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Abstract
As an important tool characterizing the long time behavior of Markov processes, the

Donsker-Varadhan LDP (large deviation principle) does not directly apply to distribution
dependent SDEs/SPDEs since the solutions are not standard Markovian. We establish
this type LDP for several different models of distribution dependent SDEs/SPDEs which
may also with memories, by comparing the original equations with the corresponding
distribution independent ones. As preparations, the existence, uniqueness and exponential
convergence are also investigated for path-distribution dependent SPDEs which should be
interesting by themselves.
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1 Introduction

The LDP (large deviation principle) is a fundamental tool characterizing the asymptotic be-
haviour of probability measures {µε}ε>0 on a topological space E, see [5] and references within.
Recall that µε for small ε > 0 is said to satisfy the LDP with speed λ(ε)→ +∞ (as ε→ 0) and
rate function I : E → [0,+∞], if I has compact level sets (i.e. {I ≤ r} is compact for r ∈ R+),
and for any Borel subset A of E,

− inf
Ao
I ≤ lim inf

ε→0

1

λ(ε)
log µε(A) ≤ lim sup

ε→0

1

λ(ε)
log µε(A) ≤ − inf

Ā
I,

where Ao and Ā stand for the interior and the closure of A in E respectively. The following
two different type LDPs have been studied in the literature.
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The Freidlin-Wentzell type small noise LDP [7]: µε stands for the distribution of the
solution to a dynamic system perturbed by a noise with small intensity ε > 0, i.e. SDE
(stochastic differential equation) with small noise. In this case, E is the path space for the
solutions of the SDE. This type LDP describes, as ε→ 0, the convergence of stochastic systems
to the corresponding deterministic system.

The Donsker-Varadhan type long time LDP [6]: µε stands for the distribution of Lε−1 ,
where

Lt :=
1

t

∫ t

0

δX(s)ds, t > 0

is the empirical measure for a stochastic process {X(t)}t≥0. This type LDP describes the be-
haviour of Lt as t→∞. In this case, E is the set of all probability measures on the state space
of the process, on which both the weak topology (induced by bounded continuous functions)
and the τ -topology (induced by bounded measurable functions) are considered in the literature.

In this paper, we study the Donsker-Varadhan LDP for path-distribution dependent SDEs
(stochastic differential equations) on a separable Hilbert space H. Inspired by Kac’s programme
for Vlasov systems in kinetic theory [11], McKean [14] introduced distribution dependent SDEs.
According to Sznitman [17], under the global Lipschtiz condition, these type SDEs can be
derived as the limit of mean-field particle systems when the number of particles tends to infinity.
Therefore, distribution dependent SDEs are also called Mckean-Vlasov SDEs and mean-field
SDEs.

In applications, the distribution of a stochastic process can be regarded as a macro property,
while the path of the process up to a time t stands for the history of the system before this
time. Since the evolution of a stochastic system may depend on both the macro environment
and the history, it is reasonable to investigate path-distribution dependent SDEs. Moreover,
because in many cases the configuration space for particle systems is infinite-dimensional, we
consider path-distribution dependent SDEs on Hilbert spaces, and in this case the SDEs are
called SPDEs (stochastic partial differential equations).

In recent years, distribution dependent SDEs have been intensively investigated. Among
many other papers in this field, [15] established the Freidlin-Wentzell LDP for distribution
dependent SDEs. However, up to our best knowledge, there is no any result on the Donsker-
Varadhan LDP for this type SDEs. Since the solution is not standard Markovian, existing
results on the Donsker-Varadhan LDP derived for Markov processes do not apply. Indeed, the
definition of the rate function (the Donsker-Varadhan level 2 entropy function) depends on the
standard Markov property of the process, for which the law of the process starting at an initial
distribution ν is given by

P ν =

∫
E

P xν(dx),

where P x is the law of the process starting at x, see Subsection 3.2 for details.

The framework. We investigate path-distribution dependent SDEs on a separable Hilbert
space (H, 〈·, ·〉, | · |). For a fixed constant r0 > 0, a path ξ ∈ C := C([−r0, 0];H) stands for a
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sample of the history with time length r0. Recall that C is a Banach space with the uniform
norm

‖ξ‖∞ := sup
θ∈[−r0,0]

|ξ(θ)|, ξ ∈ C .

For any map ξ(·) : [−r0,∞)→ H and any time t ≥ 0, its segment ξ· : [0,∞)→ C is defined by

ξt(θ) := ξ(t+ θ), θ ∈ [−r0, 0], t ≥ 0.

Let P(C ) denote the space of all probability measures on C equipped with the weak topology,
and let Lη stand for the distribution of a random variable η. Consider the following path-
distribution dependent SPDE on H:

(1.1) dX(t) = {AX(t) + b(Xt,LXt)}dt+ σ(LXt)dW (t), t ≥ 0,

where

• (A,D(A)) is a negative definite self-adjoint operator on H;

• W (t) is the cylindrical Brownian motion on a separable Hilbert space H̃; i.e.

W (t) =
∞∑
i=1

Bi(t)ẽi, t ≥ 0

for an orthonormal basis {ẽi}i≥1 on H̃ and a sequence of independent one-dimensional
Brownian motions {Bi}i≥1 on a complete filtration probability space (Ω,F , {Ft}t≥0,P),
where F0 is rich enough such that for any π ∈ P(C × C ) there exists a C × C -valued
random variable ξ on (Ω,F0,P) such that Lξ = π.

• b : C ×P(C )→ H, σ : P(C )→ L(H̃;H) are measurable.

In Section 3, the well-posedness of a more general equation (3.1) will be presented. However,
to establish the Donsker-Varadhan LDP using the comparing method proposed in Theorem 5.5
below, we have to assume that the noise term only depends on the distribution LXt rather than
the solution Xt.

Let Xν
t denote the mild segment solution of (1.1) with initial distribution ν ∈P(C ), which

is a continuous adapted process on C , see Definition 3.1 below for details. We study the long
time LDP for the empirical measure

Lνt :=
1

t

∫ t

0

δXν
s
ds, t > 0.

Definition 1.1. Let P(C ) be equipped with the weak topology, let A ⊂ P(C ), and let
J : P(C )→ [0,∞] have compact level sets, i.e. {J ≤ r} is compact in P(C ) for any r > 0.

(1) {Lνt }ν∈A is said to satisfy the upper bound uniform LDP with rate function J , denoted
by {Lνt }ν∈A ∈ LDPu(J), if for any closed A ⊂P(C ),

lim sup
t→∞

1

t
sup
ν∈A

logP(Lνt ∈ A) ≤ − inf
A
J.
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(2) {Lνt }ν∈A is said to satisfy the lower bound uniform LDP with rate function J , denoted
by {Lνt }ν∈A ∈ LDPl(J), if for any open A ⊂P(C ),

lim inf
t→∞

1

t
inf
ν∈A

logP(Lνt ∈ A) ≥ − inf
A
J.

(3) {Lνt }ν∈A is said to satisfy the uniform LDP with rate function J , denoted by {Lνt }ν∈A ∈
LDP (J), if {Lνt }ν∈A ∈ LDPu(J) and {Lνt }ν∈A ∈ LDPl(J).

Main idea of the study. To establish the Donsker-Varadhan type LDP for a distribution
dependent SDE/SPDE, we choose a reference SDE/SPDE whose solution is Markovian so that
existing results on the Donsker-Varadhan LDP apply. When (1.1) is well-posed, let P ∗t µ = LXt

for LX0 = µ ∈ P(C ). If P ∗t has a unique invariant probability measure µ̄, we choose the
following stationary equation as the reference SPDE

(1.2) dX(t) = {AX(t) + b(Xt, µ̄)}dt+ σ(µ̄)dW (t), t ≥ 0.

The solution to this equation is a standard Markov process and hence its LDP can be illustrated
using existing results. By comparing the original equation (1.1) with (1.2) in the sense of LDP,
see Lemma 5.4 below, we establish the desired Donsker-Varadhan LDP.

Since the theory of LDP has already been well developed for Markov processes (see Wu
[22, 23]), the main point of the present study is to verify assumptions in Wu’s results and
the comparison theorem (see Theorem 5.5), rather than to make development in methodology.
However, it is non-trivial to check these assumptions for the present path-distribution dependent
model. Indeed, when r0 > 0 and σ is non-constant, we are not able to prove the exponential
estimate in Theorem 5.5, so that in this case the Donsker-Varadhan LDP for (1.1) remains
open. In conclusion, new aspects presented in the paper include:

(a) The well-posedness for path-distribution dependent SPDEs (see Theorem 3.1);

(b) The exponential ergodicity of (1.1), and the hypercontractivity, irreducibility and strong
Feller property for the stationary equation (1.2);

(c) The exponential estimate (5.7) for solutions to the original equation (1.1) and the reference
equation (1.2).

To derive the hypercontractivity, irreducibility and strong Feller property, a crucial tool is the
dimension-free Harnack inequality due to the second named author.

The remainder of the paper is orgnized as follows. In Section 2 we state the main results
of the paper and illustrate them by specific examples; in Section 3 we investigate the existence
and uniqueness for path-distribution dependent SDEs/SPDEs; and in Section 4 we prove the
main results. Finally, for readers convenience, we recall in Appendix some results on LDP due
to [22, 23], and present an exponential estimate for the equivalence of LDPs, which are applied
in our proofs.
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2 Main results and Examples

Path-Distribution dependent SDE is a probability model characterizing nonlinear Fokker-Planck
equations on the path space, see [10] for details. A fundamental problem in ergodic theory is
to characterize the stationary distribution of a stochastic system (i.e. invariant solution of the
associated Fokker-Planck equation). Although the existence and uniqueness of the stationary
distribution can be confirmed by standard techniques (for instance, coupling method), the exact
formulation of this distribution is however unknown. In applications, one uses empirical mea-
sures to simulate the stationary distribution, this leads to the study of limit theory on empirical
measures of Markov processes, for instance the law of large numbers, central limit theorems
and large deviations, see [12]. In the path dependent case, limit theorems have been studied
in [2]. In this section, we state our results on Donsker-Varadhan LDP for path-distribution
dependent SPDEs and present concrete examples to illustrate them.

To state our main results, we recall some notations. For a Banach space (B, ‖ · ‖B), let
P(B) be the space of all probability measures on B equipped with the weak topology. For any
constant p > 0, let

Pp(B) :=
{
µ ∈P(B) : ‖µ‖p := µ(‖ · ‖pB)

1
p∨1 <∞

}
,

which is a Polish space under the metric

Wp(µ1, µ2) := inf
π∈C (µ1,µ2)

(∫
B×B
‖x− y‖pBπ(dξ, dη)

) 1
p

,

where C (µ1, µ2) is the set of all couplings for µ1 and µ2. Next, let Bb(B) (resp. Cb(B))
be the space of bounded measurable (resp. continuous) real functions on B. A sub-Markov
operator P on Bb(C ) is called Feller if PCb(C ) ⊂ Cb(C ), strong Feller if PBb(C ) ⊂ Cb(C ),
and µ-irreducible for some µ ∈ P(B) if µ(1AP1B) > 0 holds for any A,B ∈ B(B) with
µ(A)µ(B) > 0.

2.1 Distribution dependent SDE on Rd

Let r0 = 0, H = Rd and H̃ = Rm for some d,m ∈ N. In this case, we combine the linear term
Ax with the drift term b(x, µ), so that (1.1) reduces to

(2.1) dX(t) = b(X(t),LX(t))dt+ σ(LX(t))dW (t),

where b : Rd×P2(Rd)→ Rd, σ : P2(Rd)→ Rd⊗Rm and W (t) is the m-dimensional Brownian
motion. We assume

(H1) b is continuous, σ is bounded and continuous such that

2〈b(x, µ)− b(y, ν), x− y〉+ ‖σ(µ)− σ(ν)‖2
HS ≤ −κ1|x− y|2 + κ2W2(µ, ν)2

holds for some constants κ1 > κ2 ≥ 0 and all x, y ∈ Rd, µ, ν ∈P2(Rd).
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We will prove that under (H1) the equation (2.1) is well-posed and has a unique invariant
probability measure µ̄ ∈P2(Rd) such that

(2.2) W2(P ∗t ν, µ̄)2 ≤ e−(κ1−κ2)tW2(ν, µ̄)2, t ≥ 0, ν ∈P2(Rd),

where P ∗t µ = LX(t) for initial distribution LX(0) = µ. Consider the reference SDE

(2.3) dX̄(t) = b(X̄(t), µ̄)dt+ σ(µ̄)dW (t).

It is standard that under (H1) the equation (2.3) has a unique solution X̄x(t) for any starting
point x ∈ Rd, and µ̄ is the unique invariant probability measure of the associated Markov
semigroup

P̄tf(x) := E[f(X̄x(t))], t ≥ 0, x ∈ Rd, f ∈ Bb(Rd).

Consequently, P̄t uniquely extends to L∞(µ̄). If f ∈ L∞(µ̄) satisfies

P̄tf = f +

∫ t

0

P̄sgds, µ̄-a.e.

for some g ∈ L∞(µ̄) and all t ≥ 0, we write f ∈ D(Ā ) and denote Ā f = g. Then D(Ā ) ⊃
C∞c (Rd) := {f ∈ C∞b (Rd) : ∇f has compact support} and

Ā f(x) =
1

2

d∑
i,j=1

{σσ∗}ij(µ̄)∂i∂jf(x) +
∞∑
i=1

bi(x, µ̄)∂if(x), f ∈ C∞c (Rd).

According to Section 3, the Donsker-Varadhan level 2 entropy function J for the diffusion
process generated by Ā has compact level sets in P(Rd) under the τ and weak topologies, and
by (5.2) below we have

J(ν) =

{
sup

{ ∫
Rd
−Ā f
f

dν : 1 ≤ f ∈ D(Ā )
}
, if νλµ,

∞, otherwise.

Theorem 2.1. Assume (H1). For any r, R > 0, let Br,R =
{
ν ∈P(Rd) : ν(e|·|

r
) ≤ R

}
.

(1) (2.1) is well-posed for initial distributions in P2(Rd) and P ∗t has a unique invariant
probability measure µ̄ ∈P2(Rd) such that (2.2) holds.

(2) We have {Lνt }ν∈Br,R
∈ LDPu(J) for all r, R > 0. If P̄t is strong Feller and µ̄-irreducible

for some t > 0, then {Lνt }ν∈Br,R
∈ LDP (J) for all r, R > 0.

(3) If there exist constants ε, c1, c2 > 0 such that

(2.4) 〈x, b(x, ν)〉 ≤ c1 − c2|x|2+ε, x ∈ Rd, ν ∈P2(Rd),

then {Lνt }ν∈P2(Rd) ∈ LDPu(J). If moreover P̄t is strong Feller and µ̄-irreducible for some
t > 0, then {Lνt }ν∈P2(Rd) ∈ LDP (J).

To apply this result, we first recall some facts on the strong Feller property and the irre-
ducibility of diffusion semigroups.
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Remark 2.1. We make some comments on the strong Feller property and the µ̄-irreducibility
used in the above theorem for hypo-elliptic or elliptic diffusion processes.

(1) Let P̄t be the (sub-)Markov semigroup generated by the second order differential operator

Ā :=
m∑
i=1

U2
i + U0,

where {Ui}mi=1 are C1-vector fields and U0 is a continuous vector field. Here, as a convention
in differential geometry, each vector field U is regarded as a first order differential operator by
letting Uf := 〈∇f, U〉 for a differentiable function f . Assume that Ā satisfies the Hörmander
condition, i.e. there exists a natural number k ≥ 1 such that at each point we have spanHk =
Rd, where H1 := {Ui : 1 ≤ i ≤ m} and for each n ≥ 1 we set

Hn+1 := Hn ∪
{

[U,Ui] := UUi − UiU, 0 ≤ i ≤ m
}
.

Then according to [13, Theorem 5.1], P̄t satisfies the Harnack inequality

P̄tf(x) ≤ ψ(t, s, x, y)P̄t+sf(y), t, s > 0, x, y ∈ Rd, f ∈ B+(Rd)

for some map ψ : (0,∞)2 × (Rd)2 → (0,∞). Consequently, if P̄t has an invariant probability
measure µ̄, then P̄t is µ̄-irreducible for any t > 0. Finally, if {Ui}0≤i≤m are smooth with bounded
derivatives of all orders, then the above Hörmander condition implies that P̄t has smooth heat
kernel with respect to the Lebesgue measure, in particular it is strong Feller for any t > 0.

(2) Let P̄t be the Markov semigroup generated by

Ā :=
d∑

i,j=1

āij∂i∂j +
d∑
i=1

b̄i∂j,

where (āij(x)) is strictly positive definite for any x, āij ∈ Hp,1
loc (dx) and b̄i ∈ Lploc(dx) for some

p > d and all 1 ≤ i, j ≤ d. Moreover, let µ̄ be an invariant probability measure of P̄t. Then
by [3, Theorem 4.1], P̄t is strong Feller for all t > 0. Moreover, as indicated in (1) that [13,
Theorem 5.1] ensures the µ̄-irreducibility of P̄t for t > 0.

We present below two examples to illustrate this result, where the first is a distribution
dependent perturbation of the Ornstein-Ulenbeck process, and the second is the distribution
dependent stochastic Hamiltonian system.

Example 2.1. Let σ(ν) = I + εσ0(ν) and b(x, ν) = −x + εb0(x, ν), where I is the identity
matrix, ε > 0 and σ0 : P2(Rd) → Rd ⊗ Rd, b0 : Rd ×P2(Rd) → Rd are Lipschitz continuous.
When ε > 0 is small enough, assumption (H1) holds and that P̄t satisfies conditions in Remark
2.1(2). So, Theorem 2.1(1) implies {Lνt }ν∈Br,R

∈ LDP (J) for all r, R > 0.
If we take the above σ but b(x, ν) = −x− c|x|θx+ εb0(x, ν) for some constants c, θ > 0 and

a Lipschitz continuous map b0 : Rd ×P2(Rd)→ Rd such that |b0(x, ν)| ≤ c0(1 + |x|) holds for
some constant c0 > 0, then when ε > 0 is small enough (H1) and (2.4) are satisfied, so that
Theorem 2.1(2) and Remark 2.1(2) imply {Lνt }ν∈P2(Rd) ∈ LDP (J).
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Example 2.2. Let d = 2m and consider the following distribution dependent SDE for X(t) =
(X(1)(t), X(2)(t)) on Rm × Rm :{

dX(1)(t) = {X(2)(t)− λX(1)(t)}dt
dX(2)(t) = {Z(X(t),LX(t))− λX(2)(t)}dt+ σdW (t),

,

were λ > 0 is a constant, σ is an invertible m×m-matrix, W (t) is the m-dimensional Brownian
motion, and Z : R2m ×P2(R2m)→ Rm satisfies

|Z(x1, ν1)− Z(x2, ν2)| ≤ α1|x(1)
1 − x

(1)
2 |+ α2|x(2)

1 − x
(2)
2 |+ α3W2(ν1, ν2)

for some constants α1, α2, α3 ≥ 0 and all xi = (x
(1)
i , x

(2)
i ) ∈ R2m, νi ∈P2(R2m), 1 ≤ i, j ≤ 2. If

(2.5) 4λ > inf
s>0

{
2α3s+ α3s

−1 + 2α2 +
√

4(1 + α1)2 + (2α2 + α3s−1)2
}
,

then {Lνt }ν∈Br,R
∈ LDP (J) for all r, R > 0.

Indeed, b(x, ν) := (x(2) − λx(1), Z(x, ν)− λx(2)) satisfies

2〈b(x1, ν1)− b(x2, ν2), x1 − x2〉
≤ −2λ|x(1)

1 − x
(1)
2 |2 − 2(λ− α2)|x(2)

1 − x
(2)
2 |2

+ 2|x(2)
1 − x

(2)
2 |
{

(1 + α1)|x(1)
1 − x

(1)
2 |+ α3W2(ν1, ν2)

}
≤ α3sW2(ν1, ν2)2 − {2λ− δ(1 + α1)}|x(1)

1 − x
(1)
2 |2

− {2λ− 2α2 − δ−1(1 + α1)− α3s
−1}|x(2)

1 − x
(2)
2 |2, s, δ > 0

for all x1, x2 ∈ R2m and ν1, ν2 ∈P2(R2m). Taking

δ =
2α2 + α3s

−1 +
√

4(1 + α1)2 + (2α2 + α3s−1)2

2(1 + α1)

such that δ(1 + α1) = 2α2 + δ−1(1 + α1) + α3s
−1, we see that (H1) holds for some κ1 > κ2

provided 2λ − δ(1 + α1) > α3s for some s > 0, i.e. (2.5) implies (H1). Moreover, it is easy
to see that conditions in Remark 2.1(1) hold, see also [8, 21] for Harnack inequalities and
gradeint estimates on stochastic Hamiltonian systems which also imply the strong Feller and
µ̄-irreducibility of P̄t. Therefore, the claimed assertion follows from Theorem 2.1(1).

2.2 Distribution dependent SPDE

Consider the following distribution-dependent SPDE on a separable Hilbert space H:

(2.6) dX(t) = {AX(t) + b(X(t),LX(t))}dt+ σ(LX(t))dW (t),

where (A,D(A)) is a linear operator on H, b : H ×P2(H) → H and σ : P2(H) → L(H̃;H)
are measurable, and W (t) is the cylindrical Brwonian motion on H̃. We make the following
assumption.
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(H2) (−A,D(A)) is self-adjoint with discrete spectrum 0 < λ1 ≤ λ2 ≤ · · · counting multiplici-
ties such that

∑∞
i=1 λ

γ−1
i <∞ holds for some constant γ ∈ (0, 1).

Moreover, b is Lipschitz continuous on H×P2(H), σ is bounded and there exist constants
α1, α2 ≥ 0 with λ1 > α1 + α2 such that

2〈x− y, b(x, µ)− b(y, ν)〉+ ‖σ(µ)− σ(ν)‖2
HS ≤ 2α1|x− y|2 + 2α2W2(µ, ν)2

holds for all x, y ∈ H and µ, ν ∈P2(H).

According to Theorem 3.1 below, assumption (H2) implies that for any X(0) ∈ L2(Ω →
H,F0,P), the equation (2.6) has a unique mild solution X(t). As before we denote by Xν(t)
the solution with initial distribution ν ∈ P2(H), and write P ∗t ν = LXν(t). Moreover, by Itô’s
formula and κ := λ1− (α1 +α2) > 0, it is easy to see that P ∗t has a unique invariant probability
measure µ̄ ∈P2(H) and

(2.7) W2(P ∗t ν, µ̄) ≤ e−κtW2(ν, µ̄), t ≥ 0.

Consider the reference SPDE

dX̄(t) = {AX̄(t) + b(X̄(t), µ̄)}dt+ σ(µ̄)dW (t),

which is again well-posed for any initial value X̄(0) ∈ L2(Ω→ H,F0,P). Let J be the Donsker-
Varadhan level 2 entropy function for the Markov process X̄(t), see Section 3. For any r, R > 0
let

Br,R :=
{
ν ∈P(H) : ν(e|·|

r

) ≤ R
}
.

Theorem 2.2. Assume (H2). If there exist constants ε ∈ (0, 1) and c > 0 such that

(2.8) 〈(−A)γ−1x, b(x, µ)〉 ≤ c+ ε|(−A)
γ
2 x|2, x ∈ D((−A)

γ
2 ),

then {Lνt }ν∈Br,R
∈ LDPu(J) for all r, R > 0. If moreover P̄t is strong Feller and µ̄-irreducible

for some t > 0, then {Lνt }ν∈Br,R
∈ LDP (J) for all r, R > 0.

Assumption (H2) is standard to imply the well-posedness of (2.6) and the exponential
convergence of P ∗t in W2. Condition (2.8) is implied by

(2.9) |(−A)
γ
2
−1b(x, µ)| ≤ ε′|(−A)

γ
2 x|+ c′, x ∈ D((−A)

γ
2 )

for some constants ε′ ∈ (0, 1) and c′ > 0. In particular, (2.8) holds if |b(x, µ)| ≤ c1 + c2|x| for
some constants c1 > 0 and c2 ∈ (0, λ1). When σ is invertible with bounded σ−1 and b(·, µ) is
Lipschitz continuous, the dimension-free Harnack inequality established in [18, Theorem 3.4.1]
implies the strong Feller property and µ̄-irreducibility of P̄t for t > 0, see [18, Theorem 1.4.1]
for more properties implied by this type Harnack inequality. Therefore, by Theorem 2.2, in
this case (H2) and (2.9) imply {Lνt }ν∈Br,R

∈ LDP (J) for all r, R > 0. See Example 2.4 below
for the case where σ is non-invertible and b is possibly path-dependent.
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2.3 Path-distribution dependent SPDE with additive noise

Let H̃ = H and σ ∈ L(H). Then (1.1) becomes

(2.10) dX(t) =
{
AX(t) + b(Xt,LXt)

}
dt+ σdW (t).

Below we consider this equation with σ being invertible and non-invertible respectively.

2.3.1 Invertible σ

Since σ is constant, we are able to establish LDP for b(ξ, ·) being Lipshcitz continuous in Wp

for some p ≥ 1 rather than just for p = 2 as in the last two results.

(H3) σ ∈ L(H) is constant and (A,D(A)) satisfies the corresponding condition in (H2). More-
over, there exist constants p ≥ 1 and α1, α2 ≥ 0 such that

|b(ξ, µ)− b(η, ν)| ≤ α1‖ξ − η‖∞ + α2Wp(µ, ν), ξ, η ∈ C , µ, ν ∈Pp(C ).

Since (H3) implies assumption (A) in Theorem 3.1 below, for any Xν
0 ∈ Lp(Ω→ C ,F0,P)

with ν = LXν
0
, the equation (1.1) has a unique mild segment solution Xν

t with

E
[

sup
t∈[0,T ]

‖Xν
t ‖p∞

]
<∞, T > 0.

Let P ∗t ν = LXν
t

for t ≥ 0 and ν ∈Pp(C ).
When P ∗t has a unique invariant probability measure µ̄ ∈Pp(C ), we consider the reference

functional SPDE

(2.11) dX̄(t) =
{
AX̄(t) + b(X̄t, µ̄)

}
dt+ σdW (t).

By Theorem 3.1 below, this reference equation is well-posed for any initial value in Lp(Ω →
C ,F0,P). For any ε, R > 0, let

Iε,R =
{
ν ∈P(C ) : ν(eε‖·‖

2
∞) ≤ R

}
.

Theorem 2.3. Assume (H3). Let θ ∈ [0, λ1] such that

κp := θ − (α1 + α2)epθr0 = sup
r∈[0,λ1]

{
r − (α1 + α2)eprr0

}
.

(1) For any ν1, ν2 ∈Pp(C ),

(2.12) Wp(P
∗
t ν1, P

∗
t ν2)p ≤ epθr0−pκptWp(ν1, ν2)p, t ≥ 0.

In particular, if κp > 0, then P ∗t has a unique invariant probability measure µ̄ ∈ Pp(C )
such that

(2.13) Wp(P
∗
t ν, µ̄)p ≤ epθr0−pκptWp(ν, µ̄)p, t ≥ 0, ν ∈Pp(C ).

(2) Let σ be invertible. If κp > 0 and sups∈(0,λ1](s− α1esr0) > 0, then {Lνt }ν∈Iε,R ∈ LDP (J)
for any ε, R > 0, where J is the Donsker-Varadhan level 2 entropy function for the Markov
process X̄t on C .
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Example 2.3. For a bounded domain D ⊂ Rd, let H = L2(D; dx) and A = −(−∆)α, where
∆ is the Dirichlet Laplacian on D and α > d

2
is a constant. Let σ = I be the identity operator

on H, and

b(ξ, µ) = b0(µ) + α1

∫ 0

−r0
ξ(r)Θ(dr), (ξ, µ) ∈ C ×P1(C ),

where α1 ≥ 0 is a constant, Θ is a signed measure on [−r0, 0] with total variation 1 (i.e.
|Θ|([−r0, 0]) = 1), and b0 satisfies

|b0(µ)− b0(ν)| ≤ α2W1(µ, ν), µ, ν ∈P1(C )

for some constant α2 ≥ 0. Then (H3) holds for p = 1, and as shown in the proof of Example
1.1 in [1] that

λ1 ≥ λ :=
(dπ2)α

R(D)2α
,

where R(D) is the diameter of D. Therefore, all assertions in Theorem 2.3 hold provided

sup
r∈(0,λ]

{r − (α1 + α2)err0} > 0.

In particular, under this condition {Lνt }ν∈Iε,R ∈ LDP (J) for any ε, R > 1.

2.3.2 Non-invertible σ

Let H = H1 × H2 for two separable Hilbert spaces H1 and H2, and consider the following
path-distribution dependent SPDE for X(t) = (X(1)(t), X(2)(t)) on H:

(2.14)

{
dX(1)(t) = {A1X

(1)(t) +BX(2)(t)}dt,
dX(2)(t) = {A2X

(2)(t) + Z(Xt,LXt)}dt+ σdW (t),

where (Ai,D(Ai)) is a densely defined closed linear operator on Hi generating a C0-semigroup
etAi (i = 1, 2), B ∈ L(H2;H1), Z : C 7→ H2 is measurable, σ ∈ L(H2), and W (t) is the
cylindrical Wiener process on H2. Then (2.14) reduces to (2.10) with A = diag{A1, A2} and
diag{0, σ} replacing σ, i.e. (2.14) is a special case of (2.10) with non-invertible σ.

For any α > 0 and p ≥ 1, define

Wp,α(ν1, ν2) := inf
π∈C (ν1,ν2)

(∫
C×C

(
α‖ξ(1)

1 − ξ
(1)
2 ‖∞ + ‖ξ(2)

1 − ξ
(2)
2 ‖∞

)p
π(dξ1, dξ2)

) 1
p

.

We assume

(H4) Let p ≥ 1 and α > 0.

(H1
4 ) (−A2,D(A2)) is self-adjoint with discrete spectrum 0 < λ1 ≤ λ2 ≤ · · · counting multi-

plicities such that
∑∞

i=1 λ
γ−1
i < ∞ for some γ ∈ (0, 1). Moreover, A1 ≤ δ − λ1 for some

constant δ ≥ 0; i.e., 〈A1x, x〉 ≤ (δ − λ1)|x|2 holds for all x ∈ D(A1).
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(H2
4 ) There exist constants K1, K2 > 0 such that

|Z(ξ1, ν1)−b(ξ2, ν2)| ≤ K1‖ξ(1)
1 −ξ

(1)
2 ‖∞+K2‖ξ(2)

1 −ξ
(2)
2 ‖∞+K3Wp,α(ν1, ν2), (ξi, νi) ∈ C×Pp(C ).

(H3
4 ) σ is invertible on H2, and there exists A0 ∈ L(H1;H1) such that for any t > 0, BetA2 =

etA1etA0B holds and

Qt :=

∫ t

0

esA0BB∗esA
∗
0ds

is invertible on H1.

By Theorem 3.1 for H0 = H2 and diag{0, σ} replacing σ, (H4) implies that for any X0 ∈
Lp(Ω → C ,F0,P) this equation has a unique mild segment solution. Let P ∗t ν = LXt for
LX0 = ν ∈Pp(C ).

Theorem 2.4. Assume (H4) for some constants p ≥ 1 and α > 0 satisfying

(2.15) α ≤ α′ :=
1

2‖B‖
{
δ −K2 +

√
(δ −K2)2 + 4K1‖B‖

}
,

where ‖ · ‖ is the operator norm. If

(2.16) sup
s∈(0,λ1]

se−sr0 > K2 + α′‖B‖+K3,

then P ∗t has a unique invariant probability measure µ̄ such that

(2.17) Wp(P
∗
t ν, µ̄)2 ≤ c1e−c2tWp(ν, µ̄), ν ∈Pp(C ), t ≥ 0

holds for some constants c1, c2 > 0, and {Lνt }ν∈Iε,R ∈ LDP (J) for any ε, R > 1, where J is the
Donsker-Varadhan level 2 entropy function for the associated reference equation for X̄(t).

Example 2.4. Consider the following equation for X(t) = (X(1)(t), X(2)(t)) on H = H0×H0

for a separable Hilbert space H0:{
dX(1)(t) = {α1X

(2)(t)− AX(1)(t)}dt
dX(2)(t) = {Z(X(t),LX(t))− AX(2)(t)}dt+ dW (t),

where α1 ∈ R\{0}, W (t) is the cylindrical Brownian motion on H0, A is a self-adjoint operator
on H0 with discrete spectrum such that all eigenvalues 0 < λ1 ≤ λ2 ≤ · · · counting multiplicities
satisfy

∞∑
i=1

λγ−1
i <∞

for some γ ∈ (0, 1), and Z satisfies

|Z(ξ1, ν1)− Z(ξ2, ν2)| ≤ α2‖ξ1 − ξ2‖∞ + α3W2(ν1, ν2), (ξi, νi) ∈ C ×P2(C ), i = 1, 2.
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Let

α =
1

2α1

(√
α2

2 + 4α1α2 − α2

)
.

Then P ∗t has a unique invariant probability measure µ̄ ∈ P2(C ), and {Lνt }ν∈IR,q ∈ LDP (J)
for any R, q > 1 if

(2.18) sup
s∈[0,λ1]

se−sr0 > α2 + α1α +
α3

1 ∧ α
.

Indeed, it is easy to see that assumption (H4) holds for p = 2, δ = 0, K1 = K2 = α2, K3 = α3

1∧α ,
A1 = A2 = −A,B = α1 and A0 = 0. So, we have α = α′ and (2.18) is equivalent to (2.16).
Then the desired assertion follows from Theorem 2.4.

3 Well-posedness of path-distribution dependent SPDEs

Consider the following path-distribution dependent SPDE on H:

(3.1) dX(t) =
{
AX(t) + bt(Xt,LXt)

}
dt+ σt(Xt,LXt)dW (t),

where (A,D(A)) is a negative self-adjoint operator on H, and

b : [0,∞)× C ×P(C )→ H, σ : [0,∞)× C ×P(C )→ L(H; H̃)

are measurable, and W (t) is the cylindrical Brownian motion on H̃.

Definition 3.1. An adapted continuous process (Xt)t≥0 on C is called a mild segment (or
functional) solution of (3.1), if

E
∫ t

0

{
|e(t−s)Abs(Xs,LXs)|+ ‖e(t−s)Aσs(Xs,LXs)‖2

HS

}
ds <∞, t ≥ 0,

and the process X(t) := Xt(0) satisfies P-a.s.

X(t) = eAtX(0) +

∫ t

0

e(t−s)Abs(Xs,LXs)ds+

∫ t

0

e(t−s)Aσs(Xs,LXs)dW (s), t ≥ 0.

In this case, we call (X(t))t≥0 a mild solution of (3.1) with initial value X0.

To ensure the existence and uniqueness of mild solutions with X0 ∈ Lp(Ω → C ,F0,P) for
some p > 0, we make the following assumption.

(A) Let p ∈ (0,∞). There exists a subspace H0 of H such that σ(ξ, ν)H̃ ⊂ H0 for any
(ξ, ν) ∈ C ×P(C ), and the orthogonal projection π0 : H→ H0 satisfies Aπ0 = π0A on D(A).
Moreover, there exist γ ∈ (0, 1) and 1 ≤ K ∈ L1

loc([0,∞)→ [0,∞)) such that

(A1)
∫ t

0
s−γ‖esAπ0‖2

HSds <∞, t ∈ (0,∞).
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(A2) There exists p0 > 2 such that for any t ≥ 0, ξ, η ∈ C and µ, ν ∈Pp(C ),

|bt(ξ, µ)− bt(η, ν)| ≤ K(t)
(
‖ξ − η‖∞ + Wp(µ, ν)

)
,

‖σt(ξ, µ)− σt(η, ν)‖p ≤ K(t)
1∧ p

p0

(
‖ξ − η‖p∞ + Wp(µ, ν)p

)
.

(A3) |bt(0, δ0)|+ ‖σt(0, δ0)‖p∨p0 ≤ K(t), t ≥ 0.

In many references (A1) is replaced by
∫ t

0
s−γ‖eAs‖2

HSds <∞, see for instance [4]. The present
weaker version allows us to cover more examples with degenerate noise.

Remark 3.1. By (A) we have eA(t−s)σs = eA(t−s)π0σs, so that using eA(t−s)π0 to replace the
semigroup S(t−s) in the proof of [4, Proposition 7.9], if Φ(s) is an adapted process on L(H; H̃)
such that E

∫ t
0
‖Φ(s)‖qds <∞ for some q > 2, then

WΦ(t) :=

∫ t

0

eA(t−s)π0Φ(s)dW (s), t ≥ 0

is an adapted continuous process on H such that

E
[∣∣∣∣ sup

s∈[0,t]

∫ t

0

eA(s−r)π0Φ(r)dW (r)

∣∣∣∣q] ≤ cE
∫ t

0

‖Φ(s)‖qds

holds for some constant c > 0.

In the following result, “p = 2” is included in both (2) and (3), but conditions in these two
situations are incomparable: comparing with (2), (3) allows σ(ξ, µ) depending on ξ which is
more general on the one hand, but assumes the Lipschitz condition in the Hilbert-Schmidt
norm which is more restrictive on the other hand.

Theorem 3.1. Assume (A) and let X0 ∈ Lp(Ω → C ,F0,P). Then (3.1) has a unique mild
segment solution {Xt}t≥0 starting at X0 with

E
[

sup
t∈[0,T ]

‖Xt‖p∞
]
<∞, T ∈ (0,∞),

provided one of following conditions holds:

(1) p > 2.

(2) p ∈ (0, 2] and σs(ξ, µ) does not depend on ξ.

(3) p = 2 and for any s ≥ 0, ξ, η ∈ C and µ, ν ∈P2(C ),

‖σs(ξ, µ)− σs(η, ν)‖2
HS ≤ K(s){‖ξ − η‖2

∞ + W2(µ, ν)2
}
.
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Proof. We consider cases (1)-(3) respectively.

Proof for Case (1). Let p > 2.
The existence. We adopt an iteration argument as in [20]. It suffices to prove that for any
fixed T > 0, the SPDE has a unique mild segment solution up to time T satisfying

(3.2) E
[

sup
t∈[0,T ]

‖Xt‖p∞
]
<∞.

(1a) We first consider the case that X0 is bounded. Let X0
t = X0 and µ0

t = LX0
t

for t ≥ 0.
By Remark 3.1,

X1(t) := eAtX(0) +

∫ t

0

e(t−s)Abs(X
0
s , µ

0
s)ds+

∫ t

0

e(t−s)Aσs(X
0
s , µ

0
s)dW (s), t ≥ 0,

is an adapted continuous process on H such that

(3.3) E
[

sup
t∈[0,T ]

‖X1
t ‖q∞

]
<∞, q > 0,

where X1
t (r) := X1(t+ r)1{t+r≥0} +X0(t+ r)1{t+r<0}.

Now, assume that for some n ≥ 1 we have constructed a continuous adapted process
{Xn

t }t∈[0,T ] on C with Xn
0 = X0 and

E
[

sup
t∈[0,T ]

‖Xn
t ‖q∞

]
<∞, q > 0.

By Remark 3.1,

(3.4) Xn+1(t) := eAtX(0) +

∫ t

0

e(t−s)Abs(X
n
s , µ

n
s )ds+

∫ t

0

e(t−s)Aσs(X
n
s , µ

n
s )dW (s), t ∈ [0, T ]

for µns := LXn
s

is an adapted continuous process on H, and the segment process Xn+1
t given by

(3.5) Xn+1
t (r) := Xn+1(t+ r)1{t+r≥0} +X0(t+ r)1{t+r<0} for r ∈ [−r0, 0], t ≥ 0

satisfies
E
[

sup
t∈[0,T ]

‖Xn+1
t ‖q∞

]
<∞, q > 0.

It suffices to find a constant t0 > 0 independent of X0 such that {Xn
[0,t0]}n≥1 is a Cauchy

sequence in Lp(Ω→ C([0, t0]; C ),P). This together with assumption (A) imply that the limit
X[0,t0] := limn→∞X

n
[0,t0] gives rise to a mild segment solution of (3.1) up to time t0. By repeating

the procedure with initial time it0 and initial value Xit0 for i ≥ 1, in finite many steps we may
construct a mild segment solution of (3.1) up to time T , such that (3.2) holds.

For any n ≥ 1, by (3.4), (3.5) and assumption (A) we have

ψn(t) := sup
s∈[0,t]

‖Xn+1
s −Xn

s ‖∞ = sup
s∈[0,t]

|Xn+1(s)−Xn(s)|

≤
∫ t

0

K(s)
{
‖Xn

s −Xn−1
s ‖∞ + Wp(µ

n
s , µ

n−1
s )

}
ds+ sup

s∈[0,t]

∣∣∣∣ ∫ s

0

eA(s−r)Φn(r)dW (r)

∣∣∣∣,(3.6)
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where Φn(r) := σr(X
n
r , µ

n
r )− σr(Xn−1

r , µn−1
r ) satisfies

‖Φn(r)‖p ≤ K(r)
{
‖Xn

r −Xn−1
r ‖p∞ + Wp(µ

n
r , µ

n−1
r )p

}
.

Combining this with Wp(µ
n
r , µ

n−1
r )p ≤ E‖Xn

r −Xn−1
r ‖p∞, and noting that Remark 3.1 implies

(3.7) E
[

sup
s∈[0,t]

∣∣∣∣ ∫ s

0

eA(s−r)Φn(r)dW (r)

∣∣∣∣p] ≤ cE
∫ t

0

‖Φn(s)‖pds

for some constant c > 0, we find constants C1, C2 > 0 such that

E[ψn(t)p] ≤ C1E
(∫ t

0

K(s)
{
ψn−1(s) + Wp(µ

n
s , µ

n−1
s )ds

)p
+ C1E

∫ t

0

K(s)
{
‖Xn

s −Xn−1
s ‖p∞ + Wp(µ

n
s , µ

n−1
s )p

}
ds

≤ C2ε(t)E[ψpn−1(t)], ε(t) :=

(∫ t

0

K(s)ds

)p
+

∫ t

0

K(s)ds.

(3.8)

Taking t0 ∈ (0, T ] such that C2ε(t0) ≤ 1
2
, we obtain

E[ψpn(t0)] ≤ 2−nE[ψp0(t0)] <∞, n ≥ 1.

Thus, {Xn
[0,t0]}n≥1 is a Cauchy sequence in Lp(Ω→ C([0, t0]; C ),P) as desired.

(1b) In general, for X0 ∈ Lp(Ω→ C ,F0,P) and N ∈ N let X
(N)
0 = X01{‖X0‖∞≤N}. By (1a),

for any N ≥ 1 we have constructed a mild segment solution (X
(N)
t )t∈[0,T ] for (3.1) satisfying

(3.2) with initial value X
(N)
0 :

XN(t) := eAtX(N)(0) +

∫ t

0

e(t−s)Abs(X
(N)
s , µ(N)

s )ds+

∫ t

0

e(t−s)Aσs(X
(N)
s , µ(N)

s )dW (s), t ∈ [0, T ],

where µ
(N)
s = L

X
(N)
s
. By the above argument for X(N)(t)−X(M)(t) instead of Xn+1(t)−Xn(t),

we find a constant C > 0 such that for any N,M ≥ 1, the process

ψN,M(t) := sup
s∈[0,t]

‖X(N)
s −X(M)

s ‖p∞, t ∈ [0, T ]

satisfies

(3.9) E[ψN,M(t)] ≤ CE
[
‖X0‖p∞1{‖X0‖∞>N∧M}

]
+ Cε(t)E[ψN,M(t)], t ∈ [0, T ].

Taking t0 ∈ (0, T ] such that Cε(t0) ≤ 1
2
, we obtain

E[ψN,M(t0)] ≤ 2CE
[
‖X0‖p∞1{‖X0‖∞>N∧M}

]
, N,M ≥ 1,

so that, {X(N)
[0,t0]}N≥1 is a Cauchy sequence in Lp(Ω→ C([0, t0]; C ),P), and it is easy to see that

its limit as N →∞ is a solution of (3.1) up to time t0. As explained before that by repeating
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the procedure we construct a mild segment solution of (3.1) up to time T satisfying (3.2).
The uniqueness. Let Xt and Yt be two mild segment solutions with initial value X0 satisfying

E
[

sup
t∈[0,T ]

(
‖Xt‖p∞ + ‖Yt‖p∞

)]
<∞.

Similarly to (3.8) we have

E
[

sup
s∈[0,t]

‖Xs − Ys‖p∞
]
≤ Cε(t)E

[
sup
s∈[0,t]

‖Xs − Ys‖p∞
]
, t ∈ [0, T ].

This implies Xt = Yt up to time t0 ∈ (0, T ] such that Cε(t0) < 1. Since this t0 does not depend
on the initial value, repeating the same argument leads to Xt = Yt for all t ∈ [0, T ].

Proof for Case (2). Let p ∈ (0, 2]. Again we first assume that X0 is bounded and let Xn, µn, ψn
be defined in step (1a). Since σs(ξ, µ) does not depend on ξ and K(s) ≥ 1, by (A2), Φn(s) in
(3.6) satisfies

‖Φn(s)‖p0 ≤ K(s)Wp(µ
n
s , µ

n−1
s )p0 .

Combining this with Remark 3.1 for q = p0 > 2, and using Wp(µ
n
s , µ

n−1
s )p ≤ E‖Xn

s −Xn−1
s ‖p∞,

we find a constant C1 > 0 such that

E[ψpn(t)] ≤ C1

(
E
∫ t

0

K(s)ψn−1(s)ds

)p
+ C1

(∫ t

0

K(s)Wp(µ
n
s , µ

n−1
s )p0ds

) p
p0

≤ C1δ(t)E[ψpn−1(t)], t ∈ [0, T ], n ≥ 1

holds for δ(t) := (
∫ t

0
K(s)ds)p + (

∫ t
0
K(s)ds)

p
p0 . Then the remainder of the proof, including the

existence and uniqueness for bounded X0, and the extension to general X0 ∈ Lp(Ω→ C ,F0,P),
is similar to that in Case (1).

Proof for Case (3). Let p = 2. As explained above we only consider bounded X0. In this case,
let Xn, µn, ψn be defined in step (1a). By (A) and Itô’s formula to |Xn+1(t)−Xn(t)|2, we find
a constant c > 0 such that

d|Xn+1(t)−Xn(t)|2

≤ cK(t)
{
|Xn+1(t)−Xn(t)|2 + ‖Xn

t −Xn−1
t ‖2

∞ + W2(µnt , µ
n−1
t )2

}
dt+ dMn(t),

(3.10)

where

Mn(t) := 2

∫ t

0

〈
Xn+1(s)−Xn(s), {σs(Xn

s , µ
n
s )− σs(Xn−1

s , µn−1
s )}dW (s)

〉
satisfies

d〈Mn(t)〉 ≤ 4K(t)|Xn+1(t)−Xn(t)|2
{
‖Xn

t −Xn−1
t ‖2

∞ + W2(µnt , µ
n−1
t )2

}
dt.

By (3.10), we obtain

|Xn+1(t)−Xn(t)|2e−c
∫ t
0 K(s)ds
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≤
∫ t

0

K(s)e−c
∫ s
0 K(r)dr

(
‖Xn

s −Xn−1
s ‖2

∞ + W2(µns , µ
n−1
s )2

)
ds+

∫ t

0

e−
∫ s
0 cK(r)drdMn(s)

for t ∈ [0, T ]. Therefore, by the BDG inequality, there exist constants C1, C2 > 0 depending
only on T such that

E[ψ2
n(t)] ≤ ec

∫ T
0 K(s)dsE

[
sup
s∈[0,t]

|Xn+1(s)−Xn(s)|2e−c
∫ s
0 K(r)dr

]
≤ C1

∫ t

0

K(s)
{
E[ψ2

n−1(s)] + W2(µns , µ
n−1
s )2

}
ds

+ C1E
[(∫ t

0

K(s)ψ2
n(s)

{
ψ2
n−1(s) + W2(µns , µ

n−1
s )2

}
ds

) 1
2
]

≤ 1

2
E[ψ2

n(t)] + C2

∫ t

0

K(s)
{
E[ψ2

n−1(s)] + W2(µns , µ
n−1
s )2

}
ds, t ∈ [0, T ].

Noting that W2(µns , µ
n−1
s )2 ≤ E[ψ2

n−1(s)], this implies

E[ψ2
n(t)] ≤ 4C2

∫ t

0

K(s)E[ψ2
n−1(s)]ds ≤ 4C2E[ψ2

n−1(t)]

∫ t

0

K(s)ds, t ∈ [0, T ], n ≥ 1.

Taking t0 ∈ (0, T ] such that 4C2

∫ t0
0
K(s)ds ≤ 1

2
, we obtain

E[ψ2
n(t0)] ≤ 2−(n−1)E[ψ2

0(t0)] <∞, n ≥ 1.

Thus, {Xn
[0,t0]}n≥1 is a Cauchy sequence in L2(Ω → C([0, t0]; C ),P) as desired. The remainder

of the proof is similar to that in Case (1).

4 Proofs of main results

4.1 Proof of Theorem 2.1

We first prove the well-posedness for the following more general SDE such that the first assertion
follows:

(4.1) dX(t) = b(X(t),LX(t))dt+ σ(X(t),LX(t))dW (t),

where W (t) is the m-dimensional Brownian motion, and

b : Rd ×P2(Rd)→ Rd, σ : Rd ×P2(Rd)→ Rd ⊗ Rm

are continuous such that

〈b(x, µ)− b(y, ν), x− y〉+
1

2
‖σ(x, µ)− σ(y, ν)‖2

HS ≤ K1|x− y|2 +K2W2(µ, ν)2,

‖σ(x, µ)‖ ≤ K3

{
|x− y|+ W2(µ, ν)

}
, x, y ∈ Rd, µ, ν ∈P2(Rd)

(4.2)

holds for some constants K1 ∈ R, K2, K3 ≥ 0. We have the following result.
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Lemma 4.1. Let b and σ be continuous such that (4.2) holds for some constants K1 ∈
R, K2, K3 ≥ 0. Then (4.1) has a unique solution for initial value with LX(0) ∈ P2(Rd), and
the associated operator P ∗t satisfies

(4.3) W2(P ∗t µ, P
∗
t ν) ≤ e(K1+K2)tW2(µ, ν), t ≥ 0, µ, ν ∈P2(Rd).

Consequently, if K1 +K2 < 0 then P ∗t has a unique invariant probability measure µ̄ ∈P2(Rd).

Proof. For any T > 0 and initial value X(0) with LX(0) ∈P2(Rd), consider the space

D :=
{
µ : [0, T ]→P2(Rd) is continuous, µ0 = LX(0)

}
,

which is a complete metric space under

W2,λ(µ, ν) := sup
t∈[0,T ]

e−λtW2(µt, νt)

for λ > 0. For any µ· ∈ C([0, T ]; P2(Rd)), consider the SDE

dXµ(t) = b(Xµ(t), µt)dt+ σ(Xµ(t), µt)dW (t), t ≥ 0, Xµ(0) = X(0).

It is well known that the conditions on b and σ imply the well-posedness of this SDE, and
LX· ∈ D . So, we can define a map

D 3 µ 7→ H(µ) := LX· ∈ D .

It remains to prove the contraction of H under the metric W2,λ for some λ > 0, which implies
that H has a unique fixed point µ so that Xµ is the unique solution to (4.1). By (4.2) and Itô’s
formula, for any µ, ν ∈ D we have

d|Xµ(t)−Xν(t)|2 ≤ 2
{
K1|Xµ(t)−Xν(t)|2 +K2W2(µt, νt)

2
}

dt+ dM(t)

for some martingale M(t). This implies that for any λ > K1,

e−2λtW2(H(µ)(t), H(ν)(t))2 ≤ e−2λtE|Xµ(t)−Xν(t)|2

≤ 2K2

∫ t

0

e2(K1−λ)(t−s)e−2λsW2(µs, νs)
2ds ≤ K2

λ−K1

W2,λ(µ, ν)2, t ∈ [0, T ].

Therefore, H is contraction in W2,λ for λ > K1 + K2, and hence, (4.1) has a unique solution
for LX(0) ∈P2(Rd).

Next, for two solutions X(t) and Y (t) of (4.1) with initial values satisfying

LX(0) = µ, LY (0) = ν, W2(µ, ν)2 = E|X(0)− Y (0)|2,

by (4.2), Itô’s formula and Gronwall’s lemma, we obtain

W2(P ∗t µ, P
∗
t ν)2 ≤ E|X(t)− Y (t)|2 ≤ e2(K1+K2)tE|X(0)− Y (0)|2 = e2(K1+K2)tW2(µ, ν)2,

so that (4.3) holds. According to the proof of [20, Theorem 3.1], when K1 +K2 < 0 this implies
that P ∗t has a unique invariant probability measure µ̄ ∈P2(Rd).
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Below, we prove the other two assertions in Theorem 2.1 respectively.

Proof of (2). According to Theorem 2.1(1), (H1) implies that the reference SDE

dX̄(t) = b(X̄(t), µ̄)dt+ σ(µ̄)dW (t)

is well-posed and the solution is a Markov Feller process, where µ̄ is the unique invariant
probability measure of P ∗t . Let X̄x(t) denote the solution starting at x. According to Theorem
5.3 and Theorem 5.5, we only need to prove the following assertions:

(2a) For any λ > 0, there exist a constant s > 0 and compact set K ⊂ Rd, such that (5.4)
holds for any compact set K ′ ⊂ Rd and

τxK := inf{t ≥ 0 : X̄x(t) ∈ K}, x ∈ Rd.

(2b) For any N ≥ 1,

sup
ν∈Br,R

EeN
∫∞
0 {1∧|X

ν(s)−X̄0(s)|2}ds <∞.

Indeed, by Theorem 5.3(1), (2a) implies the upper LDP (LDP if P̄t is strong Feller and µ̄-
irreducible) for L̄xt locally uniformly in x, in particular, L0

t satisfies the upper LDP (LDP if P̄t
is strong Feller and µ̄-irreducible). Combining this with (2b) and Theorem 5.5 for I = Br,R

and Ψ(ν) := δ0, we prove the desired assertion for Lνt with ν ∈ Br,R.

Proof of (2a). By (H1), there exist constants α, β > 0 such that

(4.4) d|X̄(t)|2 ≤ 2{α− β|X̄(t)|2}dt+ 2〈X̄(t), σ(µ̄)dW (t)〉.

Let θ = ‖σ‖2
∞. Then for any ε ∈ (0, β/θ), there exist constants c1, c2 > 0 such that

deε|X̄(t)|2 ≤ 2ε
{
α− (β − εθ)|X̄(t)|2

}
eε|X̄(t)|2dt+ dM(t)

≤
{
c1 − c2eε|X̄(t)|2}dt+ dM(t)

for some martingale M(t). So,

(4.5) Eeε|X̄
x(t)|2 ≤ eε|x|

2

+
c1

c2

, x ∈ Rd.

To estimate τxK for K := B0(N), we take N ≥ N0 := (2α/β)
1
2 . Then (4.4) implies

d|X̄(t)|2 ≤ −β|X̄(t)|2dt+ 2〈X̄x(t), σ(µ̄)dW (t)〉, t ≤ τxK .

For any δ > 0, we obtain

Eeδ
∫ t∧τxK
0 |X̄x(s)|2ds ≤ eδβ

−1|x|2Ee2δβ−1
∫ t∧τxK
0 〈X̄x(s),σ(X̄x(s),µ)dW (s)〉

≤ eδβ
−1|x|2(Ee8δ2β−2θ

∫ t∧τxK
0 |X̄x(s)|2ds

) 1
2 .
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Thus, taking δ ≤ β2

8θ
we arrive at

EeδN
2(t∧τxK) ≤ Eeδ

∫ t∧τxK
0 |X̄x(s)|2ds ≤ e2δβ−1|x|2 .

Letting t ↑ ∞ implies

(4.6) EeδN
2τxK ≤ e2δβ−1|x|2 , x ∈ Rd, N ≥ N0.

Combining this with the Markov property and (4.5), when δ ≤ εβ
2

we have

EeδN
2τ
X̄x(s)
K ≤ Ee2δβ−1|X̄x(s)|2 ≤ eε|x|

2

+
c1

c2

, x ∈ Rd, s ≥ 0, N ≥ N0.

Therefore, for any λ > 0 there exists compact K ⊂ Rd such that (5.4) holds.

Proof of (2b). Simply denote X(t) = Xν(t), X̄(t) = X̄0(t) and νt = LXν(t) = P ∗t ν for
ν ∈ Br,R. By (H1), (2.2) and Itô’s formula, we obtain

d|X(t)− X̄(t)|2 ≤
{
− κ1|X(t)− X̄(t)|2 + κ2e−(κ1−κ2)tW2(µ̄, ν)2

}
dt

+ 2〈X(t)− X̄(t), {σ(νt)− σ(µ̄)}dW (t)〉.

Letting γ(t) = |X(t)−X̄(t)|2
1+|X(t)−X̄(t)|2 , we derive

d log(1 + |X(t)− X̄(t)|2) ≤
{
− κ1γ(t) + κ2e−(κ1−κ2)tW2(µ̄, ν)2

}
dt

+
2

1 + |X(t)− X̄(t)|2
〈X(t)− X̄(t), {σ(νt)− σ(µ̄)}dW (t)〉.

We deduce from this and (2.2) that for any λ > 0,

e
− λκ2
κ1−κ2

W2(µ̄,ν)2

E
[
eλκ1

∫ t
0 γ(s)ds

]
≤ E

[
(1 + |X(0)|2)λe

λ
∫ t
0

2
1+|X(s)−X̄(s)|2

〈X(s)−X̄(s),{σ(νs)−σ(µ)}dW (s)〉
]

≤ E
[
(1 + |X(0)|2)λ

(
E
[
e8κ2λ2

∫ t
0 γ(s)W2(νs,µ̄)2ds

]∣∣∣F0

) 1
2

]
≤
{
ν
(
(1 + | · |2)2λ

)} 1
2

(
E
[
e8κ2λ2W2(ν,µ̄)2

∫ t
0 γ(s)e−(κ1−κ2)sds

]) 1
2

≤ C(λ,R)
(
E
[
eλκ1

∫ t
0 γ(s)ds

]) 1
2
, t > 0

(4.7)

holds for some constant C(λ,R) > 0, where the last step is due to γ(s) ≤ 1 and ν ∈ Br,R.
Therefore,

sup
ν∈Br,R

E
[
e
λκ1

∫∞
0

|Xν (s)−X̄0(s)|2

1+|Xν (s)−X̄0(s)|2
ds
]
<∞, λ > 0,

which implies (2b).
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Proof of (3). Assume (2.4). For any λ > 0, it suffices to find a compact set K ⊂ Rd such that
(5.5) holds for X̄, and

sup
ν∈P2(Rd)

EeN
∫∞
0 {1∧|X

ν(s)−X̄ν(s)|2}ds <∞, N ≥ 1.

Indeed, by Theorem 5.3(2) and Theorem 5.5 with I = P2(Rd) and Ψ(ν) = ν, this implies the
upper LDP (LDP if P̄t is strong Feller and µ̄-irreducible) for Lνt uniformly in ν ∈P2(Rd).

By (2.4), there exist constants c1, c2 > 0 such that

(4.8) de|X̄(t)|2 ≤
{
c1 − c2|X̄(t)|2+εe|X̄(t)|2}dt+ 2e|X̄(t)|2〈X̄(t), σ(µ̄)dW (t)〉.

This implies
hx(t) := Ee|X̄

x(t)|2 ≤ c1t+ e|x|
2

<∞, t ≥ 0, x ∈ Rd.

Moreover, by Jensen’s inequality and the convexity of [1,∞) 3 r 7→ r log1+ε/2 r, we deduce from
(4.8) that

hx(t) ≤ hx(0) + c1t− c2

∫ t

0

hx(s) log1+ε/2 hx(s)ds, t ≥ 0.

This and the comparison theorem imply hx(t) ≤ ψ(t), where ψ(t) solves the ODE

ψ′(t) = c1 − c2ψ(t) log1+ε/2 ψ(t), ψ(0) = hx(0) = e|x|
2

.

So,

(4.9) sup
x∈Rd

hx(t) ≤ sup
ψ(0)≥1

ψ(t) =: c(t) <∞.

On the other hand, by (4.8), there exist constants N0, β > 0 such that for any N ≥ N0 and
K = B0(N), we have

(4.10) de|X̄
x(t)|2 ≤ −β|X̄x(t)|2+εe|X̄

x(t)|2dt+ 2e|X̄
x(t)|2〈X̄x(t), σ(µ̄)dW (t)〉, t ≤ τxK .

Combining this with (4.6) and using the Markov property, when 2δ ≤ β2 we arrive at

E[eδN
2τxK ] ≤ eδN

2

+ E
[
eδN

2τxK1{τxK≥1}
]

≤ eδN
2

+ E
[
eδN

2(1+τ
X̄x(1)
K )1{τxK≥1}

]
≤ eδN

2

(1 + Ee|X̄
x(1)|2) ≤ eδN

2

(1 + c(1)) <∞, x ∈ Rd, N ≥ N0.

Therefore, for any λ > 0, there exists compact set K such that (5.5) holds.
Finally, repeating the proof of (4.9) using Xν(t) replacing X̄x(t), we derive

sup
ν∈P2(Rd)

E[e|X
ν(1)|2 ] <∞.

This together with (4.9) yields

(4.11) sup
ν∈P2(Rd)

E
[
e|X

ν(1)|2 + e|X̄
ν(1)|2] <∞.
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On the other hand, as in (4.7) but integrating from time 1, we obtain

e
− λκ2
κ1−κ2

W2(µ̄,ν)2

E
[
e
λκ1

∫ t
1
|Xν (s)−X̄ν (s)|2

1+|Xν (s)−X̄ν (s)|2
ds]

≤ E
[
(1 + |Xν(1)− X̄ν(1)|2)λe

λ
∫ t
1

2
1+|Xν (s)−X̄ν (s)|2

〈Xν(s)−X̄ν(s),{σ(νs)−σ(µ̄)}dW (s)〉
]

≤
{
E
[
(1 + |Xν(1)− X̄ν(1)|2)2λ

]} 1
2

(
E
[
e
λκ1W2(P ∗1 ν,µ̄)2

∫ t
1
|Xν (s)−X̄ν (s)|2e−(κ1−κ2)s

1+|Xν (s)−X̄ν (s)|2
ds]) 1

2
, t > 1.

Combining this with (4.11), we derive

sup
ν∈P2(Rd)

Ee
λκ1

∫∞
1

|Xν (s)−X̄ν (s)|2

1+|Xν (s)−X̄ν (s)|2
ds
<∞, λ ≥ 1.

Therefore, the desired assertion holds.

4.2 Proof of Theorem 2.2

As explained in the proof of Theorem 2.1(2)-(3) that, by Theorems 5.3 and 5.5, it suffices to
prove the following assertions:

(a) For any λ > 0, there exist a constant s > 0 and compact set K ⊂ Rd, such that (5.4)
holds for any compact set K ′ ⊂ H and

τxK := inf{t ≥ 0 : X̄x(t) ∈ K}, x ∈ H.

Moreover, for any N ≥ 1,

sup
ν∈Br,R

EeN
∫∞
0 {1∧|X

ν(s)−X̄0(s)|2}ds <∞.

(b) For any λ > 0, there exists a compact set K ⊂ H such that (5.5) holds for X̄, and

sup
ν∈P2(Rd)

EeN
∫∞
0 {1∧|X

ν(s)−X̄ν(s)|2}ds <∞, N ≥ 1.

Comparing with the finite-dimensional case, the main difficulty is that bounded sets are no
longer compact. To construct compact sets, let {ei}i≥1 be the eigenbasis of A; i.e. it is an
orthonromal basis of H such that Aei = −λiei, i ≥ 1. For any N > 0, the set

K := B0,γ(N) =
{
x ∈ H : |x|2γ :=

∞∑
i=1

〈x, ei〉2λγi ≤ N2
}

is a compact set in H.

23



Proof of (a). Simply denote X̄(t) = X̄x(t) and τK = τxK := inf{t ≥ 0 : X̄x(t) ∈ K}. By
(H2) and (2.8), we may apply Itô’s formula to

ψ(X̄(t)) := 〈(−A)γ−1X̄(t), X̄(t)〉 =
∞∑
i=1

〈X̄(t), ei〉2λγ−1
i ,

such that for some constants d1, d2 > 0 and ‖b‖lip
∑∞

i=1 λ
γ−1
i λγ1 < 1

(4.12) dψ(X̄(t)) ≤ (d1 − d2|X̄(t)|2γ)dt+ dM(t),

where M(t) := 2
∑∞

i=1 λ
γ−1
i 〈X̄(t), ei〉〈σ(µ̄)dW (t), ei〉 for an orthonormal basis {ei}i≥1 of H. Let

N ≥ N0 := (2d1/d2)
1
2 , and consider τK for K = B0,γ(N). Then

(4.13) d1 − d2|X̄(t)|2γ ≤ −d1|X̄(t)|2γ, t ≤ τK .

Since σ is bounded, by (H2) there exists a constant c > 0 such that

〈M〉(t) ≤ c

∫ t

0

|X̄(s)|2ds, t ≥ 0.

So, letting τn := inf{t ≥ 0 : |X̄(t)| ≥ n}, we deduce form (4.12) and (4.13) that

Ee
∫ t∧τn∧τK
0 δd1|X(s)|2γds ≤ eδψ(x)

(
Ee2δ2〈M〉(t∧τn∧τK)

) 1
2

≤ eδψ(x)
(
Ee2cδ2

∫ t∧τn∧τK
0 |X̄(s)|2γds

) 1
2 <∞, n ≥ 1.

Taking δ ≤ (2c)−1 leads to

Eeδd1N2(t∧τn∧τK) ≤ Ee
∫ t∧τn∧τK
0 δd1|X̄(s)|2γds ≤ e2δψ(x), t ≥ 0, n ≥ 1.

Letting t, n→∞ we derive
EeδN

2d1τK ≤ e2δψ(x), x ∈ H.

Combining this with the Markov property, we obtain

EeδN
2d1τ

X̄(s)
K ≤ Ee2δψ(X̄(s)),

and it is easy to see from (4.12) that the upper bound is locally bounded in x when δ is small
enough. Therefore, condition (a) is satisfied, since N ≥ N0 is arbitrary.

Proof of (b). By (H2) and Itô’s formula, we have

d|Xν(t)− X̄0(t)|2 ≤
{
− 2(λ1 − α1)|Xν(t)− X̄0(t)|2 + 2α2W2(P ∗t ν, µ̄)2

}
dt

+ 2〈Xν(t)− X̄0(t), {σ(P ∗t ν)− σ(µ̄)}dW (t)〉.

The remainder of the proof is completely similar to that of the proof of Theorem 2.1(3).
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4.3 Proof of Theorem 2.3

Let θ ∈ [0, λ1] such that κp = θ − (α1 + α2)epθr0 .

4.3.1 Proof of Theorem 2.3(1)

For any ν1, ν2 ∈Pp(C ), take Xνi
0 ∈ Lp(Ω→ C ,F0,P) such that LX

νi
0

= νi, i = 1, 2, and

(4.14) E
[
‖Xν1

0 −Xν2
0 ‖p∞

]
= Wp(ν1, ν2)p.

Since σ is constant, we have

d(Xν1(t)−Xν2(t)) =
{
A(Xν1(t)−Xν2(t)) + b(Xν1

t , P
∗
t ν1)− b(Xν2

t , P
∗
t ν2)

}
dt, t ≥ 0.

By (H3) and noting that θ ∈ [0, λ1], we obtain

d
{
|Xν1(t)−Xν2(t)|pepθt

}
= pepθt|Xν1(t)−Xν2(t)|p−2

{
〈Xν1(t)−Xν2(t), (θ + A)(Xµ(t)−Xν2(t))〉

+ 〈Xν1(t)−Xν2(t), b(Xν1
t , P

∗
t ν1)− b(Xν2

t , P
∗
t ν2)〉

}
dt

≤ p|Xν1(t)−Xν2(t)|p−1epθt
{
α1‖Xν1

t −Xν1
t ‖∞ + α2Wp(P

∗
t ν1, P

∗
t ν2)

}
dt, t ≥ 0.

Letting ψ(t) = ‖Xν1
t −Xν2

t ‖p∞epθt, we derive

ψ(t) ≤ epθr0 sup
s∈[(t−r0),t]

|Xν1(s)−Xν2(s)|pepθs

≤ epθr0‖Xν1
0 −Xν2

0 ‖p∞ + pepθr0
∫ t

0

{
α1ψ(s) + α2eθsWp(P

∗
s ν1, P

∗
s ν2)ψ(s)

p−1
p
}

ds.
(4.15)

Combining this with (4.14) and

Wp(P
∗
t ν1, P

∗
t ν2)p ≤ E‖Xν1

t −Xν2
t ‖p∞, t ≥ 0,

we arrive at

E[ψ(t)] ≤ epθr0Wp(ν1, ν2)p + pepθr0(α1 + α2)

∫ t

0

E[ψ(s)]ds, t ≥ 0.

By Theorem 3.1 we have E[ψ(t)] <∞, t > 0. Then Gronwall’s lemma yields

E[ψ(t)] ≤ {Wp(ν1, ν2)}pepθr0+p(α1+α2)epθr0 t, t ≥ 0.

Therefore,

Wp(P
∗
t ν1, P

∗
t ν2)p ≤ e−pθtE[ψ(t)] ≤ {Wp(ν1, ν2)}pepθr0−pκpt, t ≥ 0.

When κp > 0, it is standard that (2.12) implies the existence and uniqueness of P ∗t -invariant
probability measure µ such that (2.13) holds, see, for instance, [20, Proof of Theorem 3.1(2)].
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4.3.2 Proof of Theorem 2.3(2)

Let κp > 0. To prove the LDP, let P̄t be the Markov semigroup for the stationary equation
(2.11) and consider the LDP for L̄νt . Since λ > 0 implies supr∈[0,λ1](r − α1err0) > 0 and noting
that (H3) implies

|b(ξ, µ)− b(η, µ)| ≤ α1‖ξ − η‖∞,

by [1, Theorem 1.2] and κ1 ≥ κp > 0, the Markov semigroup P̄t is hypercontractive. Thus,
by the semigroup property and the interpolation theorem, for any q > 1 there exists tq > 0
such that P̄tq is uniformly integrable in Lq(µ). Moreover, according to [18, Theorem 4.2.4],
assumption (H3) implies that for any t > r0, there exists a constant c > 0 such that the
following Harnack inequality holds:

(4.16)
(
P̄t0f(η)

)2 ≤ (P̄t0f
2(ξ)))ec‖ξ−η‖

2
∞ , ξ, η ∈ C , f ∈ Bb(C ).

Since P ∗t µ̄ := LXµ̄
t

= µ̄, X µ̄
t solves the the stationary equation (2.11), so that by the uniqueness

conclude that µ̄ is also P̄t-invariant. Then for any B ∈ B(C ) such that µ̄(B) > 0, we have
µ̄(P̄t01B) = µ(B) > 0, and hence P̄t01B(η) > 0 holds for some η ∈ C . Then (4.16) implies
P̄t01B(ξ) > 0 for all ξ ∈ C , so that µ̄(1AP̄t01B) > 0 for µ̄(A), µ̄(B) > 0, i.e. P̄t0 is µ̄-irreducible.
Therefore, by Theorem 5.2,

(4.17) L̄νt ∈ LDP (J) uniformly in ν = hµ̄ ∈P(C ) with ‖h‖Lq(µ̄) ≤ R, R > 0.

Combining this with Lemma 5.4, it remains to show that for any ε, R > 0,

(I) {L̄νt }ν∈Iε,R ∈ LDP (J);

(II) For any δ > 0,

lim
t→∞

1

t
sup
ν∈Iε,R

logP
(

1

t

∫ t

0

{1 ∧ ‖Xν
s − X̄ν

s ‖∞}ds > δ

)
= −∞.

For (I). Observing that for any ξ, η ∈ C we have

d(X̄ξ(t)− X̄η(t)) =
{
A(X̄ξ(t)− X̄η(t)) + b(X̄ξ

t , µ̄)− b(X̄η
t , µ̄)

}
dt,

by the same reason leading to (4.15) we obatin

‖X̄ξ
t − X̄

η
t ‖p∞epθt ≤ epθr0‖ξ − η‖p∞ + α1pe

pθr0‖X̄ξ
s − X̄η

s ‖p∞epθsds, t ≥ 0.

Noting that κp ≤ θ − α1epθr0 , by Gronwall’s inequality we get

‖X̄ξ
t − X̄

η
t ‖p∞ ≤ epθr0−p{θ−α1epθr0}t‖ξ − η‖p∞ ≤ epθr0−pκp}t‖ξ − η‖p∞.

Combining this with (4.16) and using the semigroup property of P̄t, we find a constant t1 > t0
such that (

P̄t1f(η)
)2 ≤ (P̄t1f

2(ξ)))eε‖ξ−η‖
2
∞/2, ξ, η ∈ C , f ∈ Bb(C ).
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This implies that the invariant probability measure µ̄ has full support on C , so that there exists
a constant c > 0 such that

sup
µ̄(|f |2)≤1

(P̄t1f(ξ))2 ≤ 1∫
C

e−ε‖ξ−η‖2∞/2µ̄(dη)
≤ ceε‖ξ‖

2
∞ , ξ ∈ C .

Therefore, P̄t1 has a density pt1(ξ, η) with respect to µ̄ satisfying∫
C

pt1(ξ, η)2µ̄(dη) ≤ ceε‖ξ‖
2
∞ , ξ ∈ C .

Consequently, for any ν ∈ Iε,R, ν̄t1 := LX̄ν
t1

has density

h(η) :=

∫
C

pt1(ξ, η)ν(dξ)

with respect to µ̄ which satisfies

µ̄(|h|2) ≤
∫

C×C

pt1(ξ, η)2ν(dξ)µ̄(dη) ≤ cν(eε‖·‖
2
∞) ≤ cR.

Combining this with (4.17) and noting that the Markov property of X̄t implies that the law of

L̄
ν̄t1
t coincides with that of

L̃νt :=
1

t

∫ t+t1

t1

δX̄ν
s
ds,

we prove

(4.18) {L̃νt }ν∈Iε,R ∈ LDP (J).

On the other hand, consider the probability distance

(4.19) ρ(Λ1,Λ2) := inf
Π∈C (Λ1,Λ2)

∫
C×C

{
‖ξ − η‖∞ ∧ 1

}
Π(dξ, dη)

on P(C ). Then

ρ(L̃νt , L̄
ν
t ) ≤

t1
t
, t > 0.

So, by Lemma 5.4 and (4.18) we prove (I).

For (II). By (H3) and (2.13), there exist constants c > 0 such that for θ ∈ [0, λ1],

‖Xν
t − X̄ν

t ‖∞eθt ≤ eθr0 sup
s∈[(t−r0)+,t]

|Xν(s)− X̄ν(s)|eθs

≤ eθr0
∫ t

0

eθs
{
α1‖Xν

s − X̄ν
s ‖∞ + α2Wp(P

∗
s ν, µ)

}
ds

≤ c+ α1eθr0
∫ t

0

eθs‖Xν
s − X̄ν

s ‖∞ds, t ≥ 0, ν ∈ Iε,R.

By Gronwall’s inequality we obtain

sup
ν∈Iε,R

‖Xν
t − X̄ν

t ‖∞ ≤ c exp
[
{α1eθr0 − θ}t

]
≤ ce−κpt, t > 0.

This proves assertion (II).
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4.4 Proof of Theorem 2.4

By (2.16), we take θ ∈ (0, λ1] such that

(4.20) θe−θr0 −K2 − α′‖B‖ > K3.

For any α > 0, let

ρα(ξ1, ξ2) := α‖ξ(1)
1 − ξ

(1)
2 ‖∞ + ‖ξ(2)

1 − ξ
(2)
2 ‖∞, ξ1, ξ2 ∈ C .

We take X0, Y0 ∈ L2(Ω→ C ,F0,P) such that LX0 = ν1,LY0 = ν2 and

(4.21) Wp,α(ν1, ν2)p = Eρα(X0, Y0)p.

Let X(t) and Y (t) solves (2.14) with initial values X0 and Y0 respectively. Then (H1
4 )

implies A1 − δ ≤ −λ1 ≤ θ, so that

|X(1)(t)− Y (1)(t)| ≤ |e(A1−δ)t{X(1)(0)− Y (1)(0)}|

+

∫ t

0

∣∣e(A1−δ)(t−s){δ(X(1)(s)− Y (1)(s)) +B(X(2)(s)− Y (2)(s))}
∣∣ds

≤ e−θt|X(1)(0)− Y (1)(0)|+
∫ t

0

e−θ(t−s)
{
δ|X(1)(s)− Y (1)(s)|+ ‖B‖ · |X(2)(s)− Y (2)(s)|

}
ds.

Equivalently,

eθt|X(1)(t)− Y (1)(t)| ≤ |X(1)(0)− Y (1)(0)|

+

∫ t

0

eθs
{
δ|X(1)(s)− Y (1)(s)|+ ‖B‖ · |X(2)(s)− Y (2)(s)|

}
ds.

Similarly, it follows from A2 ≤ −λ1 ≤ −θ and (H2
4 ) that

eθt|X(2)(t)− Y (2)(t)| ≤ |X(2)(0)− Y (2)(0)|

+

∫ t

0

eθs
{
K1‖X(1)

s − Y (1)
s ‖∞ +K2‖X(2)

s − Y (2)
s ‖∞ +K3Wp,α(P ∗s ν1, P

∗
s ν2)

}
ds.

Combining these with α′ ≥ α and that λ′ := 1
2
{δ +K2 +

√
(K2 − δ)2 + 4‖B‖ satisfies

α′δ +K1 = λ′α′, α′‖B‖+K2 = λ′ > 0,

we derive

eθtρα′(Xt, Yt) ≤ eθr0 sup
s∈[t−r0,t]

{α′|X(1)(s)− Y (1)(s)|+ |X(2)(s)− Y (2)(s)|}eθs

≤ eθr0ρα′(X0, Y0) + eθr0
∫ t

0

{
(δα′ +K1)‖X(1)

s − Y (1)
s ‖∞

+ (α′‖B‖+K2)‖X(2)
s − Y (2)

s ‖∞ +K3Wp,α(P ∗s ν1, P
∗
s ν2)

}
ds
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= eθr0ρα′(X0, Y0) + eθr0
∫ t

0

eθs
{
λ′ρα′(Xs, Ys) +K3E[ρα(Xs, Ys)]

}
ds.

By Gronwall’s lemma, for κ := θ − λ′eθr0 > 0 we have

ρα′(Xt, Yt) ≤ eθr0−κtρα′(X0, Y0) + 2eθr0K3

∫ t

0

e−κ(t−s)E[ρα(Xs, Ys)]ds.

Therefore, for any ε > 0 there exists a constant C(ε) > 0 such that

ρα′(Xt, Yt)
p ≤ C(ε)ρα′(X0, Y0)pe−κpt +

(2K3)peθr0p(1 + ε)

κp−1

∫ t

0

e−κ(t−s)E[ρα(Xs, Ys)
p]ds.

Combining this with ρα′ ≥ ρα and E[ρα′(Xt, Yt)
p] < ∞ due to Theorem 3.1, we deduce from

this and Gronwall’s lemma that

Wp,α(P ∗t ν1, P
∗
t ν2)p ≤ E[ρα′(Xt, Yt)

p]

≤ αpC(ε)

(α′)p
Wp,α(ν1, ν2)p exp

[
−
(
κ− (1 + ε)(2K3)peθr0pκ1−p)t].

It is easy to see that (4.20) implies κ > Kp
3eθr0pκ1−p, so that by taking small enough ε > 0 we

prove
Wp(P

∗
t ν1, P

∗
t ν2) ≤ c1e−c2t, t ≥ 0, ν1, ν2 ∈Pp(C )

for some constants c1, c2 > 0. Consequently, P ∗t has a unique invariant probability measure µ̄
such that (2.17) holds.

Similarly, by (H4) and (2.17), we find a constant C > 0 such that for any Xν
0 = X̄ν

0 ∈
Lp(Ω→ C ,F0,P), ∫ ∞

0

‖Xν
t − X̄ν

t ‖2
∞dt ≤ C, ν ∈ IR,q.

Moreover, it is easy to see that (2.16) implies the condition in [1, Theorem 1.3] for the reference
equation with µ̄ replacing the distribution of solution, so that P̄t is hypecontractive (hence
uniformly integrable in Lp(µ̄) for any p > 1) for large t > 0, and the Harnack in [1, Lemma
4.1] implies (4.16). Then the desired LDP can be proved in the same way as in the proof of
Theorem 2.3.

5 Appendix: LDP for Markov processes

We first introduce the rate function, i.e. the Donsker-Varadhan level 2 entropy function for
continuous Markov processes on a Polish space E.

Consider the path space

CE := C([0,∞)→ E) = {w : [0,∞) 3 t 7→ w(t) ∈ E is continuous}.

Let P(CE) be the set of all probability measures on CE, and Ps(CE) the set of all stationary
(i.e. time-shift-invariant) elements in P(CE). For any Q ∈ Ps(CE), let Q̄ be the unique
stationary probability measure on C̄E := C(R→ E) such that

Q̄
(
{w ∈ C̄E : w(ti) ∈ Ai, 1 ≤ i ≤ n}

)
= Q

(
{w ∈ CE : w(ti + s) ∈ Ai, 1 ≤ i ≤ n}

)
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holds for any n ≥ 1,−∞ < t1 < t2 < · · · < tn <∞, s ≥ −t1, and {Ai}1≤i≤n ⊂ B(E). We call Q̄
the stationary extension of Q to C̄E. For any s ≤ t, let F s

t := σ(C̄E 3 w 7→ w(u) : s ≤ u ≤ t).
For a probability measure Q̄ on C̄E, let Q̄w− be the regular conditional distribution of Q̄ given
F−∞

0 . Moreover, let EntF0
1

be the Kullback-Leibler divergence (i.e. relative entropy) on the

σ-field F 0
1 ; that is, for any two probability measures µ1, µ2 on CE,

EntF0
1
(µ1|µ2) :=

{∫
CE

(
h log h

)
dµ2, if dµ1|F0

1
= hdµ2|F0

1
,

∞, otherwise.

Now, for a standard Markov process on E with {P x : x ∈ E} ⊂ P(CE), where P x stands
for the distribution of the process starting at x, the process level entropy function of Donsker-
Varadhan is given by

H(Q) :=

{∫
C̄E

EntF0
1
(Q̄w−|Pw(0))Q̄(dw), if Q ∈Ps(CE),

∞, otherwise.

Then the Donsker-Varadhan level 2 entropy function is defined as

(5.1) J(ν) := inf
{
H(Q) : Q ∈Ps(CE), Q(w(0) ∈ ·) = ν

}
, ν ∈P(E).

This function has compact level sets in P(E) under the τ - (hence the weak) topology, see for
instance [22, 23]. For any ν ∈P(E), let (Xν

t )t≥0 be the Markov process with initial distribution
ν. Consider its empirical measure

Lνt :=
1

t

∫ t

0

δXν
s
ds, t > 0.

When ν = δx, we denote Xν
t = Xx

t and Lνt = Lxt . Let µ be an invariant probability measure of
Pt, where Pt is the Markov semigroup given by

Ptf(x) = E[f(Xx
t )], x ∈ E, t ≥ 0, f ∈ Bb(E).

We write f ∈ Dµ(A ) if f ∈ L∞(µ) and there exists g ∈ L∞(µ) such that Ptf − f =
∫ t

0
Psgds

holds µ-a.e. for all t ≥ 0. In this case, we denote A f = g. We have the following formula for
J .

Theorem 5.1 ([23], Proposition B.10 and Corollary B.11). Assume that Pt has a unique
invariant probability measure µ. Then

(5.2) J(ν) =

{
sup

{ ∫
E
−A f
f

dν : 1 ≤ f ∈ Dµ(A )
}
, if νλµ,

∞, otherwise.

In particular, if the Markov process is associated with a symmetric Dirichlet form (E ,D(E ))
in L2(µ), then

(5.3) J(ν) =

{
E (h

1
2 , h

1
2 ), if ν = hµ, h

1
2 ∈ D(E ),

∞, otherwise.
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We now recall another result due to [23] on the LDP for uniformly integrable Markov
semigroups, which will be used in the proof of Theorem 2.3. Let p ≥ 1 and let P be a bounded
linear operator on Lp(µ). We call P uniformly integrable in Lp(µ) if

lim
R→∞

sup
µ(|f |p)≤1

µ(|Pf |p1{|Pf |>R}) = 0.

This LDP is established under the τ -topology induced by f ∈ Bb(E), and hence also holds
under the weak topology. Let ν ∈ Iq,L := {ν = hµ : ‖h‖Lq(µ) ≤ L} for q, L ∈ (1,∞).

Theorem 5.2 ([23], Theorem 5.1). Assume that the Markov semigroup Pt has a unique in-
variant probability measure µ, and there exists T ∈ (1,∞) and p ∈ (1,∞) such that PT is µ-
irreducible and uniformly integrable in Lp(µ). Then {Lνt }ν∈Iq,L ∈ LDP (J) under the τ -topology
for all q, L ∈ (1,∞).

The next result due to [22] provides criteria on the LDP using the hitting time to compact
sets, which will be used in the proofs of Theorem 2.1 and Theorem 2.2. For any set K ⊂ E
and any x ∈ E, let

τxK := inf{t ≥ 0 : Xx(t) ∈ K},

where Xx(t) is the Markov process starting at x. We will use the following conditions where
(D1) is weaker than (D2):

(D1) For any λ > 0 there exist a constant s > 0 and a compact set K ⊂ E such that for any
compact set K ′ ⊂ E,

(5.4) sup
x∈K

E[eλτ
Xx(s)
K ] <∞, sup

x∈K′
E[eλτ

x
K ] <∞.

(D2) For any λ > 0 there exists a compact set K ⊂ E such that

(5.5) sup
x∈E

E[eλτ
x
K ] <∞.

Theorem 5.3 ([22], Theorems 1.1,1.2). Assume that Pt is a Feller Markov semigroup.

(2) (D1) implies {Lxt }x∈D ∈ LDPu(J) for any compact set D ⊂ E, and the inverse holds
provided E is locally compact. If Pt is strong Feller and µ-irreducible for some t > 0, then
{Lxt }x∈D ∈ LDP (J) for compact D ⊂ E if and only if (D1) holds.

(1) (D2) implies {Lνt }ν∈P(E) ∈ LDPu(J), and the inverse holds when E is locally compact. If
moreover Pt is strong Feller and µ-irreducible for some t > 0, then {Lνt }ν∈P(E) ∈ LDP (J)
if and only if (D2) holds.

Moreover, we introduce the following approximation lemma which is easy to prove but useful
in applications, see for instance [5, Theorems 4.2.16, 4.2.23], and see also [16, Theorem 3.2] for
a stronger version called generalized contraction principle.
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Lemma 5.4 (Approximation Lemma for LDP). Let {(Lνt )t>0, (L̄
ν
t )t>0 : ν ∈ I } be two families

of stochastic processes on a Polish space (E, ρ) for an index set I . If (L̄νt )ν∈I ∈ LDPu(J)(respectively
LDPl(J)) and

lim
t→∞

1

λ(t)
sup
ν∈I

logP(ρ(Lνt , L̄
ν
t ) > δ) = −∞, δ > 0,

then (Lνt )ν∈I ∈ LDPu(J)(respectively LDPl(J)).

Finally, to establish the LDP for Lνt associated with (3.1), we consider a reference equation:

(5.6) dX̄ν(t) =
{
AX̄ν(t) + b̄(X̄ν

t )
}

dt+ σ̄(X̄ν
t )dW (t), X̄ν

0 = Xν
0 ,

where b̄ : C → H, σ̄ : C → L(H) are measurable such that this equation has a unique
mild segment solution for any initial value in C , which is thus a Markov process on C . In
applications, the coefficients in (5.6) will be given by the limit of bt(·, νt) and σt(·, νt) as t→∞,
where bt and σt are in (3.1) and νt := LXν

t
. Now, let

L̄νt =
1

t

∫ t

0

δX̄ν
s
ds, t > 0.

We have the following result which is more or less standard but we include a brief proof for
complement.

Theorem 5.5. Assume that (3.1) and (5.6) are well-posed for any initial value X0 with LX0 ∈
I and LX̄0

∈ Ψ(I ) respectively, where I is a non-empty subset of P(C ) and Ψ : I →P(C )
is a map. If {L̄νt }ν∈Ψ(I ) ∈ LDPu(J)(respectively LDPl(J)) under the weak topology, and

(5.7) sup
ν∈I

E
[
eN

∫∞
0 {‖X

ν
s−X̄

Ψ(ν)
s ‖∞∧1}ds] <∞, N ≥ 1,

then {Lνt }ν∈I ∈ LDPu(J)(respectively LDPl(J)) under the weak topology.

Proof. Let ρ be in (4.19). It is well known that ρ induces the weak topology on P(C ). Since

ρ(Lνt , L̄
ν̄
t ) ≤

1

t

∫ t

0

{
‖Xν

s − X̄Ψ(ν)
s ‖∞ ∧ 1

}
ds, t > 0,

(5.7) implies

lim
t→∞

1

t
sup
ν∈I

logP(ρ(Lνt , L̄
Ψ(ν)
t ) > δ)

≤ lim
t→∞

1

t
sup
ν∈I

logP
(
N

∫ t

0

{
‖Xν

s − X̄Ψ(ν)
s ‖∞ ∧ 1

}
ds > tNδ

)
≤ −Nδ, N ≥ 1, δ > 0.

Therefore,

lim
t→∞

1

t
sup
ν∈I

logP(ρ(Lνt , L̄
Ψ(ν)
t ) > δ) = −∞, δ > 0.

Then the desired assertion follows from Lemma 5.4 with L̄
Ψ(ν)
t replacing L̄νt .
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[10] X. Huang, M. Röckner, F.-Y. Wang, Nonlinear Fokker–Planck equations for probability
measures on path space and path-distribution dependent SDEs, Discrete Contin. Dyn.
Syst. A. 39(2019), 3017–3035.

[11] M. Kac, Foundations of kinetic theory, In: Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, 1954–1955, vol. III. University of California
Press, Berkeley and Los Angeles, 1956, pp. 171–197.

[12] A. Kulik, Ergodic behavior of Markov processes with applications to limit theorems, De
Gruyter Studies in Mathematics, 67, De Gruyter, Berlin, 2018.

[13] E. Lanconelli, S. Polidoro, On a class of hypoelliptic evolution operator, Rend. Sem. Mat.
Univ. Pol. Torino 52(1994), 29–63.

33



[14] H. P. McKean, A class of Markov processes associated with nonlinear parabolic equations,
In: Proceedings of the National Academy of Sciences of the United States of America
56.6(1966), p. 1907.

[15] G. D. Reis, W. Salkeld, J. Tugaut, Freidlin-Wentzell LDP in path space for McKean-
Vlasov equations and the functional iterated logarithm law, Ann. Appl. Probab. 29(2019),
1487–1540.
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