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Abstract

The single sample per person (SSPP) problem is of great importance for real-

world face recognition systems. In SSPP scenario, there is always a large gap

between a normal sample enrolled in the gallery set and the non-ideal probe

sample. It is a crucial step for face recognition with SSPP to bridge the gap

between the ideal and non-ideal samples. For this purpose, we propose a Varia-

tional Feature Representation-based Classification (VFRC) method, which em-

ploys the linear regression model to fit the variational information of a non-ideal

probe sample with respect to an ideal gallery sample. Thus, a corresponding

normal feature, which reserve the identity information of the probe sample, is

obtained. A combination of the normal feature and the probe sample is used,

which makes VFRC method more robust and effective for SSPP scenario. The

experimental results show that VFRC method possesses higher recognition rate

than other related face recognition methods.
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1. Introduction

In modern society, face recognition (FR) technology has become more and

more popular in many application fields [1, 2], such as information security, law

enforcement and surveillance, smart cards, access control, and so on. With the

increased attention from researchers, many methods have been proposed in the

literature [3, 4, 5, 6, 7, 8, 9, 10]. However, there are still many challenges need to

be faced in FR field. One of the challenges is single sample per person (SSPP)

problem [11, 12], especially for the situation that the probe samples contain

large appearance variations caused by illumination, expression, age, pose, and

so on. For some FR applications, such as law enhancement, e-passport and ID

card, there is usually only a single sample per person recorded in the systems.

The main reasons lie in two aspects: on the one hand, it is difficult for those FR

systems to collect additional samples under many scenarios; and on the other

hand, it is need to be considered to reduce the cost of storage space. As the

probe samples may contain various varying information, numerous appearance-

based multi-sample methods (e.g., Eigenfaces [13], Fisherfaces [14], Local Binary

Pattern [15]) may be noneffective or may fail to work for SSPP issue. Since SSPP

problem with non-ideal conditions is a big challenge in FR field, many multi-

sample methods have been developed to address SSPP problem. At the same

time, a variety of novel specific methods have been created by many researchers

[11]. The methods for SSPP problem proposed in the literature can be classified

the following three categories.

The first category of methods is based on virtual sample generation. In order

to make the discriminative subspace learning methods adjustable for extracting

feature with SSPP problem, some additional training samples, which are virtu-

ally generated, are added into each class of the gallery set. In [16, 17], two sin-

gular value decomposition (SVD)-based perturbation algorithms were proposed

to make the conventional Linear Discriminant Analysis (LDA) [18] available for

SSPP issue by generating multiple images for each person. However, the dis-

tinguish information of the virtual samples in each class was not increased with
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the increasing number of virtual samples. Such an evident shortcoming comes

from high correlation among the virtual samples and the corresponding original

sample.

The second category of methods is based on image partitioning, as Modu-

lar Principal Component Analysis (Block-PCA) [19], Block based Linear Dis-

criminant Analysis (Block-LDA) [20], Discriminative Multimanifold Analysis

(DMMA) [21] and Multi-feature Multi-Manifold Learning (M3L)[22]. In Block-

PCA and Block-LDA, patch skill is used to divided face images into small local

patches, on which the discriminant learning techniques are applied. In DMMA

[21], Lu et. al. used the manifold theory to divided one person manifold to

multi-manifold and compared the similarities between the local patch-manifold

per person. Yan et. al. proposed M3L by extending DMMA with respect to

the feature representation. In M3L, not only the raw intensity feature, but also

LBP and Gabor features were extracted within each small patch. Nevertheless,

the form and size of the patch have big influences on the recognition results.

The last category of methods is based on generic learning [23, 24, 25]. The

discriminative features, which are learned from an additional generic training

set with multi-samples per person, are used to recognize the probe person. The

methods with generic learning are based on the assumption that the generic

training set and SSPP gallery set share similar variation information of both

inter-class and intra-class. Su et al. [25] proposed an adaptive generic learn-

ing (AGL) method to successfully apply LDA to solve SSPP problem. Instead

of directly employing the discriminatory information (e.g., the mean and co-

variance of each class) learned from the generic set, AGL method adapts it

to predict intra-personal variations and mean for each subject enrolled in the

gallery through least square regression. Then, the next step is to estimate the

total intra-class and inter-class scatter matrix of all subjects in the gallery set.

The classical sparse representation based classification (SRC) [26, 27, 28] can

represent the probe samples well, when there are enough training samples per

person. In addition, the representation ability of SRC is much more limited

when it faces SSPP problem. Deng et. al. [29, 30] presented an effective
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method, named Extended SRC (ESRC), to overcome the disadvantage of SRC

for SSPP. ESRC applies an auxiliary generic variant dictionary to represent the

possible intra-class variation between the gallery and probe samples. Though

ESRC performs well for SSPP problem, both the extraction of variational fea-

ture and the computational time are wildly discussed by researchers. Recently,

an effective method, called Sparse Variation Dictionary Learning (SVDL) [31]

method, was proposed for FR with SSPP. Instead of learning from the auxiliary

generic set independently, SVDL method obtains a projection by learning from

both auxiliary generic and gallery sets. The learned sparse variation dictio-

nary plays an important role in handling all kinds of variations in face samples,

including illumination, expression, occlusion, and pose. SVDL requires a suffi-

ciently large generic training set, in which each subject should contain multiple

face images with all type of variations.

In this paper, we propose a new generic learning method, named Variational

Feature Representation-based Classification (briefly noted by VFRC), to solve

SSPP problem with various non-ideal conditions (e.g., illumination, expression,

occlusion, pose, age and comprehensive situations). Unlike the conventional

generic learning methods, such as AGL, ESRC, and SVDL, the proposed VFRC

does not directly employ the discriminatory information learned from the generic

set. Alternatively, in the proposed VFRC model, the variational feature of probe

sample is represented by the joint information of the generic set and the gallery

set. As the gallery set can be regarded as a basic reference substance in the

representation for variational feature, the rest normal feature of probe sample

can be obtained more precisely. For the reason that the normal feature keeps less

variational information, it is beneficial to enhance the identity information of

the corresponding probe sample and makes a great contribution to the accuracy

and robustness of VFRC with complicated, broad changing variations in SSPP

scenario.

In order to well verify the effectiveness of the proposed VFRC, two popular

image-to-image and image-to-set experiments are implemented. For image-to-

image experiments, we compare the proposed VFRC with seven related methods
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(SRC [26], CRC [32], Block-LDA [20], DMMA [21], AGL [25], ESRC [29], and

SVDL [31]) on three public face databases (AR [33], Extended Yale B [34,

35], CMU-PIE [36] databases) with various variations, including illumination,

expression, pose, and occlusion. For the image-to-set experiments, we choose

one of the most challenging face database LFW [37] to verify the effectiveness of

our method. The seven methods above and Locality Repulsion Projections and

Sparse Reconstruction based Similarity Measure (LRP-SRSM) [38] are chose

to compare with VFRC for image-to-set experiments. Experimental results

demonstrate that the proposed VFRC achieves state-of-the-art performance for

FR under the SSPP scenario with multiple non-ideal conditions.

The remainder of this paper is organized as follows. Section 2 presents our

method for SSPP problem. In Section 3, the experimental results on three face

databases are presented. The final section is the conclusion of this paper.

2. Proposed Approach

It is well known that FR with SSPP problem has two natural characters: the

first is that the images enrolled in the gallery set are usually frontal pose with

ideal conditions (such as natural expression and illumination without occlusion),

and the second is that the images from the probe set can possess kinds of non-

ideal conditions (such as varying expression, illumination, pose, occlusion, and

so on). Hence, how to build a bridge between the normal gallery image and

the non-ideal probe image is a key point for improving the performance of FR

methods for solving SSPP problem. In the following subsections, we provide a

feasible scheme for this problem.

2.1. Normal Feature and Variational Feature of a Face Image

The face images we get from real world may contain many variational in-

formation, such as illumination, expression, occlusion, pose, and so on. A face

image can be represented by the normal face and the variational information,

which is written as the following form:

I = N + V,
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where I ∈ R
d (d = m · n) is the vectorization of face image with size m × n;

N ∈ R
d denotes the normal face feature; and V ∈ R

d denotes the variational

feature. Thus, we divide a probe sample y into two subparts: the normal feature

yn and the variational feature yv, formally denoted as

y = yn + yv, (1)

where yv contains some interference factors, which may mislead the identity

recognition of the non-ideal probe sample; and yn possesses the inherent identity

information of the probe sample.

In SSPP scenario, A = [x1, x2, · · · , xC ] denotes the gallery set, which con-

tains C different individuals with only one ideal sample per subject, xi ∈ R
d is

the vectorization of the i-th enrolled subject. As the most interference factors

consist in the variational feature yv, the normal feature yn is closer to the cor-

responding ideal sample in the gallery set than the non-ideal probe sample y.

And there is a strong correlation between two samples from the same subject,

the normal feature yn of the probe sample y could be represented as

yn = αixi, (2)

where xi (the i-th sample in the gallery set) possesses the same identity as the

probe sample y, and αi is the representation coefficient of yn over xi. Because

the identity of the probe sample is initially unknown, the representation of yn

can be rewritten as

yn = Aα

in terms of all gallery samples, where α ∈ R
C (C is the number of classes in the

gallery set A) is coefficient vector.

Under the same variational conditions, different individuals share the similar

variational feature, which makes the variational feature universal. However, the

identity information existed in the normal feature is individual. Thus, it is not

easy to get the individual normal feature directly. As showed in Eq. (1), if we

get the variational feature yv, the normal feature can be got indirectly.

6



2.2. Representation of Variational Feature

To obtain the variational feature, a generic set G = {G1, G2, · · · , GK} is

constructed, in which K is the number of individuals in the generic set, Gk =

[gk0, gk1, · · · , gknk
] ∈ R

d×(nk+1) (k = 1, 2, · · · ,K) stacks the available samples

of the k-th class, gk0 is the ideal normal sample, and gkl (l = 1, · · · , nk) is

the sample with various variations including illumination, expression, pose and

occlusion. The variational feature in each class can be obtained by subtracting

the normal sample from other samples of the same class, denoted by

Vk = Ḡk − gk0 ∗ e
⊤

k , (3)

where Ḡk = [gk1, · · · , gknk
] ∈ R

d×nk , ek = [1, 1, · · · , 1]⊤ ∈ R
nk . So we can get

the variation matrix V via the generic set:

V = [V1 V2 · · · VK ]. (4)

Given a probe sample y, its variational feature yv is obtained by the linear

regression model:

[

α̂

β̂

]

= argmin
α,β

∥

∥

∥

∥

∥

y − [A V ]

[

α

β

]∥

∥

∥

∥

∥

2

2

+ λ1

∥

∥

∥

∥

∥

[

α

β

]∥

∥

∥

∥

∥

2

2

, (5)

where
[

α⊤ β⊤
]⊤

is the representation coefficient, and λ1 is the penalty param-

eter.

Obviously, the objective function of the above model is convex and differen-

tiable. Let G
(

[

α⊤ β⊤
]⊤
)

denote the gradient of the objective function, i.e.,

G

([

α

β

])

= 2

[

A⊤

V ⊤

]{

[A V ]

[

α

β

]

− y

}

+ 2λ1

[

α

β

]

= 2

{([

A⊤

V ⊤

]

[A V ] + λ1I

)[

α

β

]

−

[

A⊤

V ⊤

]

y

}

.

By the first-order optimality criterion, G
(

[

α⊤ β⊤
]⊤
)

= 0, we get

([

A⊤

V ⊤

]

[A V ] + λ1I

)[

α

β

]

−

[

A⊤

V ⊤

]

y = 0 (6)

7



The solution of Eq. (6) is the optimal solution of (5):

[

α̂⊤ β̂⊤

]⊤

=
{

[A V ]⊤[A V ] + λ1I
}−1

[A V ]⊤y.

Then, we can get the variational feature of the probe sample, denoted by

yv = V β̂, (7)

where the coefficient β̂ of variational feature is

β̂ = (F − V ⊤AE−1A⊤V )−1V ⊤y

−F−1V ⊤A(E −A⊤V F−1V ⊤A)−1A⊤y,
(8)

here E = A⊤A+ λ1I and F = V ⊤V + λ1I.

Different from those existing popular generic learning methods [25, 29, 31],

as showed in Eq. (8), the variational feature yv is got via the gallery set A and

the variation matrix V . In other words, the variational feature is represented

by the variation matrix with the reference of the gallery set. Furthermore, the

variational feature describes the difference information between the ideal sam-

ples in the gallery set and the non-ideal probe sample, which helps to get more

precise normal feature yn. Fig. 1 gives a visual example, in which two groups

of variational information and corresponding normal face are displayed. One

can see that the variational feature is well represented, and the corresponding

normal feature is well reconstructed, simultaneously.

2.3. Variational Feature Representation-based Classification Model

The normal feature yn can be obtained from the analysis in previous sub-

section, which is given as follows:

yn = y − yv. (9)

As mentioned above, yn is regarded as a normal feature of the non-ideal

probe sample y. Since the normal feature reserves few interference factors, it

is beneficial to enhance the identity information of the corresponding probe
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sample. Thus, we use a combination of the probe sample y and its normal

feature yn in our model of VFRC, which is given by

η̂ = argmin
η

‖(1− γ)y + γyn −Aη‖22 + λ2‖η‖
2
2, (10)

where y is the probe sample; yn is the normal feature of y; γ ∈ (0, 1) is the

weighted factor between y and yn; and λ2 is the penalty parameter. It is easy

to see that the objective function in (10) is convex with respect to η. So, we

can further get the global optimal solution of (10):

η̂ =
(

A⊤A+ λ2I
)−1

[(1− γ)y + γyn].

Now, the classification of the probe sample y is conducted via

identity(y) = argmin
i
{ei},

where ei = ‖y − γyv − xiη̂i‖
2
2/‖η̂‖

2
2.

In the combination used in (10), the probe sample part makes the proposed

VFRC utilize original image information and the normal feature part helps to

avoid the influence of the interference information. As mentioned in the previous

subsection, the normal feature part possesses the identity information of the

corresponding probe sample, which is of great importance in the recognition

process.

2.4. Algorithm for VFRC

The complete recognition procedure of our proposed VFRC is summarized

in following Algorithm 1.

3. Experimental Results

In this section, we focus on three standard face databases (AR database [33],

Extended Yale B database [34, 35] and CMU-PIE database [36]) and one chal-

lenging database (LFW database [37]) to demonstrate the performance of VFRC

for image-to-image and image-to-set SSPP problem with complicated variation-

al situations, respectively. We compare VFRC with seven popular methods:
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Algorithm 1 VFRC method

Input: A gallery set A = [x1, x2, · · · , xC ] ∈ R
d×C , a probe sample y ∈ R

d, a

generic set G = {G1, G2, · · · , GK}, a weighted factor γ, two penalty parameters

λ1 and λ2.

Compute:

1. The variation matrix V = [V1 V2 · · · VK ], where Vk is got by Eq. (3);

2. the variational feature yv = V β̂ of the probe sample y, where β̂ is obtained

by solving the optimal problem (5);

3. solving the optimal problem (10);

4. the residuals ei = ‖y − γyv − xiη̂i‖
2
2/‖η̂‖

2
2, i = 1, 2, · · · , C.

Output: The identity of the probe sample y: identity(y) = argmini{ei}.

SRC [26], CRC [32], Block-LDA [20], DMMA [21], AGL [25], ESRC [29], and

SVDL [31] for image-to-image experiments. We also compare the LRP-SRSM

[38] and these seven methods with VFRC for the image-to-set experiments. All

experiments are finished in Matlab 64bit on a Lenovo Think Center M9201z

platform with four Intel Core i5-3550S 2.9GHz CPUs and 8GB of RAM.

In the following experiments, the l1-regularized minimization in SRC, ESRC

and LRP-SRSM is solved by l1−ls method [39]; all the methods have been imple-

mented without dimensionality reduction except for Block-LDA (the dimension

after reduction is the number of the samples in the gallery set), AGL (according

to [25], the energy is reserved with 96%), ESRC (according to [29], the dimension

after reduction is 90), SVDL (according to [31], the dimension after reduction is

90) and LRP-SRSM (according to [38], the energy is reserved with 99.9%); the

experiments of parameters setting are carried on the four databases for VFRC

and other compared methods, except for SRC (due to the expensive computing

cost), AGL and SVDL (all the parameters are fixed according to [25] and [31],

respectively); the parameter λ is set 0.001 in SRC throughout all experiments.
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3.1. Parameters Setting

We make experiments for parameters setting with CRC, Block-LDA, DM-

MA, ESRC and the proposed method VFRC on each database. Cross validation

is used to find the available combination schemes of relevant parameters for each

method. In order to present the complete experimental process of parameters

setting, VFRC is implemented on ARs (which is a subset of AR database, more

details are showed in Subsection 3.2). We choose the first sample of each subject

for training and the rest 25 samples of each subject for testing. The recognition

rates are recorded.

• We fix the parameters λ1 = 0.001 and λ2 = 0.001 in VFRC to check

influence of γ on the recognition rate. As showed in Fig. 2(a), when

γ = 0.8, VFRC method performs best.

• According to Fig. 2(a), we fix the parameters γ = 0.8 and λ2 = 0.001

in VFRC to check the influence of λ1. As showed in Fig. 2(b), when

λ1 = 0.01, VFRC performs better than others. Meanwhile, the variation

of the recognition rate is limited, which means the variation of parameter

λ1 shares a little effect on the recognition rate.

• Then, we fix γ = 0.8 and λ1 = 0.01 in VFRC. The recognition rates

are showed in Fig. 2(c) with varying value of λ2. When λ2 = 0.1, the

recognition rate is the highest.

• As the variations of γ and λ2 bring big influence on the recognition results,

we check again the effect of the parameter γ with fixed λ1 and λ2, the

parameter λ2 with fixed γ and λ1, the parameter λ1 with fixed γ and λ2,

one by one. As showed in Fig. 2(d), VFRC achieves the best recognition

rate with γ = 0.9, when λ1 = 0.01 and λ2 = 0.1. Fig. 2(e) shows the

recognition rate of VFRC with γ = 0.9, λ1 = 0.01 and varying λ2. When

λ2 = 0.08, VFRC performs better than others. After that, we set γ = 0.9

and λ2 = 0.008, the recognition rate with varying λ1 is showed in Fig. 2(f).
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By means of those experiments above, we get the optimal value of param-

eters used in VFRC as: γ = 0.9, λ1 = 0.02 and λ2 = 0.08 on ARs database.

The similar experiments have been done for other compared methods on AR-

s database. Depend on the results of these experiments, the parameters are

set respectively as: λ = 0.03 in CRC; λ = 0.01 and ps = 6 in Block-LDA;

psrow = 25 and pscolumn = 20 in DMMA; λ = 0.02 in ESRC. The parameter

ps represents the patch size and λ is the penalty parameter in each model. On

other three databases, the similar experiments are also carried out before the

main experiments one by one.

3.2. Experiments with Complicated Varying Conditions

In this subsection, we aim at inspecting the effectiveness of VFRC for SSP-

P problem with the complicated variational probe samples. Since AR face

database contains 3,276 color images with difference illumination (all side lights

on, left light on and right light on), varying facial expression (neutral, smile,

anger and scream) and disguise (sunglasses and scarf) from 70 males and 56

females, we use it in this subsection. Each subject on AR database includes 26

images, as showed in Fig. 3. A subset (signed as ARs), which contains 50 male

subjects and 50 female subjects with 26 images per subject, is selected for the

experiments. On ARs, the first sample of each subject is ideal image, which

is collected in gallery set. We also select 5 males and 5 females from the rest

subjects with 26 samples to get the generic set. All images are cropped from

original 768× 576 to 50× 40 gray scale.

Now we implement VFRC and other seven methods on ARs database. We

choose the first sample of each subject for training; and choose randomly 5, 10,

15, 20, 24 samples, respectively, from the rest of each subject for testing. The

experiments are repeated 10 times for each number of probe samples, and the

average recognition rates and the corresponding standard deviation are listed

in Table 1 and Table 2, respectively. As showed in Table 1 and Table 2, the

numbers of the first row represent the number of probe samples chose from each

samples (the same rule has been used in the following all tables).
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Table 1: Average recognition rates (%) on ARs database

Method 5 10 15 20 24

SRC 65.94 67.08 65.29 71.20 69.95

CRC 69.22 69.96 68.43 73.74 72.52

Block−LDA 56.00 54.44 55.09 55.51 55.98

DMMA 66.52 66.49 65.27 65.01 64.15

AGL 70.12 69.50 67.80 68.32 68.88

ESRC 72.76 74.57 72.57 73.74 73.70

SVDL 72.94 76.15 76.06 74.82 74.81

VFRC 76.52 76.94 79.49 79.87 78.65

From Table 1, it is easy to see that the recognition rates of VFRC are higher

than other related methods on ARs database. In addition, it is mentioned in

Table 2 that VFRC is more stable than other compared methods. In a word,

the proposed VFRC is effective for SSPP problem with complicated varying

conditions, such as varying illumination, expression and occlusion.

3.3. Experiments with Obvious Variation on Illumination

In this subsection, the experiment focuses on whether VFRC is efficient

for SSPP problem with obvious varying illumination. Extended Yale B face

database [34, 35] is considered, since it includes 2,414 frontal-face images with

64 illumination conditions of size 640× 480 from 38 subjects. For each subject,

we reserve 59 images for experiments. All images (showed in Fig. 4) are cropped

with dimension 96 × 84 and converted to gray scale. We choose the first 30

subjects with 59 gray images to establish the gallery set and the probe set. The

gallery set is consisted of the first sample of each subject, and the rest samples

are collected to the probe set. For generic set, the rest 8 subjects are considered.

Each subject in the generic set contains 59 images.

For experiments of parameters setting, we choose the first sample per subject

for training and the rest 58 samples for testing. According to the numerical
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Table 2: The standard deviation on ARs database

Method 5 10 15 20 24

SRC 0.1041 0.0651 0.0381 0.0218 0.0078

CRC 0.0982 0.0507 0.0337 0.0191 0.0071

Block−LDA 0.0569 0.0399 0.0252 0.0214 0.0085

DMMA 0.1155 0.1315 0.0364 0.0254 0.0101

AGL 0.0656 0.0510 0.0361 0.0181 0.0096

ESRC 0.0761 0.0557 0.0263 0.0243 0.0091

SVDL 0.0701 0.0506 0.0292 0.0163 0.0087

VFRC 0.0834 0.0395 0.0238 0.0133 0.0059

results, the parameters are set respectively as: γ = 0.993, λ1 = 0.001 and

λ2 = 0.05 in VFRC; λ = 0.0083 in CRC; λ = 0.01 and ps = 12 in Block-

LDA; psr = 48 and psc = 42 in DMMA; λ = 0.009 in ESRC in the following

experiments on Extended Yale B database.

Now, we implement VFRC and other methods on the above database. For

every subject, we choose the first sample for training and the following first 10,

20, 30, 40, 50, 58 samples for testing, respectively. The recognition rates are

listed in Table 3.

Table 3: Recognition rates (%) on Extended Yale B database - Fixed

Method 10 20 30 40 50 58

SRC 85.33 68.17 47.78 51.58 51.27 45.11

CRC 87.67 72.00 50.33 53.58 55.00 48.85

Block−LDA 76.33 61.33 43.56 47.17 44.40 39.71

DMMA 87.00 79.83 59.22 60.58 60.60 53.74

AGL 82.67 75.17 55.89 57.58 58.93 53.33

ESRC 88.33 85.67 67.67 67.00 67.87 62.36

SVDL 88.67 87.50 69.89 68.42 70.47 64.37

VFRC 91.33 91.67 79.00 76.08 78.67 74.37
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As showed in Table 3, the more probe samples are added, the lower the

recognition rate is. For different probe sample sizes, VFRC is 3% to 35% higher

than other methods. According to the recognition results, the proposed VFRC

keeps a high level of recognition rate and robustness among those methods. We

can also conclude that VFRC is effective for SSPP problem with broad change

in illumination.

Next, we carry out another experiments to check the performance of VFRC

and other seven methods under the conditions with broad change of illumination

on Extended Yale B database. For this, we take the first sample of each subject

for training, and choose randomly 10, 20, 30, 40, 50, 57 samples from the rest

samples for testing, respectively. Each experiment is carried out 10 times to

guarantee stable experimental results, which are listed in Table 4.

Table 4: Recognition rates (%) on Extended Yale B database - Random

Method 10 20 30 40 50 57

SRC 45.83 46.60 43.17 45.19 45.41 44.95

CRC 52.50 50.33 49.24 49.11 48.87 49.16

Block−LDA 43.60 41.22 40.51 39.35 39.37 39.99

DMMA 46.40 56.02 53.81 53.28 53.51 53.27

AGL 52.53 51.32 53.46 53.68 53.85 53.40

ESRC 65.00 63.30 61.70 61.40 61.86 62.53

SVDL 68.20 65.83 63.89 64.16 64.56 64.42

VFRC 74.20 72.43 75.16 75.87 74.25 74.37

From Table 4, it is obvious that VFRC is very effective for SSPP problem

with extreme variation on illumination.

3.4. Experiments with Change of Pose and Expression

The CMU-PIE database contains 41,368 source images of size 640× 486 for

68 subjects with various conditions, i.e., 13 poses (from cameras No. 02, 05, 07,

09, 11, 14, 22, 25, 27, 29, 31, 34, and 37), 43 illuminations, 3 expressions and
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3 talking situations for each subject. Depending on these factors, the images

of each subject are classified into four different sets: expression, illum, lights

and talking. The first expression set contains images with neutral expression,

smiling, and blinking from all 13 cameras under the natural illumination. The

second and third sets contain images with varying illumination conditions. The

images from all 13 cameras are kept in the illum set, and from only 3 cameras

(No. 05, 22, 27) are kept in lights set. The forth set contains 2 seconds (60

frames) of each subject talking when 3 cameras (No. 05, 22, 27) is available.

In this subsection, the aim of the experiment is to verify the performance of

VFRC for SSPP problem with change of pose and expression. Thus, we choose a

subset of CMU-PIE database, which contains 68 subjects with 37 images under

two pose conditions from cameras No. 27, 05. For each subject, the first image

is P27 07 (P27 represents the camera No. 27 and 07 represents the seventh light

condition) from the lights set, which is regarded as the sample in gallery set.

The following 36 images are consisted of 3 different expression images and 15

talking images from cameras No. 27 and 05. We choose the first 60 subjects

with 37 images per subject for training and testing. The 296 images from rest

8 subjects are used for the generic set. In our experiment, all images are first

eye-aligned and cropped, and resized into 112× 100 pixels. The samples of the

first subject we selected are showed in Fig. 5.

The experiments of parameters setting, which are analogous to those in

Subsection 3.1, are done for the 60 subjects. According to the experiments

results, the parameters are set as: γ = 0.999, λ1 = 0.02 and λ2 = 0.03 in

VFRC; λ = 0.003 in CRC; λ = 0.001 and ps = 50 in Block-LDA; psr = 50 and

psc = 44 in DMMA; λ = 0.001 in ESRC.

We carry out the experiments of the concerned eight methods for SSPP

problem with changes of pose and expression on CMU-PIE database. The first

sample of each subject is selected for training. From the rest samples, we choose

randomly 6, 12, 18, 24, 35 samples for testing, respectively. Table 5 shows the

average recognition rates of 10 times experiments on CMU-PIE database.

As the numerical results showed in Table 5, VFRC is effective for SSPP face
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Table 5: Recognition rates (%) on CMU-PIE database

Method 6 12 18 24 30 35

SRC 24.83 24.19 23.99 24.01 23.65 23.89

CRC 30.86 28.43 30.25 29.28 29.66 29.39

Block−LDA 24.78 24.65 24.34 24.25 24.12 24.37

DMMA 39.69 31.00 29.13 29.90 29.63 29.08

AGL 17.67 16.65 17.59 17.31 17.32 17.43

ESRC 33.72 34.82 34.80 34.58 33.86 34.24

SVDL 40.31 41.00 40.31 40.86 41.13 40.79

VFRC 42.64 41.39 41.92 41.24 41.33 41.25

recognition with variation of pose and expression conditions.

3.5. Experiments with Obvious Occlusion

Comparing the experiment results showed in Table 5 with those showed in

Table 1, Table 3 and Table 4, we can get the conclusion that the more com-

plex (or obvious) the conditions of experiment databases is, the more observable

the advantage of VFRC achieves. In order to adequately present the superior-

ity of VFRC, we implement another two experiments with different occlusion

conditions on ARs database and CMU-PIE databases.

In the occlusion experiments on ARs database, we choose the samples in the

gallery set for training, and choose randomly 1 to 11 samples with occlusions (as

sunglasses or scarf) for testing. The parameters, the gallery set and the generic

set are the same as those in Subsection 3.2, respectively. Each experiment is

repeated 10 times. The recognition rates are showed in Fig. 6. With different

numbers of probe samples, VFRC always performs the best among the eight

methods.

We carry out another four different random occlusion experiments on a sub-

set of CMU-PIE database. In the following experiments on CMU-PIE database,

the samples from camera No. 27 (showed in Fig. 5) are chosen for the gallery
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set, the probe set and the generic set. The samples in the gallery set are for

training, and random 3, 6, 9, 12, 15 probe samples with added occlusion are

for testing, respectively. The occlusion rate is ranged from 5% to 20% by 5%

a step. Every occlusion patch is randomly located on the samples in the probe

set and the generic set (as showed in Fig. 7). The mean of the 10 trial data are

showed in Fig. 8.

From Fig. 8, we can see that the performance of VFRC is obviously better

than other seven methods, especially under the 15% and 20% random occlusion

conditions. Comparing with Table 5, we can get the conclusion that the supe-

riority of VFRC are presented prominently with severe variational information

between the gallery set and the probe set.

3.6. Image-to-Set

In this subsection, we test the effectiveness of the proposed method for image-

to-set experiments by using the LFW database [37], which is one of the most

challenging databases in FR field. The database contains 13,233 face images

of 5,749 different individuals, collected from the web, and 1,680 of the people

pictured have two or more distinct images in this data set. The aligned vision

LFWa1 database is used in the following experiments. We select 151 subjects,

that have more than ten images, to build the gallery and probe sets. The first

ten images of each subject are selected for our experiments. For each subject,

the first image is selected as the gallery sample, and the remaining images as the

probe sample set. Furthermore, the first 250 subjects, that have more than two

and less than ten images, are considered to build the generic set. In which, each

subject have the first 3 images. All images are cropped into the size 64 × 64.

Fig. 9 shows samples of first three subjects from the LFWa database for our

experiments.

As the probe set per subject contains 9 probe samples, the final recognition

1The LFWa database is provided after alignment using commercial face alignment software,

that can be downloaded at http://www.openu.ac.il/home/hassner/data/lfwa/.
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results of SRC, CRC, Block-FLDA, DMMA, AGL, ESRC, SVDL and VFRC are

obtained by the majority voting strategy, except for the image-to-set method

LRP-SRSM. According to the parameter setting experiments, the parameters

are set as: γ = 0.9, λ1 = 0.04 and λ2 = 0.008 in VFRC; λ = 0.006 in CRC; λ =

0.006 and ps = 8 in Block-LDA; psr = 24 and psc = 24 in DMMA; λ = 0.009

in ESRC; k = 3 in LRP-SRSM. The recognition rates and computational time

are showed in Table 6.

Table 6: Image-to-set experiments on LFWa database

Method SRC CRC Block−LDA DMMA AGL ESRC SVDL LRP−SRSM VFRC

Rate(%) 19.87 33.11 20.53 12.58 14.57 29.14 28.48 29.80 43.05

Time(s) 327.09 13.44 624.48 168.60 0.89 1730.71 12.30 2658.16 15.12

Because of the variations of varying lighting, expressions, poses, occlusions,

and misalignment in LFWa database, the great challenges arise in our exper-

iments. Fortunately, the results in Table 6 show the proposed VFRC is very

effective for image-to-set SSPP problem with complicated variational informa-

tion, no matter for the recognition accuracy or the computing cost.

3.7. Complexity and Computational Time

The experiments in the previous subsections demonstrate that the proposed

VFRC method leads to higher accuracy and better robustness than other com-

pared approaches. In this subsection, we analyze the computational complexity

of VFRC method and display the comparisons of computational time about

nine concerned approaches (including SRC, CRC, Block-LDA, DMMA, AGL,

ESRC, SVDL, LRP-SRSM and the proposed VFRC).

In order to the convenient narrative, we let C be the number of sample in

the gallery set, L be the column number of the variational matrix, and d be the

pixel number of face sample. The proposed VFRC method can be divided into

two stages: the training stage and the testing (recognition) stage. The former

involves two optimal models with the close-form solutions (the computational

complexity is O((C + L)d2)), and is implemented as an off-line process. There-

fore, the computational complexity of the training stage is usually ignored in
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practical applications. On the contrary, the situation of the recognition stage has

received the users’ and researchers’ continually attention. Our VFRC method

has the computational complexity O(d2) in this stage.

The computational time of image-to-set experiments has been showed in

Table 6. For the computational time of image-to-image experiments, as an

example, we statistic the time spent on the recognition stage by the proposed

VFRC method and the compared seven methods on Extended Yale B database

with the same experiments setting of Table 4. The computational time showed

in Table 7 is the average computational time of 10 times experiments for all

subjects with each probe size conditions.

Table 7: computational time of experiments on Extended Yale B database (s)

Method 10 20 30 40 50 57

SRC 17.46 35.17 52.75 68.31 92.43 105.61

CRC 0.85 1.65 2.47 3.30 4.10 4.66

Block−LDA 27.33 54.07 81.67 108.45 130.61 149.66

DMMA 276.30 260.34 304.88 371.99 425.81 461.20

AGL 0.15 0.14 0.20 0.26 0.31 0.35

ESRC 102.26 219.70 335.41 439.67 582.00 592.68

SVDL 6.58 12.50 19.03 25.21 30.71 35.02

VFRC 2.78 4.27 5.84 7.19 8.74 9.68

From Tables 6 and 7, it can be seen that the computational time of CRC,

AGL, SVDL and the proposed VFRC are obviously less than other methods

for the identification process. Combined with the results of recognition rates,

VFRC keeps a high accuracy with a favorable speed. This indicates the proposed

method VFRC is of great availability for practical application of FR with SSPP

problem.
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4. Conclusions

In this paper, we proposed a Variational Feature Representation-based Clas-

sification (VFRC) method to improve the performance of the face recognition

method for SSPP problem with non-ideal probe samples. In VFRC, the linear

regression model was used to obtain the more precise variational feature of the

probe sample. As the variational feature made the best of the coupled informa-

tion with the gallery set and the generic set, the corresponding normal feature

of the probe sample was got precisely. For the reason that the normal feature

reserves few variational information, it is beneficial to enhance the identity in-

formation of the corresponding probe sample. Therefore, a combination of the

normal feature and the non-ideal probe sample was used in our model.

Extensive numerical experiments were implemented on AR, Extended Yale

B and CMU-PIE databases to verify the performance of VFRC for image-to-

image SSPP problem under the complication conditions, broad changing in illu-

mination conditions and change of pose and expression conditions, respectively.

We also implemented VFRC on LFW database to check its performance for

image-to-set SSPP problem with extremely complicated conditions. Eight re-

lated methods, SRC, CRC, Block-LDA, DMMA, AGL, ESRC, SVDL and LRP-

SRSM, were chosen for the comparison with VFRC in recognition rates and

computing time. The experiments results showed that VFRC is more efficient

and robust than other eight methods for SSPP problems with non-ideal probe

samples.
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Fig. 1: The first column includes two probe samples of the first subject on Extended Yale B

database. The second column shows the representation coefficients over the gallery set and

the variation matrix. The third and fourth columns are the reconstructed normal faces and

variational information of illumination, respectively.
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Fig. 3: All samples of the first subject on AR Database

Fig. 4: All samples of the first subject on Extended Yale B database

Fig. 5: All samples of the first subject on CMU-PIE database. The first column shows the

sample of the first subject in the gallery set. The 18 samples of the first and second rows

are the frontal (P27) probe samples of the subject with 3 expression images and 15 talking

images. The rest 18 probe samples are from camera No. 05 with 3 expression images and 15

talking images.
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Fig. 6: The recognition results with different occlusion on ARs database.

Fig. 7: The samples of the random occlusions in the probe set of the first subject on CMU-PIE

database. (a) is the first original probe sample in this subject. (b) - (e) respectively show the

sample (a) with 5%, 10%, 15% and 20% occlusion rates in two different random location.
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Fig. 8: The recognition results with different random occlusion on CMU-PIE database.

Fig. 9: Samples of the first three subjects from the LFWa database. The images in each row

are from the same subject.
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