + 1Rl 2 S 72[luta) 7 + 72 (/7)) u(tn) I,
RSN L2 S TN Hlultn)l[7-
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(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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By dropping the remainders R}, Ry and RY in , we define the following fully discrete
method: For given u, € Cn, compute u"+1 e Cy by

upt = e 4 Ty [AY (r, uf)) — AY (0, uf)] + EZTaﬂz”HN[AN(T U’fv) — AY(0,uR)],  (5.22)

where the expressmns of AN (s,u %) and AN (s,u N) are defined in and (5.11)), respectively.
The method ( can be equivalently written as , where AN(S u) =My AN (s,u?) and
AN (s,u %) =11 NAN (s,u};) are written into a form Wthh is more convenient for computation.

6. Proof of Theorem

We define a nonlinear functional ®Y : H' — H! which satisfies ui' = ®Y (u7,) for the
numerical solutions u" defined in (5.22)), i.e.,

N (u) = %y + TN [AN (1, u) — AN(0,u)] + =TI [AY (7, u) — AY (0, ). (6.1)

The proof of the convergence is based on the following two results:
|w(tns1) — CI>£[(u(tn))HL2 < C(*[n(1/n)]*+7N71), (6.2)
|9 (ul) = 7 (u(tn))]| ;2 < (1 + CT)|luf — ulta)llz2 + cTN—l (6.3)

where the constant C' depends only on T" and ||ul|¢(jo,r);1)- Estimates and ( can be
regarded as the local truncation error and the stability estimate, respectlvely By usmg these
estimates and the triangle inequality, we have

luitt = u(tna) 2 = 19 (uk) = wltnsr)ll
<[[@F (uk) — @ (ultn))ll 2 + 197 (u(tn)) — ultnr)| 2
<(1+C7)||uly — ulty)| 2 + C(T* (/7)) + TN 7).
Then iterating this inequality yields the desired error bound in .

The proof of the local truncation error (6.2) is relatively simple. From (5.19)—(5.21) we
immediately see that

lutasr) - D2 SIRR2 + 1Bz + RS2 < C(2m(1/7)2 + 7M7Y,

which implies (6 .

The proof the stability estimate is presented in Section which requires the bound-
edness of numerical solutions in H' uniformly with respect to the stepsize 7, while the proof of
such H! estimate requires the boundedness of numerical solutions in H? for some v € (%, 1).

The proof of such H” and H' estimates are presented in the next two subsections, respectively.

6.1. Boundedness of numerical solutions in H” for v € (%, 1)
In this subsection we prove the following lemma.

Lemma 6.1. Let u® € H', L := |T/7| and v € (%, 1). Then there exist positive constants Ty,

No and C depending only on ||[u®||g1, T and vy, such that for 7 < 79 and N > Ny the numerical
solution given by (5.22) has the following error bound:

1maX lu(tn, ) — up| < C(T[ln(l/T)]2 + Nﬁl)lfv, (6.4)
v < .
k< . (65)

Proof. By using the triangle inequality it is easy to see that (6.5 is a consequence of (6.4]).
Therefore, it suffices to prove ((6.4).
We prove the following bound for the local truncation error:

[ultnr1) = @ (ultn))|| o S 7(rn(L/7)]* + N7H (6.6)

Indeed, from ((5.19)—(5.21)) we see that

[ultnir) = @ (ulta) || SIBT s + (RS + RS s S 7+ [ RE | 1, (6.7)
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where we have used the estimates of | R} || 1 and || RS ||z in (4.7) and (4.12)), respectively. The
bound for ||R%||g: can be obtained by estimating each term in (5.20). For example, by using

the identities (4.18) and (4.24]) we have

1AL (7, u(tn)) — Ar(0, u(tn)) | g1 = /OTZ')\B?(&U(tn))dS

ST osup [|BY (s, ultn)) m
H1 s€(0,7]

S THUH%OO(QT;Hl) (6.8)

and

1 As (7, u(tn)) — As(0, ultn)) 1 = H [ ixg s utyas

ST osup [[By(s,u(ty))llm
H1 s€[0,7]

S THUH%OO(O,T;Hl)' (6.9)
The term || AN (7, u(t,)) — AN (0,u(t,))|| g2 in (5.20) can be estimated by applying H! norm to
(5.9) and using (6.8). The term [|AY (7, u(t,)) — AY(0,u(tn))|zn in (5-20) can be estimated

similarly. Substituting these estimates into ([5.20)) yields

R3[| S 7, (6.10)
which together with implies the following bound for the local truncation error:
Hu(tn—&-l) - (I),][.V(U/(tn))HHl ST (6.11)

Then can be obtained by using the Sobolev interpolation between ((6.2) and (6.11]).
Second, we prove the following stability estimate in the H? norm:

|9 () — DN (wlta))|| 1o < (14 CP) iy — ult)lla + Crlluy — it (6.12)
From the definition of ® (u) in we see that
7 (uy) — @7 (ultn))
= e (uf — u(tn))
+IIN[AY (7, uly) — AL (0, uly) — (AT (7, u(tn)) — A7 (0, u(tn)))]
+ ey [AY (7 ufy) — A (0, uly) — (AN (7, u(tn)) — A (0, u(tn)))]

= Jy + TN Jo + %Iy 5. (6.13)
By using the equivalent norm in (3.4) and its property (3.5)), we have
11l v = Jultn) = uill - (6.14)

In order to estimate ||.J2| gv, we use identities (5.9) and (4.18]) , which implies that
= [AT (ry ultn)) — AL (0, u(tn))]

= (As(ryultn)) = AN (7, ultn)) = [A1(0, u(tn)) = AV (0,u(tn))]) = [A1(7, ulta)) = A1(0, u(t))]
~ i / TR [ is02 (1) €992 (1 — TLy)(u(tn)?)] ds
0
FTAST(tn) e (1 — Ty ) [u(tn)?]
+id / " T [ () 90 (u(1,)2)] s
0
= +iA /T i (r=5)0%; [e_isagﬂ(tn) eisazﬂN(u(tn)Q)]ds
0

+iTAST(t)e ™% (1 — Ty ) [u(tn)?]
=: le(u(tn)) + JQQ(u(tn)). (6.15)
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By using this expression we obtain that
2

Jo =Y [Jor(ultn)) — Jar(u)]. (6.16)
k=1
It is straightforward to show that

12w (u(tn)) = Jor (i)l r S 7(lutn)lF + o) ulta) — uillmr for k=1,2. (6.17)
Substituting the estimates of || Jor(u(ty)) — Jor(uR)||H~, & = 1,2, into (6.16]) yields that
1 2llzry S Tllutn) — uflla (lulta) iy + k7). (6.18)

Note that || =TIy 3]y < || J3]lg for v € (4,1). The term ||J5]z~ can be estimated
similarly as ||J2|| g+ by using identity ([5.16]) and (5.17)), which implies that

— [AY (1, ultn)) — AY (0, u(t,))]
=[Aa(7,ultn)) = A2(0, ultn))] — [A3 (r,ultn)) — A (0, u(tn))] — [Aa(T, u(tn)) — As(0, u(tn))]
T “/o U(tn)e 5% (1 — Iy) e u(t,)]*ds

+ 2iTAeisagSu(t Ja(tn) (1 — Hy)u(ty)

+ T NGt ) (1 — TIy) [u(tn) ]

L\ / tn)e 0 5%y 1,) ds
0

= 4\ /OT (tn)e P Iy e % u(t,)]2ds
+ 227‘)\61881511 (tn)u(ty)(1 — O )u(ty)
+ i NT(t) (1 — TIy) [u(tn)?]

= Ja1(u(tn)) + Jaa(u(tn)) + Jaz(u(tn)), (6.19)
By using this expression we see that

3
Z Jai(u(tn)) — Jar(uy)]. (6.20)
=1

Similarly as the estimates for ||.Jo (u( n)) — Jor (W )| v, it is straightforward to verify that

13k (w(tn)) = Jar(ui) gy S 7(ultn) 7 + luf | F) lultn) — uillmy for k=1,2,3.
Hence we obtain

15llzv S Tllutn) = ulla (lulta) ey + k7). (6.21)
Then, substituting the estimates of ||J1||z, ||J2llg» and ||J3]|g~ into (6.13) and using the
equivalence between | - ||, and || - || g+, we obtain
127 (uiy) — @2 (ultn))ll gy < 11+ OT(ultn) 1, + luf ) ultn) = uill g
< (1+ Cn)ultn) = uffll g + C7llu(tn) = uif |- (6.22)

Hence, from ) and (| we obtain that (using the triangle inequality)
lu(tni1) — UN HHv
< (14 C)ult) = whl o + Crlulta) = iy, + Cr(rln(1/r) + N1

By using the discrete Gronwall’s inequalities, Lemma and the equivalence between || - ||z,
and || - || g~, we obtain for sufficiently small 7 and sufficiently large N

[ultnr) = up s < (rIn(1/7)* + N7H17
This completes the proof of Lemma [6.1} O



23

6.2. Boundedness of numerical solutions in H!

Lemma 6.2. Let v’ € H! and L := |T/7]. Then there erist positive constants 9, Ny and

C depending only on ||u®||gr and T, such that for 7 < 79 and N > Ny the numerical solution
gwen by (5.22)) has the following error bound:

[nax, lu'h || < C. (6.23)

Proof. Let R, = u(t,) — u};. We need to prove the following results:

12l S Tllnkellas (6.24)
13/l S Tlinfell - (6.25)
If (6.24])—(6.25) hold, substituting the two estimates above into (6.13)) would yield
12 (u) — @ (uta))llgn < Ill g + CTllnR (6.26)
and therefore (since u' = &N (u%))
™ — @ (wlta)ll g < kel g+ Ol - (6.27)
From (6.11]) we also know that
lultni) — @ (ulta)lm S 7. (6.28)

By using the triangle inequality, we have
I3t i = lultnen) —u

< Jlultnsr) = X ()l g + luf™ = O (ultn))ll s
< il + Crlingll g + C7- (6.29)

By using Gronwall’s inequality, we obtain

n+1||H1

1r<na<xL H77NHH1 S L (6.30)

This proves the desired result in (6.23)). It remains to prove 76.25: )
We prove ([6.24]) by using the expression in (6.16). From Lemma we already know that

[max, lun ey < < 1 for any v € (1,1). By using this result with any fixed v € (3,1), from the

expression of Ja1(u) in we derive that
[[J21(u(tn)) — le(uN)HHl

/ e =% a(ty) e Ty u(tn)?] — e % ay e Ty [(ufy)?]| s

2 —is02 [ — = 503
S [ e att) - Myfutn)?] = % a(t,) = 1) € (ultn) = 1)) s
_ _ . a2
S / le™ "% a(tn) &% Ty fu(tn)nk ] |1 ds
0
)
_' 2— ) 2
+ / e %2 a(t,) e Ty ()| 1 s
0
)
o[ e L
T o 2 S 02
_|_/ He ’samn%ewaIHN[U(tn)n%]HHlds
2
/ e~ 1507 . e TIn[(n%)?]]| 1 ds
T T
S [ Wlmds+ [ Il s+ [ il

.
+/O (el [luCEa)n [ + [lnRe | [[wCEn)n | g )ds
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+/T(||77N||H1||( N2 ez + 1 o 1) [ ) ds
0

S Tl e (6.31)

The other terms ||Jaz2(u(tn)) — JQQ(’LLN)HHI can also be estimated similarly as ||Ja1(u(t,)) —
J21(uR;)|| g1 by using the expressions in , by expressmg ul as u(ty,) — 1} and apply the
following result: for any product of three functlons f,9,h

If gl < [ fllallglla 1Al + A e gl 1Bl + 1o gl Al (6.32)

Namely, the H' norm only acts on one term in a product, and the other two terms involving
H” norm would be bounded according to Lemma In this way, the following results can be
shown:

D ek (utn)) = o () S Tl (6.33)

This proves (6.24]), and (6.25)) can be proved similarly by using identity (6.19). O

6.3. Stability estimates

Similarly as the H7-norm estimates in (/6.18])—(6.21)), by using the expressions in (6.16|) and
(6.20) it is straightforward to verify that

1921l 2 S () |y + ol ) lu(tn) — uil 2, (6.34)
130122 < () 1y + ol ) () — uil 2, (6.35)
which holds for any fixed v € (3,1). Therefore, we have
12l 2 + ITn T3]l 2 S 7N+ Tllu(tn) — w2 (6.36)
Note that (6.14)) still holds for s = 0, i.e.,
[ illze = llu(tn) — uirl L2- (6.37)

By substituting the estimates of ||J1||z2, || /2] 2 and ||IIxJ3||z2 into (6.13]) we obtain the desired
stability estimate in (6.3]). This completes the proof of Theorem O

7. Numerical examples

Example 7.1. We consider the NLS equation (2.1) with A = —1. The initial value is given by
cos(kzx)

Z < e[0T +o” (7.1)
which satisfies that u® € H* and u® ¢ H’l_o'm. For a = 1,2, we solve the problem by the
proposed method (2.5) and denote by u,n the numerical solution with time stepsize 7 and
degrees of freedom N (in the spatial discretization). We compare the numerical solution with

ref

the reference solution w;%y, which is computed by using the following general low-regularity
integrator proposed in 23| (with spatial discretization by the trigonometric interpolation):

i = Ry — e Iy [y () (rS + £ (e Do tay)]. (1)

The time stepsize of the reference solution is set to Tef = 276, Further decreasing the time
stepsize in the reference solution does not affect the numerical results.

We present the temporal discretization errors |ju, y — urT‘if wllz2 for both H? and H! ini-
tial data with sufficiently large N in Tables which show that the errors from the spatial
discretization is negligibly small in observing the temporal convergence rates, i.e., almost first-
order convergent as 7 — (0. This is consistent with the theoretical result proved in Theorem

21
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TABLE 1. Temporal discretization error |lu,n — uﬁ‘if Nlzat T =1
with o = 2 in ([7.1)) (for H? initial data).

N =28 N =27 N =210
=26 8.466E-03 8.466E-03 8.466E-03
T=2" 4.271E-03  4.271E-03  4.271E-03
T=278 2.157E-03 2.157E-03 2.157E-03

convergence rate O(7%9%) O(7%99) O(7%99)
TABLE 2. Temporal discretization error |lu, n — uﬁ‘:; Nlzat T =1
with o = 1 in (7.1)) (for H'! initial data).

N =28 N =27 N =21
T=27° 6.488E-02 6.506E-02 6.511E-02
=276 3.222E-02 3.252E-02 3.260E-02
=277 1.570E-02 1.631E-02 1.645E-02

convergence rate O(71:90) O(r192) O(799)
We present the spatial discretization errors ||u, n — uffvmfﬂ 12 for both H? and H' initial

data in Tables for several sufficiently small stepsize 7 with Nt = 1024. From the numerical
results we can see that the error from temporal discretization is negligibly small in observing
the spatial convergence rates, i.e., ath-order convergence for H¢ initial data. This is consistent
with the result proved in Theorem in the case @« = 1. The numerical results for a = 2
indicate that the convergence order of the spatial discretization increases as the regularity of
the initial data increases (though this is not proved in Theorem [2.1).

TABLE 3. Spatial discretization error |ju, x — u™®, |72 at T =1

T, Nref

with o = 2 in ([7.1)) (for H? initial data).

=271 =271 T=2716

N =28 7.436E-03 7.436E-03 7.436E-03

N =16 1.893E-03 1.892E-03 1.892E-03

N =32 4.788E-04 4.731E-04 4.712E-04
convergence rate O(N—19%) O(N—199) O(N—199)

TABLE 4. Spatial discretization error ||u, n

with o = 1 in (7.1)) (for H! initial data).

— uff\,meLz at T =1

r=2712 =213 T=2"1

N =16 4.262E-02 4.264E-02 4.266E-02

N =32 2.130E-02 2.127E-02 2.127E-02

N =064 1.068E-02 1.058E-02 1.056E-02
convergence rate O(N~1:00) O(N~10) O(N~1:00)

Example 7.2. It is known that the general low-regularity integrator proposed in [23] can
weaken the regularity condition for a general nonlinear function f(u,u), not only for the cubic
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nonlinearity f(u,%) = |u|?u. For comparison, we present the numerical solutions given by our
proposed method and the general low-regularity integrator proposed in [23] in Figure [1| for both
H' and H? initial data, with N = 219 degrees of freedom in space which is sufficiently large for
observing the convergence order in time. The H' and H? initial values are generated by
with a = 1 and a = 2, respectively.

The numerical results show that, for the specific cubic nonlinearity f(u,%) = |u|?u, the
method proposed in this article by using the Littlewood—Paley decomposition technique can
achieve higher-order convergence for H' initial data. Both the methods have first-order con-
vergence for H? initial data. For general nonlinearities and general boundary conditions, the
method in [23] is the only known low-regularity integrator so far.

-—= 0(7) -== 0O(7)
Oo(7)
107! N =210
s s
o o 107
% %L
10724
10? 107
T/t TIt
(A) H! initial data (B) H? initial data

FIGURE 1. L? errors of the numerical solutions given by different methods where
the final time is set to be T' = 1.0 and the reference timesteps are 7of = 276, and
the reference solutions are computed from , i.e., the general low-regularity
integrator proposed in [23]. The method proposed in this article is in blue, the
method of [23] is in yellow.

8. Conclusion

We have constructed a new low-regularity trigonometric cosine integrator for solving the
one-dimensional NLS equation in a bounded domain under the Neumann boundary condition.
In this case, the frequency analysis in the literature cannot be used for the consistency analysis.
The method developed in this article is constructively designed through the consistency analysis
by using the Littlewood—Paley decomposition of the solution, in order to have almost first-order
convergence for H! initial data. We have shown that the proposed method has an error bound
of O(7[In(1/7))?> + N71) for H! initial data, and can be implemented by using FFT with a
computational cost of O(N In N) at every time level. The approach developed in this article
relies on the Littlewood—Paley decomposition of the solution for specific problems and specific
boundary conditions. The construction of such low-regularity integrators for other nonlinearities
and the Dirichlet boundary condition is still challenging.
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