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Abstract

We consider a special class of mean field SDEs with common noise which depend
on the image of the solution (i.e. the conditional distribution given noise). The strong
well-posedness is derived under a monotone condition which is weaker than those used
in the literature of mean field games, the Feynman-Kac formula is established to solve
Schrordinegr type PDEs on &5, and the ergodicity is proved for a class of measure-
valued diffusion processes.

AMS subject Classification: 60J60, 58J65.
Keywords: Image dependent SDE, measure-valued diffusion process, ergodicity, Feynman-
Kac formula, intrinsic/Lions derivative.

1 Introduction

Let 2, be the space of all probability measures ; on R? such that

o= ([ afutan)” <o

where | - | is the norm in R?. We will use || - || to denote the operator norm of a matrix or
linear operator, and use || - || gs to stand for the Hilbert-Schmidt norm. It is well known that
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P4 is a Polish space under the Wasserstein distance

1

2

Wy (p,v) := inf (/ ]az—y[%(dx,dy)) ,
TEE (1,v) RexRd

where € (u, v) is the set of couplings for p and v.

Since 1996 when Albeverio, Kondratiev and Rockner [1] introduced the intrinsic deriva-
tive on the configuration space over manifolds, diffusion processes on the space of discrete
Radon measures have been investigated by using Dirichlet forms, see [15] and references
within. This derivative provides a natural Riemannian structure on the Wasserstein space
(P, W,), see Subsection 1.2 below.

To develop stochastic analysis and applications on this space, we intend to construct
diffusion processes generated by second order differentiable operators and solve the associated
PDEs on &. Below we first recall the intrinsic/Lions derivative on &,.

According to [1], let L*(R? — R% ;1) be the tangent space of &, at point pu € 22, and
define the directional derivative by

Dy () o= timm LU0 U+ 2071 = J(1)

2 d d.
i . , ¢ € L*(RT = R% p).

When ¢ + Dyf(u) is a bounded linear functional on L*(R? — R%; 1), or equivalently the
map

(1.1) L*RT = R%p) 3 ¢ — f(uo(Id+¢)™")

is Gateaux differentiable at ¢ = 0, there exists a unique element D f(u) € L*(R? — R%; p)
such that

(Df(p), d) 12y = Do f (1), ¢ € LR — R p).

In this case, we call f intrinsically differentiable at p with derivative D f(u). According to
Lions (see [4]), if Df(u) exists and

i e dd+0)™h) — fu) = Dy f(p)
u(16[2)—0 u(lof?)

i.e. the map in (1.1) is Fréchet differentiable at ¢ = 0, we call f L-differentiable at u € Z.
If f is L-differentiable at any u € P,, we call it L-differentiable. Note that D f(u) is a u-a.e.
defined R?-valued function. Let {Df(u)}; be its i-th component for 1 < i < d.

In this paper, we investigate diffusion processes and applications on the Wasserstein space
Py. Let m > 1, and let

(1.2) —0,

b:[0,00) x R x 2y = RY 5:[0,00) x R x Py — RE@R™
be measurable such that |b(¢, -, u)| + ||o(t, -, ) ||%4¢ € L*(p) for any (¢, 1) € [0,00) X P5. We
consider the following time-dependent second order differential operators on Zs:

At = [ {oltywottzn)” D) 0. ) uldulc)
(1.3) R

i / (%<<00*><@w% VDL }y)) + (bt . ), DI (1)) ) u(dy),
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where (-, -) is the inner product on R? or R? ® R?. We also consider the following extension
of o7, on R% x Py:

1

f(w,10) = i f (2, ) (1) + 5ot 2, ot 2, 1), V2 (0 p) + (bt 2, 1), V f (1))

+ Rd<(DVf)(:6,u)(y)7U(lt,y,u)a(t,x,/w)*>u(dy)-

(1.4)

To present reasonable pre-domains of 7 and o, we introduce below some classes of
L-differentiable functions.

(1) We write f € CY(P), if f is L-differentiable and the derivative has a u-version
Df(u)(x) which is jointly continuous in (u,z) € Py x R If moreover D f(u)(x) is
bounded in (x, u) € RY x 2, we denote f € CH(P,).

(2) We write f € CUV(22,), if f € CH(P,) and Df(u)(z) is differentiable in z such that
the R? ® Révalued function

VD ()} () = (0e,ADF(1)(2)}:) oy

is jointly continuous in (u, x) € Py x R4, If moreover D f(u)(x) and V{Df(u)}(x) are
bounded in (x, ) € RY x £, we denote f € 051,1)(322).

(3) We write f € C*( D), if f € CHYD(P,) and Df(u)(x) is L-differentiable in u such
that the R? ® R?valued function

D?f(p)(z,y) == ({D[Df(:u)(x)]i(y)}j)1§i,j§d

is jointly continuous in (u,x,y) € Py x R x Re. If moreover f € C,El’l)(ﬁ%) and
D?f(p)(z,y) is bounded in (x,y, ) € R? x R x Py, we denote f € CZ(P).

(4) We write f € C*2(R* x Z2,) for some k > 1, if f is a continuous function on R* x 22,
such that f(-, ) € C?(R*) for u € P, f(x,-) € C*(P,) for v € R,

(DV )@, p)(y) := ({ D02 f (2 1)]},) 1y g € R R
exists, and the derivatives

V@, 1), V2 f (@, 1), Df (@, 1)(y), (DY f)(, 1) (y), VD f(, n) () }y), D* f(z, 1) (y, 2)

are bounded and jointly continuous in the corresponding arguments.

Example 1.1. For any p > 1, consider the following class of cylindrical functions

FCUP) = {f(n) = g(p(h), -+, u(hn)) :

1.5
(15) n>14g¢€ClR"),h € CPRY,1<i<n}.



When p = 2, such a function is in the class CZ(Z?;) with

n

Df(u)(@) =Y (0:9)(uhn), -+, p(hn)) Vhi(),

=1
n

D?f()(,y) = D> (0:0;9)(u(hn), -+, u(ha) ) {Vhi(2)} @ {Vh;(y)},

3,j=1

(1.6)

where {Vh;(z)} @ {Vh;(y)} € R? @ R? is defined as
({Vhi(x)} @ {Vh;(y)}),, = {Okhi(z)}Oih;(y), 1<k, l<d =zyeR"

Moreover, f € C?*(R? x 2, if f(x,p) = g(x, pw(hy), -, u(hy)) for some n > 1, g €
Cy(R™) and {h;}1<i<n C CF(R?).

We will construct the .o7-diffusion process by solving the following SDE on R¢:

(L7) dX3/ = 0(t, XS AL )dEt 4+ o (8, X3 AL AW, AL, = po (X;f)_l, t>s, Xl =u,
where W, is the m-dimensional Brownian motion on a complete filtration probability space
(0 {F}>0,P), (s,2,1) € [0,00) x RY x P,. Since this SDE depends on the image of
solutions, we call it image dependent SDE.

It turns out that the solution of (1.7) for s = 0 gives rise to a strong solution to the
following conditional McKean-Vlasov SDE arising from mean field games:

(18) dXt — b(t7Xt7$Xt‘W>dt + U(t, Xt,ZX”W)th, Q%XO — ,LL E :@2,

where Z; and Z¢ - denote the distribution and the conditional distribution given {Wy:t>
0} for a random variable £. More precisely, X; = X(fto’“ , see the proof of Corollary 2.2 below.
So, the measure-valued process Ag; in (1.7) is indeed the conditional distribution of X; given
the noise W, and we may call (1.7) an image dependent conditional McKean-Vlasov SDE as
in the title of the paper.

The weak solution to (1.8) has been investigated by using mean filed games with common
noise. More precisely, let {z;};> be a sequence of points in R? such that

o1
lim —
n—oo N

Z 0z, = p weakly,
i=1

consider the SDEs

. 1 & 1 <& .
dX™mi — b(t, X3 5th,j>dt n a<t, Xy 5th,j>dwt, XM =g 1<i<n.
=1 j=1

Then under reasonable conditions, when n — oo the law of (X]"');>o converges weakly to
a probability measure on the path space C([0, 00); R?) which solves (1.8) weakly. See [5, 6,



7, 8, 10] for the study of a more general model than (1.8) where an additional independent
Brownian noise W} is included:

(19) dXt = b(t, Xt, gxt‘w)dt + O'(t, Xt, gx”w)dwt -+ O'O(t, Xt,.ZX”W)thO

for #x, = u € P, where o takes values in R? @ R! if W? is [-dimensional. The study
of this type SDE using mean field games goes back to the poineering works of Lasry and
Lions [17, 18, 19] and Huang, Malhamé and Caines [11, 12], see the nice monograph [5] for
a theory of mean field games with common noises and applications. In this paper, we will
study the strong solutions and applications of (1.7) (hence, (1.8)) in a straightforward way
under reasonably weaker conditions on the coefficients.

In the remainder of this section, we first summarize the main results of the paper, then
present a link of the present model to the Brownian motion on &, for further study, and
finally introduce some previous work for analysis on the Wasserstein space.

1.1 Summary of main results

Existence and uniqueness. Under a monotone condition, Theorem 2.1 ensures the ex-
istence, uniqueness and moment estimates of solutions to the image SDE (1.7), and that
the unique solution is the diffusion processes generated by 7 on %, and o, on RY x 22,
respectively. As a consequence, the strong well-posedness is derived for the conditional dis-
tribution dependent SDE (1.8). Our monotone condition is weaker than those in [5, 6] but
incomparable with those of [10], see Remark 2.1 below for details.

Feynman-Kac formula. By using the diffusion process (X}, A{;), Theorem 3.1 solves
the following PDE for U on [0,7] x R? x £, :

QU (t,z, 1) + AUt x, ) () + (VU)(t, @, 1) + F(t, @, 1) =0,

(1.10) y
U(T,w, 1) = ®(x, 1), (t,2,p) € [0,T] x RT x Py,

where T > 0 is a fixed time, ® is a function on R? x &,, and V,F are functions on
[0,7] x RY x 2. When ®, F and V do not depend on x € R%, this PDE reduces to

UL, p) + AUt ) () + (VUL p) + F(L, p) = 0,

(1.11) UT, pn) = (), (t,p) €]0,T] x Ps.

When V' = 0 these two SPDEs are included as a special case by the Master equations studied
in the literature of mean field games under stronger assumptions on b and o, see Remark
3.1 below for details.

Exponential ergodicity and structure of invariant probability measures. Let b
and o do not depend on t. Under a dissipativity condition, Theorem 4.1 provides the
exponential convergence rate of the diffusion process (X, A}') := (Xg}', Ag,) to its unique
invariant probability measure II. Consequently, the diffusion process A} converges at the
same rate to the invariant probability measure II := II(R? x -).
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Moreover, let by(x) = b(z, ), 00(x) = o(z,d,), and let 1 be the unique invariant prob-
ability measure for the classical SDE

(112) dXt = bo(Xt>dt+0'0(Xt)th

By Theorem 4.2, IT and II have the representations

(1.13) Ti(dz, djs) = pio(da)ds, (ds), 11 = / ()

where ds, is the Dirac measure at point §, € H5. This structure describes an asymptotic
collision property of the diffusion process A}': starting from any probability measure u € s,
the measure-valued process eventually decays to a Dirac random variable, for which the whole
mass focus on a single random point.

1.2 Some related studies

Brownian motion on &%. A Riemannian structure has been introduced in [2] on the
Wasserstein space (P, Wy). With the intrinsic/Lions derivative, this space is an infinite-
dimensional Riemannian manifold with gradient D and Riemannian metric (-, -)z2(,) on the
tangent space L*(R? — R% 11); that is, W, is the Riemannian distance induced by D.

As in the finite-dimensional Riemannian setting, we introduce the square field

I'(f, 9) (k) ;:/ (Df()(), Dg(p)(x))p(dz), f.g € Cp(Pa),

R4

and the Laplace operator

A0 = [ D0t bulde), ] € CH()

Then by the chain rule we have

D(f.0) = L{A(fo) ~ FAg— AT}, fg€ CH(P)

This structure can be easily extended to the Wasserstein space &5(M) over a Riemannian
manifold M. Note that when M is compact we have P5(M) = ZP(M), the space of all
probability measures on M.

To develop stochastic analysis on &, it is interesting to construct the Brownian motion,
i.e. the diffusion process generated by %A; or more generally, to construct diffusion processes
on 5 with square field I'. This is the main motivation of [23] introduced in the next
subsection.

Below we explain that when oo* = Id and g = 9, is a Dirac measure at some point
x € R?, the process (A6‘7t)t20 is such a diffusion process. Indeed, it is easy to check that the

square field of the .o7-diffusion process is

Lo(f.9) () == {A(fg) () — fhg — g, } (1)

6



— [ {oltnn) DI @) oty DI ) n(dohildy) S.g € CEPa). € P
RdxRd
In particular, when oo* = Id, we have

Uy(f,9) (1) = T(f,9) (), ne Py :={b:2eR}

Since when p = §, for some x € R, A*, =6 oo 18 a diffusion process on P9, Theorem
’ s,t

2.1(2) below implies that (AY,)s for p € 29 is a diffusion process with square field T.

s,t

However, this does not hold for yu ¢ 223.

Measure-valued diffusion processes. Measure-valued diffusion processes have been
constructed using Dirichlet forms. Let 22(S') be the space of all probability measures on the
unit circle S'. A family of probability measures {Pg}s~o on Z2(S'), called “entropic mea-
sures” with inverse temperature 5 > 0, have been constructed by von Renesse and Sturm
23] such that for each 8 > 0, the bilinear form

S.0)= [ (DS gl ia0Ps(on)

gives a symmetric Dirichlet form on L?(IIg), which refers to a Pg-a.e. starting diffusion
process on Z(S!). See also [24] for a different Dirichlet form on ([0, 1]) with square field
I'. The construction of Dirichlet forms in these papers heavily relies on the one-dimensional
property. See also [15, 22, 27, 28] and references within for the study of different type
measure-valued diffusion processes using Dirichlet forms.

Next, following the idea of Konarovskyi (see e.g.[16]), [13, 20] constructed another type
of diffusion process on Z([0, 1]) by taking the limit as N' — oo of a system with N coalesc-
ing and mass-carrying particles. The generator £, of the process has the formulation [20,
Theorem A.3]

Zift) =5 [ [PLEEE) L e ), san]an, £ e o). ezo,

where {(&(u))i>o : u € [0, 1]} is a family of continuous martingales with & € D((0, 1); C([0, c0))
and quadratic variations [20, Proposition 5.7]

t d 1
(€)= [ =S o) = / Letmres oo

o ms(u
Recently, the study of this type Wasserstein diffusion processes have been used in [21] to
solve a class of Fokker-Planck equations on the interval driven by an infinite-dimensional
noise.

2 Image dependent SDE and diffusion processes on &,

We will construct the 7-diffusion process by solving the image SDE (1.7). In general, we
allow the coefficients

b:Qx[0,00) x Py =R 0:Qx[0,00) x Py = RI@R™

7



to be random but progressively measurable with respect to the filtration .%;. We first present
the definition of solution.

Definition 2.1. Let (s, p1) € [0,00) x . A family of adapted processes {(X;/')i>s : © € R?}
is called a solution to (1.7), if the following conditions hold P-a.s.:

(a) X} is continuous in t € [s,00) and measurable in z € R%
(b) A%, = po (X)) € P, is continuous in ¢ > s;

¢) E [1(b(r, X, A8 )| + [lo(r, X2, AR )[12,6)dr < oo and

S,r s,r

S,r

t t
X = x—i—/ b(r, X, AL )dr—i—/ o(r, XTH AL AW, t>s,2eR%
The image SDE (1.7) is called well-posed, if it has a unique solution for any (s, ) € [0, 00) X
Py.
To ensure the well-posedness of (1.7), we make the following assumption on b and o.

(A) The progressively measurable coefficients b(t,x, ) and o(t,z, ) are continuous in
(z,1) € R? x Py, there exists K € L} ([0,00) — [0,00)) for some ¢ > 1 such that
P-a.s. for any t > 0,

1) [tz )P+ ot ) < K0+ 12l + |ulf), (z.p0) € R x 2y,

2<b(t,l‘, ,u) - b(taya I/)a T — y>+ + ”U(ta xaﬂ) - U(taya V)H%IS
< K(@t)(Jz =yl +Wo(u,v)?), (2,1),(y,v) € R x P,

Theorem 2.1. Assume (A). Then the image SDE (1.7) is well-posed, and the unique solu-
tion X3} is jointly continuous in (t,x) € [s,00) x R%. Moreover:

(2.2)

(1) For any p > 1, there exists an increasing function C, : [0,00) — [0, 00) such that
(23)  sup {IXEY 4 (Xt} < GO1+ Jof + ),
rcls,
(24)  E sup {|X7F — XU+ Wa (AL, AP} < Co(t)(Jo — yl™ + Wa(p, v)™)

re(s,t]

hold for all0 < s < t,xz,y € R? and pu, v € P,. Consequently, Xf'is jointly continuous
n (t,x) € [s,00) x RY.

(2) When (b,0) is deterministic, {(Ay,)i>s 1 p € Po} is a diffusion process on Py gen-
erated by <7,; i.e. it is a contmuous strong Markov process such that for any p € P

and any f € C3(Py),

FAL,) — / A f (AR )dr, > s

s a martingale.



(3) When (b,0) is deterministic, {(X;F', AL )i>s = € Po} is a diffusion on R x 2,
generated by <7, i.e. it is a continuous strong Markov process such that for any (x, u) €

R? x Py and any f € Cg’Q(Rd X Py),
X AL = () / X A )dr, > s

15 a martingale.

Corollary 2.2. Assume (A). Then for any Fo-measurable random variable Xo with p =
Lx, € P, the conditional distribution dependent SDE (1.8) has a unique solution which is
given by X; = X(i(to’“.

Proof. By the independence of W and .%; and that X is .-#p-measurable with distribution

p, it is easy to show 2\ xou,, = po (X#) ™1, which implies that X, := Xg(t solves (1.8).
0,t ’

On the other hand, the uniqueness of (1.8) can be easily proved by using It6’s formula and

condition (2.2). N

Remark 2.1. Consider the conditional Mckean-Vlasov SDE (or mean field SDE with com-
mon noise) (1.9). According to [5, Theorem 3.13 and Theorem 3.35] (see also [6, Theorem
3.2] for the weak existence), if b, 0, 0° are jointly continuous on [0, 7] x R¢ x &5, and there
exists a constant K > 0 such that

b(t 2, w) + (o, ) (2, )| < KL+ 2l +lull), [Vab(t, 2, m)]| + [ Valo, o)t 2, p)|| < K

holds for any (¢,z,u) € [0,T] x R? x 2, then for any initial distribution in &,, the SDE
(1.9) has a weak solution up to time T'; if moreover o > 0,0° are constant and b(¢, z, 1) =
bO(t, 1) + cx for some constant ¢ and b°(¢, ) being bounded and Lipschitz continuous in
p uniformly in ¢ € [0,7], then the weak solution is unique, hence the SDE is strongly
well-posed. Obviously, these conditions are stronger than our assumption (A).

Next, according to [10, Theorem 2.5 and Theorem 2.7], (1.9) has a weak solution provided
one of the following assumptions hold:

(i) E[XoP < oo for some p > 2, b, 0,0 are bounded and jointly continuous on [0, 7] x
R¢ x gzg,
(ii) b,0,0° are of the integral type
o p) = | f(t,y)p(dy)
R

for bounded measurable f, (5,5°)(5,5°)* > Ald for some constant A > 0.
Moreover, by [10, Theorem 3.3], if o and ¢ do not depend on the distribution term such
that the SDE
dX) = o(t, X7)dW, + o°(t, X7)dW}



is well-posed, o is invertible such that {o~'b}(¢,z, 1) is bounded and Lipchitz continuous
in p with respect to the total variation norm uniformly in (¢,z) € [0,7] x R? then the
weak (hence strong) solution of (1.9) is unique. Consequently, for the well-posedness these
conditions only apply to the non-degenerate case with bounded o~1b, but the advantage is
that the drift can be non-continuous in (z, ) € R? x 2.

In the following two subsections, we prove Theorem 2.1(1) and (2)-(3) respectively.

2.1 Proof of Theorem 2.1(1)

Obviously, the uniqueness follows from (2.4). Below we prove (2.3), (2.4), joint continuity
and the existence of the solution respectively.

(I) Estimate (2.3). Let (X}

o) zera =5 be a solution of (1.7). We have

(2:5) 1AL =l o (XS5 = p(XETP), t=s.
So, by (2.1) and It6’s formula, we may find out x € L},.([0,00) — [0, 00)) such that
(26)  AXEFP < n(t)(1+ [XTEP + p( X))t + 20X, olt, X, M)A,

Let 7f = 20(t, X', AL,)* X/, Since (AL,):>s is an adapted continuous process on &%, and
due to (2.1), o(t, =, p) has linear growth in z, there exists an increasing function ¢ : [0, c0) —
[0, 00) such that

w(|nl) < c®{1+p(I X4} = {1+ |AL]5} < .

So, integrating (2.6) with respect to p(dz) leads to
(2.7) Ap(XCER) < m(t) (14 20 X))+ i), AW, £ s
Let hgy := 27 R(dr and
=inf {t > s: pu(| X)) +|XSF P > n}, n>1
Then (2.7) implies
t tATh
@8) (X, ) < bl [ e [ )., ez s

so that by (2.6),

tATh
X2 < Jaf? + / (), dIV,)

tATh r r
+/ H(T){H|X;f\2+hs,ry|u|y§+hs,r/ K(Q)d@-ﬁ-/ hg,r<’y§,dW9>}dr

S

(2.9)

10



holds for ¢ > s. Moreover, (2.1) implies

(2.10) E* = 120(8, X3H AL XTHP < AKX (14 IX3/ 1 + (1 X01%)-

s,t

This together with the Schwarz inequality gives

(2.11) ()P < AR ()p( X5 (1 + 2u(1X 7).
Then for any p > 1 and € > 0, there exists a constant ¢ = ¢(p, &) > 0 such that
tATh % tATh
(/ Iu(%)IQdT) <e sup {p(|XHP)} +e K (r) (14 {n(| X302} dr.

rE[s,tATn) s

Combining this with (2.8) and using the BDG inequality, we may find an increasing function
Co : [0,00) = [0,00) such that

B sw {uX:P))]

[S,t/\’i’n}

1 Colt ¢
<58 s 0]+ G0 (1l 4 B [ (Y ar ).

rE[s,tATh]

By Gronwall’s inequality, this implies

(2.12) B[ sup {u( X2} < Coltyel 0 (14 |u)2).

re[s,tATn]

Similarly, by (2.9)-(2.12) and the BDG inequality, we conclude that for any p > 1 there exist
increasing functions Cy, Cy : [0, 00) — [0, 00) such that

tATn p
B[ sw [XP] < O+ a4 1) + ([ oxerar)
rE€[s,tATR] s

2

raoe( [ n6R +pithr )

t
B[ sup [X2#P] 4 Calt) (14 fof + ) + Ca(OE [ ()| XzE PP, 02 s

rE[s,tATh]

<

N | —

By Grownwall’s lemma, there exists an increasing function @ : [0,00) — (0, 00) such that

E| sup [X2p) < Q)1+ ol + |ulF), ¢

rE[s8,tATR]

By letting n — oo in this inequality and (2.12), we prove (2.3) for some increasing function
C, : [0,00) = [0, 00).

11



(IT) Estimate (2.4). Let 7 € € (u,v) such that

(2.13) AT / & — yr(dz, dy).

R4 xR

Then myy := mo (X, X))~ € €(AS,, AY,), so that

sty “rsit

WalMg ALY < [ o= yfPma(da,dy)
(2 14) R4 x R4
= /d , |X§7;5“ — Xsy”f|27r(dx,dy) =:lsy, t>s.
R2xR

Thus, by (2.2) and It6’s formula, we obtain
AIXT =X < KO{XH — XU+ Lot

+ 2( X = XU {o(r, XTF L) —o(r, XY AL ) YW, t> s

st st st

(2.15)

Integrating both sides with respect to 7, +(dz, dy), and letting
=2 / {o(6, XP0 AR — ot XP2 A )Y (X7 — XU7) m(d, dy),
Rd xRd

we arrive at

dgsﬂg S QK(t)g&tdt + <77t7 th>, t Z S.
This together with 5 = Wy (u, v)? implies

t
(2.16) Cor < Wo(p, v)2e?Js Kdr / 2L KOOy AW, t > s.

S

Moreover, (A) and the Schwarz inequality yield

oy S AR [ X X W AL (e )
. X

<8K(r)?,, r>s.

For given z,y € R? and p,v € 2, let

Fo = (£ > s (ALl 4 Al + [ X5+ [ X% > n).

s,t

By (2.16), (2.17) and using the Holder and BDG inequalities, we may find out increasing
functions ¢y, ¢y : [0, 00) — [0, 00) such that

2

tATh
E[ sup 2,,,.] < ex(tyWaln. 1) + q(t)E( / |nr|2dr)

rE(s,t]

¢ 1
< er(Wa(p, )2 + ca(t) / B, dr + —E[ sup ﬁ;mn}, t>s.

s re(s,t]

12



Then it follows from Gronwall’s lemma that

B s 12,1, < 20007, 12

rE(s,t

By letting n — oo and using Fatou’s lemma, we obtain

(2.18) E[ sup Eﬁm} < 2c(t)eH P OW, (u, )%, t > s.
rels,t]

Similarly, by (2.15), (2.18), assumption (A) and using the Holder and BDG inequality, for
any p > 1 we find out increasing functions K7y, K : [0,00) — [0, 00) such that
tATh

E[ sup [Xzh, — X0, ] <o -y + KaOE [ KO){IX2E - X0+ 2, hr

8,7 N\Tn, ER A
re(s,t] s

t
<o = o+ Kot [ KXo, = X0, [P dr + KWl ), t2 s
Therefore, by Grownwall’s lemma, there exists an increasing function C' : [0,00) — (0, 00)
such that
]E[ sup | XIH

re(s,t]

= X0 ] < W) (o =y Wl )®), s

8,7 N\Tn, 8,7 N\Tn,

Letting n — oo and using Fatou’s lemma, we arrive at
| sup [X24 — X222 < O (e — yl + Wa(un)¥). 1 s
rée[s,t]
Combining this with (2.14) and (2.18), we prove (2.4) for some increasing function C,
[0,00) = [0, 00).
(III) Joint continuity of X[/ in (t,2). Let K € L] ([0,00) — [0,00)) for some ¢ > 1.
By (2.1), (2.3) and (2.4), for any n,p > 1, there exist constants C}, Cy > 0 such that for any
n>t>r>s, and |z|, |ly| < n,
B(IXg/ — XUHP) < 27N (BIXGY — XUf 1 + BIXT) — X2E)
2p

<Cl\x—y\p+clE‘/K \/1+!Xy”2+u(!X§,’$‘2)d9

+ C1E (/K {1+ XU+ (X2 }de)

(2.19) , 2p(a=1)
< Cile =yl + Cl( K(@)qd9> ‘ / (L4 X201 + (I XZ41%) 2D de
plg=1)

vo( [ xor) 5 [ e per e unya)
<Cflo—yPr+ -0}

By Kolmogorov’s continuity criterion, for large enough p > 1 this implies that X[/ has a
P-version jointly continuous in (t,z) € [s,n] x {x € R? : || < n}. Since n > 1 is arbitrary,
X} has a version jointly continuous in (¢,z) € [s,00) x R%

mv =

13



(IV) Existence of solution. It suffices to construct a solution up to an arbitrarily fixed
time 7" > 0. To this end, we adopt an iteration argument as in [25].

(1)
(2)

For fixed (s, p) € [0,T] x Py, let AV} = pand Xo7" =z for all v € R? and ¢ > s.

Assume that for some n € Z, we have constructed adapted (X[}"");> ,ere Wwhich is
jointly continuous in (¢, z) € [s,00) x S5, and satisfies

(2.20) E{ sup | X0

rée[s,t]

} <O+ ol + ), t> s,z R

for some increasing ¢ : [0,00) — [0,00). Consequently, AJf" := po (X}#)™' € P is
continuous in ¢ > s. Indeed, by the Fubini theorem, (2.20) implies

B sup 1X25F)| < 0+ 200l < o0, 02
rels,t ’
so that P-a.s
,u( sup |XIo# 2) <00, t>s.
re(s,t] ’

Then by the dominated convergence theorem and the continuity of X" in ¢ > s, we
obtain P-a.s.

Hm Wy (A% AT < lim g (| X200 — X0

r—t ’ r—t ’

s,rVs) s,rVs

2):O, t > s.

Let (X;ffl’m’“),?s solve the SDE
AXFEE = b(t, XPTVPE AV AE + o (8, XOTHOH AT AW, > s, XITHH = g,

By (A) and (2.20), it is easy to see that this SDE is well-posed, and when x varies the
inequality (2.20) holds for X' P peplacing X o with possibly a different function
¢ : [0,00) — [0,00). Moreover, as in (IIT), (A) and (2.20) also imply the joint
continuity of X7 bER N (¢, x) € [s,00) x RY. Consequently, as shown in step (2) that
AZ}LI’“ =10 (X;le"’“)*l € P, is continuous in ¢t > s.

Therefore, we have constructed a sequence {(XJ;"", AJl")i>s rera}n>0, Which satisfies
(2.20), X" is jointly continuous in (¢, x) € [s,00) x R%, and P-a.s.

t t
(2.21) XTFbon — gy / b(r, XTFLH AT dr + / o (r, XIHPR ATIAW,, ¢ > 5,0 € RY.

The following lemma gives a constant t, > 0 independent of (s,z,u) € [0,T] x R? x P,
such that {X72"#},~; is a Cauchy sequence in L*(Q — C([s, s + to] = RY); P).

Lemma 2.3. Assume (A). For fized T > 0, there ezists a constant ty > 0 such that

m,x,u T, | 2
ESUPte[s,s+to] |Xs,t - Xs,t | —0

lim sup
M09 (5 2 1) €[0,T) xRE X Py I+ ’$‘2 + HMH%
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Proof. Asin (2.14), we have Wo(AZ{, ALy V)2 < p(| X0 — X7, 1"(2) for n > 1. Combining

s,t
this with (2.2) and It6’s formula, we obtain

AIX o = X < KX = X (X = X )
+ 2<XZ:F1’I7“ - X0 {o(t,XZfl’x’“,Agf) —o(t, X, Agt_l’“)}th>, t>s.
So, by (2.2) and using the BDG inequality, we may find out constants ¢;,cs > 0 such that

TL+1,(E“U, n,T, 0 |2
E |: sup |Xs,t - Xs,t i|
te[s,s+to]
t

< [ E@E[XE = X5 4 p(| X0 = X0 ) dr

s,r
s

=

2

t
bl (| [ RN - XX = X X - X )
< < [ KE[XEFE = X5 4 (| X = X3P dr
1
- —E[ sup | X — X;lf’“|2}, t>s.
2 te[s,s+to] ’ ’
Since (2.20) holds for all n, this and Grownwall’s inequality imply
t
(2.22) E sup |X§f1’x’“ — X < 02/ e s K(e)deEuﬂX;f;’“ — XU, t> s
rée(s,t] s
for all (s,z) € [0,T] x R%. Taking integral with respect to u(dzr) leads to

sup Bu(|XIE10 — XIH2) < ot — s)ert FKOW gy By X000 — X700y > s
r€[s,t] re(s,t]

Now, taking ¢y > 0 such that
(2.23) £ 1= cotget o KON

by iterating in n we arrive at

sup  Bu(IX0 " = XU <e sup o Ep(IX0M - X0
s€[0,T],t€[s,s+to] s€[0,T),tE[s,s+t0]

<-e<et sup Bu(IXG - X0 = efw, p)et < oo,
s€[0,T],t€[s,s+to]

where due to (2.20),

c(w,p) = sup  sup  Ep(| X3 —af?) < e(l+ [l + ||ull3)
s€[0,T] te[s,s+to]

for some constant ¢ > 0. Substituting this into (2.22) and using (2.23), we get

sup B sup X2 - XEEAE < oL+ o + B, n 1
s€[0,T]  t€[s,s+to]

This finishes the proof. 0
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By Lemma 2.3, there exist a constant t; > 0 depending on 7" > 0, such that for any
s € [0,T) we have a family of continuous processes

{(X:,;Su>t6[s,s+t0] T c Rd, ne 92}
which are measurable in x and

lim B sup  (|XD55H — XTP 4 p(| X050 — X0 2))] — 0.

=00 |:T€[S,S+t0]
Letting A%, = po (X4)7", by this and (2.14) we obtain

lim B[ sup Wa(ALf, AL <E[ suwp u(Xe - X2 =0,
n—00 re(s,s+to] rE(s,s+to] ’

Thus, the continuity of A?” in t € [s,s+ to] implies that of A¥ +; due to (2.20) we may find
out a constant ¢; > 0 such that

(220) B[ swp (XA +IX2PY] < e (Ll + l3). (s..) € [0, T] <R x Py

t€[s,s+to]

and finally, by assumption (A) we may let n — oo in (2.21) to derive

s,

t t
Xf,’t“=x+/b( Xt AL )dr+/ o(r, X2 AL YAW,, t € [s,s+ b,z € RY.

So, when T' < s 4ty we have solved the SDE up to time 7.

In the case that T' > s + o, let 5 = s + 19,2 = X I\, and g = A{ ., . Since given
Fsi1, the process (W, — Ws)>5 is an m-dimensional Brownian motion, and (Z, 1) is given as
well, as in above we may construct a solution (X5}, A%, )ie(s 1) for (1 7) with 5 replacing

s. Then extending (X7, AL,) to t € [5,5 + to] by letting
XH = XIF, A, = AL, t€ 5,5+ t),

st
for k times until s + kto > T, we construct a solution to (1.7) up to time 7.

we see that (X7, AL,)iefs,s+2t0) S0lves (1.7) up to time 5419 = s+ 2t. Runing this procedure

2.2 Proof of Theorem 2.1(2)-(3)

We first establish It6’s formula for the diffusion process (Af;);>s. To this end, we need the
following chain rule for the L-derivative, which is essentially due to [4, Theorem 6.5] where
the reference probability space is Polish, see also [9, Proposition A.2] for general probability
space but bounded random variables {58}56[0,5] (note that Dy therein is compact).

Lemma 2.4. Let {&}co. for some e > 0 be a family of square integrable random variables
on R* with respect to a probability space (Q, F,P), and let %, denote the law of &. If
! = 1 58 B 50
§o = lm=———

exists in L?(Q — R%:P), then for any f € CH(Ps),

tim 1 Ze) = Za) _gip gy e,

sJ0 S
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Proof. By a standard extension argument, we may and do assume that (€2,.%, P) is atomless.
For instance, we enlarge (Q,.%,P) by (Q x [0,1],.% x 2([0,1]),P x dr) and use &, to replace
&s, where §S(w 7) = &s(w) for (w,7) € Qx[0,1], so that £ under P x dr coincides with £,
under P. Then the proof is completely similar to that of [7 Proposition 3.1] for & replacing
X +sY. O

Lemma 2.5 (Ito’s formula). Assume (A) and let {AL, = po (X)) }iss for the solution
0 (1.7). Then for any f € C}(P,),

df<As,t>:<mf><Az,t>dt+< Rd{a(t,w,A*;,»*(Df)(Az,»(x)}u(dw),dwt>, =

Proof. For any t > s and small € > 0, let
&=0—r)X+rXH RS RY re0,1].
Then 0 &1 is the law of & on the probability space (R?, Z(R%), u). By (2.3),

sup Blluo &3 <E[ sup p(l& )| <00, 125
rel0,1] r€[0,1]

Moreover, & := L& = X — X,/ exists in L?(R? — R% p1). So, Lemma 2.4 implies

_ _ Lrd _
FM ) = FOM) = Fluo &) = (o &) = /0 (- fluog™)ar
(2.25) = [ Do &€ Xt — X3 u(da)dr
R4 x[0,1]

—/ [ﬂx)u(dx)—i—/ IQ(x,r)u(dx)dr—i-/ I3(x, r)p(dx)dr,
R4 Rx[0,1] R2x[0,1]

where, since po &' = AL,

fl(a?) = <Df(A )(Xft“) Xotre = X31),

2(@,r) == (Df(no& ) (&) — Df(no & ") (&), Xt — X3,
FINED(E) = DF(AS)(ED), Xotie — Xot')-

13,7’ <

Below, we calculate I1(x), Iy(z) and I3(z) respectively.
Firstly, by (1.7) and f € CZ(,), we have

/ ((Df)(AE)(XSE), dXE) = / ((Df)(AE (X2, dXEE + o(e)
(2.26) / ((Df)(AE ) (XEE), bu, X2E, AL ) )du

/ ((DfY(AENXEE), o (u, dXTE AL AW, ) + ofe)
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where and in the following, o(¢) means e-dependent (real, vector or matrix valued) random
variables satisfying lim. e *|o(e)| = 0.
Next, (1.7) implies

t+e
227) (X3t = XE)© (X2 = XU = [ ol X2k Aot X2, A%, "du + ofe)
t

Combining this with f € C}(#,), we deduce from Lemma 2.4 and & = X%, — X, that
up to an error term o(e),

L) = [ a8 [ (00066, (X5 - X228 () hula)
22 = [ /d / (D) (10 &) (E0 €0), o, X248 A% Jor(u, XU ALY Yu(dy)
= [ [N X X2, o XA Do X2 AL ).
Similarly, by using (2.27) with = = y, we obtain that up to an error term o(e),

]3(:E,T) = <(Df)(ﬂ © 60_1)(5;?) - (Df)(,u o 50_1)@65)7)(;%/16 _ X;’ﬁ
= [ (TN, (Xt — X & (X — X2

= [ DN, (o)1, X2t A e
Combining this with (2.25)-(2.28), we arrive at
A5 = [ DO @), ot M)W )
=( (DAL (X, bt XF AL, >>u<dx>)dt
( [ AT UDNAEINEE), (000 X5 A20) bt

T (% /]Rd R (D*F)YNL)(XSE XU, o(t, XS AL o (6, X2 AL ) u(dx)p dy))d
= (A f)(AL,)dt.

Then the proof is finished. O

Remark 2.2. We note that under a moment condition the the 16’s formula for the condi-
tional distribution has been established in [5]. More precisely, consider the It6 process

dX; = Bydt + %, dW, + X0dW},
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where By, Y; and X0 are progressively measurable such that
T
(2.20) E [ (1B + IS0+ [0t < o,
0

then for any f € CZ(S%), e := Lx,w satisfies the It6 formula

f(ut)—f(uo)—/o ERDf(us)(Xs),BsHW}dSJr/O (E[Df(s)(X,)|[W], £odWy)

+% / E[tr{V(Df (1)) (Xs) (2:37 + 22(30)") [W]ds

1 t
+§/ ds/ E[tr{D* f (11s)(Xs, 2) S S5} W] ps(d2), ¢ € [0, 7.
0 Ré
So, if (2.29) holds for By := b(t, Xy, Lx,w), Xt == o(t, Xy, Lx,w) and XY = 0, then Lemma
2.5 follows. However, our condition (A) is not enough to ensure (2.29) unless the initial
value satisfies E|Xp|* < oo (as o has linear growth) and K € L?([0,T7]).

Proof of Theorem 2.1(2)-(3). By the uniqueness result in Theorem 2.1, we have the flow
property

I
Asr
Tt

(2.30) X = XA 0<s<r<t

r,t )

AL, =A

which implies that both (AL,);>s and (X7}, AL,)i>, are Markov processes.

Next, by (2.4), these two Markov processes are Feller and hence, strong Markovian.
Therefore, Theorem 2.1(2) follows from Lemma 2.5.

Finally, for any f € Cbz’Q(Rd, P5), Lemma 2.5 and the classical 1t6’s formula for the
semimartingale (X/);>s imply

AF (X AL) = (f) (X AL )AL+ (VF( A (), ot X2 AL )T

(2.31) +/ (DF(XE, (A ) (@), ot z, AL )W, p(de), > s.
Rd

This proves Theorem 2.1(3). O

3 Feynman-Kac formula for PDEs on R? x &,

In this section, we solve the PDEs (1.10) and (1.11) by using (X}, A{;)o<s<i<7. As men-
tioned in Abstract that when V' = 0 they are included by the Master equations investigated
in the literature of mean filed games with common noise.

A function on U on [0,7] x R? x &, is called a solution to (1.10), if U(t,x, u) is dif-
ferentiable in ¢ and U(t,-,-) € C*?(R? x &%) such that (1.10) holds. If moreover U(t,, 11)
does not depend on z, it is called a solution to (1.11). We first introduce the following class

CP#2([0,T] x R x 22,).
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Definition 3.1. Let f be a real, vector or matrix valued function on [0,7] x R¥ x &, for
some k > 1. We write f € Cp>*([0,T] x R¥ x 92,), if f is jointly continuous, f(t,-,-) €
CP*(RE x 2,) for every t € [0,T], and all derivatives

Vf(t.a,p), V2f(t,a,n), Df(t .z, m)(y),
D{vf(t7x7ﬂ)}(y)7 V{Df(t,w,u)(-)}(y), D2f<t7x7u)(yaz)

are bounded and jointly continuous in corresponding arguments. If moreover f(¢,x, ) does
not depend on z, we denote f € C*([0,T] x Ps).

Theorem 3.1. Assume that b,o € Cy>*([0,T] x R? x P,) are deterministic.

(1) Forany® € CP*(Rx D), F € C)**([0, T|xR¥x P,), and bounded V€ Cy>*([0, T x
RY x 92),
x TV (r,XEF AY )d g x [TV(0,XTH AR )do
Ut ) = B[ @OXTE, Aol VTN [ G X, A el VO Ao
¢

is the unique solution of (1.10) in the class Cy**([0, T|xR¥x Py) with ,U € C([0, T]x
Rd X @2)

(2) For any ® € C3(R? x 2,), F € C)*([0,T] x £,), and bounded V€ Cy*([0,T] x Ps),
T
lv](t7 Iu) = E[(I)(AZT)eftT V(r,AL,)dr + / F(T, Aﬁr)eft V(97Aﬁg)d9drj|
t
is the unique solution of (1.11) in the class Cy ([0, T] x 2y) with ,U € C([0,T] x 2,)

Remark 3.1. When o is constant, b(t, z, 1) and V,b(t, z, u) are in the class Cp>*([0, T] x
R? x ) and V = 0, [5, Theorem 5.45] implies that U(t,z, ) given in Theorem 3.1(1)
solves the Master equation (1.10) with V' = 0. These conditions are stronger than those in
Theorem 3.1.

Proof of Theorem 3.1. Since o, F(z, 1) = < F(u) holds for F € C}(2,), (2) follows from
(1). So, it suffices to prove Theorem 3.1(1).
If U € C**([0,T] x R? x ) is a solution of (1.10), then (2.31) yields
dU(t7 Xé‘g’c,;fuv Ag,t) = (at + ,,@;)U(t, Xt Ag,t)dt + dM,

s,t

=dM; — (VU + F)(t, XJF AL )dt, t € [s, T

s,t

for some martingale (M;);c[s,r). Thus, the process

S, )

t
= U X3 Mol VXN [ (i A Yol VO, 5,1

satisfies
o, p

dn, = ols VIR X3) ’Ag’r)deMt, tels,T].
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So,
U(s,z,n) =Ens = Enr

T
T T A M T T A M
— E @(X:”jlf7 AI;T)efb V(T7X5,7» 7As,r)d7‘ +/ F(r’ Xxdl Ag}r)efs V(97X5,9 7As,0)d9d7~
S

S,r )

as claimed in Theorem 3.1(1).
On the other hand, let U be given in Theorem 3.1(1). For any ¢ € [0,7") and ¢ € (0,T—t),
by (2.30) and the formula of U(t,z, ) in Theorem 3.1(1),

Ult,z, 1) —E[UE+e, X[ A )] = Li(e) + L(e) + Is(e)

holds for
L(e) = E _<I>( Xii’t%Aff,Hs’ Aﬁ’;*f (e JEVEXDEAL Ddr ftLV(T,X%,A;{T)dr)},
r t+e }
I(e) =E / Fr, X5, AL ) VOXE M0y |
LJt ’ ’
- T
13(5) =K / F(r’ th;:uj Afr> (eftT'V(e,Xz’g“,Aze)de N eft:-f V(@,Xﬁbf"[\zg)de) d/r,:| )
L Jt+e ' ’
Therefore,
U@ )~ BIU + & Xt M)
e—0 g
- = V(.o B[R, Mol VXM 1 Btz

T
+ V(t> z, M)E[/ F(T’, X;f}“a Ailftr)eft V(Q’Xiva’AZE))de}
t
= (VU + F)(t,z, ).
By Proposition 3.2 below, U € Cy**([0,T] x R? x ) and U (t,x, 1) is continuous in
(t,x, ). Then (2.31) implies

t,r

t+e _
E[U(t + e, X5, A2y, )] = Ut + ez, p) + E / AU (r, X2 AL )dr,
t

Combining this with (3.1) we arrive at

Ul(t —U(t
—0,U(t,z, p) = lim (t,z, 1) (t+e,z,u1)
e—0 €

Therefore, U solves (1.10) with continuous . O
The remainder of this section devotes to the proof of the following result.

Proposition 3.2. Under conditions of Theorem 3.1 and let U be given in Theorem 3.1(1).
Then U € CP¥*([0,T] x R x ), so that U is continuous on [0,T] x RY x 22y,
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We first introduce some notations which will be used in calculations.
(a) For f € C*RY),
(V@) = (Vf(x),v1) = Vo, f(z), (V?f(x))(v1,v2) := Hessy(v1,v2), x,v1,v2 € R%

(b) For f € C*( D),

{Df()}o := Do f(p) = /Rd<Df(M)(SC% ¢(x)p(dz), ¢ € L (R? — R p).

(c¢) Derivatives of vector or matrix valued functions are given by those of component func-
tions. For instance, for f = (f;;) € C*(R? x &2y — R @ R¥),

Vof(z, 1) = (Vi 1),v)), Def(z, ) = (Dgfis(z, 1)),
where z,v € RY, € &5 and ¢ € L2(R? — R%; ).
We will also need the following notion of uniform boundedness and continuity.
Definition 3.2. Let B be a Banach space, and let F be a topological space. The family
{n(z) e L'(Q — B;P):z € E}
is called L*~(PP) bounded continuous, if for any p > 1,

sup E[|n(z)[|” < oo, limE|n(z) —n(y)||" =0, z € E.
el y—z

Let Z(B; — By) denote the space of all bounded linear operators from a Banach space
B, to the other one By. When B; and By are finite-dimensional Hilbert spaces, we regard
Z(B; — By) as Euclidean space. The following lemma can be easily proved by using It6’s
formula, so we omit the proof to save space.

Lemma 3.3. Let k, [ > 1, and let

B :Qx[0,T] xR x Py - RF, 2, :Qx[0,T] xR x 2, - RFE@R™,
By : Qx[0,T] xR x 22y = RFQR*, 3,:Qx[0,7] xR x &, - Z(R* —» RF @ R™)

be progressively measurable. If {Ba, Yo} are uniformly bounded and continuous in (t,x, ) €
0, T x Rt x Py, and {By(t,z, 1), X1 (t,x, 1)} are L~ (P) bounded continuous, then for any
e € R¥ and (z, ) € R x Py, the solution (1,1 )ie(sr) for the SDE

d"?f:,ytu = {Bl (ta z, M)+82(t7 z, M)ntx’#}dt—i—{El(t? xz, ,U’)_'_ZQ(ta z, M)Uf’ﬂ}dwt, 77;:,’:9“ =6, te [57 T]
is L~ (IP) bounded continuous.

In the following subsections, we calculate the first and second order derivatives of (X7}, A{,)
in z and p respectively, which will be used in the proof of Proposition 3.2.
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3.1 Formulas for VX}" and V2X/

Let {e;}1<i<a be the canonical orthonormal basis of R%. Given (AL,);,, the SDE (1.7)
becomes the classical one with random coefficients of bounded and continuous first and
second order derivatives in x. So, when Vb(t,z,u) and Vo(t,z, u) are L> (P) bounded
continuous, by taking d,, to X" in (1.7), we see that for any 1 < i < d,

v”“ =0, XY, t>s
solves the linear SDE

i = [{Vb AR (X }W“}dw [{Vo A (X }v”“}dwt,

t>s, v;’fg’“ = e;.

(3.2)

If moreover V2b(t, x, 1) and V2o (t, z, i) are L>~ (P) bounded continuous, then by taking 9;
to the SDE (3.2), we see that for 1 < j <d

v”m“ = 0,0, XS, t>s
solves the SDEs
dofor = [{wi, B A i) a
(Tt ALY (X Jid™ + {20 (t, -, AL (X b, odp#) i, vl = 0.
Combining these with Lemma 3.3, we obtain the following result.

Lemma 3.4. Assume (A) and that Vb(t,z, u), V2b(t,z, u), Vo(t,z, n) and V3a(t,x, p) are
L>>~(IP) bounded continuous, then so are VX" and V*XT}'.

3.2  Formula for DX/
We will establish the SDE for DX /'(y) under the following condition (C) on b and o.

(C) Assume that b and o are progressively measurable such that the derivatives

Vo(t,z,pu), Vo(t,x,p), Dbt z,u)(y), Do(t z,u)(y)
are uniformly bounded and continuous in (z, i, y) € R? x &, x R%.

Lemma 3.5. Assume (C). Then for any (z,p,y) € R x 25 x R, wit'(y) :== (DX} (y)
fort € [s,T] exists and solves the SDE

() = [ (B0} Volt - ALK + (VL) (D0 X3 LX)
+ [ St )} {Dble X5t AL NG la) |t
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{{w } {VU ) 7A5t X:tu }+ VX ){Do’( szt#:')(Ag,t)}(XZ}“)
/ {wit ()} {Do(t, X5, ) (ML) F(XZ ) p(dz) [ AW, wiY = 0,

where {wft“(y)}* is the transposition of the matriz wif' (y). Consequently, (DXJ}")(y) is
L>~(P) bounded continuous.

To prove the existence of DX}, for fixed ¢ € L*(R* — R% 1), let pe = po (Id +e¢)~*

and consider
T,€ X:;Sus - X;U%M
és,’t = %, €€ (O, 1),t € [S,T].
We first establish the SDE for Dy X7/ := lim. o &;7. To this end, we need the following

lemma.

z+ep(x),pe z,
Lemma 3.6. Assume (A) and let €7 := Lo X Then for any f € CY1(RT x P2)

1>
with

Ky = sup (\Vf(iﬂ,#)’Q + HDf(a:,u)H%z(ﬂ)) < 00,
(2,0)EREx Py

the process

f(Xx,U«s AME) _ f(Xx/’« A/‘ )

=2 () = e S Ve £ N (XIE)
/ (e +s§f,{Df< £ (AN (dz), te [s,T]
satisfies
(3.3) =N < 8K (€512 + p(les + E57), te[s,T),
(3.4) limE[=25 ()] = 0.

el0

PT'OOf. Let nr Xftu + T(XI+€¢( oo Xf,f)? re [Oa 1] Then 770 Xst 7771 - sz’;r5¢(l’)7#s’
so that

Lipolu = 110 (Xs?) Agta Loplu = o (X;tw’%)il = He© (X;,?E)il = Ag,gt'
Moreover, Sn? = £77 + £77. Then by Lemma 2.4, we have
d
2y = (D L)) )
—c [ (DI L)), 65 + ERulds), re 1)y R
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So, letting (¥ = (1 — r) X7 + r X7}, we obtain

s,t

X AV XTP A" 1 4 i
I/ )= I 2 A{@f(rjgmlu)}(ﬁ

/ {<Vf L)), + / (DG ) (L f),fﬁ,’f+5§,’5>u(d2)}dr.

This together with the definition of Z7 (f) gives

9 S

=50 = ’/ {<Vf L) (CF) = VI AL (X, €67

2

B [ DI (6) ~ DI N, € + EDulas)

<8 (|67 1° + n(l&s + &5).

which implies (3.3). On the other hand, it is easy to see that (2.4) implies

(3.6) sup [sup {1572 + S} ] < cullol), ¢ € LR > R% p)

r€R?,£€(0,1) tels, T

for some constant ¢ > 0. Combining this with the facts that (V f, D f) is bounded continuous,

lim, o ¢ = X7}, and lim,_, %}, |, = A%, we may apply the dominated convergence theorem
to deduce (3. 4) from the first equality in (3.5) with ¢ | 0. O

Lemma 3.7. Assume (C). For any (s,z,u) € [0,T] x RY, x Py and ¢ € L*(R? — RY),
wft’”b Dy X/ fort € [s,T] exists in L2(Q — C([s,T] — R%Y);P), and there exists a
constant C' > 0 such that

(3.7) E| sup [wit 2] < Cullol), (s.z.) € [0,T) x R x 25,

s<t<T

Moreover, for any t € [s,T],
t t
wip? = [T bt ) br [ {9 oot M) fa,
t
(38) # [ ([ (0 X A DX,z 4 Ty XaE ()
s R4
t
+/ (/ ({Do(r, XT8N HXZE), wilh? + V) X >M(d2))dWr'
s R4

Proof. To prove the existence of wff’d’ = DX ' in L*(Q — C([s,T] — R%);P), it suffices
to show

(3.9) lim E[ sup €75 — €012 = 0.
eolo” Lycrr 0t
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By the definition of £} and letting

Eif(b) = ('_ff(b ))1<z<d’ Ei,f(o-) = (Hifﬁ(o_l]))l<z<d 1<j<m’

Il il e

we obtain
1 t
€ = 2 [ Do Xae A = b X ) Y
’ €
/{o— CXTHE A=Y — o (r, XA ) AW,
t
= [ {=zm0)+ Vet an ) () Jar
(3.10) s

L[ ot ez o) 0655+ € utan) o
[222(0) + Verzolr, AL )(XTE bam,
# [ ] ot xip q g Hep). 65 + Euid) baw,

Combining this with (C) and using the BDG inequality, we may find out a constant C' > 0
such that for any t € [s,T],

t
| sup [¢r7 - €:7F] < CB [ {0 - =ior + 280 - =3P
rels, S

(3.11)
ez — € 4 I - £ + 1 - €57 far.

Integrating both sides with respect to p(dz), we obtain
Epu(l€ — &9 < CE/: (IE50) = E50)° + E5(0) — 501 + 165 — &0 %) dr
w20 [ Bl - 3Py, tefT]
Then by Grownwall’s inequality, (3.4), (3.6), and the existence of
lgglé; = VX1 in L*(P)

as explained in Subsection 4.1, which implies lim, 50 ]E]fsi - é 2912 =0, we derive

lim sup Eu(]€)5 — 552
lim, s En(lEs ~ €11
T
SCezCTalingE/ pn(1250) = E50) + |25.(0) = 50| + €5 - €0 dr = 0.
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Substituting this into (3.11) and using Gronwall’s inequality again, we arrive at

lim E[ sup [€57 — €57 2]
€,040 te(s,T)

T
<o g e [ {E0) -0+ 1550 - )1
(1€ - AP + 15 - E312) far = 0.
Therefore, (3.9) holds, so that
wx“(b DXt“—hmﬁst, tes,T]

exists in L?(Q — C([s,T] — R9);P), and (3.7) follows from (3.6). Moreover, by (C) and
Lemma 3.6, we may let £ | 0 in (3.10) to derive the desired equation for wf,’t“’qﬁ. [

Proof of Lemma 3.5. By (3.7), (DX/)e[s,r) exists with
(3.12) (DX 02y = Do X = wif®, ¢ € LR — R p).

On the other hand, let w;f*(y) solve the SDE in Lemma 3.5. Then w§f¢ = (Wit d) 2w

solves the SDE in Lemma 3.7 for wg{" *. By the uniqueness, we have wyf" * = wyf ®,

Combining this with (3.12), we obtain p-a.e. wi{ = DX7}. Then the proof is finished. [

3.3 Some other derivatives
We first present a formula for D f(A%,).
Lemma 3.8. Assume (C). For any f € C} (%),

{DfAL) (1)} ()

(3.13) _ (VXLZ}“)*{(Df)(Ag,t)}(Xg’tﬂ) —I—/Rd (DX:’}”) (DAL HXGY ) pu(da).

Proof. Let ¢ € L*(R* — R% y1). Since AY;, = po (X4)!, for any € > 0 we have

/ B() (A0 (02 = / B(XE00 (o (1d 4 26) ) (da)
R4 Rd

_ / RN yqz), e (R,
R

So, Ag;ad%‘b)_l is the law of

T X;j€¢($)vlt°(1d+6¢)7
on the probability space (RY, Z(R%), iu). Therefore, by Lemmas 2.4 and 3.5, we obtain
(DF (A ) (1), 6) 12 = f(AZ,Z(Id+€¢)_)

e=0
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= /]Rd <{(Df)(Agﬁt)}(X;";’t”), %Xf,:rm(x)’uo(ldﬁ@l >u(dx)
= /Rd {(DHNEDHXTS), Vo) Xoi' + D XIf ) u(da)
= [ ARG DNL ) o))

_|_

[ DX DX, 60l )

e=0

= (VX0 (DAL + [ (DX OUPHNENN X etdn). o)

L2(p)
Therefore, (3.13) holds. O

Next, when b,o € CP*%([0,T] x R? x %), by making derivatives to the SDE for wit (y)
presented in Lemma 3.5, we derive the following result.

Lemma 3.9. Assume that b,o € Cy>*([0,T] x R? x ). Then all derivatives
{DVXIHy), VADX(y)} (@), VIDXL/()}Hy), DX (y, 2)
are L~ (P) bounded continuous.

Proof. (a) We first consider {DVXZ}'}(y). Since b,o € C)"**([0,T] x R? x 22,), by (3.2)
and Lemmas 3.4-3.5, v;{" := V, X} for v € R? solves the SDE

vl = Zy(t, z, p)olfdt + { Zo(t, o, )T }AW,, 2t =,

8,8

where

7y [0,T] x REx Py - RY Z,:[0,T] x R x &2y — R @ R?
are progressively measurable and satisfy

(D) Zi(t,x,n) and Zs(t, x, u) are uniformly bounded and continuous in (¢, x, u) € [0,T] x
R x Py; DZy(t,z, 1) (y) and DZy(t, x, p)(y) are L~ (P) bounded continuous.

T,He
s,t

)

z,p

v Vgl

Then for any ¢ € L*(R? = R% ) and pe := po (Id+¢e¢)~" for small & > 0, 45, :=
solves the SDE

dvs, = {21t 2, p)vs  ydt + { Za(t, o, )y, ydW,

Zi(t, x, Zi(t, o (e Zo(t,m, pue) — Zo(t, z, p) Yot
+{ 1 pe) — Zi(t,x, 1)}t dt+{ o ie) o ) }vgy AW, 75, = 0.
5 5 ’

By (D), we may repeat the proof of Lemma 3.7 to conclude that Dyvg}" := lim, 75, exists
and solves the SDE

d{ Dyt = {Zi(t, 2, ) Dyvst' + (DyZi (L, @, ) }dt
+{Zs(t, 2, W) Dyvgt + (D Zo(t, x, p))vgt }dWy, Dyvt = 0.
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Hence, Dvg{(y) solves the SDE
HDv (y)} = {Z1(t, 2, ) Dvt (y) + (DZu(t, @, p)(y))vey' pdt
+{Za(t, 2, 1) D (y) + (DZo(t, 2, 1) (y))vet }dWe, Dt (y) =0.
Therefore, by Lemma 3.4 and (D), Lemma 3.3 yields that {DVX7{'}(y) is L=~ (IP) bounded
continuous.

(b) To calculate V{D X (y) ), V{DXTF(-)}(y) and DXTH(y, 2) := D{DX Y (y)}(2),
we reformulate the SDE in Lemma 3.5 for wif'(y) := DX (y) as

dwf:# = {Al (ta xz, /L)wj;tu + AZ(tv xz, /’L)}dt + {Bl<t7 z, M)w;’# + B2(t> xz, /L)}th, wf,’:su = 07

where, due to Lemmas 3.4-3.5 and (a), {A;, B; }i=1.2 are progressively measurable maps such
that

e A, and B; are uniformly bounded and continuous in (¢, x, u) € [0,T] x RY x Py;

o {A;,,B;,VA;,VB;,DA;, DB;};,—12 are L~ (P) bounded continuous in corresponding
arguments.

So, as explained in (a), by taking derivatives 0,,,0,, and D, to this SDE respectively and
applying Lemma 3.3, we prove that 9, DX.}'(y) and D*X[}'(y,z) are L>(P) bounded
continuous in related arguments. We omit the details to save space. [

3.4 Proof of Proposition 3.2

Since b, o € CY*?([0,T] x R? x 9,), assertions in Lemmas 3.4, 3.5, and 3.9 hold. Then it is
straightforward to show that U given in Theorem 3.1(1) is in the class C%?2([0,T] x Z%,).
Firstly, for any 1 < ¢ < d, by taking derivative 0,, to the formula of U, we obtain

ain(t, x, ,u) = E[<Vc[)(.7 AZT)(X:,#)’ 6xin$‘>eftT v(r,X;f;u,Aﬁr)dr}

T
+EF(Xi’fa’:‘,A’sz>eftTV(“X3”’Wd’” / <VV<r,-,AZT)<X§T;“>,0xiX§;“>dT}
t

T
+E / <VF(r,~,A§T)(X§f;“),8xiX§f;“>eft VO.X/ 5 AL e)d0 g,
t

T T
+E / {F(r, Xk A Yeli VOXG A0 / (VV(0,-, ALy (X5, axing;,*‘}de} dr.
t t

By assumptions on ®, V, F' and Lemmas 3.4, 3.5 and 3.9, this formula implies that VU (¢, z, i)
is bounded and continuous. Moreover, by taking derivatives d,; and D to the formula, we
conclude that V?U(t,z, 1) and D{VX;/'}(y) are bounded and continuous as well.

Similarly, we may prove the assertion for DU (¢, z, ) (y), 0, { DU (t, z, u)(y) }, 0, { DU (t, x, 1) (y) }
and D?U(t,z, 1u)(y, z). For simplicity, we only consider the case for V = F = 0, for the gen-
eral case the formulation is only more complicated due to derivatives to F' and V', but there
is no any essential difference for the proof. For V = F' = 0 the formula for U becomes

Ult,z, p) = EQ(X7, ALy).
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Then by (3.13) and the chain rule we obtain
DU(t, z, p)(y) = E [{Wb(-,A?,t)(Xf,%“)}(DXf,%“)(y) + (VXL (DD, X, ) (ML) XL
+ 4d(DX§,’f)*(y){D¢(X§%“, DAL HXT)n(dz) |-

Since ¢ € C’,?’Q(]Rd X P5), by Lemmas 3.4, 3.5 and 3.9 we deduce from this formula that
DU(t,x, it)(y) is bounded and continuous. Moreover, by taking derivatives 0,,, d,,, D to this
formula, we conclude that 9, { DU (¢, x, 1) (y)}, 0, {DU (¢, x, 1) (y) } and D?*U (¢, z, u)(y, z) are
bounded and continuous as well. In conclusion, U € C%%%([0,T] x R¢ x Z2,).

4 FErgodicity and structure of invariant measures

In this part, we assume that b(¢,z,u) = b(x,n) and o(t,z, ) = o(z, u) are deterministic,
and consider the ergodicity of the diffusion processes generated by & and <7 .

Recall that a Markov process is called ergodic, if for any initial distribution, when t —
oo the process converges weakly to the unique invariant probability measure. For square
integrable Markov processes, the weak convergence is equivalent to the convergence under
the Wasserstein distance. To estimate the Wasserstein distance for solutions to the image
SDE (1.7), we take the following hypothesis:

(H) b(t,z,pu) = b(x, ) and o(t,z, u) = o(z, pu) are deterministic, continuous in (x, x) and
do not depend on t. There exist constants A € R and «,d, K > 0 such that

2<b(x,,u) - b(y7 V)?*T - y> + HO-(:EMM) - U(y’ V)H%{S < HW(V” V)2 - /\|J7 - y|27
lo (2, 1) = oy, v)s < K{W(p,v)* + |z —y|*},
b(z, 1) * + llo(, ) zs < 0+ 2 + [|ull3), 2,y € R, p,v € Ps.

By Theorem 2.1, (H) implies the well-posedness of (1.7). In the present time-homogenous
case, we only consider the solution from time s = 0, i.e. (X, A}) = (Xg}', Ag,) for t > 0.

Let P,(y;-) and Py(z, ;) denote the laws of A* and (X *, A¥) respectively. Then the
associated Markov semigroups P, and P, are given by

PAW) = BFA) = [ f0)PGud0). £ € B2,
Prg(, 1) = Eg(X#, ) = / 9y, ) By, s dy, dv), g € By(RY x ).
R x Py

Let P5(P,) (resp. P(R% x P)) be the set of probability measures on %, (resp.
R? x 2,) with finite second moments, and let W;j 2> be the L?>-Warsserstein distance on

Py (P5) induced by Wy, while Wﬂ;dx‘% be that on Zy(R¢ x ) induced by the metric

p((:l:,,u), (ya V)) = \/’3j - y’Q + WQ([L, I/)Z.

30



For any @ € 5(%,) and = Py(R4 x Py), let

QP, = /J Pp;)Q(dp), QP = /R Py(x, 113 )Q(d, dpa).

d><9z2
In the following two subsections, we first investigate the exponential ergodicity of the
diffusion processes generated by 7 and .7, then figure out the structure of the invariant
probability measures.

4.1 Exponential ergodicity
Theorem 4.1. Assume (H). Then for any (z,u) € R? x P,

(4.1) EW, (A, AY)? < Way(p,v)2e” AR ¢ >0,

(4.2) E| X" — X9V 2 < o — ylPe™ + Wy(p, v)2e” 39 ¢ >0.
Consequently, if A > K then:

(1) 3 has a unique invariant probability measure ITI € Py(R* x Py) such that for any
Q € gZQ(Rd X 92),

(4.3) W3 72(QP, T)? < 2e~A'WE 72 (Q,TT)?, £ > 0;

(2) I := (R x -) is the unique invariant probability measure of Py such that for any
Q € Py (P),
(4.4 WP QP (s ), T < & A WZ2(Q T2, >0,

Proof. (a) We first prove (4.1) and (4.2). Let m € € (u, v) such that
Waln)? = [ o= yPa(de,dy)
Rex R4
Then for any t > 0,
mo=mo (XM, X)) e € (AL AY),
so that
@s) WA < [

R4 xRd

|z — y|*m(dz, dy) = / X" — XV )Pr(da, dy) =: ;.

R4 xR4

Combining this with (H) and It6’s formula, we obtain
d|X7" — XPU)P < kb — N X" — X2V} + dM,

for some martingale M;, which implies

t
(4.6) ME|XPH — XPVP < e —y]P + KJ/ MRl ds, t>0.
0
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Integrating with respect to 7(dz, dy) gives

t
MEL, < Wy (p, v)? + KJ/ e“El,ds, t >0,
0

which together with Grownwall’s lemma and (4.5) leads to
EW,y (A, AY)? < Bl < Wy(p, v)2e” P90 ¢ > 0.

Thus, (4.1) holds. Substituting (4.1) into (4.6) we arrive at

t
E|XH — X2V < e ™Mo —y|? + sWa(u, V)2e_’\t/ e™ds
0

< e—At|x _ y|2 + W2(M7 V)Qe—(k—n)t‘

Hence, (4.2) holds.

(b) Existence of invariant probability measures. Consider, for instance (X, A%), where
8o is the Dirac measure at 0 € R% Let II, = P,(0,8;-) be the law of (X%, A%). By the
completeness of the Wasserstein space, if

(4.7) lim WE>Z2(11,, 11,)? = 0,

s,t—00

then there exists a probability measure I on R? x 2, with ||II||3 := II(p?) < oo such that

limy o WRUZX‘/}2 (Ht,H) — (. Consequently, II is an invariant probability measure for P,.
Moreover, since the law of A2 is II,(R? x -), which converges to II := II(R? x -) weakly as
t — 00, we see that II is an invariant probability measure of P,.

To prove (4.7), let t > s > 0. By the Markov property we have

L= R0 = [ Pulopfie(do.do)
R x Py
Combining this with (4.1) and (4.2) we obtain

WEx 72 (11, 1,2 S/ WEXZ2 (P (z, s ), Pg(o,éo;'))Zﬁt—s(dyady)
R4 x Py

< / {E|X0% — X212 4 Wy (A, AP)? T,y (dz, dp)
R x Py

< / {|z[?e™** + 2W,(dy, H)Qe_@_“)s}ﬂt_s(dx, dp)
Réx Py
_)\SE|X0 50|2 + 2 (A= n)s]EW (50’Afos)2 _ (e—)\s + 26—()\ K S)E|X060|2.
So, to prove (4.7) it remains to show that

(4.8) sup E| X% |? < oc.
>0
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By assumption (H) with A > &, for any A > X' > &’ > & there exists a constant ¢ > 0 such
that
2bz, 1), ) + (1) s < e+ W lllE = N, (2, 11) € R x 2y,

Combining this with It&’s formula, and noting that [|[A%|2 = & (|X;?) = |X2%2, we
obtain
d|XP%)2 < {e+ (K = N)| XDt + dM,

for some martingale M;. This implies
t / /
IE|X,50’60\2 < c/ e~ Nn )Sds, t>0.
0

Since A" > &', we derive (4.8) and hence finish the proof of the existence of invariant proba-
bility measures. Moreover, the invariant probability measure II satisfies

2 2 - < : 0,502< .
L el I, dp) < Jim LX< 50 < o

Hence, IT € 2,(R? x 25). o
(c) It is easy to see that (4.3) follows from (4.1) and (4.2). Indeed, letting I' € €(Q, II)
such that

WéRdX(@b(Q’ﬁy _ / deF7
(]Rdxf/}’g)Q
we deduce from (4.1), (4.2) and II = 1P, that

W3 (QP, ) = Wi (QF, TIR,)?

< / W5 (P, 3 ), Pily, v; )T (da, dps; dy, dv)
(Rdxfﬂz)2

< / E{| X2 — X2 + Wa(AL, AY)? )T (de, dg; dy, dv)
(R x 275)2

< / {|lz — ylPe™™ + 2Wy(pu, V)2e_(’\_”)t}F(dx, dp; dy, dv)
(Rngzz)Q
< 26~ WRIWEXZ2 () T1)2, t > 0.

In particular, II is the unique invariant probability measure of P,.

(d) As shown in (b) and (c), (4.1) for A > k implies that P, has a unique invariant
probability measure II satisfying the estimate (4.4). Noting that P(u;-) = Py(x, ju; R x -)
holds for all (z, 1) € R? x &5, we have I = II(R? x -). O

4.2 Structure of invariant probability measures

Under condition (H), let by(z) = b(x,d,) and og(x) = o(z,d,). Then the SDE (1.12) is
well-posed. Let P be the associated Markov semigroup.
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Theorem 4.2. Assume (H). If P? has an invariant probability measure pg, then

o (dz, dp) = po(dx)ds, (dp)

is an invariant probability measure of P,. Consequently, Ty == TIo(R% x -) = Jra 05, 110(d)
is an invariant probability measure of Py, and when A > £, the unique invariant probability
measures 11 and I1 in Theorem 4.1 satisfy (1.13).

Proof. Recall that (X", A}") solve the SDE
AXP* = b(XP*, At + o(XPP AAW,, X = x,

where A} := po (X,;*)7!. Then, when u = §, we have A} = O xzss, SO that (X150 solves
the SDE (1.12). By the uniqueness of this SDE and that puo is an invariant probability
measure of P, we obtain

[ ot utan) = [ Pgoatan = [ glomlan. 12 0.9 € a@)

Combining this with Ptf(a:, 0y) = Ef(Xf’éz, (5Xf,az) for f € B,(R? x Z2,), and taking g(z) =
f(z,9,), we obtain

[ Rreedn) = [ Pufe6ulds)
R4 x Py Rd
_ /R B Sy polde) = [ [Bg(X ™) a(do)

Ra

= [ stemtan) = [ sledmoiao) = [ . G (ar, dp).

Therefore, Iy is an invariant probability measure of P,. In particular, by taking f(z, ) =
f(p), we see that Il is an invariant probability measure of P;.

Finally, if A > &, by Theorem 4.1, IT and II are the unique invariant probability measures
of P, and P, respectively. So, II = II, and II = IIy; that is, (1.13) holds. ]
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