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Abstract

We consider the n-dimensional (n = 2,3) Camassa-Holm equations with nonlocal diffusion

of type (-A)*, 7 < s < 1. In [17], the global-in-time existence and uniqueness of finite

energy weak solutions are established. In this paper, we show that with regular initial data,
the finite energy weak solutions are indeed regular for all time. Moreover, the weak solutions
are stable with respect to the initial data. The main difficulty lies in establishing higher order
uniform estimates with the presence of the fractional Laplacian diffusion. To achieve this, we
need to explore suitable fractional Sobolev type inequalities and bilinear estimates for fractional
derivatives. The critical case s = 7 contains extra difficulties and a smallness assumption on
the initial data is imposed.
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1 Introduction

Recently a great attention has been devoted to the study of nonlocal problems driven by nonlocal
operators in PDEs, which is not only for a pure academic interest, but also for various applications
in different fields. In this paper, we shall consider the following Camassa-Holm equations with
nonlocal viscosity:

Vi+u-Vv+v-Vul +Vp = —y(=A)y,

u-a?Au =v, (1.1)
diva =0,

where 1 — @A is the Helmholtz operator, u - Vv and v - Vu’ are vectors with the i components
defined respectively as

n

(u-Vv), = Zn: u;0;v;, (V . VuT)i = Z v;ou;.
j=1 j=1

The system is subjected to the prescribed initial condition

v(0, x) = vo(x), x € R™ (1.2)
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Here, (¢, x) € R* X R" with n = 2, 3. In the system (1.1), u — @*Au = v can be referred as the filter,
u represents the filtered fluid velocity, « is a length scale parameter representing the width of the
filter, and v > 0 is the viscosity coefficient. In particular, both a and v will be assumed to be fixed
positive constants in our discussion. Moreover, v denotes the fluid velocity field, and p the scalar
pressure. The nonlocal operator (~A)* and 7 < s < I is defined classically as a Fourier multiplier
with symbol [¢]%S.

When s = 1, the sytem (1.1) becomes the classical Camassa-Holm equations, also known as the
Navier-Stokes-a model, or the isotropic Lagrangian averaged Navier-Stokes (LANS -a) equations.
In particular, the Lagrangian framework is a natural setting to study the behavior of solutions. It
should be pointed out that the LANS -a equations are a system of partial differential equations for
the mean velocity field. Compared to the Reynolds averaged Navier-Stokes or large-eddy simulation
models that add artificial dissipation to the Navier-Stokes equations to filter small scales, the LANS -
a equations do not add any artificial viscosity but a nonlinear dispersive mechanism filters the
small scales. Hence the LANS-a equations serve as a nice model for turbulent flow (see [24]).
As is known, the classical Camassa-Holm equations rise typically from the asymptotic studies on
shallow water equations [5, 20]. Specifically, it was introduced in [20] as a natural mathematical
generalization of the integrable inviscid one-dimensional Camassa-Holm equations discovered in
[5] through a variational formulation and with a lagrangian averaging. It could be used as a closure
model for the mean effects of subgrid excitations, and be also viewed as a filtered Navier-Stokes
equations with the parameter « in the filter, which obeys a modified Kelvin circulation theorem
along filtered velocities [20]. Numerical examples that seem to justify this intuition were given in
[7].

There has been a vast literature focusing on investigating the existence, uniqueness and
regularity issues for the classical Camassa-Holm equations ((1.1) with s = 1), see for example
[1, 8, 13, 15, 18, 31, 36, 37, 39, 40]. The classical results on the existence, uniqueness, regularity
and the decay estimates for the classical Cammassa-Holm equations were established in [1, 24].
Chen et al. in [8] investigated the oscillation-induced blow-up to the modified Camassa-Holm
equations with linear dispersion. De Lellis et al. in [13] considered the low-regularity solutions for
the periodic Camassa-Holm equations. Escher and Yin in [15] analyzed a kind of initial-boundary
value problems of the Camassa-Holm equations. Hakkaev in [18] obtained the local well-posedness
for a generalized Camassa-Holm equations. Misiolek in [31] discussed classical solutions of a
periodic Camassa-Holm equations. Perrollaz in [36] dealt with an initial boundary value problem
for the Camassa-Holm equations on an interval. Tan and Yin in [37] established the global periodic
conservative solutions for a periodic modified two-component Camassa-Holm equations. Wu and
Yin in [39] showed global existence and blow-up phenomena for the weakly dissipative Camassa-
Holm equations. Yan et al. in [40] took into account the Cauchy problem for a generalized Camassa-
Holm equations in Besov space.

In [9, 22], the authors studied the Navier-Stokes equations with hyper-dissipation (—A)%:
u,+u-Vu+Vp=—(-A)*u (H-NS)

Due to the close relationship between the Camassa-Holm equations and the Navier-Stokes
equations, the Camassa-Holm equations with nonlocal viscosity naturally occur in hydrodynamics
[3, 11, 12, 16, 23, 33, 34, 4, 6, 35, 2, 14, 32, 38]. Fractional diffusion arises naturally in many
hydrodynamic problems, capturing nonlocal feature of certain dynamics, see for example Caffarelli-
Silvestre [3], Cérdoba-Cérdoba-Fontelos [11, 12], Fujiwara-Georgiev-Ozawa [16], Kenig-Ponce-
Vega [23], Musina-Nazarov [33], Nezza-Palarucci-Valdinoci [34], and the references therein. More-
over, fractional Laplacian has been utilized to model energy dissipation of acoustic propagation in



human tissue [4], turbulence diffusion [6], contaminant transport in ground water [35], non-local
heat conduction [2, 14, 32], and electromagnetic fields on fractals [38].

While, in contrast to those works for the classical Camassa-Holm equations mentioned as above
in recent decades, little has been known concerning the Camassa-Holm equations with fractional
viscosity despite that non-standard diffusions are naturally risen for these problems. With nonlocal
diffusion, the problem is more challenging for achieving the existence, uniqueness and regularity
of solutions, not only due to the integral expression and nonlocal property, but also due to the less
regularity in the a priori estimates when s is strictly less than 1. One may be curious that up to
which range of s € [0, 1], the existence, regularity and uniqueness can be shown as the classical
case. Indeed, when 7 < s < 1, in [17] the authors showed the existence and uniqueness of global-
in-time weak solutions satisfying energy inequalities (so called finite energy weak solutions). A
nature question is that whether this weak solution is regular, when the initial datum is regular and
smooth. This is the main concern in this paper.

We remark that the local existence of strong solutions issued from regular initial data can be
obtained by applying the same method as in [17]. Due to the uniqueness of the finite energy weak
solutions, this local-in-time strong solution coincides with the global-in-time finite energy weak
solution as long as the previous one exists. Hence, to show the regularity of the finite energy
weak solution issued from a smooth datum, it is sufficient to show higher order a priori regularity
for smooth solutions with any given time interval. Then the local-in-time strong solution can be
extended globally, which is certainly the weak one.

When s < 1, the study of the (1.1) is hindered by a lack of explicit information on the kernel
of the nonlocal operator, and the main difficulty lies in proving uniform a prior estimates for
the nonlocal viscosity. However, we can still obtain various estimates by using different tools
in the study of the classical Cammasa-Holm equations: such as the Cérdoba-Cérdoba inequality
[11, 12], a nonlinear lower bound in the spirit of [10], and commutator estimates [21]. Moreover,
we will establish several fractional-type interpolation inequalities to obtain our desired uniform
estimates: such as the nonlocal version of Ladyzhenskaya’s inequalities [25, 26, 27, 28], the
fractional Gagliardo-Nirenberg-Sobolev inequality and the fractional Leibniz rule. In particular,
under the critical case s = n/4, the nonlocal version of Ladyzhenskaya’s inequalities is skillfully
used, and the smallness of initial data in several Sobolev spaces is required to gain the desired
results.

1.1 Some notations

Before going further, let us describe the notation we shall use in this paper. We use C°(R") to denote
the set of C* functions with compact support in R”, and .#(R") to denote the standard Schwartz
class. Denote the space of smooth and divergence free functions as

T:={pe CYRMIV-¢ =0}

We denote by L(R") the completion of X in the standard Lebesgue space L”(R"). The completion
of X in classical Sobolev spaces H™(R") is denoted by HZ(R"), and (H}(R"))" denotes the
corresponding dual space. We use (-,-) to denote the L>(R"). For a < b, we mean that there is
a universal constant C, which may differ from line to line, such that a < Cb.

For the nonlocal operator (—A)*, known as the fractional Laplacian of order s in the whole space,
there are several ways to define it [3]. Let .#(R") be the Schwartz class. First of all, it is defined for
any g € .(R") through the Fourier transform: & = (—A)*g means

h(E) = 167 3&). (1.3)



Let A® := (—A)% be the standard Riesz potential of order s € R.
It should be pointed out that if ¢ and ¢ belong to the Schwartz class .%(R"), definition (1.3) of
the fractional Laplacian together with Plancherel’s theorem yields

(=AY ypdx = f e[S ypdé = f (=A)2y(=A)?2 pdx. (1.4)
R R" R

We remark that, by density argument, the Definition in (1.3) and the equality (1.4) can be generalized
to functions in Sobolev spaces.
Secondly, for 0 < s < 1 and a function f € .#(R"), using the rpresentation by means of a
hypersingular kernel [29], it can be defined as
(=A) f(x) := Cps P.V. ﬁ& S)-fO) dy = Ch.s 111’(1)1 f(X+y)—f(X)dy,
&e—0*

" P ble DI

where C, ; is a normalization constant (see [29]) precisely given by

_ -1 2s
C,. = (f 1 Cos(gl)dg) _ 2 F((n+2s)/2). (1.5)

|Z |2 il = s)

In the rest of this section, we collect some facts on the fractional Sobolev spaces W*P(R"), see
[34]. We first give the definition:

Definition 1.1. Let s € (0, 1). For any p € [1, o), we define W*P(R") as follows

|u(x) — u(y)l

Lts

WSP(RY) := {u e LP(R") :
lx — |7

e LP(R" x R”)} ,

i.e., an intermediary Banach space between LP(R") and WP (R"), endowed with the natural norm

1
|u(x) — u(y)l? )"
ul|lwsprny 1= u”dx+f — = _dxdy| , 1.6
sy = [[ e [ O gy (1.6
where the term 1
lu(x) — u(y)|? r
[M]Wx,p(Rn) = (fn . dedy (17)

is the so-called Gagliardo (semi) norm of u. However, there is another case for s € (1,00) and s
is not an integer. In this case, we write s = m + m’, where m is an integer and m’ € (0,1). The
space WP (R™) consists of those equivalence classes of functions u € W™P(R") whose distributional
derivatives D%u, with |a| = m, belong to wm'-p (R™), namely

WSP(R™) := {u e W™P(R"): D% e W™ P(R") for any a s.t. |a| = m},
and this is a Banach space with respect to the norm

lelhwseny 2= | Wl gy + > (1D iy

|a|=m

Some more facts are collected in the following remark:



Remark 1.2. If' s = m is an integer, the space W*P(R") coincides with the Sobolev space W™ P(R").

Since for any s > 0, the space C°(R") of smooth functions with compact support is dense in
WSP(R™), we have Wg’p R™ = WSP(R"M), where Wé’p (R") denotes the closure of C°(R") in the space
WSP(R™M).

There is an alternative definition of the space H*(R") via the Fourier transform. For any real
number s € R, we may define

H'R") = {u e LA(R"): f (1+ €)” 1Fu(@)Pde < oo}. (1.8)
Rn

On the other hand, let s € (0, 1), the fractional Sobolev space H*(R") defined in (1.6) coincides
with H*(R") defined in (1.8): for any u € H*(R"),

- s _ s 12
[y my = [l ys2qeny = 2C(n, 5)™! N €7 IFu@P d€ = 2C(n, )7 |(=8)3u[ 2 g -
where C(n, s) is defined by (1.5).

1.2 The main results

In this subsection, we will state our main results: the regularity and stability of the finite energy
weak solutions to the Cauchy problem (1.1)-(1.2). Firstly, we give the definition of finite energy
weak solutions of (1.1) following Leray [30].

Definition 1.3 (Finite energy weak solutions). Letn = 2,3 and T > 0. We say (v,u) is a finite
energy weak solution of (1.1)-(1.2) over time interval [0, T] provided:

o There holds the estimates

veC([0. T LERM) N L2 ([0, T]: Hy(RM),  we C([0,T]; HAR™) N L? ([0, T]; HA*(R™)).

o The equations(1.1) is satisfied in the weak sense, i.e. for all € C§ ([0, TIXR") withV-¢ = 0,
there holds

!
f v(t, x) - ¢(t, x)dx :f vo(x) - (0, x)dx—f f (u-Vv+v-val). ¢, x)dxdt
R R" 0 Jre
- vf f v(t', x) - (=AN)*¢(t’, x)dxdr’ + f f v(t', x) - ¢, x)dxdr’,
O n O n

f u(t, x) - ¢(t, x)dx — o f u(t, x) - Ad(t, x)dx = f v(1, x) - ¢(t, X)dx.
n R? R”

and

e [n addition, there holds the following energy inequality

t t
2 2
G, D12 gy + @ VUG, DI g + 2V fo 1A UG, )] 2 g d + 2v07 fo VAU, )2

2
L2RMy

2

2
Lz(R") t+a ”Vllo”

< ol
(1.9)



In [17], by using a fixed point argument, it was shown that there exists a finite energy weak
solution to the Cauchy problem (1.1)-(1.2) in the sense of Definition 1.3. We recall this result by
adding some uniform estimate related to the time derivative:

Theorem 1.4. Letn = 2,3 and T > 0. Assume that 7 < s < 1 and vy € L%,(R”). If s = 3, we

suppose in addition that ||Vl 2wy < g*(a, v, n) which is sufficiently small. Then there exists a finite
energy weak solution on [0, T] to the Cauchy problem (1.1)-(1.2) in the sense of Definition 1.3. In
particular, there hold:

¥l 0. 77.2Rmy) + ||ASV“L2([O,T]’L5(R”)) < C(n, s,a, v, T, “VOHLZ(R")), (1.10)

and
10Vl 210,71 s ey < € (15, @9, T V02 ) - (1.11)

Now we give our main result which is the regularity of the weak solutions:

Theorem 1.5. Let n = 2,3 and T > 0. Assume that § < s < 1 and vy € Hé‘.’I(R”), M > 0. If
s = %, we suppose in addition that ||Vo|lgmgn < €7 (a,v,n) which is sufficiently small. Then the
finite energy weak solution to the Cauchy problem (1.1)-(1.2) obtained in Theorem 1.4 satisfies the
following higher order estimates

T
1059 V[ g, + v fo 10597 AV 2 gyt < C (. 5,007, T Il (1.12)

for all m + 2ks < M with m and k are both non-negative integers.
Thanks to Theorem 1.4 and Theorem 1.5, we have further the following uniform estimates:

Corollary 1.6. Letn = 2,3 and § < s < 1. Let (v,u) be the finite energy weak solution to the
Cauchy problem (1.1)-(1.2) constructed in Theorem 1.4 and Theorem 1.5. Then for all m +2ks < M
with m and k are both non-negative integers, there holds

‘|‘9[;Vmu“i2(Rn) +2a° ”a]tchH“”iZ(Rn) +a' ”afvmﬂ““Z(Rn) = ||‘9];va||iZ(R")’
’lal;vm“ i"(R") + ”afVmAsu“in(Rn) + H(’)fVm“u i"(R”) S ”afVmV”iZ(Rn) ’ (1.13)

t
kom. |2 kom A 5|2
Hatv u“Ln(Rn) +v£ ||6tV ASu L@ ds < C(n, s, V,m, k,HVO”HM(Rn)).
From Theorem 1.5 and Corollary 1.6, we see that the weak solutions issued from smooth initial
data are actually strong ones. This indirectly shows the global existence of strong solutions to
(1.1)-(1.2).

It has been shown in [17] the uniqueness of the finite energy weak solutions to (1.1)-(1.2). By
the similar argument as the proof for the regularity of the weak solutions, we can prove the stability
result by using energy method. The uniqueness follows as a corollary.

Theorem 1.7. Letn = 2,3 and 5 < s < 1. Then the finite energy weak solution to the Cauchy
problem (1.1)-(1.2) obtained in Theorem 1.4 is unique. Moreover, the finite energy weak solutions
are stable in the sense that for any initial data vy, wy € L(ZT(R") which satisfies the smallness
assumption in Theorem 1.4 when s = 7, the corresponding finite energy weak solutions (v,u) and

(w, q) satisfy
V() = WOl 2y + 1) = A2y < €IV = Woll2ny, Y120, (1.14)

where C = C(s,n, ||(vo, Wo)llz2zn)) depends only on the initial data.
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At the end of this section, we give a remark concerning the smallness assumption.

Remark 1.8. In our argument, we will repeatedly use Lemma 2.4 about fractional Gagliardo-

Nirenberg-Sobolev inequalities. When s > 7, we can always gain a smallness constant by

interpolation (see (2.5) in Lemma 2.4), and this is quite essential to us to close the energy estimates.
While for the critical case s = %, the estimate constant is merely bounded, see (2.6). In order to

close the estimates, an extra smallness assumption is added.

The paper is organized as follows. In Section 2 we collect some preliminaries. In Section 3 we
present the proof of lower-order regularity of inite energy weak solution (Theorem 1.4). We prove
the higher-order regularity of the finite energy weak solution (Theorem 1.5 and Corollary 1.6) in
Section 4. The proof of Theorem 1.7 is given in Section 5.

2 Preliminaries

In this section, we collect some preliminaries. Direct calculation leads to:
Lemma 2.1. Let u and v be two smooth divergence free functions with compact support. Then
u-Vv+v-Vul = —ux (Vxv)+V(v-u),
(u-Vv,u) + <v . VuT,u> =0,
ax(Vxv),u) =0.
Basic L? energy estimate yields:

Lemma 2.2. Let (u,v) be a smooth solution of (1.1)-(1.2) with compact support. Then there holds
1d 2 s s 2 s son)
7 (¢w,u) + o (Vu, V) + v ((A'w, A'u) + @* (VA'u, VA*u)) = 0,

and the energy inequality (1.9) is satisfied (the energy equality is actually satisfied).
We then claim the following estimates.

Lemma 2.3. Letn =2,3and § < s < 1. Letv € H3(R") and u € H?,”(R”) satisfy the Helmholtz
equations

u-a’Au=v. (2.1)
This gives
A'u— ?AA*u = A'y. (2.2)
In addition, there holds
12 gy + 20 1V ) + @ AU 0 = VI g
IASUIZ gy + 207 VAU g + @ AN WIS, 0 = 1AV, 0 03

lallzrgey < ClIVli2@ny s IVUll2@ny < ClIVIZ2Rny »

Vull 3 gy < CIA V2. AU 2 g < CUAY 2o,

®n S



Proof. Note that
S

> , forZsS<1withn:2,3.

N
n

S
N —

By the Gagliardo-Nirenberg-Sobolev inequality, direct calculations yield the estimates in (2.3). O

The following Lemma concerns the nonlocal version of the known inequalities established in
[25, 26, 27, 28] by Ladyzhenskaya, Shkoller and Seregin:

Lemma 2.4 (Fractional Gagliardo-Nirenberg-Sobolev inequalities). Letn = 2,3, u € H(l)(R”) and
let € > 0. Firstly, the following inequalities hold:

< élVull?, o, + & lull?

||u”L4(R") —_

LZ(R” Lz(R") fOI"I’l = 2’
24)

i, g, < VU, o, + C@)llull? Jorn =3.

4 (Rn ) - 12 (Rn 12 (Rn

The above inequalities (2.4) can be generalized to the following nonlocal version (fractional power
Sobolev-type):

o Forn/4 < s < 1andu e H*(R"), the following inequalities hold:

S —
2, . < s8R, g, + C@MIE,,, — forn=2,

(2.5)
2, .., < C(s)slIA vl

+ C(&)|lul? forn = 3.

LA R™) L2(R™) L2(R™)

Here, &, C(s) and C(g) are constants, C(s) depends only on spatial dimensions and s, and
C(&) = O(e™ 7).

e For the critical case s = n/4 and u € Hi(R"), the following inequality holds:
n o2
02 < € (1A + 10 ) (2.6)
Here, C is a constant depending only on spatial dimensions n.

Proof. For 7 < s < 1, in view of Gagliardo-Nirenberg-Sobolev inequality, interpolation estimates
give rise to

||u||L4(R”) < C(S)”u”LZ(Rn ”Aéu“LZ(Rn)’ (2'7)
where }‘ = 179 (% — )0, i.e., 6 = 1-. Together with Young’s inequality, one has
”u||L4(R”) - C(g)”uHLQ(Rn + C(S)‘g”Asu”Lz(Rn)e

where C(g) = O(s~5), C(s) = 1 forn = 2, and C(s) depends only on spatial dimensions and s
for n = 3. This leads to (2.5).
For the critical case s = 7, by (2.7),

||u”L4(R") == C(n)||A4u||L2(Rn) == C(l’l) (||A4u”L2(Rn + ||u||L2(R”)) ’

which is just the inequality (2.6). ]

We now collect some known estimates for the vector-valued fractional Leibniz rule.

Lemma 2.5. The following two conclusions hold:



(i) (see [16]) Let 51,52 € [0,1], s = 51 + 52, and p, pi, p2 € (1,00) such that 5 = -~ +

Then the following bilinear estimate holds for all f,g € /(R"), n > 1:

||As(fg) - fAsg - gAsf”U,(R,,) <C “ASIfHL”l(R”)

1 . 1
)4 P2’

Aszg’

LP2(R")

(ii) (see [19]) Let s > max (0, % - n), or s be a positive even integer, % <p<oo,1<p,pr<
oo, and L1, L, then
P

1A F) gy = CHUA o1 oy Nl ey + 1 llos oy A"l ey

Remark 2.6. For 0 < s < 1 and n = 1, Kenig, Ponce, and Vega in [23] obtained the similar
estimates for fractional derivatives as those in Lemma 2.5:

”As(fg) - fAg - gAsf”Ll’(R) <C ”AS]f”Ll’l(]R) ”Aszg“Ll’z(R) ’

”As(fg) - fAg - gASf”LP(R) < Cligllz ”Asf”LP(R) ’
where p, p1, p2 € (1, ) satisfying % = le + pLz and 0 < s = 51 + 520 < 1 with s1, 55 > 0.

Direct calculation yields:

Lemma 2.7. Letn/4 < s < 1withn=23andletr =n/2+1—-2s. Then

n—-2 2s-1 1 2s-1 1 r
< < -, =

s>1-35, ,
2n n n n 2 n

g—1<r<1<g<2forn:3,

g—1<r<1=g<2forn=2,
and thus there holds the continuous Sobolev embedding H'(R") —s L"Cs=D(R™),

Assume that Q c R” is a smooth bounded domain, or Q = R” withn = 2,3. Let A := P(—A) be
the Stokes operator with # being the Leray projection operator P : L?(Q) — {v € L*(Q) : divy =
0,v-n = 0ondQ}. In [17], they studied the viscous Camassa-Holm equations with fractional
diffusion

(1-a’Mu; +u- V(1 —?Au —*Vu’ - Au+ Vp = —v(1 — @*A)A’u, 29
diva = 0. '
We claim the following conclusion:
Lemma 2.8. Equation (2.8) is equivalent to the equations below:

V,+u-VV+V-VuT+V[7= —vA'v,
v=(1+d’Au,
divu = 0.

As a result, what was shown in [17], in particular the existence and uniqueness of finite energy
weak solutions, can apply to our case.



Proof. Let u be sufficiently regular. Applying # to (2.8) yields that
d,(1 + &?Au + Plu - V(1 — &*A)u — *Vu” - Au] = —v(1 + @?A)A’u.
Let —Au = Au + Vg for some ¢ and let v = (1 + &>A)u. Then (2.9) leads to
v +Plu-Vv+a’u-VVqg—a*Vu' - Au] = —vA'Y,

where we used

Plu- V(1 — *Au - *Vu” - Au] = Plu- V(1 + &’A)u + o*u - VVg — o?’Vu” - Au]

= Plu- Vv] + &*Plu - VVg — Vu’ - Aul.
On the other hand, the known fact P(V) = 0 as well as the identity
V(u-Vg) = V(w’/ - d;q) = Vu’ - 0,9 + W/ - Vdq,

implies .
Plu - VVq] = PV’ - §,q] = P[-(Vu') - Vql.

In view of Vu’ -u = %V(IuIZ), direct verification leads to

?*Plu-VVg—Vu' - Au] = o?P[-Vu” - Vg - Vu - Au]

= *P[Vu! - Au] + P[Vu’ -u] = P[Vu’ - v].

This together with (2.10) yields that for some p:

v+u-Vv+Vul -v+Vp=—vASy.

3 Time derivative estimates for finite energy weak solutions

(2.9)

(2.10)

Follows from Theorem 3.1 in [17] and Lemma 2.8, there exists a unique finite energy weak solution
(v,u) in the sense of Definition 1.3 and the estimate (1.10) is satisfied. In this section, we shall

prove the estimate (1.11) for the time derivative of finite energy weak solutions.

Let ¢ € X be a smooth and divergence free function. Since (v, u) is a weak solution in the sense

of Definition 1.3, we have
@V, ¢) = —(u-Vv,6) = (v- Vu',¢) = v((—A)'V, $) =: A| + A; + As.

We then estimate A;, Ay, A3 one by one through considering two cases.
Case 1: n/4 < s < 1. In this case, a straightforward computation shows that

n_ __ 21 1 _n2 _n2s 3 _
s n2m292 2 2 <2 <13 for n =3,

<% for n =2,

0
Bi="24]l-5s=2+1-25, 5-1<B<1 for n=23.

We first estimate A;. Thanks to Lemma 2.3, Lemma 2.5 and Lemma 2.7, there holds

A1l = Ku - Vv, )| < AV 2z

A7 )| gy

10
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(3.2)
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and the term ||A1‘S(u¢)||L2(R,,) in (3.3) can be estimated as

A )| 2y S [IAT ) —uA ™56 — AT 0]| )+ [[0AT ]+ lOAT ] g -

(3.4)
Moreover, by (3.2) and observing
1 s n-2s
5:;+ 7y O<l-s<s<l,
the three terms on the right hand side of (3.4) can be estimated as follows:
1A ug) —un'™¢ = oA u| o gy < AT 02 g N, 2
“AZH 2Su||L2(R") ”AS¢”L2(R”) (3.5)
S il 19l A% gy
”“AI_S¢||L2(R") s ”u”Lﬁ(Rn AI_S‘]&”L%(R”)
< “uH _2(2+| 2)( H S¢’|L2(Rn) (36)
< A% 2s“”LZ(}Rﬂ) ||AS¢||L2(R")
5= 1-24
<l 19l A%
and - Al
||¢A Su”Lz(R" ”¢”L =25 (R") || Su”L%(R")
”A2+1 zsu”Lz(R")||AS¢||L2(R”) (3.7
1-2
S 00 V00 A -

Here,0 <25 -5 <2-3,5-1<75+1-2s<1forj <s<1. By Young’s inequality, combining
(3.3) with (3.4), (3.5), (3.6) and (3.7) gives

AL S Tl IV A A6
< (||u“L2(R") + ||V“||L2(R")) ”ASV”LZ(R") |’AS¢“L2(R") (5-8)

S Vllz2gn) ||ASV||L2(R”) ”AS¢“L2(R”) :

We next estimate A>. Thanks to (2.3) and (3.2), observing that 0 < 2 — 2% <2- -1<

%—1<1f0r§<s<1,wehave

non
202

Azl = (v - VuT, 8| < IVl 2z, V0250

< IVullpageny [1VI]

Ln 2 5 (R") %_S(b“LZ(Rn)
$ Iz 1A gy 181 A0l

< “V”LZ(R”) ||ASV“L2(Rn) (”¢||L2(R”) + ||AS¢||L2(R">) .

3.9

Similarly, for Az, we have

A3l = v =20V, )] < A 2 e

N (3.10)

11



Collecting the estimates in(3.8), (3.9) and (3.10) yields that for % <s<l,

ASV”LZ(Rn) (||¢||L2(R") + ||AS¢HL2(]R”)) . (31 1)

As ¢ € X can be chosen arbitrarily, using density argument, by Holder’s inequality, (3.11), (1.9)

KOV, P < IIVIlz2n)

and (1.10), we conclude that for n/4 < s < 1, there holds
”atvl|L2([0,T],[H{»;(Rn)]’) <C (I’L, s,a, v, T, ||VO”L2(R")) . (3.12)

Case 2: 5 = n/4. In this case, direct calculation yields

A1l = [ Vv, @) < [|ASY]| e

A gy - (3.13)

In particular, ||A1‘3l(u¢)“ L2(rny €0 be bounded as

®"

n

A5 @) oy < A E ) — un!~6 - oA,

. (3.14)
+ ||uA1‘Z¢

n

)+ [#A!~5u

|L2(R" ||L2(R”) :

We now estimate the first term on the right hand side of inequality (3.14). By using (I) of Lemma
2.5, one achieves for0 < s; < 1 -2,

A5 (ug) —uA'"5¢ - ¢A1—%u”Lz(Rﬂ) 3 ”Al—%—sluHLn_z(?Hl) ) ||Asl¢“Ln_2é”_“)(Rn)
< 1Vull ey [|A S]] o, (3.15)
S M2 A4 2

where 5] € (0, %), 1-%-s1€ (0, %) and

2n 2n 1 1 1

- —G| R —y | — ==
Ay S P €(l,0), —+

1=
u n—2(3 —s1) Pt p2 2

In the same manner, by virtue of (1.9), Agmon’s inequality and interpolation inequality, the
second and the third terms on the right hand side of inequality (3.14) can be bounded as follows:

||UA1_%¢||L2(R") + ||¢A1_%u||L2(R”)

A

< [z rmy

Al_%(p”LZ(Rn) + ”¢“L4(R") 1_%u||L4(R”)

1 1 2_4 n 4_1 " (316)
S 101 g 00 gy N o (1N @+ 1902 [|AZ ]2
s ||V||L2(R”)£ (||¢||L2(R") + ’|AZ¢||L2(Rn)) .
From (3.13), (3.14), (3.15) and (3.16), it follows that
Ar IVl Adv|| Il A g| : 3.17
1 S IVlE2®my v L2(RM) ¢ L2(R™) + ¢ 2RM) - ( . )

Using the smallness assumption on initial data, by similar arguments like those employed in A
above, implies
Ay = |<v v, ¢>| < IVl 2 IVl 2y
1 (3.18)
n 2 no2 2
NV (161 + 185002 )

< IVllz2rny

12



and

A; = v|((—A)%v, ¢>| 3 AR P T (3.19)
By (3.17), (3.18) and (3.19), we thus have
1
(0¥, O < ¥ ¥ (1081 + 13 aer) (3.20)

As we can choose arbitrarily for ¢ € Z, by (1.10), Holder’s inequality and the assumption of
Theorem 1.4, we deduce from (3.20) that for s = ﬁ that

1,vIl 1y = ClranTivolie). (3.21)

L2([O,T],[H0% (R")

O

4 The regularity of the finite energy weak solutions

This section is devoted to proving our main result Theorem 1.5 concerning the high-order regularity
of the finite energy weak solutions.

In [17] the authors showed the existence and uniqueness of global-in-time finite energy weak
solutions. The local existence of strong solutions issued from regular initial data can be obtained by
applying the same method as in [17]. Due to the uniqueness of the finite energy weak solutions, this
local-in-time strong solution coincides with the weak one as long as the previous one exists. Hence,
to show the regularity of the weak solution, it is sufficient to prove uniform higher order a priori
regularity for smooth solutions in any given time interval.

With this reason, we shall derive formally the higher-order regularity of the solutions construct-
ed in Theorem 1.4. This can be divided into two parts. We first prove the high-order regularity
with respect to spatial variables. We then verify the high-order regularity with respect to space-time
variables. We shall finish the proof of Theorem 1.5 after proving Theorems 4.1 and 4.2.

4.1 High-order regularity in space variables

In this subsection, we will prove the following result concerning the high-order regularity in space
variables.

Theorem 4.1. Letn = 2,3, % <s<land K € Z,. Assume the initial datum vy € H(If R™), and if

s = 4, we assume in addition that the initial datum is small: there exists £ = &*(a, v, n) sufficiently

small such that ||vo| HE®?) < &, Then for any integer M < K, the finite energy weak solutions to the
Cauchy problem (1.1)-(1.2) constructed in Theorem 1.4 satisfy

T
||va||i2(Rn) +y fo ||VMASv||iz(Rn)dt < C(n, a, v,||v0||Hé<(Rn)). 4.1)

Proof. We prove Theorem 4.1 by induction with three steps.

Step 1. We first give the inductive assumption. Let < s < 1. Assume that for each nonnegative
integer m < M, the following inductive bound holds:

T .
V"V sy + v Jy IV AV, ) di < C (1, 0, N0l g ) - 4.2)

13



Step 2. By Theorem 1.4, it is easy to verify that the inductive assumption (4.2) holds for the
base case m = 0.

Step 3. We will show that the inductive assumption (4.2) holds for m = M.

Multiplying the first equation in (1.1) by AMv and integrating in space yields, after some
integration by parts,

2 = ||va||L2(R,,) V[N oy < (e TV, AN (v VT A = gy T 43)

We shall estimate I, and Jj; in (4.3) through two cases:
Case (1) %<s<1,n=2,3;
Case (2) s=7,n=23.

We first consider Case (1). Recall that (u- Vv, v) = 0. Thanks to Holder’s inequality, Young’s
inequality and the fractional Gagliardo-Nirenberg-Sobolev inequality, we deduce that

S

|<u Vv, AMy >| |(u vViy, vMv) |+ > (v vy, yMy)

m=1

A

||VM+]_mvHL2(Rn) “Vmu”L%(R") ||VMV||L%(R71)

M
M
N Z ”VMJrl mV”LZ(R " “A st“”LZ(R 0) ”ASVMV“U(R")
=1
M
S Zl (A N VS et A TR v [ S A (44)
P
M
< 2 9y (189" 0y + 1A ) AV 5
m=1
M
S Z IV gy V9 oy A 2
m=1
M
v Z ”VMH_mV”iZ(Rn) ”ASVm_]VHiZ(Rn) + :1_/ ”ASVMVHEZ(R'Z)'
m=1
In the same manner, we have
M
In = | (v- v’ AMy | Z | vMy . vy, VM—mv)|
Y 4.5
< |<VMV-Vu, Vi) |+ Z’ VMv-Vm+1u,VM—mv)|.
=1
By Lemma 2.4, for the first term in (4.5), we have
7y T, VM9)| < (19 [ o 1902
4.6)

S (C(‘S) ”VMV“Z(RH) te ”ASVMV”iZ(Rn)) IVullz2gn) -

14



And for the second term in (4.5), we have

|<VMV LV, VM_mV>’ < “VM_mV“LZ(R") [Vt VMV“L2(R")

19 19l [,

4.7

9]

N
Ms M= 3

”Asvm_IV”LZ(Rn) “ASVMV“LZ

R ®R")

3
l

sV Z 17 IV Mz + 5 1A Ve

m=1
By (1.9), under the assumptions of Theorem 4.1, by (4.3), (4.4), (4.5), (4.6) and (4.7), choosing
v

2 ”V“O”LZ(Rn)

we deduce

d M _ .
ar ”VMVHEZ(R") S Z “VMH mV”iZ(Rn) ATV IV“iZ(Rn)

m=1
v 4.8)

+ Z “VM_mV“;(Rn) ”Asvm_lv”i%nm + Vol 2 @) ”VMV“;(R") :

m=1

Together with Theorem 1.4 and the induction assumption (4.2), using Gronwall’s inequality to (4.8)
leads to our desired estimate (4.1).

We then consider Case (2) s = 7. In this case, unlike the previous case when s > 7, we see
from (2.6) in Lemma 2.4 that we cannot obtain a small constant in the interpolation inequality, so
a smallness assumption on the initial data is needed. Recall again that (u - Vv, v) = 0. By Holder’s

inequality and the Gagliardo-Nirenberg-Sobolev inequality, and Lemma 2.4, we have

M
In = |<u AL AMV>| S Z ||VM+17mV“L2(R") va““M(Rn) ||VMV||L4(R")

m=1
M
S Z ||VM+1_mV||L2(R”) ”A%Vmu“Lz(R") ”A%VMV”LZ(R") (4.9)
m=1
M
||VM+1_mV||L2(R”) V“Lz(R") V||L2(R") ’
m=1
and
M
Im = KV : V“T’AMV>| S Z ||VM_mV||L2(R") ||Vm+1u||L4(R") ”VMV“U(R")
m=0
M n
S I AT g ATy @0
m=0

A

M
Z”VM” Vg IAF Ty A5 92y -
oo

15



Combining (4.9) with (4.10) yields

Iv+Jyu s HVMV||L2(R") ”A%V |L2(Rn) ”A%VMV“U(RH)
+IVVll2n) ”A%VM_IVHLZ(RH) ”A%VMV”B(R")
M-1
+ Z “VMH_mV”B(Rn) A%Vm_IVHB(Rn) A%VMV“LZ(R”)
m=2
) - u 5 “4.11)
S ”VMV“H(RH) + ”A4V 'LZ(R") A4VMV”L2(R")
+ ”VV”%%R'*) A%VMV”;(W) + ”A%VM_IVHZ(R")
M-1
_ 2 n _ 2 n 2
+ Z (”VMH mV”LZ(Rﬂ) + ”A4Vm IV”LZ(R") ||A4VMV||L2(]R"))'
m=2
By the induction assumption (4.2), we obtain for M < K,
M-1 )
n —1 2 2
n; L e Y (4.12)
Choosing £* sufficiently small such that
Vol ey < 8 < 5

and applying interpolation inequality and Gronwall’s inequality to (4.3) and (4.11) leads to our
desired result (4.1). This completes the proof of Theorem 4.1. O

4.2 High-order regularity in space-time variables
We further prove the following result:

Theorem 4.2. Letn =2,3, 2 < s < 1and K € Z,. Assume the initial datum vy € HOK(R”), and if

s = §, we additionally assume the initial datum is small: there exists an €™ = £ (a, v,n) > 0 such

that ||vo| HE@®r) < &g, Then for all nonnegative integers M, P such that M + 2Ps < K, the solutions
to the Cauchy problem (1.1)-(1.2) constructed in Theorem 1.4 admits the bound

T
2 2
[CARS fo 167V AV 2y @ < € (s vs IVl e (4.13)

Proof. Applying 7'VM to the first equation in (1.1), we have

oy VMy + oy VM (- V) + 0PV (v VaT ) + 0 VMV = —vaf V(- A)'v. (4.14)
Direct calculation gives

oy IVMy + f VMV p = 0! VM (u - Vv) - 6f VM (v V') = vaf VM (=AY,

which yields that

2
|7+ vMy + avavp”iz(Rn) < H—af’vM (- Vv) - 3PV (v- V') —vaf V¥ (-A)'y e

< [|0F T A2V o + (107 @ IV + ([0 (v - ) ’

12 (R") :

®”
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Note that

fR oty + APV p| dx = ||or T VM|, et vV plf2, - fR oy - VMV pd,

and
f oy VMy - of VMV pdx = —f ot IVMY v -9V pdx = 0,
n R"

from divv =0, we get

or v (4.15)

< VM ARV oy + 079 @ V), +

V||L2(R”) - oPvM (v Vu ) an

We shall estimate the last two terms on the right hand side of (4.15) through considering two cases:
Case(1) 7<s<1,n=2,3;
Case (2) =

We first consider Case (1). In this case, direct calculation gives 0 < 5 —2s + 1 < 1. Thanks to
Holder’s inequality and the Gagliardo-Nirenberg-Sobolev inequality, we can deduce

P M
TARTTIR D 33| FLaNrat

2(Rn1
p=0 m=0 LED
P M
2
Dyom 0 P-poM-m+1
S Z Z Ha v u”Lm(}R") |(9 v V| L%(R”)
p:O m=0
P M
n_ P —
< ZZHameAZ 2s+1 HLZ(R” —pyM-m p2s . (4.16)
p=0 m=0
P M
< 9Py 4s-n apV’”“ n—4s+2 P_”VM‘mA2S
~ H t u“LZ(R" ||L2(R" L2(R")
p:O m=0
P
Pom P PygM-mp 25y
S Z Ha v v||L2(R" v LZ(R”)
p=0m=0

Similarly, observing thatm+1+ 7 —s =m+s+1+5—2sand 0 < 1+ 7 —2s, by Young’s inequality
and the Gagliardo-Nirenberg- Sobolev inequality, dlrect calculation 1mpl1es

2

orvM (V . VuT)

L2(R™)

P
S Z;)||azpvm+]“”i’§(w) ;v Lk )

=

P M ' P . 2

Pyom+ ——v 14 my

S ;)n;) Jorvtad=ulfy, e, o |L%(Rm 4.17)
< ii [||apvm/\su||”%‘23 o7 v Asul 2 ] Jorrrm[
= Lol L2(®) 2@n | | L% )

P M
< 0V Aoy [0V A LZ(R”).

S|
1l
(=]
B
Il
(=]
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Furthermore, according to interpolation inequality, by (1.10), combining (4.15) with (4.16) and
(4.17), we obtain
P+IgM||? Po||?
”8t v V”LZ(Rn) S ”at V”HgMS(R")'

By an induction argument, this implies for all positive integers M, P such that M + 2Ps < K that

6797 gy < VI (4.18)

®™") HE®R") "

We next deal with Case (2) s = 7. In this case, using Young’s inequality, the Gagliardo-
Nirenberg-Sobolev inequality, and Agmon’s inequality, by Lemma 2.2 and Lemma 2.4, we obtain

o5 -

(03]
P M 2
Z | u-gfryMmly i
0o L~(R™)
P M p
—PoM-m+1
SDIPI AT N A 20
p=0 m=0
P M P
14 +1 V4 +2 PoM+1—
s I;)’;) ||at Vm u“Lz(R”) af Vm u”L2 v - LZ(R”) (419)
P M )
s Z Z ”apvmv”Lz(Rn P vty L2(R™)
p=0m=0
5 Pom PPMml_% P-poM-m+% ;
S ;%Hatv V”LZ(R” ( v L2(R™) ’ H t v v L2(Rn))
P M
_ _an |12
I R

The same argument as above leads to

2 P
<2,
L2(R™)

(V Vu)

“al’vmﬂu (9P pPygM- my
LZ(R")

2
P p

8Pvm+l
LA(R™)

N

ﬁMa ||M§ ﬁMa ﬁMa

u||L4(R"
(4.20)

N

a2
|8pV’"+1A ) 8f_pVM_mAZV

L2(R™)

2

P _mal
pgM-ma iy )

L2(R")

A

||0meA V”U(Rﬂ

Combining (4.15) with (4.19) and (4.20) gives

“afHVMV”LZ(RH) ||6P ” (’)‘“z(Rn)' 4.2D)
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Again by an induction discussion, for all positive integers M, P such that M + % < K, we get

(A Y

(4.22)

By (4.18) with (4.22), we can derive our desired estimates for both cases. Applying L? estimate
to (4.14) yields

”aPVM ||L2(R" +V”‘9PVMASV”L2(R"

(4.23)
< (v - wv), 7 9My)| + [(@r 9 (v- vuT ), o v )|,

By the similar argument as in the proof of Theorem 4.1, in particular for s = 7 we need the

smallness assumption [[Vollyx gy < & with £ sufficiently small, combining (4.18) with (4.22),
applying Grownwall’s inequality to (4.23) implies our desired estimate (4.13). We finish the proof
of Theorem 4.2. O

By Theorem 4.1 and Theorem 4.2, we complete the proof of Theorem 1.5. At the end of this
section, we present only the sketch proof of Corollary 1.6, where the details are similar as the proofs
of Theorems 4.1 and 4.2.

Proof of Corollary 1.6. Differentiating the second equation in (1.1) with respect to x and ¢ shows

V™ — ?0 V" Au = 9V,
Squaring this equations and integrating in space yields, after some integration by parts,

7l e =207 5 0 2l =

This is the identity (1.13);.
Thanks to the Gagliardo-Nirenberg-Sobolev inequality and interpolation inequality, it follows
from (1.13) that

w2 112
”akvm L*(R™") S tvaTzu L2(R")
Wy 22
s(||‘9I;Vm“||L2(Rn) 6fvm+lu“zz(%n)) S ”a/t{VmV”iZ(Rn)’
2 112

J0hv ol ey < o9 A L2(an) (4.24)

< (Jorvm sl lotvr2uls, ) s kv

~ L2 R™) LZ(R” ~ t LZ(R”) ’
||akaAsu||L”(R" S akvag*—s iz(R”)

S(||5ka“||Zz_@§§f Jorerul 5 ) < 69

This yields the estimate (1.13),.
Finally, combining the first inequality in (4.24) with the regularity estimates (1.12) yields the
estimate (1.13)5. O

19



5 Stability of the finite energy weak solutions

This section is devoted to proving Theorem 1.7. Again, as the case for proving the regularity of
the finite energy weak solutions, it is sufficient to prove (1.14) for smooth solutions with a uniform
estimate constant C depending only on ||(Vo, Wo)llz2(rn).-

Let (v,u) and (W, q) be two finite energy weak solutions as in Theorem 1.7. Then:

O(V=W) +v(-A)V-w)+Vr+u-Vv—q-Vw+v-Vu’ —w-Vq’ =0,

(u-q)-Au-q=v-w,

(5.1
V.v=V.u=V.w=V.q=0,
(v =w)(0, x) = vo(x) — wo(x).
Here, V1 denotes the difference of the pressures corresponding to v and w. Recall
u-c’Au=v, q-a’Aq=w. 5.2)
Then
IV = Wl 2 gy = 0= QT2 gy + 207 IV @ = DTy + @ 1A (@ = DI - (5.3)

We now estimate (5.3) term by term.

5.1 The estimate for |[u — g 2@

Multiplying the first equation in (5.1) by u—q and integrating in space yields, after some integration
by parts,

1d
5 7 (= al ) + PV = al ) + v (A = @l ) + @ IVA @ = @I )

:—f (u-VV—q-Vw+v-VuT—w-VqT)(u—q)dx

< U w-q)-V(u-o’Au)u-q)dx
R~?
(5.4)

+fan-V[(u—q)—a2A<u—q>]<u—q>dx

+f(u—azAu)-V(uT—qT)(u—q)dx
o[ Jw-0-caw-o] v @-adx

=hL+DL+1+14

Again we consider two cases for estimating (5.4): Case (I) 7 < s < 1; Case (Il) s =

We first deal with Case (I) 7 < s < 1. Thanks to Holder’s inequality, the Gagliardo-Nirenberg-
Sobolev inequality, Lemmas 2.3 and 2.4, and the third equation in (5.1), we deduce the following a
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priori estimates for /;:

I = (u—q)V(u—a/zAu)(u—q)dx

R)l
S IVull 2 10 = 14 g + A0l 2 100 = @) V (0 = @)l 2e)

2
< IVule (2 |A° @ = @y + C@ 10 = )
+ [|Aullz2gny lla = qllzsgny IV (@ = @l pawn

< C(@) (IVull 2 + Al 2 - (0 = Q2 + 1V @ = @172z

IVl 2z + 1Al 220 ) (IlAS W= @2, + 2 [[VA* (- q)lliz(Rn)) :

(5.5)

+s(

For I,, similarly as the estimate for /1, together with the divergence free condition, we obtain

L =

an-V[(u—q)—a2A<u—q)]<u—q>dx =

a/2f q-VA@u-q)(u-q)dx
R’l

:a,Z

VgV (u-qVu-qdysValpg IV @ - @l (5.6)
Rn

: 2
< IVqll2 e (s IVA* (@ = @ 25y + C@INIV (u— q)||§2(R,,)).
Similarly as the estimates for /; and I,, we have for /3 and /4 that
I < C@) (Illl 2y + AUl 2 - (Il = @l gy + 1V @ = @I g ) 5
2 2 .
+ & (Illl 2z + AU 2 (IIA‘ W= @ 2z, +[[VA (@ - q>||L2(R,,)),
and
2 2 2
Iy < C() (1l 2y + 19l 2y + 1Al 2 (10 = @72 gy + @ 1V (@ = @2 50))
2 5 (5.8)
+ & (llall2@n + 1Vall 2@ + 1AGl 2 (IIAS (W= Q)| oy + @7 [[VA* (u — q>||L2(R,,)).

Thanks to (1.9), (1.10) and (2.1), choosing & small sufficiently such that

<

2 2
& (10152 ey + 19012y + 1Az + lzzgen, + VU2, + AUl 2e) < 5.

combining (5.4) with (5.5)-(5.8) yields that

1d v 2 2
57 (= al ) + IV @ = @l ) + 5 (IIAS W= Q)2 + @ [[VA* (- q>||L2(R,,)) 5.9)

< o =l + @ NIV (@ = @I -
We then deal with Case (II) s = 7. Similar argument as the previous case gives
n 2 n 2
< (9l sy + Il e) (VA @ = @[ + 14T 0 = e )-
n 2
L < Vil [VA* @ = @250 »
n 2 n 2
< (Ilall 2y + AUl 2z (||A4 W = @[5z +[|VAT (u - q)||Lz(Rn)),

< (a2 + 180020 ) (14T @ = @f2ge0, + VAT @@= Do )

(5.10)
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Recall (1.10) and (2.2), and observe that
(IVall 2y + 1VGll 2y + 1AW 2y + 1AGl2e)) < IV 2 gy + W22y S IVON 2 g -

Then by the smallness assumption of Theorem 1.4 for s = 7: ||V0||iz &) < &* for & sufficiently
small, in particular, choosing £* < g, we infer from (5.4) and (5 10) that

1d
52 (=l ey + 02 1V (0 = i)
# 2 (1A% = @l + 0 [TAT @ = D) (5.11)
< (Il - qls g, + @2 IV (@ = @I 0) -

5.2 The estimate for ||A(u - q)IIiz(Rn)

Multiplying the first equation in (5.1) by A(u - q) and integrating in space yields, after some
integration by parts,

Q..|&

- (IV @ = @I, + 0 1A (1 = @Il )

v (A @ = @y + 0 4B @ = D))

N —

:f (u-VV—q-VW+V-VuT—w-VqT)A(u—q)dx

w-q)-V(u-o’Au)Au-q)dx
Rn

(5.12)
+ fﬂq-V[(u—q)—azA(u—q)]A(u—q)dx

+ f (u-c?Au)-V(u" - q")A(u-q)dx

+ f [(u—q)—azA(u—q)]-VqTA(u—q)dx

=2A1 +A2 +A3 + Ay.

We first consider the case with ﬁ <s<1.ForA,

Al < +a? = A +Ap.  (5.13)

(u-—q)-VuA(u—-q)dx
Rﬂ

f (u—q) - VAuA (u - q)dx
Rn

For the first term A on the right-hand side of (5.13), by virtue of Holder’s inequality, the Gagliardo-
Nirenberg-Sobolev inequality and interpolation inequality, we have

A < IVl 2 o= gl 2 0 1A (0 = ‘D”L 24
S IVull2qeo 10 = gl o IV (@ = @)l 5, [JA°A <u ) (5.14)
< IVull 2y (Il = llzzany + IV (0 = @l 2 ) [|ATA (@ - @)

v ) 2
S IV gy (10 = @2y + 1 0 = D) + 7 1A @ = @ e -

< IVl [|A2 7@ = @] 2z,

L2(Rm)
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For A1, by Lemma 2.3, Lemma 2.5 and Lemma 2.7, we have
A < A A g [JAT [0 - @) A - @] e,
< [|A%Au o (A [0 - @ A - @)]
—- QA TAW-Q - AT - QAW - )20,
Hla- AT A@ = 2 + AT @AW= )50 )

(5.15)

By Lemma 2.5, Lemma 2.7 and (3.2), note that % =2+ "5—33 and 0 < 1 — s < s < 1, we have the
following estimates for the right hand side of (5.15):

A [w-@A@-@]-@-) A AW-q - A" - @AW= a)|2p,

< HAl—s (u-q) L@ [|A (u - Q)”L%(Rn)
< HAg+1—2s (u— ‘l)“Lz(Rn) ||ASA (u—- Q)”Lz(w) e

K S+1-2s

< o= alls s, IV = @Il A% 0= @] 2 e,
< (Il = dllgeny + 1V (0 = @l 2 |ASA @ = @] 250
and

lw - D AT AW = @ oy < 0=l ) AT A @

Sho—dll, oz 88 0=l

S ”AH/ZH_ZS (u— q)||L2(R”) ”ASA (u— q)||L2(R")
< (I = dllgeny + IV @ = @) [A°A @ = @ 22y -

1A @ - @) A= @) g S [[A @ = @] 2 ) 14 (1= Dl 2 e

|A°A (u - q)||L2(R") :

(5.17)

< (Il = all 2y + IV 0 = @l 2
By (5.13)-(5.17), we deduce the estimate for A;:
2 o 2 V o 2
A1 5 (VI gy + [[A° A0l ) )10 = 2y + 119 0 = @l 2y ) + 5 1A 0 = @ 2 -
(5.18)

In the same manner, together with (1.9), the third equation in (5.1) and Lemma 2.4, A, A3 and A4
can be estimated as follows:

v 2
A2 5 (12, + IV, IV (0 = @I, + 5 [[A°A @ = @) 2

A3 % (100 g + (A0 g + A" B0 0 ) IV 0 = @, + 2 |4 0 = ]

(5.19)
As < (19l 2z, + 1Vl 2y YUY (@ = @2 5 + @ 1A (@ = DIl )
v 2 2
+ 16 INA @ = @] 2 gy + 210l |48 @ = |2 e,
By (1.9), choosing & sufficiently small such that & [[Vq||;2gn) < % leads to
As < (19172 g + 1Vl 2y )(IV (@ = @I g + @2 1A (@ = I 5 ) 520

Vi 2
*3 ”AAA (u-— q)”an) :
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Hence, by (1.9), (2.3), together with (5.12), (5.18)-(5.20), we finally deduce that

with

1d

5 7 (IV @ = @) + 0 1A 0 - @l

+2(AV @ = @, + 0 A8 @ = )2, (5.21)

< IV @ = @l + @ 1A = @l )

— 2 2 2
= VAl 2 gy + 1Val 2y + 1075 gy + VUG g + [[A AU -

For the case s = %, again by tedious but rather similar argument, together with the smallness
assumptions in Theorem 1.5 with the choice £** < ¥, we can deduce

<%,
1d 5 ) )
5 IV @ = @Iy + @ 1A @ = I z)

+ g( ||A%V (ll - q)||iZ(Rn) + “A%A (ll - q)”iz(R”)) (522)

< (1+ A2 IV (0 = @R ) + @2 1A @ = DI ):

Now we can conclude our result. By the basic energy estimates (1.10), by (5.9), (5.11), (5.21)
and (5.22), applying Gronwall’s inequality implies our desired stability result (1.14). This completes
the proof of Theorem 1.7. O
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