ChainFL: A Simulation Platform for Joint Federated
Learning and Blockchain in Edge/Cloud Computing
Environments

Guanjin Qu, Naichuan Cui, Huaming Wu, Member, IEEE, Ruidong Li, Senior Member, IEEE, and
Yuemin Ding, Member, IEEE

Abstract—As a distributed computing paradigm, edge comput-
ing has become a key technology for providing timely services
to mobile devices by connecting Internet of Things (IoT), cloud
centers and other facilities. By offloading compute-intensive tasks
from IoT devices to edge/cloud servers, the communication and
computation pressure caused by the massive data in industrial
IoT can be effectively reduced. In the process of computation
offloading in edge computing, it is critical to dynamically make
optimal offloading decisions to minimize the delay and energy
consumption spent on the devices. Although there are a large
number of task offloading-decision models, how to measure and
evaluate the quality of different models and configurations is
crucial. In this paper, we propose a novel simulation platform
named ChainFL, which can build an edge computing environ-
ment among IoT devices while being compatible with Federated
Learning and Blockchain technologies to better support the
embedding of security-focused offloading algorithms. ChainFL
is lightweight and compatible, and it can quickly build complex
network environments by connecting devices of different archi-
tectures. Moreover, due to its distributed nature, ChainFL can
also be deployed as a federated learning platform across multiple
devices to enable federated learning with high security due to its
embedded blockchain. Finally, we validate the versatility and
effectiveness of ChainFL by embedding a complex offloading
decision model in the platform, as well as deploying it in an
industrial IoT environment with security risks.

Index Terms—Edge Computing, Computation Offloading, Fed-
erated Learning, Blockchain, Simulation Platform.

I. INTRODUCTION

VER the last few years, the rapid proliferation of various

Internet of Things (IoT) devices has brought great con-
venience to people’s daily lives. However, due to the limited
computing resources of IoT devices, it is still difficult to
directly deploy compute-intensive applications on them, such
as face recognition and augmented reality [I]. In order to
prevent resource-constrained devices from high computation
latency and high energy consumption caused by running large
amounts of computing, we generally rely on cloud servers

G. Qu and H. Wu are with the Center for Applied Mathematics, Tianjin
University, Tianjin 300072, China (e-mail: {guanjinqu, whming} @tju.edu.cn).

N. Cui is with School of Electrical and Electronic Engineering,
Nanyang Technological ~ University, Singapore = 639798 (e-mail:
CUIN0001 @e.ntu.edu.sg).

R. Li is with the Institute of Science and Engineering, Kanazawa
University, Kanazawa 920-1192, Japan (e-mail: liruidong @ieee.org).

Y. Ding is with the Department of Electrical and Electronic
Engineering, University of Navarra, San Sebastian, Spain (email:
yuemin.ding1986 @ gmail.com).

(Corresponding author: Huaming Wu)

closely to assist in computing and storing by offloading
local tasks to cloud servers for remote processing, thereby
reducing application response time and extending battery life.
However, it still suffers from limited communication resources
as well as high latency since the cloud center is usually far
away from the users. In addition, in the field of Industrial
IoTs (IloT), extremely vast amounts of data from a huge
number of sensors still pose communication and computational
difficulties for traditional cloud centers. What’s more, in the
cases of limited heterogeneous network resources, it is of great
challenge to guarantee the Quality of Service (QoS), protect
IIoT applications from a variety of threats and attacks [2], as
well as ensure the fairness of various IIoT devices [3]].

As a supplement to traditional cloud computing, edge
computing is a distributed computing paradigm that uses
computing resources located at the proximity of IoT devices to
provide efficient services in a timely manner [4]. Edge servers
are generally connected to the IoT and the cloud center via
Local Area Networks (LAN), and complex computing tasks
of IoT devices may be offloaded to the edge or the cloud for
computing, which can break through the resource limitations
of mobile devices, reduce computing load, improve task pro-
cessing efficiency and save energy consumption. Blockchain
technology has emerged in edge computing environments
due to its seamless network control, distributed services and
security, which is reliable in providing edge services according
to user requirements, and thus can improve the distributed
resource scheduling and task offloading at ease [5].

Currently, a large number of methods and models for task
offloading decision-making are mainly divided into traditional
offloading techniques and intelligent offloading techniques.
The former usually apply some heuristic algorithms, where
a large amount of computation is required to make offloading
decisions [6]], while the latter are based on deep learning
models, where the internal laws and representation levels of
standard sample data are learned through deep neural networks
so that computers can have analytical capabilities like humans.
For instance, deep reinforcement learning-based methods can
promote offloading decision-making, dynamic resource allo-
cation, and content caching, which are conducive to coping
with the explosive growth of communication and computing
in emerging IoT applications. Intelligent offloading algorithms
have gradually emerged in recent years and become ever-
increasing popular [[7/]-[9]. By introducing neural networks
and other methods, offloading decision-making can achieve

good results, but there still exist several challenges, e.g., slow
learning speed and long training time. Besides, most of the
current intelligent offloading algorithms are based on neural
networks, which are generally deployed on edge servers since
strong computing capacities are required.

In order to solve the aforementioned challenging issues,
more and more approaches have been introduced into the
intelligent offloading model. Among them, distributed learning
models can effectively help multiple institutions to perform
data usage and machine learning modeling under the require-
ments of user privacy protection, data security, and govern-
ment regulations. As a distributed machine learning paradigm,
federated learning can effectively solve the problem of data
islands, allowing participants to jointly model on the basis
of not sharing data, thereby preventing privacy leakage as
well as protecting users’ privacy [[10], while improving the
training speed of the model [11]. In addition, as a new data
structure, the data or information stored in blockchain has
the characteristics of unforgeability, traceability, openness and
transparency, and collective maintenance [12]]. With these char-
acteristics, blockchain technology has laid a solid foundation
of trust and established a reliable cooperation mechanism. By
introducing blockchain into edge computing, the privacy and
security requirements for task offloading can be well improved.

When designing optimal offloading-decision algorithms, it
is necessary to comprehensively consider the overall latency
and energy consumption of all IoT devices, especially for
delay-sensitive applications in large-scale industries [[13]], [[14].
Therefore, it is urgent to have a simulation platform that
measures the offloading effectiveness of different task of-
floading models. In addition, blockchain owns disadvantages
such as huge data volume and slow embedding speed. How
to rationally combine blockchain and federated learning to
ensure that the efficiency of federated learning is less affected,
while still meeting the security requirements, has become a
research hotspot in related fields [15]]. Although there are
various simulation platforms for edge computing, they are
often incompatible with some new models due to their early
construction and the impact of technologies, e.g., distributed
learning and blockchain. To address these challenges, we have
built a new simulation platform called ChainFL, which owns
the following advantages:

o ChainFL has strong compatibility and can be built be-
tween devices under different architectures. It can quickly
build an environment that simulates multiple IoT devices,
edges and clouds. In addition, ChainFL itself is very
lightweight and can be easily extended to the existing task
offloading decision model in the form of a toolkit. By
introducing simulated data sets or collecting real-world
task information, the process of task offloading can be
simulated on the platform.

e The network structure of ChainFL is very suitable for
blockchain embedding and supports distributed learn-
ing such as federated learning. In addition, it has bet-
ter applicability to task offloading models involving
blockchain, federated learning and other algorithms. As
far as we know, this is the first simulation platform that
is jointly optimized for blockchain and federated learning

in edge/cloud computing environments.

¢ ChainFL can be deployed as a federated learning platform
across multiple devices to enable federated learning in
edge computing environments. Compared to traditional
federated learning algorithms, ChainFL has an embedded
blockchain structure, which can increase the security and
reliability of federated learning in IIoTs.

The rest of this paper is organized as follows. Section
summarizes related work. Section [[II| details the structure and
application of the simulation platform. Section presents
extensive experimental results to evaluate the performance of
our proposed ChainFL. Section |V| discusses several potential
application scenarios to be supported. Finally, we conclude the

paper in Section

II. RELATED WORK

A large number of studies have been proposed to imitate
the environment, including IoT, edge computing and cloud
computing. Some of these systems have also been developed
to allow embedded task offloading decision models. In this
section, we review related work and compare it with our
simulation platform. In addition, we compare the feature
differences between existing federated learning platforms and
the proposed ChainFL.

A. Edge/Cloud Simulation Platform

Cloudsim [16] is a popular cloud computing simulation
platform, which is a function library developed on the discrete
event simulation package SimJava. Cloudsim supports the re-
search and development of cloud computing, and the modeling
and simulation of a variety of cloud computing infrastructures.
This has attracted widespread attention from both academia
and industry, and has led to various follow-up projects based
on CloudSIm, e.g., iFogSim [17], cloudsimSDN [18]] and
ContainerCloudSim [19]].

IfogSim [17] is a toolkit proposed to simulate a fog comput-
ing environment, whose concept is similar to edge computing.
Ifogsim uses not only a central server, but also an edge server
closer to the user level. It can be used to create an integrated
edge and cloud simulation environment to evaluate the re-
source management strategy of edge cloud. However, ifogsim
focuses more on the management of computing resources such
as CPU, memory and storage. On the contrary, in addition to
these functions, our simulation platform can implement more
complex network functions.

CLONE [20] is an edge-based collaborative learning frame-
work, which is mainly used to deal with the contradiction
between edge intelligence and privacy protection, and the
limitation of insufficient bandwidth. In order to support the
collaborative training and inference of models on edge devices,
its application scenarios are classified into two categories,
namely, CLONE training and CLONE inference. The core
idea is that training/inference tasks are solved by a set of
distributed edge nodes and coordinated by the edge server.
The edge server is responsible for performing aggregation or
other necessary operations on the uploaded parameters and
sending the updated parameters back to the edge node. Each

edge node trains the neural network model locally based on its
private training data, which will not be offloaded to the edge
or the cloud, and pushes the corresponding parameters to the
edge server during the training/inference process.

With the popularity of Kubernetes as a containerized ap-
plication that manages multiple hosts on the cloud platform,
it makes the deployment of containerized applications simple
and efficient. However, Kubernetes is designed for cloud
data centers after all. KubeEdge [21] is the world’s first
open edge computing platform based on Kubernetes and
provides cloud-side collaboration capabilities. It relies on Ku-
bernetes’ container orchestration and scheduling capabilities
to achieve cloud-edge collaboration, resource heterogeneity,
and lightweight functions. K3S [22] is designed for R&D,
operation and maintenance personnel who run Kubernetes
in a resource-limited environment. The purpose is to run
small Kubernetes clusters on edge nodes of x86, ARM64
and ARMv7D architectures. However, all components of K3S
(including server and agent) run on the edge, so the cloud-edge
collaboration is not involved.

Although these related systems provide examples of running
their frameworks, building such a system requires a lot of
equipment and time to build the environment and execute the
corresponding model. Therefore, to perform large-scale and
cost-effective simulation and evaluation for certain offloading
decision or resource scheduling algorithms, it is still necessary
to establish an efficient and lightweight toolbox. In order to
meet this requirement, a fast simulation platform for evalu-
ating task offloading decisions and strategies in edge-cloud
environments is developed.

B. Federated Learning Platform

Federated learning platforms have developed rapidly in re-
cent years. Table[[]summarizes the technical comparison of dif-
ferent federated learning platforms. Among them, TensorFlow-
Federated (TFFﬂ the earliest federated learning platform
proposed by Google, supports optimization algorithms, e.g.,
FedAvg and FedProx, but it cannot accommodate some of the
newer algorithms as it can only perform centralized federated
learning. LEAF [23]] and PySyft [24] are similar to TFF in that
there are more methods for training data than TFF. However,
they only support algorithms with a central structure, and are
not applicable for algorithms that require the exchange of
complex auxiliary information and custom training procedures.
In addition, federated learning platforms such as FATE [25]]
and PaddleFL [26] have been released by related industries,
but the industry-dominated products often have cumbersome
system designs, inflexible Application Programming Inter-
faces (APIs) and complex environment settings that are not
friendly to edge computing and the embedding of decision
algorithms for task offloading. FedML [27] is an open-source
framework for federated learning, which facilitates various
algorithm research through flexible and universal API design
and reference benchmarks. However, since it does not support
the embedding of blockchain algorithms, some of the latest

Uhttps://medium.com/tensorflow/introducing-tensorflow-federated-
241472220041

blockchain structure-based algorithms will not be introduced
for use, especially in the area of security.

The federated learning platforms mentioned above are rarely
designed for platform security. This would lead to certain
security risks in environments such as edge computing and
IloTs. In contrast to these platforms, ChainFL allows for
customized encryption algorithms for information flow and
supports embedding in blockchains to enhance the tamper-
evident nature of information, thus improving the security of
the global platform.

ITII. SIMULATION PLATFORM STRUCTURE AND FUNCTIONS

This section mainly provides the detailed structure and
system model of ChainFL, as well as the related functions
and information of the platform.

A. System Model

Fig. (1] illustrates the system model of the proposed simu-
lation platform ChainFL. According to the characteristics of
task offloading, the edge computing environment is composed
of cloud, edge, user terminal and communication center. In
order to be able to complete the most basic task offloading and
communication transmission, it is also necessary to meet the
requirements of compatible blockchain and federated learning.
Therefore, the communication between various domains needs
to be closer. For this reason, we set up a communication
center node, which is not available in the conventional edge
computing environment. The main role of the ChainFL plat-
form is to connect individual devices and thus build an edge
computing environment to provide communication support for
federal learning. To be compatible with the embedding of
blockchain algorithms, ChainFL allows the content of the
communication to be passed on the blockchain. Specifically,
local devices can upload parameters to the cloud server for
parameter aggregation, and the updated parameters can be
embedded in the blockchain and propagated to each device
for parameter updates. As for task offloading models that do
not involve blockchain and federated learning algorithms, the
use of this simulation platform for experiments will not affect
the effect evaluation of the original model. We will explain the
structure and information of each level by domain as follows:

0D @+
S d

User Domain

6
6
L

nnnnnnn

\ /
e
cammunicatior\
Center

3 ar
0 ¥

Fig. 1: System model of the simulation platform ChainFL

Cloud Domain

@¢ oo

Edge Domain

TABLE I: Comparison of features between different federated learning platforms

Aspects Features TFF LEAF [23] PaddleFL [26] FATE [25] PySyft [24] FedML [27] ChainFL (Ours)

Standalone simulation

Distributed computing
Edge computing
ToT-device training

Computing Paradigms

Information flow customization

Algorithm Customization Custom optimization algorithm
Allow distributed topology

. Customization of message encryption
Security Measures Allow embedded blockchain

x| X[X XXX N\
x| x| x| X| x| X \|Xx

x| x| x| N[x| x| x| N
| X | x| x| x| x| x| N
SR ENENENENENENEN
SMENENENENENENENEN
ANENENENENENENENEN

o Communication Center: Since our simulation platform B. Architecture of ChainFL
is compatible with blockchain and federated learning, we
use a P2P network structure that is different from the
conventional network structure. In order to ensure that
each node can quickly connect to the entire network for
offloading and training, we establish a communication
center node. The communication center has a public
IP address and is responsible for receiving IP address Application Driverless Drone Swarm Edge Intelligence
information from each node. When a new device joins Layer Image Identification Smart Home Nautical Communication
the simulation environment, it first needs to access the 7T
communication center and obtain the IP addresses of

Fig. 2] shows the hierarchical layer structure of ChainFL
for edge computing and task offloading. It consists of an
infrastructure layer, a virtualization layer, a communication
layer, a computing layer, and an application layer.

Task Offloading Federated Learning Blockchain

. Computing Task Offloading Decision Consensus Algorithm
other devices and then access the network. It should Layer S —————— :”“'““’" Digital Algorithm
. . . . ggregation
be noted that in order to protect information security T Mining Algorithm
and reduce the communication volume, the communi- ~ ~TTTTTT
. Communication RETDE 26D i <

cation center is not responsible for the communication i ;

Layer Information Perception Task Offloading Communication

of specific information, so there is no risk of privacy |
leakage. In addition, when the node is connected to the Virtualization oSlkenell(Scheduior FeSveton;Vivtus DIVeIShi)

network, it will not need to access the communication Layer

center frequently. The use of a communication center

does not affect the efficiency of traditional task offloading (Communication Equipment)
and communication, nevertheless, it is only responsible Infrastructure ‘

3 1 Layer
for connecting the newly added devices to the system PP Tm— prmm— rsm—
HetWOrk. Computing Equipment

e Cloud Domain: In addition to traditional cloud tasks
such as task offloading and resource scheduling, the Fig. 2: ChainFL architecture for edge computing and task
cloud nodes in this simulation platform also have other offloading
important functions, e.g., the propagation and embed-
ding of blockchain, and the aggregation and transfer From bottom to top, the functions of each layer are defined
of parameters in the federated learning algorithm. By 49 follows:
embedding related functions into the simulation platform,
it provides great convenience for the implantation and
effect evaluation of some complex offloading models.

o Edge Domain: As the most important part of the tra-
ditional edge computing environment, the edge end is
responsible for task offloading, data transferring and
communicating with the user terminal. In addition, most
of the current offloading decision-making models put
decision-making algorithms on the edge. For ChainFL,
the edge end also takes the transfer function of blockchain
and federated learning parameters into account.

o User Terminal: As the lowest layer in the edge com-
puting environment, the user side is responsible for
reasonably offloading tasks generated by itself or training
the neural network in the federated learning algorithm.

o Infrastructure Layer: This layer is mainly composed
of computing equipment and communication equipment.
Among them, computing devices include IoT devices
that are responsible for simulating the user side, such
as single-chip computers; devices that are responsible for
simulating edge base stations, such as mid-performance
computers; and devices that are responsible for simulating
the cloud, such as large workstations. These computing
devices are responsible for performing computing tasks
such as task offloading, neural network learning, and
parameter aggregation when performing edge computing.
In addition, in order to ensure close communication
between various computing devices, we need to connect
the communication equipment of each computing device.
The communication equipment is divided into a gateway
and a communication center. For some small analog
platforms, the gateway can be replaced by a router. Each

device will be connected to the gateway for commu-
nication, which also includes a communication center.
The communication center can be formed by a single-
chip microcomputer with low computing power because
it does not perform computing tasks.

Virtualization Layer: With the popularity of virtual-
ization technology, more and more virtual services are
being used in simulation platforms. ChainFL serves as a
highly compatible platform that allows programs to run
on virtual machines. The virtual machine is capable of
customizing parameters such as bandwidth performance
for better performance evaluation. ChainFL’s strong sup-
port for virtualization allows users to simulate complex
network environments with multiple devices on a single
computer.

Communication Layer: This layer is responsible for
communication between computing devices, which in-
cludes not only the information communication for task
offloading in traditional edge computing and the most
basic necessary communication, but also the communica-
tion process of federated learning and blockchain. Since
the communication layer is built on a gateway-based
communication device, we can simulate the environment
under different bandwidths by adjusting the bandwidth
value in the virtualization layer. The specific information
to be communicated is as follows:

1) Information related to task offloading: It is mainly
composed of the communication required for the
task offloading decision process when the decision
algorithm is at the edge, task information and related
decision instructions required to transfer for each
offloading decision, and the dynamic perception
between devices, e.g., real-time bandwidth and CPU
occupancy rate, as well as the task upload and
result download in the most critical task offloading
process, where the task may be in the form of text
or pictures.

2) Communication transmission required for federated
learning: It mainly includes the upload of neural
network parameters on the user side after a fixed
number of rounds, and the decentralization of pa-
rameters after aggregation. Unlike conventional fed-
erated learning, because this network adopts a P2P
structure, there is no need to specify an additional
receiving node for the parameters uploaded by the
client. The network will automatically aggregate
them to the cloud node, and the client only needs to
upload the parameters once per round. This reduces
the amount of communication required for federated
learning. In addition, ChainFL supports both elastic
computing power and edge-cloud collaboration. For
example, when the edge server on which the param-
eters reside is unable to access the cloud, it will be
automatically passed to other edge servers to ensure
the propagation of the parameters.

3) Communication transmission required by
blockchain: 1t includes the transmission of

transactions and the spread of blockchains. Similar
to federated learning, information related to the
blockchain will be broadcast to all nodes in the
entire network at the communication layer for
consensus algorithm authentication, blockchain
competitive leadership and embedded blocks.

o Computing Layer: This layer is responsible for the parts
that need to be computed in edge computing, including
calculations in task offloading, calculations required for
task decision algorithm training, as well as parameter ag-
gregation in federated learning and consensus algorithms
and workload proofs in the blockchain. The computing
layer usually consists of offloading decision-making algo-
rithms, bandwidth allocation algorithms, task offloading
and other parts.

o Application Layer: This layer is mainly responsible for
IoT applications deployed in edge computing, including
various applications of IoT devices, drone scheduling, and
unmanned vehicles. It should be noted that ChainFL does
not include specific algorithms in the computing layer and
the application layer. It only provides a toolkit to embed
the existing offloading models to simulate a complex
network environment and evaluate the offloading effect
of these models.

IV. PERFORMANCE EVALUATION AND CASE STUDY

In this section, we introduce a complex intelligent task of-
floading decision algorithm into ChainFL and simulate a multi-
terminated edge computing environment in an IoT scenario.
We first verify the utility of the simulation platform and the
effectiveness of the federation algorithm by testing the utility
of the offloading decision algorithm. After that, we simulate
an environment where security attacks exist and verify that
this platform can be effective against security attacks.

A. Experimental Setup

TABLE II: Hardware tools for experimental verification.

Tools Description
Router Responsible for building the network
Dell Workstation Simulate cloud server
NVIDIA Jetson nano Simulate edge server
Raspberry pi Simulate IoT devices
Nanopi Communication center

The ChainFL platform is written in python, the communica-
tion is based on the HTTP protocol and Flask is applied as the
HTTP service framework. ChainFL contains communication
procedures for each node and packages that reference other
offload algorithms. The devices and tools used in the experi-
ments are summarized in Table [l We set this environment to
have a cloud server, an edge server, a communication center,
and multiple clients. The whole structure of the experimental
platform is shown in Fig. [3]

NVIDIA jetson nano

Fig. 3: The equipment structure with ChainFL

We first run ChainFL’s communication program on each
device, and the results after running are shown in the bottom
right of the figure, where the terminal window shows the
other nodes currently connected to that device in real time.
In addition, as shown in the bottom left corner of the figure,
we can access the backend management page by typing “local
IP address: port number/observe” into the browser to view
the current connectivity and blockchain information. Once the
devices are running their respective communication programs,
they have formed an IoT environment with edge computing,
and then by referencing the package to the original task offload
decision algorithm, they can use the full functionality of the
platform, such as uploading parameters, performing federation
aggregation, and embedding blockchain.

To validate the effectiveness of ChainFL on the task of-
floading decision model, we introduce the Deep Reinforcement
Learning (DRL) algorithm as an offloading decision algorithm
into the platform, which is capable of effectively solving
semi-supervised problems such as task offloading decision by
combining deep learning with reinforcement learning [28]]. A
number of studies have been conducted to introduce DRL
algorithms into edge computing [29]-[31]], but few methods
combine DRL with federated learning for task offloading.
In our experiments, we introduce Deep Q-network (DQN)
Algorithm into the platform [9]]. We set the state space as
task information and the action space as the decision to offload
to a particular server. Our overall optimization objective is the
total utility, which is a negatively correlated linear weighted
sum of the overall energy consumption and the overall delay,
where the former is the total energy incurred due to offloading
the task, and the latter is the total delay generated by offloading
the task, including computation latency and communication
latency. A reasonable task offloading strategy will generate
less energy and latency, and thus have higher total utility.

B. Experimental Analysis

1) Impact of Federated Learning: Fig.[d]shows the compar-
ison of total utility with and without federated learning, here

the horizontal coordinate is the number of training rounds and
the vertical coordinate is the total utility, where a higher total
utility means a better offloading effect. It can be seen that with
the increase in the number of training rounds, both schemes are
able to converge to a high level, demonstrating that the DRL
algorithm can achieve good results in task offloading decision-
making. It should be emphasized that the DRL algorithm with
federated learning not only achieves a faster convergence rate,
but also has better stability after convergence. At 500 rounds
of training, the model with federated learning improved its
effectiveness by 11.7% over the traditional DRL algorithm. In
short, the model with federated learning achieves much better
results than the original model.

Total utility
8

80

76 —— DRL Algorithm
—— DRLAlgorithm using FL

0 1000 2000 3000 4000 5000

Episodes

Fig. 4: Effect of federated learning for task offloading

2) Impact of Number of Layers: As shown in Fig. 5] we
compare the effect of different numbers of neural network
layers. With the increase in the number of layers, we can
obtain a much better utility for task offloading. In addition,
it can be seen that even if the number of neural network
layers has changed, the model using federated learning is still
superior to the one without federated learning.

500 Episodes. 750 Episodes

= DRLAoritim
= DRL Algorithm using FL.

86 86
84
82
80 80
78 78
76 76

Two-layer Three-layer Four-layer

= DRL Algorithm
= DRL Algorithm using FL

il

Two-layer Three-layer Four-layer

Total utility
@ @
B

1000 Episodes 1500 Episodes

m—ORL Algorithm
= DRL Algorithm using FL

Two-layer Three-layer Four-layer

Total utility
3 3 2 2 e = 9
3 ¥ 8 8 2 8 8
3 3 8 B ' 8 8

Two-layer Three-layer Four-layer

Fig. 5: Effect of different numbers of neural network layers
for task offloading

3) Number of Rounds of Local training in Federated Learn-
ing: As shown in Fig. [f] we compare the different numbers
of local training rounds in federation learning. It can be seen

that both too high and too few local training rounds will cause
fluctuations in parameters, while 250 and 500 rounds possess a
smoother trend. Therefore, the number of local training rounds
for federal learning in this section is uniformly set to be within
the 250-500 interval.

WWW“'H

—— Local training rounds of 100

—— Local training rounds of 250

70 —— Local training rounds of 500
—— Local training rounds of 1000
Local training rounds of 1500

90

85

®
S

Total utility

75

0 1000 2000 3000 6000

Episodes

4000 5000

Fig. 6: Effect of different numbers of local training rounds in
federation learning

4) Impact of Number of Devices: Fig. []| illustrates the
effect of the number of devices for task offloading. It can
be clearly seen that as the number of devices involved in
federated learning increases, the effect of federated learning
is getting better. Especially in the first 1,000 rounds, the
federated learning model with more devices can converge to
the desired effect more quickly.

92

DRL Algorithm
FL Algorithm using 3 devices
91 B FL Algorithm using 5 devices
90
2 89
=
s
° 88
87
86
85

1000 1250
Episodes

1500 2000

Fig. 7: Effect of different numbers of participating devices for
task offloading

5) Impact of ChainFL on Security: Federated learning,
as a newly emerged distributed learning framework, may
have multiple security risks [33]. In this paper, we focus on
two major security risks: one is the malicious modification
of uploaded parameters due to a system vulnerability (up-
load attack), and the other is that the updated parameters
are maliciously tampered with by poisoned devices during
propagation (download attack). To cope with the former, our
platform allows custom encryption of the uploaded parameters,
while for the latter, ChainFL uses blockchain algorithms to
prevent the modification of updated parameters. Here, we use

ECDSA [34] as the encryption algorithm and use blockchain
to record the updated parameters.

—— Unprotected FL Algorithm under 10% upload attack

—— Unprotected FL Algorithm under 20% upload attack

—— Unprotected FL Algorithm under 10% download attack

—— Unprotected FL Algorithm under 20% download attack
Protected FL Algorithm

300

100 {

. b bt lL.LLLJ

3000
Episode

1000 2000 4000 5000 6000

Fig. 8: Convergence performance under different security

attacks
10% upload attack 20% upload attack

90 20
285 85
3
©
o 80 80

75 75

70 70

0 100 200 300 400 500 0 100 200 300 400 500
10% download attack 20% download attack

90 20
.85 85
3
T 80 80
ke

75 75

70 70

0 100 200 300 400 500 0 100 200 300 400 500
Episodes (a) Episodes

90 —————e
85 f
2
S 80
8
2
75
—— Unprotected FL Algorithm under 10% upload attack
—— Unprotected FL Algorithm under 20% upload attack
—— Unprotected FL Algorithm under 10% download attack
—— Unprotected FL Algorithm under 20% download attack
o Protected FL Algorithm
01 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19

Episodes
(b)

Fig. 9: Model performance under different security attacks

Fig. [8] shows the convergence of the model in the presence
of security attacks, where the horizontal coordinate is the
number of training steps and the vertical coordinate is the
loss function of the neural network in the DRL algorithm.
We can see that with the intensification of security attacks,
the convergence of the model suffers more damage, while the
download attack is even more damaging to the convergence.
In contrast, the federated learning algorithm with protective
measures is unaffected.

Fig. [0 shows the offloading effect of the model under the
security attack, where the abscissa is the number of training

steps and the ordinate is the total effectiveness of offloading. In
particular, Fig.[9(a) shows the federated learning effectiveness
curves under normal conditions and the effect of different
levels of security attacks on the model under unprotected
conditions. It can be seen that at 10% of the upload attacks,
the attacks have less impact on the unprotected model, but
when the upload attack rate reaches 20%, the unprotected
model starts to fluctuate. In addition, the upload attack is
more destructive to the global model, making the global model
appear less convergent. The download attack focuses more on
the attack on the individual user side, and the user side under
the download attack will occasionally fluctuate greatly, which
leads to a large fluctuation in the effect of the model. Fig. O[b)
shows a line graph of the model effect under different attacks.
It can be seen that the federated learning algorithm protected
by the security measures of this platform can effectively avoid
the effect fluctuations caused by security attacks, with faster
convergence speed and better stability. It should be emphasized
that ChainFL is mainly adopted as a platform to embed secure
encryption algorithms and blockchain algorithms to enhance
security. Specific security protection capabilities are influenced
by the embedded security algorithms and blockchain settings.

V. APPLICATION SCENARIOS AND DISCUSSIONS

In this section, we provide some application scenarios that
can be applied to the ChainFL simulation platform.

A. Case Study 1: Collaborate Edge and Cloud Computing

ChainFL can be used both as a simulation platform and as a
deployment platform for federated learning. On the one hand,
ChainFL can simulate a complex IoT environment supporting
edge computing with a small number of devices, which in turn
provides an experimental platform for task offloading models
to evaluate their effectiveness in a complex environment.
Furthermore, by embedding a task offloading decision model
into ChainFL, ChainFL can serve as a complete task offloading
model for edge computing. The model is embedded with a
federated learning mechanism that can be deployed on devices
under different systems to build a complex network including
multiple clients, edges and clouds, and then implement com-
plex task offloading at the clients. The ChainFL platform is
very easy to deploy, users only need to know the IP of the
communication center and run the specified communication
code on the device to access the system and be recognized
by other devices. By allowing the customization of transport
encryption algorithms with blockchain algorithms, ChainFL
has better security compared to currently available federated
learning platforms and can be applied to complex scenarios,
e.g., industrial cognitive Internet of Vehicles [35].

As illustrated in Fig. [T0} the embedded intelligent offloading
decision algorithm is located on the user side, which generates
task offloading decisions by receiving task information, and
then offloads the task either to the edge or the cloud. After
each training period, the client will automatically upload the
parameters of the neural network for federated learning, and
update the learned parameters to the network. The ChainFL
platform provides a way for many offloading decision-making

R
P W

Perform tasks

User domain Edge domain

S
&

Perform tasks

O

s
aaaaaaaaaa Aggregate parameters

Verify parameters

(XX E

of ChainFL

& Communication center

ChainFL task offloading platform

Run edge task
of ChainFL

Run cl k
[Run user program of ChainFL] [un cloud tas| l

Fig. 10: The task offloading process with ChainFL in collab-
orate edge and cloud computing environments

algorithms that are in the research stage, which can be de-
ployed in a real-world IoT environment and perform a real
task offloading process.

B. Case Study 2: Joint Federated Learning and Blockchain
Optimization

Compared with existing simulation platforms, ChainFL
has made more optimizations for federated learning and
blockchain algorithms, so it can train and evaluate the effects
of traditional federated learning algorithms. Fig. [IT] shows the
network structure of the ChainFL platform. For the blockchain
algorithm, the cloud is a full node, while the client and edge
are lightweight nodes. Due to the unique network structure
of ChainFL, it is more conducive to the generation and
propagation of blockchain, which can promote the application
of blockchain in edge computing environments. In practi-
cal deployments, ChainFL allows blockchain algorithms to
customize their consensus algorithms and mining algorithms,
thus increasing the compatibility of the platform. Specifically,
ChainFL does not embed specific blockchain algorithms, and
users can use it by introducing the required packages to
complete the corresponding functions.

Full node
(Cloud domain)

0wo b o
ceod 8§ wb
N SRR

Fig. 11: The network structure of the ChainFL platform

Lightweight node
(User domain
& Edge domain)

VI. CONCLUSION AND FUTURE WORK

In response to the complex conditions in the field of IIoTs,
we have developed ChainFL, a novel simulation platform that
provides a more realistic environment for offloading decision
models for tasks using different algorithms. In order to fully
improve the compatibility of the simulation platform, we have
simplified ChainFL into a lightweight toolkit that is compatible
with devices of different architectures, thus increasing the fea-
sibility of ChainFL. In addition, ChainFL can be deployed as a
federated learning platform with enhanced security to address
the challenges posed by big data and potential attacks in the
[IoTs. We have further validated its efficiency, lightweight and
security by embedding a complex task offloading framework
in an environment with potential attacks.

As a part of future work, we will utilize ChainFL in server-
less edge computing to provide more scalability and reliability,
as well as reduce costs for delay-sensitive tasks. We believe
that ChainFL can still perform parameter aggregation via the
edge server to complete the normal federation learning process
in serverless edge computing environments. In addition, we
will try to combine quantum computing to explore better
encryption algorithms, in order to provide models with better
security and high computational capacity.

ACKNOWLEDGMENT

This work was partly supported by the National Natural
Science Foundation of China under Grant No. 62071327 and
61801325, JSPS KAKENHI under Grant No. JP19H04105,
Tianjin Research Innovation Project for Postgraduate, and
CCF-Tencent Open Research Fund.

REFERENCES

[1] M. Xiong, Y. Li, L. Gu, S. Pan, D. Zeng, and P. Li, “Reinforcement
learning empowered idps for vehicular networks in edge computing,”
IEEE Network, vol. 34, no. 3, pp. 57-63, 2020.

[2] J. Du, C. Jiang, J. Wang, Y. Ren, and M. Debbah, “Machine learn-
ing for 6G wireless networks: Carrying forward enhanced bandwidth,
massive access, and ultrareliable/low-latency service,” IEEE Vehicular
Technology Magazine, vol. 15, no. 4, pp. 122-134, 2020.

[3] J. Wang, C. Jiang, K. Zhang, X. Hou, Y. Ren, and Y. Qian, “Distributed
g-learning aided heterogeneous network association for energy-efficient
iiot,” IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp.
2756-2764, 2020.

[4] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, and P. Hui, “Edge intelligence:
Architectures, challenges, and applications,” ArXiv, vol. abs/2003.12172,
2020.

[5] G. Manogaran, S. Mumtaz, C. X. Mavromoustakis, E. Pallis, and
G. Mastorakis, “Artificial intelligence and blockchain-assisted offloading
approach for data availability maximization in edge nodes,” [EEE
Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2404-2412,
2021.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358,
2017.

[71 Z. Zhou, H. Liao, X. Wang, S. Mumtaz, and J. Rodriguez, “When
vehicular fog computing meets autonomous driving: Computational
resource management and task offloading,” IEEE Network, vol. 34, no. 6,
pp. 70-76, 2020.

[8] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Communications, vol. 27, no. 1, pp. 92-99,
Feb. 2020.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Transactions on Network and Service Management, vol. 18, no. 3,
pp. 3448-3459, 2021.

C. Jiang, N. Ge, and L. Kuang, “Al-enabled next-generation com-
munication networks: Intelligent agent and Al router,” IEEE Wireless
Communications, vol. 27, no. 6, pp. 129-133, 2020.

Y. Zhan, P. Li, Z. Qu, D. Zeng, and S. Guo, “A learning-based incentive
mechanism for federated learning,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 6360-6368, 2020.

Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A blockchain-
based decentralized federated learning framework with committee con-
sensus,” IEEE Network, vol. 35, no. 1, pp. 234-241, 2021.

M. Mukherjee, S. Kumar, C. X. Mavromoustakis, G. Mastorakis,
R. Matam, V. Kumar, and Q. Zhang, “Latency-driven parallel task data
offloading in fog computing networks for industrial applications,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6050-6058,
2020.

M. Mukherjee, V. Kumar, S. Kumar, R. Matamy, C. X. Mavromoustakis,
Q. Zhang, M. Shojafar, and G. Mastorakis, “Computation offload-
ing strategy in heterogeneous fog computing with energy and delay
constraints,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020, pp. 1-5.

H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “Eedto:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled iot-edge-cloud orchestrated computing,” IEEE Internet of Things
Journal, vol. 8, no. 4, pp. 2163-2176, 2021.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23-50, 2011.

H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275-1296, 2017.
J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya,
“Cloudsimsdn: Modeling and simulation of software-defined cloud data
centers,” in 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. 1EEE, 2015, pp. 475-484.

S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Contain-
ercloudsim: An environment for modeling and simulation of containers
in cloud data centers,” Software: Practice and Experience, vol. 47, no. 4,
pp. 505-521, 2017.

S. Lu, Y. Yao, and W. Shi, “CLONE: Collaborative learning on the
edges,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10222—
10236, 2021.

S. Wang, Y. Hu, and J. Wu, “KubeEdge. Al: Al platform for edge
devices,” arXiv e-prints, pp. arXiv—2007, 2020.

Y. Zhang, M. Saberi, M. Wang, and E. Chang, “K3S: Knowledge-driven
solution support system,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 9873-9874.

S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and
J. Passerat-Palmbach, “A generic framework for privacy preserving deep
learning,” arXiv preprint arXiv:1811.04017, 2018.

Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated
learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 13, no. 3, pp. 1-207, 2019.

Y. Ma, D. Yu, T. Wu, and H. Wang, “Paddlepaddle: An open-source
deep learning platform from industrial practice,” Frontiers of Data and
Domputing, vol. 1, no. 1, pp. 105-115, 2019.

C. He, S. Li, J. So, M. Zhang, H. Wang, X. Wang, P. Vepakomma,
A. Singh, H. Qiu, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar,
Q. Yang, M. Annavaram, and S. Avestimehr, “FedML: A research
library and benchmark for federated machine learning,” arXiv preprint
arXiv:2007.13518, 2020.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738-1762,
2019.

L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and A. Nallanathan,
“Deep reinforcement learning based dynamic trajectory control for
UAV-assisted mobile edge computing,” IEEE Transactions on Mobile
Computing, 2021.

[30]

[31]

(32]

(33]

[34]

[35]

L. Huang, X. Feng, L. Qian, and Y. Wu, “Deep reinforcement learning-
based task offloading and resource allocation for mobile edge comput-
ing,” in International Conference on Machine Learning and Intelligent
Communications. Springer, 2018, pp. 33-42.

M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for iot devices with energy harvesting,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1930—
1941, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Generation Computer Systems, vol. 115, pp. 619-640,
2021.

D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, no. 1, pp. 36-63, 2001.

X. Xu, B. Shen, X. Yin, M. R. Khosravi, H. Wu, L. Qi, and S. Wan,
“Edge server quantification and placement for offloading social media
services in industrial cognitive 1oV,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 4, pp. 2910-2918, 2021.

Guanjin Qu received the bachelor’s degree from
Taiyuan University of Technology, China in 2019.
He is currently working towards the Master’s de-
gree at the Center for Applied Mathematics, Tianjin
University, China. His research interests include
distributed deep learning and edge computing.

Naichuan Cui is currently working toward M.Sc of
Signal Processing at School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity, Singapore. His current research interests include
image and video processing, content-based multime-
dia analysis, machine learning and signal processing.

Huaming Wu received the B.E. and M.S. de-
grees from Harbin Institute of Technology, China
in 2009 and 2011, respectively, both in electrical
engineering. He received the Ph.D. degree with the
highest honor in computer science at Freie Uni-
versitdt Berlin, Germany in 2015. He is currently
an Associate Professor in the Center for Applied
Mathematics, Tianjin University, China. His research
interests include wireless networks, mobile edge
computing, internet of things and deep learning.

Ruidong Li is an associate professor at Kanazawa
University, Japan. Before joining this university, he
was a senior researcher at the National Institute
of Information and Communications Technology
(NICT), Japan. He received the M.Sc. degree and
Ph.D. degree in computer science from the Univer-
sity of Tsukuba in 2005 and 2008, respectively. He
serves as the secretary of IEEE ComSoc Internet
Technical Committee (ITC), and are the founders
and chairs of IEEE SIG on Big Data Intelligent
Networking and IEEE SIG on Intelligent Internet
Edge. He is the associate editor of IEEE Internet of Things Journal, and also
served as the guest editors for a set of prestigious magazines, transactions,
and journals, such as IEEE communications magazine, IEEE network, IEEE
TNSE. He also served as chairs for several conferences and workshops, such
as the general co-chair for IEEE MSN 2021, AIVR2019, IEEE INFOCOM
2019/2020/2021 ICCN workshop, TPC co-chair for IWQoS 2021, IEEE MSN
2020, BRAINS 2020, IEEE ICDCS 2019/2020 NMIC workshop, and ICCSSE
2019. His research interests include future networks, big data, intelligent In-
ternet edge, Internet of things, network security, information-centric network,
artificial intelligence, quantum Internet, cyber-physical system, and wireless
networks. He is a senior member of IEEE and a member of IEICE.

Yuemin Ding received the Ph.D. degree in elec-
tronic systems engineering from Hanyang Univer-
sity, Ansan, South Korea, in 2014. He is currently
an Associate Professor with the Department of
Electrical and Electronic Engineering, University of
Navarra, since 2021. From 2019 to 2021, he was
a Postdoctoral Fellow at the Department of Energy
and Process Engineering, Norwegian University of
Science and Technology, Trondheim, Norway. From
2015 to 2019, he was an Associate Professor at
the School of Computer Science and Engineering,

k ™
Tianjin University of Technology, China. From 2017 to 2018, he was a Visiting
Fellow with the Queensland University of Technology, Brisbane, QLD,

Australia. His research interests include Internet of Things, communication
networks in smart grid, smart homes/buildings, and smart manufacturing.

	Introduction
	Related Work
	Edge/Cloud Simulation Platform
	Federated Learning Platform

	Simulation Platform Structure and Functions
	System Model
	Architecture of ChainFL

	Performance Evaluation and Case Study
	Experimental Setup
	Experimental Analysis
	Impact of Federated Learning
	Impact of Number of Layers
	Number of Rounds of Local training in Federated Learning
	Impact of Number of Devices
	Impact of ChainFL on Security

	Application Scenarios and Discussions
	Case Study 1: Collaborate Edge and Cloud Computing
	Case Study 2: Joint Federated Learning and Blockchain Optimization

	Conclusion and Future Work
	References
	Biographies
	Guanjin Qu
	Naichuan Cui
	Huaming Wu
	Ruidong Li
	Yuemin Ding

