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Abstract—The curvature regularization method is well-known
for its good geometric interpretability and strong priors in
the continuity of edges, which has been applied to various
image processing tasks. However, due to the non-convex, non-
smooth, and highly non-linear intrinsic limitations, most existing
algorithms lack a convergence guarantee. This paper proposes
an efficient yet accurate scalar auxiliary variable (SAV) scheme
for solving both mean curvature and Gaussian curvature min-
imization problems. The SAV-based algorithms are shown un-
conditionally energy diminishing, fast convergent, and very easy
to be implemented for different image applications. Numerical
experiments on noise removal, image deblurring, and single
image super-resolution are presented on both gray and color
image datasets to demonstrate the robustness and efficiency
of our method. Source codes are made publicly available at
https://github.com/Duanlab123/SAV-curvature.

Index Terms—Mean curvature, Gaussian curvature, scalar
auxiliary variable, energy convergent, image denoising, image
super-resolution, image deblurring

I. INTRODUCTION

MODEL based methods are important tools for various
image processing tasks, which are well-known for the

good interpretability and mathematical properties. The Total
Variation (TV) regularization proposed by Rudin, Osher and
Fatemi [1] has been proven its success in different image
application by removing noises as well as preserving sharp
edges [2]–[5]. However, TV has the stair-casing effect by
losing the repeated tinny image details and textures. To capture
fine image structures, curvature regularization has been inves-
tigated and intensively studied for image processing problems.

Curvature as an important geometric concept can depict the
amount of curves from being straight as in the case of a line
or a surface deviating from being a flat plane, which has been
successfully used in various computer vision tasks, such as
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structure estimation [6], graph embedding [7], classification
[8], and deep learning methods [9], [10] etc. The curvature
regularization was successfully used as the regularization term
for various image processing tasks to overcome the draw-
backs of TV, such as Euler’s elastica [11], mean curvature
[12], Gaussian curvature [13], and total curvature [14] etc.
Specifically, Zhu and Chan [12] employed the L1-norm of
mean curvature of the image surface for image denoising,
which is shown to be able to keep image contrast, edges and
corners of objects. To explore the performance of Gaussian
curvature, Brito-Loeza, Chen and Uc-Cetina [15] minimized
the L1-norm of Gaussian curvature for image denoising and
theoretically verified its ability in preserving image contrast
and sharp edges. Zhong, Yin and Duan [13] proposed a
fast method to estimate the discrete curvatures in the local
neighborhood according to differential geometry theory, and
minimized certain functions of curvatures for image restoration
task.

Although the intuition to employ curvature as regularization
is straightforward, it is difficult to optimize the curvature
energies since they are non-convex, non-smooth, and highly
non-linear optimization problems. The existing numerical op-
timization methods for solving the curvature related energy
minimization problems can be roughly divided into two cat-
egories: gradient descend and operator splitting method. The
gradient descent approach can provide an accurate solution
by solving the time dependent PDE system. Originally, the
gradient descent method [12] was presented to solve mean
curvature minimization model, which had to solve fourth-
order nonlinear evolution equations. Gong [16] developed the
gradient descent method to solve the mean curvature mini-
mization model, where mean curvature was estimated locally
in a discrete manner. However, the gradient descent suffers
the numerical instability and low computational efficiency. Re-
cently, the operator splitting and alternating direction method
of multipliers become popular to solve the high-order models.
Zhu, Tai and Chan utilized augmented Lagrangian method to
develop efficient algorithms for solving the mean curvature
model [17], [18]. Zhong, Yin and Duan [13] proposed a fast
method to estimate discrete curvature and used the alternating
direction method of multipliers to solve the mean curvature
and Gaussian curvature minimization problems. Liu, Tai and
Glowinski [24] solved the Gaussian curvature based model by
using the operator-splitting method and Lie scheme. However,
the aforementioned methods all lack the convergence guar-
antee due to the non-convexity and non-smoothness of the
curvature minimization problems. Although some convergence
results for the alternating direction method of multipliers
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(a) Clean Image (b) Total Variation (c) Total Fractional-order Variation (d) Our model

Fig. 1. The image surfaces of the clean image and reconstructed images by the TV regularization, total fractional-order variation [22] and our model for the
image ‘Circle4’.

based algorithms were obtained in [20], [21] by assuming the
subjectiveness of the linear mapping in the composite non-
convex term, the curvature minimization model obviously does
not meet these assumptions.

In this work, we reformulate the mean curvature and
Gaussian curvature models by replacing the nonlinear area
term by the length term, which can reduce the computational
complexity of the curvature term without sacrificing the image
qualities. We then develop a novel numerical scheme for min-
imizing the mean curvature and Gaussian curvature energies
based on the Scalar Auxiliary Variable (SAV) method, which
is shown much more efficient than the Alternating Direction
Method of Multipliers (ADMM) used in [13]. To the best
of our knowledge, it is the first attempt to build up the un-
conditionally energy diminishing algorithm for the mean and
Gaussian curvature minimization problems. As shown by the
surface plots in Fig.1, our method has obvious advantages in
preserving edges and eliminating the staircase effect, yielding
much satisfactory results than total variation model and the
recent total fractional-order variation model [22]. To sum up,
we conclude the main contributions as follows:

1) We develop an efficient SAV algorithm for solving the
general curvature minimization problems, where both
mean curvature and Gaussian curvature are regarded as
a re-weighted total variation (TV) minimization problem
to avoid the calculation of higher derivatives.

2) We theoretically prove the energy convergence of the
SAV method for curvature minimization problems. Un-
like existing methods such as gradient method [12],
ALM [17], [18], [23], ADMM [13] and operator splitting
method [19], our SAV scheme enjoys the advantages of
unconditionally energy diminishing and the first-order
convergence.

3) We extend the applications of curvature regularization
method for various image processing tasks. The perfor-
mance of our model are evaluated by four representative
image restoration tasks on Gaussian denoising, mixed
noise removal, image deblurring and single image super-
resolution on both gray and color image datasets, which
demonstrate the advantages of the proposed model in
terms of accuracy and efficiency.

The rest of this paper is organized as follows. Sect. II
dedicates to review the estimation of curvatures and the SAV

Fig. 2. Illustration of the distance to the tangent plane.

approach. Sect. III introduces our proposed model and the
associated SAV algorithm in detail. We present the numerical
experiments to verify the efficiency and superiority of the
proposed method upon image denoising, single image super-
resolution, image deblurring and mixed noise removal in Sect.
IV. The concluding remarks and possible future works are
summarized in Sect. V.

II. PRELIMINARIES

A. Curvature estimation

Given a domain Ω ⊂ R2, u : Ω → R is an image defined
on Ω. Suppose the associated image surface for a 2D image
is characterized by S = (x, u(x)) for x ∈ Ω. It is well-known
that the normal curvature at a point of surface S can be defined
by the quotient of the second fundamental form and the first
fundamental form, i.e.,

κ` =
II

I
≈ 2d`
ds2

(1)

where II can be estimated by the distance of the neighboring
point to the tangent plane and I is the square of arc-length
between the neighboring point and the central point.

The normal curvature can be estimated in a 3 × 3 local
window in the discrete setting. As shown in Fig. 2, we consider
the normal curvature on the point O along the direction−−→
OX , where x = (i, j) indicates the coordinates and ui,j
denotes the image intensity. Then the directed distance from
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Fig. 3. Illustration of the eight tangent planes located in a 3 × 3 local patch on the finest layer, which locate pairwise centrosymmetric with regard to the
center point nodal (marked by red color).

O to the tangent plane can be calculated by the half point
T (i− 1

2 , j, ui− 1
2 ,j

) as follow

d` =
−→
PT · n

=
ui,j−1 + ui,j+1 − 2ui,j

2
√

(ui,j−1 + ui,j+1 − 2ui−1,j)2 + (ui,j+1 − ui,j−1)2 + 4
,

(2)

where n is defined by the cross product of the vector
−−→
XZ

and
−−→
XY . On the other hand, the arc-length ÔT can be

approximated in the following way

ds = ÔT ≈
√

(ui− 1
2 ,j
− ui,j)2 + h2, (3)

where ui− 1
2 ,j

can be estimated as the mean of points ui−1,j

and ui,j , and h is the grid step size. Then the normal curvature
along the direction

−−→
OX can be computed.

Fig. 3 displays the eight triangle planes located physically
nearest to the center point O, which are used to approximate
the tangent planes in different directions. Therefore, we can
enumerate eight normal curvatures on a 3 × 3 local window.
The principal curvatures are obtained by

κmin(u) = min{κ`(u)}, κmax(u) = max{κ`(u)}, (4)

where ` = 1, 2, · · · , 8. Then the mean curvature and Gaussian
curvature are defined as follows

H =
1

2
(κmin + κmax), K = κminκmax. (5)

B. The SAV scheme
The SAV method was introduced [25], [26] for a class of

general gradient flows such as phase field models [27], [28],
nonlinear Schrödinger equations [29], [30], Bose-Einstein
Condensates [31], viscous fluid equations [32]. Recently, the
SAV algorithm has been used for to solve the hybrid fractional
total variation model [22], which is effective for image super-
resolution problems. The SAV scheme was introduced to
minimize the following free energy problem

min
u

E(u) =
1

2
(u,Lu) + E1(u), (6)

where L is a symmetric non-negative linear operator, and
E1(u) is a nonlinear functional bounded from below. The
gradient flow of the above free energy (6) gives

∂u

∂t
= Gµ,

µ =
δE

δu
,

(7)

subject to either periodic boundary condition or Neumann
boundary condition, where G = −I for the L2 gradient flow
and G = −∆ for the H−1 gradient flow. A time discretization
scheme for (7) is said to be energy stable if it satisfies a
discrete energy dissipation law

d

dt
E(u) =

δE

δu
· ∂u
∂t

= (µ,Gµ) ≤ 0.

It is shown that the SAV approach is an efficient and uncon-
ditionally energy stable scheme for gradient flows [25], [26].

We can simply classify the existing approaches to construct
energy stable schemes for gradient flows into three categories
as follows. The first category is the convex splitting methods
by expressing the free energies as the difference of two convex
functionals, which gives the first-order accurate schemes. The
second kind of approaches is the so-called stabilization method
introduced in [33], where the main idea is to introduce an
artificial stabilization term to balance the explicit treatment of
the nonlinear term. The stabilization method can be extended
to second-order accurate schemes, but they are not uncondi-
tionally energy stable in general [26]. The third category is the
method of invariant energy quadratization (IEQ) [34], which
is a generalization of the method of Lagrange multipliers
of auxiliary variables, which allows to construct linear, un-
conditionally stable, and second-order unconditionally energy
stable schemes for a large class of gradient flows. However,
it requires to solve a linear system involving VARIABLE
coefficients at each time step. The SAV approach modifies the
IEQ scheme by introducing a scalar auxiliary variable, which
makes the linear equations be of CONSTANT coefficients.
Thus, the SAV inherits all advantages of IEQ approach, while
overcome its shortcomings.

The SAV scheme was firstly used for image super-resolution
problem was [22], which combined the TV regularization and
the fractional differential regularization as follows

min
u

ε

2

∫
Ω

|∇u|2dx+ β

∫
Ω

|∇αu|dx+
λ

2

∫
Ω

(f −Hu)2dx,

for u ∈ BV α(Ω) ∩H1(Ω). The above energy functional has
the same formulation as (6), which is a direct application of the
original SAV scheme. In this work, we extend the SAV scheme
in both theory and application, solving the more sophisticated
curvature minimization models for general image restoration
problem.
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III. OUR APPROACH

Given an image domain Ω and an observed image f : Ω→
R, the mean curvature and Gaussian curvature regularization
model aims to recover an clean image surface (x, u(x)) by
minimizing the following the curvature energy [13]

min
u

∫
Ω

φ(κ)
√

1 + |∇u|2dx+ λ

∫
Ω

(Hu− f)2dx, (8)

where φ(κ) = 1 + α|κ| is a function of curvature, λ is a
positive parameter, and H is a linear operator varying with
different image processing tasks. Since the surface area term
introduces strong nonlinearity, we simplify it by replacing the
area term with total variation term as follows

min
u

E(u) :=

∫
Ω

φ(κ)|∇u|dx+ λ

∫
Ω

(Hu− f)2dx, (9)

which means the curvature is defined over the level curves of
the given images. For the ease of illustration, we define F (u)
as the energy density function

F (u(x)) = φ
(
κ(u(x))

)
|∇u(x)|+ λ(Hu(x)− f(x))2. (10)

Since F (u) ≥ 0, it is easy to check that the energy E(u) has
the lower bound 0. Thus, we can assume that there exists a
constant C0 to make E(u) + C0 > 0.

Define a scalar auxiliary variable

r =
√
E(u) + C0.

Then we can rewrite the variational derivative F ′(u) as follows

F ′(u) =
r

r
F ′(u) =

r√
E(u) + C0

F ′(u).

By taking the above form into (7), we can obtain an equivalent
system of gradient flow with a scalar auxiliary variable r as
follows 

∂u

∂t
= −µ,

µ =
r√

E(u) + C0

F ′(u),

∂r

∂t
=

1

2
√
E(u) + C0

∫
Ω

F ′(u)utdx.

(11)

To illustrate the energy decay of scheme (11) , we take inner
product of the first two equations in (11) with µ and ∂u

∂t , which
gives∫

Ω

∂u

∂t
µdx = −‖µ‖2 =

r√
E(u) + C0

∫
Ω

F ′(u)
∂u

∂t
dx. (12)

Then, by multiplying the third equation in (11) with 2r, we
get

∂r

∂t
2r =

2r

2
√
E(u) + C0

∫
Ω

F ′(u)utdx (13)

where ∂r
∂t 2r = ∂r2

∂t . Let Ẽ(u) = r2 = E(u) + C0. By the
above two equations (12) and (13), it can be easily checked
that the scheme (11) satisfies energy dissipation law, such as

d

dt
Ẽ(u) = −‖µ‖2. (14)

In what follows, taking the time step ∆t, the scheme (11) is
amenable to simple and efficient numerical scheme as follows

un+1 − un

∆t
= −µn+1,

µn+1 =
rn+1√

E(un) + C0

F ′(un),

rn+1 − rn

∆t
=

1

2
√
E(un) + C0

∫
Ω

F ′(un)
un+1 − un

∆t
dx.

(15)
Then we have following theorem to guarantee the above
scheme (15) is energy stable for the gradient flow (7).

Theorem 1. The scheme (15) is unconditionally energy stable
in the sense that

Ẽ(un+1)− Ẽ(un) = −∆t(µn+1)2− (rn+1− rn)2 ≤ 0 (16)

where Ẽ(un+1) = (rn+1)
2

= E(un+1) + C0 is the modified
energy.

Proof. On the first place, we multiply the three equations in
(15) with µn+1, un+1−un

∆t , and 2rn+1, respectively. Then by
integrating the first two equations and adding them together,
we can obtain

2rn+1(rn+1 − rn) = −∆t(µn+1)2.

Using the identity

2rn+1(rn+1 − rn) = (rn+1)2 − (rn)2 + (rn+1 − rn)2,

one can obtain

Ẽ(un+1)− Ẽ(un) = (rn+1)2 − (rn)2

= −∆t(µn+1)2 − (rn+1 − rn)2

≤ 0,

(17)

which shows the diminishing of energy.

A. Solution to discrete scheme (15)

Although it looks a little bit complicated, we can obtain a
linear equation from the scheme (15) to solve un+1. Indeed,
taking µn+1 and rn+1 to the first equation of (15), we have

un+1 − un

∆t
= − F ′(un)√

E(un) + C0

(
rn+

∫
Ω
F ′(un)(un+1 − un)

2
√
E(un) + C0

)
.

For convenience, we denote bn = F ′(un)√
E(un)+C0

. Then the

equation (15) can be simplified as

un+1 +
∆t

2
bn
(
bn, un+1

)
= cn, (18)

where

cn = un −∆trnbn +
∆t

2
(bn, un)bn. (19)

Thus, we need to compute
(
bn, un+1

)
. By taking the inner

product with bn, we then get(
bn, un+1

)
+

∆t

2
‖bn‖2

(
bn, un+1

)
= (bn, cn) , (20)
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Fig. 4. Test images and their sizes used in parameter discussing.

which gives (
bn, un+1

)
=

(bn, cn)

1 + ∆t
2 ‖bn‖2

. (21)

In what follows, we can obtain un+1 by taking (21) back into
(18).

B. The variational derivative of F (u)

The only left issue is how to compute the variational deriva-
tive of the functional F (u). To avoid estimate the gradient
of the curvature related term, we regard φ(κ) as a weighted
function of the total variation term, and then obtain F ′(u) as
follows

F ′(un) = −φ(κ(un))∇ · ∇un√
|∇un|2 + β

+HT (Hun − f),

(22)
where the curvature κ(un) is either mean curvature or Gaus-
sian curvature being explicitly evaluated in the local 3 × 3
window by the normal curvatures as discussed previously, HT

is the transpose operator to H , and β being a small positive
parameter to avoid the singularity.

C. Our SAV algorithm

The implementation of the algorithm to solve the curvature-
based model (9) is summarized in Algorithm 1.

Remark 1. In order to accelerate the SAV scheme speed, we
follow the adaptive time stepping strategy in [26]. The time
step size τ is updated adaptive using the formula

τn+1 = max {τmin,min {Adρ (en+1, τn) , τmax}}

with Ad,ρ(e, τ) = ρ( tole )
1
2 τ, where ρ is a default safety

coefficient, tol is a reference tolerance, and e is the relative
error at each time level.

IV. NUMERICAL EXPERIMENTS

This section presents the numerical results to evaluate the
performance of our SAV method on image denoising, single
image super-resolution, and image deblurring problems. All
experiments are implemented in a MATLAB R2016a environ-
ment on a desktop with an Intel Core i5 CPU at 3.3 GHz and
8 GB memory.

The qualities of the recovered images sized at m1×m2 are
measured using both peak signal-to-noise ratio (PSNR)

PSNR(u, u) = 10 log10

u2
max ·m1m2

‖u− u‖2
,

Algorithm 1: The SAV algorithm for solving the
curvature minimization problem (9)
Input: given image f , linear operator H , parameters

λ, α, tol, ρ, τmin, τmax;
Output: un+1

1 for n = 1, 2, ... do
/* Compute F ′(un) from (22) */

2 F ′(un) =

−φ(κ(un))∇ · ∇un√
|∇un|2+β

+HT (Hun − f);

3 bn = F ′(un)√
E(un)+C0

;

/* Compute cn from (19) */
4 cn = un − τnrnbn + τn

2 (bn, un)bn;
/* Compute (bn, un+1) from (21) */

5 (bn, un+1) = (bn,cn)
1+ τn

2 ‖bn‖2
;

6 un+1 = cn − τn
2 b

n
(
bn, un+1

)
;

/* Adaptive time stepping */

7 en+1 =
‖E(un)−E(un+1)‖
‖E(un+1)‖ ;

8 τn+1 = max {τmin,min {Adρ (en+1, τn) , τmax}};
/* Stopping condition */

9 End till some stopping criterion meets;
10 end

and structural similarity index measure (SSIM)

SSIM(u, u) =

(
2MuMu + C1

)
+
(
2σuu + C2

)(
M2
u +M2

u + C1

)(
σ2
u + σ2

u + C2

) ,
where u and u denote the restored and original images,
respectively, umax represents the possible maximum pixel
value of u, Mu and Mu are the mean values of u and u,
σu and σu are the variances, σuu is the covariance of u and
u, and C1 and C2 are two constants. In addition, we use the
following relative error of the numerical energy as the stopping
criterion

RelErr
(
E(un+1)

)
=
E(un+1)− E(un)

E(un+1)
≤ ε, (23)

such that the iterations stop as long as the relative error in
numerical energy smaller than the predefined tolerance ε. We
simply fix ε = 10−4 in the following experiments.

A. Datasets

Referring to five widely used datasets, we evaluate the
performance of our method and comparison methods, the
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Fig. 5. Numerical energy evolution with respect to iteration and CPU time of the SAV and ADMM approaches for λ = 0.08, the ADMM-M method owns
different inner loop (IL) 1 and 5.

TABLE I
IMAGE RESTORATION RESULTS ON TEST IMAGES WITH RESPECT TO

DIFFERENT MINIMUM TIME STEPS, WHERE THE PARAMETER ARE GIVEN
AS λ = 0.08 AND τmax = 10−1 .

τmin Image 10−2 10−4 10−6

PSNR

#1 29.34 29.34 29.34
#2 28.79 28.92 30.72
#3 30.92 30.92 30.92
#4 30.95 30.95 30.95
#5 28.91 28.91 28.91
#6 29.82 29.82 29.87

Energy

#1 1.53 1.53 1.53
#2 1.51 1.51 1.51
#3 5.07 5.07 5.07
#4 5.03 5.03 5.03
#5 2.19 2.19 2.19
#6 2.09 2.09 2.09

CPU

#1 2.74 2.85 2.91
#2 2.69 2.63 2.56
#3 13.25 13.34 13.00
#4 11.82 11.74 11.43
#5 56.01 56.32 56.10
#6 48.80 48.83 48.20

details of which are described as follows
1) BSD68 dataset: It contains 68 gray images ob-

tained from Berkeley segmentation dataset [35], which are
downloaded from https://github.com/cszn/FFDNet/tree/master/
testsets. The dataset is composed of a large variety of images
ranging from natural images to object-specific such as plants,
people, food etc. The sizes of the images in BSD68 vary by
241× 161, 481× 321 and 962× 462.

2) Kodak dataset: The dataset contains total 24 color
images, which are downloaded from http://r0k.us/graphics/
kodak/. Kodak is a dataset used frequently for image denoising
and super-resolution, which is released by Kodak in 1991

TABLE II
RESULTS OF λ = 0.08 FOR THE FIXED MINIMUM TIME STEP τmin = 10−4

WITH DIFFERENT MAXIMUM TIME STEPS.

τmax Image 10−2 0.1 0.3

PSNR

#1 29.13 29.34 29.18
#2 28.61 28.92 28.96
#3 30.61 30.92 30.67
#4 30.86 30.95 31.12
#5 28.62 28.91 28.75
#6 29.55 29.82 29.67

Energy

#1 1.52 1.52 1.61
#2 1.54 1.51 1.63
#3 5.07 5.07 5.45
#4 5.20 5.03 5.34
#5 2.20 2.19 2.29
#6 2.14 2.09 2.25

CPU

#1 2.37 2.85 2.35
#2 2.94 2.63 2.91
#3 15.19 13.34 11.18
#4 15.04 11.74 13.80
#5 60.59 56.32 51.65
#6 62.22 48.83 42.34

derived from a variety of film source materials. Note that each
image in Kodak dataset is either 768x512 or 512x768 in size.

3) Set14 dataset: The Set14 dataset is a dataset consisting
of 14 images, which is commonly used as a benchmark for
image restoration tasks. It was introduced by Roman Zeyde
et al. [36], which is composed of 13 color images and 1 gray
image of different sizes.

4) McMaster dataset: The McMaster dataset [37] con-
tains 18 color sub-images cropped from eight high-resolution
natural images, the size of each image is 500×500 pixels.
Compared to Kodak dataset, the images in McMaster dataset
exhibit more saturated colors.
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TABLE III
COMPARISON OF IMAGE DENOISING BETWEEN THE SAV AND ADMM METHODS WITH DIFFERENT VALUES OF λ, WHERE THE NOISE LEVEL IS GIVEN AS

σ = 20.

Model Mean Curvature Gaussian Curvature

Index Image λ = 0.06 λ = 0.08 λ = 0.12 λ = 0.05 λ = 0.07 λ = 0.09
ADMM SAV ADMM SAV ADMM SAV ADMM SAV ADMM SAV ADMM SAV

PSNR

#1 28.58 28.82 29.05 29.08 28.98 28.86 28.31 28.88 29.12 29.33 29.03 28.38
#2 27.87 28.26 28.34 28.70 28.49 28.14 27.82 28.11 28.42 28.79 28.11 27.92
#3 30.36 30.61 30.68 30.69 30.10 30.02 30.17 30.17 30.97 30.99 29.11 28.75
#4 30.39 29.42 31.16 31.21 31.09 30.00 30.22 30.71 31.63 31.66 28.51 28.35
#5 27.66 28.47 28.14 28.63 28.45 28.56 27.68 28.17 28.49 28.91 27.38 27.55
#6 28.99 29.68 29.37 29.71 29.68 29.35 29.14 29.61 29.42 29.82 28.21 28.25

Energy

#1 1.40 1.39 1.51 1.49 1.73 1.60 1.38 1.33 1.57 1.52 1.91 1.89
#2 1.46 1.41 1.55 1.48 1.80 1.72 1.41 1.36 1.58 1.51 1.92 1.88
#3 4.60 4.58 5.08 4.94 5.98 5.40 4.32 4.26 5.19 5.07 6.61 6.48
#4 4.05 4.01 5.01 4.72 5.97 5.39 4.29 4.24 5.11 5.03 6.43 6.25
#5 2.00 1.98 2.20 2.17 2.61 2.42 1.85 1.82 2.23 2.19 2.79 2.73
#6 1.91 1.92 2.13 2.06 2.50 2.29 1.82 1.81 2.16 2.09 2.69 2.71

CPU

#1 21.43 11.86 21.61 10.63 21.55 7.01 2.79 1.52 4.95 2.73 4.13 2.83
#2 21.09 13.84 21.43 10.04 21.48 4.70 2.75 1.55 4.82 2.03 4.47 2.61
#3 98.04 37.70 99.74 34.21 98.00 25.43 15.42 10.99 18.84 13.35 24.09 16.24
#4 98.83 30.53 99.57 33.53 98.05 21.84 15.27 10.11 37.77 11.06 24.19 17.33
#5 426.19 61.01 428.96 66.91 431.96 65.78 65.78 49.23 80.94 56.05 107.84 61.95
#6 426.08 55.88 430.07 71.86 434.40 111.71 65.87 45.21 80.71 48.82 105.67 54.41

5) Pan et al.’s Text and Low-Illumination Dataset: The
dataset constructed by Pan et al. [38] consists of two parts, the
text part containing 15 color document images and the low-
illumination part containing 6 color low-illumination images.

B. Parameters discussing

To get the appropriate adaptive time step, we set different
time steps as a comparison. In the experiment, we test six
images of different scales, as shown in Fig. 4, which are
degraded by Gaussian noise with zero mean and standard
deviation of σ = 20. We set the parameters as tol = 0.07,
ρ = 0.4, and λ = 0.08 for all images. In Table I, we
fix τmax = 10−1 with different minimum time steps of
{10−2, 10−4, 10−6}. As can be observed, the minimum time
step τmin has almost no effect on the denoising results.

Next, we discuss how to select the optimal maximum
time step for the SAV algorithm. To be specific, we fix
τmin = 10−4 with respect to different maximum time steps
given as {10−2, 0.1, 0.3}. The PSNR, numerical energy and
CPU time are recorded in Table II, where higher PSNR and
lower CPU time are obtained with τmax = 0.1. Therefore, we
fix the minimum and maximum time steps as τmin = 10−4

and τmax = 10−1 in the following experiments, and the initial
time step is taken as τmin.

There is another important parameter in our curvature
minimization model, i.e., λ, which is used to balance the
contribution between the data fidelity and regularization term.
We compare our SAV approach with the ADMM algorithm
in [13] to illustrate the effect of λ. The parameters of the
ADMM method are selected as suggested in [13], where the
penalty parameter is fixed as r = 2. We select the parameter
in the curvature function as a = 1 and b = 0.1 for the
mean curvature (MC) minimization models (both SAV and
ADMM algorithms), while we let a = 1 and b = 5 for the
Gaussian minimization (GC) models (both SAV and ADMM
algorithms). For convenience, we use the ADMM-M and SAV-

M to denote the MC methods, while the ADMM-G and SAV-
G to denote the GC methods. Tables III lists the comparison
results of SAV and ADMM method with respect to different
values of λ. As can be observed, the best recovery results are
obtained with λ = 0.08 for MC model and λ = 0.07 for
GC model, which are obtained by our SAV method. Thanks
to the unconditional energy stability of the SAV scheme, our
algorithm always gives smaller numerical energies with less
CPU time. It is worthy to mention that the advantage of
SAV method is dominant especially for larger regularization
parameters.

To further demonstrate the efficiency of the SAV approach,
we track the decays of the numerical energies for different
sizes of test images. For ADMM method, the nonlinear sub-
minimization problem needs to be solved by Newton method,
which results in the rising of computational costs. Since the
Newton method is terminated by the number of its iteration, we
set the maximum number of iterations to be 1 and 5 (i.e., inner
loop, denoted by IL = 1, 5) in the comparison. Fig. 5 displays
the plots of energy decays, where the numerical energies of
both methods decrease and finally approach to the similar
steady states. The plots demonstrate that the advantage of
the unconditionally energy stability for the proposed methods.
Specifically, we have the following two conclusions

• It is shown by the energy decay curves that the decay
speed of the ADMM algorithm relies on the inner loop.
Both the numbers of the outer iteration and CPU time
decrease by increasing the number of inner loops from
IL = 1 (the black line) to IL = 5 (the red line). However,
it does not mean that the more inner loops, the more
efficient. Too many inner loops will also result in the
increase of computational costs.

• Our SAV algorithm is more efficient than the ADMM-
based algorithm. Although the CPU time of the ADMM
algorithm decreases as the number of the inner iteration
increases to IL = 5, it is still higher than our SAV
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TABLE IV
AVERAGE PSNR(DB)/CPU(S) OBTAINED BY DIFFERENT DENOISING METHODS ON BSD68 DATASET CORRUPTED BY NOISE LEVEL σ = 20. THE TOP

BEST VALUE AMONG ALL THE METHODS AND VARIATIONAL METHODS ARE GIVEN IN ITALIC AND BOLD, RESPECTIVELY.

size ROF Euler CFMC MC TC TFOV ADMM-G ADMM-M DnCNN CBDNet NN SAV-G SAV-M

PSNR
241x161 27.62 28.15 26.43 28.38 28.41 28.17 28.44 28.54 30.22 30.88 29.50 28.77 28.88
481x321 27.60 28.07 26.78 28.32 28.46 28.13 28.34 28.45 30.11 30.89 29.39 28.72 28.85
962x462 27.93 28.37 27.87 28.40 28.52 28.32 28.52 28.53 30.29 30.53 29.44 28.93 28.89

CPU(s)
241x161 5.14 13.21 0.25 6.21 10.41 16.05 15.67 9.05 2.59 1.84 162.61 3.59 4.86
481x321 23.84 53.95 1.16 37.21 39.61 98.08 40.48 39.33 3.21 4.09 375.98 14.66 24.23
962x462 53.05 133.81 9.52 89.66 110.48 186.93 116.58 98.82 23.35 8.02 869.53 82.02 54.92
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Fig. 6. Comparison of the PSNR and CPU time (s) among different methods for image denoising on the BSD68 dataset.

algorithm with respect to different scales of the test
images. The reason behind is the SAV scheme consumes
less time per iteration than ADMM algorithm with inner
loops being 5.

In the following comparison studies, we fix the inner loop
of ADMM algorithm to be IL = 5 to achieve the best
computational efficiency.

C. Image denoising

In this subsection, we assess the performance of our method
on image denoising problems

f = Hu+ n,

where H = I with I being the identity operator and n
being the additive white Gaussian noise (AWGN). We com-
pare our method with the state-of-the-art variational methods
including the Rudin-Osher-Fatemi (ROF) model [1], Euler’s

elastica (Euler) [11], curvature filter (CFMC) [16], mean cur-
vature model (MC) [18], ADMM-based curvature minimiza-
tion model (ADMM-M and ADMM-G) [13], total curvature
model (TC) [14], total fractional-order variation (TFOV) [22],
and deep learning methods including DnCNN [39], CBDNet
[40] and NN [41]. The results of the compared methods are
obtained by running the codes released by the authors. For
fair and reasonable comparative experiments, the parameters
for these methods are provided as suggested in their original
papers

◦ ROF [1]: The total variation model is solved by primal-
dual method, where the step size is given as τ = 1

4 and
σ = 1

8τ for primal and dual variable, respectively, and
r1 = 10, λ = 15.

◦ Euler [11]: Euler’s elastica model is solved using the
ADMM with the parameters of a = 1, b = 10, µ = 10,
η = 200, r1 = 2, r2 = 200, and r4 = 250.

◦ CFMC [16]: The regularization parameter is set as α =
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(a) ROF(26.81dB) (b) Euler(27.32dB) (c) CFMC(27.17dB) (d) MC(27.43dB)

(e) TC(27.47dB) (f) TFOV(27.31dB) (g) ADMM(27.78dB) (h) DnCNN(29.36dB)

(i) CBDNet(30.41dB) (j) NN(28.69dB) (k) SAV-G(28.11dB) (l) SAV-M(28.06dB)
Fig. 7. Denoising results and local magnification for the #51 image on BSD68 dataset with noise level 20 using the comparative methods.

5, and the stopping criterion is given as

RelErr
(
E(un+1)

)
=
E(un+1)− E(un)

E(un+1)
≤ 10−4.

◦ MC [18]: The MC model is solved using the ADMM
with parameters given as ε = 0.4, η = 1600, r1 = 200,
r2 = 200, r3 = 1× 104, and r4 = 1× 104.

◦ ADMM-M and ADMM-G [13]: The total absolute cur-
vature model is solved using the ADMM algorithm with
the parameters given by r = 2, a = 1, b = 0.1, and
b = 5 for the model relying on the mean and Gaussian
curvatures.

◦ TC [14]: The discrete total curvature regularity, mini-
mizing the `1 norm of the normal curvatures in different
directions, is solved by ADMM algorithm with µ = 20,
α = 5, Tmax = 300 and ε = 2× 10−5.

◦ TFOV [22]: The total fractional-order variation model
integrated with total variation and fractional-order TV
is solved by SAV method with the parameters α = 1.1,
β = 1, ε = 10−18, ε1 = 10−9.

◦ DnCNN [39]: The supervised DnCNN model was
trained by 400 images of size 180 × 180 for the range
of the Gaussian noise levels as [0, 55].

◦ CBDNet [40]: We re-trained the CBDNet on DSB400
dataset the same as DnCNN.

◦ NN [41]: It is an unsupervised deep learning method,
which combined an existing Gaussian denoising ap-
proach with the proposed neural network. It does not
require any training sample except the input noisy image
itself. In our comparison, we use the model with Block
Matching and 3D Filtering (BM3D) [42] as Gaussian
denoiser.

Except for the parameters of time step, the others of the
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TABLE V
AVERAGE PSNR(DB)/SSIM OBTAINED BY DIFFERENT COMPARISON METHODS ON SINGLE IMAGE SUPER-RESOLUTION PROBLEM WITH THE UPSCALING

FACTOR OF 2, 3 AND 4 ON BSD68, KODAK AND MCMASTER DATASET.

Dataset Upscaling WBM TVRBM TFOV SAV-M SAV-G
Factor PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

BSD68
2 29.55 / 0.8577 29.65 / 0.8632 29.92 / 0.8396 31.18 / 0.8705 31.22 / 0.8585
3 26.92 / 0.7888 26.69 / 0.7948 27.92 / 0.7510 28.75 / 0.7971 28.70 / 0.7934
4 25.16 / 0.7183 25.29 / 0.7157 26.27 / 0.6857 26.86 / 0.7278 26.89 / 0.7332

Kodak
2 26.79 / 0.8765 26.93 / 0.8784 27.07 / 0.8607 27.97 / 0.8798 27.97 / 0.8801
3 25.03 / 0.8159 25.14 / 0.8265 25.74 / 0.8101 26.65 / 0.8398 26.66 / 0.8409
4 23.78 / 0.7744 23.70 / 0.7851 24.81 / 0.7902 25.25 / 0.8931 25.23 / 0.8940

McMaster
2 28.34 / 0.9225 28.37 / 0.9235 29.09 / 0.9118 30.13 / 0.9310 30.10 / 0.9303
3 25.93 / 0.8843 25.71 / 0.8849 27.18 / 0.8757 27.82 / 0.8931 27.85 / 0.8940
4 24.93 / 0.8547 24.50 / 0.8503 25.83 / 0.8427 26.23 /0.8593 26.26 / 0.8600

(a) Clean (b) DnCNN (c) SAV-G

(a) (b) (c)

(a) (b) (c)

Fig. 8. Denoising results and local magnification for the #19 and #51
images on BSD68 dataset with noise level 20 by our method and DnCNN.

SAV-M and SAV-G algorithms are chosen the same with the
ADMM-M and ADMM-G, respectively.

We evaluate the denoising performance on the BSD68
dataset with the noise level σ = 20. Fig. 6 presents the
PSNRs and CPU time for different denoising methods by
using boxplot. It can be seen the maximum, minimum and the
median PSNR of our SAV method is the highest among all the
variational methods shown by Fig. 6 (a). Particularly, the width
of the boxes indicates the interquartile range of our results
is smaller than other variational methods, which means our
method can achieve more consistent restoration results with
high qualities. On the other hand, the median CPU time of our
SAV method is the smallest compared with other variational
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Fig. 9. Energy decay rates of the SAV-based schemes.

methods without any outliers except for CFMC as shown by
Fig. 6 (b). Therefore, our SAV scheme performs faster than
all the other high-order methods.

The average PSNR and CPU running time obtained by
different methods on the BSD68 dataset are displayed in
Table IV. As one can see, our proposed SAV-G and SAV-M
achieve the best PSNR results among all competing variational
methods. More importantly, the curvature regularization meth-
ods, i.e., MC, TC, ADMM-M/G, SAV-M/G, perform better
than total fractional-order variation model, which convince
the advantage of curvature regularization methods. Note that
CFMC performs poorly compared to other curvature methods
because the curvature estimation is not accurate enough. In
addition to denoising quality, another superiority of our SAV
method is its high computational efficiency. It can be seen
that the SAV method can save much CPU compared to other
high-order models. Although the CFMC [16] performs faster
than our SAV methods, by taking the restoration quality
into consideration, our method is still shown to be the most
competitive image denoising method. And especially, the SAV
method saves much time compared to unsupervised deep
learning method NN [41].

We present the restoration results in Fig. 7 to better vi-
sualize the denoising performance of these methods, where
the selected local magnification views are also used for better
comparison. Obviously, our SAV method gives better visual
results than other variational methods. Note that ROF, MC and
TFOV tend to produce over-smooth results in the texture areas.
In particular, our method has better capability in recovering
edges and small scale details. For example, the stripes of the
zebra and and the grassland in our restored image are much
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Fig. 10. PSNR comparison of our SAV for image super-resolution with 3 other methods on BSD68, Kodak and McMaster datasets.

better than that obtained by other variational methods. In what
follows, we compare the energy decay rates of the two SAV-
based methods, TFOV and our model. Since the minimum
time step τmin almost has no effect to the restoration, we fix
τmin = t/218 and τmax = t/2i with t = 8 for i = 6, 7, ..., 15.
As shown by the plots of the numerical energies in Fig.
9, both SAV-based algorithms are of the first-order energy
convergence.

Though it can be seen from Fig. 6 and Table IV that DnCNN
outperforms our SAV method in terms of PSNR and CPU time,
deep learning methods are not perfect. Fig. 8 illustrates two
representative denoised images selected from BSD68 dataset,
which are obtained by our SAV method and DnCNN model,
respectively. As can be observed, the DnCNN model tends to
generate some unnatural artifacts, while our SAV method can
keep natural structures of the images. As the representative
deep learning method, the DnCNN model contains more
six hundred thousand parameters, which are required to be
learned on the training dataset. And it is a typical non-convex
minimization problem with no guarantee of convergence. More

importantly, the deep learning methods lack interpretability
making the artifacts unpredictable. In contrast, the variational
models have good mathematical properties and theoretical
guarantee.

D. Image super-resolution

Next, we consider the performance of our model on single-
image super-resolution problem and the degradation image
model becomes

f = Hu+ n,

where Hu = D(h ∗ u) with D being a down-sampling
linear operator and h being a translation invariant convolution
kernel for single image super-resolution. Accordingly, there is
HT (Hu− f) = hT ∗

(
DT (D(h∗u)− f)

)
with DT being the

up-sampling operator and hT being the adjoint operator of h.
We evaluate and compare the performance of our method

with several state-of-the-art SR methods including the wavelet-
based model [43], TV regularization model [43], and total
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(a) WBM(20.00dB) (b) TVRBM(20.35dB) (c) TFOV(22.25dB) (d) SAV-M(22.50dB) (e) SAV-G(22.47dB)

(f) WBM(26.69dB) (g) TVRBM(26.62dB) (h) TFOV(27.83dB) (i) SAV-M(28.41dB) (j) SAV-G(28.38dB)

(k) WBM(24.93dB) (l) TVRBM(25.22dB) (m) TFOV(26.32dB) (n) SAV-M(26.88dB) (o) SAV-G(26.93dB)
Fig. 11. The visual comparison of image super-resolution problems, where the images are down-sampled by the factor 4 and corrupted by Gaussian noises
of σ = 5.

fractional-order variation model [22]. The degraded low res-
olution (LR) images are produced by applying a truncated
15 × 15 Gaussian kernel with a standard deviation of 1 to
the original image followed by down-sampling with factors
s=2, 3 and 4, respectively. The additive Gaussian noises of
zero mean and variation σ = 5 are also introduced to the LR
images. The implementation details of the SR methods are
described as follows

◦ Wavelet-based model (WBM) [43]: The model is solved
by the ADMM method with parameters τ = 2 × 10−4

and µ = 0.05.
◦ Total variation regularization-based model (TVRBM)

[43]: The model is solved using the ADMM with
parameters τ = 2× 10−3 and µ = 0.05.

◦ Total fractional-order variation model (TFOV) [22]: The
model is solved using the SAV algorithm with the
parameters α = 1.1, β = 1, ε = 10−4, and λ = 30.
The minimum and maximum time steps are taken as
τmin = 10−2 and τmax = 10−1, respectively.

◦ SAV-M and SAV-G: We fix a = 1 and b = 0.1 for the
SAV-M model and a = 1 and b = 5 for the SAV-G

model while the other parameters are the same as the
TFOV model.

Table V presents the average PSNR and SSIM for different
methods on BSD68, Kodak and McMaster dataset with the
upscaling factor of 2, 3 and 4, respectively. We can observe
that the high-order regularization methods significantly im-
prove the super-resolution performance compared to the TV
regularization model. And our SAV scheme yields the highest
PSNR and SSIM with 0.4 dB higher PSNR than TFOV model
and 1.2 dB higher PSNR than TV model. Fig. 10 shows the
PSNR comparison over each image on BSD68, Kodak and
McMaster dataset, respectively. As can be seen, our SAV-M
(denoted by the blue line) and SAV-G (denoted by the green
line) always exhibit higher PSNR than the other three methods.
We also display the CPU time for different methods on the
three datasets in Fig. 12. Although the high-order models
consume more computational time than TVRBM, our curva-
ture regularization models are much faster than TFOV and
WBM. We present selective results from BSD68, Kodak and
McMaster dataset for visual comparison as displayed in Fig.
11. It can be seen that both SAV-M and SAV-G can produce
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Fig. 12. CPU run time (in seconds) comparison on image super-resolution problem.

fine details and sharp edges whereas the total fractional order
variational [22] tends to generate blurred edges, and the WBM
and TVRBM methods are likely to generate staircase effect.

E. Image deblurring

We further extend the proposed model to image deblurring
problem, and we compare it with the combined first- and
second-order variational model [44]. The Gaussian blur of
size 5 × 5 with a standard deviation 5 and additive Gaussian
noises of variation σ = 5 are used to degrade the images. In
implementation, the parameters of the comparative methods
are detailed as follows
◦ Combined first- and second-order variational model [44]

(TV-TV2): The model is solved using the ADMM algo-
rithm where we set α = 0.003, β = 0.001, p1 = 0.08,
and p2 = 0.08.

◦ SAV-M and SAV-G: We set a = 1, and b = 0.1 for
the SAV-M model and a = 1 and b = 5 for the SAV-G
model with regularization parameter λ = 60.

TABLE VI
AVERAGE PSNR(DB)/SSIM COMPARISON AMONG DIFFERENT METHODS
FOR IMAGE DEBLURRING ON BSD68, KODAK AND PAN et al. DATASETS.

Dataset TV-TV2 SAV-M SAV-G
PSNR / SSIM PSNR / SSIM PSNR / SSIM

BSD68 29.59 / 0.8361 30.09 / 0.8371 30.26 / 0.8382
Kodak 27.19 / 0.8379 27.83 / 0.8706 27.86 / 0.8748
Text 23.69 / 0.9105 24.79 / 0.9198 24.87 / 0.9200

Low-illumination 27.20 / 0.8346 27.82 / 0.8568 27.83 / 0.8589

Similarly, we evaluate the deblurring methods on the
BSD68, Kodak24 and Pan et al.’s text and low-illumination
dataset. Table VI shows the average PSNR and SSIM obtained
by different methods, where our methods are shown superior
in PSNR and SSIM. As shown by Fig. 13, our method
performs favorably against the TV-TV2 method. For visual
comparison, we display the selective restored images from
the Kodak dataset and a low-illumination image from Pan et
al.’s dataset in Fig. 14. Although the original image contains
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Fig. 13. PSNR comparison on image deblurring problem, where the images are corrupted by 5× 5 Gaussian blur kernel and Gaussian noises of σ = 5.

abundant textures such as the folds on mountains, the blur
makes the textures being smoothed out. As can be seen, our
methods outperform TV-TV2 in recovering edges shown by
the boxes and zoomed in regions. In particular, the letters
and outlines of the building recovered by our method is much
clearer than TV-TV2. Furthermore, Fig. 15 exhibits the running
time, which illustrates that our SAV scheme requires much less
computational costs than the TV-TV2 model.

F. Mixed noises denoising

We have discussed our method on additive white Gaussian
noises (AWGN) removal. However, Poisson noises that charac-
terizes the fluctuation in counting number of photons are very

common in optical images. Thus, we explore the extended
application of our method on the mixed Gaussian-Poisson
noises removal problems. Let u, f ∈ Rn be the ground truth
and observed image corrupted by the mixed Poisson-Gaussian
noises, respectively, satisfying

f = v + n, with v ∼ Poisson(u) and n ∼ N
(
0, σ2

)
.

We aim to solve the mixed noise model proposed by Calatroni
et al. [45], which is defined as follows

min
u,v

∫
Ω

φ(κ)|∇u|dx+
λ1

2

∫
Ω

(f−v)2dx+λ2

∫
Ω

(u−vlnu
v
−v)dx.

Although the mixed noise model contains two variables,
SAV scheme can still be used to solve such problem and
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(a) Blurred image(20.29dB) (b) TV-TV2(22.40dB) (c) SAV-M(22.84dB) (d) SAV-G(22.89dB) (e) Clean image

(f) Blurred image(24.33dB) (g) TV-TV2(26.37dB) (h) SAV-M(26.79dB) (i) SAV-G(26.67dB) (j) Clean image

(k) Blurred image(24.33dB) (l) TV-TV2(27.62dB) (m) SAV-M(28.07dB) (n) SAV-G(28.34dB) (o) Clean image

Fig. 14. Visual comparison for image deblurring problems, where images are corrupted by 5× 5 Gaussian blur kernel and noise level of σ = 5.

TABLE VII
AVERAGE PSNR(DB)/SSIM/CPU(S) RESULTS OF DIFFERENT METHODS

FOR REMOVING MIXED GAUSSIAN AND POISSON NOISES ON SET14.

Noises DnCNN CBDNet NN BCA SAV

PSNR
σ = 5 28.63 31.00 27.45 30.55 31.01
σ = 10 28.55 29.83 27.26 29.64 30.53
σ = 20 27.73 27.09 27.06 27.86 28.45

SSIM
σ = 5 0.8001 0.8303 0.7815 0.8492 0.8591
σ = 10 0.7911 0.7869 0.7619 0.8071 0.8239
σ = 20 0.7582 0.6825 0.7354 0.7648 0.7843

CPU(s)
σ = 5 2.53 2.85 310.14 28.24 22.14
σ = 10 2.64 2.76 300.48 30.25 25.45
σ = 20 2.63 2.93 310.74 35.24 27.15

ensure unconditionally energy diminishing. What is more, our
SAV scheme does not need to introduce additional auxiliary
variables, while ADMM-based algorithm in [46] introduced
two auxiliary variables.

We choose both deep learning based method DnCNN [39],
CBDNet [40], NN [41] with DnCNN as the Gaussian denoiser,
and the total variation model solved by bilinear constraint
based ADMM (BCA) [46] as the comparison methods. We
introduce the mixed Gaussian and Poisson noises into the
images in Set14 dataset, where different Gaussian noise level
are used, i.e., σ = 5, 10 and 20. The average PSNR and
SSIM of different methods are reported in Table VII. As can
be observed, SAV performs the best among all comparison
methods. Despite the fact that DnCNN has a very competitive
performance for AWGN (as shown in section (IV-C)), it loose
lose its effectiveness for mixed Gaussian and Poisson noises.
Although we use NN combined the DnCNN as denoiser, it still
performs poorly on mixed noises removal problems. Benefited

from the noise estimation subnetwork and asymmetric loss, the
CBDNet presents better generalization ability to mixed noises,
achieving better restoration results than the other two deep
learning methods. However, it still loses its ability compared to
our method, because the deep learning methods are very sen-
sitive to test images even though only little amount of Poisson
noises being introduced. Thus, the model-based methods work
more reliable than deep learning methods in real scenarios.
For the running speed, it can be seen that our SAV scheme
converges much faster than the other variational method BCA,
and also much faster than the unsupervised learning model
NN. Fig. 16 provides two representative denoising results from
the Set14 dataset. It is clear shown that our SAV method
performs favorably in balancing noise removal and structure
preservation.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an efficient and accurate SAV
algorithm to minimize the mean curvature and Gaussian cur-
vature energies for various image processing tasks. To the best
of our knowledge, it is the first attempt to obtain the uncondi-
tionally energy diminishing algorithm for the curvature mini-
mization problems. Compared to the existing ADMM method,
our algorithm has the advantages of less parameters, faster
convergence and more accurate results. Extensive numerical
experiments on additive Gaussian denoising, image deblurring,
single image super-resolution and mixed Gaussian and Poisson
denoising are conducted on multiple image datasets, where our
method has better performance in quality and speed compared
to other variational methods.
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Fig. 15. CPU run time (in seconds) comparison on image deblurring problem, where the images are corrupted by 5× 5 Gaussian blur kernel and noise level
σ = 5.

Although it is unfair to compare the model-based methods
with the learning-based methods, the experiments on Gaussian
and mixed noise removal problems reveal that both model-
based optimization methods and learning-based methods have
their respective merits and drawbacks. Our method consumes
more inference time compared to the supervised learning
based methods such as DnCNN and CBDNet, but it does not
require cumbersome time and resources for training millions
of parameters as deep learning methods. Besides, the model-
based methods also perform more reliable than both the
supervised learning methods, which lose their effect when only

little amount of Poisson noises are introduced into the noisy
images. We believe that model driven and data driven methods
can be integrated to obtain efficient and reliable algorithms,
which are our direction for the future work.
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