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Abstract

To characterize the regularity of distribution-path dependent SDEs in initial distributions
variable as probability measures on the path space, we introduce the intrinsic and Lions deriva-
tives in the space of probability measures on Banach spaces, and prove the chain rule for the
Lions derivative in the distribution of Banach-valued random variables. By using Malliavin
calculus, we establish the Bismut type formula for the Lions derivatives of functional solutions
to SDEs with distribution-path dependent drifts. When the noise term is also path dependent
so that the Bismut formula is invalid, we establish the asymptotic Bismut formula. Both non-
degenerate and degenerate noises are considered. The main results of this paper generalize and
improve the corresponding ones derived recently in the literature for the classical SDEs with
memory and McKean-Vlasov SDEs without memory.

AMS subject Classification: 60J60, 58J65.
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1 Introduction

To characterize stochastic systems with evolutions affected by both history and micro environment,
the distribution-path dependent SDEs have been considered in [20, 28], where the Harnack type
inequalities, ergodicity and long time large deviation principles are investigated. This type SDEs
generalize the McKean-Vlasov (distribution dependent or mean-field) SDEs and path dependent
(functional) SDEs (or SDEs with memory). Both have been studied intensively in the literature;
see, for instance, the monograhs [6, 9] and references within.

On the other hand, as a powerful tool in the study of regularity for diffusion processes, a
derivative formula on diffusion semigroups was established first by Bismut in [7] using Malliavin
calculus, and then by Elworthy-Li in [12] using a martingale argument. Hence, this type derivative
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formula is named as Bsimut formula or Bismut-Elworthy-Li formula in the literature. Moreover, a
new coupling method (called coupling by change of measures) was introduced to establish derivative
formulas and Harnack inequalities for SDEs and SPDEs; see, for example, [33] and references
therein. Due to its wide applications, the Bismut type formulas have been investigated for different
models; see, for instance, [10, 25, 30, 31, 38, 40] for SDEs/SPDEs driven by jump processes,
[16, 17, 24, 35, 34, 37, 39] for hypoelliptic diffusion semigroups, and [2, 14, 15] for SDEs with
fractional noises.

Recently, the Bismut type formulas have been established in [4] for the Gâteaux derivative
of functional solutions to path dependent SDEs, in [26] for the Lions derivative of solutions to
McKean-Vlasov SDEs. See also [3, 11] for the study of derivative in the initial points for McKean-
Vlasov SDEs, and Lions derivative for solutions to the de-coupled SDEs (which do not depend on
the distribution of its own solution) associated with McKean-Vlasov SDEs. In these references, the
noise term is distribution-path independent. However, when the noise term is path dependent, the
distribution of the solution is no longer differentiable in the initial value, so that the Bismut type
formula is invalid. In this case, a weaker derivative formula, called asymptotic Bismut formula, has
been established in [22].

The aim of this paper is to establish (asymptotic) derivative formulas for the Lions derivative
w.r.t. the initial distribution of distribution-path dependent SDEs, such that results derived in
[4, 22, 26] are generalized and improved. To this end, we will identify the Lions derivative of the
solution in initial distributions by the Malliavin derivative along an adapted direction, so that
the integration by parts formula for the Malliavin derivative gives rise to a formula of the Lions
derivative.

Since the functional solution of a path-distribution dependent SDE takes values in the path
space C([−r0, 0];Rd), where r0 > 0 is the length of memory, to investigate the regularities of the
solution in initial distributions, we need to introduce and study derivatives in probability measures
on the path space, which is new in the literature.

For a fixed number r0 > 0, the path space C := C([−r0, 0];Rd) is a separable Banach space
under the uniform norm

‖ξ‖C := sup
−r0≤θ≤0

|ξ(θ)|, ξ ∈ C .

For t ≥ 0 and f ∈ C([−r0,∞);Rd), the C -valued function (ft)t≥0 defined by

ft(θ) = f(t+ θ), θ ∈ [−r0, 0]

is called the segment (or window) process of (f(t))t≥−r0 . Let Lξ stand for the distribution of a
random variable ξ. When different probability measures are concerned, we also denote Lξ by Lξ|P
to emphasize the reference probability measure P. Let P(C ) be the collection of all probability
measures on C and, for p > 0, Pp(C ) the set of probability measures on C with finite p-th moment,
i.e.,

Pp(C ) =
{
µ ∈P(C ) : ‖µ‖p := {µ(‖ · ‖pC )}

1
p <∞

}
,

where µ(f) :=
∫
fdµ for a measurable function f . Then Pp(C ) is a Polish space under the

Wp-Wasserstein distance defined by

Wp(µ, ν) = inf
π∈C(µ,ν)

(∫
C×C

‖ξ − η‖pCπ(dξ,dη)

) 1
p∨1
, µ, ν ∈Pp(C ), p > 0,
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where C(µ, ν) is the set of all couplings of µ and ν.
Consider the following McKean-Vlasov SDE with memory (also called distribution-path depen-

dent SDE):

E1E1 (1.1) dX(t) = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dW (t), t ≥ 0,

where (W (t))t≥0 is an m-dimensional Brownian motion on a complete filtration probability space
(Ω,F , (Ft)t≥0,P), and

b : [0,∞)× C ×P(C )→ Rd, σ : [0,∞)× C ×P(C )→ Rd ⊗ Rm

are measurable satisfying the following assumption.

(A) Let p ∈ [1,∞).

(A1) b and σ are bounded on bounded subsets of [0,∞)× C ×Pp(C ).

(A2) For any T > 0, there is a constant K ≥ 0 such that

2〈ξ(0)− η(0), b(t, ξ, µ)− b(t, η, ν)〉+ + ‖σ(t, ξ, µ)− σ(t, η, ν)‖2HS

≤ K
{
‖ξ − η‖2C +Wp(µ, ν)2

}
, ξ, η ∈ C , µ, ν ∈Pp(C ), t ∈ [0, T ].

(A3) When p ∈ [1, 2], σ(t, ξ, µ) = σ(t, ξ(0)) depends only on t and ξ(0).

For any F0-measurable random variable X0 ∈ C , an adapted continuous process (X(t))t≥0 is
called a solution with the initial value X0, if P-a.s.

X(t) = X(0) +

∫ t

0
b(s,Xs,LXs)ds+

∫ t

0
σ(s,Xs,LXs)dW (s), t ≥ 0,

where the segment process (Xt)t≥0 associated with the solution process

X(t) := X(t)1(0,∞)(t) +X0(t)1[−r0,0](t), t ≥ −r0

is called a functional solution to (1.1).
According to Lemma 3.1 below, under the assumption (A), for any X0 ∈ Lp(Ω → C ,F0,P),

(1.1) has a unique functional solution (Xt)t≥0 satisfying

E
(

sup
0≤s≤t

‖Xt‖pC
)
<∞, t > 0.

To emphasize the initial distribution, we denote the functional solution by Xµ
t if LX0 = µ. In this

paper, we aim to investigate the Lions derivative of the functional µ 7→ (Ptf)(µ), where

SMSM (1.2) (Ptf)(µ) := Ef(Xµ
t ), t > 0, f ∈ Bb(C ).

This refers to the regularity of the law LXµ
t

w.r.t. the initial distribution µ. Due to the weak

uniqueness ensured by Lemma 3.1 below, (Ptf)(µ) is a function of µ; i.e., if X̃µ
t also solves (1.1)

with L
X̃µ

0
= µ, then LXµ

t
= L

X̃µ
t

so that the definition of (Ptf)(µ) does not depend on the choice

of solutions.
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The remainder of this paper is organized as follows. Since C is a Banach space, in Section 2 we
extend the notion of Lions derivative introduced in [8] for functions on the Wasserstein space P2(Rd)
to probability measures on Banach spaces, and establish a derivative formula in the distribution of
Banach-valued random variables, where P2(Rd) is the set of all probability measures on Rd with
finite second-order moment. In Section 3, under (A) we prove the well-posedness of solutions to
(1.1), which generalizes the corresponding results derived in [20] for p = 2 and in [28] for Lipschitz
continuous b(t, ·). In Sections 4 and 5 we calculate the Malliavin derivative of Xµ

t w.r.t the Brownian
motion W (t), and the Lions derivative of Xµ

t in the initial distribution µ, respectively. Finally,
in Sections 6 and 7 we establish respectively the Bismut type formula for the Lions derivative of
(Ptf)(µ) in µ when σ(t, ξ, µ) = σ(t, ξ(0)) depends only on t and ξ(0), and the asymptotic Bismut
formula for the Lions derivative of (Ptf)(µ) in µ in case of σ(t, ξ, µ) = σ(t, ξ) (i.e., the diffusion
term is path-dependent but independent of measure argument µ).

We would like to emphasize that even come back to Mckean-Vlasov SDEs without memory
studied in [26] and the classical SDEs with memory considered in [22], our main conditions are
weaker since the drift term can be non-Lipschitz continuous.

2 Derivatives in probability measures on a separable Banach space

In this part, we introduce the intrinsic and Lions derivatives for probability measures on a separable
Banach space, and establish the chain rule for the distribution of Banach-valued random variables.
These will be used to establish the (asymptotic) Bismut type formulas for the intrinsic and Lions
derivatives of (Ptf)(µ).

The intrinsic derivative was first introduced in [1] on the configuration space over Riemannian
manifolds, while the Lions derivative (denoted by L-derivative in the literature) was developed on
the Wasserstein space P2(Rd) from Lions’ lectures [8] on mean-field games. The relation between
them has been clarified in the recent paper [27], where the latter is a stronger notion than the
former and they coincide if both exist.

Let (B, ‖ · ‖B) be a separable Banach space, and let (B∗, ‖ · ‖B∗) be its dual space. For any
p ∈ [1,∞), denote p∗ = p

p−1 when p > 1 and p∗ = ∞ as p = 1. Let P(B) be the class of all
probability measures on B equipped with the weak topology. Then

Pp :=
{
µ ∈P(B) : ‖µ‖p := {µ(‖ · ‖pB)}

1
p <∞

}
is a Polish space under the Lp-Wasserstein distance

Wp(µ1, µ2) := inf
π∈C(µ1,µ2)

(∫
B×B
‖x− y‖pBπ(dx,dy)

) 1
p

,

where C(µ1, µ2) is the set of all couplings of µ1 and µ2.
For any µ ∈Pp(B), the tangent space at µ is given by

Tµ,p = Lp(B→ B;µ) :=
{
φ : B→ B is measurable with µ(‖φ‖pB) <∞

}
,

which is a Banach space under the norm ‖φ‖Tµ,p := {µ(‖φ‖pB)}
1
p , and its dual space is

T ∗µ,p = Lp
∗
(B→ B∗;µ) :=

{
ψ : B→ B∗ is measurable with ‖ψ‖T ∗µ,p :=

∥∥‖ψ‖B∗∥∥Lp∗ (µ)
<∞

}
.
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Definition 2.1. Let f : Pp(B) → R be a continuous function for some p ∈ [1,∞), and let Id be
the identity map on B.

(1) f is called intrinsically differentiable at a point µ ∈Pp(B), if

Tµ,p 3 φ 7→ DL
φf(µ) := lim

ε↓0

f(µ ◦ (Id + εφ)−1)− f(µ)

ε
∈ R

is a well-defined bounded linear functional. In this case, the unique element DLf(µ) ∈ T ∗µ,p
satisfying

T ∗µ,p〈D
Lf(µ), φ〉Tµ,p :=

∫
B

B∗〈DLf(µ)(x), φ(x)〉Bµ(dx) = DL
φf(µ), φ ∈ Tµ,p

is called the intrinsic derivative of f at µ.

If moreover

lim
‖φ‖Tµ,p↓0

|f(µ ◦ (Id + φ)−1)− f(µ)−DL
φf(µ)|

‖φ‖Tµ,p
= 0,

f is called L-differentiable at µ with the L-derivative (i.e., Lions derivative) DLf(µ).

(2) We write f ∈ C1(Pp(B)) if f is L-differentiable at any point µ ∈Pp(B), and the L-derivative
has a version DLf(µ)(x) jointly continuous in (x, µ) ∈ B×Pp(B). If moreover DLf(µ)(x) is
bounded, we denote f ∈ C1

b (Pp(B)).

T0 Theorem 2.1. Let f : Pp(B) → R be continuous for some p ∈ [1,∞), and let (ξε)ε∈[0,1] be a
family of B-valued random variables on a Polish complete probability space (Ω,F ,P) such that
ξ̇0 := limε↓0

ξε−ξ0
ε exists in Lp(Ω).

(1) Let µ0 = Lξ0 be atomless. If f is L-differentiable such that DLf(µ0) has a continuous version
satisfying

GRWGRW (2.1) ‖DLf(µ0)(x)‖B∗ ≤ C(1 + ‖x‖p/p
∗

B 1{p>1}), x ∈ B

for some constant C > 0, then

CRCR (2.2) lim
ε↓0

f(Lξε)− f(Lξ0)

ε
= E[B∗〈DLf(µ0)(ξ0), ξ̇0〉B].

(2) If f is L-differentiable in a neighbourhood O of µ0 such that DLf has a version jointly
continuous in (x, µ) ∈ B×O satisfying

GRW’GRW’ (2.3) ‖DLf(µ)(x)‖B∗ ≤ C(1 + ‖x‖p/p
∗

B 1{p>1}), (x, µ) ∈ B×O

for some constant C > 0, then (2.2) holds.

To prove this result, we need the following lemma similar to [18, Lemma A.2] for the special
case that Pp(B) = P2(Rd) (i.e., p = 2 and B = Rd).
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LN1 Lemma 2.2. Let {(Ωi,Fi,Pi)}i=1,2 be two atomless, Polish complete probability spaces, and let
Xi be B-valued random variables on these two probability spaces respectively such that LX1 |P1 =
LX2 |P2. Then for any ε > 0, there exist measurable maps

τ : Ω1 → Ω2, τ−1 : Ω2 → Ω1

such that

P1(τ−1 ◦ τ = IdΩ1) = P2(τ ◦ τ−1 = IdΩ2) = 1,

P1 = P2 ◦ τ, P2 = P1 ◦ τ−1,

‖X1 −X2 ◦ τ‖L∞(P1) + ‖X2 −X1 ◦ τ−1‖L∞(P2) ≤ ε,

where IdΩi stands for the identity map on Ωi, i = 1, 2.

Proof. Since B is separable, there is a measurable partition (An)n≥1 of B such that diam(An) < ε,
n ≥ 1. Let Ain = {Xi ∈ An}, n ≥ 1, i = 1, 2. Then (Ain)n≥1 forms a measurable partition of Ωi so
that

∑
n≥1A

i
n = Ωi, i = 1, 2, and, due to LX1 |P1 = LX2 |P2,

P1(A1
n) = P2(A2

n), n ≥ 1.

Since the probabilities (Pi)i=1,2 are atomless, according to [19, Theorem C in Section 41], for any

n ≥ 1 there exist measurable sets Ãin ⊂ Ain with Pi(Ain \ Ãin) = 0, i = 1, 2, and a measurable
bijective map

τn : Ã1
n → Ã2

n

such that
P1|Ã1

n
= P2 ◦ τn|Ã1

n
, P2|Ã2

n
= P1 ◦ τ−1

n |Ã2
n
.

By diam(An) < ε and Pi(Ain \ Ãin) = 0, we have

‖(X1 −X2 ◦ τn)1
Ã1
n
‖L∞(P1) ∨ ‖(X2 −X1 ◦ τ−1

n )1
Ã2
n
‖L∞(P2) ≤ ε.

Then the proof is finished by taking, for fixed points ω̂i ∈ Ωi, i = 1, 2,

τ(ω1) :=

{
τn(ω1), if ω1 ∈ Ã1

n for some n ≥ 1,

ω̂2, otherwise,

τ−1(ω2) :=

{
τ−1
n (ω2), if ω2 ∈ Ã2

n for some n ≥ 1,

ω̂1, otherwise.

Proof of Theorem 2.1. Without loss of generality, we may and do assume that P is atomless. Oth-
erwise, by taking

(Ω̃, F̃ , P̃) := (Ω× [0, 1],F ×B([0, 1]),P× ds), (ξ̃ε)(ω, s) := ξε(ω) for (ω, s) ∈ Ω̃,

where B([0, 1]) is the completion of the Borel σ-algebra on [0, 1] w.r.t. the Lebesgue measure ds,
we have

L
ξ̃ε
|P̃ = Lξε |P, E[B∗〈DLf(µ0)(ξ0), ξ̇0〉B] = Ẽ[B∗〈DLf(µ0)(ξ̃0),

˙̃
ξ0〉B].
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In this way we go back to the atomless situation.
(1) Let Lξ0 = µ0 ∈ Pp(B) be atomless. In this case, (B,B(B), µ0) is an atomless Polish

complete probability space, where B(B) is the µ0-complete Borel σ-algebra of B. By Lemma 2.2,
for any n ≥ 1 we find measurable maps

τn : Ω→ B, τ−1
n : B→ Ω

such that

P(τ−1
n ◦ τn = IdΩ) = µ0(τn ◦ τ−1

n = Id) = 1,

P = µ0 ◦ τn, µ0 = P ◦ τ−1
n ,

‖ξ0 − τn‖L∞(P) + ‖Id− ξ0 ◦ τ−1
n ‖L∞(µ0) ≤

1

n
,

AB3AB3 (2.4)

where Id = IdB is the identity map on B.
Since f is L-differentiable at µ0, there exists a decreasing function h : [0, 1] → [0,∞) with

h(r) ↓ 0 as r ↓ 0 such that

AB4AB4 (2.5) sup
‖φ‖Lp(µ0)≤r

∣∣f(µ0 ◦ (Id + φ)−1)− f(µ0)−DL
φf(µ0)

∣∣ ≤ rh(r), r ∈ [0, 1].

Since Lξε−ξ0 ∈Pp(B), by (2.4) we have

AB5AB5 (2.6) φn,ε := (ξε − ξ0) ◦ τ−1
n ∈ Tµ,p, ‖φn,ε‖Tµ,p = ‖ξε − ξ0‖Lp(P).

Next, (2.4) implies

ABB0ABB0 (2.7) Lτn+ξε−ξ0 = P ◦ (τn + ξε − ξ0)−1 = (µ0 ◦ τn) ◦ (τn + ξε − ξ0)−1 = µ0 ◦ (Id + φn,ε)
−1.

Moreover, by ξε−ξ0
ε → ξ̇0 in Lp(P) as ε ↓ 0, we find a constant c ≥ 1 such that

ABBABB (2.8) ‖ξε − ξ0‖Lp(P) ≤ cε, ε ∈ [0, 1].

Combining (2.4)-(2.8) leads to∣∣f(Lτn+ξε−ξ0)− f(Lξ0)− E[B∗〈(DLf)(µ0)(τn), (ξε − ξ0)〉B]
∣∣

=
∣∣f(µ0 ◦ (Id + φn,ε)

−1)− f(µ0)−DL
φn,εf(µ0)

∣∣
≤ ‖φn,ε‖Tµ,ph(‖φn,ε‖Tµ,p) = ‖ξε − ξ0‖Lp(P)h(‖ξε − ξ0‖Lp(P)), ε ∈ [0, c−1].

AB6AB6 (2.9)

Since f(µ) is continuous in µ and DLf(µ0)(x) is continuous in x, by (2.1) and (2.4), we may apply
the dominated convergence theorem to deduce from (2.9) with n→∞ that∣∣f(Lξε)− f(Lξ0)−E[B∗〈(DLf)(µ0)(ξ0), (ξε− ξ0)〉B]

∣∣ ≤ ‖ξε− ξ0‖Lp(P)h(‖ξε− ξ0‖Lp(P)), ε ∈ [0, c−1].

Combining this with (2.8) and h(r)→ 0 as r → 0, we prove (2.2).
(2) When µ0 has an atom, we take a B-valued bounded random variable X which is independent

of (ξε)ε∈[0,1] and LX does not have an atom. Then Lξ0+sX+r(ξε−ξ0) ∈Pp(B) does not have atom
for any s > 0, ε ∈ [0, 1]. By conditions in Theorem 2.1(2), there exists a small constant s0 ∈ (0, 1)
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such that for any s, ε ∈ (0, s0], we may apply (2.2) to the family ξ0 + sX + (r+ δ)(ξε− ξ0) for small
δ > 0 to conclude

f(Lξε+sX)− f(Lξ0+sX) =

∫ 1

0

d

dδ
f(Lξ0+sX+(r+δ)(ξε−ξ0))

∣∣
δ=0

dr

=

∫ 1

0
E[B∗〈DLf(Lξ0+sX+r(ξε−ξ0))(ξ0 + sX + r(ξε − ξ0)), ξε − ξ0〉B] dr.

By conditions in Theorem 2.1(2), we may let s ↓ 0 to derive

f(Lξε)− f(Lξ0) =

∫ 1

0
E[B∗〈DLf(Lξ0+r(ξε−ξ0))(ξ0 + r(ξε − ξ0)), ξε − ξ0〉B] dr, ε ∈ (0, s0).

Multiplying both sides by ε−1 and letting ε ↓ 0 , we finish the proof.

3 Well-posedness of (1.1)

When p = 2, the existence and uniqueness of strong solutions to (1.1) follows from [20, Theorem 3.1];
see also [28, Theorem 3.1] for p ≥ 2, where b(t, ξ, µ) is Lipschitz continuous in (ξ, µ) ∈ C ×Pp(C ).
In the following result, the drift b(t, ξ, µ) may be non-Lipschitz continuous w.r.t. ξ.

Lem01 Lemma 3.1. Assume (A) for some p ∈ [1,∞) and let T ≥ 0. There exists a constant c > 0 such
that for any X0 ∈ Lp(Ω→ C ,F0,P), (1.1) has a functional solution X[0,T ] := (Xt)t∈[0,T ] satisfying

ESTYESTY (3.1) E
(

sup
0≤t≤T

‖Xt‖pC
)
≤ c

(
1 + E‖X0‖pC

)
,

and any two functional solutions X[0,T ] and Y[0,T ] satisfy

ESTY’ESTY’ (3.2) E
(

sup
0≤t≤T

‖Xt − Yt‖pC
)
≤ cE‖X0 − Y0‖pC .

Consequently, the SDE (1.1) is strongly and weakly well-posed.

Proof. By Itô’s formula and BDG’s inequality, it is easy to derive estimates (3.1) and (3.2) from
assumption (A). In particular, the strong uniqueness holds. Next, according to [29, Theorem 2.3],
the assumption (A) implies the well-posedness of the SDE with memory

dX(t) = b(t,Xt, µt)dt+ σ(t,Xt, µt)dW (t)

for any µ· ∈ C([0, T ]; Pp(C )). As shown in the proof of [21, Lemma 2.1], the weak well-posedness
of (1.1) follows from the strong one. So, it remains to prove the strong existence, for which we
only need to find a constant t0 ∈ (0, T ) independent of the initial value X0 such that the SDE (1.1)
is well-posed up to time t0. Indeed, once this is proved, we may solve the SDE (1.1) from time
t0 up to 2t0 so that (1.1) is strongly well-posed up to time 2t0. Repeating the previous procedure
for finite many times we obtain the strong well-posedness up to time T . Below we construct the
solution by using an iterating argument as in [36].

Let µ = LX0 ∈Pp(C ) and consider the SDE

dX(0)(t) = b(t,X
(0)
t , µ)dt+ σ(t,X

(0)
t , µ)dW (t), t ≥ 0, X

(0)
0 = X0.
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According to [29, Theorem 2.3], (A) implies that this SDE has a unique solution. Using (A) and
applying Itô’s formula to ξ(0)(t) := (1 + |X(0)(t)|2)

p
2 , we find a constant c1 > 0 such that

dξ(0)(t) ≤ c1(1 + ‖ξ(0)
t ‖C )dt+ p(1 + |X(0)(t)|2)

p−2
2
〈
X(0)(t), σ(t,X

(0)
t , µ)dW (t)

〉
, t ∈ [0, T ].

For any n ≥ 1, let τn = inf
{
t ≥ 0 : ‖X(0)

t ‖C ≥ n
}
. By BDG’s inequality and (A), we find constants

c2, c3 > 0 such that

E‖ξ(0)
t∧τn‖C − E‖ξ(0)

0 ‖C ≤ E
(

sup
0≤s≤t∧τn

|ξ(0)(s)|
)

≤ c1

∫ t

0
E‖ξ(0)

s∧τn‖C ds+ c2E
(∫ t∧τn

0
‖ξ(0)
s ‖2C ds

) 1
2

≤ 1

2
E‖ξ(0)

t∧τn‖C + c3

∫ t

0
E‖ξ(0)

s∧τn‖C ds, t ∈ [0, T ].

By Gronwall’s lemma and E‖ξ(0)
t∧τn‖C <∞, it follows that

E‖ξ(0)
t∧τn‖C ≤ 2 e2c3tE‖ξ(0)

0 ‖C , n ≥ 1, t ∈ [0, T ].

By Fatou’s lemma for n→∞ and using the definition of ξ
(0)
t , we find a constant c > 0 such that

PO0PO0 (3.3) E‖X(0)
t ‖

p
C ≤ c(1 + E‖X0‖pC )ect, t ∈ [0, T ].

If, for some n ≥ 1, we have constructed a continuous adapted process X
(n−1)
t ∈ C with X

(n−1)
0 = X0

such that

P0*0P0*0 (3.4) E
(

sup
0≤s≤t

‖X(n−1)
s ‖pC

)
<∞, t ≥ 0,

consider the SDE with memory

P01P01 (3.5) dX(n)(t) = b
(
t,X

(n)
t ,L

X
(n−1)
t

)
dt+ σ

(
t,X

(n)
t ,L

X
(n−1)
t

)
dW (t), t ∈ [0, T ], X

(n)
0 = X0.

By [29, Theorem 2.3], (A) implies that (3.4) has a unique solution, and the argument leading to
(3.3) yields

P0*1P0*1 (3.6) E
(

sup
0≤s≤t

‖X(n)
s ‖

p
C

)
<∞, t ∈ [0, T ].

In this way we have constructed a sequence of continuous adapted process {(X(n)
t )t∈[0,T ]}n≥1 on C .

It suffices to find a constant t0 > 0 independent of X0 such that

CSCS (3.7) lim
n,m→∞

E
(

sup
0≤s≤t0

‖X(n)
s −X(m)

s ‖pC

)
= 0.

Indeed, this implies the existence of an adapted continuous process (Xt)t∈[0,t0] such that

lim
n→∞

E
(

sup
0≤s≤t0

‖X(n)
s −Xs‖pC

)
= 0,
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which, together with (A) and

X(n)(t) = X0(0) +

∫ t

0
b
(
X(n)
s ,L

X
(n−1)
s

)
ds+

∫ t

0
σ
(
X(n)
s ,L

X
(n−1)
s

)
dW (s), t ∈ [0, t0]

due to (3.5), implies that (Xt)t∈[0,t0] solves (1.1) up to time t0 with

E
(

sup
0≤s≤t0

‖Xs‖pC

)
<∞.

It remains to verify (3.7). To this end, for n ≥ 2 we denote µ
(n)
t = L

X
(n)
t

and set

Ψ(n)(t) := X(n)(t)−X(n−1)(t), t ∈ [0, T ].

By (3.5), we have

dΨ(n)(t) =
{
b(t,X

(n)
t , µ

(n−1)
t )− b(t,X(n−1)

t , µ
(n−2)
t )

}
dt

+
{
σ(t,X

(n)
t , µ

(n−1)
t )− σ(t,X

(n−1)
t , µ

(n−2)
t )

}
dW (t), Ψ

(n)
0 = 0.

By Itô’s formula and (A), we find a constant c1 > 0 such that

d|Ψ(n)(t)|p ≤ c1

{
‖Ψ(n)

t ‖
p
C + Wp(µ

(n−1)
t , µ

(n−2)
t )p

}
dt

+ p|Ψ(n)(t)|p−2
〈
Ψ(n)(t), {σ(t,X

(n)
t , µ

(n−1)
t )− σ(t,X

(n−1)
t , µ

(n−2)
t )}dW (t)

〉
, Ψ

(n)
0 = 0.

By BDG’s inequality and noting that, for p ∈ [1, 2], the coefficient σ(t, ξ, µ) depends only on (t, ξ)
so that (A) implies

‖σ(t,X
(n)
t , µ

(n−1)
t )− σ(t,X

(n−1)
t , µ

(n−2)
t )‖2HS ≤ K‖Ψ

(n)
t ‖2C ,

there exist constants c2, c3 > 0 such that

E
(

sup
0≤s≤t

‖Ψ(n)
s ‖

p
C

)
= E

(
sup

0≤s≤t
|Ψ(n)(s)|p

)
≤ c1

∫ t

0

{
E‖Ψ(n)

s ‖
p
C + Wp(µ

(n−1)
s , µ(n−2)

s )p
}

ds

+ c2E
(∫ t

0
‖Ψ(n)

s ‖
2(p−1)
C

{
‖Ψ(n)

s ‖2C + 1{p≥2}Wp(µ
(n−1)
s , µ(n−2)

s )2
}

ds

) 1
2

≤ 1

2
E
(

sup
0≤s≤t

‖Ψ(n)
s ‖

p
C

)
+ c2

∫ t

0

{
E‖Ψ(n)

s ‖
p
C + Wp(µ

(n−1)
s , µ(n−2)

s )p
}

ds.

By Gronwall’s lemma, (3.4), (3.6) and noting that

Wp(µ
(n−1)
s , µ(n−2)

s )p ≤ E‖Ψ(n−1)
s ‖pC ,

we obtain
E
(

sup
0≤s≤t

‖Ψ(n)
s ‖

p
C

)
≤ 2c2te

2c2tE
(

sup
0≤s≤t

‖Ψ(n−1)
s ‖pC

)
, t ∈ [0, T ].

Taking t0 ∈ (0, T ] such that 2c2t0e2c2t0 ≤ 1
2 , we arrive at

E
(

sup
0≤s≤t0

‖Ψ(n)
s ‖

p
C

)
≤ 1

2
E
(

sup
0≤s≤t0

‖Ψ(n−1)
s ‖pC

)
, n ≥ 2.

This and E
(

sup0≤s≤t0 ‖Ψ
(1)
s ‖pC

)
<∞ imply (3.7).
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4 The Malliavin derivative of Xµ
t

Consider the separable Banach space C with the uniform norm ‖ξ‖C := supt∈[−r0,0] |ξ(t)|. For a
Gâteaux differentiable matrix-valued function f on C , let

‖∇f(ξ)‖ = sup
η∈C ,‖η‖C≤1

‖(∇ηf)(ξ)‖HS, ξ ∈ C ,

where

(∇ηf)(ξ) := lim
ε↓0

f(ξ + εη)− f(ξ)

ε
.

Besides (A), we will need the following assumption. A function f on C is called C1-smooth, denoted
by f ∈ C1(C ), if it is Gâteaux differentiable with derivative ∇f(ξ) continuous in ξ. Moreover, if
the derivative is bounded, we write f ∈ C1

b (C ). It is well known that a function f ∈ C1(C ) is
Fréchet differentiable.

(B) Let p ∈ [1,∞). σ(t, ξ, µ) and b(t, ξ, µ) are C1-smooth in ξ ∈ C and L-differentiable in
µ ∈Pp(C ), and satisfy the following conditions.

(B1) σ(t, ξ, µ) is bounded and (∇ησ)(t, ·, µ)(ξ) is continuous in (ξ, η) ∈ C × C , and there exist
increasing functions K1,K2 : [0,∞)→ [0,∞) such that

‖(∇b)(t, ·, µ)(ξ)‖ ≤ K1(t)
{

1 + ‖ξ‖
(p−2)+

2
C +K2(‖µ‖p)

}
, (t, ξ, µ) ∈ [0,∞)× C ×Pp(C ).

(B2) b(t, ξ, ·), σ(t, ξ, ·) ∈ C1(Pp(C )) with

sup
(t,ξ,µ)∈[0,T ]×C×Pp(C )

{µ(‖DLb(t, ξ, ·)(µ)(·)‖2C ∗) + µ(‖DLσ(t, ξ, ·)(µ)(·)‖2C ∗)} <∞, T > 0.

(B3) If p ∈ [1, 2), then there exists an increasing function K : [0,∞)→ [0,∞) such that

‖σ(t, ξ, µ)‖ ≤ K(t)
(
1 + ‖ξ‖

p
2
)
, ξ ∈ C .

(B4) If p ∈ [1, 2), then σ(t, ξ, µ) = σ(t, ξ(0)) only depends on t, and ξ(0).

Since (B) ensures that b(t, ξ, µ) and σ(t, ξ, µ) are Gâteaux differentiable in ξ ∈ C , (A) implies

2〈ξ(0), (∇ξb)(t, ·, µ)(η)〉+ + ‖(∇ξσ)(t, ·, µ)(η)‖2HS

≤ K‖ξ‖2C , ξ, η ∈ C , µ ∈Pp(C ), t ∈ [0, T ].
M2M2 (4.1)

For any T > 0, set CT := C([0, T ];Rd) and consider the Cameron-Martin space

H =

{
h ∈ CT

∣∣∣h(0) = 0, ḣ(t) exists a.e. t, ‖h‖H :=

(∫ T

0
|ḣ(t)|2dt

) 1
2

<∞
}
.

By the pathwise uniqueness of (1.1), we may regard Xµ
t as a C -valued function of Xµ

0 and W ,
and investigate its Malliavin derivative w.r.t. the Brownian motion W . For any h ∈ L∞(Ω→ H,P)
and ε ≥ 0, consider the SDE

dXh,ε,µ(t) = {b(t,Xh,ε,µ
t , µt) + εσ(t,Xh,ε,µ

t , µt)ḣ(t)}dt+ σ(t,Xh,ε,µ
t , µt)dW (t),

t ∈ [0, T ], Xh,ε,µ
0 = Xµ

0 , µt := LXµ
t
.

EE43EE43 (4.2)
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When h is adapted, according to the proof of Lemma 3.1, assumption (A) implies the existence
and uniqueness of this SDE.

The directional Malliavin derivative of Xµ(t) along h is given by

DhX
µ(t) := lim

ε→0

Xh,ε,µ(t)−Xµ(t)

ε

provided the limit exists in L2(Ω → C([0, T ];Rd),P). To prove the existence of this limit, we first
present the following lemma.

Lem1 Lemma 4.1. Assume (A) and let (B3) hold if p ∈ [1, 2). Let h ∈ L∞(Ω→ H,P) which is adapted
if σ(t, ξ, µ) depends on ξ, and let X0 ∈ Lp(Ω→ C ,F0,P). Then there exists a constant c > 0 such
that

EE5EE5 (4.3) E
(

sup
0≤s≤T

‖Xh,ε,µ
s −Xµ

s ‖
2∨p
C

)
≤ c ε2∨p, ε ∈ [0, 1].

Proof. Below, we only consider the case that h is adapted and σ(t, ξ, µ) depends on ξ, since the
proof for the setup that σ(t, ξ, µ) is independent of ξ is even simpler.

Let Zh,ε(t) = Xh,ε,µ(t)−Xµ(t)
ε and

τn = inf{t ≥ 0 : ‖Xµ
t ‖C + ‖Xh,ε,µ

t ‖C ≥ n}, n ≥ 1.

By (1.1) and (4.2), we have

dZh,ε(t) =
{b(t,Xh,ε,µ

t , µt)− b(t,Xµ
t , µt)

ε
+ σ(t,Xh,ε,µ

t , µt)ḣ(t)
}

dt

+
σ(t,Xh,ε,µ

t , µt)− σ(t,Xµ
t , µt)

ε
dW (t), Zh,ε0 = 0.

EE4EE4 (4.4)

Applying Itô’s formula and taking (A) and Zε0 = 0 into account yields, for q := 2 ∨ p,

|Zh,ε(t ∧ τn)|q ≤ q

2

∫ t∧τn

0

{2

ε
〈Zh,ε(s), b(s,Xh,ε,µ

s , µs)− b(s,Xµ
s , µs)〉

+
q − 1

ε2
‖σ(s,Xh,ε,µ

s , µs)− σ(s,Xµ
s , µs)‖2HS

}
ds+N ε(t) +M ε(t)

≤ c
∫ t∧τn

0
‖Zh,εs ‖

q
C ds+N ε(t) +M ε(t),

*PB*PB (4.5)

for some constant c > 0, where, by setting r0 = 1 for r ∈ [0,∞) in case of p = 1,

N ε(t) : = q

∫ t∧τn

0
|Zh,ε(s)|q−1σ(s,Xh,ε,µ

s , µs)ḣ(s)|ds,

M ε(t) : =
q

ε

∫ t∧τn

0
|Zh,ε(s)|q−2〈Zh,ε(s), (σ(s,Xh,ε,µ

s , µs)− σ(s,Xµ
s , µs))dW (s)〉.
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Let ψ > 0 be a constant such that ‖h‖H ≤ ψ due to h ∈ L∞(Ω→ H,P). By Hölder’s and Young’s
inequalities, Lemma 3.1, (A) and (B3) when p ∈ [1, 2), we find constants c0, c1 > 0 such that

E
(

sup
0≤s≤t∧τn

|N ε(s)|
)
≤ qψE

(
sup

0≤s≤t∧τn
|Zh,ε(s)|2(q−1)

∫ t∧τn

0
‖σ(s,Xh,ε,µ

s , µs)‖2ds
)1/2

≤ 1

4
E
(

sup
0≤s≤t∧τn

|Zh,ε(s)|q
)

+ c0E
(∫ t

0
(1 + ‖Xh,ε,µ

s ‖2∧pC )ds

) 2∨p
2

≤ 1

4
E
(

sup
0≤s≤t∧τn

|Zh,ε(s)|2
)

+ c1, t ∈ [0, T ].

EE1EE1 (4.6)

By (A) and the BDG inequality, there exist constants c2, c3 > 0 such that

E
(

sup
0≤s≤t∧τn

|M ε(s)|
)
≤ c2E

(
sup

0≤s≤t∧τn
‖Zεs‖

q
C

∫ t∧τn

0
‖Zh,εs ‖

q
C

)1/2

≤ 1

4
E
(

sup
0≤s≤t∧τn

‖Zh,εs ‖
q
C

)
+ c3

∫ t

0
E‖Zh,εs∧τn‖

q
C ds.

EE2EE2 (4.7)

Combining (4.5)-(4.7) we find a constant c > 0 such that

E
(

sup
0≤s≤t∧τn

‖Zh,εs ‖
q
C

)
≤ c+ c

∫ t

0
E‖Zh,εs∧τn‖

q
C ds <∞, t ∈ [0, T ], ε ∈ [0, 1].

By first applying Gronwall’s inequality then letting n→∞, we derive (4.3).

Lem5 Lemma 4.2. Assume (A) and (B) . For any Xµ
0 ∈ Lp(Ω → C ,F0,P) and h ∈ L∞(Ω → H,P)

which is adapted if σ(t, ξ, µ) depends on ξ, the limit

ELLELL (4.8) DhX
µ
t := lim

ε↓0

Xh,ε,µ
t −Xµ

t

ε
, t ∈ [0, T ]

exists in L2(Ω→ C([0, T ]; C ),P), and it is the unique solution of the following SDE with memory

dwh(t) =
{

(∇wht b)(t, ·, µt)(X
µ
t ) + σ(t,Xµ

t , µt)ḣ(t)
}

dt

+ (∇wht σ)(t, ·, µt)(Xµ
t )dW (t), t ∈ [0, T ], wh0 = 0, µt := LXµ

t
.

EE3EE3 (4.9)

Proof. By (4.1) and the boundedness of σ due to (B1), for any adapted h ∈ L2(Ω → H,P), the
SDE (4.9) has a unique solution in L2(Ω→ C([0, T ]; C ),P) and for some constant C > 0,

FFFF (4.10) E
(

sup
0≤t≤T

‖wht ‖2C
)
≤ CE‖h‖2H <∞.

So, it remains to prove that the limit in (4.8) exists in L2(Ω→ C([0, T ]; C ),P), and it solves (4.9).

Let Λh,ε(t) = Zh,ε(t)− wh(t), where Zh,ε(t) := Xh,ε,µ(t)−Xµ(t)
ε as before. Then, it suffices to verify

W1W1 (4.11) lim
ε→0

E
(

sup
0≤s≤T

|Λh,ε(s)|2
)

= 0.
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Observe that (4.3) and (4.10) imply

JHJH (4.12) E
(

sup
0≤s≤T

|Λh,ε(s)|2
)
<∞.

By (4.4) and (4.9), we have

ELL2ELL2 (4.13) dΛh,ε(t) =
{

(∇Λεt
b)(t, ·, µt)(Xµ

t ) + Γε1(t)
}

dt+
{

(∇Λεt
σ)(t, ·, µt)(Xµ

t ) + Γε2(t)
}

dW (t),

where

Γε1(t) : = (σ(t,Xh,ε,µ
t , µt)− σ(t,Xµ

t , µt))ḣ(t)

+

∫ 1

0

{
(∇

Zh,εt
b)(t, ·, µt)(Xµ

t + θ(Xh,ε,µ
t −Xµ

t ))− (∇
Zh,εt

b)(t, ·, µt)(Xµ
t )
}

dθ

Γε2(t) : =

∫ 1

0

{
(∇

Zh,εt
σ)(t, ·, µt)(Xµ

t + θ(Xh,ε,µ
t −Xµ

t ))− (∇
Zh,εt

σ)(t, ·, µt)(Xµ
t )
}

dθ.

*WQ*WQ (4.14)

Obviously, when σ(t, ξ, µ) = σ(t, µ) does not depend on ξ, the noise term in (4.13) disappears so
that the SDE reduces to an ODE for which we can allow h to be non-adapted. Applying Itô’s
formula yields

|Λh,ε(t)|2 ≤
∫ t

0

{
2〈Λh,ε(s), (∇

Λh,εs
b)(s, ·, µs)(Xµ

s )〉+ 2‖(∇
Λh,εs

σ)(s, ·, µs)(Xµ
s )‖2HS

}
ds

+ 2

∫ t

0

{
〈Λh,ε(s),Γε1(s)〉+ ‖Γε2(s)‖2HS

}
ds+ 2

∫ t

0

〈
Λh,ε(s), {(∇

Λh,εs
σ)(s, ·, µs)(Xµ

s ) + Γε2(s)}dW (s)
〉

=: Υε
1(t) + Υε

2(t) + Υε
3(t).

Obviously, (4.1) implies

F1F1 (4.15) E
(

sup
0≤s≤t

Υε
1(s)

)
≤ 3K

∫ t

0
E‖Λh,εs ‖2C ds,

while Cauchy-Schwarz’s inequality gives

E
(

sup
0≤s≤t

|Υε
2(s)|

)
≤
∫ t

0
{2E|Λh,ε(s)|2 + E|Γε1(s)|2 + 2E‖Γε2(s)‖2HS}ds.F2F2 (4.16)

Next, by (4.1) and BDG’s inequality, we find constants c1, c2 > 0 such that

E
(

sup
0≤s≤t

Υε
3(s)

)
≤ c1E

(
sup

0≤s≤t
|Λh,ε(s)|2

∫ t

0
‖(∇

Λh,εs
σ)(s, ·, µs)(Xµ

s ) + Γε2(s)‖2ds
)1/2

≤ 1

2
E
(

sup
0≤s≤t

|Λh,ε(s)|2
)

+ c2

∫ t

0
{E‖Λh,εs ‖2C + E‖Γε2(s)‖2}ds.

F3F3 (4.17)

Combining (4.15), (4.16) with (4.17), there exists a constant c3 > 0 such that

E
(

sup
0≤s≤t

|Λh,ε(s)|2
)
≤ c3

∫ t

0
E‖Λh,εs ‖2C ds+ c3

∫ t

0
{E|Γε1(s)|2 + E‖Γε2(s)‖2HS}ds.
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By Gronwall’s inequality and (4.12), this implies

W2W2 (4.18) E
(

sup
0≤s≤t

|Λh,ε(s)|2
)
≤ c3ec3tE

∫ t

0

{
|Γε1(s)|2 + ‖Γε2(s)‖2HS

}
ds.

Moreover, by (4.14), we have

KB1KB1 (4.19) |Γε1(s)|2 + ‖Γε2(s)‖2HS ≤ Iε(t)|ḣ(t)|2 + Jε(t)‖Zh,εt ‖2C ,

where according to (B1) and (4.1) we find a constant c(T ) > 0 increasing in T such that

Iε(t) := 2‖σ(t,Xh,ε,µ
t , µt)− σ(t,Xµ

t , µt)‖2,

Jε(t) := 2

∫ 1

0
{
∥∥(∇b)(t, ·, µt)(Xµ

t + θ(Xh,ε,µ
t −Xµ

t ))− (∇b)(t, ·, µt)(Xµ
t )‖2

+ ‖(∇σ)(t, ·, µt)(Xµ
t + θ(Xh,ε,µ

t −Xµ
t ))− (∇σ)(t, ·, µt)(Xµ

t )‖2}dθ

≤ c(T )
(
1 + ‖Xµ

t ‖
p−2
C + ‖Xh,ε,µ

t −Xµ
t ‖

p−2
C +K2(‖µt‖2p)

)
, t ∈ [0, T ].

By (B) and (4.3), Iε(t) is bounded and Iε(t) → 0 in probability as ε → 0. So, the dominated
convergence theorem yields

KB2KB2 (4.20) lim
ε→0

E
∫ T

0
Iε(t)|ḣ(t)|2dt = 0.

Below we complete the proof of (4.11) by considering two different cases.

(1) When p > 2, (3.1) and (4.3) imply that {‖Zh,εt ‖2C (1+‖Xµ
t ‖

p−2
C )}ε∈[0,1] is uniformly integrable

in L1(P) and

E[‖Zh,εt ‖2C ‖X
h,ε,µ
t −Xµ

t ‖
p−2
C ] = εp−2E‖Zh,εt ‖

p
C ≤ c ε

p−2 → 0 as ε→ 0.

Then, by the dominated convergence theorem, (4.3) and Jε(t)→ 0 in probability, we arrive at

lim
ε→0

E
∫ T

0
Jε(t)‖Zh,εt ‖2C dt = 0.

This, together with (4.19) and (4.20), implies

XTDXTD (4.21) lim
ε→0

E
∫ T

0

{
|Γε1(t)|2 + ‖Γε2(t)‖2HS

}
dt = 0

so that (4.11) follows from (4.18).
(2) When p ∈ [1, 2], (B1) and (3.1) imply Jε(t) ≤ K for some constant K depending on T .

Then,

bbbb (4.22) E
∫ t

0

{
|Γε1(s)|2 + ‖Γε2(s)‖2HS

}
ds ≤ εT + 2K

∫ t

0
‖Λh,εs ‖2C ds, t ∈ [0, T ],

where, by the dominated convergence theorem,

εT :=

∫ T

0
E
[
Iε(t)|ḣ(t)|2 + Jε(t)‖wht ‖2C

]
dt→ 0 as ε→ 0.
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Substituting (4.22) into (4.18) and using Gronwall’s lemma, we derive

lim
ε→0

E
(

sup
0≤s≤t

|Λh,ε(s)|2
)
≤ lim

ε→0
εT e(c3+2K)T = 0.

Therefore, (4.11) holds.

Let (D,D(D)) be the Malliavin gradient with adjoint (i.e., Malliavin divergence) (D∗,D(D∗)).
Then,

ITPITP (4.23) E[DhF ] = E[FD∗(h)], F ∈ D(D), h ∈ D(D∗).

In particular, if h ∈ L2(Ω→ H,P) is adapted, then h ∈ D(D∗) and

ITP’ITP’ (4.24) D∗(h) =

∫ T

0
〈ḣ(t), dW (t)〉,

see, for example, [23].

P4.3 Proposition 4.3. Assume (A) and (B). For any h ∈ D(D∗) which is adapted if σ(t, ξ, µ) depends
on ξ, (4.9) has a unique functional solution satisfying (4.10) for some constant C > 0, and for any
f ∈ C1

b (C ),

*WPB*WPB (4.25) E
[
(∇whT f)(Xµ

T )
]

= E
[
f(Xµ

T )D∗(h)
]
.

Proof. As explained in the proof of Lemma 4.2, the first assertion follows from assumptions (A)
and (B). So it suffices to prove (4.25).

We first consider h ∈ L∞(Ω → H,P) ∩ D(D∗). By Lemma 4.2, the chain rule and (4.23), we
obtain

bb1bb1 (4.26) E
[
(∇whT f)(Xµ

T )
]

= E
[
Dh{f(Xµ

T )}
]

= E
[
f(Xµ

T )D∗(h)
]
.

In general, for adapted h ∈ D(D∗), we choose (hn)n≥0 ⊂ L∞(Ω→ H,P) ∩D(D∗) such that

ITP2ITP2 (4.27) lim
n→∞

E
[
‖hn − h‖2H + |D∗(hn)−D∗(h)|2

]
= 0.

In terms of (4.26), we have

LDBLDB (4.28) E
[
(∇

whnT
f)(Xµ

T )
]

= E
[
f(Xµ

T )D∗(hn)
]
, n ≥ 1.

By (A) and (B), we find a constant C > 0 such that

E‖whnT − w
h
T ‖2C ≤ CE‖h− hn‖2H.

This, together with f ∈ C1
b (C ) and (4.27), the desired formula (4.25) by taking n→∞ in (4.28).
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5 The Gâteaux and intrinsic derivatives

For fixed p ∈ [2,∞) and Xµ
0 ∈ Lp(Ω → C ,F0,P) with the distribution µ, let (Xµ

t )t≥0 be the
unique solution to (1.1) starting from Xµ

0 . To calculate the intrinsic derivative of Xµ
t w.r.t. µ,

we consider the tangent space Tµ,p := Lp(C → C , µ), where C := C([−r0, 0];Rd) endowed with
the uniform norm ‖ξ‖C := supt∈[−r0,0] |ξ(t)| is a separable Banach space with the dual space C ∗

consisting of all bounded linear functionals α : C → R. We denote the dualization between C ∗ and
C by C ∗〈α, ξ〉C = α(ξ) for α ∈ C ∗, ξ ∈ C . For any µ ∈Pp(C ) and φ ∈ Tµ,p, let

µφ = µ ◦ (Id + φ)−1 = L(Id+φ)(Xµ
0 ).

Let (Xµφ

t )t≥0 be the functional solution to (1.1) with Xµφ

0 := (Id + φ)(Xµ
0 ), and denote

µφt = L
Xµφ

t

, t ≥ 0.

Then the directional intrinsic derivative of Xµ
t along φ is given by

D12D12 (5.1) DL
φX

µ
t := lim

ε→0

Xµεφ

t −Xµ
t

ε

provided the limit above exists.
More generally, for ξ ∈ Lp(Ω→ C ,F0,P) and ε ∈ [0, 1], we let Xεξ,µ

t be the functional solution

to (1.1) with Xεξ,µ
0 := εξ + Xµ

0 , and denote µξ,εt = L
Xεξ,µ
t

. Then the Gâteaux derivative of Xµ
t

along ξ is

D12’D12’ (5.2) ∇ξXµ
t := lim

ε→0

Xεξ,µ
t −Xµ

t

ε

provided the limit above exists. Obviously,

D12’’D12’’ (5.3) ∇ξXµ
t = DL

φX
µ
t if ξ = φ(Xµ

0 ).

To prove the existence of ∇ξXµ
t , we need the following lemma.

L1 Lemma 5.1. Assume (A) and that (B4) holds when p ∈ [1, 2). For any T > 0 and q ≥ p, there
exists a constant c > 0 such that

D3D3 (5.4) E
(

sup
0≤s≤t

‖Xεξ,µ
s −Xµ

s ‖
q
C

)
≤ εp ectE‖ξ‖qC , t ∈ [0, T ], ε ∈ [0, 1], ξ ∈ Lq(Ω→ C ,F0,P).

Proof. Set Φξ,ε(t) := Xεξ,µ(t)−Xµ(t)
ε , t ≥ −r0, ε > 0. Since Xεξ,µ

t and Xµ
t solve (1.1) with the initial

values Xεξ,µ
0 and Xµ

0 , respectively, one has

dΦξ,ε(t) =
1

ε
{b(t,Xεξ,µ

t , µξ,εt )− b(t,Xµ
t , µt)}dt

+
1

ε
{σ(t,Xεξ,µ

t , µξ,εt )− σ(t,Xµ
t , µt)}dW (t), t ≥ 0,Φξ,ε

0 = ξ.

D11D11 (5.5)

By (A) and (B4) when p ∈ [1, 2), and applying Itô’s formula and the fact that

Wp(µ
ξ,ε
s , µs)

p ≤ E‖Xεξ,µ
s −Xµ

s ‖
p
C = εpE‖Φξ,ε

s ‖
p
C ≤ ε

p{E‖Φξ,ε
s ‖

q
C }

p
q ,
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we find a constant c1 > 0 such that

|Φξ,ε(t)|q ≤ q

2

∫ t

0
|Φξ,ε(s)|q−2

{2

ε
〈Φξ,ε(s), b(s,Xεξ,µ

s , µξ,εs )− b(s,Xµ
s , µs)〉

+
q − 1

ε2
‖σ(s,Xεξ,µ

s , µξ,εs )− σ(s,Xµ
s , µs)‖2HS

}
ds+M ε(t)

≤ c1

∫ t

0

(
‖Φξ,ε

s ‖
q
C + E‖Φξ,ε

s ‖
q
C

)
ds+M ε(t), t ≥ 0,

D03D03 (5.6)

where

M ε(t) :=
q

ε

∫ t

0
|Φξ,ε(s)|q−2

〈
Φξ,ε(s), (σ(s,Xεξ,µ

s , µξ,εs )− σ(s,Xµ
s , µs))dW (s)

〉
.

Next, by BDG’s inequality and (A), there exist some constants c2, c3 > 0 such that

E
(

sup
0≤s≤t

M ε(s)
)
≤ c2

ε
E
(

sup
0≤s≤t

|Φξ,ε(s)|q
∫ t

0
|Φξ,ε(s)|q−2‖σ(s,Xεξ,µ

s , µξ,εs )− σ(s,Xµ
s , µs)‖2ds

) 1
2

≤ 1

2
E
(

sup
0≤s≤t

|Φξ,ε(s)|q
)

+ c3E
∫ t

0
‖Φξ,ε

s ‖
q
C ds.

Combining this with (5.6), we derive

E
(

sup
0≤s≤t

‖Φξ,ε
s ‖

q
C

)
≤ 2E‖Φξ,ε

0 ‖
q
C + c4

∫ t

0
E‖Φξ,ε

s ‖
q
C ds, t ≥ 0

for some constant c4 > 0. By stopping at an exit time as in the proof of Lemma 4.1, we may

assume E
(

sup0≤s≤t ‖Φ
ξ,ε
s ‖qC

)
<∞, such that (5.4) follows from Gronwall’s inequality.

Consider the following SDE with memory

dvξ(t) =
{

(∇
vξt
b)(t, ·, µt)(Xµ

t ) + (EC ∗〈DLb(t, η, ·)(µt)(Xµ
t ), vξt 〉C )

∣∣∣
η=Xµ

t

}
dt

+
{

(∇
vξt
σ)(t, ·, µt)(Xµ

t ) + (EC ∗〈DLσ(t, η, ·)(µt)(Xµ
t ), vξt 〉C )

∣∣∣
η=Xµ

t

}
dW (t), vξ0 = ξ,

D007D007 (5.7)

where µt := LXµ
t

and

C ∗〈DLb(η, ·)(µt)(Xµ
t ), vξt 〉C : = (C ∗〈DLbi(η, ·)(µt)(Xµ

t ), vξt 〉C )1≤i≤d ∈ Rd

C ∗〈DLσ(η, ·)(µt)(Xµ
t ), vξt 〉C : = (C ∗〈DLσij(η, ·)(µt)(Xµ

t ), vξt 〉C )1≤i≤d,1≤j≤m ∈ Rd ⊗ Rm, t ≥ 0.

Let p ≥ 2. By (A) and (B), this linear SDE has a unique solution. Moreover, by Itô’s formula and
BDG’s inequality, we find a constant c > 0 such that

F05F05 (5.8) E[‖vξt ‖
p
C ] ≤ cE[‖ξ‖pC ], t ∈ [0, T ], ξ ∈ Lq(Ω→ C ,F0,P).

Lem Lemma 5.2. Assume (A) and (B) for some p ≥ 2. Then for any ξ ∈ Lp(Ω → C ,F0,P), the
limit in (5.2) exists in L2(Ω → C([0, T ]; C ),P) and it gives rise to the unique functional solution
of (5.7).

18



Proof. Let Ξξ,εt = Φξ,ε
t − v

ξ
t , where (Φξ,ε

t )t≥0 solves (5.5). To end the proof, it suffices to prove

D10D10 (5.9) lim
ε→0

E
(

sup
0≤t≤T

‖Ξξ,εt ‖2C
)

= 0, T > 0.

Set
Xε,θ(t) := Xµ(t) + θ(Xεξ,µ(t)−Xµ(t)), t ≥ −r0, θ ∈ [0, 1].

By (5.5), (5.7) and Theorem 2.1, we obtain

dΞξ,ε(t) =
{

(∇
Ξh,εt

b)(t, ·, µt)(Xµ
t ) + (EC ∗〈(DLb(t, η, ·))(µt)(Xµ

t ),Ξξ,εt 〉C )
∣∣∣
η=Xµ

t

+ Υε
1(t)
}

dt

+
{

(∇
Ξh,εt

σ)(t, ·, µt)(Xµ
t ) + (EC ∗〈(DLσ(t, η, ·))(µt)(Xµ

t ),Ξξ,εt 〉C )
∣∣∣
η=Xµ

t

+ Υε
2(t)
}

dW (t),

where

Υε
1(t) : =

∫ 1

0

{
(∇

Φξ,εt
b)(t, ·, µξ,εt )(Xε,θ

t )− (∇
Φξ,εt

b)(t, ·, µt)(Xµ
t )
}

dθ

+

∫ 1

0

{
(EC ∗

〈
(DLb(t, η, ·))(L

Xε,θ
t

)(Xε,θ
t )− (DLb(t, η, ·))(µt)(Xµ

t ),Φξ,ε
t

〉
C

)
}∣∣∣
η=Xµ

t

dθ,

Υε
2(t) : =

∫ 1

0

{
(∇

Φξ,εt
σ)(t, ·, µξ,εt ))(Xε,θ

t )− (∇
Φξ,εt

σ)(t, ·, µt)(Xµ
t )
}

dθ

+

∫ 1

0

{
(EC ∗

〈
(DLσ(t, η, ·))(L

Xε,θ
t

)(Xε,θ
t )− (DLσ(t, η, ·))(µt)(Xµ

t ),Φξ,ε
t

〉
C

)
}∣∣∣
η=Xµ

t

dθ.

By Itô’s formula, we obtain

YPPYPP (5.10) |Ξξ,ε(t)|2 ≤ Θε
1(t) + Θε

2(t) + Θε
3(t) + Θε

4(t), t ≥ 0,

where

Θε
1(t) :=

∫ t

0

{
2〈Ξξ,ε(s), (∇

Ξξ,εs
b)(s, ·, µs)(Xµ

s )〉+ 3 ‖(∇
Ξh,εs

σ)(s, ·, µs)(Xµ
s )‖2HS

+ 2
〈
Ξξ,ε(s), {EC ∗〈DLb(s, η, ·)(µs)(Xµ

s ),Ξξ,εs 〉C }
〉∣∣∣
η=Xµ

s

+ 3‖(EC ∗〈(DLσ(s, η, ·))(µs)(Xµ
s ),Ξξ,εs 〉C )‖2HS

∣∣∣
η=Xµ

s

}
ds,

Θε
2(t) :=

∫ t

0

{
3‖Υε

2(s)‖2HS + 2〈Ξξ,ε(s),Υε
1(s)〉

}
ds,

Θε
3(t) := 2

∫ t

0

〈
Ξξ,ε(s),

{
(∇

Ξh,εs
σ)(s, ·, µs)(Xµ

s )

+ (EC ∗〈(DLσ(s, η, ·))(µs)(Xµ
s ),Ξξ,εs 〉C ) + Υε

2(s)
}∣∣∣
η=Xµ

s

dW (s)
〉
.

By (4.1) and (B), we find a constant c1 > 0 such that for any t ∈ [0, T ],

E
(

sup
0≤s≤t

Θε
1(s)

)
≤ c1

∫ t

0

{
E‖Ξξ,εs ‖2C + E|Ξξ,ε(s)|

√
E‖Ξξ,ε(s)‖2C

}
ds ≤ 2c1

∫ t

0
E‖Ξξ,εs ‖2C ds.D01D01 (5.11)
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Next, there exists a constant c2 > 0 such that

D09D09 (5.12) E
(

sup
0≤s≤t

Θε
2(s)

)
≤ c2

∫ t

0

{
E|Ξξ,ε(s)|2 + E|Υε

1(s)|2 + E|Υε
2(s)|2

}
ds, t ∈ [0, T ].

Moreover, applying BDG’s inequality and using (4.1), we find constants c3, c4 > 0 such that

E
(

sup
0≤s≤t

Θε
3(s)

)
≤ c3E

(
sup

0≤s≤t
|Ξξ,ε(s)|2

∫ t

0

{
‖(∇

Ξh,εs
σ)(s, ·, µs)(Xµ

s )

+ (EC ∗〈(DLσ(s, η, ·))(µs)(Xµ
s ),Ξξ,εs 〉C ) + Υε

2(s)‖2HS

∣∣∣
η=Xµ

s

}
ds

)1/2

≤ 1

2
E
(

sup
0≤s≤t

|Ξξ,ε(s)|2
)

+ c4

∫ t

0
{E‖Ξξ,εs ‖2C + E‖Υε

2(s)‖2HS}ds, t ∈ [0, T ].

Substituting this and (5.11), (5.12) into (5.10), and noting that Ξξ,ε0 = 0, we find a constant c > 0
such that

E
(

sup
0≤s≤t

‖Ξξ,εs ‖2C
)
≤ c

∫ t

0
E‖Ξξ,εs ‖2C ds+ c

∫ t

0
{E|Υε

1(s)|2 + E‖Υε
2(s)‖2HS}ds, t ∈ [0, T ].

Since E
(

sup0≤s≤t ‖Ξ
ξ,ε
s ‖2C

)
<∞ due to (5.4) and (5.8), Gronwall’s inequality yields

JH3JH3 (5.13) E
(

sup
0≤s≤T

|Ξξ,ε(s)|2
)
≤ c ecT

∫ T

0
{E|Υε

1(t)|2 + E‖Υε
2(t)‖2HS}ds.

This implies (5.9) by following the argument to deduce (4.11) from (4.18).

Let C1
p(C ) be the class of functions f ∈ C1(C ) such that for some constant c > 0,

CPPCPP (5.14) ‖∇f(ξ)‖ ≤ c (1 + ‖ξ‖p−1
∞ ), ξ ∈ C .

PNN Proposition 5.3. Assume (A) and (B) for some p ≥ 2. For any T ≥ 0, f ∈ C1
p(C ) and

µ ∈Pp(C ), (PT f)(µ) is L-differentiable w.r.t. µ ∈Pp(C ) and

DL
φ (PT f)(µ) = EC ∗〈∇f(Xµ

T ),∇φ(Xµ
0 )X

µ
T 〉C .

Consequently, letting Φ : C → C ∗ be a measurable function such that Φ(Xµ
0 ) = E(∇f(Xµ

T )|Xµ
0 ), we

have DL(PT f)(µ) = Φ.

Proof. Let Xφ,µ
t = X

µ◦(Id+φ)−1

t be the functional solution to (1.1) with initial value Xµ
0 + φ(Xµ

0 ).
For any f ∈ C1

p(C ), by Lemma 5.2, (5.8) and (5.14), we may apply Taylor’s expansion to derive
that for small ‖φ‖Tµ,p ,

(PT f)(µ◦ (Id+φ)−1)− (PT f)(µ) = E[f(Xφ,µ
T )−f(Xµ

T )] = EC ∗〈∇f(Xµ
T ),∇φ(Xµ

0 )X
µ
T 〉C +o(‖φ‖Tµ,p).

This implies the desired assertion.
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6 Bismut formula for the L-derivative

In this section, we consider (1.1) with σ(t, ξ, µ) = σ(t, ξ(0)) dependent only on t and ξ(0), i.e.,

E11E11 (6.1) dX(t) = b(t,Xt,LXt)dt+ σ(t,X(t))dW (t).

We aim to investigate the the intrinsic derivative of (Ptf)(µ), given by (1.2) associated with Xµ
t .

The main results (Theorems 6.2, 6.3 and 6.4 below) of this part generalize those derived in [4]
for SDEs with memory and in [26] for McKean-Vlasov SDEs without memory. Going back to the
case r0 = 0 (i.e. without memory), the conditions in Theorems 6.2 and 6.3 are weaker than the
corresponding ones used in [26], since the drift b herein is allowed to be non-Lipschitz continuous
w.r.t. the space variables. We will first prove a general result and then apply it to establish the
Bismut formula for (1.1) with additive and multiplicative noise, respectively.

6.1 A general result

TNN Theorem 6.1. Assume (A) and (B) for some p ≥ 2, and let T > r0. Suppose that for any
µ ∈Pp(C ) and ξ ∈ Lp(Ω→ C ,F0,P), there exists hξ,µ ∈ D(D∗), which is adapted when σ(t, ξ, µ)
depends on ξ, such that

OY1OY1 (6.2) w
hξ,µ
T = ∇ξXµ

T ,

where ∇ξXµ
T is in (5.2) and w

hξ,µ
T solves (4.9) for h = hξ,µ. Moreover, suppose that for some

increasing function αT : [0,∞)→ [0,∞) we have

OY2OY2 (6.3) E|D∗(hξ,µ)|2 ≤ αT (‖µ‖p)(E‖ξ‖pC )
2
p , ξ ∈ Lp(Ω→ C ,F0,P), µ ∈Pp(C ).

Then the following assertions hold.

(1) For any f ∈ Bb(C ),

OY0OY0 (6.4) |(PT f)(µ)− (PT f)(ν)| ≤
√
αT (‖µ‖p ∨ ‖ν‖p)‖f‖∞Wp(µ, ν), µ, ν ∈Pp(C ).

(2) For any f ∈ C1
b (C ), (PT f)(µ) is intrinsically differentiable in µ ∈Pp(C ) such that

OBSOBS (6.5) DL
φ (PT f)(µ) = E

[
f(Xµ

T )D∗(hφ(Xµ
0 ),µ)

]
, φ ∈ Tµ,p.

Consequently,

OYOY (6.6) ‖DL(PT f)(µ)‖2T ∗µ,p ≤ αT (‖µ‖p)(PT f2)(µ), µ ∈Pp(C ).

(3) If moreover

OY2’OY2’ (6.7) lim
Wp(ν,µ)→0

sup
E‖ξ‖pC∈(0,1)

E|D∗(hξ,ν)−D∗(hξ,µ)|2

(E‖ξ‖pC )
2
p

= 0, µ ∈Pp(C ),

then for any f ∈ Cb(C ), (PT f)(µ) is L-differentiable in µ ∈Pp(C ) and (6.6) holds.
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Proof. (1) We first consider f ∈ C1
b (C ). Recall that Xεξ,µ

t is the functional solution to (1.1) with

Xεξ,µ
0 := εξ +Xµ

0 , and µξ,εt = L
Xεξ,µ
t

. Then, we have

d

ds
Ef(Xsξ,µ

T ) := lim
ε→0

Ef(X
(s+ε)ξ,µ
T )− Ef(Xsξ,µ

T )

ε
= ∇ξ(PT f)(µξ,s), s ∈ [0, 1].

Then, by applying (6.2) with µ replaced by µξ,s and using Proposition 4.3, we obtain

d

ds
Ef(Xsξ,µ

T ) = E
[
C ∗
〈∇f(Xsξ,µ

T ),∇ξXsξ,µ
T 〉C

]
= E

[
C ∗
〈∇f(Xsξ,µ

T ), w
h
ξ,µξ,s

T 〉C
]

= E
[
f(Xsξ,µ

T )D∗(hξ,µξ,s)
]
.

OYYOYY (6.8)

Whence, one has

(PT f)(LXµ
0 +ξ)− (PT f)(µ) = Ef(Xξ,µ

T )− Ef(Xµ
T ) =

∫ 1

0

{ d

ds
Ef(Xsξ,µ

T )
}

ds

=

∫ 1

0
E
[
f(Xsξ,µ

T )D∗(hξ,µξ,s)
]
ds, f ∈ C1

b (C ).

LBLB (6.9)

Let

µ̃T (A) =

∫ 1

0
E[1A(Xsξ,µ

T )D∗(hξ,µξ,s)
]
ds, A ∈ B(C ).

Since C1
b (C ) is dense in L1(L

Xξ,µ
T

+ LXµ
T

+ µ̃T ) ⊃ Bb(C ), (6.9) implies

OY4OY4 (6.10) (PT f)(LXµ
0 +ξ)− (PT f)(µ) =

∫ 1

0
E
[
f(Xsξ,µ

T )D∗(hξ,µξ,s)
]
ds, f ∈ Bb(C ).

Now, for any ν ∈Pp(C ), let ξ ∈ Lp(Ω→ C ,F0,P) such that LXµ
0 +ξ = ν and

Wp(µ, ν) = {E‖ξ‖pC }
1
p .

We deduce form (6.10) that

|(PT f)(µ)− (PT f)(ν)| ≤ ‖f‖∞ sup
s∈[0,1]

(
E|D∗(hξ,µξ,s)|2

) 1
2

≤ ‖f‖∞Wp(µ, ν) sup
s∈[0,1]

√
αT (‖µξ,s‖p).

Combining this with

‖µξ,s‖p = {E‖Xµ
0 + sξ‖pC }

1
p = {E‖s(Xµ

0 + ξ) + (1− s)Xµ
0 ‖

p
C }

1
p

≤ (1− s){E‖Xµ
0 ‖

p
C }

1
p + s{E‖Xµ

0 + ξ‖pC }
1
p ≤ ‖µ‖p ∨ ‖ν‖p, s ∈ [0, 1],

we prove (6.4).
(2) Let f ∈ C1

b (C ), µ ∈ Pp(C ) and φ ∈ Tµ,p. Applying (6.8) with ξ = φ(Xµ
0 ) and s = 0, we

obtain (6.5), which, together with (6.3), implies

|DL
φ (PT f)(µ)|2 ≤ αT (‖µ‖p){E‖φ(Xµ

0 )‖pC }
2
pE[f2(Xµ

T )] = αT (‖µ‖p)‖φ‖2Tµ,p(PT f
2)(µ), φ ∈ Tµ,p.
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Therefore, (6.6) holds true.
(3) Let f ∈ Cb(C ). To prove that (PT f) is L-differentiable, it suffices to verify

OOYOOY (6.11) Iµ(φ) :=
|(PT f)(µ ◦ (Id + φ)−1)− (PT f)(µ)− γφ|

‖φ‖Tµ,p
→ 0 as ‖φ‖Tµ,p ↓ 0,

where
γφ := E[f(Xµ

T )D∗(hφ(Xµ
0 ),µ)

]
, φ ∈ Tµ,p.

By (6.10) and the definition of γφ, it is easy to see that

SCRSCR (6.12) Iµ(φ) ≤ Aµ(φ) +Bµ(φ)

holds for

Aµ(φ) :=
1

‖φ‖Tµ,p

∫ 1

0
E
[∣∣{f(X

sφ(Xµ
0 ),µ

T )− f(Xµ
T )
}
D∗(hφ(Xµ

0 ),µ)
∣∣]ds,

Bµ(φ) :=
‖f‖∞
‖φ‖Tµ,p

∫ 1

0

(
E[|D∗(hφ(Xµ

0 ),µ◦(Id+sφ)−1)−D∗(hφ(Xµ
0 ),µ)|2]

) 1
2 ds.

Since f ∈ Cb(C ), and (5.4) implies E‖Xsφ(Xµ
0 ),µ

T −Xµ
T ‖

p
C → 0 as ‖φ‖Tp,µ → 0, it follows from (6.3)

and the dominated convergence theorem that

lim
‖φ‖Tµ,p→0

Aµ(φ) = 0.

Finally, (6.7) implies lim‖φ‖Tµ,p→0Bµ(φ) = 0. Therefore, (6.11) follows from (6.12).

Remark 6.1 When r0 = 0 (i.e. without memory), the Bismut formula for the L-derivative has
been establish in [26] for all f ∈ Bb(C ), by applying the a prior formula like (6.10) for small
ε > 0 replacing T . However, in the present case (6.10) is available merely for T > r0, so that this
technique is invalid. So, in Theorem 6.1 we only establish the Bismut formula of the L-derivative
for f ∈ Cb(C ).

6.2 Additive noise: non-degenrate case

TN1 Theorem 6.2. Assume (A) and (B) for some p ≥ 2, and consider (1.1) with σ(t, ξ, µ) = σ(t)
independent of (ξ, µ) such that (σσ∗)(t) is invertible with (σσ∗)−1(t) locally bounded in t.

(1) There exist an increasing function C : [r0,∞) → [0,∞) and a constant c > 0 such that for
any T > r0, f ∈ Bb(C ), and µ, ν ∈Pp(C ),

|(PT f)(µ)− (PT f)(ν)| ≤ C(T )‖f‖∞
{

1 + (T − r0)−1 +K2(c(1 + ‖µ‖p + ‖ν‖p))

+ (‖µ‖p + ‖ν‖p)
(p−2)+

2

}
Wp(µ, ν).

DL1DL1 (6.13)

(2) For any T > r0 and f ∈ Cb(C ), (PT f)(µ) is L-differentiable in µ ∈Pp(C ) such that

WW1WW1 (6.14) DL
φ (PT f)(µ) = −E

(
f(Xµ

T )

∫ T

0
〈{σ∗(σσ∗)−1}(t)Hφ(t),dW (t)〉

)
, φ ∈ Tµ,p
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holds for

Hφ(t) := (∇Ztb)(t, ·, µt)(X
µ
t )+(E[C ∗〈DLb(t, ξ, ·)(µt)(Xµ

t ), Zt〉C ])|ξ=Xµ
t

+
φ(Xµ

0 )(0)1[0,T−r0](t)

T − r0
,

where µt := LXµ
t

and (Zt)t≥0 is the segment of (Z(t))t≥−r0 given by

Z(t) :=

{
φ(Xµ

0 )(t), if t ∈ [−r0, 0],
(T−r0−t)+

T−r0 φ(Xµ
0 )(0), if t ≥ 0.

Consequently, there exist an increasing function C : [r0,∞) → (0,∞) and a constant c > 0
such that

NMNM (6.15) ‖DL(PT f)(µ)‖T ∗µ,p ≤ C(T )
{

1+(T −r0)−1 +K2(c(1+‖µ‖p))+‖µ‖
p−2
2

p

}
{(PT f2)(µ)}

1
2

holds for all T > r0, f ∈ Cb(C ) and µ ∈Pp(C ).

Proof. To apply Theorem 6.1, for any µ ∈Pp(C ) and ξ ∈ Lp(Ω→ C ,F0,P), let

AAPAAP (6.16) hξ,µ(t) := −
∫ t

0
{σ∗(σσ∗)−1}(s)Hξ,µ(s)ds, t ∈ [0, T ],

where

Hξ,µ(t) := (∇
Zξt
b)(t, ·, µt)(Xµ

t ) + (E[C ∗〈DLb(t, η, ·)(µt)(Xµ
t ), Zξt 〉C ])|η=Xµ

t

+
ξ(0)1[0,T−r0](t)

T − r0
,

Zξ(t) := ξ(t)1[−r0,0](t) +
(T − r0 − t)+

T − r0
ξ(0)1(0,∞)(t).

APP@APP@ (6.17)

By (B), the boundedness of (σσ∗)−1(t) in t ∈ [0, T ], and the definition of Hξ,µ(t), we find constants
c1 = c1(T ) > 0 increasing in T such that

*DLP*DLP (6.18) |ḣξ,µ(t)|2 ≤ c1‖ξ‖2C
{

(T − r0)−2 + ‖Xµ
t ‖

p−2
C +K2(‖µt‖p)2

}
, t ∈ [0, T ].

Note that (3.1) and µ ∈Pp(C ) imply

sup
t∈[0,T ]

‖µt‖p ≤ c (1 ∨ ‖µ‖p)

for some constant c = c(T ) > 0 increasing in T . This, combining (3.1), (4.24) with (6.18), yields

E|D∗(hξ,µ)|2 = E
∫ T

0
|ḣξ,µ(t)|2dt

≤ c2(E‖ξ‖pC )
2
p
{

(T − r0)−2 + (E‖Xµ
t ‖

p
C )(p−2)/p +K2(c (1 ∨ ‖µ‖p))2

}
≤ c3(E‖ξ‖pC )

2
p
{

1 + (T − r0)−2 + ‖µ‖p−2
p +K2(c (1 ∨ ‖µ‖p))2

}
<∞

*DD2*DD2 (6.19)

for some constants c2, c3 > 0 increasing in T .
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Note that (Zξt )t∈[0,T ] is the functional solution to the SDE with memory

dZξ(t) =
{

(∇
Zξt
b)(t, ·, µt)(Xµ

t ) + σ(t)ḣξ,µ(t)

+ (E[C ∗〈DLb(t, η, ·)(µt)(Xµ
t ), Zξt 〉C ])|η=Xµ

t

}
dt, t ∈ [0, T ], Zξ0 = ξ.

PLPL (6.20)

On the other hand, by Lemma 4.2 and Lemma 5.2, the process

∇ξXµ(t)− whξ,µ(t), t ∈ [0, T ]

also solves (6.20) with the same initial value ξ. By the uniqueness of (6.20) and ZξT = 0, we derive

∇ξXµ
T = w

hξ,µ
T , that is, (6.2) holds. Moreover, (3.2) implies

Wp(µt, νt) ≤ cWp(µ, ν), t ∈ [0, T ]

for some constant c > 0, where νt := LXν
t
, so that (6.16), (6.17) and the continuity of b(t, ξ, µ) in

µ imply (6.7). Therefore, the desired assertions follow from Theorem 6.1 and (6.19).

6.3 Additive noise: a degenerate case

As generalizations to the stochastic Hamiltonian system [17] and the counterpart with memory
[5] as well as the distribution dependent model [26], we consider the following distribution-path
dependent stochastic Hamiltonian system for X(t) = (X(1)(t), X(2)(t)) on Rl+m := Rl×Rm, which
goes back to (1.1) for d = l +m:

E5E5 (6.21)

{
dX(1)(t) = b(1)(t,X(t))dt,

dX(2)(t) = b(2)(t,Xt,LXt)dt+ σ(t)dWt,

where (W (t))t≥0 is an m-dimensional Brownian motion on a complete filtration probability space
(Ω,F , (Ft)t≥0,P), for each t ≥ 0, σ(t) is an invertible m×m-matrix, and

b = (b(1), b(2)) : [0,∞)× C ×Pp(C )→ Rl+m

is measurable with b(1)(t, ξ, µ) = b(1)(t, ξ(0)) dependent only on t and ξ(0). Let ∇ = (∇(1),∇(2))
be the gradient operator on Rl+m, where ∇(i) stands for the gradient operator w.r.t. the i-th
component, i = 1, 2. Let ∇2 = ∇∇ denote the Hessian operator on Rl+m. We assume

(H1) For every t ≥ 0, b(1)(t, ·) ∈ C2(Rl+m → Rl), b(2)(t, ξ, µ) is C1 in both ξ ∈ C and µ ∈Pp(C ),
and there exists an increasing function K : [0,∞)→ [0,∞) such that

‖(∇b(1))(t, ·, µ)(ξ(0))‖+ ‖(∇2b(1))(t, ·)(ξ(0))‖+ ‖(∇b(2))(t, ·, µ)(ξ)‖
+ ‖DLb(2)(t, ξ, ·)(µ)‖T ∗µ,p ≤ K(t)

holds for all t ≥ 0 and (ξ, µ) ∈ C ×Pp(C ).

Obviously, the assumption (H1) implies (A) and (B) for the SDE (6.21).
For any µ ∈Pp(C ), let (Xµ

t )t≥0 be the functional solution to (6.21) with LXµ
0

= µ, and denote

µt = LXµ
t

as before. To establish the Bismut formula for the L-derivative of (PT f)(µ) := Ef(Xµ
T ),

we shall follow the line of [26, 37], where the case without memory was investigated. To establish
the Bismut formula, we need the following assumption (H2), which implies the hypoellipticity.
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(H2) There exist an l ×m-matrix B and some constant ε ∈ (0, 1) such that

BB (6.22) 〈(∇(2)b(1))(t, ·)−B)B∗a, a〉 ≥ −ε|B∗a|2, ∀a ∈ Rl.

Moreover, there exists an increasing function θ· ∈ C([0, T − r0];R+) such that

B2B2 (6.23)

∫ t

0
s(T − r0 − s)KT−r0,sBB

∗K∗T−r0,sds ≥ θtIl×l, t ∈ [0, T − r0],

where, for any s ≥ 0, (Kt,s)t≥s solves the following linear random ODE on Rl ⊗ Rl:

d

dt
Kt,s = (∇(1)b(1))(t,X(t))Kt,s, t ≥ s,Ks,s = Il×lEq1Eq1 (6.24)

with Il×l being the l × l identity matrix.

Specific examples for b(1) satisfying (H2) are included in [26, Example 2.1]. Let T > r0.
According to the proof of [37, Theorem 1.1], (H2) implies that the l × l matrices

Qt :=

∫ t

0
s(T − r0 − s)KT−r0,s(∇(2)b(1))(s,Xµ(s))B∗K∗T−r0,sds, t ∈ (0, T − r0]

are invertible with

QQ (6.25) ‖Q−1
t ‖ ≤

1

(1− ε)θ(t)
, t ∈ (0, T − r0].

To apply Theorem 6.1, for any ξ = (ξ(1), ξ(2)) ∈ Lp(Ω → C ,F0,P), we need to construct hξ,µ ∈
D(D∗) such that (6.2) holds. To this end, as in [26], where r0 = 0 is concerned, we take the C -

valued process αt = (α
(1)
t , α

(2)
t ), which is the segment of α(t) defined by α(t) = ξ(t) for t ∈ [−r0, 0]

and

α(2)(t) :=
(T − r0 − t)+

T − r0
ξ(2)(0)−

t(T − r0 − t)+B∗K∗T−r0,t∫ T−r0
0 θ2

sds

∫ T−r0

t
θ2
sQ
−1
s KT−r0,0ξ

(1)(0)ds

− t(T − r0 − t)+B∗K∗T−r0,tQ
−1
T−r0

∫ T−r0

0

T − r0 − s
T − r0

KT−r0,s

(
∇(2)

ξ(2)(0)
b(1)
)

(s,Xµ(s))ds,

α(1)(t) := 1[0,T−r0](t)

(
Kt,0ξ

(1)(0) +

∫ t

0
Kt,s

(
∇(2)

α(2)(s)
b(1)
)

(s, ·)(Xµ(s)) ds

)
, t ≥ 0.

aaaa (6.26)

Now, let (hξ,µ(t), whξ,µ(t))t∈[0,T ] be the unique solution to the random ODEs

ḣξ,µ(t) :=
dhξ,µ(t)

dt
= σ(t)−1

{
(∇αtb(2))(t, ·, µt)(Xµ

t )− α̇(2)(t)

+
(
EC ∗〈DLb(2)(t, η, ·)(µt)(Xµ

t ), αt + w
hξ,µ
t 〉C

)∣∣
η=Xµ

t

}
,

dwhξ,µ(t)

dt
=
((
∇
w
hξ,µ (t)

b(1)
)

(t,Xµ(t)),
(
∇
w
hξ,µ
t

b(2)
)

(t, ·, µt)(Xµ
t ) + σ(t)ḣξ,µ(t)

)
,

hξ,µ(0) = 0 ∈ Rm, w
hξ,µ
0 = 0 ∈ C .

B00B00 (6.27)
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Let uξ(t) = ((uξ)(1)(t), (uξ)(2)(t)) = α(t) + whξ,µ(t), t ≥ −r0. Then, (6.27) implies

(uξ)(2)(t) = α(2)(0) +

∫ t

0

{
(∇

uξt
b(2))(s, ·, µs)(Xµ

s ) +
(
EC ∗〈DLb(2)(s, η, ·)(µs)(Xµ

s ), vξs〉C
)∣∣
η=Xµ

s

}
ds.

Furthermore, we have

(uξ)(1)(t) = α(1)(t) +

∫ t

0
(∇

w
hξ,µ (s)

b(1))(s,Xµ(s))ds

= α(1)(t)−
∫ t

0
(∇α(s)b

(1))(s,Xµ(s))ds+

∫ t

0
(∇uξ(s)b(1))(s,Xµ(s))ds

= α(1)(0) +

∫ t

0
(∇uξ(s)b(1))(s,Xµ(s))ds,

where in the last identity we used

dα(1)(t) = (∇α(s)b
(1))(t,Xµ(t))dt,

see the proof of [26, Theorem 2.3] for more details. Moreover, the equation (5.7) for vξ(t) =
((vξ)(1)(t), (vξ)(2)(t)) associated with the present SDE (6.21) becomes

d

dt
(vξ)(2)(t) = (∇

vξt
b(2))(t, ·, µt)(Xµ

t ) +
(
EC ∗〈DLb(2)(t, η, ·)(µt)(Xµ

t ), vξt 〉C
)∣∣
η=Xµ

t
,

d

dt
(vξ)(1)(t) = (∇vξ(t)b(1))(t, ·)(Xµ(t)), vξ0 = ξ.

Hence, the uniqueness of this equation implies

bb2bb2 (6.28) vξ(t) = whξ,µ(t) + α(t), t ≥ 0.

Obviously, α(2)(t) = 0 for t ≥ T − r0. On the other hand, inserting the expression of α(2)(t) into
α(1)(T − r0), taking the definition of Qt and changing the order of integral yields α(1)(T − r0) = 0,
which further implies α(1)(t) = 0, t ≥ T − r0, according to the definition of α(1). Hence, we arrive
at α(t) = 0 for t ≥ T − r0. This, combining Lemma 5.2 with (6.28), leads to

∇ξXµ
T = vξT = w

hξ,µ
T ,

that is, (6.2) holds. Moreover, as shown in the proof of [37, Theorem 1.1] that hξ,µ ∈ D(D∗)

satisfying (6.7), and for small T − r0 > 0, E|D∗(hξ,µ)|2 has the same order as E
∫ T−r0

0 |ḣξ,µ(t)|2dt,
so that according to the construction of hξ,µ we have

E|D∗(hξ,µ)|2 ≤ C(T )(T − r0)4∫ T−r0
0 θ2

sds
, T > 0, ξ ∈ Lp(Ω→ C ,F0,P), µ ∈Pp(C )

for some increasing function C : [r0,∞)→ [0,∞). Therefore, by Theorem 6.1, we have the following
result.

T4.2 Theorem 6.3. Assume (H1) and (H2) for some p ≥ 2.
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(1) There exists an increasing function C : [r0,∞)→ [0,∞) such that for any T > r0, f ∈ Bb(C ),

|(PT f)(µ)− (PT f)(ν)| ≤ C(T )(T − r0)2

(∫ T−r0

0
θ2
sds

)− 1
2

‖f‖∞Wp(µ, ν), µ, ν ∈Pp(C ).

(2) For any T > r0 and f ∈ Cb(C ), (PT f)(µ) is L-differentiable in µ ∈Pp(C ) such that

DL
φ (PT f)(µ) = −E

[
f(Xµ

T )D∗(hφ(Xµ
0 ),µ)

]
, φ ∈ Tµ,p,

and there exists an increasing function C : [r0,∞)→ (0,∞) such that for any f ∈ Cb(C ), T >
r0 and µ ∈Pp(C ),

‖DL(PT f)(µ)‖T ∗µ,p ≤ C(T )(T − r0)2

(∫ T−r0

0
θ2
sds

)− 1
2

{(PT f2)(µ)}
1
2 .

6.4 Multiplicative noise

In this subsection, we assume σ(t, ξ, µ) = σ(t, ξ(0)). Following the line of [4] due to the idea of [32],
for any ξ ∈ Lp(Ω→ C ,F0,P) we consider the SDE with memory

dU ξ(t) =
{

(∇
Uξt
b)(t, ·, µt)(Xµ

t ) + (EC ∗〈DLb(t, η, ·)(µt)(Xµ
t ), U ξt 〉C )

∣∣
η=Xµ

t

− U ξ(t)

T − r0 − t

}
1[0,T−r0)(t)dt+ {(∇Uξ(t)σ)(t, ·)(Xµ(t))}dW (t), U ξ0 = ξ.

WW3WW3 (6.29)

Then, due to (4.1), the SDE (6.29) has a unique solution for t < T − r0. By repeating the proofs
of [4, Lemma 2.1 and Theorem 1.2(1)], we have

BJHBJH (6.30)

∫ T−r0

0

E|U ξ(t)|2

(T − r0 − t)2
dt+ E

(
sup

t∈[0,T−r0)
‖U ξt ‖

p
C

)
≤ C(T )

T − r0
{E‖ξ‖pC }

2
p

for some increasing function C : [r0,∞) → [0,∞), so that we may extend U ξ(t) for t ∈ [0, T ] by
setting

BJH2BJH2 (6.31) U ξ(t) = 0, t ∈ [T − r0, T ],

which obviously solves (6.29) up to time T .

TN2 Theorem 6.4. Assume (A) and (B) for some p ≥ 2. Let σ(t, ξ, µ) = σ(t, ξ(0)) depend only on
t and ξ(0) such that, for each x ∈ Rd, (σσ∗)(t, x) is invertible with supx∈Rd ‖(σσ∗)−1‖(t, x) locally
bounded in t. Then,

(1) There exists an increasing function C : [r0,∞)→ [0,∞) such that for any T > r0, f ∈ Bb(C ),
and µ, ν ∈Pp(C ),

DL1DL1 (6.32) |(PT f)(µ)− (PT f)(ν)| ≤ C(T )‖f‖∞Wp(µ, ν).
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(2) For any T > r0 and f ∈ Cb(C ), (PT f)(µ) is L-differentiable in µ ∈Pp(C ) such that

WW1WW1 (6.33) DL
φ (PT f)(µ) = −E

(
f(Xµ

T )

∫ T

0
〈{σ∗(σσ∗)−1}(t)Hφ(t),dW (t)〉

)
, φ ∈ Tµ,p

holds for

Hφ(t) :=
{

(∇
Uξt
b)(t, ·, µt)(Xµ

t ) + (EC ∗〈DLb(t, η, ·)(µt)(Xµ
t ), U ξt 〉C )

∣∣
η=Xµ

t

}
1[T−r0,T ](t)

+
U ξ(t)

T − r0 − t
1[0,T−r0)(t), t ∈ [0, T ].

Consequently, there exists an increasing function C : [r0,∞)→ (0,∞) such that

NMNM (6.34) ‖DL(PT f)(µ)‖T ∗µ,p ≤ C(T ){(PT f2)(µ)}
1
2

holds for all T > r0, f ∈ Cb(C ) and µ ∈Pp(C ).

Proof. To apply Theorem 6.1, for any µ ∈Pp(C ) and ξ ∈ Lp(Ω→ C ,F0,P), let

APAP (6.35) hξ,µ(t) =

∫ t

0
{σ∗(σσ∗)−1}(s,Xµ(s))Gξ(s)ds, t ∈ [0, T ],

where

Gξ(t) :=
{

(∇
Uξt
b)(t, ·, µt)(Xµ

t ) + (EC ∗〈DLb(t, η, ·)(µt)(Xµ
t ), U ξt 〉C )

∣∣
η=Xµ

t

}
1[T−r0,T ](t)

+
U ξ(t)

T − r0 − t
1[0,T−r0)(t), t ∈ [0, T ].

Then, h is adapted and, by (6.30), we find some increasing function C : [r0,∞)→ (0,∞) such that

HBJHBJ (6.36) E
∫ T

0
|ḣξ,µ(t)|2dt ≤ C(T )

T − r0
{E‖ξ‖pC }

2
p , T > r0, µ ∈Pp(C ), ξ ∈ Lp(Ω→ C ,F0,P)

so that (6.3) holds true. Moreover, by the regularities of b and σ ensured by (B), the condition
(6.7) holds. Therefore, according to Theorem 6.1, it remains to verify (6.2). By (6.29), Lemma 4.2
and Lemma 5.2, we see that both U ξ(t) and ∇ξXµ

t − whξ,µ(t) solve the SDE with memory

dZ(t) =
{

(∇Ztb)(t, ·, µt)(X
µ
t )− σ(t,Xµ(t))ḣ(t)

}
dt+ {(∇Z(t)σ)(t, ·)(Xµ(t))}dW (t)

+
{

(E[C ∗〈DLb(t, η, ·)(µt)(Xµ
t ), Zt〉C ])

∣∣
η=Xµ

t

}
dt, Z0 = ξ, t ∈ [0, T ].

By the uniqueness of solution to this equation and (6.31), we obtain (6.2) and hence finish the
proof.

7 Asymptotic Bismut formula for the L-derivative

In this section, we aim to extend the asymptotic Bismut formula derived in [22] for SDEs with
memory to that on the L-derivative for distribution-path dependent SDEs. Even coming back to
SDEs with memory, our conditions are slightly weaker since we allow the drift term to be non-
Lipschitz continuous.
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7.1 The non-degenerate setup

In this subsection, we assume that σ(t, ξ, µ) = σ(t, ξ) depends only on t ≥ 0 and ξ ∈ C , i.e., the
diffusion σ is path-dependent but independent of the measure variable µ. For any λ ≥ 0, µ ∈Pp(C )
and φ ∈ Tµ,p, consider the following SDE with memory

dZµ,φ,λ(t) = {(∇
Zµ,φ,λt

b)(t, ·, µt)(Xµ
t )− λZµ,φ,λ(t)}dt+ (∇

Zµ,φ,λt
σ)(t, ·)(Xµ

t )dW (t),

Zµ,φ,λ0 = φ(Xµ
0 ), t ≥ 0.

E10E10 (7.1)

According to [29, Theorem 2.3], (4.1) implies that (7.1) has a unique functional solution (Zµ,φ,λt )t≥0

such that

B1B1 (7.2) E
(

sup
0≤s≤t

‖Zµ,φ,λs ‖pC
)
<∞, t > 0, φ ∈ Tµ,p, λ > 0.

th2 Theorem 7.1. Assume (A) and (B) for some p ≥ 2 such that (4.1) holds for some constant K
uniformly in T > 0. Moreover, suppose that (σσ∗)(t, ξ) is invertible with supξ∈C ‖(σσ∗)−1‖(t, ξ)
locally bounded in t.

(1) For any T > 0 and f ∈ C1
p(C ), (PT f)(µ) is L-differentiable in µ ∈Pp(C ), such that for any

µ ∈Pp(C ), φ ∈ Tµ,p and f ∈ C1
p(C ),

J1J1 (7.3) DL
φ (PT f)(µ) = E

(
f(Xµ

T )

∫ T

0
〈ḣµ,φ,λ(t), dW (t)〉

)
+ E(∇

Zµ,φ,λT
f)(Xµ

T ), λ ≥ 0,

where

hµ,φ,λ(t) : =

∫ t

0

{
σ∗(σσ∗)−1

}
(s,Xµ

s )−1
{

(EC ∗〈DLb(s, ξ, ·)(µs)(Xµ
s ), DL

φX
µ
s 〉C )

∣∣∣
ξ=Xµ

s

+ λZµ,φ,λ(s)
}

ds, t ≥ 0.

0F00F0 (7.4)

(2) If either p > 4 or p > 2 but ‖∇b(t, ·, µ)(ξ)‖ is bounded, then for any δ > 0 there exist constants
c, λ0 > 0 such that∣∣∣∣DL

φ (PT f)(µ)− E
(
f(Xµ

T )

∫ T

0
〈ḣµ,φ,λ(s),dW (s)〉

)∣∣∣∣
≤ ce−δT

{
(PT ‖∇f‖

p
p−1 )(µ)

} p−1
p ‖φ‖Tµ,p , λ ≥ λ0, T > 0, f ∈ C1

p(C ),

J4J4 (7.5)

(2) If p ∈ [1, 2] and ‖∇σ(t, ·)(ξ)‖ ≤ θ for some constant θ > 0 and all (t, ξ) ∈ [0,∞) × C such
that

DFFDFF (7.6) θ2 < sup
α>0

α

peαr0 + 4p2e2αr0
,

then there exists constants c, λ0 > 0 such that (7.5) holds.

To prove this result, we present the following two lemmas, where the first is due to [13, Lemma
2.2], (7.8).
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LBJJ Lemma 7.2. Let Mt be a continuous real martingale with d〈M〉t = g(t)dt, and let

Fα(t) :=

∫ t

0
e−α(t−s)dMs, t ≥ 0, α > 0.

Then for any p > 2, there exists a function h : [0,∞) → [0,∞) with κp(α) → 0 as α → ∞ such
that

E
[

sup
s∈[0,t]

|Fα(s)|p
]
≤ rαE

∫ t

0
g(s)

p
2 ds, t ≥ 0.

Consequently, for any progress measurable process A(t) on Rd ⊗ Rm,

E
[

sup
s∈[0,t]

∣∣∣∣ ∫ t

0
e−α(t−s)A(s)dW (s)

∣∣∣∣p] ≤ dp−1rαE
∫ t

0
‖A(s)‖pds, t ≥ 0.

Lem6 Lemma 7.3. Assume (A) and (B) for some p ≥ 2 such that (4.1) holds for some constant K
uniformly in T > 0.

(1) If either p > 4 or p > 2 but ‖∇b(t, ·, µ)(ξ)‖ is bounded, then for any δ > 0, there exist
constants c, λ0 > 0 such that

F01F01 (7.7) E[‖Zµ,φ,λt ‖pC ] ≤ ce−δt‖φ‖pTµ,p , t ≥ 0, µ ∈Pp(C ), φ ∈ Tµ,p, λ ≥ λ0.

(2) If p ∈ [1, 2] and ‖∇σ(t, ·)(ξ)‖ ≤ θ for some constant θ > 0 and all (t, ξ) ∈ [0,∞) × C such
that (7.6) holds, then there exists constants c, λ0 > 0 such that (7.7) holds.

Proof. (1) Let p > 4. Let λ > c > 0 be two constants, and simply denote Zλt = Zµ,φ,λt . By Itô’s
formula for (7.1) and applying (4.1), we obtain

d(|Zλ(t)|2) =
{

2 〈Zλ(t), (∇Zλt b)(t, ·, µt)(X
µ
t )〉+ ‖(∇Zλt σ)(t, ·)(Xµ

t )‖2HS − 2λ|Zλ(t)|2
}

dt+ 2dMλ(t)

≤
{
K‖Zλt ‖2∞ − 2λ|Zλ(t)|2

}
dt+ 2dMλ(t),

where

BJJ0BJJ0 (7.8) dMλ(t) := 〈Zλ(t), (∇Zλt σ)(t, ·)(Xµ
t )dW (t)〉.

Then for any constants β > 0, when λ > β we obtain

E3E3 (7.9) |Zλ(t)|2e2βt ≤ |Zλ(0)|+K

∫ t

0
e−(2λ−2β)(t−s)eβs‖Zλs ‖2∞ds+

∫ t

0
e−(2λ−2β)(t−s)eβsdMλ(s).

Obviously,

JJDJJD (7.10) sup
s∈[t−r0,t]

{
eβs|Zλ(s)|

}p ≤ Gβ(t) :=
{

eβt‖Zλt ‖C
}p ≤ eβpr0 sup

s∈[t−r0,t]

{
eβs|Zλ(s)|

}p
.

Combining this with (7.9), Lemma 7.2 and (4.1), when p > 4 we find a constant c1 > 0 and a
positive function h on [0,∞) with rα → 0 as α→∞ such that

e−pβr0E[Gβ(t)] ≤ c1‖φ‖pT,µ + rλ−β

∫ t

0
Gβ(s)ds, t ≥ 0.
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Thus, by Gronwall’s lemma we derive

E[Gβ(t)] ≤ c1epβr0‖φ‖pT,µ exp
[
(rλ−βepβr0)t

]
, t ≥ 0.

This and (7.10) yield

E[‖Zλt ‖
p
C ] ≤ c2e2pβr0‖φ‖pT,µ exp

[
− (pβ − rλ−βepβr0)t

]
, t ≥ 0.

This implies (7.7) by taking β = δ and pδ − rλ−δ ≥ δ for large λ since rα → 0 as α→∞.
(2) Let p > 2 with ‖∇b(t, ·, µ)(ξ)‖ bounded. By (7.1), for any β ∈ (0, λ) we have

Zλ(t)eβt =Zλ(0)e−(λ−β)t +

∫ t

0
e−(λ−β)(t−s)eβs(∇Zλs b)(s, ·, µs)(X

µ
s )ds

+

∫ t

0
e−(λ−β)(t−s)eβs(∇Zλs σ)(s, ·, µs)(Xµ

s )dW (s).

Combining this with (7.10), the boundedness of ‖∇b‖+ ‖∇σ‖ and Lemma 7.2, we find a function
h : [0,∞)→ [0,∞) with rα → 0 as α→∞ such that

e−βpr0E[Gβ(t)] ≤ E
[

sup
s∈[t−r0,t]

{
eβs|Zλ(s)|

}p] ≤ 2d−1‖φ‖pT,µ + rλ−β

∫ t

0
E[Gβ(s)]ds.

By Gronwall’s inequality and using (7.10), we obtain

eβ(t−r0)E[‖Zλt ‖
p
C ] ≤ E[Gβ(t)] ≤ 2p−1‖φ‖pTµ,p exp

[
rλ−βeβr0t

]
.

This implies (7.7) by taking β = 2δ and large enough λ such that eβr0rλ−β ≤ δ.
(3) Let p ∈ [2, 4] and ‖∇σ(t, ·)(ξ)‖ ≤ θ. We find a constant c1 > 0 such that

d|Zλ(t)|2 ≤
{

2c1|Zλ(t)|‖Zλt ‖C |+ θ2‖Zλt ‖2C − 2λ|Zλ(t)|2
}

dt+ 2〈Z(2)(t), {∇Ztσ(Xt)}dW (t)〉.

Then for any p ≥ 2, there exists a constant c2 > 0 such that for any ε ∈ (0, 1),

d|Zλ(t)|p ≤
{

(c2ε
−1 − pλ)|Zλ(t)|p + c(ε)‖Zλt ‖

p
C

}
dt

+ p|Zλ(t)|p−2〈Zλ(t), {∇Ztσ(Xt)}dW (t)〉.
PLO9PLO9 (7.11)

holds for

c(ε) :=
pθ2

2
+ (p− 2)εp−2, ε ∈ (0, 1).

Noting that for any α > 0,

099099 (7.12) ηα(t) := eα(t−r0)‖Zλt ‖
p
C = eα(t−r0) sup

s∈[t−r0,t]
|Zλ(s)|p ≤ sup

s∈[t−r0,t]
eαs|Zλs |p,

combining (7.11) with BDG’s inequality, we obtain

E[ηα(t)] ≤ E
[

sup
s∈[t−r0,t]

eαs|Zλ(s)|p
]
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≤ E[‖φ(X0)‖pC ] + c(ε)

∫ t

0
E[eαs‖Zλs ‖

p
C ]ds+ 2pE

[(∫ t

(t−r0)+
θ2e2αs|Zλ(s)|p‖Zλs ‖

p
C ds

) 1
2
]

≤ ‖φ‖pTµ,p +
(
c(ε) + 2p2θ2eαr0

)
eαr0

∫ t

0
ηα(s)ds+

1

2
E[ηα(t)],

ε ∈ (0, c2/(pλ)), α ∈ (0, pλ− c2ε
−1).

By Gronwall’s inequality we arrive at

E[ηα(t)] ≤ 2‖φ‖pTµ,pe
γ(ε)t, γ(ε) := 2

(
c(ε) + 2p2θ2eαr0

)
eαr0 .

This and (7.17) yields

E[‖Zλt ‖
p
C ] ≤ 2eαr0‖φ‖pTµ,pe

−{α−γ(ε)}t, t ≥ 0, ε ∈ (0, c2/(pλ)), α ∈ (0, pλ− c2ε
−1).

Noting that (7.6) implies
lim
ε↓0

γ(ε) = 4p2θ2e2αr0 + pθ2eαr0 ,

by (7.6) we may find large enough λ0 > 0, small enough ε ∈ (0, 1) and α ∈ (0, pλ0 − c2ε
−1) such

that δ := α− g(ε) > 0, so that (7.7) holds for some constant c > 0n and all λ ≥ λ0.

The proof of Theorem 7.1. The L-differentiability is implied by Proposition 5.3. So, it suffices to
prove (7.3) and (7.5). For simplicity, let hλ(t) = hµ,φ,λ(t), which was given in (7.4). By (B),
(5.8) and (7.7), hλ ∈ L2(Ω → H;P) is adapted. According to Lemmas 4.2 and 5.2, the process
Z(t) := ∇φ(Xµ

0 )X
µ(t)−DhλX

µ(t) solves the SDE with memory

dZ(t) = {(∇Ztb)(t, ·, µt)(X
µ
t )− λZ(t)}dt+ (∇Ztσ)(t, ·)(Xµ

t )dW (t), t ≥ 0, Z0 = φ(Xµ
0 ).

Therefore, the uniqueness of solutions to (7.1) yields

Z(t) = ∇φ(Xµ
0 )X

µ(t)−DhλX
µ(t), t ≥ −r0.

Combining this with the chain rule and the integration by parts formula for the Malliavin derivative,
we derive

DL
φ (Ptf)(µ) = E[DL

φf(X ·t)(µ)] = E(C ∗〈∇f(Xµ
t ),∇φ(Xµ

0 )X
µ
t 〉C )

= E(C ∗〈∇f(Xµ
t ), Zt +DhλX

µ
t 〉C ) = E(Dhλf(Xµ

t )) + E((∇Ztf)(Xµ
t ))

= E
(
f(Xµ

t )

∫ t

0

〈
ḣλ(s),dW (s)

〉)
+ E((∇Ztf)(Xµ

t )), t ≥ 0,

i.e. (7.3) holds. Finally, by Lemma 7.3 and Hölder’s inequality, we deduce (7.5) from (7.3).

7.2 A degenerate setup

In this subsection, we consider the following distribution-path dependent stochastic Hamiltonian
system for X(t) = (X(1)(t), X2)(t)) on Rl+m = Rl × Rm:

d1d1 (7.13)

{
dX(1)(t) = b(1)(t,Xt)dt,

dX(2)(t) = b(2)(t,Xt,LXt)dt+ σ(t,Xt)dW (t),
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where (W (t))t≥0 is an m-dimensional Brownian motion on a complete filtration probability space
(Ω,F , (Ft)t≥0,P), X0 ∈ Lp(Ω→ C ,F0,P) for C := C([−r0, 0];Rl+m), and

b := (b(1), b(2)) : [0,∞)× C ×Pp(C )→ Rl+m, σ : [0, T ]× C → Rm ⊗ Rm

are measurable satisfying the following assumption.

(C) Let p ∈ [2,∞). b(t, ξ, µ) and σ(t, ξ, µ) are bounded on bounded sets, C1-smooth in (ξ, µ) ∈
C ×Pp(C ) with bounded ‖DLb(t, ξ, ·)(µ)‖T ∗p,µ , and there exist constants β,K, θ > 0 such that

〈z(1)(0), {∇zb(1)(t, ·)}(ξ)〉+ 〈z(2)(0), {∇zb(2)(t, ·, µ)}(ξ)〉

≤ K|z(2)(0)| · ‖z‖C +
θ2

2
‖z(1)‖2C − β|z(1)(0)|2,

‖∇zσ(t, ξ)‖ ≤ θ‖z‖C , t ≥ 0, ξ ∈ C , µ ∈Pp(C ).

Let µt = LXµ
t

with LX0 = µ ∈ Pp(C ), and let φ ∈ Tµ,p. . For any λ > 0, consider the linear

SDE with memory for Z(t) = (Z(1)(t), Z(2)(t)) on Rl+m

dZ(t) =
[
{∇Ztb(t, ·, µt)}(X

µ
t )− λ(0, Z(2)(t))}

]
dt

+ (0, {∇Ztσ(t, ·)}(Xµ
t )dW (t)), Z0 = φ(Xµ

0 ).
d4d4 (7.14)

By [29, Theorem 2.3], under assumption (C) this equation has has a unique functional solution.

We denote the functional solution by Zµ,φ,λt to emphasize the dependence on µ, φ and λ. When σσ∗

is invertible, let

hµ,φ,λ(t) : =

∫ t

0
{σ∗(σσ∗)−1}(s,Xµ

s )
{
λZ(2)(s))

+ EC ∗
[
〈DLb(2)(ξ, ·)(µs)(Xµ

s ), DL
φX

µ
s 〉C

]∣∣
ξ=Xµ

s

}
ds, t ≥ 0.

d8d8 (7.15)

L00 Theorem 7.4. Assume (C) for some p ≥ 2, and let σσ∗ be invertible with ‖(σσ∗)−1‖∞ < ∞.
Then for any T > 0 and f ∈ C1

p(C ), (PT f)(µ) is L-differentiable in µ ∈Pp(C ) such that

d5d5 (7.16) DL
φ (PT f)(µ) = E

(
f(Xµ

T )

∫ T

0
〈ḣµ,φ,λ(s),dW (s)〉

)
+ E(∇ZT f)(Xµ

T ), µ ∈Pp(C ), φ ∈ Tµ,p.

Consequently, there exists constants c, λ0 > 0 such that∣∣∣∣DL
φ (PT f)(µ)− E

(
f(Xµ

T )

∫ T

0
〈ḣµ,φ,λ(s),dW (s)〉

)∣∣∣∣
≤ ce−δT

{
(PT ‖∇f‖

p
p−1 )(µ)

} p−1
p ‖φ‖Tµ,p , λ ≥ λ0, T > 0, f ∈ C1

p(C ),

099099 (7.17)

provided one of the following conditions holds:

(i) θ2 < supα∈(0,βp)
α

peαr0+4p2e2αr0
.
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(ii) p > 2, ‖∇b(2)(t, ·, µ)(ξ)‖ is bounded, and there exist constants κ, β > 0, such that

(p− 1)κp < p22
p
2 sup
α∈(0,β)

e−αr0(β − α),

〈ξ(0), {∇ξb(1)(t, ·)}(ξ)〉 ≤ κ‖ξ‖C |ξ(0)| − β|ξ(0)|2, t ≥ 0, ξ ∈ C .

To prove this result, we first present the following lemma.

L7.3 Lemma 7.5. Assume (C) for some p ≥ 2. If one of conditions (i) and (ii) holds, then there exist
constants c, δ, λ0 > 0 such that for any λ ≥ λ0,

bb3bb3 (7.18) E[‖Zµ,φ,λt ‖pC ] ≤ ce−δt‖φ‖pTµ,p , t ≥ 0, µ ∈Pp(C ), φ ∈ Tµ,p.

Proof. We denote Xµ = X,Zµ,φ,λ = Z = (Z(1), Z(2)), and ‖Z(i)
t ‖C = sups∈[t−r0,t] |Z

(i)(t)|, i = 1, 2.
(1) Let (i) hold. For ε ∈ (0, 1), we take

ρ(t) =
√
|Z(1)(t)|2 + ε|Z(2)(t)|2, t ≥ 0.

By (C) and Itô’s formula, when λ ≥ 4βε−1 + 2K, we have

d|ρ(t)|2 =
[
2〈Z(1)(t), {∇Z(t)b

(1)(t, ·, µt)}(X(t))〉+ 2ε〈Z(2)(t), {∇Ztb(2)(t, ·, µt)}(Xt)〉

+ ε‖∇Ztσ(Xt)‖2HS − ελ|Z(2)(t)|2
]
dt+ 2ε〈Z(2)(t), {∇Ztσ(Xt)}dW (t)〉

≤
{
− 2β|Z(1)(t)|2 − ε

(λ
2
−K

)
|Z(2)(t)|2 + θ2‖Z(1)

t ‖2C + ε
(
K2λ−1 + θ2

)
‖Zt‖2C

}
dt

+ 2ε〈Z(2)(t), {∇Ztσ(t, ·)}(Xt)dW (t)〉
≤
{
− 2β|ρ(t)|2 + γλ,ερ

2
t

}
dt+ 2ε〈Z(2)(t), {∇Ztσ(t, ·)}(Xt)dW (t)〉,

where

GGGGGG (7.19) γλ,ε := max
{
θ2 + ε(K2λ−1 + θ2), 2K2λ−1 + θ2

}
.

Then for any p ≥ 2, there exists a constant c1 > 0 such that

d|ρ(t)|p ≤
{
− βp|ρ(t)|p +

pγ

2
ρ2
t

}
dt+ εp|ρ(t)|p−2〈Z(2)(t), {∇Ztσ(Xt)}dW (t)〉.PLOPLO (7.20)

Noting that

0909 (7.21) ηα(t) := eα(t−r0)ρpt = eα(t−r0) sup
s∈[t−r0,t]

|ρ(s)|p ≤ sup
s∈[t−r0,t]

eαs|ρ(s)|p,

combining (7.20) with BDG’s inequality, for any α ∈ (0, βp], we obtain

E[ηα(t)] ≤ E
[

sup
s∈[t−r0,t]

eαs|ρ(s)|p
]

≤ E[‖φ(X0)‖pC ] +
(pγλ,ε

2
+
pθ2

2
+ c1θ

2ε
)∫ t

0
E[eαsρps]ds

+ 2pE
[(∫ t

(t−r0)+
ε2θ2e2αs|ρ(s)|2p−4|Z(2)(s)|2‖Zs‖2C ds

) 1
2
]
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≤ ‖φ‖pTµ,p +
(pγλ,ε

2
+ c1θ

2ε
)

eαr0
∫ t

0
ηα(s)ds+ 2pθeαr0E

[
|ηα(t)|

(∫ t

0
ηα(s)ds

) 1
2
]

≤ ‖φ‖pTµ,p +
(pγλ,ε

2
+ c1θ

2ε+ 2p2eαr0θ2
)

eαr0
∫ t

0
ηα(s)ds+

1

2
E[ηα(t)].

By Gronwall’s inequality we arrive at

E[ηα(t)] ≤ 2‖φ‖pTµ,pe
cλ,ε(α)t, cλ,ε(α) :=

(
pγλ,ε + 2c1θ

2ε+ 4p2eαr0θ2
)

eαr0 .

This and (7.21) yields
E[ρpt ] ≤ 2eαr0‖φ‖pTµ,pe

−{α−cλ,ε(α)}t, t ≥ 0.

Noting that (7.19) implies

lim
λ→∞

lim
ε↓0

cλ,ε(α) = eαr0
(

4p2eαr0θ2 + pθ2
)
,

by (i), we may find α ∈ (0, βp), small enough ε > 0 and large enough λ0 > 0 such that δ :=
α− cλ0,ε(α) > 0, so that

E[‖Zt‖pC ] ≤ ε−pE[ρpt ] ≤ 2ε−peαr0‖φ‖pTµ,pe
−δt, t ≥ 0, λ ≥ λ0.

Then (7.18) holds.
(2) Let (ii) hold. By (p − 1)κp < p22

p
2 supα∈(0,β) e−αr0(β − α), we find a constant ε > 0 such

that

NK1NK1 (7.22) pα >
κp(p− 1)

p(β − α)
(1 + ε)epαr0 .

By (7.14), we have

Z(2)(t)eαt =φ(2)(X0)e−(λ−α)t +

∫ t

0
e−(λ−α)(t−s)eαs{∇Zsb(2)(s, ·, µs)}(Xs)ds

+

∫ t

0
e−(λ−α)(t−s)eαs{∇Zsσ(2)(s, ·, µs)}(Xs)dW (s).

Then by the boundedness of ‖∇b‖+ ‖∇σ‖ and applying Lemma 7.2, we find a constant c1 > 0 and
a function r : [0,∞)→ [0,∞) with rs → 0 as s→∞ such that

SH1SH1 (7.23) E
[

sup
s∈[t−r0,t]

{|Z(2)(s)|eαs}p
]
≤ c1‖φ(2)‖pTµ,p + rll−α

∫ t

0
‖Zs‖pC eαpsds.

On the other hand, by (ii) we have

d|Z(1)(t)| ≤ {κ‖Zt‖C − β|Z(1)(t)|}dt,

so that for α ∈ (0, β),

eαt|Z(1)(t) ≤ ‖φ(X0)‖C e−(β−α)(t−s) + κ

∫ t

0
eαs−(β−α)(t−s)‖Zs‖C ds,

36



so that for some constants c2 > 0 we have

e(t−r0)pαE[‖Z(1)
t ‖

p
C ] ≤ E

[
sup

s∈[t−r0,t]
{|Z(1)(s)|eαs}p

]
≤ c2‖φ‖pTµ,p +

κp(p− 1)

p(β − α)
(1 + ε)

∫ t

0
E[epαs‖Zs‖pC ]ds.

Combining this with (7.23) we arrive at

epαtE[‖Zt‖pC ] ≤ 2
p
2E[‖Z(1)

t ‖
p
C + ‖Z(2)

t ‖
p
C ] ≤ c3‖φ‖pTµ,p + γ

∫ t

0
epαsE[‖Zs‖pC ]ds

for some constants c3 > 0 and

γ := 2
p
2

(κp(p− 1)

p(β − α)
(1 + ε)epαr0 + rll−α

)
.

By Gronwall’s lemma, we obtain

E[‖Zt‖pC ] ≤ c3‖φ‖pTµ,p exp
[
− (γ − pα)t].

Since (7.22) implies limλ→∞,ε→0 γ = 2
p
2
κp(p−1)
p(β−α) (1 + ε)epαr0 < pα, we may find constats λ0, δ > 0

such that αp− γ ≥ δ for λ ≥ λ0. Therefore, (7.18) holds.

Proof of Theorem 7.4. Since the L-differentiability is implied by Proposition 5.3, while (7.17) fol-
lows from Lemma 7.5 and (7.16), it suffices to prove (7.16).

Simply denote h = hµ,φ,λ. By (C), there exists a constant c1 > 0 such that

d9d9 (7.24) E‖vφt ‖
p
C ≤ c ec1t‖φ‖pTµ,p , t ≥ 0, φ ∈ Tµ,p.

This together with (7.15) and (7.18) implies that h ∈ L2(Ω → H,P) is adapted. Let wht =

(wh,1t , wh,2t ) be the unique functional solution to the following SDE with memory

dwh(t) = {∇wht b(t, ·, µt)}(X
µ
t )dt+

(
0, σ(t,Xµ

t )ḣ(t)
)
dt

+ (0, {∇wht σ(t, ·)}(Xµ
t )dW (t)), t ∈ [0, T ], wh0 = 0.

d10d10 (7.25)

By Lemma 4.2, we have wht = DhX
µ
t . Next, according to Lemma 5.2, vφt = (vφ,1t , vφ,2t ) := DL

φX
µ
t

exists in L2(Ω→ C([0, T ]; C ),P) and is the unique solution to

dvφ(t) = {∇vφ(t)b(t, ·, µt)}(X
µ
t )dt+ (EC ∗〈{DLb(t, ξ, ·)}(µt)(Xµ

t ), vφt 〉C )
∣∣∣
ξ=Xµ

t

dt

+ (0, {∇
vφt
σ(t, ·)}(Xµ

t )dW (t)), t ∈ [0, T ], vφ0 = φ(Xµ
0 ).

d11d11 (7.26)

From (7.25) and (7.26) we see that

Z(t) := vφ(t)− whµ,φ,λ(t)

solves (7.14). In particular, ZT = vφT −whT = DL
φX

µ
T −DhX

µ
T . Then (7.16) follows from Proposition

4.3.
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