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DDPQN: An Efficient DNN Offloading Strategy in
Local-Edge-Cloud Collaborative Environments
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Abstract—With the rapid development of the Internet of Things (IoT) and communication technology, Deep Neural Network (DNN)
applications like computer vision, can now be widely used in IoT devices. However, due to the insufficient memory, low computing
capacity, and low battery capacity of IoT devices, it is difficult to support the high-efficiency DNN inference and meet users’
requirements for Quality of Service (QoS). Worse still, offloading failures may occur during the massive DNN data transmission due to
the intermittent wireless connectivity between IoT devices and the cloud. In order to fill this gap, we consider the partitioning and
offloading of the DNN model, and design a novel optimization method for parallel offloading of large-scale DNN models in a
local-edge-cloud collaborative environment with limited resources. Combined with the coupling coordination degree and node balance
degree, an improved Double Dueling Prioritized deep Q-Network (DDPQN) algorithm is proposed to obtain the DNN offloading
strategy. Compared with existing algorithms, the DDPQN algorithm can obtain an efficient DNN offloading strategy with low delay, low
energy consumption, and low cost under the premise of ensuring “delay-energy-cost” coordination and reasonable allocation of
computing resources in a local-edge-cloud collaborative environment.

Index Terms—Mobile Edge Computing, Cloud Computing, QoS, Computation Offloading, DNN Partition.
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1 INTRODUCTION

D EEP learning technologies, especially Deep Neural Net-
works (DNN), break through the bottleneck of tra-

ditional machine learning and have been widely applied
in mobile applications and services, ranging from natural
language processing, autonomous driving, biomedicine to
image processing. More and more Artificial Intelligence (AI)
applications, e.g., face recognition, Virtual Reality (VR), and
Augmented Reality (AR), are being deployed on mobile
and Internet of Things (IoT) devices, which poses many
new challenges to mobile systems. The most obvious one
is the contradiction between the limited computing capacity
of IoT devices and running complex DNN inference, which
cannot be solved in a short time due to the slow hardware
development in small-sized equipment.

Computation offloading determines which subtasks
should be offloaded to cloud servers or edge servers for
execution, and which subtasks need to be processed lo-
cally [1]. It can effectively solve the deficiencies in comput-
ing capacity, storage, and energy consumption for clients.
Deep Reinforcement Learning (DRL) can achieve efficient
offloading performance in computation offloading [2]. The
DRL algorithm combines the perception ability of deep
learning and the decision-making ability of reinforcement
learning, using the agents to continuously interact with
the environment to learn the optimal actions to take in
different states to maximize rewards. This high-dimensional
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search algorithm for maximizing rewards is suitable for
computation offloading [3].

Facing the challenge that the constrained computing
resources of mobile devices are insufficient to support com-
plex DNN inferences, the traditional approach is to offload
part of the DNN model to cloud servers, so as to alleviate
the computing pressure of clients. Cloud computing [4]
can provide users with abundant computing resources and
storage resources. However, cloud servers are generally far
away from mobile devices, and the massive data trans-
mission between the device and cloud is easily affected
by factors, e.g., network bandwidth, data volume, central
computing capacity, and transmission delay [5]. This brings
a huge squeezing force to the network bandwidth, which
can easily cause excessive delay and fails to meet the user’s
requirements for Quality of Service (QoS). Along with the
rapid development of edge computing technology, DNN
applications can also be deployed on edge servers. Com-
pared with cloud servers, edge servers are closer to the data
source, which can greatly reduce the pressure on network
bandwidth while improving the efficiency of DNN process-
ing [6]. Nevertheless, edge servers still have shortcomings,
e.g., limited computing power and insufficient memory [7].

In recent years, the research on DNN partitioning and
offloading in the cloud/edge computing environments has
attracted more and more attention, providing several so-
lutions in different directions. Firstly, the client still suf-
fers from high transmission delay when communicating
with distant cloud servers, while edge servers have lower
transmission delay, but their computing capability is not
scalable. Most studies [8], [9], [10] have not considered how
to implement DNN offloading in a local-edge-cloud collab-
orative environment where the computing resources of IoT
devices are limited. Moreover, most research conducted on
DNN offloading is focusing on reducing delay and saving



energy consumption of IoT devices, while neglecting to
minimize the cost. Lastly but most importantly, researchers
have ignored the problems caused by the incoordination
between delay, energy consumption, and cost, as well as
the unreasonable allocation of resources. The details are as
follows: i) In some cases, the system evaluation performance
is very good, but one of the evaluation indicators, e.g., delay,
energy consumption, and cost, is too high or too low. ii)
It often happens that the user enters the environment first
occupies all the computing resources of some servers, and
the user enters the environment later cannot use the above-
mentioned servers, resulting in unreasonable resource allo-
cation.

To address the above challenges, we consider achieving
the goals of low delay, low energy consumption, and low
cost in a local-edge-cloud collaborative environment with
limited resources. A novel Double Dueling Prioritized deep
Q-Network (DDPQN) algorithm is proposed to obtain the
optimal DNN offloading strategy. In addition, we consider
the queuing time caused by the offloading of large-scale
DNN models in a resource-constrained environment. Then
we introduce the coupling coordination indicator and node
balance indicator to optimize the coordination of delay, en-
ergy, and cost, and the rationality of resource allocation, so
as to achieve an efficient DNN offloading strategy and meet
QoS requirements. To the best of our knowledge, DDPQN
is the first work to formally model the rational allocation
problem of computing resources and the coordination opti-
mization problem between delay, energy, and cost, which
realizes the efficient partitioning and offloading of large-
scale DNN models based on the DRL algorithm. The main
contributions of this paper can be summarized as follows:

• A comprehensive DNN partitioning and offloading
strategy for IoT systems is designed, which takes the
coordination between delay, energy consumption,
and cost into account. The setting of the coupling
coordination degree can effectively reduce the phe-
nomenon that the system of multiple indicators is
excellent but the individual indicators differ greatly.

• Considering the unreasonable distribution of com-
puting resources caused by some users greedily oc-
cupying the server resources, we effectively improve
the utilization of computing resources by optimiz-
ing the balance of the DNN layer distribution in
the local-edge-cloud collaborative environment, i.e.,
node balance.

• Considering the parallel offloading of large-scale
DNN models, we propose a DDPQN algorithm in
a local-edge-cloud collaborative environment under
the constraints of parallel pools, which obtains an
efficient DNN offloading strategy with low delay,
low cost, and low energy consumption.

2 RELATED WORK

In recent years, more and more attention has been paid to
the research of efficient DNN offloading, aimed at finding
the optimal offloading strategy with low delay or energy
consumption. Scholars have conducted in-depth research on
DNN partitioning and offloading, and proposed feasibility
studies from various aspects.

Fig. 1: A DNN offloading strategy in a local-edge-cloud collab-
orative environment. 1© indicates input DNN task parameters
and local-edge-cloud collaborative environment parameters, 2©
represents that the secondary offloading will start after the
initial offloading is completed, 3© indicates the generation of
DNN offloading strategy, and 4© denotes offloading the DNN
partitions to the local-edge-cloud collaborative environment.

2.1 Edge/Fog/Cloud-based DNN Offloading
Jeong et al. [11] applied the shortest path and penalty factor
to divide and offload the DNN model from a single client
to a single edge server. Li et al. [12] joined DNN partition
and DNN right-sizing to maximize precision, while ensur-
ing application delay requirements. Qi et al. [13] proposed
a model scheduling algorithm that adaptively selects the
cloud or mobile terminal according to the terminal status
and network status. Yu et al. [14] applied deep imitation
learning based on mobile edge computing (MEC) to min-
imize offloading costs. Hu et al. [15] designed a Dynamic
Adaptive DNN Surgery (DADS) scheme to segment the
DNN model and accelerate DNN inference. Kang et al. [16]
considered how to effectively leverage the cloud and client
cycle acquisition DNN partitioning strategy in the cloud
computing environment to achieve low delay, low energy
consumption, and high data throughput for the application.
Considering DNN partitioning optimization, Wang et al. [17]
proposed an adaptive distributed scheme to accelerate DNN
inference, which can realize dynamic offloading of DNN ac-
cording to the edge computing environment. Tang et al. [18]
introduced an Iterative Alternating Optimization (IAO) al-
gorithm, which considers the relationship between DNN
partitioning and resource allocation under limited resource
conditions. Ju et al. [19] proposed a DeepSave scheme in
the hope of saving more frames for DNN inference during
switching. Mohammed et al. [20] considered a distributed
offloading scheme (DINA) based on the matching game
method for DNN partition and offloading in a fog environ-
ment.

2.2 Local-Edge-Cloud Collaborative DNN Offloading
Teerapittayanon et al. [21] proposed a distributed DNN
over the client, edge server, and cloud server. This method
can not only perform DNN inference on the cloud, but
also use the shallow layer of neural networks to perform
fast local inference on the edge and clients. Ren et al. [22]
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considered a collaborative object recognition solution for
mobile Web AR based on the edge, and explored more
fine-grained DNN partitions under the mobile web browser,
cloud, and edge. Chen et al. [23] proposed a method based
on the greedy and genetic algorithm to optimize the average
response time of multi-task parallel scheduling. Ding et
al. [24] used CloudCNN to assist in training EdgeCNN so
that it could provide persistent and rapid response cognitive
services. Pachecom et al. [25] accelerated DNN inference
by dividing DNN between edge server and cloud server
to support high-response programs. In addition, combining
edge and cloud computing resources, network bandwidth,
and inherent data parameters, a DNN partitioning optimiza-
tion solution is proposed. Considering that the mobility of
mobile devices is prone to computing offload failure, Tian
et al. [26] proposed to offload part of the DNN model to the
edge/cloud to realize the cooperative execution between the
mobile device, edge server, and cloud server. Based on this,
a DNN partition offloading algorithm (MDPO) for mobile
users is developed, which can reduce the total delay of the
DNN model to the greatest extent when users are moving.

2.3 A Qualitative Comparison

We briefly analyze the problems that existed in the previ-
ous work in the above environment. Then, in view of the
shortcomings of the existing work, improvement measures
are proposed.

To optimize the delay or energy consumption of DNN
inference, most of the previous work is to offload the DNN
model in an edge/fog/cloud computing environment or
a local-edge-cloud computing environment with a single
edge server and a single cloud server. Firstly, In the above
computing environment, computing resources are usually
limited, which is not suitable for offloading large-scale DNN
models. In addition, researchers also ignore the queuing
time caused by limited computing resources. Secondly, the
methods in the previous work are usually suitable for
successively implementing DNN offloading, which cannot
achieve parallel offloading of DNN models and is inap-
propriate for large-scale DNN parallel offloading. Thirdly,
when multiple factors of delay, energy consumption, and
cost are used as optimization targets, the coordination
among multiple factors is usually ignored. In other words,
the system of multiple factors is optimized, but one of the
factors is optimized too high, and one of the factors is
optimized too low. Finally, we find that the previous work
rarely considered the unreasonable allocation of computing
resources caused by users first enter the computing environ-
ment occupies all resources of some servers.

In this paper, we propose to achieve the goals of low
delay, low energy consumption, and low cost. Firstly, com-
pared with existing work, we consider a local-edge-cloud
collaborative environment with multiple edge servers and
cloud servers, which is suitable for large-scale DNN model
offloading. We also consider the queuing time caused by
the limited resources of the computing environment when
offloading the large-scale DNN model. Secondly, combined
with the DRL algorithm, we develop the DDPQN algorithm,
which is a high-dimensional search algorithm for maximiz-
ing rewards and is suitable for parallel offloading of large-

scale DNN models. Thirdly, to avoid the problem of exces-
sive differences in the optimization of various indicators,
we introduce the coupling coordination indicator to realize
the coordinated optimization of delay, energy consumption,
and cost. Finally, considering the unreasonable allocation of
computing resources, we propose to use the node balance
indicator to optimize the above problem.

3 SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we first propose two-step offloading strategy
to meet the offloading requirements of the chain type DNN
model and the topology type DNN model containing the
Inception Module. Then we introduce the local-edge-cloud
collaborative environment and formulate the DNN offload-
ing model. The generation of the DNN offloading strategy
is shown in Fig. 1. In addition, taking into account the
dimensions of different indicators, we standardize the data
before the start of the offloading plan.

3.1 DNN Model Preprocessing
For the offloading of the Inception Module, our principle
is to treat the layer with the same input as a whole. We
elaborate on two types of Inception modules in Fig. 2.
The two-step offloading strategy for the Inception Module is
conducted as follows:

• Initial offloading: we regard the Inception Module
as one layer in the DNN model, and perform a
preliminary partitioning and offloading of the DNN
model. After initial offloading, we can get the offload-
ing position of the input layer and output layer of
the Inception Module.

• Secondary offloading: Based on initial offloading, we
divide the Inception Module and offload each branch
of the Inception Module separately. At this time, we
note that the final offloading delay of the Inception
Module is the branch that takes the longest time, and
the energy consumption and cost are the sums of all
branches, respectively.

3.2 System Overview
We design a local-edge-cloud collaborative environment
with multiple edge servers and multiple cloud servers. The
client has problems such as insufficient resources and poor
device performance. Therefore, we combine the advantages
of cloud servers with scalable computing capabilities and
edge servers with low transmission delay to support effi-
cient offloading of complex DNN applications [27].

The local-edge-cloud collaborative environ-
ment 〈L,E,C〉 is composed of client, edge and
cloud, where L = {L1} consists of one client,
E = {E1, E2, · · · , En, · · · , Eb} consists of b edge servers,
and C = {C1, C2, · · · , Cm, · · · , Cd} consists of d cloud
servers. The environment can also be described as
M = {M1,M2, · · · ,Ms, · · · ,M(1+b+d)}, s ∈ [1, 1 + b + d].
Among them, M1 is the client L, {M2,M3, · · · ,M(1+b)}
is the edge E, and {M(2+b),M(3+b), · · · ,M(1+b+d)} is the
cloud C. Then, we define the server type b = {b0, b1, b2},
where b0 represents the client, b1 is the edge server, and b2
is the cloud server.
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(a) Inception Module Type-1: in the initial offloading,
regard layer block A-1 as one layer; in the secondary
offloading, regard layer block B-1 as one layer.

(b) Inception Module Type-2: in the initial offloading, regard layer
block A-2 as one layer; in the secondary offloading, regard layer block
B-2, layer block C-2, and layer block D-2 as one layer, respectively.

Fig. 2: Types of Inception Module.

TABLE 1: Symbols and Definitions

Symbols Definitions
L Client
E Edge
C Cloud
M Local-edge-cloud collaborative environment
D DNN model collection
Dij The j-th layer under the i-th DNN
t1ij Execution delay
t2ij Transmission delay
t3ij Queuing Time
Tij Total Delay
e1ij Execution energy consumption
e2ij Transmission energy consumption
Eij Total energy consumption
u1ij Execution cost
u2ij Transmission cost
Uij Total cost
Hij Coupling coordination degree
Zij Node balance degree

The DNN set is denoted by D = {D1, D2, · · · , Di, · · · },
i ∈ [1, α], where the DNN model Di is treated as a
task, and α indicates the number of tasks. In the Ini-
tial offloading, each DNN task can be expressed as Di =
{Di1, Di2, · · · , Dij , · · · }, j ∈ [1, βi], where we define the j-
th layer under the i-th DNN as a subtask Dij , and βi refers
to the number of subtasks under the task Di. In the Sec-
ondary offloading, some subtasks Dij are Inception Modules
in the taskDi. We define the DNN layer under the Inception
Module as Dυw

ij∗ , where υ is the total number of branches in
all Inception Modules, w represents the number of layers in
each branch of the Inception Module, j∗ indicates that the
j-th layer in the subtask Dij is the Inception Module.

3.3 System Delay of Subtask
3.3.1 Execution Delay
In a local-edge-cloud collaborative environment, the subtask
Dij may be offloaded to the edge server, cloud server, or
directly executed locally. We define an indicative function
1s, where s represents the offloading location of the subtask
Dij in the environment M. For instance, for the indicative
function 1s∈[2,1+b], assuming that the actual offloading lo-
cation of Dij is Ms, when s = 1 or s > 1 + b, 1s∈[2,1+b] = 0,
otherwise, 1s∈[2,1+b] = 1. After the input data required
by the subtask Dij is transmitted to the remote server, the

subtask starts to execute, and its execution delay t1ij can be
defined as [28]:

t1ij =
wij
QLij

1s=1 +
wij
QEij

1s∈[2,1+b] +
wij
QCij

1s∈[2+b,1+b+d], (1)

where QLij ∈ {QL1 }, QEij ∈ {QE1 , · · · , QEn , · · · , QEb }, QCij ∈
{QC1 , · · · , QCm, · · · , QCd }. QLij , QEij and QCij indicate the com-
puting power of the client, edge server and cloud server
where the subtask Dij is located, respectively. QL1 , QEn and
QCm represent the computing power of the client L1, edge
server En and cloud server Cm, respectively. wij is the
number of CPU cycles required to complete the subtaskDij .

3.3.2 Transmission Delay

Since the DNN task Di is a serial task, the subtasks are
executed in sequence. We assume that the uplink data rate
is the same as the downlink data rate. Based on Shannon’s
formula, the data transmission rate vu(a) under the server
u can be calculated as follows [29]:

vu(a) = ω log2

(
1 +

qugu,ρ
$0 +

∑
n̄∈U\{u}:an̄=au

qn̄gn̄,ρ

)
, (2)

where ω represents the bandwidth of the channel, qu in-
dicates the server transmission power, gu,ρ represents the
channel gain between the server u and the base station ρ,
$0 denotes the background noise power, U = {1, 2, · · · , U}
denotes the set of server u. For all servers, the decision
profile a = {a1, a2, · · · , au, · · · , aU}, where au is the of-
floading decision under the server u. au ∈ {0} ∪ F, where
{0} indicates that data transmission will be suspended,
F = {1, 2, · · · , F} represents the set of wireless channels.

We consider the transmission delay caused by data trans-
mission between different servers. The data transmission
delay between subtasks Dij−1 and Dij can be defined
as [30]:

t2ij =
gij
vij

, (3)

where gij is the input data size of subtask Dij . Then we cal-
culate the transmission rate according to Eq. 2, let vij denote
the data transmission rate between the servers where the
subtask Dij−1 and the subtask Dij are located respectively.
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3.3.3 Queuing Time

The parallel pool represents the maximum number of sub-
tasks that each remote server can run simultaneously. We
assume that the number of pools of each server is limited,
that is, computing resources are limited. Therefore, when of-
floading large-scale DNN models in parallel, it is necessary
to consider the queuing time caused by the limited parallel
pool. Let xpls represent the number of parallel pools under
the server Ms, xruns represents the number of subtasks
running on the server Ms, and xsts represent the number of
subtasks to be run under the serverMs. Obviously, we know
that xruns 6 xpls . In addition, if xsts 6 xpls , the waiting time is
0. If xsts > xpls , we calculate the time difference Iij between
the complete execution time of subtask being executed and
the start execution time of subtask being queued. If Iij > 0,
indicating that the subtask needs to wait, and the waiting
time zij = Iij . If Iij 6 0, indicating that the subtask does
not need to wait, then the waiting time zij = 0. The queuing
time t3ij can be expressed as:

t3ij = zij1s=1 + zij1s∈[2,1+b] + zij1s∈[2+b,1+b+d], (4)

where Iij = t2i′j′ + t1i′j′ +zi′j′ − t2ij +(t̂i′j′ − t̂ij), the waiting
time of subtasks Dij and Di′j′ can be expressed as zij and

zi′j′ , respectively, where zij =

{
0, xsts 6 xpls
max{0, Iij}, xsts > xpls

.

t2ij and t2i′j′ denote the data transmission delay of subtasks
Dij and Di′j′ , respectively. t1i′j′ is the execution delay of
the subtask Di′j′ , t̂ij and t̂i′j′ indicate the time to start
transmitting the input data of the subtask Dij and Di′j′ ,
respectively.

3.3.4 Total Delay

The total delay of the subtask Dij can be expressed as
follows:

Tij = t1ij + t2ij + t3ij , (5)

where Tij is the sum of execution delay t1ij , transmission
delay t2ij and queueing time t3ij .

3.4 Energy Consumption of Subtask

3.4.1 Execution Energy Consumption

For clients and remote servers, the execution energy con-
sumption can be expressed as follows [31]:

e1
ij = PLij t

1
ij1s=1 + P 0

ijt
1
ij1s∈[2,1+b] + P 0

ijt
1
ij1s∈[2+b,1+b+d],

where PLij denotes the power of the client when computing
subtask Dij locally, P 0

ij represents the idle power of the
client when the subtask Dij is executed on the edge/cloud.

3.4.2 Transmission Energy Consumption

We consider the transmission energy consumption during
the data transmission process, which can be calculated
as [31]:

e2
ij = P tijt

2
ij ,

where P tij is the transmission power from the client to the
edge/cloud server where the subtask Dij is located.

3.4.3 Total Energy Consumption
The total energy consumption of DNN subtask Dij under
each server is generated by data transmission and execution
calculation. Therefore, the total energy consumption can be
expressed as:

Eij = e1
ij + e2

ij . (6)

3.5 Calculation Cost of Subtask
3.5.1 Execution Cost
The execution cost of the subtask Dij can be obtained as
follows [32]:

u1
ij = t1ijq

L
ij1s=1 + t1ijq

E
ij1s∈[2,1+b] + t1ijq

C
ij1s∈[2+b,1+b+d],

(7)

where qLij ∈ {qL1 }, qEij ∈ {qE1 , · · · , qEn , · · · , qEb }, qCij ∈
{qC1 , · · · , qCm, · · · , qCd }. qLij , qEij and qCij refers to the running
cost per unit time of the client, edge server and cloud server
where the subtask Dij is located, respectively. qL1 , qEn and
qCm represent the running cost per unit time of the client L1,
edge server En and cloud server Cm, respectively.

3.5.2 Transmission Cost
We consider the cost generated by data transmission, and
the transmission cost between subtasks Dij−1 and Dij is as
follows [33]:

u2
ij = gij · yij . (8)

where gij represents the transmission data from the subtask
Dij−1 to the subtask Dij , yij denotes the transmission cost
per unit data between the servers where the subtask Dij−1

and the subtask Dij are located respectively.

3.5.3 Total Cost
We consider that the total cost of subtask Dij is generated
by data transmission and task execution, so the total cost
Uij can be expressed as:

Uij = u1
ij + u2

ij . (9)

3.6 Coupling Coordination and Node Balance
3.6.1 Coupling Coordination Degree
The coupling coordination degree is regarded as an impor-
tant indicator to measure the coordination status of different
indicators. We define the coupling coordination degree as
a measurement indicator, which can more objectively and
comprehensively measure the overall coordination level
of ”delay-energy-cost” system, reflecting the coordination
effect of delay, energy consumption, and cost. The cou-
pling coordination degree Hij , the coupling degree Cij and
the comprehensive coordination indicator Yij of subtask
Dij [34], [35] can be expressed as follows, respectively:

Hij =
√
Cij × Yij , (10)

{
Cij = 3× 3

√
Tij×Eij×Uij

(Tij+Eij+Uij)3 ,

Yij = λ1Tij + λ2Eij + λ3Uij ,
(11)

where Hij ∈ [0, 1], which is the higher the better. λ1, λ2 and
λ3 are weighting coefficients.
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3.6.2 Node Balance Degree
In the real-world offloading scenario, the number of clients
changes dynamically, and new users will continue to enter
the local-edge-cloud collaborative environment. When the
user enters the environment first has occupied all the com-
puting resources of the server Ms0 , if the user enters the
environment later wants to offload the subtasks to the server
Ms0 , restrictions will occur. In order to improve the resource
utilization of servers and achieve a balanced distribution of
subtasks in the computing environment, the node balance is
defined as:

Zij =
1

2

1+b∑
s′,s′′=2

|Bs
′

ij −Bs
′′

ij |+
1

2

1+b+d∑
s′,s′′=2+b

|Bs
′

ij −Bs
′′

ij |, (12)

where 1
2

∑1+b
s′,s′′=2 |Bs

′

ij − Bs
′′

ij | represents the node balance
degree at the edge, 1

2

∑1+b+d
s′,s′′=2+b |Bs

′

ij − Bs
′′

ij | represents
the node balance degree at the cloud, Zij indicates the
node balance degree after offloading the subtask Dij in the
local-edge-cloud collaborative environment, Bs

′

ij and Bs
′′

ij

respectively denote the number of subtasks on servers Ms′

andMs′′ after the subtaskDij is offloaded. In addition, since
there is an absolute value in Eq. 12, |Bs′ij−Bs

′′

ij | = |Bs
′′

ij −Bs
′

ij |
is equal to the subtask difference calculated twice, so divide
it by two.

3.7 Problem Formulation

In order to achieve “delay-energy-cost” optimization under
the premise of multi-task parallel scheduling, DNN offload-
ing in the local-edge-cloud collaborative environment can
be regarded as an optimization problem. We are committed
to finding the DNN offloading strategy with low delay,
low energy consumption and low cost in a local-edge-cloud
collaborative environment, while trying to optimize node
balance degree and coupling coordination degree. In order
to adapt to DNN offloading of chain type DNN model and
topology type DNN model, we propose two-step offloading
strategy, the details are described as follows:

3.7.1 Initial Offloading
In the first step of two-step offloading strategy, we take the
Inception module as a whole and offload the overall DNN
model. Then, we introduce a system utility Q(S,A,x)
defined as follows:

Q(S,A,x) =
∑
i

∑
j

φ(θTij + ϑEij + ηUij)− ϕHij + ξZij ,

where x = {xruns |s = 1, 2, · · · , 1 + b + d}. A is the set
of Aij , A

i
j denotes the offloading action of the subtask

Dij . S is the set of states Sij , S
i
j includes the number

of CPU cycles required to complete the subtask Dij , the
transmission data between the subtasks Dij−1 and Dij and
the action information Aij . In addition, Aij can determine
to which server the subtask Dij will be offloaded, so that
the server parameters can be obtained. Aij−1 and Aij can
determine the server, where the subtasks Dij−1 and Dij

are located, and then obtain the transmission rate between
the two servers. For an environment with eleven servers,
the offloading action of the subtask Dij can be expressed

as Aij ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, where each number
represents a server.

Then, we formulate an optimization problem (P1) to
minimize Q(S,A,x) by jointly optimizing the offloading
decision and the pool allocation, which is expressed as
follows:

(P1) : Q∗(S) = min
A,x

Q(S,A,x), (13)

s.t. : xruns 6 xpls , (14)
0 6 θ, ϑ, η 6 1, (15)
0 6 φ, ϕ, ξ 6 1, (16)
θ + ϑ+ η = 1, (17)
φ+ ϕ+ ξ = 1. (18)

Considering the user’s demand, we set the weights of delay,
energy consumption, and cost to θ, ϑ, and η, respectively.
In addition, we also set the weights of “delay-energy-cost”
system score (SC), coupling coordination, and node balance
to φ, ϕ, and ξ, respectively. For different task sizes, task
numbers, and offloading environments, users usually have
different offloading requirements:

• The choice of θ, ϑ, and η depends more on the
user’s offloading demands. For example, if the user
urgently needs to obtain the DNN inference results,
the importance of the delay far exceeds the energy
consumption and cost, so choosing a larger delay
weight θ is a better choice.

• The choice of φ, ϕ, and ξ depends more on en-
vironmental characteristics and task characteristics.
For an offloading environment with sufficient com-
puting resources, we can choose to ignore coupling
coordination and node balance (ϕ = ξ = 0). For
environments where computing resources are scarce,
node balance degree and coupling coordination de-
gree will be important, and ϕ and ξ can be set to
higher values.

Although task optimization can be achieved objectively,
in most cases, we still need to consider the subjective de-
mands of users. The user comprehensively considers the
size of the task, the number of tasks, and the offloading
environment to set the corresponding weight, which is
suitable for flexibly offloading tasks in different offloading
environments.

3.7.2 Secondary Offloading
After Initial Offloading, we can know the offloading location
of the input layer and output layer of the Inception module.
On this basis, we divide and offload the Inception module.
We need to note that the delay of the Inception module is
the single branch with the longest delay, while the energy
consumption and cost are the sums of all branches. On the
basis of the initial offloading, we can obtain the system utility
Q(S′,A′,x) for the secondary offloading:

Q(S′,A′,x) = φ
∑
u

{
max
j∗

∑
w

θTuwij∗
}

+
∑
υ

∑
w

φ
(
ϑEυwij∗

+ ηUυwij∗
)
− ϕHυw

ij∗ + ξZυwij∗ , (19)

where S′ denotes the set of states Siυwj′ , Siυwj′ includes the
number of CPU cycles required to complete the subtask
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Dυw
ij∗ , the transmission data between the subtasks Dυw−1

ij∗

and Dυw
ij∗ and the action information. x = {xruns |s =

1, 2, · · · , 1 + b + d}. A′ is the set of Aiυwj∗ , and Aiυwj∗ refers
to the offloading position of the subtask Dυw

ij∗ . In addition,
the calculation formulas of Tuwij∗ , Eυwij∗ , Uυwij∗ , Hυw

ij∗ , and Zυwij∗
are the same as the calculation formulas of Tij , Eij , Uij ,
Hij , and Zij . u is the total number of Inception Modules,
υ is the total number of branches in all Inception Modules,
w represents the number of layers in each branch of the
Inception Module, j∗ indicates that the j-th layer in the
subtask Dij is the Inception Module.

Q∗(S′) = min
A′,x

Q(S′,A′,x), (20)

where the constrained conditions of Q∗(S′) is the same as
Eqs. 14-18.

4 DNN OFFLOADING USING DEEP REINFORCE-
MENT LEARNING

Traditional algorithms usually perform continuous itera-
tions to adjust the offloading strategy, but it is difficult
to deal with high-complexity problems. DRL algorithm
combines the perception ability of deep learning with the
decision-making ability of reinforcement learning, and can
directly learn control strategies from high-dimensional raw
data. In order to solve the complexity problem, we pro-
pose an improved DDPQN algorithm based on the DRL
algorithm, which can obtain an efficient DNN offloading
strategy. In addition, in order to explain more concisely, we
mainly discuss Eq. 13 in initial offloading. (Inception Module
offloading in secondary offloading is the same as the initial
offloading except for the difference of the reward function).

4.1 Modeling the DNN Offloading Process
In order to achieve low delay, low energy consumption, and
low cost, we model the DNN offloading process as a Markov
Decision Process (MDP). Our goal is to find an offloading
function f to generate the optimal offloading strategy A∗

for (P1), which can be expressed as:

f : S → A∗, (21)

where S represents the state, including the task calculation
amount, transmission data, and action information. For
instance, for α DNN tasks, each task Di has βi subtasks,
and there are eleven servers in the offloading environment.
Then A∗ ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

∑α
i=1 βi , the size of

the offloading decision set {A} is 11
∑α
i=1 βi .

The designed DDPQN algorithm can learn the strategy
function f step by step from experience. The details are
described as follows:

4.1.1 Simplification of Offloading Problem
In the k-th epoch, for state Sk, a candidate offloading
decision At will be generated.

fk : Sk → At, (22)

where At ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
∑α
i=1 βi indicates

the candidate offloading decision in the k-th epoch.

We all know that P1 is a non-convex problem of mixed
integer programming. If At is given, P1 will be simplified
into a convex problem. At the same time, the original opti-
mization problem (P1) becomes a pool allocation problem
(P2), as shown in the following:

(P2) : Q∗(S,A) = min
x
Q(S,A,x) (23)

s.t. : xruns 6 xpls ,

0 6 θ, ϑ, η 6 1, (24)
0 6 φ, ϕ, ξ 6 1, (25)
θ + ϑ+ η = 1, (26)
φ+ ϕ+ ξ = 1. (27)

The main requirement of (P1) is how to solve the prob-
lem of the DNN offloading strategy. For each input Sk,
a candidate offloading decision At is generated. Once the
offloading decision At is given, the original optimization
problem (P1) becomes a parallel pool allocation problem
(P2). Then, select the lowest Q∗(Sk,At) offloading decision
among all candidates, such as:

A∗k = arg min
At∈Φk

Q∗(Sk,At), (28)

where A∗k is the optimal offloading action in the k-th epoch,
Sk denotes the state. Φk = {At|t = 1, 2, · · · , B} indicates
the candidate action generated in the k-th epoch, and B is
the number of candidate offloading decisions.

4.1.2 Generation of Offloading Actions
DNN offloading in the local-edge-cloud collaborative en-
vironment is a dynamic system, in which each step of
decision-making not only affects the current immediate
rewards, but also the subsequent status and future rewards.
In order to combine deep reinforcement learning with the
DNN offloading problem, we model the DNN offloading
process in the local-edge-cloud collaborative environment
as a MDP and use the offloading environment as a training
environment for the agent to perform reinforcement learn-
ing. Specifically, the basic elements for the MDP are defined
as follows:

State: In order to comprehensively consider the charac-
teristics between subtasks and servers, we define the state
space at the j-th step as:

Sij = [Aij−1, G
i
j−1,j ,W

i
j , A

i
j , G

i
j,j+1, · · · , Giβi−1,βi ,W

i
βi ],

where Aij denotes the offloading action of the subtask Dij ,
Gij−1,j indicates the transmission data between subtasks
Dij−1 and Dij , and W i

j denotes the number of CPU cycles
required to complete the subtask Dij . In addition, Aij can
determine which server the subtask Dij will be offloaded
to, so that server parameters can be obtained. Aij−1 and Aij
can determine the server where the subtasks Dij−1 and Dij

are located, and then obtain the transmission rate between
the two servers.

Action: The agent interacts with the environment and
observes the state characteristics of the environment. We
choose an offloading action of the subtask Dij as Aij ∈ A
and then offload it to the appropriate server.

Reward: The agent observes the environment and
chooses action Aij according to the characteristic expression
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of the environment state Sij , and then the agent receives
a reward Rij+1 ∈ R and enters a new state Sij+1. The
objective is to minimize the overall result of the “delay-
energy-cost” system in DNN offloading, given by Eq. 19.
In order to achieve this goal, we define the reward score of
the agent after each action as follows:

Rij = φ(θTij + ϑEij + ηUij)− ϕHij + ξZij .

4.1.3 Offloading Policy Update
Based on the traditional Deep Q-learning (DQN) algorithms,
we design a DDPQN algorithm to optimize the evalua-
tion metric of “delay-energy-cost” in the local-edge-cloud
collaborative environment. We know that the algorithm
saves a large amount of historical experience sample data,
and each experience sample data is stored in a five-tuple
< s, a, r, s′, T >, meaning that the agent executes the action
a in the state s, reaches the new state s′, and obtains the cor-
responding reward r. Then the DQN algorithm according to
the new state s′ selects action a′, where T is a Boolean value
type, indicating whether the new state s′ is a terminal state.

Neural Network Structure: We consider a more realistic
situation where the size of the value function is independent
of the action. For this reason, it is not necessary to estimate
the Q value of each action. Combining the operation of the
Dueling DQN [36], we divide the Q value update into two
parts: the state value function V (s) and the action advantage
function Λ(a). Different from the traditional fully connected
layer, our network has two estimation streams, one is the
state value estimation, and the other is the action advantage
function estimation. The two together become the output of
the Q-network.

Q(s, a, c1, c2) = V (s, c2) + Λ(s, a, c1)− 1

|Λ|
∑
a′

Λ(s, a′, c1),

where c1 and c2 are two parameters for estimating the
stream network layer.

Experience Replay: For DQN random experience replay,
we apply the prioritized replay mechanism from Prioritize-
dReplay DQN [37] to give different sample importance, im-
prove the convergence speed, and avoid unnecessary redun-
dant iterations, thereby optimizing the learning efficiency.
We ensure that during the sampling process, the higher the
priority, the higher the probability of being sampled, and
the memory with the lowest priority also has a certain non-
zero probability of being sampled. Specifically, we define
the probability pij as:

|Rij+1 + γij+1 max
a′

Q′(Sij+1, a
′)−Q(Sij , A

i
j)|ω,

where ω indicates the hyperparameter that determines the
shape of the distribution.

Parameter Update: Although the traditional DQN [38] al-
gorithm can quickly make the Q value closer to the possible
optimization goal, if we regard the maximum estimated
value as an estimate of the maximum value of the true
value, it will produce a positive maximization deviation.
By separating the two steps of selecting the action cor-
responding to the Q value and evaluating the Q value
corresponding to the action, the overestimation caused by
the greedy algorithm is eliminated, and a more accurate Q

value estimation is obtained, thereby making the learning
more stable and reliable. The DDPQN algorithm is based
on two neural networks [39] and uses gradient descent to
update the parameters, so as to achieve the target value of
parameter update Lij :[
Rij+1 + γij+1Q

′(Sij+1,max
a′

Q(Sij+1, a
′))−Q(Sij , A

i
j)
]2
,

where γij+1 ∈ [0, 1] refers to the discount factor.

Algorithm 1: DDPQN Algorithm
Input: The parameters of the DNN model Di and

the local-edge-cloud collaborative
environment Ms.

Output: Delay, energy consumption, cost, coupling
coordination degree and node balance
degree of subtask Dij , DNN offloading
strategy.

1 Preprocessing: The DDPQN algorithm is used to
obtain the current optimal offloading decision and
the historical offloading allocation plan, and then
update the algorithm parameters.

2 Initialize DNN parameters under DDPQN.
3 Initialize empty memory pool X .
4 Initialize state S.
5 for episode k = 1→ N do
6 for task i = 1→ α do
7 for moment j = 1→ βi do
8 Input state Sij to Q network to get Q

values of all actions.
9 Select action Aij using the ε-greedy.

10 Execute action Aij in state Sij .
11 Get new status Sij+1, reward Rij .
12 Put {Sij , Aij , Rij , Sij+1} to memory pool X .
13 Sampling according to prioritized replay.
14 Q(s, a, c1, c2) =

V (s, c2)+Λ(s, a, c1)− 1
|Λ|
∑
a′ Λ(s, a′, c1).

15 if terminate then
16 zij =

Rij+1 + γQ′(Sij+1,max
a

Q(Sij+1, a
′)).

17 else
18 zij = Rij+1.

19 Update model parameters of loss function:
20 [zij −Q(Sij , A

i
j)]

2.
21 Reset Q′ = Q per ς step.

22 final
23 return the optimal offloading decision

4.2 DDPQN Algorithm
We present the overall design of the DDPQN algorithm as
shown in Algorithm 1, which mainly adapts to the state of
the environment through the deep learning, and then makes
reasonable decisions in each state based on reinforcement
learning, so as to select reasonable actions and determine the
offloading location of each subtask. At the same time, every
decision will get feedback rewards from the environment.
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TABLE 2: Transmission parameters between servers

bi bj bandwidth (MB/s) cost ($/GB) P(W)
b2 b2 5 0.4 ×
b2 b1 0.5 0.8 ×
b0 b2 0.5 0.8 0.2
b1 b1 10 0.16 ×
b0 b1 10 0.16 0.2

TABLE 3: Server parameters

bi cost/hour ($) CP (GHz) P (W)
b0 0 2.3 70
b1 2.10 ∼ 2.43 4.2 ∼ 18.3 10
b2 0.225 ∼ 1.80 40 ∼ 120 10

This value is used to guide the agent’s learning, so that
the agent can explore the direction of reward maximization,
thereby optimizing the offloading goal.

In order to achieve efficient offloading of DNN tasks,
we optimize the parameter update, experience replay, and
neural network structure based on the original DQN al-
gorithm to improve the offloading efficiency. In the entire
model structure, we divide the DDPQN algorithm into two
parts: the state value function and the action advantage
function, and the value of Q is updated accordingly. DQN
stores the next state Sij+1 and reward Rij+1, and stores
quaternion groups (Sij , A

i
j , R

i
j , S

i
j+1) as an experience in the

memory pool, after update the DQN, the experience in the
memory pool will be selected according to the prioritized
replay mechanism, which can ensure effective learning of
previous experience and avoid the limitations brought by
continuous experience. In addition, the DDPQN algorithm
uses another network to generate the Q value in the training
process. The network structure is the same as the training
neural network andQ is kept consistent. After iterations, the
parameters of Q are copied to the target neural network Q′.
Therefore, by maintaining the difference of the two network
parameters for a period of time, the difference between the
currentQ value and theQ′ value is used to calculate the loss
function, and then stochastic gradient descent can be used
to reversely update parameters of the network.

5 PERFORMANCE EVALUATION

In this section, we evaluate DNN offloading performance
based on the DDPQN algorithm.

5.1 Experimental Setup

We first establish a local-edge-cloud collaborative environ-
ment M = {M1,M2, · · · ,M11}, where the servers {M1}
belong to the client, the server {M2,M3,M4,M5,M6} be-
long to the edge, and the servers {M7,M8,M9,M10,M11}
belong to the cloud. We define the weights of delay, energy
and cost as θ = 0.5, ϑ = 0.3 and η = 0.2, the weights of the
“delay-energy-cost” system score, the coupling coordination
degree, and the node balance degree are φ = 0.6, ϕ = 0.2,
and ξ = 0.2, respectively. λ1 = λ2 = 0.33 and λ3 = 0.34.

We conduct experiments using four different DNNs, i.e.,
GoogleNet [40], ResNet [41], AlexNet [42] and VGG [43].

The basic structure, computational amount, and transmis-
sion data of DNN model come from file1. The environment
parameter settings [32], [44], [45] can be seen in Table 2 and
Table 3, where b0, b1 and b2 denote the client, the edge server
and the cloud server, respectively. This paper considers a
fully connected DNN composed of one input layer and two
hidden layers. The number of neurons in the two hidden
layers is 50 and 20, respectively. Then create a linear fully
connected layer of advantage function and value function,
the output number of the advantage layer is 11, and the
output number of the value layer is 1.

To reveal the advantages of the DDPQN algorithm in
solving the DNN offloading problem, we compare it with
commonly used computation offloading algorithms listed
as follows:

• DQN: On the basis of Q-learning, an experience
replay mechanism is introduced, and an offline and
online two-layer neural network is established to
improve training efficiency;

• Dueling DQN: The algorithm is improved by op-
timizing the structure of the neural network. Its
network has two estimation streams, which estimate
the state value and the action advantage function
respectively;

• Double DQN: After training, the Double DQN makes
the current Q value infinitely close to the Qtarget
value, so that the error between the two tends to be
stable and close to 0;

• PrioritizedReplay DQN: The algorithm uses the pri-
oritized replay mechanism to give samples different
importance, thereby speeding up convergence and
making learning more effective.

• DoublePr DQN: On the basis of Double DQN, a pri-
oritized replay mechanism is added to speed up the
convergence efficiency of the algorithm by reducing
overestimation;

• DuelingPr DQN: Combine Dueling DQN with priori-
tized replay mechanism to improve high information
utilization and algorithm performance;

• Double Dueling DQN: Combine Dueling DQN with
Double DQN to get more useful information while
avoiding overestimation of value.

• Greedy algorithm: This is a common method to find
the optimal offloading decision, which generally di-
vides the solution process into several steps, but each
step applies the greedy principle to select the best
choice in the current state and hopes to stack the final
results together.

• DDPQN: Based on traditional DQN, we have made
relevant improvements in experience replay, neural
network structure, and parameter update.

We consider the performance of the DDPQN algorithm
in different computing environments, such as the local-
edge-cloud collaborative environment (L-E-C), edge com-
puting environment (L-E), and cloud computing environ-
ment (L-C). In addition, we record A as the “delay-energy-
cost” system score, B as the coupling coordination degree,
and X as the node balance degree. For example, A-B-X

1. https://github.com/LinBin403/dataset-for-our-research
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represents when the DDPQN algorithm trains the “delay-
energy-cost” system, it considers the coupling coordination
degree and node balance degree. A-X represents when the
DDPQN algorithm trains the “delay-energy-cost” system, it
only considers the node balance degree.

5.2 Convergence Performance

We show the convergence performance of the DDPQN
algorithm under different hyperparameters. In Fig. 3, the
abscissa is the training step, and the ordinate is the loss of
the neural network.

Fig. 3(a) shows the convergence efficiency of the DDPQN
algorithm under different learning rates. When the learning
rate is too high or too low, a good convergence effect
cannot be obtained. When the learning rate is 0.001, we
can obtain the best convergence effect. Fig. 3(b) shows the
convergence effect of the algorithm under different ε-greedy.
We know the explore and exploit are balanced by setting ε-
greedy. The larger the value of ε-greedy, the more inclined
to choose to maximize the current moment. For the action
of expected profit, it is found that when ε-greedy is larger,
the convergence effect of the algorithm is better, so we de-
termine ε-greedy=0.9 as the parameter used in subsequent
experiments. Fig. 3(c) shows the effect of sample batch size
on convergence performance. Obviously, smaller or larger
sample batches will bring poorer convergence effects. Thus,
we set the batch value as 256 in subsequent experiments. In
Fig. 3(d), we can see the algorithm convergence at different
discount rates. The discount rate λ determines the present
value of future earnings, when the discount rate approaches
0, the agent will only maximize the current rewards more.
In this experiment, if the discount rate is small, it will lead
to poor convergence, so the discount rate is set as λ = 0.8.

In addition, since the DDPQN algorithm adds the pri-
oritized replay mechanism, the iteration starts from the
time when the first reward was originally obtained. We set
the network parameters to the target network every 100
steps, and there will be fluctuations every 100 steps. It is
mainly due to the parameter freezing mechanism, and this
operation will not affect the convergence of the model.

5.3 Convergence and Generalization

In this section, we discussed the advantages of the DDPQN
algorithm in convergence and generalization.

Figs. 4 compares the convergence of the DDPQN al-
gorithm and the existing DRL algorithm in a local-edge-
cloud collaborative environment. We find that the DDPQN
algorithm has better convergence performance. Besides,
since DDPQN, PrioritizedReplay DQN, DoublePr DQN, and
DuelingPr DQN consider the prioritized replay mechanism,
iterate after the first reward is completed.

Fig. 5 shows the performance of the DDPQN algorithm
and the existing DRL algorithm under various DNN models
with different structures. Firstly, We find that the DDPQN
algorithm can efficiently converge to an excellent average
reward value whether it is in a chain DNN model with
a relatively simple structure such as the AlexNet or in a
complex topological DNN model such as the GoogleNet
and the ResNet. Secondly, compared with the existing DRL

algorithm, the DDPQN algorithm achieves the optimal aver-
age reward value under various DNN models with different
structures, such as AlexNet, GoogleNet, and ResNet.

In summary, we can ensure that the DDPQN algorithm is
suitable for realizing efficient partitioning and offloading of
various DNN models in the local-edge-cloud collaborative
environment.

5.4 The Impact of the Number of Tasks
In this part, we compare the performance of DDPQN, DQN
and greedy algorithms under different numbers of tasks.

It can be seen from Fig. 6 that the delay, energy con-
sumption, and cost of the above three algorithms all increase
linearly with the increase of the number of tasks. Since delay
is a crucial factor in the task offloading process, we set
the highest weight for the delay in the experiment. It can
be observed from Fig. 6(a) that the DDPQN algorithm can
achieve the lowest delay, and its delay growth trend tends
to be slower as the amount of tasks increases. Obviously,
the DDPQN algorithm is a more weight-sensitive algorithm
and is more suitable for multi-index comprehensive offload-
ing. In Fig. 6(b), the energy consumption of the DDPQN
algorithm is the highest. Due to the heavy weight of the
delay indicator, for DNN subtasks with a large amount of
calculation, in order to pursue the lower delay, the DNN
subtasks are usually offloaded to the edge server, which
generates high execution energy consumption, resulting in
high total energy consumption. In Fig. 6(c), the cost of the
DDPQN algorithm is close to that of the greedy algorithm,
based on Eq. 7 and Eq. 8, which is mainly realized by low
delay. All in all, the DDPQN algorithm is suitable for large-
scale DNN offloading.

5.5 The Impact of Weights
This section first introduces the specific performance of de-
lay, energy consumption, and cost under different weights.
Then we discuss the performance of the “delay-energy-
cost” system score (SC) (i.e., θTij + ϑEij + ηUij), coupling
coordination, and node balance under different weights.

In Fig. 7(a), the ordinate adopts the standardized value of
delay, energy consumption, and cost. The legend indicates
the weight ratio of delay, energy consumption, and cost,
that is, “θ : ϑ : η”. In the combination of various types
of θ : ϑ : η (“7 : 2 : 1”, “1 : 7 : 2”, and “2 : 1 : 7”),
the weight ratios of delay, energy consumption, and cost
are “7 : 1 : 2”, “2 : 7 : 1”, and “1 : 2 : 7”, respectively.
We find that the greater the weight, the higher the degree
of indicator optimization, and the smaller the weight, the
lower the degree of indicator optimization. This means that
delay, energy consumption, and cost are closely related to
the weight values. In addition, we know that delay, energy
consumption, and cost are highly correlated, and the level
of one indicator will have an impact on other indicators. For
example, the weight ratio of cost is ”1 : 2 : 7”, where the
corresponding cost value of ”1” is less than the cost value
corresponding to ”2”, the reasons are as follows: Firstly,the
weight values of ”1” and ”2” are too small, so the influence
on indicator optimization is too low. Secondly, for ”1”, the
proportion of delay in “θ : ϑ : η = 7 : 2 : 1” is too large, so
the delay is low, based on Eq. 7 and Eq. 8, therefore the cost
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(a) learning rate (b) ε-greedy (c) batch size (d) discount rate

Fig. 3: Convergence performance under different parameters.

Fig. 4: Convergence performance under various algorithms.

is low; on the contrary, for ”2”, the proportion of delay in
“θ : ϑ : η = 1 : 7 : 2” is too small, so the cost is very large.

In Fig. 7(b), the ordinate adopts the standardized value
of SC, coupling coordination, and node balance. The legend
indicates the weight ratio of SC, coupling coordination, and
node balance, that is, ”φ : ϕ : ξ”. In the combination of
various types of θ : ϑ : η (“2 : 3 : 5”, “6 : 2 : 2” and
“8 : 1 : 1”), the weight ratios of SC, coupling coordination,
and node balance are “2 : 6 : 8”, “3 : 2 : 1”, and “5 : 2 :
1”, respectively. Obviously, as the weight increases, the SC
shows a downward trend. In addition, we find that the SC
and node balance are negatively correlated with the weight,
while coupling coordination is positively correlated with the
weight. In other words, SC, coupling coordination, and node
balance are closely related to the weight.

5.6 The Impact of Coupling Coordination and Node Bal-
ance

In this part, we show the performance of coupling coordi-
nation and node balance under different DNN models.

Fig. 8 shows the coupling coordination degree of the
DNN layer under different combinations of indicators,
where the abscissa represents the DNN layers, and the ordi-
nate represents the coupling coordination degree. Figs. 8(a),
8(c) and 8(e) show the coupling coordination performance
of the “delay-energy-cost” system after adding the coupling
coordination indicator B. It is found that the image area of
A-B is significantly better than that of A. In other words,

after adding B, A-B can achieve better coupling coordina-
tion performance than A. It can avoid the situation that
the system performance is very good, but one indicator is
the best and another indicator is extremely poor. Figs. 8(b),
8(d), and 8(f) show the coupling coordination performance
of the “delay-energy-cost” system after adding the coupling
coordination indicator B and the node balance indicator
X at the same time. Obviously, by adding B and X, the
coupling coordination performance of the A-B-X is better
than A-B. This indicates that the node balance indicator has
a beneficial effect on the coupling coordination indicator.

Fig. 9 shows the total coupling coordination degree of
the DNN layer under A-B-X, A-B, A-X, and A. We can see
that after adding B, the coupling coordination performance
of the system has been greatly improved. In addition, we
observe that the node balance indicator also has a positive
impact on coupling coordination, and when the system adds
the node balance indicator and the coupling coordination
indicator, the coupling coordination performance of A-B-X
is significantly better than that of A, A-X and A-B. Com-
pared with A, the coupling coordination degree of A-B-X
under GoogleNet, ResNet, AlexNet, and VGG is optimized
by 44.29%, 59.13%, 117.53%, and 84.08%, respectively. This
shows that in the local-edge-cloud collaborative environ-
ment, adding the node balance indicator and coupling coor-
dination indicator will further improve the performance of
coupling coordination.

Fig. 10 shows the impact of node balance indicators on
subtask distribution status of GoogleNet, ResNet, AlexNet
and VGG under the combination of A-B-X, A-X, and A.
Each histogram consists of two parts, where the lower part
represents the node balance degrees in the edge, and the
upper part represents the node balance degrees in the cloud.
We can clearly see that after adding X, the node balance
value of A-X is significantly better than A. In addition, after
adding coupling coordination indicator and node balance
indicator, the node balance value of A-B-X achieves the
optimal performance. Compared with A, the node balance
degree of A-B-X under GoogleNet, ResNet, AlexNet, and
VGG is optimized by 11.82%, 9.77%, 13.70%, and 7.51%,
respectively. That is to say, the coupling coordination degree
and the node balance degree have a positive mutual gain
effect, which can effectively obtain a better DNN offloading
strategy.
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(a) Alexnet (b) GoogleNet (c) ResNet

Fig. 5: The performance of the DDPQN algorithm under different types of DNN models.

(a) Delay (b) Energy consumption (c) Cost

Fig. 6: The impact of the number of tasks on different algorithms.

(a) The impact of weights on delay, energy, and cost.

(b) The impact of weights on “delay-energy-cost” system score, cou-
pling coordination, and node balance.

Fig. 7: The effect of weights on the optimization function.

5.7 The Impact of Coordination and Balance on the
System

Fig. 11 shows the impact of coupling coordination degree
and node balance degree on delay, energy consumption,
and cost under different types of DNN models. Although
increasing the coupling coordination indicator or node bal-

ance indicator will optimize the system coordination and
subtask distribution balance, it will inevitably bring the
burden on delay, energy consumption, and cost. As shown
in Figs. 11(a), 11(b) and 11(c), we obtain higher coupling
coordination degree and node balance degree by sacrific-
ing less delay, energy consumption, or cost, which is an
ideal situation. It can avoid the situation where the system
evaluation result of “delay-energy-cost” is excellent, but the
difference of internal indicator optimization is too large.
It can also avoid premature saturation of some servers
because users who enter the environment first greedily
occupy server resources, making it difficult for users who
enter the environment later to obtain a reasonable allocation
of computing resources in the local-edge-cloud collaborative
environment.

5.8 The Impact of Various Environments
We considered the delay, energy consumption, and cost
performance of GoogleNet, ResNet, AlexNet, and VGG in
a local-edge-cloud collaborative environment, edge com-
puting environment, and cloud computing environment,
respectively.

Fig. 12(a) shows the delay performance of the four
DNN tasks in the “delay-energy-cost” system under dif-
ferent computing environments. We find that the delay
performance is the best in the local-edge-cloud collaborative
environment and the worst in the cloud computing envi-
ronment. This is because the cloud is too far away from
the data source, resulting in a higher transmission delay in
the cloud computing environment. In the edge computing
environment, although the edge server is close to the data
center, the data transmission delay is low, but due to its
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(a) ResNet: “A-B”

(b) ResNet: “A-B-X”

(c) Alexnet: “A-B” (d) Alexnet: “A-B-X”

(e) VGG: “A-B” (f) VGG: “A-B-X”

Fig. 8: The performance of coupling coordination degree under different indicator combinations.

Fig. 9: The performance of the total coupling coordination
degree of different indicator combinations under GoogleNet,
ResNet, AlexNet, and VGG.

Fig. 10: The performance of the node balance degree of different
indicator combinations under GoogleNet, ResNet, AlexNet,
and VGG.
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(a) Delay (b) Energy consumption (c) Cost

Fig. 11: The impact of coupling coordination degree and node balance degree on delay, energy and cost.

(a) Delay (b) Energy consumption (c) Cost

Fig. 12: Comparison of delay, energy consumption and cost under different computing environments.

(a) Delay (b) Energy consumption (c) Cost

Fig. 13: The performance of delay, energy consumption, and cost in an offloading environment with various server combinations.
b and d are the numbers of edge servers and cloud servers, respectively, b/d denotes the ratio between the edge servers and cloud
servers, and inf denotes the number of cloud servers is zero.

limited computing power, it is difficult to support large-
scale DNN tasks. Therefore, offloading subtasks in a local-
edge-cloud collaborative environment that combines the
advantages of edge servers and cloud servers can achieve
the best delay performance.

Fig. 12(b) shows the performance of energy consumption
in the “delay-energy-cost” system. We find that there is a
trade-off between delay and energy consumption. The total
delay in the cloud computing environment is higher than
that in the edge computing environment. Compared with
edge servers, cloud servers usually have higher computing
power and lower execution delay. For the DNN tasks with a
large amount of calculation, considering the lower execution
energy consumption in the cloud computing environment,
lower total energy consumption can be obtained in the cloud
computing environment compared to the edge computing
environment. In a local-edge-cloud collaborative environ-
ment, combining the respective advantages of the cloud and
the edge can optimize delay and energy consumption at the
same time.

Fig. 12(c) shows the cost performance of GoogleNet,
ResNet, AlexNet, and VGG in the “delay-energy-cost” sys-

tem. We hope to reduce the execution cost and transmission
cost of the task on the basis of achieving low delay and low
energy consumption. As shown in Fig. 12(c), compared to
the edge computing environment and the cloud computing
environment, the system cost under the local-edge-cloud
collaborative environment is lower. We find that cloud trans-
mission costs are high, but execution costs are low; edge
transmission costs are low, but execution costs are high. The
local-edge-cloud collaborative environment can combine the
advantages of both edge and cloud, which is more suitable
for resource offloading.

5.9 Performance under Different Server Combinations

In this section, we will offload the DNN model in a local-
edge-cloud collaborative environment with different server
combinations.

In Figs. 13(a) and 13(c), we find that as the number of
edge servers increases, the delay and cost become lower.
However, when the number of cloud servers is 0 and
the edge servers are limited, the delay and cost will be
higher due to the limitation of computing resources. From
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Figs. 13(a) and 13(b), we can clearly see that for DNN
tasks with a large amount of calculation, owing to the
excessive weight of the delay, as the number of edge servers
increases, the subtasks will tend to be offloaded to the edge
servers to obtain the lower delay. At this time, the execution
energy consumption gradually increases, so the total energy
consumption also increases.

Furthermore, comparing the server ratio b/d ∈
{0, 0.2, inf}, we find that when the server ratio b/d ∈
{0.6, 1, 1.8}, by appropriately increasing the edge servers,
better offloading performance can be achieved.

6 CONCLUSIONS

Based on the abundant resources of the cloud and the
low delay advantages of the edge, this paper studies the
optimization of DNN partitioning and offloading in a local-
edge-cloud collaborative environment. In order to solve the
problem of uncoordinated optimization of multiple indica-
tors and unreasonable allocation of computing resources, we
introduce coupling coordination indicator and node balance
indicator to achieve high-quality DNN partitioning and of-
floading. In this paper, the proposed DDPQN algorithm can
generate the optimal DNN task allocation with low energy
consumption, low delay, and low cost in a local-edge-cloud
collaborative environment, which effectively improves the
QoS. The experimental results show that the DDPQN al-
gorithm has better performance in optimizing DNN of-
floading compared with the existing DRL algorithms. In
future work, we will consider a more realistic scenario,
that is, implementing dynamic offloading in a local-edge-
cloud collaborative environment. Besides, we will combine
the Graph Neural Network (GNN) for DNN offloading to
further accelerate DNN inference.
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