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Abstract

The following type exponential convergence is proved for (non-degenerate or degener-
ate) distribution dependent SDEs:

Wa(pie, pioo)® + Bnt(pre|pi0) < ce™ min {Wa(po, p1o)®, Ent(pio|proc) }, > 1,

where ¢, A\ > 0 are constants, u; is the distribution of the solution at time ¢, o is
the unique invariant probability measure, Ent is the relative entropy and W is the L2-
Wasserstein distance. As applications, this type exponential convergence is confirmed for
non-degenerate/degenerate granular media type equations generalizing those studied in
[7, 11] on the exponential convergence in a mean field entropy.

AMS subject Classification: 60B05, 60B10.
Keywords: Distribution dependent SDE, exponential convergence in entropy, stochastic Hamil-
tonian system, granular media equation.

1 Introduction

The convergence in entropy for stochastic systems is an important topic in both probability
theory and mathematical physics, and has been well studied for Markov processes by using the

*Supported in part by NNSFC (11771326, 11831014, 11921001).
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log-Sobolev inequality, see for instance [5] and references therein. However, the existing results
derived in the literature do not apply to distribution dependent SDEs due to the nonlinearity
of the associated Fokker-Planck equation. In 2003, Carrillo, McCann and Villani [7] proved the
exponential convergence in a mean field entropy of the following granular media equation for
probability density functions (p;);>0 on R%:

(1.1) Oipr = Apt+div{ptV(V+W*pt)},

where the internal potential V € C?(R?) satisfies Hessy > Al for a constant A > 0 and the

d x d-unit matrix I, and the interaction potential W € C?(R?) satisfies W (—z) = W (x) and

Hessy > —d1, for some constant ¢ € [0, A/2). Recall that we write M > A\, for a constant A

and a d x d-matrix M, if (Mv,v) > A|v|? holds for any v € R%. To introduce the mean field
e V(@) dg

entropy, let puy (dz) := TV recall the classical relative entropy
R

| o0, otherwise

for u, v € &, the space of all probability measures on R?, and consider the free energy functional
1
BV () = Ent(ulpy) + 5 [ Wio - yu(douldy). e 2.
R4xRd

where we set EV'W (1) = oo if either Ent(u|uy) = oo or the integral term is not well defined.
Then the associated mean field entropy Ent""" is defined by

(1.2) Ent"W (n) := EVY'W () — inf EYYW(v), pe 2.
vEY
According to [7], EV"" has a unique minimizer p, and pu;(dz) := ps(z)dx converges to fiso

exponentially in the mean field entropy:
Ent"'"W (1) < e” A" 2MEntYW (1), t > 0.

Recently, this result was generalized in [11] by establishing the uniform log-Sobolev inequality
for the associated mean field particle systems, such that Ent""" (u,) decays exponentially for
a class of non-convex V € C?*(R?) and W € C?(R? x R?), where W (z,y) = W(y,z) and
wi(dz) := py(x)dx for p; solving the nonlinear PDE

(1.3) ipr = Apy +diV{ptV(V+W®pt)}a
where
(1.4) Wep:= | W (-, y)pe(y)dy.

R

In this case, Ent""" is defined in (1.2) for the free energy functional

1
B () = Ent(plpy) + 5/ W (z,y)p(dz)u(dy), pe 2.
R4 x R4
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To study (1.3) using probability methods, we consider the following McKean-Vlasov SDE
with initial distribution pg:

(1.5) dX, = V2dB, — V{V + W ® Ly, }(X,)dt,

where B; is the d-dimensional Brownian motion, Z, is the distribution of X;, and

(1.6) (Wep)(z):= [ Wryudy), rcR, peP

R4

provided the integral exists. Let p,(x) = M, t > 0. By I[to’s formula and the integration

dzx
by parts formula, we have

d d

G | (@) = EX)] = E[(A = YV = VW & p}) £(X,)]

_ /Rd (@) {Af — (VV + VW @ p,}, V) }z)dz
- /Rd F@){Ape+ divp,VV + p, V(W @ p)]} (x)dz, >0, f e C3(RY).

Therefore, p; solves (1.3). On the other hand, by this fact and the uniqueness of (1.1) and
(1.5), if p; solves (1.1) with uo(dz) := po(z)dx, then pi(x)dz = Zx,(dz) for X, solving (1.5)
with Zx, = po.

To extend the study of [7, 11], in this paper we investigate the exponential convergence in
entropy for the following distribution dependent SDE on R

(17) dXt = O'(Xt)th + b(Xt, gxt)dt,

where W; is the m-dimensional Brownian motion on a complete filtration probability space
(Q7 {ﬁt}tZ()v ]P))v
c:RT - RI@R™, b:RYx P, - R?

are measurable, and £, is the class of probability measures on R? with pu(| - |?) < oo. Since
in this general setting the associated mean field entropy is not available, and it is less explicit
as defined in (1.2) for the special model (1.5), we intend to study the exponential convergence
of L, in the classical relative entropy Ent and the Wasserstein distance. Recall that for any
p > 1, the LP-Wasserstein distance is defined by

P
Wy (1, p2) = inf (/ Ix—ylpﬂ(dw,dy)) , M, 2 € P,
TEE (p1,12) Rd xRd

where €' (11, p12) is the set of all couplings of p; and py. To this end, we will apply the log-
Harnack and Talagrand inequalities, see Theorem 2.1 below. Since the log-Harnack inequality
is not yet available when o also depends on the distribution, see [25], in (1.7) we only consider
distribution-free o. In particular, for a class of granular media type equations generalizing the
framework of [7, 11], we prove

Wa(pae, poo)” + Ent (| poo) < ce™ min {Wa (g0, ptoo)?, Ent(piolpios) }, ¢ >1
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for p(dx) := py(x)dz and some constants ¢, A > 0, see Theorem 2.2 below for details.

The remainder of the paper is organized as follows. In Section 2, we state our main results
for non-degenerate and degenerate models respectively, where the first case includes the gran-
ular media type equations (1.3) or the corresponding Mckean-Vlasov SDE (1.5) as a special
example, and the second case deals with the distribution dependent stochastic Hamiltonian
system referring to the degenerate granular media equation. The main results are proved in
Sections 3-5 respectively, where Section 4 establishes the log-Harnack inequality for distribution
dependent stochastic Hamiltonian systems.

2 Main results and examples

We first present a criterion on the exponential convergence for distribution dependent SDEs
by using the log-Harnack and Talagrand inequalities, and prove (2.15) for the granular media
type equations (2.10) below which generalizes the framework of [11]. Then we state our results
for the general distribution dependent SDE (1.7) with non-degenerate and degenerate noises
respectively.

2.1 A criterion with application to Granular media type equations

In general, we consider the following distribution dependent SDE:
(2.1) dX; = o(Xy, Zx,)dW, + b(X;, Zx,)dt,
where W; is the m-dimensional Brownian motion and
c:Rix Py 5> RIEQR™, b:RY x 22, —» R?
are measurable. We assume that this SDE is strongly and weakly well-posed for square inte-
grable initial values. It is in particular the case if there exists a constant K > 0 such that

(2.2)
(b, ) =bly, v), 2 =y) " +lo(z, p) =0 (y, v)|* < K{lz—y[*+Ws(u,v)*}, 2,y €RY, p,v € Py,

see for instance [25]. See also [13, 27] and references therein for the well-posedness of distribution
dependent SDEs with singular coeflicients. For any pu € %, let P = Zx, for the solution X;
with initial distribution £y, = p. Let

Pufn) = ELFCX)) = [ FdPr, 62 0.5 € AR,

We have the following equivalence on the exponential convergence of P in Ent and Wi.

Theorem 2.1. Assume that P} has a unique invariant probability measure o € P such that
for some constants ty, co, C' > 0 we have the log-Harnack inequality

(23) Py, (log f)(v) < log Py f(11) + coWa(p, v)?, v € P,
and the Talagrand inequality
(2.4) W (11, oo)® < CEnt(plpin), 1 € Po.



(1) If there exist constants c1, A\, t; > 0 such that
(2.5) Wo (B, fioe)® < 16 MWa (1, pic)?, t > 11, 10 € P,
then

max { ¢y ' Ent( B} o), Wa (P} p1, p100)? }
< ¢re M) ;min {Wz(u,umﬂ C’Ent(,u|,uoo)}, t>tg+1t,u € Ps.

(2:6)
(2) If for some constants A, ca,ta > 0
EWw | (2.7) Ent (P} pt|ptes) < coe ™ MEnt(plpise), t > ty,v € Py,
then

max {Ent(Pt*:ua Mm)a CilW?(Pt*lu’a MOO)2}

ET’| (2.8
(28) < coe” M) min {cgWa (i, pioo)?, Ent(pil o)}, £ > to + o, jp € P,

When o does not depend on the distribution, the log-Harnack inequality (2.3) has been
established in [25]. The Talagrand inequality was first found in [18] for 1o, being the Gaussian
measure, and extended in [5] to fis satisfying the log-Sobolev inequality

LS0| (2.9) poo(f210g [%) < Css(IV ), | € Ci(RY), e (f?) = 1,

see [15] for an earlier result under a curvature condition, and see [19] for further extensions.
To illustrate this result, we consider the granular media type equation (2.10) for probability
density functions (p;)i>o on R%:

EO1] (2.10) Opr = div{aVp, + paV(V + W @ py) },
where W ® p; is in (1.4), and the functions
a:RESRIQRY, V:RTP - R, W:R{xRY =R
satisfy the following assumptions.
(H1) a:= (ai)1<ij<a € C}(R? - R?®@R?), and a > \,I; for some constant \, > 0.

(Hy) V € C*R?),W € C?(R? x R?) with W (z,y) = W(y, z), and there exist constants ro € R
and Kq, kg, Ky > 0 such that

(2.11) Hessy > koly, rolaqa > Hessy > kolag,

(2.12) (x,VV(2)) > ki|z|]* — kg, € R?

Moreover, for any A > 0,

(2.13) / e V@V W qzdy < oco.
RIxR4



(H3) There exists a function by € L}, .([0,00)) with

loc

o 1= ||HeSZWHOO /OO e% fotbo(s)dsdt <1
0

such that for any z,vy, z € R,
(y =2, VV(2) = VV(y) + VIW(-, 2)(x) = VIV (-, 2) (1)) < [& = ylbo(|z — y]).

For any N > 2, consider the Hamiltonian for the system of N particles:

N N
1
HN(‘Tlu e 7xN) = E V<IZ) + N —1 § W(xivxj)a
i=1

1<i<j<N

and the corresponding finite-dimensional Gibbs measure

1
N(N)(dxb e axN) = Z_e_HN(xh.“’J:N)dxl e dea
N

where Zy = [puy e %@ dz < 0o due to (2.13) in (H,). For any 1 < i < N, the conditional
marginal of u™) given z € RU¥=1 is given by

1
(M (dy) e L o Hn@ . 7e(s) / ~Hy(el2) g
e ( l’) ZN(Z)e xz, N(Z) Rde Z,
Hy(z|z) :==V(x) — log/ e T Ve R W) gy, ~dzy_1.
RA(N-1)

We have the following result.

Theorem 2.2. Assume (Hy)-(Hs). If there is a constant a > 0 such that the uniform log-
Sobolev inequality

1
Lss] (2.14) ™M (f*log f?) < B“(N)(Wf!z), feCyRY, uM(f?)=1,N>2,z e R

z z

holds, then there exists a unique jio € Po and a constant ¢ > 0 such that

(2.15) Wi (pus, proo)” + Ent (| 10) < ce™P0770 min {Ws (j1g, proc)® + Ent(po|ptec) }, £ > 1
holds for any probability density functions (p;)i>o solving (2.10), where u;(dz) := py(x)dx,t > 0.

This result allows V and W to be non-convex. For instance, let V = V; + V, € C?(R?)
such that ||[Vi|le A [|[VVi]lee < 00, Hessy, > Al for some A > 0, and W € C?*(R?¢ x R?)
with [|[W]|e A [|[VW]|ee < 00. Then the uniform log-Sobolev inequality (2.14) holds for some
constant 5 > 0. Indeed, by the Bakry-Emery criterion, us(dz) := We_‘@(m)daz satisfies

the log-Sobolev inequality

pa(f10g £2) < Sua(IVIP), S € CHRY, pa(f%) = 1.

then (2.14) with some constant 8 > 0 follows by the stability of the log-Sobolev inequality
under bounded perturbations (see [9, 8]) as well as Lipschitz perturbations (see [1]) for the
potential V5. Moreover, assumption (H;)-(Hs) hold provided ||Hessy || is small enough such
that o < 1. So, Theorem 2.2 applies. See [11] for more concrete examples satisfying (H;)-(Hs3)
and (2.14).
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2.2 The non-degenerate case
In this part, we make the following assumption:
(A}) There exists a constant K > 0 such that for any z,y € R? and pu,v € £y,

lo(z) = a)II* + (b(z, 1) = by, v),x — )" < K{|z =y + Wa(p, )},
16(0, )] < K (1 + [[uall2)-

(Ay) oo* is invertible with A := [[(60*)7!||.c < o0, and there exist constants Ky > K; > 0
such that for any z,y € R? and u,v € &y,

lo(x) — o (y)|Fs + 2(b(x, 1) — by, v), x — y) < KiWa(p,v)* — K|z — y|*.

According to [25, Theorem 2.1], if (A;) holds and b(x, 1) is continuous on R% x £, then for
any initial value Xy € L?(2 — R?, %, P), (1.7) has a unique solution which satisfies

E[ sup |Xt|2} < oo, T €(0,00).
te[0,7

Let Pfu = Zx, for the solution with £y, = p. We have the following result.

Theorem 2.3. Assume (A;) and (Az). Then P has a unique invariant probability measure
loo Such that

C
(2.16)  max {Wy (P s, fioo)®, Ent(P pil o) } < —

~(Ka )ty 2 1> 0 € P
~ t/\le Z(Maluoo) 3 y M 2

holds for some constant ¢; > 0. If moreover 0 € CZ(R? — R? ®@ R™), then there erists a
constant co > 0 such that for any p € Pyt > 1,

(2.17)  max {Wa( B/ 1, fioo)?, Ent (P} il o) } < coe™ M50 min {Wo (1, p10)?, Ent (1] o) }

To illustrate this result, we consider the granular media equation (1.3), for which we take
(2.18) o =21, bz, p) = —V{V+W®pu}(z), (z,n)€R?x P,.

The following example is not included by Theorem 2.2 since the function W may be non-
symmetric.

Example 2.1 (Granular media equation). Consider (1.1) with V € C?*(R%) and W €
C?(RY x R?) satisfying

(2.19) Hessy > Ay, Hessy > 011y, |[Hessw|| < o2

for some constants A;,0o > 0 and 6; € R. If A+ 0; — d3 > 0, then there exists a unique
loo € Py and a constant ¢ > 0 such that for any probability density functions (p;);>0 solving
(1.3), py(dz) := py(x)dx satisfies

(2.20) max {Wa (g, poo ), Ent (s pec) } < ce”AF01=02)t iy { W (1o, ptoo), Ent(po|ptos) }, ¢ > 1.
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Proof. Let o and b be in (2.18). Then (2.19) implies (A;) and
(b(z, 1) =y, v),x —y) < —(\1 + 01w — y[* + ol — y| Wi, v),

where we have used the formula

Wi, v) = sup{p(f) —v(f) = [IVFlleo <1}

So, by taking a = %2 and noting that W; < W, we obtain

52
<b(:1c,,u) - b(ya V),ZL‘ - y> < —(>\+61 - Oé)|[)§' - y|2 + ﬁwl(l’% V)2

) )
< —<)\+51 — 52>|x—y|2 + §W2(u, V)2, zy eRY p v e Py

Therefore, if (2.19) holds for A+d; —d2 > 0, Theorem 2.3 implies that P, has a unique invariant
probability measure pi,, € P, such that (2.20) holds for ug € Py. When pg ¢ P, we have
Wy (110, floo)? = 00 since fio, € P5. Combining this with the Talagrand inequality

W2 (MO? /vboo)2 < OEHt(M0|/LOO)

for some constant C' > 0, see the proof of Theorem 2.3, we have Ent(uo|p) = 00 for pg ¢ s,
so that (2.20) holds for all g € Z. O

2.3 The degenerate case

When R* with some k € N is considered, to emphasize the space we use 2(R*) (P2, (RF))
to denote the class of probability measures (with finite second moment) on R*. Consider
the following distribution dependent stochastic Hamiltonian system for (X;,Y;) € Réa+d =
R% x R

dX, = BY,dt,
(2.21)

4Y; = V2AW; — { B*VV (-, L)) (X0) + BB (BB) X, + Y, }t,

where 8 > 0 is a constant, B is a d; X dy-matrix such that BB* is invertible, and
Vi RE x Py (RUT2) 5 RE

is measurable. Let

vp((2,y),(2,9) = V]e =22 +[Bly —9)I?, (x,y),(z,9) € R,

1
Wy )= nt [ stdr by € PR,
R41+d2 x Rd1+d2

et (p,v)

We assume
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(C) V(z,p) is differentiable in = such that VV(-, u)(z) is Lipschitz continuous in (x,u) €
R4 x P (RU+42) Moreover, there exist constants 0y, 0 € R with

AH1| (2.22) 0, + 0y < 3,
such that for any (z,v), (z/,y') € R4+% and p, i/ € Py(R4+d2),

(BBHVV (-, p)(@) = VV (i) (@)} o — 2"+ (14 B)Bly —¢))

M2 B2 (), (@) — W (i)

Obviously, (C) implies (A,) for d = m = dy + dy, 0 = diag{0,v/214,}, and

b((x,y), 1) = (By, —B*VV (-, p)(z) — BB"(BB") 'z — y).

So, according to [25], (2.21) is well-posed for any initial value in L?(Q — R%T42 Z; P). Let
P} = % x, v, for the solution with initial distribution i € Po(RU+42).

Theorem 2.4. Assume (C). Then P} has a unique invariant probability measure jio such that
for any t >0 and p € Py(RUT%2),

—2kt

ce .
5 min { Ent (o0 ), Wa (41, f100)* } -

(2.24)  max {Wa(B 1, o), Ent (P il o) } < RV

holds for some constant ¢ > 0 and

e 266
L2428+ 824 /B4

(2.25)

Example 2.2 (Degenerate granular media equation). Let m € N and W € C?(R™ x
R*™). Consider the following PDE for probability density functions (p;);>o on R*™:

(226) atpt<x7 y) = Aypt(l’, y) - <v$pt(x7 y)7 y) + <Vypt(1', y)v VI(W ® pt)(x) + 5‘% + y>7

where 3 > 0 is a constant, A,, V,, V, stand for the Laplacian in y and the gradient operators
in x,y respectively, and

(W p)(x) := Wz, z)pi(2)dz, = €R™.
R2m
If there exists a constant 0 € (O, e \/m) such that
(2.27) VW (-, 2)(x) = VW (-, 2)(z) < 0|z — z| + |2 — 2]), 2,2 € R", 2,z € R*™,

then there exists a unique probability measure o, € P5(R*™) and a constant ¢ > 0 such that
for any probability density functions (p;);>¢ solving (2.26), u.(dx) := p;(x)dz satisfies

(228) max {W2 (ﬂh :uOO)27 Ent(:ut‘luoo)} < Ce_ﬁt min {W2 (ﬂﬂ? MOO)2> Ent(ﬂl}’uo@)}? t>1
holds for o — 2-00H3VEZHE)

2+2B+82+4/ B4 +4
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Proof. Let dy = dy = m and (X, Y;) solve (2.21) for

(2.29) B:=1,, V(z,u):= Wz, z)u(dz).

R2m

Let p;(2) = ‘X(X+Z”(dz) By It6’s formula and integration by parts formula, for any f € CZ(R*™)
we have

d d
G L e = LB )

= /2m pt(:c,y){Ayf(:c,y) + <fo($vy)7 Z/> - (Vyf(x,y), VIV(LC, pt(z)dz) + 555 + y>}dl‘dy

= F@, ) { Ao, y) = (Vapi(z,y), ) + (Vype(2, v), Vopus(W(z, ) + Bz +y) pdady.

R2m

Then p; solves (2.26). On the other hand, by the uniqueness of of (2.21) and (2.26), for any
solution p; to (2.26) with po(dz) := po(2)dz € P(R*™) for d = 2m, p(z)dz = ZLx, v;)dz for
the solution to (2.21) with initial distribution pg. So, as explained in the proof of Example 2.1,
by Theorem 2.4 we only need to verify (C) for B,V in (2.29) and

1 0
(2.30) b, =9<§+ 2+26+52>, by = 5V2+ 25+,
so that the desired assertion holds for

20861 —0)  28—0(1+3y/2+28+ 5%

2428+ 24+ /B +4 2428432+ /B 14

By (2.27) and V (2, ) := u(W(x,-)), for any constants a;, as, g > 0 we have
= (VV(p)(z) = VV (@) ()2 -7+ (1+B)y—7)
= (VW(,2)(x) = VW (-, 2)(Z), 2 = 7+ (1 + B)(y — §))n(dz)

R2m
+<uvw<x,)> (VW (z, ))x—:c+( +8)(y — 7))
> 9{|x—x]+wlu )} (lz — @[ + (1 + B)|y — 7l)
> ~0las + ag)Wa(ie ) — 0{ (1+ s+ o) o — o+ (1+ 92 (3 + 7 Iy — 9}
Take
VIR 1 e (14 B)
L= > L 22128+ 8 22128+ 3
We have
1+&1+i_%+\/2+25+527
2
1 1
(1+3)? <4a1 4743):§+ 2+ 28+ B

10
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1
062+()63:§\/2—|—2ﬁ+52.

Therefore,

1> —2\/2 + 26+ B2Wy(u, 1)* — 9(% +V2+28+ 52>|(95,y) — (@9,

i.e. (C) holds for B and V in (2.29) where B = I,,, implies that 95 is the Euclidean distance
on R?*™ and for 6,6, in (2.30). O

3 Proof of Theorems 2.1 and 2.2
Proof of Theorem 2.1. (1) Since

Ent<Pt>gV’PtT)M) = sup Pt0<10g f)(y)a
fzov(Ptof)(:U‘)Zl

(2.3) implies
Ent( Py v|Pyp) < coWo(u,v)?.

This together with Py fioc = peo gives
(3.1) Ent( P} plpco) < coWalp, pios)?, pt € P
Combining (2.5) with (2.4) and (3.1), we obtain
WP/ g1, fro)® < c16™ M Wa(pt, pine)? < cre™ min {Wa(, pioo)?, CEnt(plpie) }, >t
and

Ent (P} plpioc) = Ent(Py Py pilpoc) < coWa (B, 4, fiso)? < COClei/\(tito)Wﬂﬂa fioo)?
= {cocreYe M min {Wo (1, p1oo)?, CEnt (plpios) b, ¢ > to + 1.

Therefore, (2.6) holds.
(2) Similarly, if (2.7) holds, then (2.4) and (3.1) imply

Bnt (P} i) < cze™ ) min {Bnt (P ultoc), Ent (ujioe)}
< cpe M) ;min {C()Wg(,u, [hoo)?, Ent(umoo)}, t >ty + oy

and
CT W (P p, proo)? < Ent(P, Pt pil o)
< cymin {e M Ent(jioe). € Ent (P i)}
< e M) in {Ent(p|po0), coWa(p, foo)’}, > to + ta.
Then (2.8) holds, and the proof is finished. O

11
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Proof of Theorem 2.2. By [11, Theorem 10], there exits a unique o, € &5 such that
(3.2) Ent"" () = 0.

Let py = podx € 5. We first note that u, = Puo := Ly, for X; solving the distribution
dependent SDE (2.1) with

(3.3) oz, u) =+ 2a(z), blz,u) = Z da.j(z) —aV{V + W ® u}(z), » € R ue P,

Obviously, for this choice of (o,b), assumptions (H;) and (Hz) imply condition (2.25) for some
constant K > 0, so that the distribution dependent SDE is weakly and strongly well-posed.

For any N > 2, let ;JJ]EN) = £ v for the mean field particle system Xt(N) = (X)) cien:

d
(34)  dXM* = V20(XVM)ABE + {Z JXNRY — a(XNRYV L Hy (Xt(N))}dt, t>0,

where V}, denotes the gradient in the k-th component, and {X;"*}1<;<n are i.i.d. with distri-
bution pp € 5. According to the propagation of chaos, see [17], (H;)-(Hs) imply

(3.5) lim WQ(X , Pl 1p) = 0.

N—oo

Next, our conditions imply (25) and (26) in [11] for prs = B(1 — 7). So, by [11, Theorem
8(2)], we have the log-Sobolev inequality

S VIR, S € CHR), () =1

By [5], this implies the Talagrand inequality

36)  u™M(logf) <

(3.7) Wy (M) (M2 Ent(v™]u™), ¢t >0,N > 2 v™) ¢ 2(RW).

c__ 2%
~ B(1 —1g)?

On the other hand, by Itd’s formula we see that the generator of the diffusion process Xt(N) is

d
LW @™y = {aij(xN,k)axN,kazN,k + ;i (x™)0, w — ag (™) [@N*HN(Q?(N))]@;EN”“}’

1,7,k=1

for t™) = (2N, ... 2NN) € RN where 2F is the i-th component of 2M* € R%. Using the
integration by parts formula, we see that this operator is symmetric in L?(p(™):

N)(f’ g) — /d (a(N)Vf, Vg)du(N) — fL(N)gd,u(N), f.g€ Cgo(RdN),
R N

RaN

12
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PLM

where a™) (z(V)) := diag{a(z™), -, a(zVN)}, W) = (2N ... 2NN) € RV, So, the closure
of the pre-Dirichelt form (&™) Cg°(R¥Y)) in L?(u™)) is the Dieichlet form for the Markov
semigroup PV of X, By (H,) we have a™) > X\ Iy, so that (3.6) implies

p ™M (flog f2) EMN(f, f), feCHR™), M) =1.

P —
N 6 )\a(l - 7’0)2
It is well known that this log-Sobolev inequality implies the exponential convergence

N _ )2 N
Ent(y™ [pN)) < e 00 Bt (™| u™)

3.8 ;
( ) — e*Aaﬁ(lf’FO) tEnt(M®N|/,L(N)) t Z 07 N Z 2’

Y

see for instance [5, Theorem 5.2.1]. Moreover, since Hessy and Hessy, are bounded from below,
(H,) implies that the Bakry-Emery curvature of the generator of Xt(N) is bounded by a constant.
Then according to [20], there exists a constant K > 0 such that the Markov semigroup Pt(N) of
Xt(N) satisfies the log-Harnack inequality

Kp™M(z,y)?

(39 RVlogf(r) <log A + S Sy

0<feBRM,t>0xycR?,

where p(™) is the intrinsic distance induced by the Dirichlet form &@). Since a™ > A Iun,
we have p™(z,1)? < A7l z — y2. So, (3.9) implies (2.3) for P\ replacing Py, and ¢y =
K

Ma(l_c 2KF) -

K’WQ (:ua V)2
2X,(1 — e2K)

P (log f)(v) < log PN f(u) + , 0< feBRMN)E>0,u,v e PyRY).

Thus, by Theorem 2.1, (3.8) implies
e~ HaB(1-70)%

3.10 W (M2 < &
(3.10) S0y < AT

Wy (N, u™M)?, t>0,N > 2

for some constant ¢; > 0. Moreover, (3.7), (3.2) and [11, Lemma 17] yield

1 2
lim —W ,ugN,u(N) 2 < limsup —————Ent(u&Y (N2
(3.11) S P P B P
' 2
= Gt () =0
Combining this with (3.10) we derive
1 1
lim sup — W (u™, uZN)? = limsup —Wa(py"™, u™))?
N—oo N N—oco N
f/\a,B(lfro)% 1
€€ . N (N2
12 —1 — Wy (ud™,
(812) < = limswp 2(pg™ 5 1)
—)\Q/B(l—’ro)Qt 1 —)\aﬁ(l—’r‘o)zt
c1€ . ci1e
I h]IVIlSllp Nwz(N?NaﬂgN)z = 1—MW2(M0,M00)2 , t>0.
—00
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Now, let & = (&)i1<i<y and 7 = (1;)1<i<y be random variables on R such that % =
N
w2 = €N and

N
STEIG - nil = ElE > = Wo(ul™, 1Y),
=1

We have .Z;, = (,?thv,l,fm = [l for any 1 < i < N, so that

N
EXX| (3.13) NWa( Ly, fioo)” < > EG -l = Wy (™) u&NY2.

i=1
Substituting this into (3.12), we arrive at

Cle—)\aﬁ(l—’ro)2t
lim sup WQ(XXNJ,MOO)Q < -
N—o0 t 1At

W2(M7Moo)2 ) t>0.
This and (3.5) imply

c1etaB(1-T0)%

(3.14) Wa(P; i proo)* < =

By [25, Theorem 4.1], (Hy)-(H3) imply the log-Harnack inequality

W2(:unuoo)2 ) t>0.

C2

LHK| (3.15) Fi(log f)(v) <log Puf(u) + 1=

W2(:U’7V)27 JURS 4@27t>0

for some constant co > 0. Similarly to the proof of (3.13) we have
NWo (fto, f™V)? < W (uiN, )2,

where pN1) = M) (- x RIN=D) is the first marginal distribution of x™). This together with
(3.11) implies

lim Wy (™Y 1) = 0.

N—oo

Therefore, applying (3.6) to f(x) depending only on the firs component z;, and letting N — oo,
we derive the log-Sobolev inequality

fioo(f? 1og f?) < 1oV, f € CERY), poo(f?) = 1.

2
B(1 = o)
By [5], this implies (2.4) for C = m Combining this with the log-Harnack inequality and
(3.14), by Theorem 2.1 we prove (2.15) for some constant ¢ > 0 and p; = Zx, = P/ for
solutions to (2.1) with b,0 in (3.3).

Similarly to the link of (1.3) and (1.5) shown in Introduction, for any probability density
functions p; solving (2.10), we have pydx = Pfug for py = podz € . So, we have proved
(2.15) for p; solving (2.10) with puy € Z?. As explained in the proof of Example 2.1 that
Ent(po, foo) = Wa(pu, pieo) = 00 for pg ¢ &5, so that the desired inequality (2.15) tribally true.
Then the proof is finished. O]
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4 Proof of Theorems 2.3

According to [25, Theorem 3.1], (A1) and (Ay) imply that P/ has a unique invariant probability
measure fi, and

(41) WQ(PL‘*NHMOO) S e_%(K2_K1)tW2(,ua Noo); t Z 07[’[/ € @27

while [25, Corollary 4.3] implies

Ent(Pt*M|,Uoo) < 10_/(315W2(M7NJ00)27 t> Onu S l@2

for some constant ¢o > 0. Then for any p > 1, combining these with P = Py, P, )., we
obtain

* * * Co *
Ent(F} plpos) = Ent(Pra, Py il poo) < 1—MW2(P(1:—1)+N7 fioo)?

—(K2—K1)(t—-1)* Ky— K3

Co€ 2 _ Co€ —(Ka— K1)t 2
< W = 2TRURW )
> 1AL 2<:uuluoo) 1AL € 2(”7:“/00)

This together with (4.1) implies (2.16) for some constant ¢; > 0.
Now, let 0 € CZ(R? — RY®R™). To deduce (2.17) from (2.16), it remains to find a constant,
¢ > 0 such that the following Talagrand inequality holds:

W (i, fise)® < cEnt(plpin), € Ps.

According to [5], this inequality follows from the log-Sobolev inequality

(4.2) poo(F210g f%) < cuse(IVFP), f € Co(RY), poo(f?) = 1.

To prove this inequality, we consider the diffusion process X; on R? generated by

d [e%S)
_ 1 N
L= 2 Z(UU )i0:0; + Zbi<'>ﬂoo)aia
3,7=1 =1
which can be constructed by solving the SDE

Let P, be the associated Markov semigroup. Since Pllico = pioo, When Lx, = p the SDE
(4.3) coincides with (1.7) so that by the uniqueness, we see that i, is an invariant probability
measure of P,. Combining this with (A42) and Itd’s formula, we obtain

(4.4) Wo (L, loo)® < e B2 Wy ( Ly, s Hoo)?, t> 0.

To prove the log-Sobolev inequality (4.2), we first verify the hyperboundedness of P, i.e. for
large ¢ > 0 we have

(4.5) 1P| 22ty L ) < 00

15
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It is easy to see that conditions (A;) and (Ay) in Theorem 2.3 imply that o and b(+, 1100 ) satisfy
conditions (A1)-(A43) in [21] for K = —(Ky — K1), \? = X and §; = ||0]|e- S0, by [21, Theorem
1.1(3)], we find a constant C' > 0 such that the following Harnack inequality holds:

B B Cle —y|?
(Pf@)? < PP o [t >0

Then for any f with p.(f?) < 1, we have

(Ptf(x))Q/Rd exp [— %} foo(dy)

S Moo(pth) = /J’oo(f2) S L.

So,
. 1
S&E‘gp)q s )l < (frue S >2
oo < J(Ka—K)t_;
a® foo(dy)

(4.6) .

< 3 < C}exp [Cle_(KQ_Kl)t|x|2], t>1,r€R%

lz—y| 2

(fB(O,l) e_e(Kszﬁt_lluoo(dy))

Next, by [|o]lc < 00, (As) and 1t6’s formula, for any k € (0, K5) there exists a constant ¢ > 0
such that B B ) B
d|X|? < 2(Xy, 0(Xy)dWy) + {e — k| X [* }de.

Then for any € > 0,
47)  det¥P <2t o (X)AW,) + eet i Loy + 2¢ 0|2 | X |? — BIXG [P dt.

When € > 0 is small enough such that 2¢||o||%2, < K>, there exist constants c;(g), ca(g) > 0 such
that
7,12 S S 7,12
el Xl {er + 2e||o |21 Xe]” — K| Xe*} < er(e) — co()ef el

Combining this with (4.7) we obtain
des¥e* < {ei(e) - 02(5)}65‘Xt|2dt + 2ee5 X (X o (X)) dW).

So, letting for instance X, = 0 we get

o /t EefPgs < 1T g
t /o - t ’

This together with (4.4) yields

t
oo (eFAN)) = Jim L[ getxeamgs < 96 - oy

t=oo t Jo c2(€)

16
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By letting N — 0o we derive pio(e1") < 0o. Obviously, this and (4.6) imply (4.5) for large
t > 0. Moreover, since ||(00*) 7|l < 00, 0 € CZ(R? — R? ® R™) and noting that (A,) gives

<U7 vvb(7uoo)> < _K2|U|27 v E Rdu
we find a constant Kj € R such that for any f € C®(R?),

Do) i= 5 Lo VP = (09, 0"V L) 2 Kolo VP,

i.e. the Bakry-Emery curvature of L is bounded below by a constant K;. According to [16,
Theorem 2.1], this and the hyperboundedness (4.5) imply the defective log-Sobolev inequality

NOO(fQ log fQ) < CIMOO(|O-*Vf|2) + C

4.8
(48) < O lo ot (V1) + Co € CLRY, joc(2) = 1

for some constants c;,co, > 0. Since L is elliptic, the invariant probability measure fio is
equivalent to the Lebesgue measure, see for instance [6, Theorem 1.1(ii)], so that the Dirichlet
form

E(f,9) = p((Vf,Vg), f,g€W"(u)

is irreducible, i.e. f € W2(u) and &(f, f) = 0 imply that f is constant. So, by [23, Corollary
1.3], see also [14], the defective log-Sobolev inequality (4.8) implies the desired log-Sobolev
inequality (4.2) for some constant ¢ > 0. Hence, the proof is finished.

5 Proof of Theorem 2.4

We first establish the log-Harnack inequality for a more general model, which extends existing
results derived in [12, 4] to the distribution dependent setting.

5.1 Log-Harnack inequality

Consider the following distribution dependent stochastic Hamiltonian system for (X;,Y;) €
R% x R :

6.0 dX, = (AX, + BY,)dt,
. dY;ﬁ = Z((Xt;Y;f)a'iﬁXt,}@))dt_'_adWh

where A is a d; X di-matrix, B is a d; X dy-matrix, o is a dy X do-matrix, W, is the do-dimensional
Brownian motion on a complete filtration probability space (2, {.%;}:>0,P), and

Z :RUFTE x Py (RTT2) — R®
is measurable. We assume

(C) o is invertible, Z is Lipschitz continuous, and A, B satisfy the following Kalman’s rank
condition for some k > 1:

Rank[A°B,--- A" 'B] =d,, A°:=1,.

17
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Obviously, this assumption implies (A;), so that (5.1) has a unique solution (X;,Y;) for any
initial value (Xo, Yp) with p = Zx,v,) € Po(RUT%2). Let Pu:= ZLx, v and

(Pf)(p) = / fdPru, t>0,f € By(RU+E),
Rd1+d2
By [25, Theorem 3.1], the Lipschitz continuity of Z implies
(5.2) Wy (P, Prv) < X Wy(u,v), t>0,u,v € Py(RUTR2)

for some constant K > 0. We have the following result.

Proposition 5.1. Assume (C). Then there ezists a constant ¢ > 0 such that

CecT
(5.3) (Prlog f)(v) <log(Prf)(p) + ng(u, V)2, T >0,u,v € Py(RUTR),
Consequently,
* * CeCT 2 di+d
(5.4) Ent(Prv|Prpu) < T4’f*—1/\1W2(N’ v)", T>0,p,v€ PR

Proof. According to [25, Corollary 4.3], (5.3) implies (5.4). Below we prove (5.3) by using the
coupling by change of measures summarized in [22, Section 1.1]. By the Kalman rank condition

in (C), .
Qr = / t(T —t)eT-94BB*eT-H4"q¢
0

is invertible and there exists a constant ¢; > 0 such that

e eclT

(5.5) Q7| < T AT

T >0,

see for instance [26, Theorem 4.2(1)].
Let (X(), YO), (Xo, YE)) € L2(Q — RlerdQ, ggzo,]P)) such that ,,%(meo) = M?"%X(),?o) = v and

(5.6) E(1Xo — Xof” + [Yo — YoI*) = Wa(u, v)*.

Next, let (X;,Y;) solve (5.1). Then #x,y;) = F;u. Consider the the modified equation with
initial value (X, Yp):

. dX; = (AX, + BY,)dt,
O\t = {20 ¥, Prg) + 5530 1 8T — 0Be®-00] Ya + 0,

where

T
_ t—T _
(5.8) v = ;1{eTA(XO — Xo) + / Te(T_t)AB(YO — Yo)dt}.
0



_ _ Y, -Y, d .
}/;_Yt:YO—YO%—/{ ° °+—[r(T—r)B*e<T—T>AU}}dr
0 T dr
T—t

— T(YO —Yy) + T —t)B*e T4, te[0,T].

ES1| (5.9)

Consequently, Y7 = Yz, and combining with Duhamel’s formula, we obtain

T—r
T

t
ES2] (5.10) X, — X; =Xy — Xo) + / e(t_’”)AB{ (Yo — Yo) + (T — r)B*e(T_’”)A*v}dr
0
for t € [0, 7). This and (5.8) imply
e A e T T —Tr A =
Xr— Xp =Xy — Xo) + / Te(T”") B(Yy — Y)dr + Qrv =0,
0

which together with Y7 = Y7 observed above yields

(5.11) (X7, Yr) = (X7, V7).
On the other hand, let
1 - d . o
gt = Uﬁl{T(YrO_YE))_FE [t(T_t)B*e(Tit)A U:| _'_Z((Xta }/t)a Pt*:u)_Z((Xta Yz-f)a Pt*l/) }7 te [Ov T]

By (C), (5.2), (5.5), (5.8), (5.9), and (5.10), we find a constant ¢ > 0 such that

C2

(5.12) &7 < WQCQT{V% — Xo? + [Yo = Yo|* + Wy(u,v)?}, t€[0,T].

So, the Girsanov theorem implies that
t
W, = W, + / euds, t€(0,T]
0

is a dy-dimensional Brownian motion under the probability measure QQ := RP, where
(5.13) R = o= Jo €dWi)—1 [ |&[2dt
Reformulating (5.7) as
{dXt — (AX, + BY,)dt,
dY; = Z((X,, V), Prv)dt + odW,, t € [0,T],

by the weak uniqueness of (5.1) and that the distribution of (Xy,Yy) under Q coincides with
L% = V, We obtain L%, v,yo = P/v for t € [0,T]. Combining this with (5.11) and using
the Young inequality, for any f € %, (R%"9%) we have

(Prlog f)(v) = E[Rlog f(Xr,Yr)] = E[Rlog f(Xr,YT)]

< logE[f(Xr, Y7)] + E[Rlog R] = log(Pr[f)(1) + Egllog R].

(5.14)
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By (5.12), and (5.13), W, is a Brownian motion under Q, and noting that Q|z = P|, and
(5.6) imply ) )
Eq (| Xo — Xo|? + Yo — Yo|?) = Wy (u,v)?,

we find a constant ¢ > 0 such that

1 ceT

T
EQ[lOgR] = 2]EQ/O |§t‘2dt < WWQ(M’ V)2-

Therefore, (5.3) follows from (5.14). O

5.2 Proof of Theorem 2.4

We first prove the exponential convergence of P, in Ws.

LN1| Lemma 5.2. Assume (C). Then there ezists a constant ¢c; > 0 such that
ico] (5.15) Wa(Pp B < e ™ Wa(v)?, 12 0, 1,0 € Py(RAH2),
Consequently, P} has a unique invariant probability measure jio, € Py(R4T42),

Proof. As shown in the proof of [25, Theorem 3.1(2)] that the second assertion follows from
the first. So, it suffices to prove (5.15). For

1+B8+8N B 1
115 ),r.—a a_\/(1+ﬁ)(1+5+52)€(0’1)’

act] (5.16) a = (

we define the distance

Ac2] (5.17) vp((w,y), (2,9)) = Valr — 22 +[B(y — )] + 2ra{e — 2, B(y — 9))
for (x,y), (7,7) € R1+%, Then there exists a constant C' > 1 such that

Acc| (5.18) CH(z— 2,y — 9| < ¥s((2,9),(7,9) < Cl(x— T,y — ).

Moreover, we claim that

242046 ++/p1+4
2(1+p)

Indeed, by (5.16) and (5.17), for any € > 0 we have

Ac3| (5.19) Up((z,y), (7,7)) < vs((z,y), (Z,7))*.

1
(1+p8) 1+ 5+ p

(5200 n((@.y), (59) < 21+ -2+ (14 - ;)1B - )P
Obviously, by (5.16),

1=+ /(@ -1+ 4@+ B) 1+ B8+ /)T B F4-p
= 242 T 21+ B+ )

IS

20



satisfies
1 2428457+ /B +4

U+ =t T A ) 2(1+ B)

Thus, (5.19) follows from (5.20).
Now, let (X;,Y;) and (X;,Y;) solve (2.21) with Z(x, v,) = 1, Z(%,,v,) = v such that

(5.21) W (p, v)? = E[(Xo — Xo, Yo — Yo)|*.
Simply denote py = ZLix,v,), e = ZL(x,v)- By (C) and It6’s formula, and noting that (5.16)
implies
2 - - = 07 1-— = = L7
a*— B —ra ra=raf 115
we obtain
1. - o _ _ _
Ed{¢B((Xt7 }/1;/)7 (Xt7 1/2-5))2} = <a2<Xt - Xt) + TaB(Y; - }/t), B(K - K)>dt
+(B*B(Y; — ;) + raB*(X, — X;), BB*(BB*) ' (X; — X;) + Y, — Y} )dt
+ <B*B(}/t — Yi) -+ TCLB*(Xt — Xt); B*{VV(Xt,ﬂt> — VV(Xt,/I/t>}>dt
< { (1= ra)|B(Y; — V)|? + (0% — B — ra) (X, — X, B(Ys — V) — rafB| X, — X,|?
+ (BB = V) + (14 8) B (X, = X), B{YV (X, fr) = VV (X, )}) bt

Oy e B0
< W2 B R

By (5.19) and the fact that

V(X4 ), (X, 57,:))2}dt.

W;pB (,Uta ,at)2 S E[,@DB((XU Y:f)v (Xb E))QL
for k > 0 in (2.25) we obtain

1 _ o _
5 {EWs (X, Y1), (X, Y))*] — E[n (X, Yo), (X, Yo)) ]
B0, 0, [ o
< 1+ E[ys((X;, Y,), (X, Y;)) ]dr
< —m/ E[Yp((X,,Y,), (X,,Y,)?]dr, t>s>0.
Therefore, the Gronwall’s inequality implies
E[@B((Xta }/:‘,)7 (Xta }_/:‘,))2] S 672’%1[3[@53(()(07 %)? (X(Ja }_/0))2]7 t Z 0.

Combining this with (5.18) and (5.21), we prove (5.15) for some constant ¢ > 0. O
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Proof of Theorem 2.4. By Proposition 5.1 with £ = 1, Lemma 5.2 and Theorem 2.1, we only
need to verify the Talagrand inequality. As shown in the beginning of [10, Section 3| that fis
has the representation

-1 V(z ‘7 /6 *\—1 1
fioo(dz, dy) = Z7 V@V dzdy, Vi(z,y) == V(x, pos) + §|(BB Y 2z)? + §|y|2,

where 7 := fRdﬁdQ e_v(””’y)dxdy is the normalization constant. Since (2.23) implies
BB*Hessy(.,..) > —0h1a,,
we deduce from (2.22) that

—0
Hessy > vlg4dys 7= 1A ﬁHBH; > 0.

So, by the Bakry-Emery criterion [2], we have the log-Sobolev inequality

fioo(f* log f?) < %uoo(\VfV), f € CyRN™™), oo (f?) = 1.

According to [5], this implies the Talagrand inequality

2

Then the proof if finished. ]
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