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Abstract

Let M be a d-dimensional connected compact Riemannian manifold with boundary
OM, let V € C?(M) such that u(dz) := ¢V@dz is a probability measure, and let X;
be the diffusion process generated by L := A + VV with 7 :=inf{t > 0: X; € OM}.
Consider the conditional empirical measure pj := E” (% fg’ 4] Xsds‘t < T) for the diffusion
process with initial distribution v such that v(0M) < 1. Then

Tim {Ws (i, o)} =

1 i {v(g0)(¢m) + (o) v(dm)}*
{n(o)v(0)}* = (Am — Ao)? ’

where v(f) := [,, fdv for a measure v and f € L'(v), po := @§p, {dm}m>0 is the
eigenbasis of —L in L?(u1) with the Dirichlet boundary, {\, };m>0 are the corresponding
Dirichlet eigenvalues, and W is the L?-Wasserstein distance induced by the Rieman-
nian metric.
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1 Introduction

Let M be a d-dimensional connected compact Riemannian manifold with a smooth boundary
OM. Let V € C?(M) such that p(dx) = e”®duz is a probability measure on M, where dx is
the Riemannian volume measure. Let X; be the diffusion process generated by L := A+VV
with hitting time

7:=inf{t > 0: X, € OM}.

Here, according to the convention in Riemannian geometry, the vector field VV is regarded
as a first-order differential operator with (VV')f := (VV,Vf) for differentiable functions f.
Denote by &2 the set of all probability measures on M, and let E” be the expectation taken
for the diffusion process with initial distribution v € &?. Consider the conditional empirical

measure .
1
wy = ]E”(—/ dx.ds
tJo

Since 7 = 0 when X, € OM, to ensure P”(7 > ¢) > 0 we only consider

t<7'>, t>0,ve A

ve Py ={veP: v(M°) >0}, M°:=M)\OIM.

Let {¢m}m>0 be the eigenbasis in L?(u) of —L with the Dirichlet boundary such that
¢o > 0 in M°, and let {\,,}m>0 be the associated eigenvalues listed in the increasing order
counting multiplicities; that is, {¢, }m>0 is an orthonormal basis of L?(u) such that

Loy, = =M, m > 0.

Then jio := ¢ is a probability measure on M. It is easy to see from [5, Theorem 2.1] that
for any probability measure v supported on M°, we have

lim ||:u? - MOHvar = 07
t—o00

where || - ||vqr is the total variational norm.
In this paper, we investigate the convergence of pj to o under the Wasserstein distance
ng

WUSANEY

1
2
WZ(:MIHUZ) = inf </ p<$,y)2ﬂ'(d$7dy)> y M1, f2 € @7
MxM

where €' (11, p12) is the set of all probability measures on M x M with marginal distributions
w1 and po, and p(z,y) is the Riemannian distance between = and y, i.e. the length of the
shortest curve on M linking x and y.

Recently, the convergence rate under Wy has been characterized in [18] for the empirical
measures of the L-diffusion processes without boundary (i.e. dM = () or with a reflecting
boundary. Since in the present setting the diffusion process is killed at time 7, it is reasonable
to consider the conditional empirical measure pj given ¢ < 7. This is a counterpart to
the quasi-ergodicity for the convergence of the conditional distribution ji; of X; given t <
7. Unlike in the case without boundary or with a reflecting boundary where both the



distribution and the empirical measure of X; converge to the unique invariant probability

measure, in the present case the conditional distribution fi; of X; given t < 7 converges to

o = “(d)go) p rather than py := ¢2u, and this convergence is called the quasi-ergodicity in

the literature, see for instance [6] and references within.
Let v(f) := [,, fdv for v € & and f € L'(v). The main result of this paper is the
following.

Theorem 1.1. For any v € &,

1 i {v(60)1(dm) + 1(b0)v(ém)}
{1(do)v(¢o)}? (A = Ao)?

tliglo {PWo (i), o)} =1 := > 0.

m=1

If either d < 6 ord > 7 but v = hp with h € Lﬁdﬁ(u), then I < co.

Remark 1.1. (1) Let X; be the (reflecting) diffusion process generated by L on M where
OM may be empty. We consider the mean empirical measure fif := E(3 f(f dx.ds), where v
is the initial distribution of X;. Then

(L) tim {2t o))y = 30 A0 o

where {@,, }m>1 is the eigenbasis of —L in L?(p) with the Neumann boundary condition
if OM exists, {A\n}m>1 are the corresponding non-trivial (Neumann) eigenvalues, and the
limit is zero if and only if ¥ = p. This can be confirmed by the proof of Theorem 1.1 with
¢o = 1,2 = 0 and p(¢,,) = 0 for m > 1. In this case, u is the unique invariant probability
measure of X;, so that ) = p for ¢ > 0 and hence the limit in (1.1) is zero for v = p.
However, in the Dirichlet diffusion case, the conditional distribution of (X;)o<s<; given t < 7
is no longer stationary, so that even starting from the limit distribution py we do not have
i = g for t > 0. This leads to a non-zero limit in Theorem 1.1 even for v = pq.

(2) Tt is also interesting to investigate the convergence of EY(Wy(uy, po)?|t < 7) for
pe = 1+ fot dx.ds, which is the counterpart to the study of [18] where the case without
boundary or with a reflecting boundary is considered. According to [18], the convergence
rate of EY(Wy(u, po)?lt < 7) will be at most ¢~!, which is slower than the rate t=2 for
Wo (1Y, p19)? as shown in Theorem 1.1, see [15] for details, see also [16, 17] for extensions to
diffusion processes on non-compact manifolds and SPDEs.

(3) Let v = hp. It is easy to see that I < oo is equivalent to h € Z((—L)"2). By the
Sobolev inequality, for any p € [1, %), there exists a constant K > 0 such that

< K| flleruy, f € LP(1).

(1.2) (=)~ /1l

dp
d=3p ()

Taking p = ﬁdﬁ which is large than 1 when d > 7, we see that h € LP(u) implies h €

.@((—L)_%) and hence I < oco. So, the sharpness of the Sobolev inequality implies that of
the condition h € Lﬁdﬁ(u).



In Section 2, we first recall some well known facts on the Dirichlet semigroup, then
present an upper bound estimate on ||V (¢u@y")||e. The latter is non-trivial when M is
non-convex, and should be interesting by itself. With these preparations, we prove upper
and lower bound estimates in Sections 3 and 4 respectively.

2 Some preparations

We first recall some well known facts on the Dirichlet semigroup, see for instances [4, 7, 8, 13].
Let {¢m }m>0 be the eigenbasis of the Dirichlet operator L in L?(p), with Dirichlet eigenvalues
{ A\ }m>0 of —L listed in the increasing order counting multiplicities; that is, {@m }m>0 is an
orthonormal basis of L?(u) such that

Loy, = —Apdm, m > 0.

For simplicity, we denote a < b for two positive functions a and b if a < ¢b holds for some
constant ¢ > 0. Then A\g > 0 and

(2.1) |$mlloo < Vm, md =< Ay — Ao <mid, m>1.

Let ps be the Riemannian distance function to the boundary M. Then ¢, ps is bounded
such that

(2.2) 166 ooy < 00, p € [1,3).

The Dirichlet heat kernel has the representation

o0

py(x,y) = Z e M (2)dm(y), t> 0,2,y € M.

m=0

Let E* denote the expectation for the L-diffusion process starting at point x. Then Dirichlet
diffusion semigroup generated by L is given by

PP f(x) = E*[f (X)) Ljery] = /M PP (2, 9) f(y)(dy)

(2.3) -
=Y e M (G f)bm(x), t>0,f € L(p).
m=0
We have
_ __d(g—p)
24)  NPPlroora = sup PP fllpagy 2 e (AN 2, £>0,g>p> 1.

n(f1P)<1

Next, let Ly = L+2V log ¢y. Then Ly is a self-adjoint operator in L?(p) with semigroup
PP = etlo satisfying

(25) Ptof = e/\OtngIPtD(fQSO)a f € LZ(MO)’ t> 0.
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S0, {¢y G }mso is an eigenbasis of Ly in L?(ug) with

(2'6) LO(Qbmgb(TI) = _( )¢m¢0 ) P0(¢mq§0 ) =e (Am=Do)t Qbmﬁbo , m=>0,t>0.
Consequently,
(2.7) PO =3 polFbmdy om0, 05, f € L2(0),
m=0
and the heat kernel of P? with respect to g is given by
(2.8) pi(z,y) = i(d)m%l)(ﬂc)(¢m¢61)(y)e‘“m_“)t, z,y € M,t>0.
m=0

By the intrinsic ultracontractivity, see for instance [9], we have

e—()xl—)\o)t

(29) NP = pollruoysr=gu) == sup [P — po(f) oo < —am >0
no(lf)<1 (1A1)E

Combining this with the semigroup property and the contraction of PP in LP(u) for any
p > 1, we obtain

(2.10) 1P? = tollzoque) == sup  |PLf — po( )|l prguey < e M0 ¢ >0,p> 1.
po(|fIP)<1

By the interpolation theorem, (2.9) and (2.10) yield

(+)(q P)

(2.11) 1P — pio|| 2o (uo) s 1a(uo) = € ML ALY L t>0,00>¢>p>1.
Since jio(¢2,05°) = 1, (2.11) for p = 2 implies
1 om =)t || pO el o)t
[fmdo oo = e PP (drndg oo X ————gzzs t>0.
(LAt)
Taking ¢t = (A, — A\g) ! and applying (2.1), we derive
(2.12) bmg oo < m3, m > 1.

In the remainder of this section, we investigate gradient estimates on P? and ¢,,¢;",
which will be used in Section 4 for the study of the lower bound estimate on Wy (uY, o). To
this end, we need to estimate the Hessian tensor of log ¢y.

Let N be the inward unit normal vector field of OM. We call M (or OM) convex if

(2.13) (VuN,u) = Hess,, (u,u) <0, ueTOM,

where py is the distance function to the boundary M, and TOM is the tangent bundle of
the (d — 2)-dimensional manifold 9M. When d = 1, the boundary M degenerates to a set
of two end points, such that 9M = () and the condition (2.13) trivially holds; that is, M is
convex for d = 1. Recall that M° := M \ OM is the interior of M.
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Lemma 2.1. If OM is convex, then there exists a constant Ky > 0 such that
Hessjog ¢, (0, 1) < Kolu|?, weTM°.

Proof. Since M is compact with smooth boundary, there exists a constant ry > 0 such that
po is smooth on the set
OoM = {33 e M: pa(l‘) < 7“0}.

Since ¢y is smooth and satisfies ¢y > cpy for some constant ¢ > 0, we have log(dop,') €
CE(0yM). So, it suffices to find a constant ¢ > 0 such that

(2.14) HesSiog p, (1, ) < clul?, u € TM°.

To this end, we fisrt estimate Hess,, on the boundary OM. For any x € OM and u € T, M,
consider the orthogonal decomposition © = u; + us, where

uy = (N, uYN, ug :=u—u; € TOM.
Since |Vpg| = 1 on 9yM, we have
(2.15) Hess,, (X, N) = Hess,, (X, Vpy) = %(X, V|Vpal?) =0, X €T, M.
On the other hand, since us € TOM and Vps = N on OM, (2.13) implies
Hess,, (ug, u2) = (Vy, N, ug) < 0.
Combining this with (2.15) we obtain
Hess,, (u, u) = (N, u)*Hess,, (N, N) + 2(N, u)Hess,, (us, N) + Hess,, (uz, us) < 0
for u € Uzeom T, M. Since Hess,, is smooth on the compact set dyM, this implies
Hess,, (u,u) < clu|®pa(x), =€ M,u e T,M
for some constant ¢ > 0. Then the desired estimate (2.14) follows from

HesS1og p, (U, ) = py ' Hess,, (u, u) — pg*(Vpa,u)* < clul?, uwe TM°.

By Lemma 2.1, when 0M is convex, there exists a constant K > 0 such that
(216) Ric — Hessv+210g¢0 > —K.

Since the diffusion process generated by Lg := A+V(V +2log ¢y) is non-explosive in M°, by
(2.16) and Bakry-Emery’s semigroup calculus, (see for instance [3] or [13, Theorem 2.3.3]),
we have

(2.17) VP29l < e"'P|Vg|, t>0,9 € Cy(M)
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and for any p > 1, there exists a constant ¢(p) > 0 such that

01 ,|pA2 0 2-p)t _ 0 2
VPO < 2K{(P[g[""*) (P [g]) (P lg1)*}

(2.18) - (pA2)(pA2—1)(1— e 2Kt)

c(p 2
< A2 (pojgnyt, 1> 0,9 € ),

—_

When 0M is non-convex, we take as in [12] a conformal change of metric to make it
convex under the new metric. More precisely, we have the following result.

Lemma 2.2. There exists a function 1 < ¢ € C°(M) such that OM is conver under the
metric (-, ")y := ¢~ 2(-, ). Moreover, there exists a smooth vector field Z, on M such that

(2.19) Lo = ¢ 2A% + Z4 + 207 'V? log ¢y,
where V¢ and A? are the gradient and Lapalce-Beltrami operators induced by (-,-)4 respec-
tively.

Proof. let 6 > 0 such that the second fundamental form of OM is bounded below by —d.
Take 1 < ¢ € Cp°(M) such that ¢ = 1+ dpy in a neighborhood of M in which the distance
function py to OM is smooth. By [14, Lemma 2.1](see also [12]), OM is convex under the
metric (+,-)y = ¢ 2(-,-). Next, according to the proof of [14, Lemma 2.2], there exists a
smooth vector field Z, on M such that (2.19) holds. O

Let 1 < ¢ € Cp°(M) be as in Lemma 2.2, and let Pf’ be the diffusion semigroup generated
by
L? = gLy = ¢ ' A? + ¢Z4 + 2V? log ¢y.

We have the following result.

Lemma 2.3. Let 1 < ¢ € C°(M) be as in Lemma 2.2.

(1) For any q € (1,00], there ezists a constant c¢(q) > 0 such that

(2.20) VP f|, < %(Pﬂflq)é, t>0,feCy(M).

Moreover, there exists a constant K > 0 such that

(2.21) [VOP? fly < MIPPIVO flg, >0, f € Ch(M).

(2) There exists a constant ¢ > 0 such that

_d+2
2p

(2.22) 1PN Lo a0y L0 (o) < (1 AE) t>0,pel, o0



Proof. (1) Since OM is convex under the metric (-, -)4, by Lemma 2.1, we find a constant
K¢ > 0 such that

(2.23) 2Hess{), 5 (u,u) < K§|ul}, uwe TM,

where Hess? is the Hessian tensor induced by the metric (-,-)4. Since the operator A?® :=
dIA?+¢Z, is a C2-smooth strictly elliptic second order differential operator on the compact
manifold M, it has bounded below Bakry-Emery curvature; that is, there exists a constant
Kf’ > 0 such that

AV S = 2VPAP VO f)y > —KTIVO SIS, f e CF(M).
Combining this with (2.23) we obtain
LYV 15 = 2(VOLO £,V )y > —(K§ + KD)|VOf5 = —K°|VO £, feC™(M°),

which means that the Bakry-Emery curvature of L? is bounded below by —K?. By the same
reason leading to (2.17) and (2.18), this implies (2.20) and (2.21).

(2) To estimate ||Pt¢||Lp(MO)_>LOO(MO), we make use of [10, Theorem 4.5(b)] or [11, Theorem
3.3.15(2)], which says that (2.9) implies the super Poincaré inequality

po(f2) < ruo(IV f1) + 6(1 + r-%uoumz, r>0,feCHM)

for some constant 3 > 0. Let u® =

&%(f.9) = —/ fL?gdp? =
M
Then the above super Poincaré 1nequahty implies

P2 < &L, ) + B L+ )l f))2 f e ClM)

for some constant 5’ > 0. Using [10, Theorem 4.5(b)] or [11, Theorem 3.3.15(2)] again, this
implies

———1o((Vf,Vg)), f.g€C;M).

(¢)

_di2
Hptd)HLp(u@aLOO(mﬁ) <k(IAt)y 2, t>0,p€l, o0

for some constant x > 0. Noting that

8115 10 < 11 < [|8llocro,
we find a constant ¢ > 0 such that (2.22) holds. O

Lemma 2.4. For any p € (1,00] and q € (1,p), there exists a constant ¢ > 0 such that for
any f € D(Ly),

_1_d+2 1_g(d+2)
(224)  [[VE flloo < ce (1A )25 || Fll o) + (LA E)E 2

(ko) }» t>0.

Consequently, there exists a constant ¢ > 0 such that

4

(2.25) IV (65 ) loo < em 3, m > 1.



Proof. (a) By the semigroup property and the LP(ju) contraction of P?, for the proof of
(2.24) it suffices to consider t € (0,1]. Since 1 < ¢ € Cs°(M), we have Z(Ly) = 2(L?) and

(2.26) =i | PO — )P Lof}ds, 13 0,f € D(Lo).
0

Next, by (2.20) and (2.22), we obtain
IVPE oo = IV Fa( Pl
<3P llo 4727 | flliagu ¢ € (0,1,

Combining this with (2.11) and (2.20) leads to

(2.27)

t t
/ IVPA(6 = 1P LofHseds < / SRR Lol ds
0 0
< / s 3(| P2, Lo fl|seds + / 572 ||{PL|PY Lof|*}a | ds
0

t t
2 1
5/0 S 2||Pt0sHLP(uo)—>L°°(Mo)”LOfHLP(uo)dS+K s 2” ¢HLq(#O)_)Loo )HLOfHLP(MO)
2

a(d+2)

1_
=tz 2% || Lo f|lLe(uo)-

Substituting this and (2.27) into (2.26), we prove (2.24).
(b) Applying (2.24) to p = 00, f = ¢mdy 't = (Am — Ao) ™" and using (2.6), we obtain

eV (dmdg oo = A — 20) 2| Gmg oo, m > 1.

This together with (2.1) and (2.12) implies (2.25) for some constant ¢ > 0. O

3 Upper bound estimate

According to [18, Lemma 2.3], we have

VL (hy — 1
(3.1) 2 (117 s p1o)” / | A (W1 I dpoa,
t7
where L ;
a R
htu = /'Lt e%((],7 b) = 1{a/\b>0}10ga—.

dpo’ —logh

So, to investigate the upper bound estimate, we first calculate h}.
By (2.8), we have

(3.2) / 60 (2)p" (2, 0 (da) = v(do) +Zy b )e =20l =1 g5

=1



Next, (2.5) and (2.8) imply
(33)  w(PPf) = e u(go P (fd5)) = e /M Go fduo, fe BHM),

where 1 (M) is the class of nonnegative measurable functions on M. Moreover, for any
t > s > 0, by the Markov property, (2.3), (2.5) and (3.3), we obtain

/M FAE 5. Lyrery] = EY [£(Xo)Lpocry (P2 1)(X.)] = v(PP{fPP,1})

_ e—)\ot/ (WP ¢V fduo, f € BHM).
M
Then
dE” [5X51{t<7-}]

_ . —Xot, ;v PO —1
=¢C %P—sﬁb .
d,LL() t 0

Noting that (3.3) implies
E[Li<ny) = v(PP1) = e o (¥ dg") = e 'w(doPPeg ),

we arrive at

dp 1 CAEY [0x 1ger
hy — /’Lt — [ X {t< }] dS —_ 1 + py’
t d tEv1 d t
v . 0
Pt : QSOPOQbO / {ws t— s (¢0P ¢0 }dS

By (2.11), [|¢ols < 0o and [|¢g " || z2(4e) = 1, we find a constant ¢ > 0 such that

V(6P 'dg ") — v(do) (o) < v(do)l|Pdg™ — oo )l

3.5
( ) S Cei()\li)\o)t, t Z 1’ = '@0'

Due to the lack of simple representation of the product ¥ P? ¢y in terms of the eigen-
basis {Gmdy  ym>0, it is inconvenient to estimate the upper bound in (3.1). To this end,
below we reduce this product to a linear combination of ¢? and P2 ¢,', for which the
spectral representation works. Write

VP bot = v(doPlog ") = Li(s) + Ix(s),
(3.6) Li(s) := {0 —v(go)} - {P2 " — (o)} + v(do{p(do) — PPy '}),
Iy(s) := pu(do){0¥ — v(do)} + v(do){ P by " — 1(do)}-

By (2.7), (2.8) and (3.2), we have

P g5t = (o) =D plm)e Am200)g g0t
(3.7) Lo
—l/gzﬁO:ZV e Pm=d)sg bl > 5> 0.
m=1

10



Then

| Z 2 1 ! _
Pt = Pt + (quPOQSO—I) / Il(s)ds At?
. p(do)v ¢m + v(do) p(dm) -
(3.8) o= po = E_l - " . Oy
_ Z {1u(do)v ¢m) + (o) ) e~ Bm=20)
T (¢0P0¢0 m=1 Am = Ao P

Since p¥ € L' (o), the following lemma implies p¥ € L(ug) for ¢ > 0.

Lemma 3.1. For any ty > 0, there exists a constant ¢ > 0 such that
polp} = p71) < ellhllzgue™ M2t > to,v = hu € P,

Proof. By (2.1) and (2.12), for any ¢, > 0 we have
(3.9) Dl gmlloce™ A2 g om0y > g

Combining this with (3.8) and (3.5), and noting that ||h¢y || 12(u) = l|AllL2(. it suffices to
show that

IR AT _ O
(310) B = Z/O H{ws - V(Qb())} ’ {Pto—sgb() L M(QSO)}HLI(MO)dS j ||h||L2(N)e - )\O)t’ t Z t().

Since ||¢g |l z2u) = 1 and ¢ = Pg(hey') for v = hpu, (2.10) yields that

1 [t B B B B
B < ;/0 1P 00" — 10(dg L2 uo) 1P (hog ) — p1o(hedg ') [l 2 gy ds

IA

1 t
& NP = ol 1P2 = ol 20

R 2ge” P2 > 4.

A

Lemma 3.2. For any o > 0, there exist constants co,ty > 0 such that

- Co
3.11 Y > ———— t >, € Py, v e H.
( ) P = I/(gbo)t = lg, V 0,V 0

Consequently, if v = hy with h € L*(p), then @t = (1 + p¥)po s a probability measure for
t> to(l + Co).
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Proof. By Lemma 3.1, if v = hu with h € L*(u), we have p¢ € L'(ug) for t > 0, and it
is easy to see that po(py) = 0. Since (3.11) implies 1 + g > 0 for ¢ > to(1 + o), fi} is a
probability measure. It remains to prove (3.11).

By (3.5) and (3.8), it suffices to find a constant ¢; > 0 such that

(3.12) Z 1(90)V(6m) +_ VA(O%M%) bl > .
By (2.1) and (2.12), we have

s -1
(3.13) 1P < 2= 3 2l|Sollool|omllocllmo “lloe _

(o — AgJern 2

m=1

Next, by (3.7) and the same formula for ;1 = v, we obtain
(3.14)  Plg = (—=Lo)~{1u(¢0) (W5 — v(¢0)) + v(do) (W4 — u(o)) } = (—Lo)"'gs, s >0,
where by ¢, w“ >0,
gs = (o) (5 — v(¢o)) + v(d0) (¥ — pu(do)) = —2p(do)v (o) = —2v(do), s> 0.
This together with (3.14) yields
—LoPlg > —2v(¢y), s> 0.
Therefore, it follows from (3.13) that

1
g=Plg— / LoPPgdr > —cs — 20(d9) > —cs — 2| o]l
0

So, (3.12) holds for ¢; = co + 2|/ || 0o- O

Lemma 3.3. There exist constants c,ty > 0 such that for anyt > to, and any v € Py with
v = hu such that h € L*(p), we have i € Py and

1+ ct ! {v(do) o ¢m +M(¢0) (Om)}?
~ {u(po)v }2 Z — Xo)? '

Proof. By Lemma 3.2, there exist constants ¢,y > 0 such that g} € &, for t > ty, and

(3.15) 2 Wa(fiy , po)* <

So, [18, Lemma 2.3] implies

VLflﬁV|2
3.16 W) < | VLo Pl
(310 )= [ )

Next, (2.6) and (3.8) yield

dpo < (L+ et po([VLy pY[%), t > to.

1 {1(do)v(dm) + v(do)p (¢m)}2
{v(poPdy")}? mzl (Am — Ao)? '

Combining this with (3.5) and (3.16), we finish the proof. O

uo(IVLy 9y *) =

12



We are now ready to prove the following result.

Proposition 3.4. For any v € &y,

(3.17) limsup {*Wa(uf, 10)°} < I.

t—o00

Proof. (1) We first consider v = hu with h € L?(u). Let D be the diameter of M. By
Lemma 3.1, there exist constants ci,%y > 0 such that fi} is probability measure for ¢t > t,
and

(3.18)  Wa(uy, i) < D*|\uf — it} lloar = D’po(lpy — AE1) < crllhllzzgye™ M, &> to.
Combining this with Lemma 3.3 and the triangle inequality of Wy, we obtain
(3.19) Wy (1, 110)? < (146 HertPe M2 n)l 2y + (14 0) (1 4+ et ™I, §> 0.

(2) In general, we may go back to the first situation by shifting a small time ¢ > 0.
More precisely, by the Markov property, (2.3), (2.5) and (3.2), for any f € Z,(M) and
t>s>¢e >0, we have

]Eu[f(Xs)l{t<T}] =[E" [1{€<T}EXE (f(XS—E)]‘{t*E<T}):|

- /M P2 (@, VBV (Xo—o) Lo el (d)(dy)
e /M (62 0) (9) B[ (Xee)Lpr—en () u(dly).

With f =1 this implies

Pt < 7) = e /M (62 0) (0P (¢ — & < 7)pu(dy)u(dly).

So, letting
(Y ¢o)

we arrive at

o Ey[f(Xs)l{t<T}] . Eve [f(Xs—a)l{tf€<‘r}]

EY[f(X,)|t = = =E"[f(Xs_o)|t — :
)l < 7] = — et o s (KXot —e <]
Therefore,
1 t
(3.20) . ;:t_g/ B (Sx. |t < 7)ds = p=., >z,
Since

(2 bo) = / P2, y)do(x)po(y)v(dr)u(dy) = v(do PPy ") = v(do)lldollx = a >0,

M
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by (2.9) we find a constant ¢ > 0 such that

_ _ v _ _d+2
(321) 1Rt [l z20u0) < @ IWE [l 22000 < @I Gollool DL | ey < c26™ 7%, € € (0, 1).

Then (3.19) and (3.20) yield

Wyt ., 0)?
(3.22) 2(ie: o)

where

. {ve(00) p(Pm) + p(Po)ve(dm) }>
I. = (¢0)V€ ¢0 }2 Z '

{u (Am — Ao)?
By (2.5), (2.6) and (3.2), we have

w(ldo) = v(go P~ oy t) = v (PP1),
(o) = (PP (dmey ")) = e Mm% (),
so that - V(6)
Vs(¢m> - T%)m, m Z 0.

Thus, lim. o v-(¢o) = v(¢o) and there exists a constant C' > 1 such that
(3.23) Cle ™ u(dm)| < |ve(dm)| < Clv(dm)l, m>1,e€(0,1).

Therefore, if I < oo, by this and

(3:24) S ul6)” < (1) =1,

m=

—_

we may apply the dominated convergence theorem to derive lim. oI, = I.

hand, if I = oo, which is equivalent to

e}

Z _)\0 3= %9

m:l
then by (3.23) and the monotone convergence theorem we get
o 2 —2>\m5 2
it S 220 oo Z e vldm)” _

e—0 — ()\m — )\0)3 - e—0 — )\0

which together with (3.24) and v.(¢g) — v(¢o) implies

<1+ (5_1)clcga_the_()‘l_AO)te_% +(1+8)1+ct™ DI, 6§>0,e€(0,1),

On the other

1 oo A2 (@0) (D) + (o) ve(6m) )

liminf I, = lim inf
e—0

{n(do)v(o)}? =0 o= (Am = Ao)?

m=1

14



1
1 lim inf 2 {n

(G0)ve(Pm)}* — lldollZ(dm)?

Z TG00 e Con — M)

In conclusion, we have

(3.25) lim I, = 1.
e—0

This together with (3.22) for e = t72 gives

(3.26) lim sup {tzwg(uzt,z, 1o)°} < 1.

t—o0
On the other hand, it is easy to see that

2e

—, O<e<t,
t

17 o = 117 llwar <

so that

(3.27) WQ(M?JMZt—2)2 = D2||Nty,t—2 — tf llar < 2D%7%, £ > 1.

Combining this with (3.26), we prove (3.17).

]

4 Lower bound estimate and the finiteness of the limit

We will follow the idea of [1, 18], for which we need to modify fi} as follows. For any 5 > 0,

consider

fif g = (L4 { g)pio, Py = Plapl, t>0.

According to Lemma 3.2, there exists ¢y > 0 such that

1 -, W 1
o) h’t,ﬂ =1 +pt,5 Z 5

(4.1) =1+ > 5 >

B> 0,t>t.

Consequently, fif 5 and fiy are probability measures for any 8 > 0,1 > to.

Lemma 4.1. For any 8 > 0, there exists a constant ¢ > 0 such that f; 5 := Lalf)zﬁ satisfies

||ft,,3
Proof. By (2.6) and (3.8), we have

- v V(o m) Yo~ m=20)t77
==Y {1(o)v(dm) + v(d0)(dm)}

t(Am — No)2v(do PPy ")

t(Am — Ao)v (90 PPy )

Lofis = i {16(00)v (D) + v(0) ju( )y Am—20)t ™7

15
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Combining these with (2.1), (2.12), (3.5), and
|1(@0)v(Pm) + v (d0) 1(Pm)| < | dolloo + [|dmlloc < m, m =1,

we find a constant ¢; > 0 such that

_ 3d+2
S e—(/\m—Ao)t Bm 5d

Hllfeslloo + [ Lofrslloc} =D W

m=1

> 2.8 3d—2 e 2.3 3d—2 B(5d—2)
=< g e Mty "o —</ e s N gha ds <t 1, t>1.
0

Similarly, (2.25) implies

—(Am—Xo)t™ 3d+4
e “m e
||V o =
9ol = 3
Z —clmdt Bm?néif < t6(5if4)’ £>1.
Then the proof is finished. O]
Lemma 4.2. For any (5 € (0, 20%], there exits a constant ¢ > 0 such that
_ 1 - Ct ' {1(hgo) o ¢m) + 11(do)v(6m) } 1
2Wo (Y , > —ct 1.
2 o) 2 {1(do)v(do)}* £ Z — Xo)?

Proof. To estimate Wy(fif 5, tt9) from below by using the argument in [1, 18], we take
o5 = —clog PYe™= s 9 e[0,1],e > 0.
2

We have ¢5 = fi 5, [|©5]lc0 < || fi8]l0os and by [18, Lemma 2.9], there exists a constant ¢; > 0
such that for any € € (0, 1),

wiy) — golz) < 5{0(56, y)* +ell(Lofes) oo + VeV fiplls ) @y € M,

/ (66— ¢3)dpo < & /|Vft,ﬁ|2dﬂo+cle-1||Vft,ﬁ||io
M M

Therefore, by the Kantorovich dual formula, ¢ = f; 3 and the integration by parts formula

/ Je.5P% pdpo :/ fepLofepdpo = —/ IV fi.517d o,
M M M

we find a constant ¢ > 0 such that

L 1 ~v € e 1~V
C(sllﬂoft,ﬁlloo+€2HVft,ﬁH§o)+§Wz(ut,5,uo)2Z/Msolduo—/Msoodut,g
(4.2) = / (] — w5)dpo — / fr.801 sdpo = / (9] — w)dpo — / fe.5Lo frpd 1o
M M M M
1
> 5/ IV frp?dpo — ce 7|V fupll .
M

—_
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Taking e =t~ 2 and applying Lemma 4.1, when 8 < m we find a constant ¢ > 0 such that

(4.3) PWa(ii g, 10)* > o[V fopl’) = €475, £ > o,
Combining this with (3.5) and (4.3), we complete the proof. O

Lemma 4.3. There exist constants c,ty > 0 such that for any v = hu € Py with h € L*(u),
iy s 1y € Po fort >ty and

tWo(iiy g, 1) < cllPllrzgt™, > to.

Proof. jif 4, jif € P for large t is implied by Lemma 3.2. Next, by (4.1), we have

1
‘%(hga hy ) R
2
so that [18, Lemma 2.3 implies

\VL — hY )2
(4.4) Waliy g, i) h” ) dpo < 2u0(IVLg (57 — prp))-
ty '8

To estimate the upper bound in this inequality, we first observe that by (3.7) and (3.8),
when v = hy we have
5
Ly~ ) = L' (it — ) = [ Pl
(4.5) i 0

_ 1 ! _ -1 0 __
~ Ty C —w

where

= j(do)hy " + v(do)ey '
Since ||h||z2(u) > p(h) = 1,

(4.6) 191122u0) < 1@0lloo (1 + 1Al £20)) < 2llo0lloo] [Pl 2()

By (2.10), (4.6) and the fact that (—Lo)~2 = ¢ [;~ Pds for some constant ¢ > 0, we find a
constants ¢, co > 0 such that

VL (PP = 10)gll 12(u0) = HL — 110) 91 £2 (o) </O (P, s = 10) 9l 22(0)d
< CthHLQ(u)/ e~ (M1=20)(s%+7) 4 < CQHhHLQ(N)’ r € [0,1].
1

Therefore, by (3.5) and (4.5), we obtain
1t
—1/~v ~U (1
IVLG (7Y 5 = ) 220 = ;/0 VLG (Y = t0)gllz2guoydr = DAl 2y, ¢ > to.

Combining this with (4.4) we finish the proof. O
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We are now ready to prove the following result.

Proposition 4.4. For any v € &,

(4.7) litrg(i)glf {*Wa (i), o)} > 1 >0,

and I < oo provided either d <7, ord > 7 but v = hu with h € L%ﬁ.

Proof. Let 8 € (0, 557]. By (3.18), Lemma 4.2 and Lemma 4.3, there exist constants ¢, ty > 0
such that for v = hy € &y and t > t,

W i) < b2t~

tWa (i g, p0) = ({1 —ct™")1 = thi)Jr}%’

tWa(pf, 1) < Cte_(kl—/\t))tﬂHhH%Q(M)'
Then

1 1
(4.8) tWa(uy, o) > ({(1—ct ) I—ct™ )t} —c||h| gyt~ —cte= M 201212, ¢ > ¢,

(1)’
In general, let py_ = =, be as in the proof of Proposition 3.4. Applying (4.8) to u}, .
replacing p; and using (3.21), (3.25), we obtain

lim inf {tWao (1 2, o) } > VT,

which together with (3.27) proves (4.7).
It remains to prove I > 0 and I < oo the under given conditions, where due to (3.24),
I < oo is equivalent to

(4.9) Z ;”

m=1 m

Below we first prove I > 0 then show I’ < oo under the given conditions.
(a) I > 0. If this is not true, then

1(ho) pi(Pm) = —p1(Po) (b)), m > 1.

Combining this with the representation in L?(u)

F= ulfomom feL(p),

where the equation holds point-wisely if f € C,(M) by the continuity, we obtain

= 1(fbm)(do)v(dm) = 2u(fbo)v ) =) 1 bm)a(bm) (o)
m=0 m=0

18



= 2p(fo)v (o) (o) — v(do)u(f), [ € Co(M).
Consequently,

0< u<¢o>j—: — 200(d0)1(d0) — 1),

which is however impossible since the upper bound is negative in a neighborhood of M,
because v(M°) > 0 implies v(¢g) > 0 for ¢pg > 01in M°, and ¢ is continuous with ¢g|an = 0.
Therefore, we must have I > 0.

(b) I' < co. Let {h,,}n>1 be a sequence of probability density functions with respect to
4 such that

(4.10) Up := hpp — v weakly as n — oo.

By the spectral representation for (—L)_%, and applying the Sobolev inequality (1.2) with
2d

P = 5 V1, we obtain
= Vn(¢m>2 -3
O k(G R PR s TP
m=1 m
It is easy to see that for d < 6 we have dQ—fG < 1, so that th”L%\/l(#) = u(h,) = 1.

Combining this with (4.10), (4.11) and applying Fatou’s lemma, we derive

2
Vn(Om) <liminf I’ < K* < 00, d <6.

— e
I'= 2 liminf =055 <l
m=1 m

Finally, when d > 7 and v = hu with h € Ld%(u), by applying (4.11) to h, = h we prove
I' < o0. ]

Acknowledgement. The author would like to thank the referee for helpful comments and
corrections.

References

[1] L. Ambrosio, F. Stra, D. Trevisan, A PDE approach to a 2-dimensional matching
problem, Probab. Theory Relat. Fields 173(2019), 433-477.

[2] D. Bakry, M. Emery, Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci.
Paris. Sér. I Math. 299(1984), 775-778.

[3] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Opera-
tors, Springer, 2014.

[4] 1. Chavel, Figenvalues in Riemannian Geometry, Academic Press, 1984.

19



[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Chen, S. Jian, A remark on quasi-ergodicity of ultracontractive Markov processes,
Statis. Probab. Letters 87(2014), 184-190.

P. Collet, S. Martinez, J. San Martin, Quasi-Stationary Distributions, Springer, 2013.
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.

E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Mathematical Soci-
ety, 2005.

E. M. Ouhabaz, F.-Y. Wang, Sharp estimates for intrinsic ultracontractivity on CH¢-
domains, Manuscripta Math. 122(2007), 229-244.

F.-Y. Wang, Functional inequalities, semigroup properties and spectrum estimates, In-
finite Dimensional Analysis, Quantum Probability and Related Topics 3:2(2000), 263—
295.

F.-Y. Wang, Functional Inequalities, Markov Semigroups and Spectral Theory, Science
Press, 2005.

F.-Y. Wang, Estimates of the first Neumann eigenvalue and the log-Sobolev constant
on Non-convex manifolds, Math. Nach. 280(2007), 1431-1439.

F.-Y. Wang, Analysis for Diffusion Processes on Riemnnian Manifolds, Springer,
2014.

F.-Y. Wang, Modified curvatures on manifolds with boundary and applications, Pot.
Anal. 41(2014), 699-714.

F.-Y. Wang, Convergence in Wasserstein distance for empirical measures of Dirichlet
diffusion processes on manifolds, arXiv:2005.09290.

F.-Y. Wang, Wasserstein convergence rate for empirical measures on noncompact man-
ifolds, arXiv:2007.14667.

F.-Y. Wang, Convergence in Wasserstein distance for empirical measures of semilinear
SPDFEs, arXiv:2102.00361.

F.-Y. Wang, J.-X. Zhu, Limit theorems in Wasserstein distance for empirical measures
of diffusion processes on Riemannian manifolds, aXiv:1906.03422.

20



