Towards Response Time Minimization Considering
Energy Consumption in Caching Assisted Vehicular
Edge Computing

Chaogang Tang, Member, IEEE, Chunsheng Zhu, Member, IEEE, Huaming Wu, Member, IEEE, Qing Li, Senior
Member, IEEE, and Joel J. P. C. Rodrigues, Fellow, IEEE

Abstract—The advent of vehicular edge computing (VEC) has
generated enormous attention in recent years. It pushes the
computational resources in close proximity to the data sources
and thus caters for the explosive growth of vehicular applications.
Owing to the high mobility of vehicles, these applications are
of latency-sensitive requirements in most cases. Accordingly,
such requirements still pose a great challenge to the computing
capabilities of VEC, when these applications are outsourced and
executed in VEC. Against this backdrop, we propose a new
mathematical model which respectively generalizes the computa-
tion and communication models, and applies application oriented
caching into VEC in this paper. Based on this model, a new
strategy is further proposed to optimize the average response time
of applications over an infinite time-slotted horizon for VEC. A
long-term energy consumption constraint is imposed to guarantee
the stability of VEC system, and the Lyapunov optimization
technology is adopted to tackle this constraint issue. Two greedy
heuristics are put forward to help find the approximate optimal
solution in the drift-plus-penalty based algorithm. Extensive
experiments have been conducted to evaluate the response time
and energy consumption in the caching assisted VEC. The
simulation results have shown that the proposed strategy can
dramatically optimize the average response time while satisfying
the long-term energy consumption constraint.

Index Terms—Vehicular edge computing, caching, service pro-
visioning, Lyapunov optimization, greedy heuristics.

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.
This work is partially supported by the National Key R&D Program of China
(2020YFB2104301), by Chinese National Research Fund (NSFC) Key Project
No. 61532013 and No.61872239, the project “Network Communication
Intelligent Core Chip Design and Core Software (PCL2021-A08)”, and the
Project “Beihang Beidou Technological Achievements Transformation and
Industrialization Funds (BARI2005)”. This work is also partially supported
by FCT/MCTES through national funds and when applicable co-funded
EU funds under the Project UIDB/50008/2020, and by Brazilian National
Council for Research and Development (CNPq) via Grant No. 313036/2020-
9. (Corresponding author: Chunsheng Zhu)

C. Tang is with the School of Computer Science and Technology, China
University of Mining and Technology, 221116, Xuzhou, China. C. Tang is
also with Mine Digitization Engineering Research Center of the Ministry
of Education, China University of Mining and Technology, Xuzhou 221116,
China (e-mail: cgtang@cumt.edu.cn).

C. Zhu is with the SUSTech Institute of Future Networks, Southern Univer-
sity of Science and Technology, 518055, Shenzhen, China. C. Zhu is also with
the PCL Research Center of Networks and Communications, Peng Cheng Lab-
oratory, 518055, Shenzhen, China (e-mail: chunsheng.tom.zhu@gmail.com).

H. Wu is with the Center for Applied Mathematics, Tianjin University,
300072, Tianjin, China (e-mail: whming@tju.edu.cn)

Q. Li is with the Hong Kong Polytechnic University, Hong Kong, China
(e-mail: ging-prof.li@polyu.edu.hk)

J. Rodrigues is with Federal University of Piaui, Teresina - Pi, Brazil. J. Ro-
drigues is also with Instituto de Telecomunicacdes, Portugal (joeljr@ieee.org).

Manuscript received ; revised .

I. INTRODUCTION

HE rapid development of information and communica-

tion technology gives rise to the prosperities of smart
vehicles [1], [2]. In addition to the ability to communicate
with each other, smart vehicles are also equipped with com-
puter facilities to perform vehicular applications. However, a
large number of vehicular applications have created enormous
pressure on such “computers with the wheels”. On the other
hand, the advent of vehicular edge computing (VEC) [3] has
generated enormous attention recently. In comparison with the
limited capabilities of the on-board computers, there are more
computational resources in VEC. Furthermore, VEC pushes
these resources in close proximity to the data sources. For
instance, the edge servers in VEC are usually deployed at the
logical edge of networks, e.g., road side unit (RSU). Vehi-
cles can outsource their applications to RSU via Vehicle-to-
Infrastructure (V2I) communication technologies. Hence, this
computing paradigm caters for the increasingly complicated
requirements of vehicular applications.

Additionally, VEC can alleviate traffic congestion in the net-
work core and lays profound foundation for the development
of vehicular applications in smart transportation. Despite the
benefits brought for vehicular applications, VEC is still con-
fronted with a big challenge. Most of the vehicular applications
are time-sensitive such as route navigating [4], owing to the
high mobility of vehicles. However, it is very challenging for
VEC to satisfy the strict latency requirements, due to the fact
that the computational resources in VEC are not inexhaustible
compared to cloud computing. The response latency reduction
comes at the expense of the computational resource constraint
in VEC.

Therefore, significant efforts are still needed to improve
the performance of VEC systems. For this purpose, we
propose to combine the application/service oriented caching
with VEC in this paper. By caching the most frequently
outsourced applications in VEC, the response time can be
tremendously reduced. In our view, caching assisted VEC
can greatly improve the efficiency of application outsourcing
and task performing, and thus fulfill the key requirements of
the computationally intensive and time-sensitive applications.
However, different from content delivery in caching enabled
information centric networks [5], [6], application outsourcing
in the caching assisted VEC is much more complicated in
terms of response time and energy consumption [7]-[10].

wu huaming

wu huaming

For example, virtual machine (VM) and lightweight contain-
er Docker [11] are the two most widely used frameworks in
the provision of application outsourcing at the edge. Both of
them will temporarily initialize virtual environments for the
offloaded applications. If the applications are cached at the
server, it will be better to maintain the running state of virtual
environments for a certain period of time, with the aim to avoid
additional time overheads on virtual initialization. This way,
however, will incur additional energy consumptions. Since the
energy consumption can serve as an important performance in-
dicator to evaluate the VEC systems, the tradeoff between the
energy consumption and application caching strategies should
be carefully considered. On another hand, the evaluation of
the caching assisted VEC system, such as the response time
optimization, usually needs a long-term process. Therefore,
it becomes significant and yet very challenging to design an
appropriate application/service caching strategy in VEC.

In this paper, we focus on the response time minimization
while considering the energy consumption for application
outsourcing in the caching assisted VEC. In particular, we
list the major contributions of this paper, as below.

o We propose a generic approach to improve the perfor-
mance of application outsourcing in the caching assisted
VEC. Specifically, we mathematically formulate the opti-
mization problem, with the aim to minimize the average
response time of the outsourced applications over a long
time-slotted horizon in this paper.

o Owing to the difficulty of solving the optimization prob-
lem while satisfying the energy consumption over an
infinite time-slotted horizon, we introduce the Lyapunov
optimization technology in this paper. By doing so, the
long-term energy constraint can be converted into per-slot
ones. Furthermore, a dynamic algorithm based on drift-
plus-penalty term is proposed to obtain the approximate
optimal solution over the accumulated time slots.

o Extensive experiments are carried out to evaluate the
response time and energy consumption of the proposed
caching strategy in VEC. Simulation results show that the
proposed application outsourcing strategy in the caching
assisted VEC can achieve better performance while sat-
isfying the time slot spanned energy constraint.

The rest of paper is organized as follows. Representative
works are studied and discussed in Section II. In Section III,
we apply application-oriented caching into VEC and formally
establish a mathematical model to minimize the response
time while considering the energy consumption in the caching
assisted VEC. In Section IV, we apply the Lyapunov opti-
mization technology to tackle the time slot spanned energy
constraint, and further put forward a drift-plus-penalty based
algorithm which leverages two greedy heuristics to find the
approximate optimal solution in the caching assisted VEC.
The simulation results are reported and discussed in Section V,
followed by a conclusion in Section VI.

II. RELATED WORKS

With the advent of smart transportation and its corre-
sponding sub-ecosystems such as smart vehicle and RSU, the

vehicle-loaded computers have gained rapid development. For
example, the computational resources can be extended to such
entities, enabling various applications and services running at
the vehicles and RSUs, while satisfying the strict response time
requirement. VEC has been considered as a promising and
efficient approach to relieve the burden of backbone networks
[12], because a vast amount of data generated by numerous
smart terminals can be processed locally or at the logical edge
of networks, with no need for task offloading to the remote
cloud center via the core networks.

Recently, the task offloading and service outsourcing in
VEC have indeed attracted increasing attention by virtue of
its advantages [13]-[15]. We plan to investigate the existing
literature on VEC from two aspects in what follows.

A. Caching Based VEC

Inspired by the content-centric mobile edge caching, re-
searchers turn their attention to the cache enabled task of-
floading in VEC [7], [8], with an purpose of further optimizing
energy consumption, response time, and so on. For instance, if
the tasks are cached in VEC, vehicles do not need to offload
the tasks any longer and hence the transmission delay and
execution time in the edge can be omitted [9], [10].

Authors in [7] suggest that a small number of services
can be cached in size-limited edge server so as to improve
QoS with regards to (w.r.t.)) response time. To investigate
the performance of the caching strategies, the optimization
problem is formulated to minimize the energy consumption
in the long run, i.e., across different time slots. An efficient
online algorithm is proposed to tackle these issues in mobile
edge computing systems, which tries to jointly optimize the
dynamic service caching and task offloading.

The computation-intensive and time-sensitive tasks are be-
coming dominating recently, which benefits from increasingly
popular applications such as augment reality and in-car gam-
ing. Authors in [8] consider the task caching as a promising
solution to satisfy the low latency requirement. In this regard,
they propose to cache the completed task application and
corresponding data in the edge-cloud, and try to jointly opti-
mize the task caching and offloading with multiple constraints.
An alternating iterative algorithm is proposed to tackle this
problem and simulation results prove that it indeed outstands
other approaches.

To realize efficient information dissemination, authors in
[16] construct a hierarchical end-edge framework which
combines data delivery, computation offloading and content
caching. The network overhead is selected as the performance
indicator to evaluate this framework and the related strategy. In
particular, they model the optimization problem as as a mixed
integer non-linear programming problem and solve it based
on the deep deterministic policy gradient. Simulation results
have revealed its advantages compared to other benchmark
approaches.

A mass of vehicles can serve as the intermediate nodes to
provide caching services for the requests in proximity. Howev-
er, several issues should be addressed, which include the QoS,
incentives and privacy. To this end, authors in [17] combine the

wu huaming

wu huaming

deep reinforcement learning with the permissioned blockchain
to achieve an intelligent and secure content caching in the VEC
system and network. Simulation results have indicated that the
approach is much better than two other benchmark methods.

B. Response Time and Energy Consumption about VEC

Vehicles can serve as the computing nodes to provide
the computational resources to cater for the time-sensitive
applications in the vicinity [8], [18]-[20]. For example, with
the increasing number of applications, various computational
entities are welcome with the aim to mitigate the high demands
of computing resources in smart city. In [18], authors first pro-
posed that vehicles with idle computing resources should act as
the infrastructures to perform multiple functionalities such that
vehicles can play more important roles in communication and
computation. Specifically, they have discussed several kinds of
communication and computational infrastructures where either
moving or parked vehicles can serve as the computing entities
for response latency optimization or improving the throughput
of the computing paradigm.

Similar works can also be found in [19] where authors
suggest that the ride-share taxis can serve as the infrastructure
to provide both communication and computation resources for
the time-sensitive applications. To be specific, terminal users
can leverage these taxis to support live video streaming, e.g.,
taxis can proactively receive video chunks. Furthermore, they
formulate the problem as a coverage optimization problem
and solve it by the strategy that is applied to the set cover
problem (SCP). Simulation results have proven its advantages
compared to other strategies.

On the other hand, the resource-hungry and time-sensitive
in-car applications have put huge pressure on the limited com-
puting capabilities of vehicles. Meanwhile, VEC has shown
great potentials to tackle such an issue, e.g., by outsourcing the
vehicular applications to the ubiquitous vehicular edge servers
such as RSU [14], [20], [21].

A multi-user multi-server VEC system is considered in [21]
where the load balance-aware resource allocation is studied
when tasks are offloaded. Authors have regarded this problem
as a mixed integer nonlinear programming problem for the
system utility optimization. In particular, they divide it into
two subproblems and design efficient algorithms for them.

In [22], authors strive to establish an offloading system in
VEC with the help of deep reinforcement learning technology.
Specifically, the finite Markov chains are applied to modelling
the communication and computation states. The optimization
problem is modeled mathematically in the hope to improve
the Quality of Experience (QoE) of users. Similar to [21], the
problem is also decoupled into two sub-optimization problems,
and solved by a low-complexity algorithm.

Owing to the resource-hungry feature of the tasks, a certain
portion of tasks pertaining to the strict latency requirement are
encouraged to offload to the external entities for execution.
VEC can play an important role in assisting such kinds of
task execution. To predict the resource consumption in the
edge nodes more accurately, authors in [23] try to achieve
an adaptive selection of machine learning algorithms, by

Edge Server
o~ =
p
J‘ ==

HH Center

e N ar—
= T e

V2I Link V2V Link Wired Communication

Fig. 1. Application Scenario

using a two-stage meta-learning based approach and extracting
meta-features on database. Multiple offloading decisions are
considered in [15] where tasks are offered three options for
the execution, i.e., local host, cloudlet and cloud center. To
achieve better performance of the cloudlet-cloud offloading, a
mathematical problem is proposed that aims to optimize the
energy consumption in the long run.

For the same task with different task-input parameters, the
computational result could be of great difference. Accordingly,
the cached computational result may not benefit the follow-
ing requestors even if the tasks are the same. Few of the
aforementioned works have considered this case. Compared
to these works, we respectively generalize the computation,
communication and caching model to accommodate this case,
and aim to minimize the response time with the consideration
of the energy consumption constraint in the caching assisted
VEC.

III. PROPOSED CACHING ASSISTED VEC MODEL

We consider a VEC scenario consisting of one edge server
S and multiple moving vehicles, as shown in Fig. 1. The edge
server can be deployed at a road side unit (RSU) which directly
connects to the cloud server on one hand, and communicates
with nearby vehicles using the vehicle-to-infrastructure (V2I)
communication technology on the other hand [24]. Due to the
limited computing capabilities, vehicles can outsource the in-
car applications to .S for execution, with the aim to alleviate
the high demand of computing resources. We assume that
the offloaded applications belong to a set of K applications,
indexed by A = {a1,as, ..., ax }, and each application a;, can
be described as ap = (di, sx) where dj, denotes the average
task-input size (e.g., the processing codes and user related
parameters) which need to be offloaded over the wireless
channels, and s; the average number of CPU cycles for
accomplishing ay.

We consider a caching assisted service outsourcing in VEC
in this paper, and expect that the response time can be
drastically reduced by caching those most frequently requested
services/applications at the edge server. For instance, when
an application aj, that a vehicle wants to offload is already
cached in S, the vehicle does not need to transmit dj any

wu huaming

wu huaming

longer, but to wait for the result to be returned from S.
It usually takes a long-term process to evaluate the overall
performance of the caching enabled VEC system. To this end,
time is divided into a set of discrete time slots, indexed by
{0,1,...,T — 1} and each time slot has a duration m. The
service caching strategy can be updated within each time slot.
Note that we use the three words “applications”, “services”
and “tasks” exchangeably hereafter.

Owing to the stochastic nature of vehicles, we assume that
the arrival of the application offloading requests for aj, in time
slot ¢ follows a Poisson process with arrival rate)\fC [25]. We
define 6} € {0, 1} as a binary variable to denote whether ay, is
cached at S in the ¢th time slot. If ay, is cached at S, &} = 1,
and 0, otherwise. Thus, the caching decision profile in time
slot ¢ can be expressed as &' = (6¢,65,..., 9%). And we have
Zkl,(zl 8rd, < C, Vt(e [0,T — 1]) where C denotes the cache
size of S.

Specifically, Fig. 2 shows the sketch of caching assisted ser-
vice outsourcing in VEC. For the vehicles with the offloading
requests in the vicinity, they can disseminate such requests
to VEC (RSU) together with the beacon information. RSU
gathers the offloading requests and decides which services
should be cached according to the evaluation metric (illustrated
later). The caching profile determined by RSU is then sent
back to the vehicles. Based on the caching decision, vehicles
will perform different offloading operations. For example, if
the requested service has been cached in VEC, the vehicle
only needs to offload the context information (e.g., the user
related parameters). In this case, the time taken to offload
the context information is negligible compared to the task
itself. On the other hand, if the requested service is not
cached in VEC, the vehicle will offload the task to RSU
for the execution. Our work in this paper focuses on the
caching decision making after the information on the requested
services is gathered. It shall be noted that at the beginning of
each time slot, the caching decision profile can be updated
based on the beacon information disseminated from vehicles.
For convenient discussion, some key notations to be used are
shown in Table 1.

A. Service Caching Model

Intuitively, the more the number of services which are
cached, the more the response time can be reduced. However,
due to the limited cache size of S, it is impractical to cache
all the services at the same time. On another hand, from the
viewpoint of response latency reduction, it is better for the
edge server to maintain the virtual environment for a while
after a service is cached. However, the corresponding energy
consumptions at S will substantially increase as the number
of cached services increases. Therefore, we should judiciously
determine which services to be cached at .S, for the purpose
of response latency reduction while considering the energy
consumption.

If application ay, is not cached at S in time slot ¢, vehicles
should offload it to S and wait for the execution result. In

this case, the average response time l,i:lf consists of the
t,no ’
l)

lt,no
k,trs

transmission response kezer

and execution response

TABLE I
NOTATIONS
Notation | Description
K The number of vehicular applications
S The edge server deployed at RSU
A The set of applications to be deployed
dy, The average size of input data
Sk The average number of CPU cycles needed for ay,
T The total number of time slots
s The duration for each time slot
C The cache size of S
,8,2 The number of channels assigned to ay
r,tc The average transmission rate over the channel
)xfc The arrival rate for ay in time slot ¢
! The average processing frequency of .S in time slot ¢
K The effective switched capacitance coefficient
€ The number of cycles for one task-input bit performing
Yk The static power consumption at S for ay,
EraT The energy consumption constraint for time slot ¢
Ly The response time constraint for time slot ¢
Q The global energy constraint across different slots

each of which can not be neglected. However, the time
taken to return the result from S can be omitted due to the
negligible result size [26]. We need to calculate ;7. and
lt,no

. .. t,no
k.ezer Tespectively. The average transmission delay dkm,S for

ay, over the wireless channel in slot ¢ can be expressed as:
dy,

e

BTk

where ! denotes the number of channels assigned to aj and
7} the average transmission rate over the channel. To simplify
the discussion, we assume that r}tC is a constant which can be
obtained based on the historical statistics. The arrival of tasks
at the transmission channel also follows a Poisson process
based on the aforementioned assumption. The arrival rate at
the transmission queue is A}, and the service rate is 7357t /dy.
Based on the M/M/1 queueing model, the average queuing
delay in the transmission channel can be calculated as [27]:

t,no —)\Zdi
kg nBprt (npErt — ALdy)

Since the average transmission response consists of the av-

t,no __
dk,trs -

(D

2)

erage queuing delay in the transmission channel and the
following average transmission delay, we have:
t,no __ gt,no t,no
lk,trs - dk,q + dk,trs (3)
The execution delay of ai at S can be calculated as
t,no __ jt,no Sk
dlﬁexe - dk,init + F (4)
€

where f! is the average processing frequency of S in time slot
t and dp"°,, is the time taken to initialize the virtual machine
(VM) for ay in time slot .

To obtain the queueing delay of ay, information about other
applications A\{ay} in time slot ¢ is also required. Based
on the queueing model, the arrival rate of all the services
A= 3"1 1 AL at the task queue of S also follows a Poisson
process. Thus, the average execution time (i.e., service time)
for a service is Zle ALsy, /mfENE. Thus, the service rate for

wu huaming

wu huaming

Offloading Requests

le
“

I
) | Gathering I
Beacon Information | l Caching| Pkofile Updates
Interaction I - I
| Caching |
———t-- Y ___ - : Decision Making I [T~~~ ————— I
v | e — —— — - | | I
: Task Offloading Result Receivi | I : i - | | Software as a |
| Request esult Recelvingif I | Comp utat1ona1' [| Service (SaaS) I
I I | I Resource Allocation | | | I |
| | I | : : Platform as a |
I g Y .
: Task Offloading I ! Task Execution : I | Service (PaaS) :
| | : i in VEC || I' | Infrastructure asa | |
| P | 1 t—————f————— L L Service(aas) | |
I)
Offloading || : VEC _! I Cloud Center |
v
End

Fig. 2. A sketch of caching assisted service outsourcing in VEC

each VM is 7w fiX!/ Zle Al si. The number of VMs in S is
assumed to be m. According to the M /M /s queueing theory,
the average queueing delay for ay is given as:

m ,m-+1
t,no __ mp mTp P()
A U O ®
where p = S\tszzl)\fcsk/(mwfé:\t) and Py =
(S mp) K ()™ [(ml(1 —). Thus, the

,no

average execution response time [can be expressed as:

k,exe
t,no __ jt,no t,no
lk,e.re - dk’,aq + dk,eme (6)

Furthermore, the average energy consumption for aj at S

can be given as
t

e’ = resy(fl)? 7
where x and e represent the effective switched capacitance
coefficient and the number of cycles required for one task-
input bit performing at .S, respectively.

If ay is cached at S in time slot ¢, it is unnecessary for
vehicles to offload the corresponding tasks to S. In this case,

the average response time of aj denoted by ltk’frl is directly
tk7,ceze‘

existing works, [= 0 holds, as long as the service is
cached. The assurflption behind it is that the computational
result is applicable to any offloading request irrespective of
context information and user related parameters. As a contrast,
we allow for the diversity of context information and user
parameters. As a result, [;'° needs to be recalculated even
if the corresponding service is cached. The execution delay
of ay in time slot ¢ is: d}%,, = si/f!. Since the running
state of virtual environment is maintained when the service

is cached, the initialization time can be omitted, which is

equal to the execution response time [In most of the

different from d};iie The average queueing delay for ay, i.e.,
d};’faq, is the same as dzzz Thus, when the corresponding

service is cached, the average execution response consisting
of the average queueing delay and average execution delay
can be expressed as

t,c
lk,eze

— dt,c

e + it (8)

k.,exe
The corresponding energy consumption can be calculated
as
ey =y + resp(fL)? ©)

where v, is the static power consumption caused by the
maintainance of the virtual environment for aj; regardless
of the workloads. Therefore, we have the expected energy
consumption F; in time slot ¢ as follows:
K
Ey(6") =Y (1= 60)ey™ + dhey”
k=1

(10)

B. Problem Formulation

Our goal in this paper is to minimize the average response
time over a long time-slotted horizon while keeping the energy
consumption at S below the given threshold. Accordingly, the
optimization problem is formulated as follows:

T-1 K

1 1 l _ stygt.no t 1t,c
(P1) ?fl,gi Tlggo T ; ’;[(1)y + O]
) (1)
1 T—1
1 h <
st TlgnooT;Et((s)_Q (12)
K
> Sidp<C Vte[1,T] (13)
=1

wu huaming

wu huaming

E(8") < B VYt e [1,T)] (14)

K
101 S0 + 0 < 2

k=1

vt e [1,T] (15)

where L7*** and E[*** denote the maximum response time
and energy consumption allowed for time slot £, respectively.
Specifically, conditions (14) and (15) place L;*** and E;*%*
on the per-slot response time and energy consumptions, re-
spectively. Condition (12) represents that the average energy
consumption over the accumulated time slots should not go
beyond the energy consumption constraint (). Constraint (13)
ensures that the amount of services to be cached should not
exceed the cache size of S.

Challenges. Exhaustive search over the potential solution
space is prohibitively costly, since it takes the exponential
time to determine the best caching profile for each time
slot. Furthermore, to optimally solve problem P1 requires
the future information (e.g., service distributions in all time
slots). Based on these information, the optimal solution can
be obtained in an off-line way. However, it is highly difficult
to predict such information beforehand in reality. Accordingly,
these challenges necessitate an online approach which can
efficiently make service caching decisions without the future
information.

IV. RESPONSE TIME MINIMIZATION STRATEGY
CONSIDERING ENERGY CONSUMPTION IN CACHING
ASSISTED VEC

A. Lyapunov-Based Online Caching Decision Algorithm

Directly solving problem P1 is challenged by not only the
prediction on the future information but also the entire energy
consumption constraint across the time slots. Accordingly, the
Lyapunov optimization framework is adopted in this paper
to tackle such challenges. We construct a dynamic energy
migration queue to assist the caching decision making while
satisfying the long-term energy constraint. Let ¢(0) = 0, and
this queue can be recursively defined as:

q(t +1) = max[q(t) — Q,0] + E,(8") (16)

where ¢(t) is the queue backlog in time slot ¢ that reflects
the deviation of current energy consumption from the energy
constraint (). Hence, the larger the value of ¢(t), the sharper
the deviation.

Lemma 1: Given the queue backlog ¢(t), the following
inequality holds

1T

;-.

E[E Q] < E[(T)]

Proof We can briefly prove it as follows. If ¢(¢) >

according to the definition of ¢(t), we have ¢(¢t + 1)

— Q + Ey(8"), thus,
1)
Q

max[g(t) — Q0] + Ey(8') = q(t)

Ei(6") — Q= q(t+1) —q(t). If q(t) < Q, we have ¢(t =
max[q(t) — Q,0] + E(8") = F(6") and Et(ét) -Q <
q(t +1) — q(t). Accordingly, E;(6") — Q < q(t +1) — q(t)

Vt € {0,...,T—1}. Take the expectation of this inequality and
further summarize it over Vt € {0,...,7 — 1}, we have:
T-1 T—1
D E[E(8) - QI < Y Elg(t+1) — q(t)]
t=0 t=0
=E[q(T)]
Thus,
1= 1
=Y E[E(8") — Q] < =E[q(T
= S EIE(8) - Q) < ZEla(T))

t

Il
=

The Lyapunov function can be defined as L(g(t)) = 2¢%(¢).
To ensure the strong stability of this migration queue, the
increment between two consecutive states should be as small
as possible. To this end, we define the Lyapunov drift as
N(q(t)) = E[L(q(t + 1)) — L(q(t))|q(t)]. We can determine
the upper bound of A(g(t)), based on the Lemma from [28],
given below.

Lemma 2: Assume A, B, C' and m are non-negative real
numbers and C' = max{B —m, 0} + A, then C? < A%+ B?+
m? — 2B(m — A).

Based on this Lemma, we have

Alg(t)) = EL(g(t + 1)) - L(a(®)]a(0)]
= JElmax{a(r) ~ Q.01+ B8] ~ ¢*(0)la(0)
< JEIQ + B2(8") + 20(1)(B:(8") — Q)la(t)]
= 10255 gu(t) + gty 518 ato)
= D~ Qu(t) + Efa(t) (5" a(1)] (7)

where D = 9 4 E[Z0q(1)] < § + B[jq(0)] =
Q;—I—w B. As a result, A(())gB—Qq(t)—k
E[q(t)E;(6")|q(t)]. Tt is easily observed that the upper bound
of A(q(t)) does not need the future information such as
q(t + 1) at time slot ¢. Therefore, we can convert the time
slot spanned energy constraint into per-slot ones by means of
the Lyapunov optimization technology. Specifically, the drift-
plus-penalty term in each time slot is given as:

A (q(t) + VE[Le(8")|q(t)]
< B —Qq(t) + Elq(t)E(6")|q(t)] + VE[Li(8")|q(t)]
= B — Qq(t) + E[q(t)E(8") + VLy(8")|q(t)] (18)

where L,(8") £ Zszl[(5t)ltk oLy .1 is the response
time at time slot ¢ given the caching decision 6. V(> 0)
is a control parameter to adjust the tradeoff between energy
consumption control and response time minimization. Now
our attention has shifted from P1 to the minimization of
the supremum of the drift-plus-penalty term, i.e., the right
hand side of (18). Namely, the caching decision 8" can be
determined for time slot ¢ by solving the following problem
P2:

(P2)

giar}{q(t)Et(ét) + VLt((st)} (19)

s.t.(13), (14), (15) (20)

wu huaming

wu huaming

wu huaming

wu huaming

It is worth mentioning that the constraint (12) in P1 has
been incorporated into problem P2 itself by means of Aq(t).

Theorem 1: Based on the drift-plus-penalty term, the
caching decisions obtained by solving P2 over time slots
t € {0,...,T—1} are approximately optimal caching decisions
wrt. Pl
Proof If there is a solution to P1, then there exists a caching
decision 6" and [*, while satisfying 1) Et(ét*) < @, and 2)
I* = g o0 & S0 SO0 Li(6"), based on [29].

Therefore, we have:

A (q(t)) + VE[L(8")]q(1)]

min
t vVt

< B = Qq(t) + E[g(t)E(8")]q(t)] + VE[L:(6")lq(t)]
= B +E[g(t)(E(8") — Q)la(t)] + VE[L(8")|q(1)]
= B +q()E[(E(8") - Q)la(t)] + VE[L¢(6")|g(1)]
%B + Vi

Since A(q(t)) + VE[Ly(8")q(t)] < B + q(t)E[(Ex(8") —
Q)|q(t)] + VE[L:(6")|q(t)], for ¥Vt € {0,..,T — 1} and
valid caching decision d°, the inequality still holds when
substituting 8" by 6", i.e., B + q(t)E[(E,(6™) — Q)|q(t)] +
VE[L:(6")|q(t)]. Owing to E;(6"*) — Q < 0, the inequality
(1) holds.

Then we calculate the expectation of the above inequality
and then perform a sum of the expectation over the time slots
t €{0,...,T — 1}, namely,

E[E[L(q(t +1)) -

> E[A(q(t) + VE[L(8")]g(t)]
t=0
T
= L(q(t))la(t)] + VE[L(8")|g(t)]]
T

E[L(q(t +1)) — L(q(t))] + VE[L¢(8")]

T-1

0))] + Y VE[L(8")]

=0
T-1
=E[L(q(T))] + Z VE[L,(8")] <
=0

=(B+VI")«T
Since E[L(¢(T))] > 0, we have
1

T—

> VE[L(8")] <

t=0

!

-1
E[B + VI*]
t

Il
<

(B+VI*)«T

Then,

Namely,

This is because L;(8") is the expected response time, and
according to the law of iterated expectations, E[L;(6")] =

Ly(6"). Thus, the caching decision obtained by solving P2
can be infinitely close to the solution of P1 by adjusting the
variable V. |

Remark: Let G(V') represent the optimality gap which
denotes the difference between [* and the solution of P2.
The supremum of P2 is {* + B/V, so G(V) = B/V and
O(G(V)) =0(*+ B/V) = O(1/V). As a consequence, if
problem P2 can be solved within each time slot, G(V') can
be bounded by O(1/V).

Theorem 2: The caching decisions obtained by solving
problem P2 over time slot ¢ € {0, ...,T — 1} make inequality
(12) always true.

Proof Let 8" denote the caching decision obtained by solving
problem P2, i.e., the right-hand side of drift-plus-penalty
inequality (18) in time slot ¢. Thus, we have:

A (q(t)) + VE[L:(6™)]a(#)]

< B — Qq(t) + E[q(t) E1(8)|q(t)] + VE[L(8")|q(t)]
< B—Qq(t) + VL +4¢(t)(Q —¢)

=B —eq(t)+ VL

where 8'F is any other valid caching decision in time slot ¢
except 6. Lf is the corresponding response time with caching
decision equal to 8%, Since E[E,(8")] = E,(6™) < Q [15],
there exists a small enough ¢ > 0, satisfying F;(6") — Q <
—e, namely, E,(6™) < Q —e.

By taking expectations of the above inequality, we have:
E{A(q(t)) + VEL(6")|a®)]} < B — cEla(t)] + VLI,
namely,

E[L(q(t + 1))] — E[L(q(t))] + VE[L(8")]
< B —€Elq(t)] + VL}

By summing this inequality over ¢ € {0, ...,7 — 1}, we have:

E[L(a(T))] = N+V Z E[L(6")]

< BT + VLIT — €E[q(t)]T
< BT+ VLT =BT

where B’ = B 4+ VL}. Since Vthzfl E[L(6")] > 0, thus
E[L(q(T))] —E[L(¢(0))] < BT + VL;T. Substitute L(q(T))
by L(q(T)) = 3¢*(T), we have:

%E[qZ(T)] < B'T+ %E[qQ(O)] =B'T

According to the Cauchy inequality, ie.,

(i mayi)® <(3251, 27) (3251,). we have,

(E[g(T)])* < E[¢*(T)] < 2B'T
Thus, E[¢(T)] < V2B'T, so
ZElo(T)) < /2

wu huaming

wu huaming

Base on Lemma 1, we have

— 1 2B
T Z]E E (8 -Q) < T]E[Q(T)] S\ 7
Therefore,
1 @) -0l < |27 -
Namely, 1
g&fggﬂww—@go

As a consequence, we can see that 1) the queue backlog is
mean rate stable; and 2) the caching decision obtained by
solving P2 can solve P1 without constraint violation. O

Based on the above descriptions, we have proposed a
Lyapunov based online caching decision (LOCD) algorithm
to obtain approximately optimum solution to problem P1,
as shown in Alg. 1. Specifically, LOCD seeks the optimal
solution along each time slot. Within each time slot, given
per-slot constraints on the expected response time and energy
consumption (i.e., L{*** and E[*“"), respectively, we strive to
achieve approximately optimum solution by solving problem
P2 (lines 3-5). Then, the per-slot best caching decision can
be obtained, i.e., 8. LOCD calculates the optimal response
time based on 8"* and then the per-slot response time is accu-
mulated (lines 7-8). Finally, the mean value of the objective
function (i.e., avg = L/T) can be retrieved.

Algorithm 1: Lyapunov based Online Caching Decision
(LOCD)
Input: ¢(0), Q,C, A, V, T
Output: Optimum solution to P1
L =0;
fort=0to 7T —1do
Observe and record \!, 7t
Set L{*** and E{**%;
Obtain 6" by solving problem P2;
L =L+ Ly(6™);
Calculate Et(ét) based on Eq. 10;
q(t + 1) = max[q(t) — Q,0] + E,(8");

e 0 N AT R W N -

end
avg = L/T;,
return avg;

—
[

B. Algorithm Design for Solving P2
Let 6" = arg ;nin{q(t)Et((st) +V Li(8")} while satisfying
TVt

the constraints (13), (14), (15). Then 6" can be viewed as
the best caching decision in time slot ¢ in terms of L,(d").
Given ¢(t) and V, the problem P2 is actually a 0-1 knapsack
problem. Owing to its well-known NP-hardness, exhaustive
search takes exponential time and thus makes itself infeasible
in reality. Evolutionary algorithms such as GA and PSO [14],
[20] can be adopted to solve it. However, these iteration-based

methods are usually time-consuming and thus impracticable
in time-sensitive scenarios. Accordingly, a heuristic algorithm
suitable for time-sensitive scenario is required to solve P2.
Let F = q(t)E4(8") + VL;(8") and by substituting E;(8")
and L,(8") respectively, we have:

F(8°) = q(t) E(8") + VL,(8")

et,no lt no

krl

Il
ngle
=
~

K
= Sklame + VT = L))
k=1

£P-¢ 1)
where P = S0 [g(t)e}™ + VI"7], independent of the
caching decision 5t, can be determined within each time slot,
and G = Zkl,(:l Orla(t) vk + V(l}i’:;J Iy Cﬂ)] depends upon &".
To minimize F means to maximinze G in essence, since P is
unchangeable given the time slot ¢.

To meet the strict response time requirement, a greedy
algorithm is proposed to minimize F. In particular, a greedy
heuristic is given in what follows. Let g§ = q(t)y,+V (I —
l?,{;l)’ and the applications in A are sorted in the descending
order of g} /dj. The corresponding greedy algorithm is shown
in Alg. 2. A list £ is used to store the sorted applications.
So and S; store the indexes of tasks that are cached and not
cached, respectively. Therefore, the caching decision profile
8" can be easily constructed based on Sy and S;. Initially,
S; =0 and Sy = {0,1,..., K — 1}, respectively. We check
application ay in £ one by one. If the sum of input data
of all already cached applications plus current a; does not
exceed the constraint C, we tend to cache ay. However, the per-
slot energy and latency constraints are examined respectively
before updating the decision caching profile (lines 12-15).
In the meanwhile, the accumulated energy consumption and
response time are obtained, respectively (lines 10—11). If the
sum of input data of all already cached applications plus
current aj exceeds the constraint C, the algorithm checks the
application after a; in £. In the meanwhile, the accumulated
energy consumption and response time are also calculated.
Based on Eq. 21, the minimal F can be retrieved. Finally, .Sy
and S; are returned.

Remark: The time of GASP is mainly taken to sort the
applications in A. Various sort algorithms can be utilized to
achieve this goal with the time complexity of O(K log K),
where K is the number of applications. In addition, the time
taken to check applications in A is O(K). Thus, the time
complexity of GASP is O(K log K) + O(K) = O(K log K),
which is much better than the evolutionary algorithms. GASP
endeavors to obtain the approximate optimal solution accord-
ing to the greedy heuristic. However, similar to general 0-1
knapsack problem solved by greedy algorithms, the drawback
of GASP is that the vacant part of knapsack can depreciate
the value of knapsack if the knapsack is not fully occupied.
Therefore, GASP needs to be enhanced for the performance
improvement.

C. Enhanced Algorithm for Solving Problem P2

To narrow down the optimality gap between the approx-
imate optimal value and true optimal value, in this section

wu huaming

wu huaming

Algorithm 2: Greedy Algorithm for Solving P2 (GASP)

Input: q(t), e}, ZZ’)C”, l;%’, C, A Vo

Output: Sy and S

1.5 ={0,1,...,. K —1};
2 51 =10
3 g8 = q(t)y + V(0] = 1.5,), for Vk € [1,K];
4 L stores the applications in descending order of g! /dy;
55=0,L=0,E=0;
6 for each a; in £ do
7 s =s+dy;
8 if s <C then
9 Calculate)%, and e;°;
10 L=L+ l%jl;
11 E=E+e¢.S
12 if L < L7 and E < E[** then
13 5 =1,
14 S1 =81 U{k};
15 So = So\{k};
16 else
17 L=L- Z}Z’Crl;
18 E=FE— ¢
19 end
20 else
21 s =5 —d;
22 Calculate ;] and e;";
23 L=L+ l}i;f,
24 E=E+¢e"
25 end
26 end

27 -/_'.mzn = Q(t)E + VL’
28 return Sp and Sq;

we apply two other greedy rules to the approximate solution
obtained by GASP.

Definition 1: One-dimensional increment A (") is defined
as Ap(6) =G(8%,..., 1), o, 0%) — G(S%, ..., O(py, oy O) =
a(t) (e = e) VI = 1) = aOm+ V7 = 15)-

A(8") can be used to evaluate the optimum increment to
the objective function G by unilaterally changing ¢’ from 0 to
1 while keeping other caching decisions {0!|1 < i < K,i #
k} unchanged.

Definition 2: Two-dimensional increment Ay (8") is
defined as Akl(ét) = g((ﬂt,...,1(@,...,0(1),...,5%) -

gt((siv "'}O(k)a) 1(1)5 EE) 65{) = Q(t)(%—%)4“/(52’,2?_12’;1—
L+ 1m)-

A (8") can denote the optimum increment to G by swap-
ping the caching decisions of two services (e.g., service k from
S1 and [from Sy, respectively), with one varying from O to 1
and the other from 1 to 0. If Az;(8") < 0, the objective func-
tion F can be further optimized by exchanging the caching
decisions of two tasks from S; and Sy, respectively.

Accordingly, we can improve the performance of GASP
with the aid of Ay (8%) and Ay (8"). To be specific, given a
decision profile 8% obtained by GASP, i.e., Sy and 57, the
procedure of enhancing GASP, denoted by EnGASP, is shown

in Alg. 3. EnGASP mainly consists of two steps, with one
called the filling stage (lines 1-11) and the other called the
swapping stage (lines 13-21). The filling stage, targeted at the
vacant part of knapsack, strives to fill the knapsack with un-
cached applications from Sy. The swapping stage on the other
hand aims to find a better caching decision profile by swapping
two applications from S; and Sy respectively. For example,
A1+ (6") smaller than 0 means that G can be increased by
exchanging the caching decisions of applications a- and a;«.
In the meanwhile, if the caching size constraint can be satisfied
after the exchanging, F can be further optimized by increasing

g.

Algorithm 3: Enhanced Greedy Algorithm for Solving P2
(EnGASP)
Input:]:min, 6t, SQ, Sl
Output: &'
1 while Sy # 0 do
2 Obtain £* by solving:
k* = arg max{A (")

ke So} 5
3 if 3. {d;li € S1} + di~ < C then
4 Update Finin;

5 &.=1;

6 S1=5U {k‘*},

7 S() = So\{]f*},

8 else

o | | So=So\{k)

10 end

11 end

12 SO :{1,...,K}\Sl;

13 while Sy # 0 and Sy # () do

14 Obtain (k*,1*) by solving:

(k'*,l*) = argmin{Akl(ét)\k S Sl,l S So};
15 | if Ages-(8') <0 and

Yo Adili € Si\{k*} U {l*}} < C then

16 Update Frin;

17 §t.=0and d}. =1,
18 S1 = SI\{k*};

19 So = So\{lI*};

20 end

21 end

22 return 8°;

Remark: It is worth mentioning that EnGASP attempts
to enhance GASP rather than replace it, since the input
parameters of EnGASP are the output parameters of GASP.
Intuitively, the performance of EnGASP is at least as good as
GASP. However, as for the time complexity of EnGASP, we
can see that the main two loops (i.e., line 1 and line 13) take
O(K) and O(K), respectively. To obtain £* usually needs to
traverse the set Sy which takes the time of O(K). On the
other hand, to obtain (k*,[*) usually requires to find the pair
of (I, k) by traversing Sy and .S, which takes time of O(]S1])
and O(]Sp|), respectively. Thus, the time to find (k*,1*) is
OS] - S1]). Since O(1S0] - [S1]) < O((|So| + [S1])/2)?) =
O(K?/4) = O(K?), the time complexity of EnGASP can be
derived as O(K)-O(K)+O(K)-O(K?) = O(K?). Compared

wu huaming

wu huaming

TABLE II
PARAMETER SETTINGS

[Parameter | Value | Parameter | Value |
T [0, 1000] K 20
ar 1, 50] h [0, 70]
C 200 rt 150
BT [T, 31 A [100, 200]
s 400 5 [1000, 2000]
m 3 KE le-5
Q 1.2 e 20
Lye® 100 1% [300, 1000]
vE (0, 0.1) it ©, 1)

to the iteration-based evolutionary algorithms [14], [20], both
GASP and EnGASP are of polynomial time. Therefore, both
are really appropriate for time-sensitive scenarios in VEC
systems. In addition, extensive simulation is still needed to
evaluate EnGASP and GASP w.r.t. efficiency and effective-
ness.

V. NUMERIC EVALUATION

Extensive experiments have been carried out to evaluate
the proposed caching strategy in terms of response time and
energy consumption in this section. In what follows, we
will report the experimental settings and simulation results,
respectively.

A. Experimental Settings

The involved parameters with the corresponding values are
shown in Table II. Although the involved parameters in the
simulation are given manually, our previous works [14], [20]
can bring rich experience to the parameter settings, including
the duration for each time slot m, ke, fet and so on. For
instance, 7 should be set appropriately such that on one hand
the edge server S has enough time to make caching decisions,
and on the other hand tasks offloaded to S can be completely
accomplished by the end of time slot. The number of time slots
varies from O to 1000 and the number of applications is set
to 20. Within each time slot, these vehicular applications are
randomly generated according to dj and si. For the caching
related parameters, the global energy constraint () across
different time slots is set to 1.2. For simplicity, we assume
that the maximal per-slot energy consumption constraint is the
same for each time slot (i.e., 20) in the simulation. The control
parameter for the drift-plus-penalty term V' ranges from 300
to 1000.

B. Simulation Results

First, we evaluate the performance of GASP and EnGASP
with different time slots respectively. The experimental re-
sult is shown in Fig. 3, where the x-coordinate denotes the
time slots and the y-coordinate denotes the objective values
corresponding to the problem P2. From this figure, several
observations can be revealed as follows. First, as theoretically
analyzed earlier, the performance of EnGASP is at least
as good as GASP. The experimental result conforms to the

10

GASP
--=- EnGASP

10 A

Objective Values

0 200 400 600 800 1000
Number of Time Slots

Fig. 3. Performance comparison with different time slots

—————— GASP
0.05 - - =~ EnGASP
0.041]

bt]l

g 'R IE

£ 0034 i}

) \

2 ¢

g 18

g i Tk

ECCRRR

i
0014 | s
|1
ol
0.00{ - #HEE

0 200 400 600 800 1000
Number of Time Slots

Fig. 4. Response time comparison with different time slots

theoretical analysis. Second, the performance of GASP at time
slot 0 is the worst compared to other cases, which however
is comprehensible and explicable as follows. According to
Eq. 16, the calculation of ¢(¢ + 1) at time slot ¢ depends on
q(t) and E;(8"). At the beginning of time slot (i.e., t = 0), we
assume that all the vehicular applications are not cached at S.
Thus, the objective value can be very large. Third, EnGASP
helps improve the performance of GASP by two main stages
(i.e., the filling step and the swapping step). Across different
time slots, the two steps further optimize GASP to a certain
extent.

Fig. 4 shows the change of the running time of GASP and
EnGASP as the number of time slots increases. First, it is very
clear that the running time of EnGASP is much larger than
that of GASP. Most of the time, GASP can make a caching
decision in real time, while EnGASP can make it within tens
of milliseconds. It is understandable since EnGASP needs the
output of GASP as input parameters, i.e., EnGASP runs based
on the caching decision obtained from GASP. As a result, the
response time of EnGASP includes that of GASP, and thus it
is of polynomial time. Second, both GASP and EnGASP need

wu huaming

wu huaming

9000 -

—————

GASP
== EnGASP

8000

7000

6000

Values of F

5000

4000 -

3000 -

0 200 400 600 800 1000
Number of Time Slots

Fig. 5. F minimization with two heuristic rules

N GASP

04 WM EnGASP
-2
S
~ 0.34
&
%)
<=
=
kS
2 0.2 1
=
<
>

0.1 1

0.0 -

120 140 160 180 200

Caching Sizes

Fig. 6. Hit ratio comparison with different caching sizes

complete accomplishment within each time slot. Furthermore,
the tasks are generated randomly within each time slot which
means they are independent at different time slots. Therefore,
the running time of both GASP and EnGASP do not increase
as the number of time slots increases. Third, both GASP and
EnGASP can make a caching decision in almost real time. It is
of important significance to satisfy the strict time requirement
of the vehicular applications.

Long-term energy constraint () is converted into the per-slot
energy constraint by Lyapunov optimization technology, so we
can pay attention to the per-slot problem optimization. GASP
and EnGASP try to obtain the best caching decisions w.r.t.
problem P1 by minimizing F. The experiment has been con-
ducted to evaluate the performance when minimizing F and
the simulation result is shown in Fig. 5, where the x-coordinate
represents the number of time slots and y-coordinate represents
the values of F. It can be easily observed that EnGASP is
better than GASP when the number of time slots is the same.
Generally speaking, no matter how the number of time slots
varies, EnGASP is better than GASP in most cases. On the
other hand, the situation similar to the case shown in Fig. 3

1.2
IR
= I E% i fl% i 1
ol fE b RiiEN K;
E | GASP l1 “E:’l. 11 1 N
£09{ = EnGASP T‘H‘[' H‘ 'l Ml
:‘% ------ Global Energy Constraint l”l {k;;‘ljg; Ik i 1
Eosy T TR R i | “W‘
ST RL R TR D
ot SHHRE (T
SN £} L N
I 200 400 600 800 1000
Number of Time Slots
Fig. 7. The average energy consumption compared to the global energy
constraint

happens when the time slot £ = 0 and the reason is also the
same as that in Fig. 3.

The metric hit ratio is an important performance indicator
to evaluate the performance of the caching strategies in the
information-centric networks. Furthermore, it is still applicable
for evaluating the application-oriented caching strategies. In
particular, Fig. 6 shows the variation of the hit ratio when
GASP and EnGASP are applied under different caching sizes.
In this experiment, the caching sizes range from 110 to 200
with a step of 10. It is obviously that the hit ratio increases
for both GASP and EnGASP, as the caching sizes increase,
this is because larger caching capabilities will enable more
services to be cached. As expected, EnGASP is slightly better
than GASP w.r.t. the hit ratio in most cases.

Another set of experiments is conducted to evaluate the
average energy consumption at S across different time slots.
More importantly, we need to check whether there are any
constraint violations of energy consumption at different time
slots. The simulation results are shown in Fig. 7. First of all,
no matter how the number of time slots increases, the energy
consumptions at S vary roughly from 0.5 to 1.2. The global
energy constraint () is 1.2, so there is no energy violation
at all for the arbitrary number of time slots. Therefore,
the experimental results accord with the theoretical analysis.
Second, the energy consumption at S within each time slot
depends upon the current caching decision profile. Generally,
the more the number of applications which are cached at S,
the more the energy consumptions at .S, for the reason that
given a certain period of time, the running state of virtual
environments should be maintained so as to avoid additional
time overheads on the virtual initialization. The difference in
the caching decision profile at different time slots leads to the
different energy consumptions at different time slots.

As discussed earlier, some iteration-based evolutionary al-
gorithms can also be adopted to obtain the optimal values
of F. In particular, we investigate the performance of these
algorithms (e.g., GA and PSO) w.r.t., the capabilities to obtain
the optimal values of F and the time complexity. The simu-
lation results are shown in Fig. 8, 9 10, and 11, respectively.

wu huaming

wu huaming

wu huaming

Fig. 8 and Fig. 9 show the optimal values and the running
time of the four approaches, respectively, when the number
of time slots increases. Obviously, at least two conclusions
can be drawn based on the observations. First, GA and PSO
indeed have better capabilities to obtain the optimal values
of F compared to our approaches GASP and EnGASP. Since
the offloading requests are generated randomly in each time
slot, and thus they are independent in different time slots. The
optimization gap between the evolutionary algorithms and our
approaches is not becoming wider as the number of time slots

increases. Second, the running times of GA and PSO are much

longer than GASP and EnGASP. For example, it averagely

takes about 2 seconds for GA to obtain the optimal value of
F, while it averagely tasks about 1.65 seconds for PSO to
obtain the value of . GASP and EnGASP on the other hand

can achieve the realtime response no matter how the number
of time slots changes.

When we compare the four approaches under different
number of applications, GASP and PSO are hardly acceptable
despite the advantages over our approaches. As denoted in Fig.
11, both of GA and PSO take seconds to obtain the better val-
ues of F. As a result, we can carefully draw a conclusion that
the evolutionary algorithms are not as good as our approaches
in the time-sensitive application scenario emphasized by this
paper. Our heuristic rules cater for the strict time requirements
of vehicular applications at the expense of the precision of
the solution, which however is acceptable to a great extent.
In contrast, GA and PSO may display better performance

with regards to precision, but they usually take sub-seconds
or even seconds to achieve this goal. Such amount of time is
unacceptable for the time-sensitive vehicular applications.

Next, we investigate the effect of V' on the objective values
obtained in LOCD. To be specific, GASP and EnGASP are
adopted to solve problem P2 (line 5 in LOCD), respectively.
As shown in Theorem 1, the caching decision obtained by
solving P2 can be infinitely close to the solution to P1 by
adjusting the variable V. The value of V varies from 800
to 1000, and the simulation results are shown in Fig. 12.
From the figure, we can observe that LOCD with EnGASP has
significant advantages over LOCD with GASP. On the other
hand, owing to the random generation of tasks at different time
slots, the best objective values are independent of each other
across different time slots. Accordingly, it makes sense that

the best objective values fluctuate a lot across different time
slots.

The last set of experiments has been carried out to evaluate
the performance of LOCD with the increasing number of time
slots. Due to the global energy constraint), LOCD reveals its
convergence either with GASP or EnGASP no matter how the
number of time slots increases. For example, when the number
of time slots is equal to 1000, the corresponding objective
value is about 6.03. In spite of the fluctuation of these values
across different time slots, this fluctuation has been confined
to a limited interval (e.g., between 5.7 and 6.35). Furthermore,

LOCD with EnGASP still outstands that with GASP all the
time.

8000 |
t -#+- GASP
- ‘\‘ EnGASP
\ -=+- GA
\ -=-- PSO
6000 1 X
\
\
£} \
5 5000 1 \
\ |
S 40001 3 A
\} / N
\ / \
“ / \ N
30001 Hy 0L o, /*\1\ * S
QL ~~o / A\ 4 N
(N 4 = % *
R Vi DN 4
£ N w7 \\}-\ S N
2000 1 N el N
N
0 2 4 6 8

Number of Time Slots

Fig. 8. Performance comparison with different number of time slots

| -+~- Gasp

fat iy
2.5 J Theslly
EnGASP /
~~o /
-+ GA - /
\ Al ’
204 ---- PSO Y pre i
\ / S
! \
—~ / !
2 / \ 1
N \ /
5 / \ /
£ 1.54 7 \‘]
= r \ / /"\\
o0 i \] / N
g v ’ N
g Pt \ / $m————
£ 1.0 1 J ‘\.\ v ASC J
~
~ / \ Y K)
/ \ / 1
\
’ \ /
4 \ /
059 p===-=t ot
\\/
14
0.0 R g - i o o
0 2 4 6 8

7000

Number of Time Slots

Fig. 9. Running time comparison with different number of time slots

6500

6000

5500

Values of F
W
(=3
(=1
(=]

I
O
=
S

4000

3500

3000

*
-+-- GASP iPtoas
7
EnGASP %
/
-+- GA /
7
---- PSO /
Y
.
e T
x> A~
- 4
-
I"\\ g 4
; \xvf” vy
/ e
’ P
K R S
’ T
e S
~% S A
e
S ————pe
’
R
R4
S
7.7
Fszoopy
0 2 4 6 8

Number of Applications: K

Fig. 10. Performance comparison with different number of applications

VI. CONCLUSION

VEC brings considerable benefits for vehicular applications

in smart transportation. However, the performance of VEC is

wu huaming

wu huaming

20.0 4
--+- GASP Fan s .
, \\ e *“‘~«"/
1754 ~><- EnGASP / e
-+- GA
1504 ---- PSO suod
- S
@ 125{ ==
o
E
‘:01040- RS
g P T N D T R =
g A~ s N akan
£ 754 PPt e
4 F=———p
5.0
2.5
[R T e e S TS Tt
0 2 4 6 8

Number of Applications: K

Fig. 11. Running time comparison with different number of applications

6201 i -+= LOCD with GASP
- 1 :
1 l| LOCD with EnGASP +
I n
6.15] | h h I\
1
1) Y I\ \
AR Iy oy AT ‘\ ,' \
$ 6.10 1 SN p— I\ e
S [1 / [\
= \ I 1 4 \ 1 v/
g \ ': \‘ | \ / \\ i 1 “
2 6.051 Vg T v \
= 1 \ 1 \) 4 \
2 |¥l \ H v \
= \ I vl \
2 6.00 RS | Vo v
A1
1
5.95 i
")
!
5.90

800 825 850 875 900 925 950 975
Values of V

Fig. 12. The effect of V' on the objective values

6201 % i -+~ LOCD with GASP
l] 1 LOCD with EnGASP
1 1
6.15 ! L [
!}:! ﬂ:*: | i !t ':‘rlt
[i glid bgo g R
g 10 1]l i il 810t B 8 R
= |‘hl'{ |r7 b '1"["|1 bl g |1!J ,'ﬂ"!“!(b lf‘l.: 'ﬂr‘ 14
PR A TR e R PHE S T AT AT
@ 1 4 It B E (L k"f" s o A TS A T i
2 T r',bt o o fogt ECY Tl !:rh}!l” f
o0 WAL LTI Aty AT i
£ 6.00 gy A IR L }(,]ik 4
= l] . TE . | § ‘LI AR ! z
() 1 : i v Il g
5.95 ! ' \ s)
' |
5.90 - I
5.85
300 400 500 600 700 800 900 1000

Number of Time Slots

Fig. 13. Convergence investigation with different number of time slots

still challenged by high mobility of vehicles and limited com-
munication resources, especially considering that the response
time acts as the optimization objective during application out-
sourcing. In this paper, we apply application caching to VEC

to optimize the response time for the outsourced applications
while satisfying the time slot spanned energy consumption.
The Lyapunov optimization technology is adopted to convert
the global energy constraint into per-slot energy constraints,
so as to facilitate the response time optimization. Furthermore,
two greedy heuristics are incorporated into the drift-plus-
penalty based algorithm for helping find the approximate
optimal solution. We have evaluated the approach via a series
of experiments. The simulation results reveal the advantages
of our algorithms in terms of response time and energy
consumption.

REFERENCES

[1] J. Wang, C. Jiang, K. Zhang, T. Q. S. Quek, Y. Ren, and L. Hanzo,
“Vehicular sensing networks in a smart city: Principles, technologies
and applications,” IEEE Wirel. Commun., vol. 25, no. 1, pp. 122-132,
2018.

[2] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. S.
Shen, “Software defined space-air-ground integrated vehicular networks:
Challenges and solutions,” IEEE Commun. Mag., vol. 55, no. 7, pp. 101-
109, 2017.

[3] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 2, pp. 2092-2104, 2020.

[4] Y. Yao, B. Xiao, W. Wang, G. Yang, X. Zhou, and Z. Peng, “Real-time
cache-aided route planning based on mobile edge computing,” IEEE
Wireless Communications, vol. 27, no. 5, pp. 155-161, 2020.

[5] G.Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Computer Networks, vol. 57, no. 16, pp. 3128-3141, 2013.

[6] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms
in information-centric networking,” IEEE Communications Surveys and
Tutorials, vol. 17, no. 3, pp. 1473-1499, 2015.

[7]1 J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018, pp. 207—
215.

[8] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoniem, “Energy
efficient task caching and offloading for mobile edge computing,” IEEE

Access, pp. 11365-11373, 2018.

[9] H.Xing,J. Cui, Y. Deng, and A. Nallanathan, “Energy-efficient proactive

caching for fog computing with correlated task arrivals,” in 2019 IEEE

20th International Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), 2019, pp. 1-5.

L. Yang, J. Cao, G. Liang, and X. Han, “Cost aware service placement

and load dispatching in mobile cloud systems,” IEEE Transactions on

Computers, vol. 65, no. 5, pp. 1440-1452, 2016.

G. Avino, M. Malinverno, F. Malandrino, C. Casetti, and C. F. Chi-

asserini, “Characterizing docker overhead in mobile edge computing

scenarios,” in Proceedings of the Workshop on Hot Topics in Container

Networking and Networked Systems, ser. HotConNet *17. Association

for Computing Machinery, 2017, pp. 30-35.

[12] X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K. Chen, and H. Zhang,

“Reliable computation offloading for edge-computing-enabled software-

defined iov,” IEEE Internet Things J., vol. 7, no. 8, pp. 7097-7111,

2020.

S. Li, S. Lin, L. Cai, W. Li, and G. Zhu, “Joint resource allocation and

computation offloading with time-varying fading channel in vehicular

edge computing,” IEEE Transactions on Vehicular Technology, vol. 69,

no. 3, pp. 3384-3398, 2020.

C. Tang, C. Zhu, X. Wei, H. Wu, Q. Li, and J. J. P. C. Rodrigues,

“Intelligent resource allocation for utility optimization in rsu-empowered

vehicular network,” IEEE Access, vol. 8, pp. 94453-94 462, 2020.

H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for

mobile cloud offloading,” IEEE Transactions on Cloud Computing,

vol. 8, no. 2, pp. 570-584, 2020.

Z. Qin, S. Leng, J. Zhou, and S. Mao, “Collaborative edge computing

and caching in vehicular networks,” in 2020 IEEE Wireless Communi-

cations and Networking Conference (WCNC), 2020, pp. 1-6.

Y. Dai, D. Xu, K. Zhang, S. Maharjan, and Y. Zhang, “Deep rein-

forcement learning and permissioned blockchain for content caching

in vehicular edge computing and networks,” IEEE Transactions on

Vehicular Technology, vol. 69, no. 4, pp. 4312-4324, 2020.

[10]

(11]

[13]

[14]

[15]

[16]

[17]

wu huaming

wu huaming

[18] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, pp. 3860-3873, 2016.

M. Laroui, B. Nour, H. Moungla, H. Afifi, and M. A. Cherif, “Mobile
vehicular edge computing architecture using rideshare taxis as a mobile
edge server,” in 2020 IEEE 17th Annual Consumer Communications
Networking Conference (CCNC), 2020, pp. 1-2.

C. Tang, X. Wei, C. Zhu, Y. Wang, and W. Jia, “Mobile vehicles as fog
nodes for latency optimization in smart cities,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 9, pp. 9364-9375, 2020.

Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4377-4387, 2019.

Z. Ning, P. Dong, X. Wang, J. J. P. C. Rodrigues, and F. Xia, “Deep
reinforcement learning for vehicular edge computing: An intelligent
offloading system,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 6,
pp. 60:1-60:24, 2019.

D. Chen, Y. Liu, B. Kim, J. Xie, C. S. Hong, and Z. Han, “Edge
computing resources reservation in vehicular networks: A meta-learning
approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5,
pp- 5634-5646, 2020.

N. Cheng, H. Zhou, L. Lei, N. Zhang, Y. Zhou, X. Shen, and F. Bai,
“Performance analysis of vehicular device-to-device underlay commu-
nication,” IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 5409-5421,
2017.

J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware
iot networks,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8262—
8269, 2019.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795-2808, 2016.

X. Wei, C. Tang, J. Fan, and S. Subramaniam, “Joint optimization
of energy consumption and delay in cloud-to-thing continuum,” /EEE
Internet of Things Journal, vol. 6, no. 2, pp. 2325-2337, 2019.

L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations & Trends in
Networking, vol. 1, no. 1, pp. 1-144, 2006.

Neely and J. Michael, “Stochastic network optimization with applica-
tion to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, p. 211, 2010.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Chaogang Tang received his B.S. degree from the
Nanjing University of Aeronautics and Astronautics,
Nanjing, China, and Ph.D. degree from the School of
Information Science and Technology, University of
Science and Technology of China, Hefei, China, and
the Department of Computer Science, City Univer-
sity of Hong Kong, under a joint Ph.D. Program, in
2012. He is now with the China University of Min-
ing and Technology. His research interests include
mobile cloud computing, fog computing, Internet of
Things, big data.

Chunsheng Zhu is an Associate Professor in the
SUSTech Institute of Future Networks at Southern
University of Science and Technology in China. He
is also an Associate Researcher in the PCL Research
Center of Networks and Communications at Peng
- Cheng Laboratory in China. He received the Ph.D.
Degree in Electrical and Computer Engineering from

The University of British Columbia, Canada. He has
H authored more than 100 publications published by
— =i refereed international journals (e.g., IEEE Transac-

tions on Industrial Electronics, IEEE Transactions
on Computers, IEEE Transactions on Information Forensics and Security,
IEEE Transactions on Industrial Informatics, IEEE Transactions on Vehicular
Technology, IEEE Transactions on Emerging Topics in Computing, IEEE
Transactions on Cloud Computing, ACM Transactions on Embedded Comput-
ing Systems, ACM Transactions on Cyber-Physical Systems), magazines (e.g.,
IEEE Communications Magazine, IEEE Wireless Communications Magazine,
IEEE Network Magazine), and conferences (e.g., IEEE INFOCOM, IEEE
IECON, IEEE SECON, IEEE DCOSS, IEEE ICC, IEEE GLOBECOM). His
research interests mainly include Internet of Things, wireless sensor networks,
cloud computing, big data, social networks, and security.

Huaming Wu received the B.E. and M.S. degrees
from Harbin Institute of Technology, China in 2009
and 2011, respectively, both in electrical engineer-
ing. He received the Ph.D. degree with the high-
est honor in computer science at Freie Universitit
Berlin, Germany in 2015. He is currently an as-
sociate professor in the Center for Applied Math-
ematics, Tianjin University. His research interests
include model-based evaluation, wireless and mobile
network systems, mobile cloud computing and deep
learning.

Qing Li is currently a Chair Professor (Data Sci-
ence) and the Head of the Department of Computing,
the Hong Kong Polytechnic University. Formerly,
he was the founding Director of the Multimedia
software Engineering Research Centre (MERC), and
a Professor at City University of Hong Kong where
he worked in the Department of Computer Science
from 1998 to 2018. Prior to these, he has also at the
\ Hong Kong University of Science and Technology
,) and the Australian National University (Canberra,
Australia). Prof. Li is currently a Fellow of IET/IEE,
a Senior Member of IEEE, a member of ACM-SIGMOD and IEEE Technical
Committee on Data Engineering. He is the chairperson of the Hong Kong Web
Society, and also served/is serving as an executive committee (EXCO) member
of IEEE-Hong Kong Computer Chapter and ACM Hong Kong Chapter.
In addition, he serves as a councilor of the Database Society of Chinese
Computer Federation (CCF), a member of the Big Data Expert Committee
of CCF, and is a Steering Committee member of DASFAA, ER, ICWL,
UMEDIA, and WISE Society.

o

Joel J. P. C. Rodrigues (S’01-M’06-SM’06-F’20)
is a professor at the Federal University of Pi-
aui, Brazil and a senior researcher at Instituto de
Telecomunicagdes, Portugal. He is the leader of the
Internet of Things Research Group (CNPq), Director
for Conference Development - IEEE ComSoc Board
of Governors, an IEEE Distinguished Lecturer, Tech-
nical Activities Committee Chair of the IEEE Com-
Soc Latin America Region Board, and Past Chair
of the IEEE ComSoc eHealth and Communications
Software TCs. He is the Editor-in-Chief of the Inter-
national Journal of E-Health and Medical Communications and has authored
and coauthored over 780 publications in refereed international journals and
conferences, 3 books, 2 patents, and 1 ITU-T Recommendation.

wu huaming

wu huaming

