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Abstract

To characterize the regularity of distribution-path dependent SDEs in initial distributions
variable as probability measures on the path space, we introduce the intrinsic and Lions deriva-
tives in the space of probability measures on Banach spaces, and prove the chain rule for the
Lions derivative in the distribution of Banach-valued random variables. By using Malliavin
calculus, we establish the Bismut type formula for the Lions derivatives of functional solutions
to SDEs with distribution-path dependent drifts. When the noise term is also path dependent
so that the Bismut formula is invalid, we establish the asymptotic Bismut formula. Both non-
degenerate and degenerate noises are considered. The main results of this paper generalize and
improve the corresponding ones derived recently in the literature for the classical SDEs with
memory and McKean-Vlasov SDEs without memory.

AMS subject Classification: 60J60, 58J65.
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1 Introduction

To characterize stochastic systems with evolutions affected by both history and micro environment,
the distribution-path dependent SDEs have been considered in [20, 28], where the Harnack type
inequalities, ergodicity and long time large deviation principles are investigated. This type SDEs
generalize the McKean-Vlasov (distribution dependent or mean-field) SDEs and path dependent
(functional) SDEs (or SDEs with memory). Both have been studied intensively in the literature;
see, for instance, the monograhs [6, 9] and references within.

On the other hand, as a powerful tool in the study of regularity for diffusion processes, a
derivative formula on diffusion semigroups was established first by Bismut in [7] using Malliavin
calculus, and then by Elworthy-Li in [12] using a martingale argument. Hence, this type derivative
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formula is named as Bsimut formula or Bismut-Elworthy-Li formula in the literature. Moreover, a
new coupling method (called coupling by change of measures) was introduced to establish derivative
formulas and Harnack inequalities for SDEs and SPDEs; see, for example, [33] and references
therein. Due to its wide applications, the Bismut type formulas have been investigated for different
models; see, for instance, [10, 25, 30, 31, 38, 40] for SDEs/SPDEs driven by jump processes,
[16, 17, 24, 35, 34, 37, 39] for hypoelliptic diffusion semigroups, and [2, 14, 15] for SDEs with
fractional noises.

Recently, the Bismut type formulas have been established in [4] for the Géteaux derivative
of functional solutions to path dependent SDEs, in [26] for the Lions derivative of solutions to
McKean-Vlasov SDEs. See also [3, 11] for the study of derivative in the initial points for McKean-
Vlasov SDEs, and Lions derivative for solutions to the de-coupled SDEs (which do not depend on
the distribution of its own solution) associated with McKean-Vlasov SDEs. In these references, the
noise term is distribution-path independent. However, when the noise term is path dependent, the
distribution of the solution is no longer differentiable in the initial value, so that the Bismut type
formula is invalid. In this case, a weaker derivative formula, called asymptotic Bismut formula, has
been established in [22].

The aim of this paper is to establish (asymptotic) derivative formulas for the Lions derivative
w.r.t. the initial distribution of distribution-path dependent SDEs, such that results derived in
[4, 22, 26] are generalized and improved. To this end, we will identify the Lions derivative of the
solution in initial distributions by the Malliavin derivative along an adapted direction, so that
the integration by parts formula for the Malliavin derivative gives rise to a formula of the Lions
derivative.

Since the functional solution of a path-distribution dependent SDE takes values in the path
space C([—rg,0]; R?), where 79 > 0 is the length of memory, to investigate the regularities of the
solution in initial distributions, we need to introduce and study derivatives in probability measures
on the path space, which is new in the literature.

For a fixed number 7y > 0, the path space € := C([—rp,0];R?) is a separable Banach space
under the uniform norm

1€

wi= sup [£(0)], £€C.

—10<0<0

For t > 0 and f € C([~79,00); R?), the €-valued function (f;);>o defined by
fi(0) = f(t+0), 0¢€[-ro0]

is called the segment (or window) process of (f(t))i>—r,- Let £ stand for the distribution of a
random variable £&. When different probability measures are concerned, we also denote .Z; by Z¢|P
to emphasize the reference probability measure P. Let &?(%’) be the collection of all probability
measures on ¢ and, for p > 0, Z,(%) the set of probability measures on ¢ with finite p-th moment,
ie.,

Po(€) = {n € 2(€) : |ullp = {u(] - L)} < oo},

where p(f) := [ fdp for a measurable function f. Then Z,(%) is a Polish space under the
W,-Wasserstein distance defined by

reC(uy) ’

Wy(uv) = inf ( / sﬂug—nuzgm«is,dn)) L e PE), p>0,
X
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where C(u,v) is the set of all couplings of p and v.
Consider the following McKean-Vlasov SDE with memory (also called distribution-path depen-
dent SDE):

(1.1) AX (1) = b(t, Xy, Zx,)dt + o(t, Xy, Lx,)AW(E), >0,

where (W (t))s>0 is an m-dimensional Brownian motion on a complete filtration probability space
(Q, Z#,(Zt)t>0,P), and

b:[0,00) X € x P(€) - RY, 5:[0,00) X € x P(€) = REQR™
are measurable satisfying the following assumption.
(A) Letpe[l, o).
(A1) band o are bounded on bounded subsets of [0,00) x € x Z,(¥).

(A2) For any T' > 0, there is a constant K > 0 such that

2(5(0) - 7](0)’ b(t,f, M) - b(t’na V)>+ + Ho(t,f,,u) - U(tﬂ?, V)H%{S
< K{lI€ = nll% + Wy(p,v)*}, &neC v e Py(F),t €0,T].

(A3) When p € [1,2], o(t,&, 1) = o(t,£(0)) depends only on ¢ and £(0).

For any .Zp-measurable random variable Xy € ¢, an adapted continuous process (X (t))i>0 is
called a solution with the initial value Xy, if P-a.s.

t t
X(t) = X(0) —i—/ b(s, Xs, Lx.)ds +/ o(s, Xs, Lx,)dW(s), t >0,
0 0

where the segment process (X¢);>0 associated with the solution process
X(t) == X(t)1(0,00) (1) + Xo(E)L[—ry,0(t), = —T0

is called a functional solution to (1.1).
According to Lemma 3.1 below, under the assumption (A), for any Xy € LP(Q — ¥,.%,P),
(1.1) has a unique functional solution (X;):>o satisfying

(s 1%,
0<s<t

%><oo, t> 0.

To emphasize the initial distribution, we denote the functional solution by X! if Zx, = p. In this
paper, we aim to investigate the Lions derivative of the functional u +— (P, f)(p), where

(1.2) (Pf) () = Ef(XP), t>0,f € B%).

This refers to the regularity of the law XX# w.r.t. the initial distribution pg. Due to the weak

uniqueness ensured by Lemma 3.1 below, (P f)(u) is a function of y; i.e., if )?f also solves (1.1)
with .,?Xg = 1, then Zyn = Z)}# so that the definition of (P.f)(u) does not depend on the choice

of solutions.



The remainder of this paper is organized as follows. Since % is a Banach space, in Section 2 we
extend the notion of Lions derivative introduced in [8] for functions on the Wasserstein space Z25(R9)
to probability measures on Banach spaces, and establish a derivative formula in the distribution of
Banach-valued random variables, where &25(R%) is the set of all probability measures on R? with
finite second-order moment. In Section 3, under (A) we prove the well-posedness of solutions to
(1.1), which generalizes the corresponding results derived in [20] for p = 2 and in [28] for Lipschitz
continuous b(t, ). In Sections 4 and 5 we calculate the Malliavin derivative of X} w.r.t the Brownian
motion W (t), and the Lions derivative of X! in the initial distribution u, respectively. Finally,
in Sections 6 and 7 we establish respectively the Bismut type formula for the Lions derivative of
(Pif)(p) in g when o(t,&, 1) = o(t,£(0)) depends only on ¢ and £(0), and the asymptotic Bismut
formula for the Lions derivative of (P, f)(u) in p in case of o(t,&, u) = o(t,€) (i.e., the diffusion
term is path-dependent but independent of measure argument pu).

We would like to emphasize that even come back to Mckean-Vlasov SDEs without memory
studied in [26] and the classical SDEs with memory considered in [22], our main conditions are
weaker since the drift term can be non-Lipschitz continuous.

2 Derivatives in probability measures on a separable Banach space

In this part, we introduce the intrinsic and Lions derivatives for probability measures on a separable
Banach space, and establish the chain rule for the distribution of Banach-valued random variables.
These will be used to establish the (asymptotic) Bismut type formulas for the intrinsic and Lions
derivatives of (P.f)(u).

The intrinsic derivative was first introduced in [1] on the configuration space over Riemannian
manifolds, while the Lions derivative (denoted by L-derivative in the literature) was developed on
the Wasserstein space %5(R?) from Lions’ lectures [8] on mean-field games. The relation between
them has been clarified in the recent paper [27], where the latter is a stronger notion than the
former and they coincide if both exist.

Let (B, || - ||g) be a separable Banach space, and let (B*,| - ||g«) be its dual space. For any
p € [1,00), denote p* = -~ when p > 1 and p* = oo as p = 1. Let Z(B) be the class of all

p—1
probability measures on B equipped with the weak topology. Then

1
Pp={pe 2B : |l = {u(l-I§)}? < oo}
is a Polish space under the LP-Wasserstein distance
1
p
W)= ot ([ e ylgaanan)”
meC(p1,p2) \ JBxB

where C(u1, pu2) is the set of all couplings of p; and pe.
For any pu € Z,(B), the tangent space at p is given by

Tup = LP(B — B;n) := {¢ : B — B is measurable with x(||¢[§) < oo},

1
which is a Banach space under the norm ||¢[7, , := {u(||¢|5)}7, and its dual space is

T, = P (B — B*; u) == {¢: B — B* is measurable with |||

T, = HHT/)HIB%* L™ (1) < oo}.



Definition 2.1. Let f : &2,(B) — R be a continuous function for some p € [1,00), and let Id be
the identity map on B.

(1) f is called intrinsically differentiable at a point p € Z,(B), if

o -1y _
Ty 6 D f() =ty 20T DI

is a well-defined bounded linear functional. In this case, the unique element D f(u) € Typ
satisfying

12 ADEf(1), 0)1,,, = /B 5 (DL f(u) (@), &())u(dx) = DEF(u), & € Ty,

is called the intrinsic derivative of f at p.

If moreover

[f(no (Id+¢)~") — f(u) — DL f ()]

lim = 07
H(b”T‘u,,piO ||¢||Tu,p

f is called L-differentiable at y with the L-derivative (i.e., Lions derivative) D* f(u).

(2) We write f € CY(2,(B)) if f is L-differentiable at any point u € Z2,(B), and the L-derivative
has a version D* f(u)(z) jointly continuous in (z, ) € B x Z2,(B). If moreover D f(u)(x) is
bounded, we denote f € C}(Z,(B)).

Theorem 2.1. Let f : Z)(B) — R be continuous for some p € [1,00), and let (& )ccpp,1) be a
family of B-valued random variables on a Polish complete probability space (Q,.7,P) such that
&o = lim, | L8 epists in LP(Q).

£

(1) Let po = %, be atomless. If f is L-differentiable such that D* f(uo) has a continuous version
satisfying

GRW| (2.1) IDE f(no) (@) la+ < C(1+ |25 1ps1y), 2 €B
for some constant C > 0, then

(2.2) o F( ) — F( L)

el0 IS

= E[g- (D" f (10) (&), €0) ).

(2) If f is L-differentiable in a neighbourhood O of pg such that D*f has a version jointly
continuous in (x, ) € B x O satisfying

(23) IDEf()@)se < CO+ [2]Z7 1goy), (@) €BX O
for some constant C > 0, then (2.2) holds.

To prove this result, we need the following lemma similar to [18, Lemma A.2] for the special
case that Z,(%) = P2(R?) (i.e., p=2 and B = RY).



Lemma 2.2. Let {(Q, %, Pi)}i=12 be two atomless, Polish complete probability spaces, and let
X; be B-valued random variables on these two probability spaces respectively such that ZLx,|P1 =
Zx,|Pa. Then for any € > 0, there exist measurable maps

7: 01 = Qo 10y 5 )
such that
Pi(r 7 or =1dg,) =Pa(ror ! =1dg,) =1,
Py =Pyor, Py=Pior},
X1 = Xo 07|l oopy) + [ X2 — X107 || oo,y < €
where Idg, stands for the identity map on Q;,1 =1,2.

Proof. Since B is separable, there is a measurable partition (A,),>1 of B such that diam(A4,) < ¢,
n > 1. Let Ai ={X; € A,},n > 1,i = 1,2. Then (A%),>1 forms a measurable partition of €; so
that Zn>1 =;,1=1,2, and, due to .,S”XI\IPH Lx,|Pa,

Since the probabilities (IP;);—1 2 are atomless, according to [19 Theorem C in Section 41], for any
n > 1 there exist measurable sets A’ C Al with P;(AY \A’ = 0,7 = 1,2, and a measurable
bijective map

ot AL — A2
such that
-1
Pl’Z}LZPQOTn‘Z}L’ IP?LZ%:PloTn A'%

By diam(A4,) < ¢ and P;(A% \ A%) = 0, we have
(X1 = Xo 0 7n)1 1 [l Loy V (X2 — Xy o Tn_l)lg%”Loo(]P’z) <e
Then the proof is finished by taking, for fixed points w; € ;,71 =1, 2,

Tn(w1), if wy € AL for some n > 1,
(w1) =

w9, otherwise,

T_l(wg) — 7 N we), if we € A2 for some n > 1,
w1, otherwise.
O

Proof of Theorem 2.1. Without loss of generality, we may and do assume that P is atomless. Oth-
erwise, by taking

(Q,.7,P):= (Qx[0,1],.Z x B([0,1]),P x ds), (£&)(w,s) = &(w) for (w,s) € Q,

where %([0,1]) is the completion of the Borel o-algebra on [0, 1] w.r.t. the Lebesgue measure ds,
we have

L5 IP = %.|P, Elg-(D"f(0)(),E0)8] = Els+ (DL f(110)(€0), §o> ].



AB3

AB4

AB5

ABBO

ABB

AB6

In this way we go back to the atomless situation.

(1) Let Ly = po € Pp(B) be atomless. In this case, (B, Z(B), o) is an atomless Polish
complete probability space, where Z(B) is the pg-complete Borel o-algebra of B. By Lemma 2.2,
for any n > 1 we find measurable maps

T Q=B 7, B—Q

such that

P(Tn_l o1, =1Idq) = po(m, o Trjl =1d) =1,
(2.4) P =90, po=Por,",

160 = Tl oo (@) + 1A — €0 0 75 [ 20w (o) < %

where Id = Idp is the identity map on B.
Since f is L-differentiable at pg, there exists a decreasing function h : [0,1] — [0,00) with
h(r) | 0 as r | 0 such that

(2.5) sup | f(po o (Id+¢)~") = f(uo) — D f(po)| < rh(r), € [0,1].

611 Lp (jug) <7
Since L. _¢, € Pp(B), by (2.4) we have
(2:6) One = (& —&)omy ' € Tupy Nbneln,, = 1€ = &ollr@)-
Next, (2.4) implies
(2.7) Lrttetg=Po(ta+&—&) " =(moom)o(mm+& —&) ' =poo(Id+¢ne) "
Moreover, by &%&’ — & in LP(P) as € | 0, we find a constant ¢ > 1 such that
(2.8) 1€ — Sollrp) < ce, € €10,1].

Combining (2.4)-(2.8) leads to

|f(Lrre—es) — F(Ley) — Elp (D" ) (10) (1), (& — €0))5]]
(2.9) = |f(uoo (Id+ ¢ne)™") = fpo) — D, _ f(po)]
< N pnellz, hlllnellT,,) = 1€ — ol Lo@yh(Ié: — Eollr@), € € [0,¢7Y:

Since f(u) is continuous in px and D¥ f(jug)(z) is continuous in z, by (2.1) and (2.4), we may apply
the dominated convergence theorem to deduce from (2.9) with n — oo that

|f(Le.) = F(Ley) = Elp= (D" ) (10) (§0), (& — €0))3]| < lI€ — &oll oy h(lI€e — Eoll o)), € € [0,¢71].

Combining this with (2.8) and h(r) — 0 as r — 0, we prove (2.2).

(2) When o has an atom, we take a B-valued bounded random variable X which is independent
of (§)eejo,1] and ZLx does not have an atom. Then Z¢ | x4r(c.—gy) € Pp(#) does not have atom
for any s > 0,e € [0, 1]. By conditions in Theorem 2.1(2), there exists a small constant sy € (0,1)



ESTY

such that for any s,e € (0, so], we may apply (2.2) to the family & + sX + (r+9) (& — &o) for small
0 > 0 to conclude

1
d
f($§a+sx) - f(iﬂgoJrsX) = /0 ﬁf(iﬂgwsxﬂr‘%)(&e—&o))‘5:0 dr

1
= /0 Elg- (D" f(Leorsx1r(ec—t0)) (€0 + sX +1(& — &), & — &o)s] dr.

By conditions in Theorem 2.1(2), we may let s | 0 to derive

1
f(gfs) - f(gfo) = A E[B* <DLf($£o+T(§g—§0))(£0 + 7"(56 - EO))a 55 - £0>IB%] d’l“, €€ (Oa 50)'

Multiplying both sides by e~! and letting € | 0 , we finish the proof. O

3 Well-posedness of (1.1)

When p = 2, the existence and uniqueness of strong solutions to (1.1) follows from [20, Theorem 3.1];
see also [28, Theorem 3.1] for p > 2, where b(t, £, i) is Lipschitz continuous in (&, u) € € X Zp(6).
In the following result, the drift b(¢, &, 1) may be non-Lipschitz continuous w.r.t. £.

Lemma 3.1. Assume (A) for some p € [1,00) and let T > 0. There exists a constant ¢ > 0 such
that for any Xo € LP(Q — €, F0,P), (1.1) has a functional solution Xio 1) = (Xt)sejo,1) satisfying

(3.1 E( sup [X) <e(1+EIXl}).

and any two functional solutions X(o1) and Y| 1) satisfy

(3.2) E( sup || X: —Y;

L) < cE|Xo - Yoll}.
0<t<T

Consequently, the SDE (1.1) is strongly and weakly well-posed.

Proof. By It6’s formula and BDG’s inequality, it is easy to derive estimates (3.1) and (3.2) from
assumption (A). In particular, the strong uniqueness holds. Next, according to [29, Theorem 2.3],
the assumption (A) implies the well-posedness of the SDE with memory

dX(t) = b(t, Xt, Mt)dt + U(t, Xt, Mt)dW<t)

for any p. € C([0,T; Z,(€)). As shown in the proof of [21, Lemma 2.1], the weak well-posedness
of (1.1) follows from the strong one. So, it remains to prove the strong existence, for which we
only need to find a constant ty € (0,7") independent of the initial value X such that the SDE (1.1)
is well-posed up to time to. Indeed, once this is proved, we may solve the SDE (1.1) from time
to up to 2ty so that (1.1) is strongly well-posed up to time 2ty. Repeating the previous procedure
for finite many times we obtain the strong well-posedness up to time 7. Below we construct the
solution by using an iterating argument as in [36].
Let p = Zx, € &,(%¢) and consider the SDE

dxXOt) = b(t, X, wdt + o(t, XV, pydw(t), t>0, x =X



According to [29, Theorem 2.3|, (A) implies that this SDE has a unique solution. Using (A) and
applying Ito’s formula to £©(¢) := (1 + [X©)(£)[2)2, we find a constant ¢; > 0 such that

deO () < er(1+ 1€V ]19)dt + p(1 + |XO @) 7 (XO(t), o(t, X, w)dW (1)), t € [0,T).

For any n > 1, let 7, = inf {t > 0 HXt(O)
¢, c3 > 0 such that

o > n} By BDG’s inequality and (A), we find constants

B |l — E[e”

ggE< wpé%@o

0<s<tATp

t tATh
s@/fwé%wwh+@E</ 160
0 0

t
¢ + 03/ E||eR.
0

1
2
%ds)

¢ds, te€]0,T).

1 0
< §E\|§t(/\)rn

By Gronwall’s lemma and E||§§R)Tn |l < oo, it follows that
0
Elléfr, e < 2*El&" s, n > 1,1 €[0,7].
By Fatou’s lemma for n — oo and using the definition of §t(0), we find a constant ¢ > 0 such that

(3.3) E|X | < e(1+ E| X

P, telo,T).

If, for some n > 1, we have constructed a continuous adapted process Xt(n_l) € € with Xén_l) = Xy
such that

(3.4) E( sup ||X(Y

0<s<t

%)<oo, t >0,

consider the SDE with memory

(3.5)  dX®™ (1) =b(t, XM, &

o)At + o (6, X L)W (t), te [0,T], X" = Xo.

By [29, Theorem 2.3], (A) implies that (3.4) has a unique solution, and the argument leading to
(3.3) yields

(3.6) E( sup ||X§”)

’;) < oo, t€[0,7].
0<s<t

In this way we have constructed a sequence of continuous adapted process { (Xt(n))tE[QT] tn>10n%.
It suffices to find a constant ¢y > 0 independent of X such that

(3.7) lim E( sup HXS(")—Xgm)H%) = 0.

n,m—00 0<s<tg

Indeed, this implies the existence of an adapted continuous process (Xt)te[o,to} such that

lim E< sup ||X§”) —XS||%> =0,

n— oo 0<s<tg



which, together with (A) and

t t
XM (@) = Xo(0) + /0 b(X§">,$X§,H>)ds+ /0 a(Xﬁ”),fXﬁnyl))dW(s), t € [0, o)

due to (3.5), implies that (Xt),c(o4,) solves (1.1) up to time ¢, with

IE( sup \XSH%) < 0.

0<s<tg

It remains to verify (3.7). To this end, for n > 2 we denote ugn) = fX(n) and set
t

(1) = X)) — xPD@), telo,T]
By (3.5), we have
dw™ () = {b(t, XM, 1"y b, XD, ") Ve
(ot X0, 10 — ofe, XD D)), w — o
By Itd’s formula and (A), we find a constant ¢; > 0 such that
AU (O < er {1057 + Wy, "yt
+ T OP A @) o X ") = o6 XY )y (), v =o.

By BDG’s inequality and noting that, for p € [1,2], the coefficient o(t, &, 1) depends only on (¢, &)
so that (A) implies

1 1 2
ot X, 1" ™0) = o6, X7 0" ) s < KN
there exist constants cg, c3 > 0 such that

B( s 1917 ) = E( sup 1¥W)P)

t
<o /0 (ETOE + W, (u0 ), 1Dy} ds

t
+C2E< / TIRlE pwg”—”,ug”—?))?}ds)

< 58 ( s W) ex [ {EIUEE + 9,000 0 s,
0<s<

D=

—){ngﬂ 2

By Gronwall’s lemma, (3.4), (3.6) and noting that
W (", w7 < EJw DL,

we obtain

IE( sup |wi)

0<s<

(5) < 2c2te202tE< sup ||@—L|P 5’)
0<s<t

Taking to € (0,7 such that 2cotge®2 < l, we arrive at

E< sup [|@™ >§ E( sup [|@n— (g> n > 2.
0<s<to 0<s<to

This and E(supg<,<y, H‘I’gl)

t€10,7).

?) < oo imply (3.7). O
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4 The Malliavin derivative of X/'

Consider the separable Banach space ¢’ with the uniform norm [||ls := supyc[_y, 01 [£(t)]. For a
Gateaux differentiable matrix-valued function f on %, let

VIOl = sup [[(Vyf)(E)llus, §€C,

n€e,|Inlle <1

where

(Vo f)(E) = lim LEFEN =S

el0 IS

Besides (A), we will need the following assumption. A function f on 4 is called C'*-smooth, denoted
by f € CH(¥), if it is Gateaux differentiable with derivative V f(£) continuous in ¢&. Moreover, if
the derivative is bounded, we write f € CL(%). It is well known that a function f € C1(%¥) is
Fréchet differentiable.

(B) Let p € [1,00). o(t,& ) and b(t, &, i) are Cl-smooth in ¢ € € and L-differentiable in
€ (%), and satisty the following conditions.

(B1) o(t,&, 1) is bounded and (Vy,0)(t,-, 1)(€) is continuous in (§,7) € € x €, and there exist
increasing functions K, Ks : [0, 00) — [0, 00) such that

1)t ) < Ka ({14 €l T + Kol ) (.6 1) € [0,00) x  x ().
(B2) b(t,&,-),0(t,&,-) € CHPH(F)) with

sup {u(|ID"b(t, &, ) () (")
(t,&,0)E[0,T|XE x Zp(€)

2) + n(ID ot &, ) () (V%)) < 50, T > 0.

(Bs3) If p € [1,2), then there exists an increasing function K : [0,00) — [0, 00) such that
o, & mll < K@ +1Igl1%), €.
(Bg) If p € [1,2), then o(t,&, pn) = o(t,£(0)) only depends on ¢, and £(0).
Since (B) ensures that b(t,&, u) and o(t,&, p) are Gateaux differentiable in £ € €, (A) implies

2(€(0), (Veb)(t, -, ) () + 1(Veo) (t, -, ) () s
< K[l &neC pe Pp(€),te0,T).

(4.1)

For any T > 0, set 7 := C([0, T]; R?) and consider the Cameron-Martin space

T l
H = {h € %T‘h(()) = 0, h(t) exists a.e. t, ||h|ly = </ h(t)|2dt> ‘< oo}.
0

By the pathwise uniqueness of (1.1), we may regard X} as a %-valued function of X and W,
and investigate its Malliavin derivative w.r.t. the Brownian motion W. For any h € L>°(Q — H,P)
and € > 0, consider the SDE

AXMEH() = {b(t, X", pe) + e0 (8, Xp0H, ) (8}t + o (8, X[, pe) AW (1),
t € [0,T), X0 = XYy = L.

(1.2

11
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When h is adapted, according to the proof of Lemma 3.1, assumption (A) implies the existence
and uniqueness of this SDE.
The directional Malliavin derivative of X#(¢) along h is given by

XMmer(t) — XP(t
Dp X*#(t) := lim (®) ®)

e—0 3

provided the limit exists in L2(Q2 — C([0,T]; R%),P). To prove the existence of this limit, we first
present the following lemma.

Lemma 4.1. Assume (A) and let (B3) hold if p € [1,2). Let h € L*(2 — H,P) which is adapted
if o(t,&, p) depends on &, and let Xo € LP(Q — €, %y, P). Then there exists a constant ¢ > 0 such
that

(4.3) IE( sup || XPen — ng@p) <P ee0,1]
0<s<T

Proof. Below, we only consider the case that h is adapted and o(t, £, 1) depends on &, since the
proof for the setup that o(t, &, ) is independent of ¢ is even simpler.
Let Zh,g(t) _ XMoot (£)— X B (t)

2 and

T =inf{t > 0: | XF]lg + | X"5F e > n}, n>1.

By (1.1) and (4.2), we have

bit, XEH ) — b(t, X* .
dz"=(t) :{ GRS ’“t)g GRSAT —i—a(t,Xf’s’“,ut)h(t)}dt
(4.4) .
X €1 _ X)u‘
Lot "“l_ o) gy, zhe ~ o,

Applying 1t6’s formula and taking (A) and Z§ = 0 into account yields, for ¢ := 2V p,

tATh 2
2"t ATl < 3/0 {2024(),b0s, X2 ) = b(s, XU 1)
-1
(4.5) Ll (s, X2 ) — o (s, X ) s + N¥(8) + ME(1)

tATh
<o [z s + NE () 4 e,
0
for some constant ¢ > 0, where, by setting r% = 1 for r € [0, 00) in case of p = 1,
tATh .
N = [ 12 ol X (o) s,
0

M=) : = q/o ’ |27 (5)[ 772" (), (0 (5, X5, ) — o (s, X2, ) )AW (5)).
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Let 1 > 0 be a constant such that |||y <1 due to h € L*(2 — H,P). By Holder’s and Young’s
inequalities, Lemma 3.1, (A) and (Bs) when p € [1,2), we find constants cg, ¢; > 0 such that

tATR 1/2
B( s VA)l) <qui( s 120 P [ fols X4 )| ds)
0<s<tATn 0<s<tATh 0
1 ¢ Ea
(4.6) ng( sup |Zh’5(s)|q)+coE</(1+|]Xf’€’“\|gp)ds>

4 \o<s<tnrm, 0

1
< 1E( swp [Z()P) 4, tef0.T).

0<s<tATp,

By (A) and the BDG inequality, there exist constants cg,c3 > 0 such that

tATn b 1/2
o sw ) <en( stz [ 120
0

0<s<tATn 0<s<tATh
(4.7) 1 :
<3E( s 12808) + e [ EIZLG, I

0<s<tATn

Combining (4.5)-(4.7) we find a constant ¢ > 0 such that

B sup 22

0<s<tATn

t
%) < c—i—c/o IEHZQ/’\ian%ds < oo, t€]0,T], € €]0,1].

By first applying Gronwall’s inequality then letting n — oo, we derive (4.3). O

Lemma 4.2. Assume (A) and (B) . For any X} € LP(QY — €¢,.%),P) and h € L=(Q — H,P)
which is adapted if o(t,&, u) depends on £, the limit

h@li _ X“
(4.8) Dp X} :=lim L

, t€][0,T]
el0 )

exists in L2(Q — C([0,T];€),P), and it is the unique solution of the following SDE with memory

dw” (£) = {(V, )t~ 1) (XE) + o8, XE, p)(t) bt

4.9
(4.9) + (Vwéla)(t, ) (XEYAW(t), t € [0,T), wh = 0, g == L.

Proof. By (4.1) and the boundedness of o due to (By), for any adapted h € L?(Q — H,P), the
SDE (4.9) has a unique solution in L?(Q — C([0,T]; ¢),P) and for some constant C' > 0,

(4.10) E( sup |jwf
0<t<T

2) < CE|InJ, < oo.

So, it remains to prove that the limit in (4.8) exists in L*(Q — C([0,7]; €),P), and it solves (4.9).
h,e, _
Let APe(t) = ZM4(t) — wh(t), where Z™4(t) := w as before. Then, it suffices to verify

(4.11) lim IE( sup |Ah’5(s)\2) = 0.
e—0 0<s<T

13



Observe that (4.3) and (4.10) imply

(4.12) E( sup \Ah’e(s)|2> < .

0<s<T
By (4.4) and (4.9), we have
(413)  dAM (1) = {(Vash)(t, -, o) (X]) + TT(6) }dt + {(Vaso) (¢, -, ) (XI) + T5() JdW (2),
where

D5(t) : = (o (t, X5, ) — o (t, X[, ) h(t)

1
(4.14) [ AT bt ) O 4+ 00K = X)) = (9 gpeb) 1) () }0
1
50t = [ {7 o)t 058 + 00X = XE) = (9 o)t ) (X1},

Obviously, when o(t,£, u) = o(t, u) does not depend on &, the noise term in (4.13) disappears so
that the SDE reduces to an ODE for which we can allow h to be non-adapted. Applying It6’s
formula yields

IAh’E(t)\QS/O {2(07(5), (V yn.eb) (5, -, ) (X)) + 2 (V yn.20) (5, -, 1) (XE) s Fds

t t
+2 [ {5 T500) + IT5(6) s s +2 | (AR (6], {7 g0 o010 (K2) + T5)}AW ()
=: TI(¢) + Y5(¢) + Y5(¢b).

Obviously, (4.1) implies
t
(4.15) E( sup Ti(s)) < 3K/ || A" ds,
0<s<t 0
while Cauchy-Schwarz’s inequality gives
t
(4.16) E( sup 1T5(3)|) < / {2E[A"=(5)* + E[T5(s)|* + 2E[T5(s) | fis }ds.
0<s<t 0
Next, by (4.1) and BDG’s inequality, we find constants ¢1,c2 > 0 such that

B s T56)) < B sup WGP [ 1730000050 (X2 + T30 )

0<s<t 0<s<t

1 t
< §E( sup ]Ah’s(s)|2> +62/ {IEHA’;8
0<s<t 0

(4.17)
7 +E[T5(s)[I*}ds.

Combining (4.15), (4.16) with (4.17), there exists a constant ¢ > 0 such that

t t
B( sup 147(5)%) <o [ EIAL s +es [ {EITS (9 + BITS(3) s

0<s<t

14
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By Gronwall’s inequality and (4.12), this implies

t
(418) B sup [A"(9)F) < cae B [ (NI + I3 rs s

Moreover, by (4.14), we have

(4.19) ID5(s)* + IT5(s)llfis < LA + ()1 2,717

where according to (B;) and (4.1) we find a constant ¢(7') > 0 increasing in 7" such that
L(8) = 2o (t, X ) = o (6, XL ) |2,
Je(t) := 2/01{\\(%)(75, ) (XE 0 = X)) = (VB (t, - ) (X0
+ (Vo) (t, - ) (XF + O(X M = X1)) = (Vo) (-, ) (X[ 710
< o) (L+ X0 g2 + 11X = X + Ka(llwll})), ¢ € 10, 7).
By (B) and (4.3), I.(t) is bounded and I.(t) — 0 in probability as ¢ — 0. So, the dominated

convergence theorem yields

T
(4.20) lim E / I (t)|h(t)|?dt = 0.
e—0 0
Below we complete the proof of (4.11) by considering two different cases.
(1) When p > 2, (3.1) and (4.3) imply that {||ZZL’8H%(1+||X{”H%_2)}E€[071] is uniformly integrable
in L!(P) and

E[| 2| 2| X5 — XME%) = P2E)| 2P, < ceP"2 0 ase — 0.

Then, by the dominated convergence theorem, (4.3) and J.(¢) — 0 in probability, we arrive at
T
lin /O J(O)|Z< %t = o.
This, together with (4.19) and (4.20), implies

T
(4.21) limE/O {IPS®F + IT5() [fis }dt = 0

e—0

so that (4.11) follows from (4.18).
(2) When p € [1,2], (By) and (3.1) imply J-(¢) < K for some constant K depending on 7.
Then,

t t
(1.22) B [ (TSP + I5(s) s hds < er + 2 [ AL ds, ¢ € 0,7)
0 0

where, by the dominated convergence theorem,

T
ET::/ E[LO)|h®)? + Jo)[wl2]dt 0 ase — 0.
0
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Substituting (4.22) into (4.18) and using Gronwall’s lemma, we derive

lim IE( sup |Ah’€(s)]2) < lim 5Te(c3+2K)T =0.
e—0 e—0

0<s<t

Therefore, (4.11) holds. O

Let (D, 2(D)) be the Malliavin gradient with adjoint (i.e., Malliavin divergence) (D*, 2(D*)).
Then,

(4.23) E[DyF] = E[FD*(h)], F € 2(D),h € 2(D").
In particular, if h € L2(2 — H,P) is adapted, then h € 2(D*) and
T .
(4.24) D) = [ (i), aw ),
0

see, for example, [23].

P4.3| Proposition 4.3. Assume (A) and (B). For any h € 9(D*) which is adapted if o(t,&, ) depends
on &, (4.9) has a unique functional solution satisfying (4.10) for some constant C' > 0, and for any

feai@).
(4.25) E[(V 1 £)(X5)] = E[f(X2)D"(h)].
Proof. As explained in the proof of Lemma 4.2, the first assertion follows from assumptions (A)
and (B). So it suffices to prove (4.25).
We first consider h € L*(2 — H,P) N 2(D*). By Lemma 4.2, the chain rule and (4.23), we
obtain
bb1] (4.26) E[(V,, £)(X2)] = E[Dp{F(X4)}] = E[f(Xi)D" (1)),
In general, for adapted h € Z(D*), we choose (hp)p>0 C L>®(Q — H,P) N Z(D*) such that
(4.27) lim E[||hn — k|3, + |D*(hn) — D*(h)|*] = 0.
In terms of (4.26), we have
LDB| (4.28) E[(ngnf)(Xéi)} =E[f(X})D*(hy)], n>1.

By (A) and (B), we find a constant C' > 0 such that
Ellwy — willi < CEllh — Rl

This, together with f € C} (%) and (4.27), the desired formula (4.25) by taking n — oo in (4.28). O
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5 The Gateaux and intrinsic derivatives

For fixed p € [2,00) and X[J € LP(Q — €,.%y,P) with the distribution p, let (X}');>0 be the
unique solution to (1.1) starting from X/'. To calculate the intrinsic derivative of X}" w.r.t. g,
we consider the tangent space 1), := LP(¢ — €,p), where ¢ := C([—79,0]; R?) endowed with
the uniform norm |[[{[l% := sup;c|_,, ) [§(?)] is a separable Banach space with the dual space ¢
consisting of all bounded linear functionals o : € — R. We denote the dualization between €* and
€ by ¢+ (a, ) = o) for a € €%, € €. For any p € Py(€¢) and ¢ € T}, p, let

p’ =po (Id+¢) ™" = Larayxs)
Let (Xt”(b)tzg be the functional solution to (1.1) with X6L¢ := (Id + ¢)(X}), and denote

¢ _
Iy _gX{‘¢’ t>0.

Then the directional intrinsic derivative of X' along ¢ is given by
Lyn X~ - xt

5.1 Dy X, :=lim —*t
( ) ¢ sgg £

provided the limit above exists.
More generally, for £ € LP(Q — €, .%,P) and € € [0,1], we let X" be the functional solution

to (1.1) with X := e¢ + X4, and denote u5° = yzen- Then the Gateaux derivative of Xt
along € is
)(€§H __)(N
(5.2) VX = lim —t——
e—0 €

provided the limit above exists. Obviously,
(5.3) VeX['=DLXY if € = ¢(X)).
To prove the existence of Vng , we need the following lemma.

Lemma 5.1. Assume (A) and that (B4) holds when p € [1,2). For any T > 0 and q > p, there
exists a constant ¢ > 0 such that

(5.4) E( sup || X6H — XN
0<s<t

1) <P Elell, te0,T], € € [0,1], € € LR > E, Fo, P).

Proof. Set ®%4(t) := w,t > —rg,e > 0. Since XZ# and X/ solve (1.1) with the initial
values XSE’” and X/, respectively, one has

1
. A0 (1) = —{b(t, X7, 4 ) — b(t, X' ) bt
5.5
1 &l 1> 1>
+ —{o(t X7 i) = o (t XY ) }AW (2), £ > 0,857 = €.

By (A) and (B4) when p € [1,2), and applying It6’s formula and the fact that

D
W (5%, ma)? < B[ X6 — XE|L = PRI |% < eP{E|95]4) 5,
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we find a constant ¢; > 0 such that

t
2
B0 < § [0S {20 (s), o X5 E) = b, XL )

qg—1
(5.6) (s, X2, 1u5%) — (s, X2, 1) s bk + M (1)

t
< Cl/o (05|12 + E[|®5<||%)ds + M=(t), t>0,

where

() =4 /0 857 ()| 2(D5 (s), (o (s, XS, 1§%) — (s, X2, 1) )WV (5)).

Next, by BDG’s inequality and (A), there exist some constants ¢z, ¢ > 0 such that

1
2

t
E( sup M(s)) < E( sup |57(s)|" / @5 (5)|72 o (s, X3, 1§7) — U(S,Xéﬂus)ll2d8>
0<s<t € 0<s<t 0

1 t
< §E< sup |<I>§’a(s)|q) —I—c;;E/ |®%° 4 ds.
0

0<s<t

Combining this with (5.6), we derive

7) < 2E|0f°

E( sup || ®5° dds, t>0
t

0<s<

t
! 4y / E| 95
0

for some constant ¢4 > 0. By stopping at an exit time as in the proof of Lemma 4.1, we may
assume E(supogsgt H<I>§’5||q<g> < 00, such that (5.4) follows from Gronwall’s inequality. O

Consider the following SDE with memory
Q04 (8) = {(V )t 1) (XE) + (i (DPb(t,m, ) () (XE), 05

{9,600t 1) (XE) + (B (D o (b, ) () (XF), o e )|

- }dt

t

(5.7)

where i := Zyp and
o (DEb(n, ) (1) (X1, 05 ) = = (- (DFbi(, ) (ue) (X1, 05 ) )1<i<a € R
e (D o(n, ) () (XI), v ) = = (= (D i (n, ) () (XE), 05 )6 )1<i<an<jom € RT @ R™, £ > 0.

Let p > 2. By (A) and (B), this linear SDE has a unique solution. Moreover, by It6’s formula and
BDG’s inequality, we find a constant ¢ > 0 such that

(5.8) E[||v§

#] < cE[lElg], t€[0,7], £€Li(Q—C,F,P).

Lemma 5.2. Assume (A) and (B) for some p > 2. Then for any £ € LP(Q2 — €, %, P), the
limit in (5.2) exists in L*(Q — C([0,T);€),P) and it gives rise to the unique functional solution
of (5.7).
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Proof. Let 25 = &% — %, where (®%°);¢ solves (5.5). To end the proof, it suffices to prove

(5.9) limE< sup ||Et75||?g> =0, T>0.

e—0 OStST

Set
XE’G(t) = XH(t) + O(XH(t) — XH(t)), t > —rg, 0 €[0,1].

By (5.5), (5.7) and Theorem 2.1, we obtain

A2 (1) = {(Tpeb) (b 1) (XE) + (Bige (D 0L, ) () (XE), E55)0)| 4+ Ti(0) fat

n=X/

+{(Tape )t 1) (XE) + B (D 0 (10, ) () (X1, ZE0e)| T30 Jaw(e),

=44

where
! 0
T‘i (t) = /O {(vq>§»5b)(t7 '7M§78)(Xt€7 ) - (vq>fv€b)(tv nut)(Xf)}de

1
[ B0 b0 D) X0 = (DMt ) ) (X0 95) )} 0,

1
Y50 = [ {(Tageo)ts i D) = (Vo) b ) (XE) o
1

+ / {Eee (Pt N (L) (X7) = (DVot ) () (XE), 95) ) |, 0.

By It6’s formula, we obtain
(5.10) 1252 (1) 2 < ©5(t) + O5(t) + ©5(t) + ©5(t), t >0,
where
t
(0= [ {200 (VgD oo (XL + 3 1(Taper) s ) (XD i
+ 2(E5%(s), {Beg= (D" b(s, 1, -) (1) (XF), ES%) s }) )n:X‘f

+ 3B (Do s, () X, E550 s |, Jas
05(t) = / [3]175(5) 3s + 2(25(5), Y5 (s)) } s,

05(1) =2 [ (25°().{(Vapea) (s, ) (X2)

+ (B (Do (s,n, ) (1s) (XE), E5%)er) + T%(S)}’ dW (s)).

n=X}{

By (4.1) and (B), we find a constant ¢; > 0 such that for any ¢ € [0, T,

t t
Do1] (5.11) E( sup @i(s)) < cl/ {E||E§v€||?g+1a|zﬁ»f(s) EHEs,e(s)H%}ds §201/ E||=5< 12 ds.
0 0

0<s<t
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Next, there exists a constant ca > 0 such that

(5.12) E( sup 05(s)) < 02/0 [EIZE<()[2 + Y5 ()2 + EIT5()[2)ds, ¢ € [0,T.

0<s<t

Moreover, applying BDG’s inequality and using (4.1), we find constants c3, c4 > 0 such that

(s ©3(0)) < o sup [255(0) [ RUCARSITRRIEES

0<s<t 0<s<t 0
1/2
(B (DHols,1. )0 (X2, 50) + Y50 s, Jas)

7 +E|T5(s)llfs}ds, t€0,T].

1 _ e
< §E< sup \:5’6(s)|2) —|—C4/ {IEJH:g6
0

0<s<t

Substituting this and (5.11), (5.12) into (5.10), and noting that Eg’s = 0, we find a constant ¢ > 0
such that

t t
B s 125°02) <o [ BIZEURds+ e [ {BITSR +BIT50) hs)ds, ¢ € 0.T]

0<s<t

Since E(supg<,<; 1=5° 2) < oo due to (5.4) and (5.8), Gronwall’s inequality yields

T
(5.13) B( sup [244(P) < ce” [ {BIOP + EIT50)s)ds.
0<s<T 0
This implies (5.9) by following the argument to deduce (4.11) from (4.18). O

Let C} (%) be the class of functions f € C*(%) such that for some constant ¢ > 0,

(5.14) IVIE) < c@+glz), e

Proposition 5.3. Assume (A) and (B) for some p > 2. For any T > 0, f € C}(¥) and
we Py(€), (Prf)(p) is L-differentiable w.r.t. p € Pp(€) and

DG(Prf) (1) = B (V f(XF), Vgxim Xp)w

Consequently, letting ® : € — €* be a measurable function such that ®(X}) = E(V f(X4)|X{), we
have D*(Prf)(p) = .

Proof. Let X" = Xfo(ld+¢)7l be the functional solution to (1.1) with initial value X' + ¢(X}').
For any f € C; (%), by Lemma 5.2, (5.8) and (5.14), we may apply Taylor’s expansion to derive
that for small ||¢|z, ,,

(Prf)(po (1d+¢) ™) = (Pr.f) (i) = E[f (XP") = F(XE)] = B (VF(XE), Vg xm X + (| 07,.,.)-

This implies the desired assertion. O
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6 Bismut formula for the L-derivative
In this section, we consider (1.1) with o(¢, &, u) = o(t,£(0)) dependent only on ¢ and £(0), i.e.,
E11| (6.1) dX(t) = b(t, Xy, Lx,)dt + o(t, X (t))dW (t).

We aim to investigate the the intrinsic derivative of (P, f)(u), given by (1.2) associated with X}".

The main results (Theorems 6.2, 6.3 and 6.4 below) of this part generalize those derived in [4]
for SDEs with memory and in [26] for McKean-Vlasov SDEs without memory. Going back to the
case 19 = 0 (i.e. without memory), the conditions in Theorems 6.2 and 6.3 are weaker than the
corresponding ones used in [26], since the drift b herein is allowed to be non-Lipschitz continuous
w.r.t. the space variables. We will first prove a general result and then apply it to establish the
Bismut formula for (1.1) with additive and multiplicative noise, respectively.

6.1 A general result

Theorem 6.1. Assume (A) and (B) for some p > 2, and let T > ro. Suppose that for any
p € Py(€) and & € LP(Q — €, Fo,P), there exists he , € Z(D*), which is adapted when o(t,§, 1)
depends on &, such that

ovi] (6.2) /S ¢

where Ve XE is in (5.2) and w?f’“ solves (4.9) for h = hg,. Moreover, suppose that for some
increasing function ar : [0,00) — [0,00) we have

2
ov2| (6.3) E[D*(he)* < ar(|pllp)EIENG) 7, &€ LP(Q = €, Fo,P), p € Py(F).
Then the following assertions hold.
(1) For any f € %(¢),

oYo| (6.4) |(Prf)(p) — (Prf)(v)] < \/@T(HMHp VA f llooWp(p, v),  pyv € Zp(F).

(2) For any f € CH(¥), (Prf)(u) is intrinsically differentiable in p € 2,(%) such that

0BS| (6.5) D{(Prf)(p) = E[f(XE)D*(hyxpyu)]s ¢ € Tp-
Consequently,
(6.6) IDE(PrfY T < ar(lulp)(Prf?)(w), we Py(@).

(3) If moreover

E|D*(h¢,n) — D*(he ) ”
p 2

@)

then for any f € Co(€), (Prf)(n) is L-differentiable in p € Zp(€) and (6.6) holds.

(6.7) lim sup

Wi (v1) =0 g2, £(0,1) (EllE !
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Proof. (1) We first consider f € C}(%). Recall that X; S/ is the functional solution to (1.1) with

ng,u = b+ XV, and p5f = Zec.n. Then, we have
t

d i . Ef X(5+5)5u# —Ef X SEH
g]Ef(XTg’”) := lim (X7 ) (X7

e—0 £

)
= Ve(Prf)(u**), s€0,1].
Then, by applying (6.2) with u replaced by p&* and using Proposition 4.3, we obtain

d . S S
(6.8) glEf(XTé,u) = B[, (VFXEM), Ve X550 ]

s&, h ubs s&, *
= B[, (VFXF"), 0 )] = E[f(X7) D" (e ps.s)]-
Whence, one has

rd
(PO e) — (Pr)() = BF(X) = BFXH) = [ { L EF0GE }as
(6.9) 0

1
_ /O E[f (XS5 D" (he e.)]ds, f € CL(E).

Let
1
fr(A) = / E[14(X35") D" (he e.)]ds, A € B(%).
0

Since C}(€) is dense in L'(Z

con + Lxr +pr) O Byp(€), (6.9) implies
T T

1
010 (Prf)(Lgd) = (Pr) = [ BIAKED (hepeo)]ds. S € 24(%).
Now, for any v € &,(¢), let § € LP(Q2 — €, %9, P) such that Lxu . = v and

W, (1, v) = {E[€|%}5.

We deduce form (6.10) that

N

[(Prf)(p) = (Prf)@)] < || fllso s (EID* (he pe.5)I)

< [fllcWp(p,v) sup far([[u&5]p)-
s€[0,1]

Combining this with
1 1
DYe = {E[s(XE +€) + (1 — )X}
1 1
Yr + S{E| XY +€l5}r <l Vvl s €0,1],

152l = {E|IXE + s¢
< (1-s){E[Xg

we prove (6.4).
(2) Let f € CHE), p € Pp(€) and ¢ € T,,. Applying (6.8) with & = ¢(X/) and s = 0, we
obtain (6.5), which, together with (6.3), implies
L 2 MNP 2220 Y I 2 2
1D (Prf) ()" < ar(||pllp {El[¢(Xg) I} P EL (X)) = ar([plp) oz, , (Prf7) (1), ¢ € Tyup.
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Therefore, (6.6) holds true.
(3) Let f € Cy(€). To prove that (Prf) is L-differentiable, it suffices to verify

[(Prf)(uo (Id+¢)~Y) — (Prf) (1) — ]

— 0as [[¢]z,, L0,

where
Yo = ]E[f(Xg)D*(h¢(X6‘),u)]7 ¢ € T,u,p'
By (6.10) and the definition of 4, it is easy to see that

(6.12) Iu(¢) < Au(9) + Bu(9)
holds for
1 1 sp(XE), N
A8) = [ /0 E[[{ (X750 — f(X5)}D* (x| 1,
e " it * ;
Bu(o) := H¢||7’Lp/0 (EHD (h¢(X5)aM°(Id+8¢)’1) -D (h¢(X5)au)|2]) ds.

"
Since f € Cy(%), and (5.4) implies IEHX;?(XO)’H — XK1Y — 0 as 9|7, — 0, it follows from (6.3)
and the dominated convergence theorem that

Au(¢) =0.

¢llT,, ,—0

Finally, (6.7) implies i), 0 B,(¢) = 0. Therefore, (6.11) follows from (6.12). O

Remark 6.1 When ro = 0 (i.e. without memory), the Bismut formula for the L-derivative has
been establish in [26] for all f € %,(¥), by applying the a prior formula like (6.10) for small
e > 0 replacing T'. However, in the present case (6.10) is available merely for T' > r¢, so that this
technique is invalid. So, in Theorem 6.1 we only establish the Bismut formula of the L-derivative

for f € Cy(%).

6.2 Additive noise: non-degenrate case

Theorem 6.2. Assume (A) and (B) for some p > 2, and consider (1.1) with o(t,&, u) = o(t)
independent of (&, ) such that (co*)(t) is invertible with (co*)~1(t) locally bounded in t.

(1) There exist an increasing function C : [rg,00) — [0,00) and a constant ¢ > 0 such that for
any T > ro, f € By(€), and p,v € Pp(6),

|(Prf)(p) — (Prf)v)] < C(T)HfHoo{l (T —10)~" + Ka(c(L+ [lpllp + [¥]],)
DL1| (6.13)

(=2t

o Ul + 7llp) = PW (11, ).

(2) For any T > ry and f € Co(€), (Prf)(n) is L-differentiable in p € P,(€) such that
T
wit ] (6.14) D§(Prf)(p) = —E<f(X§f)/0 <{0*(00*)1}(75)H¢(t)7dW(t)>)a ¢ € Tpup
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holds for

D(X5)(0) 10 17—pg (1)
T—rg ’

HO(t) = (Vz,b)(¢, - ) (X[) + (Ele- (DP0(t, €, ) (1) (XE), Zeee)) = x+

where pi == Ly and (Zi)>o is the segment of (Z(t))i>—r, given by

L Qb(X(l)L)(t)v ift € [_T07O]a
Z(t) = {qu(X{f)(O), if t > 0.

Consequently, there exist an increasing function C : [rg,00) — (0,00) and a constant ¢ > 0
such that

(6.15) [ DX(Prf)(w)lz;, < CT){1+ (T —ro) "+ Ka(c(1+|ulp)) +llullp® }{ Prf?)(u)}:
holds for all T > ro, f € Cy(€) and p € P,(%).

Proof. To apply Theorem 6.1, for any p € Zy(%¢) and £ € LP(Q — €,.%,P), let

(6.16) heu(t) /{a oo™) V() HE (5)ds, t € [0,T],
where

HEM(1) = (7 160) (1 i) XF) + (Bl (D200t 1, ) ) (XE). Z )
(6.17) N W

e — 1)t
20) = €01 1) + 10

n=X;

5(0)1(0,00) (t)

By (B), the boundedness of (co*)~1(t) in t € [0,T], and the definition of H&#(t), we find constants
¢1 = ¢1(T) > 0 increasing in T such that

(6.18) lheu()® < ell€l{(T — o)™ + || X}

Note that (3.1) and p € Zp(%) imply

24 Ko(llel,)?), te 0.1,

sup ||piellp < e (1 |pllp)
te(0,7

for some constant ¢ = ¢(7') > 0 increasing in 7". This, combining (3.1), (4.24) with (6.18), yields

T .
E|D* (he ) = E /0 e (1) 2t
< e (EIIEI) (T 7“0)_2 FEIXE )PP 4 Ky (1 [ul,))?)
< es(EIIEIE)}

N

(6.19)

3

‘ﬁl\)

)AL+ (T —70) "2 + ||l + Ka(e (L V [|ullp)*} < oo

for some constants ca, c3 > 0 increasing in 7.

24



Note that (ZtE )telo,7] is the functional solution to the SDE with memory

az¢(t) ={(V )t p) (XL') + (V) u(2)

(6.20)
+ (Bl (DPb(t 0, ) () (XF), ZE)e) ey b, £ € [0,7], Z5 = ¢.

On the other hand, by Lemma 4.2 and Lemma 5.2, the process
VeXH(t) —when(t), te[0,T]

also solves (6.20) with the same initial value . By the uniqueness of (6.20) and Z% = 0, we derive
VXt = wgé’”, that is, (6.2) holds. Moreover, (3.2) implies

Wp(lu’tu Vt) < CW}?(N? V)7 te [O7T]

for some constant ¢ > 0, where v; := Zxv, so that (6.16), (6.17) and the continuity of b(,, i) in
w imply (6.7). Therefore, the desired assertions follow from Theorem 6.1 and (6.19). O

6.3 Additive noise: a degenerate case

As generalizations to the stochastic Hamiltonian system [17] and the counterpart with memory
[5] as well as the distribution dependent model [26], we consider the following distribution-path
dependent stochastic Hamiltonian system for X (t) = (XM (¢), X®)(t)) on R*™ := R! x R™, which
goes back to (1.1) for d =1+ m:

{dX(l)(t) bW (¢, X (¢))dt,

E5| (6.21
E5] (6:21) dX® () = b (t, Xy, Lx,)dt + o (t)dW,,

Where (W (t))¢>0 is an m-dimensional Brownian motion on a complete filtration probability space
(Q,.7,(F)t>0,P), for each t > 0, o(t) is an invertible m x m-matrix, and

b= (b1, 6@ :[0,00) x € x P,(€) — RF™

is measurable with b (¢, &, ) = b1 (¢,£(0)) dependent only on t and £(0). Let V = (VD v®?)
be the gradient operator on R“™, where V(@ stands for the gradient operator w.r.t. the i-th
component, i = 1,2. Let V? = VV denote the Hessian operator on R*4™. We assume

(H1) For every t >0, b(t,-) € C2(R*™ — RY), b (¢, €&, 1) is C in both € € € and p € P,(€),
and there exists an increasing function K : [0, 00) — [0, 00) such that

HO7BD) (- ) (€O + 1(V20D) () EOD ]+ 1) (E, - w) ()]
+ DM (&, ) (w)llry, < K(2)
holds for all ¢ > 0 and (&, ) € € x P(F).
Obviously, the assumption (H1) implies (A) and (B) for the SDE (6.21).
For any p € 2,(€), let (X}')¢>0 be the functional solution to (6.21) with Zxp = p, and denote
pe = ZLxp as before. To establish the Bismut formula for the L-derivative of (Prf)(n) := Ef(X%),

we shall follow the line of [26, 37|, where the case without memory was investigated. To establish
the Bismut formula, we need the following assumption (H2), which implies the hypoellipticity.
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(H2) There exist an ! x m-matrix B and some constant € € (0, 1) such that
(6.22) (VPpW)(t,.) = BYB*a,a) > —|B*al?, Va R\

Moreover, there exists an increasing function 6. € C([0,T — ro]; Ry) such that
t

(6.23) / s(T'—ro—8)Kr—yy s BB*Kpp_,, (s > 0115, t€1[0,T —10],
0

where, for any s > 0, (K )i>s solves the following linear random ODE on R @ R:

Eql| (6.24) %Kt,s = (VI O, X () K, t> 8 Kos = Iin

with Ij«; being the [ x [ identity matrix.

Specific examples for b(1) satisfying (H2) are included in [26, Example 2.1]. Let T' > 7.
According to the proof of [37, Theorem 1.1], (H2) implies that the [ x [ matrices

t
0, = / S(T — 10— 8)Kp_po (VOB ) (5, XH () B K, s, t € (0,T )
0

are invertible with

1

[a] (6:25) 1071 < G=ogqy t€ T —rol

To apply Theorem 6.1, for any & = (5(1)75(2)) € LP(Q — ¢, %, P), we need to construct he, €
2(D*) such that (6.2) holds. To this end, as in [26], where 9 = 0 is concerned, we take the -

valued process a; = (agl), aEQ)), which is the segment of «(t) defined by «a(t) = £(¢) for ¢ € [—rg, 0]
and

(T —ro—1t)*
T—’I”()

t(T —ro— t)+B*K§iimyt
fonm 62ds

(6.26) ipies oot [ T =ro—s @
26 T o~ 1) B Ky Qi | — K710 (V 0 )

a®)(t) 1= €3 0) -

T—rg
[ 80 K sV 0)as
t
b)) (5, X%(s))ds,
t
A (1) = 17y (1) (Kt,05<1>(0) + /O K (V5007 (5 -)(X“(s))ds), t>0.

Now, let (hg i (t), when (t))tcjo,r) be the unique solution to the random ODEs

e u(t) = dhgt(” = ot (Varb®) (b, p) (XF) = 6P (1)
500] (6.27) + (Eg- (DO (8, ) (1) (XL, 0 +w?€’u>‘5)’n:){f}’
. e |
d(;(t) _ ((vwhgyu(t)b(l))(t,Xu(t)), (waﬁ,ub(2)>(t"7ut)(Xf) +J(t)h§7u(t))’

he (0) =0 €R™, W) =0€%.
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((uﬁ)(l)(t)’ (uf)@) (t)) = a(t) + wher(t),t > —rg. Then, (6.27) implies

) (0) = a®0) + [ {(T,BO) 0.0 (X2) + (B (DM (1) 10 (X250 s

Furthermore, we have
D0 = a(0) + [ (7,1, b X5
= a(0) =~ [ (Taiah e X5 + [ (Tt o, X))
= 00) + [ (Tusih) s, X451,
where in the last identity we used
Ao (1) = (Vb ®)(t, XH (1)),

see the proof of [26, Theorem 2.3] for more details. Moreover, the equation (5.7) for v&(t) =
(WD (1), (v5)P)(t)) associated with the present SDE (6.21) becomes

4
dt
4
dt

(9@ () = (Vvtsb(z))(t, 1) (XE) + (B (DP0P) (&, m, ) () (XL, 07 ) —
(W) D) = (Voe M) (8, ) (X)), 05 =&

Hence, the uniqueness of this equation implies

(6.28) vé(t) = when(t) + a(t), t>0.

Obviously, a!?(t) = 0 for t > T — ry. On the other hand, inserting the expression of a(®(t) into
aM(T —rp), taking the definition of @Q; and changing the order of integral yields () (T —rg) = 0,
which further implies a(!) (t) =0,t>T —rg, according to the definition of oM. Hence, we arrive
at a(t) = 0 for t > T'— r¢. This, combining Lemma 5.2 with (6.28), leads to

w_ & _ . he
VeXp =vp = wp”,

that is, (6.2) holds. Moreover, as shown in the proof of [37, Theorem 1.1] that h¢, € 2(D*)

satisfying (6.7), and for small T — ro > 0, E|D*(h¢ ,)|* has the same order as IE]OT_TO \he ()] 2dt,
so that according to the construction of h¢ , we have

BID" (he 0 < ST —Tof

< , T>0,el’Q— %, %,P),uec P,(¢
T g2 ( )1 € Zy(%)

for some increasing function C' : [rp,00) — [0, 00). Therefore, by Theorem 6.1, we have the following
result.

Theorem 6.3. Assume (H1) and (H2) for some p > 2.
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(1) There exists an increasing function C' : [rg,00) — [0,00) such that for any T > ro, f € By(E),

1
2

T—rg
|<PTf><u>—<PTf><u>|sc<T><T—ro>2( / 9§ds> W), v € Po(E).

(2) Forany T > 1o and f € Cp(€), (Prf)(n) is L-differentiable in pn € Py(€) such that

D(%(PTf)(N) =-E [f(Xéﬁ)D*(h(b(Xé‘),,u)]a ¢ € Tmpv

and there exists an increasing function C' : [rg,00) — (0,00) such that for any f € Cy(€),T >
ro and p € Pp(€),

N

ID"(Prf) (1)

T—rg - 1
i, <c@-r?( [ eas) e

6.4 Multiplicative noise

In this subsection, we assume o (¢,&, 1) = o(t,£(0)). Following the line of [4] due to the idea of [32],
for any £ € LP(Q — €, .%o, P) we consider the SDE with memory

dUE(t) = {(vab)(t, 1) (XE) + (B (DP0(t, 0, ) () (XE), Up o),

US(t)

- m}l[w—m)(ﬂdt +{(Vyeo) (t, ) XP(0)) AW (L), U§ =¢.

(6.29)

Then, due to (4.1), the SDE (6.29) has a unique solution for ¢t < T — rg. By repeating the proofs
of [4, Lemma 2.1 and Theorem 1.2(1)], we have

T-ro  T|[7§ 2
(6.30) / BLIUAG B( swp |Uf
0 (T'—ro—1t) t€[0,T—r0)

) < (=g

Ay

for some increasing function C : [rg,00) — [0,00), so that we may extend US(t) for t € [0,T] by
setting

(6.31) US(t) =0, te[l—ryT],
which obviously solves (6.29) up to time 7.

Theorem 6.4. Assume (A) and (B) for some p > 2. Let o(t,&, 1) = o(t,£(0)) depend only on
t and £(0) such that, for each x € R%, (60*)(t,x) is invertible with sup,cpa ||(co*)7L||(¢, ) locally
bounded in t. Then,

(1) There exists an increasing function C : [rg,00) — [0,00) such that for any T > ro, f € PBy(F),
and p,v € Zy(€),

pLt] (6.32) ((Prf) () = (Prf)@)] < CD) | flloeWp(p, v).
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(2) For any T > ro and f € Co(€), (Prf)(n) is L-differentiable in p € P,(€) such that

T
wwi| (6.33) Dg(Prf)(p) = —E<f(X¥)/O <{U*(UU*)1}(t)H¢(t)7dW(t)>>a ¢ € Tup

holds for
HO(t) := {(VUtgb)(t, ) (XY + (B (DEB(E, 7, ) () (X1, UfW)}n:xg}l[T—m,T] (t)
Ut 1 t), te|0,T
m [O,Tfro)( )7 6[ ) ]

Consequently, there exists an increasing function C' : [rg,00) — (0,00) such that
1
(6.34) IDH(Prf) (), < CT{(Prf?)(p)}2
holds for all T > ro, f € Cy(€) and p € P,(%).
Proof. To apply Theorem 6.1, for any u € Zy(%¢) and & € LP(Q — €, %, P), let

(6.35) heu(t) = /0 {0%(00") ™ (s, X(5)) G (s)ds, t € [0,T),
where

GA(t) == {(VUfb)(t, 1) (XE) + (Bege (DEb(t,m, ) (1) (XF), Uf ) ’77=Xf }1[T_m,T] (t)
US(t)

Ty 7 07— (&), T E[0,T].

Then, h is adapted and, by (6.30), we find some increasing function C' : [rg,c0) — (0, 00) such that

T
. T 2
w1 (030) B heptPat < ST qmIe)3, 75 r0.ne 2,%). € € O 6,50 P
0 — 70

so that (6.3) holds true. Moreover, by the regularities of b and o ensured by (B), the condition
(6.7) holds. Therefore, according to Theorem 6.1, it remains to verify (6.2). By (6.29), Lemma 4.2

and Lemma 5.2, we see that both U%(t) and V¢ X}' — w"en(t) solve the SDE with memory

AZ(t) = {(Vab)(t, -, 1) (XE) = o6, XP(0)(1) flt + {(V z900) (8, ) (X (1)) }AW (1)

+ { Bl (D20t 1, ) () (X1, Ze)e )| fts Zo = €t € 0,7

By the uniqueness of solution to this equation and (6.31), we obtain (6.2) and hence finish the

proof.

7 Asymptotic Bismut formula for the L-derivative

In this section, we aim to extend the asymptotic Bismut formula derived in [22] for SDEs with
memory to that on the L-derivative for distribution-path dependent SDEs. Even coming back to
SDEs with memory, our conditions are slightly weaker since we allow the drift term to be non-

Lipschitz continuous.
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7.1 The non-degenerate setup

In this subsection, we assume that o(¢,&, u) = o(t,£) depends only on ¢t > 0 and £ € ¥, i.e., the
diffusion o is path-dependent but independent of the measure variable p. For any A > 0, u € Z2,(%)
and ¢ € T}, ,, consider the following SDE with memory

1) Az E) = {(V gusnb) (b, ) (XI) = AZHON )L+ (V yuono)(t, ) (XE)AW (),
E10 . ¢ £
ZE0N = (X1, t > 0.

According to [29, Theorem 2.3], (4.1) implies that (7.1) has a unique functional solution (Z}' ’¢’)\)t20
such that

(7.2) IE( sup ||Z§‘»M|%) <00, t>0, ¢ETp A>0.
0<s<t
th2| Theorem 7.1. Assume (A) and (B) for some p > 2 such that (4.1) holds for some constant K
uniformly in T > 0. Moreover, suppose that (00*)(t,) is invertible with supgcq [|[(00*)71|(2,€)
locally bounded in t.

(1) Forany T >0 and f € Cy(€), (Prf)(n) is L-differentiable in p € Zy(€), such that for any
pePy(€), T,y and f € C’;(‘K},

T
(7.3) Dé(PTf)(M)=E<f(X¥) /0 <h“*¢’k<t>,dW<t>>>+E(VZ;,¢,Af><X§f>, x>0,
where
E=X¥¢

W) = [0 (00") s X0 (B (Db, ) () (X0, DE X))

0F0| (7.4)
+ )\Z“"ﬁ’)‘(s)}ds, t>0.

(2) If eitherp > 4 orp > 2 but ||Vb(t, -, 1) ()| is bounded, then for any & > 0 there exist constants
¢, Ao > 0 such that

\Dé(Pm(m - E(f(X% / i), dW(s») \

P p=1
< e {(Pr|VIITT) (W)} 7 lT,, A= X0, T >0, feCy(®),

(7.5)

(2) If p € [1,2] and [|[Vo(t,-)(&)] < 0 for some constant § > 0 and all (t,£) € [0,00) X € such
that
«

2
DFF| (7.6) 0 < 21;}3 Doaro T dpPatars”

then there exists constants ¢, Ao > 0 such that (7.5) holds.

To prove this result, we present the following two lemmas, where the first is due to [13, Lemma
2.2], (7.8).
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Lemma 7.2. Let M; be a continuous real martingale with d(M); = g(t)dt, and let
t
Fo(t) == / e *=9dM,, t>0,a>0.
0

Then for any p > 2, there exists a function h : [0,00) — [0,00) with kp(a) — 0 as o — oo such
that

t
E[ sup |Fa<s>|P] <ruE [ glo)tds, 120
s€[0,t] 0

Consequently, for any progress measurable process A(t) on R? @ R™,

t P t
[eawans)| | <@g [ asires, o
0

E{ sup
0

s€0,t]

Lemma 7.3. Assume (A) and (B) for some p > 2 such that (4.1) holds for some constant K
uniformly in T > 0.

(1) If either p > 4 or p > 2 but ||Vb(t,-, 1) (&)| is bounded, then for any § > 0, there exist
constants ¢, \g > 0 such that

Fo1] (7.7) E[|| 229k < ce gl » 120, p€ Py(E), ¢ € Tup, A= Ao

(2) If p e [1,2] and |Va(t,-)(&)| < 8 for some constant 8 > 0 and all (¢,£) € [0,00) X € such
that (7.6) holds, then there exists constants ¢, \g > 0 such that (7.7) holds.

Proof. (1) Let p > 4. Let A > ¢ > 0 be two constants, and simply denote Z = Z#’(w‘. By Ito’s
formula for (7.1) and applying (4.1), we obtain

d(1Z2W)1%) = {2(Z2° (1), (V 22b) (&, - ) (XE)) + (V23 0) (&, ) (X s — 2AZA (1) [P}t + 2d M (¢)
< K| Z}M% — 2\ Z )2 }dt + 2d M (1),

where
(7.8) AMA(E) == (ZA(1), (V ao) (¢, ) (X)W (1)),

Then for any constants § > 0, when A > 8 we obtain

t t

(7.9)  1ZM0)[2e2 < |Z70)] + K / o~ (2A-28)(1-9)Ba ) ZN|2 s | / o~ (A=28)t=)Bag ppA (s).
0 0

Obviously,

(7.10) sup {eﬂS]Z/\(s)]}p < Gpl(t) == {eBtHZt)‘|]<g}p <efPro sup {e/BS]Z)‘(s)\}p.

sEt—ro,t] SEt—ro,t]

Combining this with (7.9), Lemma 7.2 and (4.1), when p > 4 we find a constant ¢; > 0 and a
positive function h on [0, 00) with r, — 0 as a — oo such that

t
PEIGHO] < a6l + i [ Gals)ds, 120
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Thus, by Gronwall’s lemma we derive
E[Gp(t)] < c16”7 |1, exp [(ra—pe?)t], ¢ > 0.
This and (7.10) yield
E[|Z}(I] < c2e®P||glI7,, exp [ — (08 — ra—pe”™)t], t > 0.

This implies (7.7) by taking f = 0 and pd — ry_s > § for large A since r, — 0 as @ — oo.
(2) Let p > 2 with || Vb(¢, -, 1)(§)|| bounded. By (7.1), for any 5 € (0, A) we have

t
2ty =27 (0)e 0P ¢ / e~ OB e85( 1 b) (s, -, 1) (X£)ds
0
t
T / e~ OB (T 400)(5, -, 1) (XE)AW (3).
0

Combining this with (7.10), the boundedness of |Vb|| + || Ve|| and Lemma 7.2, we find a function
h:[0,00) = [0,00) with 7, — 0 as @ — oo such that

¢

e PPOR[G (1)) < E[ sup  {e|Z22(s)|}7| <2976l + s / E[Gp(s)]ds.
SE[t—ro,t] 0

By Gronwall’s inequality and using (7.10), we obtain

AR 2 5] < E[Ga(0] < 27l exp [ra-pet].

This implies (7.7) by taking 5 = 26 and large enough A such that eﬁmm,/j <.
(3) Let p € [2,4] and ||Vo(¢,-)(§)]] < 6. We find a constant ¢; > 0 such that

dIZAOF < {20122 O Z) o] + 0?1 2015 — 20 2 (@) }dt + 2(Z2P) (), {V 2,0 (X,) }dW (2)).
Then for any p > 2, there exists a constant ¢ > 0 such that for any € € (0, 1),

A2 )P <{ (27 = PN 2O + ()1 2%}t

(7.11)
+p| 22 (6) P22 (), {V 7,0 (X)) }AW (1))
holds for )
cle) == % +(p—2)eP72, €€ (0,1).

Noting that for any o > 0,

(7.12) Na(t) = | ZNE = e2=0) qup  [ZM(s)P < sup €| Z2PP,

SEt—ro,t] SEt—ro,t]

combining (7.11) with BDG’s inequality, we obtain

Elna(t)] <E| sup e®|Z%(s)|
SE[t—ro,t]
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t

t )
< Bllo(Xo) 5] +<(e) [ E[eaﬂ|z§||%]ds+2pzﬁz[< /( 92e2a8|zA<s>|p||zs||%ds) }

25—7‘0)Jr

t
1
< 617, + (cle) + 2267 e / a(s)ds + SElna(t)],
sP 0
g € (0,c2/(pN)),a € (0, pA — 026_1).

By Gronwall’s inequality we arrive at
Efa(t)] < 206l e, 7(2) = 2(cle) + 226%™ e,
This and (7.17) yields
E[|Z21] < 2¢°||lff, e 7O, ¢ > 0,6 € (0,¢2/(pA)),a € (0,pA — o).
Noting that (7.6) implies

11%7(5) _ 4p202€2ar0 + p92€o¢ro’
€

by (7.6) we may find large enough \g > 0, small enough ¢ € (0,1) and a € (0,pAg — coe~!) such
that § := a — g(e) > 0, so that (7.7) holds for some constant ¢ > On and all A > . O

The proof of Theorem 7.1. The L-differentiability is implied by Proposition 5.3. So, it suffices to
prove (7.3) and (7.5). For simplicity, let h*(t) = h*®(t), which was given in (7.4). By (B),
(5.8) and (7.7), h* € L?(Q — H;P) is adapted. According to Lemmas 4.2 and 5.2, the process
Z(t) = Vg xmXH(t) — Dpa X*#(t) solves the SDE with memory

dZ(t) ={(Vzb)(t, -, ) (X]') = AZ()}dt + (Vz,0)(t, ) (X{)AW (L), t 20, Zo = $(Xp).
Therefore, the uniqueness of solutions to (7.1) yields
Z(t) = VyxmXH(t) = Dpp X*(t), t = —ro.

Combining this with the chain rule and the integration by parts formula for the Malliavin derivative,
we derive

Dg(Pef)(n) = EIDG f(Xi) ()] = E(e-(VF(X]), Vxim X)e)
=E(¢(VF(X]), Zt + Dppn X{')¢) = B(Dpr f(X])) + E(Vz £)(X]))

t
—B(10x0) [ (A6 aW () + BTN D). 20
i.e. (7.3) holds. Finally, by Lemma 7.3 and Hélder’s inequality, we deduce (7.5) from (7.3). O

7.2 A degenerate setup

In this subsection, we consider the following distribution-path dependent stochastic Hamiltonian
system for X (t) = (XM (t), X?)(t)) on RH™ =Rl x R™:

dXD @) =M (¢, X,)dt

dX® () = b (t, Xy, Lx,)dt + o (t, Xy )AW (t),
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where (W(t))¢>0 is an m-dimensional Brownian motion on a complete filtration probability space
(Q,.7,(Ft)t>0,P), Xo € LP(Q2 — €, %, P) for € := C([—r0,0]; R*™) and

b= (b1 b?)): [0,00) x C x Py(€) = RF™, 5:[0,T] x € = R™ @ R™

are measurable satisfying the following assumption.

(C) Let p e [2,00). b(t,&, 1) and o(t, &, i) are bounded on bounded sets, C'-smooth in (&, i) €
€ x P,(¢) with bounded || DEb(t, &, ) ()] 7; ., and there exist constants 3, K, 0 > 0 such that

(z(0), {6 (8, )}(6)) +< (2)( 0), {V:bP(t, -, 1)}(€))

-l (0)7,
@, tzo,ge%,ue,@p(%).

< K[22(0)] - [|2 Hcg+sz
V0 (t, )l < 0=

Let py = Lxp with Lx, = p € Z,(%), and let ¢ € T),,. . For any A > 0, consider the linear
SDE with memory for Z(t) = (Z(V(t), Z?)(t)) on RH™

dZ(t) =[{Vz,b(t, - p) HXL) — A0, 22 (1))} dt

(7.14) +(0,{Vz0o(t, Y HXHAW (1), Zo = d(XL).

By [29, Theorem 2.3], under assumption (C) this equation has has a unique functional solution.

We denote the functional solution by Zf P

is invertible, let

to emphasize the dependence on u, ¢ and A. When oo*

B (1) /{a (00") "} (s, XE){ A2 (5)

+ B (D€, ) (1) (XL), DEXE)] |,y b5, 20,

(7.15)

Theorem 7.4. Assume (C) for some p > 2, and let oo* be invertible with ||(co*) ! < oo.
Then for any T >0 and f € C; (€), (Prf)(n) is L-differentiable in p € P,(€) such that

T
(1.16) DEPeA)) = E( FO65) [ (14920, aW(sD) ) + BT )D€ 74(6).0 € Ty
Consequently, there exists constants c, \g > 0 such that

\Dé(Pfou) ~( e [ Lo (s), aw ) \

P p=1
ce PV} 7 9l A= 20T >0, f € C(%),

(7.17)

provided one of the following conditions holds:

: 2 o
() 6% < suPac(0,8p) perroTaprerma-
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(ii) p>2, [|[VO@(t, -, u)()| is bounded, and there exist constants r, 3 > 0, such that
(- Dr? < p*25 sup (5 — ),
a€(0,8)

(€(0), { VbV (¢, )}(€)) < £0) = BIEO)?, t>0,6€.

To prove this result, we first present the following lemma.

L7.3| Lemma 7.5. Assume (C) for some p > 2. If one of conditions (i) and (ii) holds, then there exist
constants ¢, d, \g > 0 such that for any A > Ao,

bb3] (7.15) B2 ) < o™l . £2 0. p€ Fp(8), 6 € Ty

Proof. We denote X* = X, 7% = 7 = (Z(D, Z()) and ||Z,5(Z)H<g = SUPycir_roq 2D ()]0 =1,2.
(1) Let (i) hold. For ¢ € (0,1), we take

£) = \IZOP] + 2O @), t>o0.
By (C) and Ité’s formula, when A > 48! 4+ 2K, we have

dlp(t)]* =[2(Z2W () AV 2o (8-, 1) HX (1)) +26(ZP (1), {V 2,62 (2, -, j1) (X))
+ EIIVZtJ(Xt)II%s —eNZP (O)P]dt +26(ZP) (1), {V 7,0(X0) AW (£))

<{-2812V e(% - K)|z AP + 021202 + e (K22~ + 602)]| 2|2 Ydt
+2¢(Z¢ ( ). {Vz,0(t, ) }(Xe)dW (1))
< { = 2Blp(1)* + epi bt + 26(ZP (1), {V 7,0 (¢, ) HX)AW (1)),
where
GeG] (7.19) e = max {67 +e(K*X71 +67), 2K°A71 + 6%}
Then for any p > 2, there exists a constant ¢; > 0 such that
PLO] (7.20) dlp)" <{ = Bplp(t)]” + T p? bt + eplp(t) P22 (1), {V 2,0(X0) }AW ().
Noting that
(7.21) Na(t) = ™) gl = ®7r0) sup |p(s)P < sup  e**[p(s) PP,
SE[t—ro,t] sE[t—ro,t]

combining (7.20) with BDG’s inequality, for any « € (0, Bp], we obtain

Bl <E| swp lo(s)|

s€t—ro,t]

p1 . (Pre | DO 5 /t as
P1q (P P70 g2) [ Rt pf]ds
1+ (o= + B ) [ Elest)

2
)

< E[ll¢(Xo)

Jun

t
+2pE|:</ 629262045‘,0(8)‘2p—4‘Z(2)(8)|2HZS
(t—T0)+
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NK1

SH1

t

i)’

PYre > !
<ol + (72 4 ente)ern [t + 2ol |

t
1
<Nl + (Fp + rte+ 22emo2)er [ (s)as + 5Bina(0)

By Gronwall’s inequality we arrive at
Efia(0)] < 209ll5, e, cxo(a) = (pine +2016% + dpPe06? )eom.

This and (7.21) yields
Elpf] < 27| |f, e 7N @M ¢ > 0.

Noting that (7.19) implies

lim lim ¢y o (a) = €™ (4p2eo”'° 62 + p92>,
A—oo el0 7

by (i), we may find a € (0, p), small enough ¢ > 0 and large enough A9 > 0 such that ¢ :=
a — ¢y () > 0, so that

E[Z:]) < e PEIp] < 2ePe™0||gllh, e, £ 0,4 > .

Then (7.18) holds.
(2) Let (ii) hold. By (p — 1)rP < p222 SUPqe(0,8) ¢ °(B — a), we find a constant € > 0 such
that

K(p—1)

(7.22) pa > (B —a)

(1 + e)eParo
By (7.14), we have
t
Z(2) (t)eat :¢(2) (Xo)e—()\—a)t + / e—()\—a)(t—s)ecm{vzsb@) (S, . ,us)}(Xs)dS
0
t
+ / em(Amot=9)ees i, o (s, 1) HX)AW (s).
0

Then by the boundedness of ||Vb|| + ||Vo|| and applying Lemma 7.2, we find a constant ¢; > 0 and
a function 7 : [0,00) — [0,00) with 75 — 0 as s — oo such that

t
(7.23) E[ sup {|Z<2><s>\ea8}p} <cillo®lf, , + - / 12l ds.
’ 0

SE[t—ro,t]
On the other hand, by (ii) we have
d|ZW ()] < (k) Zille — 8120 (#)]}dt,

so that for a € (0, 3),

*|Z2W(t) < |é(Xo)

t
pe—(B=a)(t=s) 4 o / (5= (8-0)(t=)|| 7.l dis.
0

36



so that for some constants ¢ > 0 we have
e(t—ro)paE[”Zt(l)H%] < IE[ Sup {|Z(1)(S)|eas}P]

sE[t—ro,t]
KP(p—1) /t
—(1+¢ E[eP*s|| Z4||2]ds.
a0 Bz s

Combining this with (7.23) we arrive at

< collolls, +

t
a p 1 2 s
B[ (%) < 25E[|ZV |8 + 1127 15] < esllgly, + /0 PO B|| Z4 1% )ds
for some constants ¢z > 0 and
p (KP(p—1
=25 (wu +£)ePoro 4 m_a).

By Gronwall’s lemma, we obtain

E[llZ:

7] < csllollf, , exp [ — (v — pa)t].

Since (7.22) implies limy_yo0 .07 = 25 ';Iéép:;))(l + €)eP¥0 < pa, we may find constats A\g,d > 0

such that ap —~v > § for A > Ag. Therefore, (7.18) holds.

O]

Proof of Theorem 7.4. Since the L-differentiability is implied by Proposition 5.3, while (7.17) fol-
lows from Lemma 7.5 and (7.16), it suffices to prove (7.16).
Simply denote h = h##*. By (C), there exists a constant ¢; > 0 such that

(7.21) Ellof Iy < ce9lf,,. 120, €Ty

This together with (7.15) and (7.18) implies that h € L*(Q — H,P) is adapted. Let w} =

hl  h2
(wy>" wy™7)

be the unique functional solution to the following SDE with memory
dwh (£) = {Vb(t, - ) HXL)AE + (0,0 (t, XP)h(E)) dt

(7.25) h
+(0,{Vpo(t, ) HX{)AW(?)), t € [0,T], wy = 0.

By Lemma 4.2, we have w}' = D, X}'. Next, according to Lemma 5.2, Uf = (vf’l,vf’Z) = D(%Xf
exists in L?(Q — C([0,T); €),P) and is the unique solution to

726) AP(t) = (ot 1) XY + (B ({DP0(E € ) Hpu) (XE), o)) | _
+(0,{V o(t, )}(X)AW (1), t€[0,T], vf = o(X).
From (7.25) and (7.26) we see that
Z(t) = v0(t) — w7 (1)

solves (7.14). In particular, Z7 = v?ﬁ —wh = Dq’—;Xéf — D X%. Then (7.16) follows from Proposition
4.3. O
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