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Abstract

This work is devoted to the analysis of the spinorial Yamabe problem on Spin mani-
folds and some applications to CMC immersions. Despite the efforts of many authors, very
little is known on the existence of spinorial Yamabe metrics on general Spin manifolds.
Motivated to bubbling phenomena for the Riemannian problem and recent multiplicity re-
sults in this setting, we investigate special spinorial Yamabe metrics on product manifolds
developing a bubbling analysis which has independent interest in the present setting.
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1 Introduction and setting of the problem
The well known Yamabe problem seeks for the existence of a constant scalar curvature metric
in a given conformal class of Riemannian metrics on a compact manifold. Such a metric can
be characterized variationally as a critical point of the Hilbert-Einstein functional on conformal
classes. A positive answer to this problem, obtained in a series of steps by H. Yamabe [45],
T. Aubin [12], N. Trudinger [44] and R. Schoen [41], provides at least one minimizer of the
Hilbert-Einstein functional in each conformal class. Such a metric is called a Yamabe metric.
To determine all the Yamabe metrics in a given conformal class is generally a very difficult
problem particularly when the scalar curvature has positive sign. It is interesting to observe that,
generically, minima of the Hilbert-Einstein functional in conformal classes are unique, see [11].
However, in many cases a rich variety of constant scalar curvature metrics arise as critical points
that are not necessarily minimizers, and it is a very interesting task to classify those metrics.
Multiplicity of solutions of the Yamabe problem has been studied in the literature, especially in
product manifolds, several results have been obtained in the special case of products with round
spheres, see for instance [26, 31, 39, 42] and references therein.

In the setting of Spin Geometry, a problem analogous to the Yamabe problem has received
increasing attention in recent years. Several works of Ammann [4–6] and Ammann, Humbert
et al [8–10] provide a framework in which variational methods may be employed.

Let (M, g, σ) be an m-dimensional closed spin manifold with a metric g, a spin structure σ :
PSpin(M) → PSO(M). With the notation ρ : Spin(m) → End(Sm) be the spin representation,
we denote S(M) = PSpin(M) ×ρ Sm the spinor bundle over M and DM

g : C∞(M,S(M)) →
C∞(M, S(M)) the Dirac operator (see [24, 34] for more geometric backgrounds). Analogous
to the Yamabe invariant, a spin conformal invariant is defined as

λ+min(M, [g], σ) := inf
g̃∈[g]

λ+1 (g̃)Vol(M, g̃)
1
m (1.1)

where λ+1 (g̃) denotes the smallest positive eigenvalue of the Dirac operator DM
g̃ with respect to

the conformal metric g̃ ∈ [g] :=
{
f 2g : f ∈ C∞(M), f > 0

}
. Ammann points out in [4,6] that

studying critical metrics for this invariant involves similar analytic problems to those appearing
in the Yamabe problem. It follows that finding a critical metric of (1.1) is equivalent to prove
the existence of a spinor field ψ ∈ C∞(M,S(M)) minimizing the functional defined by

Jg(ϕ) =

( ∫
M
|DM

g ϕ|
2m
m+1dvolg

)m+1
m∣∣ ∫

M
(DM

g ϕ, ϕ)dvolg
∣∣ (1.2)

with the Euler-Lagrange equation

DM
g ψ = λ+min(M, [g], σ)|ψ|m∗−2

g ψ, (1.3)

where m∗ := 2m
m−1

.
As was pointed out in [4], standard variational method does not imply the existence of min-

imizers for Jg directly. This is due to the criticality of the nonlinearity in (1.3). Indeed, the
exponent m∗ = 2m

m−1
is critical for the corresponding Sobolev embedding. Similar to the argu-

ment in solving the Yamabe problem, one might be able to find a criterion which recovers the
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compactness. It is crucial to note that a spinorial analogue of Aubin’s inequality holds (see [8])

λ+min(M, [g], σ) ≤ λ+min(S
m, [gSm ], σSm) =

m

2
ω

1
m
m (1.4)

where (Sm, gSm , σSm) is the m-dimensional sphere equipped with its canonical metric gSm and
its standard spin structure σSm , and ωm is the standard volume of (Sm, gSm). The criterion
obtained in [4] shows that if inequality (1.4) is strict then the spinorial Yamabe problem (1.3)
has a nontrivial solution minimizing the functional Jg. However, the strict inequality in (1.4) is
only verified for some special cases and general results are still missing (cf. [7, 10, 25]).

Tightly related to geometric data, the nonlinear problem (1.3) provides a strong tool for
showing the existence of constant mean curvature hypersurfaces in Euclidean spaces. This has
been known as the spinorial Weierstraß representation, see for instance [4,23,33]. This is one of
the most attractive features of the spinorial Yamabe problem that unseals new researches in both
PDE theory and Riemannian geometry. Not being confined by the strict inequality in (1.4), the
purpose of this paper is to establish some existence of multiple solutions of (1.3) on products of
compact spin manifolds which are not necessarily minimizers of the functional defined in (1.2).

Let us describe our results more precisely. Given closed spin manifolds (M1, g(1), σ1) and
(M2, g(2), σ2), with fixed spin structures, we consider a family of metrics gℓ on the product
N = M1 ×M2 defined by gℓ = ℓ2g(1) ⊕ g(2), ℓ > 0. Noting m1 and m2 the dimensions of M1

and M2 respectively, we will be interested in solutions of the (normalized) spinorial Yamabe
equation on the product manifold (N, gℓ):

DN
gℓ
ϕ = |ϕ|

2
n−1
gℓ ϕ (1.5)

where n := dimN = m1 +m2. For simplicity we first describe here the case n is odd, but the
statement is similar for n even, see Theorem 6.5. Without loss of generality, we may assumem1

is even (otherwise, it is equivalent to consider the product manifold equipped with the metrics
g(1) ⊕ ℓ2g(2)). In this setting, the spinor bundle over N can be identified with S(N) = S(M1)⊗
S(M2) and the Dirac operator is given by

DN
gℓ
(ψ ⊗ φ) = DM1

ℓ2g(1)ψ ⊗ φ+ ωM1
C ·ℓ2g(1) ψ ⊗DM2

g(2)φ

for ψ ∈ C∞(M1, S(M1)) and φ ∈ C∞(M2,S(M2)), where DM1

ℓ2g(1) and DM2

g(2) denote the Dirac
operators on M1 and M2 respectively, ωM1

C is the chirality operator in the Clifford bundle over
M1 and ”·ℓ2g(1)” is the representation of Clifford multiplication on the spinor bundle S(M1) with
respect to the metric ℓ2g(1) (see Section 2 for detailed definitions of these notations). One can
use a specials ansatz for the solutions ϕ = ψ ⊗ φλ, λ > 0, with φλ being an eigenspinor of the
second factor, i.e.DM2

g(2)φλ = λφλ. A further assumption on such an ansatz is that the component
φλ is normalizable in the sense one can normalize φλ so that |φλ|g(2) ≡ 1 almost everywhere
with respect to the canonical measure on (M2, g(2)). Then ϕ = ψ ⊗ φλ solves the Yamabe
equation (1.5) if and only if ψ solves

DM1

ℓ2g(1)ψ + λωM1
C ·ℓ2g(1) ψ = |ψ|

2
m−1

ℓ2g(1)ψ on M1. (1.6)

One of the motivations of the present work comes from the geometric bifurcation theory in
order to prove multiplicity and qualitative behaviour of Riemannian Yamabe metrics. This prob-
lem goes back to the seminal work of Schoen [42] and has been deeply investigated in several
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works (see e.g. [17–19] and references therein). Together with Bettiol and Piccione [20], the
first author investigated the multiplicity of constant Q−curvature metrics in a similar product
manifold as in our setting but in the framework of Berger spheres. In there, the authors consid-
ered Gromov-Hausdorff limits of Einstein Riemannian minimal submersions under a parameter
ℓ. The method used in geometric bifurcation theory is the use of a general bifurcation result that
detects bifurcations under a jump of the Morse index of the Jacobi operator. From this point of
view, our problem is substantially more difficult than the Riemannian case since the functional
is strongly indefinite, i.e. the linearization has an infinite number of eigenvalues and such a
criterion for bifurcating solutions cannot be used. Another issue in the spinorial setting is that
there is no significant difference in showing one solution and multiple solutions, unless one can
find a way to distinguish these solutions (not simply by energies). The method developed here
allows actually to distinguish the solutions.

We will find solutions to the spinorial Yamabe equation (1.5) by solving (1.6). The point
here is that the problem becomes subcritical and the existence of solutions is easy to prove by
variational techniques. Our strategy is the following:

• We first construct for an infinite number of values of the parameter ℓ a solution to (1.6).

• Then, we investigate the bubbling phenomenon as ℓ→ ∞.

• Coming back to the original problem (1.5), a quantization formula allows to distinguish
each of these solutions.

We now state our main results. The first one is the description in dimension greater or equal
to 3 of the infinite family of solutions of the spinorial Yamabe problem under consideration (see
Theorem 6.5 for a more precise statement) .

Theorem 1.1. There exists ℓ0 > 0 (possibly depending on λ) such that for any ℓ > ℓ0 there is a
non-trivial solution ψℓ of (1.6) which is highly concentrated in the sense that, as ℓ→ ∞, there
exists a converging sequence ξℓ → ξ0 ∈ M1 such that |ψℓ(ξℓ)| → +∞ and |ψℓ| → 0 uniformly
on compact subsets of M1 \ {ξ0}.

Furthermore, the spinor field ϕℓ,λ := ψℓ⊗φλ defines a generalized conformal metric gℓ,λ =

|ϕℓ,λ|
4

n−1
gℓ gℓ on N =M1 ×M2 (in the sense of Ammann [6, Section 3]) such that

lim
ℓ→∞

Vol(N, gℓ,λ)
λm2

= CM1,M2

where CM1,M2 > 0 is a constant depending only on (M1, g(1)) and (M2, g(2)).

An interesting corollary of the above statements is for the case N = M1 × S1. Since all
eigenspinors on S1 are normalizable, substitute different eigenvalues of λ in (1.6), one obtains
multiple solutions for large ℓ as the volume functional Vol(N, gℓ,λ) can be distinguished by
varying the values of λ.

The case m = 2 is of particular interests because we are concerned with the 2-dimensional
torus, i.e. N = S1 × S1 equipped with the family of metrics gℓ := ℓ2d2t ⊕ d2τ with (t, τ) ∈
[0, 2π]× [0, 2π] being the standard parameterizations.

Our second theorem is an application of the previous analysis. We refer the reader to Theo-
rem 7.3 for a precise statement.
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Theorem 1.2. There exists a non-trivial solution of constant length λ of (1.6) for all ℓ > 0.
Furthermore, at all value ℓ∗ ∈

{
1
2λ
, 2
2λ
, . . . , n

2λ
, . . .

}
, there is a bifurcating branch of solu-

tions issuing from the constant length solution branch, and these branches consist of periodic
solutions that do not have the same fundamental period;

Finally if N = S1 × S1 is equipped with the so-called non-trivial spin structure σ∗
N then the

strict inequality in (1.4) is valid, i.e.

λ+min(N, gℓ, σ
∗
N) < 2

√
π

for all ℓ > 0.

The assumption that there exists normalizable eigenspinor on M2 is rather harmless. This is
satisfied by a large class of manifolds including the circle, the spheres and any spin m-manifold
which can be immersed into Rm+1 with constant mean curvature (see [4, Chapter 5] and [7,10]).

2 The setting

2.1 Some algebraic preliminaries
Our aim is to derive the Dirac operator on Riemannian products of spin manifolds. In particular,
we have to compare the spinor bundle of the ambient space with the spinor bundles of the factor
manifolds. The starting point is the splitting of the tangent bundle of the large manifold into
direct sum of two vector bundles associated with the two factors. Instructional materials can be
found in [34, Chapter I. 5 and II. 7], but here we want to make it more explicit.

Let us denote by {e1, . . . , em} the canonical basis of an oriented Euclidean space V and by
Cℓ(V ) the complex Clifford algebra of V with its multiplication being denoted by ”·”. In case
the dimension m of V is even, i.e. m = 2k, the Clifford algebra is isomorphic to the alge-
bra M(2k;C) of all complex matrices of rank 2k. Hence Cℓ(V ) has precisely one irreducible
module, the spinor module S2k with dimS2k = 2k. For ease of notations, we simply write the
Clifford representation as

Cℓ(V )⊗ S2k → S2k, ξ ⊗ ψ 7→ ξ · ψ.

When restricted this representation to the even subalgebra Cℓ0(V ), the module S2k splits into
two irreducible unitary representations S2k = S+

2k ⊕ S−
2k, given by the eigensubspaces of the

endomorphism ωC := ike1 · · · em to the eigenvalues ±1. In the sequel, we can call ωC the
”chirality operator” or the ”complex volume element”.

In casem is odd, that ism = 2k+1, the Clifford algebra Cℓ(V ) is isomorphic to M(2k;C)⊕
M(2k;C). And thus, we obtain two 2k-dimensional irreducible spinor modules S0

2k+1 and S1
2k+1

if we project the Clifford multiplication onto the first and second component respectively. Sim-
ilar to the splitting in even dimensions, the two modules S0

2k+1 and S1
2k+1 can be distinguished

by the action of the chirality operator ωC := ik+1e1 · · · em in the sense that on Sj2k+1 it acts as
(−1)j , j = 0, 1. It will cause no confusion if we simply identify S0

2k+1 and S1
2k+1 as the same

vector space, that is S2k+1 = S0
2k+1 = S1

2k+1, and equip them with Clifford multiplications of
opposite sign.
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Now let V and W be two oriented Euclidean spaces with dimV = m1 and dimW = m2.
We denote Cℓ(V ) and Cℓ(W ) the associated Clifford algebras of V and W respectively. By
abuse of notation, we use the same symbol ”·” for the Clifford multiplication in Cℓ(V ), Cℓ(W )
and in their representations. As is well known, the Clifford algebra of the sum of two vector
spaces is the Z2-graded tensor product of the Clifford algebras of the two summands, that is
Cℓ(V ⊕W ) = Cℓ(V )⊗̂Cℓ(W ) (see [34]). Therefore, we can construct the spinor module of
V ⊕W from those of V and W as

Sm1+m2 =

{
(Sm1 ⊕ Sm1)⊗ Sm2 both m1 and m2 are odd,

Sm1 ⊗ Sm2 m1 is even.
(2.1)

Here, we have excluded the case m1 is odd and m2 is even. This is simply because the place
of V and W can be interchanged, which suggests that this case is symmetric to the case m1 is
even and m2 is odd. As for the representation of Clifford multiplications on Sm1+m2 , let ξ ∈ V ,
ζ ∈ W , φ ∈ Sm2 and ψ = ψ1 ⊕ ψ2 ∈ Sm1 ⊕ Sm1 for both m1 and m2 are odd and ψ ∈ Sm1

otherwise, we set

(ξ ⊕ ζ) · (ψ ⊗ φ) = (ξ · ψ)⊗ φ+ (ωVC · ψ)⊗ (ζ · φ), (2.2)

where for both m1 and m2 odd we set ξ · ψ = (ξ · ψ1)⊕ (−ξ · ψ2) and ωVC · ψ = i(ψ2 ⊕−ψ1).
With this notation, one easily checks

(ξ ⊕ ζ) · (ξ ⊕ ζ) · (ψ ⊗ φ) = −|ξ ⊕ ζ|2(ψ ⊗ φ).

Thus Sm1+m2 is a nontrivial Cℓ(V ⊕ W )-module of dimension 2[
m1+m2

2
]. Moreover, in case

m1 +m2 is even, the splitting of Sm1+m2 into half-spinor modules is given by

S+
m1+m2

=
{
(ψ ⊕ ψ)⊗ φ : ψ ∈ Sm1 , φ ∈ Sm2

}
,

S−
m1+m2

=
{
(ψ ⊕−ψ)⊗ φ : ψ ∈ Sm1 , φ ∈ Sm2

}
for both m1 and m2 odd and

S+
m1+m2

= (S+
m1

⊗ S+
m2

)⊕ (S−
m1

⊗ S−
m2

),

S−
m1+m2

= (S+
m1

⊗ S−
m2

)⊕ (S−
m1

⊗ S+
m2

)

for both m1 and m2 even.

Remark 2.1. The construction of the Clifford multiplication over Sm1+m2 is a subtle issue.
Comparing with the explicit formula (2.2), there are different ways to define the Clifford mul-
tiplication. For instance, in case both m1 and m2 are odd, let ξ ∈ V , ζ ∈ W , φ ∈ Sm2 and
ψ = ψ1 ⊕ ψ2 ∈ Sm1 ⊕ Sm1 , we can use the same expression of (2.2) but replace the previous
definition of ξ · ψ with a new one ξ · ψ = (−ξ · ψ2) ⊕ (−ξ · ψ1) (for a close reference, we
refer [14]). In this setting, the half-spinor modules of Sm1+m2 are

S+
m1+m2

= (Sm1 ⊕ {0})⊗ Sm2 ,

S−
m1+m2

= ({0} ⊕ Sm1)⊗ Sm2 .

It would be better to understand that such changes in product formula give us equivalent defini-
tions of Clifford multiplications. Indeed, due to the uniqueness of Cℓ(V ⊕W ), any definition
of the Clifford multiplication on Sm1+m2 can be identified with (2.2) via a vector space isomor-
phism.
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Next, let us consider the manifold setting. Let (M1, g(1)) and (M2, g(2)) be two oriented
Riemannian manifolds of dimensions m1 and m2, respectively. We henceforth suppose that
both manifolds are equipped with a fixed spin structure (for details about spin structures, we
refer to [24, 34] or to the well written self-contained introduction [28]). This induces a unique
spin structure on the Riemannian product (N =M1×M2, g = g(1)⊕ g(2)). Indeed, let πM1 and
πM2 denote the projections on M1 and M2, the tangent bundle of N can be decomposed as

TN = π∗
M1
TM1 ⊕ π∗

M2
TM2.

For simplicity, we omit the projections and write as the direct sum TN = TM1 ⊕ TM2. And
such splitting is orthogonal with respect to g. Hence the frame bundle of N can be reduced to a
SO(m1)×SO(m2)-principal bundle, and this is isomorphic to the product of the frame bundles
over M1 and M2.

2.2 The Dirac operator
Fix the spin structures σM1 and σM2 , let us consider the Clifford bundles (with Clifford mul-
tiplications) (Cl(M1), ·g(1)), (Cl(M2), ·g(2)) and spinor bundles S(M1), S(M2) over M1 and M2

respectively. From the previous considerations in the algebraic settings, we know for the spinor
bundles that

S(N) =

{
(S(M1)⊕ S(M1))⊗ S(M2) both m1 and m2 are odd,

S(M1)⊗ S(M2) m1 is even.

For X ∈ TM1, Y ∈ TM2, φ ∈ Γ(S(M2)) and ψ = ψ1 ⊕ ψ2 ∈ Γ(S(M1)⊕ S(M1)) for both m1

and m2 odd and ψ ∈ Γ(S(M1)) for m1 even, we have

(X ⊕ Y ) ·g (ψ ⊗ φ) = (X ·g(1) ψ)⊗ φ+ (ωM1
C ·g(1) ψ)⊗ (Y ·g(2) φ) (2.3)

where in case m1 and m2 odd we set X ·g(1) ψ = (X ·g(1) ψ1)⊕ (−X ·g(1) ψ2) and ωM1
C ·g(1) ψ =

i(ψ2 ⊕−ψ1).
Let ∇S(M1) and ∇S(M2) be the Levi-Civita connections on S(M1) and S(M2). By

∇S(M1)⊗S(M2) = ∇S(M1) ⊗ IdS(M2) + IdS(M1) ⊗∇S(M2)

we mean the tensor product connection on S(M1)⊗S(M2). If we take {X1, . . . , Xm1} a locally
positively oriented orthonormal frame of (M1, g(1)), then the Dirac operator on M1 is (locally)
defined byDM1

g(1) =
∑m1

j=1Xj ·g(1) ∇
S(M1)
Xj

. Similarly, if we take {Y1, . . . , Ym2} a locally positively

oriented orthonormal frame of (M2, g(2)), we have DM2

g(2) =
∑m2

j=1 Yj ·g(2) ∇
S(M2)
Yj

. Evidently, in
the product setting, {X1 ⊕ 0, . . . , Xm1 ⊕ 0, 0⊕ Y1, . . . , 0⊕ Ym2} is a local section of the frame
bundle of N . Hence formula (2.3) yields

DN
g :=

m1∑
j=1

(Xj ⊕ 0) ·g(1) ∇
S(M1)⊗S(M2)
Xj⊕0 +

m2∑
j=1

(0⊕ Yj) ·g(2) ∇
S(M1)⊗S(M2)
0⊕Yj

= D̃M1

g(1) ⊗ IdS(M2) + (ωM1
C ·g(1) IdS(M1))⊗DM2

g(2)
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which defines the Dirac operator on N = M1 ×M2, where D̃M1

g(1) = DM1

g(1) ⊕−DM1

g(1) if both m1

and m2 are odd and D̃M1

g(1) = DM1

g(1) if m1 is even.
For the case m1 + m2 even, we have the decomposition S(N) = S(N)+ ⊕ S(N)− and,

moreover, when restrict DN
g on those half-spinor spaces we get DN

g : Γ(S(N)±) → Γ(S(N)∓).

2.3 Analysis on a product conformal structure
In this section, we will consider our problem in details and we start with the caseN =M1×M2,
m1 = dimM1 ≥ 2 and m2 = dimM2 ≥ 1. The case m1 = m2 = 1, which corresponds to
N = S1×S1, will be discussed in Section 7. From now on, in order to give unified expressions
in odd and even cases, we will write it simply S(N) = S̃(M1)⊗ S(M2) with

S̃(M1) =

{
S(M1)⊕ S(M1) m1 is odd,

S(M1) m1 is even.

and denote ψ ⊗ φ for a spinor field in S(N) when no confusion can arise.
To have a general view upon the problem, let us fix a function θ : M1 → (0,+∞) and

consider the product conformal metric gℓ := ℓ2θ2g(1) ⊕ g(2), where ℓ > 0 is a parameter.
According to the discussions in the previous section, we know for the Dirac operators that

DN
gℓ
= D̃M1

ℓ2θ2g(1) ⊗ IdS(M2) + (ωM1
C ·ℓ2θ2g(1) IdS̃(M1)

)⊗DM2

g(2)

where ωM1
C denotes the chirality operator and ”·ℓ2θ2g(1)” denotes the Clifford multiplication on

M1 with respect to the conformal metric ℓ2θ2g(1) respectively.
Turning to the nonlinear problems, let us denote | · |ℓ2θ2g(1) and | · |g(2) the natural hermitian

metrics on S(M1) and S(M2) respectively and | · |gℓ the induced metric on S(N). Set n =
m1 +m2 and n∗ = 2n

n−1
, we can expand the spinorial Yamabe equation

DN
gℓ
ϕ = |ϕ|n∗−2

gℓ
ϕ, ϕ = ψ̄ ⊗ φ ∈ S(N)

into

(D̃M1

ℓ2θ2g(1)ψ̄)⊗ φ+ (ωM1
C ·ℓ2θ2g(1) ψ̄)⊗ (DM2

g(2)φ) =
(
|ψ̄|ℓ2θ2g(1) |φ|g(2)

)n∗−2
ψ̄ ⊗ φ. (2.4)

We will now show how to dispense with the assumption on (M2, g(2), σM2). In fact, if M2

possesses a nontrivial eigenspinor φM2 of constant length for some λ ̸= 0, then by substituting
ψ̄ ⊗ φM2 into (2.4) we get an equivalent problem

D̃M1

ℓ2θ2g(1)ψ̄ + λωM1
C ·ℓ2θ2g(1) ψ̄ =

(
|ψ̄|ℓ2θ2g(1)

)n∗−2
ψ̄ (2.5)

which is sitting on M1. Here, we adopt the convention that λ > 0 since (up to a change of
orientation on M1) the proof for λ < 0 is exactly the same.

The following transformation formula describes how Dirac operators for conformally equiv-
alent metrics are related (see [27, 29]).
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Proposition 2.2. Let g0 and g = f 2g0 be two conformal metrics on a Riemannian spin m-
manifold M . Then, there exists an isomorphism of vector bundles F : S(M, g0) → S(M, g)
which is a fiberwise isometry such that

DM
g

(
F (ψ)

)
= F

(
f−m+1

2 DM
g0

(
f

m−1
2 ψ

))
.

As a direct consequence, the equation (2.5) can be conformally transformed into

D̃M1

g(1)ψ + λℓθωM1
C ·g(1) ψ = (ℓθ)m1−m1−1

2
n∗|ψ|n∗−2

g(1) ψ,

where a solution ψ corresponds to (ℓθ)
m1−1

2 ψ̄ via the identification of spinor bundles with
respect to the conformal metrics g(1) and ℓ2θ2g(1). Moreover, we can consider the rescaling
ψ 7→ ℓ−

m1−1
2 ψ in S̃(M1) and denote ε = ℓ−1 so that the above equation is equivalent to

εD̃M1

g(1)ψ + λθωM1
C ·g(1) ψ = θm1−m1−1

2
n∗|ψ|n∗−2

g(1) ψ on M1. (2.6)

2.4 Functional framework
Our goal is to find solutions of (2.6) for varying ε > 0. Notice that Eq. (2.6) is well-defined
on M1, and n∗ = 2n

n−1
< 2m1

m1−1
= m∗

1. It is not necessary to carry the super- and sub-scripts in
(M1, g(1)), D̃M1

g(1) and ωM1
C during the proofs, hence in order to simplify the notation, we drop

these super- and sub-scripts and to consider the model problem

εD̃gψ + aωC · ψ = b|ψ|p−2
g ψ (2.7)

on a spin m-manifold (M, g, σ), where a, b : M → (0,+∞) are functions at least C1 smooth
and 2 < p < m∗ := 2m

m−1
. Unless otherwise stated, we will also drop the subscript of | · |g on

S̃(M) for notation convenience.
For q > 1, let us denote Lq := Lq(M, S̃(M)) which is defined as the completion of the

space Γc(S̃(M)) :=
{
ψ ∈ Γ(S̃(M)) : supp(ψ) is compact

}
with respect to the norm | · |qq :=∫

M
| · |qdvolg. Particularly, for q = 2, we have L2 is a Hilbert space with inner product (·, ·)2 =

Re
∫
M
(·, ·)dvolg.

Let us set A := εD̃g + aωC, our first point is to study the spectrum Spec(A) of A in L2 . In
fact, there is no difficulty to see that A is self-adjoint and hence Spec(A) ⊂ R.

Lemma 2.3. For closed Riemannian spin manifold (M, g),

(1) Spec(A) is a closed subset of R \ {0} consisting of an unbounded discrete sequence of
eigenvalues;

(2) each eigenspace of A is finite-dimensional and consists of smooth sections;

(3) the eigenspaces of A form a complete orthonormal decomposition of L2, that is,

L2 =
⊕

λ∈Spec(A)

ker(A− λ);
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(4) the set Spec(A) is symmetric about the origin.

Proof. Let us set amin = min
M

a > 0 and write a = â + amin. Then, we can introduce the

operator Â := εD̃g + âωC and deduce

(A2ψ, ψ)2 = (Âψ, Âψ)2 + a2min|ψ|22 + 2amin(âψ, ψ)2 ≥ a2min|ψ|22.

This suggests Spec(A) ⊂ (−∞,−amin] ∪ [amin,+∞).
Notice that ωC· and D̃g anticommute, thus when denote by Amin := εD̃g + aminωC we get

A2
min = ε2D̃2

g + a2min.

And this implies together with the spectral theorem of Dirac operators that the L2-spectrum of
Amin is given by an unbounded discrete sequence of eigenvalues of finite multiplicity. Since
the linear map ψ 7→ âωC · ψ is relatively compact with respect to Amin, we deduce that A has
compact resolvent. This proves (1). And immediately, the statements (2) and (3) follow from
the classical spectral theory of elliptic self-adjoint operators.

As for the symmetry of Spec(A) about 0, it straightforwardly follows from the splitting of
the spinor bundle in the following sense. In case m is odd, let ψ = ψ1 ⊕ ψ2 be an eigenspinor
to an eigenvalue λ ∈ Spec(A), we have ψ = ψs + ψd with

ψs =
ψ1 + ψ2

2
⊕ ψ1 + ψ2

2
and ψd =

ψ1 − ψ2

2
⊕−ψ1 − ψ2

2
.

Since A = εD̃g + aωC exchanges the above splitting of S(M)⊕ S(M), we have

εD̃gψ
s + aωC · ψs = λψd and εD̃gψ

d + aωC · ψd = λψs

and therefore
A(ψs − ψd) = −λ(ψs − ψd).

In case m even, S(M) itself splits into S+(M) ⊕ S−(M) of eigenspaces of ωC and there is a
representation of the Dirac operator as

D̃g = Dg =

(
0 Dg

∣∣
S−(M)

Dg

∣∣
S+(M)

0

)
: Γ(S+(M))⊕ Γ(S−(M)) → Γ(S−(M))⊕ Γ(S+(M)).

One can pass from S+(M) to S−(M) by taking the same underlying vector bundle S̃M =
S+(M) = S−(M) and set

S̃1
M :=

{
(ψ,−iψ) : ψ ∈ S̃M

}
and S̃2

M :=
{
(ψ, iψ) : ψ ∈ S̃M

}
.

Then there is an isomorphism between vector bundles

S̃M ⊕ S̃M → S̃1
M ⊕ S̃2

M , (ψ, 0) 7→ 1√
2
(ψ,−iψ) and (0, ψ) 7→ 1√

2
(ψ, iψ)

so that the operator A has the representation

D̃g 7→
(
Dg

∣∣
S̃ 0

0 −Dg

∣∣
S̃

)
and ωC 7→ i

(
0 IdS̃

−IdS̃ 0

)
which is exactly the same as the casem odd. Therefore, one easily checks Spec(A) is symmetric
about 0.
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From now on, we make the assumption that (M, g) is closed. Then we can choose a complete
orthonormal basis ψ±1, ψ±2, . . . of L2 consisting of the eigenspinors of A, i.e. Aψ±k = λ±kψ±k
and the spectrum Spec(A) will be denoted as

· · · ≤ λ−2 ≤ λ−1 < 0 < λ1 ≤ λ2 ≤ · · · ,

where each eigenvalue appears with its multiplicity. Particularly, we have λk = −λ−k and
|λ±k| → +∞ as k → ∞.

From a variational point of view, to study Eq. (2.7), we need to define the unbounded oper-
ator |A|s : L2 ⊃ dom(|A|s) → L2, s ≥ 0, by

|A|sψ =
∞∑

k=−∞

|λk|sαkψk

where ψ =
∑∞

k=−∞ αkψk ∈ L2. In this way, we can introduce the domain of |A|s in L2 as

H s :=

{
ψ =

∞∑
k=1

αkψk ∈ L2 :
∞∑

k=−∞

|λk|2s|αk|2 <∞
}
.

It is worth pointing out that H
1
2 coincides with the Sobolev space of order 1

2
, that isW

1
2
,2(M, S̃(M))

(see for instance [2, 4]). Moreover, we can equip H := H
1
2 an inner product

⟨ψ, φ⟩ε :=
1

εm
Re
∫
M

(
|A|1/2ψ, |A|1/2φ

)
dvolg (2.8)

and the induced norm ∥ · ∥ε such that (H, ⟨·, ·⟩ε) becomes a Hilbert space. Remark that, in the
above notations, we have emphasized the dependence on the parameter ε because it is already
hidden in the operator A and its spectrum. The dual space of H will be denoted by H∗ =
W− 1

2
,2(M, S̃(M)). Identifying H with H∗ we have ⟨·, ·⟩ε can be used to denote the norm on

H∗.
On the Banach space Lq, q > 1, we equip it a new norm

|ψ|q,ε =
(

1

εm

∫
M

|ψ|qdvolg
) 1

q

.

Then, recall m∗ = 2m
m−1

, we get

Lemma 2.4. If ε > 0 is small, then for any q ∈ [2,m∗] the embedding IdH : (H, ∥ · ∥ε) ↪→
(Lq, | · |q,ε) is a continuous map independent of ε, that is, there exists cq > 0 does not depend
on ε such that

|ψ|q,ε ≤ cq∥ψ∥ε for all ψ ∈ H.

In particular, the embedding is compact for q ∈ [2,m∗).

Proof. Our strategy is to use interpolation inequalities and we sketch the proof as follows. To
begin with, we observe that, for ψ ∈ Γ(S̃(M)),

A2ψ = ε2(D̃g)
2ψ + a2ψ + ε∇a · ωC · ψ.
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When denoted by Scalg the scalar curvature of (M, g), by Schrödinger-Lichnerowicz formula,
we have

(D̃g)
2 = ∇∗∇+

1

4
Scalg

where ∇∗∇ is the standard connection Laplacian. Hence we get

∣∣|A|ψ∣∣2
2

= |Aψ|22 =
∫
M

(A2ψ, ψ)dvolg

=

∫
M

ε2|∇ψ|2 +
(
a2 +

ε2

4
Scalg

)
|ψ|2 + ε(∇a · ωC · ψ, ψ)dvolg (2.9)

for all ψ ∈ Γ(S̃(M)).
Since M is closed, the curvature function Scalg is bounded. Noting that a > 0 is of class

C1, we assert from (2.9) that, for small values of ε, the space H 1 coincides with the stan-
dard Sobolev space W 1,2(M, S̃(M)) and, for each fixed ε, the map ψ 7→

∣∣|A|ψ∣∣
2

defines an
equivalent norm on W 1,2(M, S̃(M)).

Recalling the classical Sobolev embedding theorems, we can conclude that there exists a
positive constant C (which depends on the dimension) such that(∫

M

|ψ|
2m
m−2dvolg

)m−2
m ≤ C

∫
M

(
|∇ψ|2 + |ψ|2

)
dvolg

for all ψ ∈ W 1,2(M, S̃(M)). One easily gets

( 1

εm

∫
M

|ψ|
2m
m−2dvolg

)m−2
m ≤ C

εm

∫
M

(
ε2|∇ψ|2 + |ψ|2

)
dvolg

for all ψ ∈ H 1 provided that ε is small.
In the next, we use the following notation for a different norm of ψ ∈ W 1,2(M, S̃(M))

∥ψ∥21,2;ε :=
1

εm

∫
M

(
ε2|∇ψ|2 + |ψ|2

)
dvolg.

Then, consider the interpolation couples

(H 1, ∥ · ∥1,2;ε) ↪→
(
L

2m
m−2 , | · | 2m

m−2
,ε

)
and

(H 0, | · |2,ε) ↪→ (L2, | · |2,ε),

we can easily assert from the Calderón-Lions interpolation theorem [40] that the embedding
constant for (H

1
2 , ∥ · ∥ε) ↪→ (Lm

∗
, | · |m∗,ε) is independent of ε.

For the compactness, we only need to point out that the embeddingW 1,2(M, S̃(M)) ↪→ Lq is
compact for q ∈ [2,m∗). Therefore, by the interpolation theorem again, we have H = H

1
2 ↪→

Lq is compact for q ∈ [2,m∗), which completes the proof.
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Remark 2.5. Lemma 2.4 gives rise to a question on the ε-dependence of the embedding con-
stant cq for large values of ε. This is quite involved. Since the form domain of the operator
A is the fractional Sobolev space W

1
2
,2(M, S̃(M)), the embedding H ↪→ Lq, q ∈ [2,m∗] ex-

ists in any circumstance. However, from the definition of the norm ∥ · ∥ε in (2.8), one can not
get the explicit dependence on the parameter ε. Moreover, by the Schrödinger-Lichnerowicz
formula and formula (2.9), we see that, for large ε, the interaction between the function a
and the scalar curvature Scalg enters into play. In this situation, the embedding constant for
W 1,2(M, S̃(M)) ↪→ Lm

∗ is ε-dependent when Scalg possesses certain negative parts. This fact
will probably impact the embedding constant of H into Lm∗ .

Recall that we have an (·, ·)2-orthogonal decomposition

L2 = L+
ε ⊕ L−

ε , ψ = ψ+ + ψ−

with

L+
ε :=

+∞⊕
k=1

ker(A− λk) and L−
ε :=

−∞⊕
k=−1

ker(A− λk)

so that A is positive definite on L+
ε and negative definite on L−

ε . Then, this leads to the orthog-
onal decomposition of H with respect to the inner product ⟨·, ·⟩ε as

H = H+
ε ⊕H−

ε , H±
ε = H ∩ L±

ε .

With the above notations, we have Eq. (2.7) is the Euler-Lagrange equation of the functional

Lε(ψ) =
1

εm

∫
M

(1
2
(Aψ,ψ)− b

p
|ψ|p

)
dvolg

=
1

2

(
∥ψ+∥2ε − ∥ψ−∥2ε

)
− 1

εm p

∫
M

b|ψ|pdvolg (2.10)

defined on H = H+
ε ⊕H−

ε . And by Lemma 2.4, we have Lε ∈ C2(H,R).
We emphasize that, by abuse of notation, we just simply write ψ = ψ+ +ψ− for the orthog-

onal decomposition of H without mention its dependence on ε. However, one should always
keep in mind that, for different values of ε, such decomposition of a spinor ψ is different.

3 Existence of solutions
We shall now investigate the existence of a nontrivial solution for Eq. (2.7). This is equivalent
to find nontrivial critical points of the functional Lε in the Hilbert space H. Fortunately, this is
not a difficult task. Indeed, by noting that p < m∗, the compact embedding H ↪→ Lp sheds light
on several ways to obtain the existence issue.

A first approach is to construct, on a subspace of H, a functional having a mountain pass
geometry whose critical points are in one-to-one correspondence with critical points of Lε. This
idea can be found in a paper of Buffoni, Jeanjean and Stuart in 1993 where the authors studied
the solutions to the Choquard-Pekar equation in R3, see [22]. Compared with the problem (2.7),
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the strategy is to use a global Lyapunov-Schmidt reduction to control the part of the solutions in
the space H−

ε . This will lead to study a functional defined only on H+
ε . Then a direct application

of the Mountain Pass Theorem gives the existence of a critical point. Such reduction argument
essentially requires the super-quadratic part to be strictly convex and C2 smooth. This is auto-
matically satisfied in our situation since the the super-quadratic part in Lε more or less behaves
like the Lp-integral.

This approach was extended by several papers to study different nonlinear PDE problems.
Typical (but not comprehensive) results can be found in [1] where Schrödinger equations with
periodic potentials and in [37, 38] where semiclassical Hamiltonian elliptic systems were stud-
ied.

A second approach devotes in searching directly critical points of indefinite functionals.
Benci and Rabinowitz [16] opened this route. They constructed deformations having special
representations by solving appropriate differential equations approximately by time discretiza-
tion. This approach was subsequently improved by Hofer in [30]. Several applications are ex-
hibited in the study of periodic solutions of the one-dimensional wave equation, in the study of
periodic solutions of Hamiltonian systems of ordinary differential equations, in the existence
theory of systems of elliptic equations, in the study of resonance problems of the Landesman
and Lazer type, etc.

Substantial improvements along this approach were made by Kryszewski and Szulkin [32].
The authors built an abstract linking theorem to obtain critical points of a strongly indefinite
functional. And applications of this linking theorem give rise to the existence of a solution to
nonlinear Schrödinger equations with periodic potentials and some general nonlinearities. The
convexity of the super-quadratic part is not required and the energy functional is of C1. This
approach was subsequently refined in the work of Bartsch and Ding [15] via a general setting
on Banach spaces.

The third approach (using the fundamental idea in calculus of variations) is to consider
a constrained variational structure. Specifically, to our model problem (2.7), the procedure is
to construct, on the unit sphere of H+

ε , a map χε in H such that the composition Lε ◦ χε is
of C1 smooth and all its critical points on the unit sphere correspond to solutions of (2.7).
This formulation was developed by Szulkin and Weth [43], and this idea can be viewed as a
refinement of the first approach in the sense that χε can be understand as a normalized reduction
map of Lε to H+

ε . However, being differently, the advantage of this approach is to remove the
convexity and to give the most simplified characterization of the critical value.

Here, owning to the original face of the problem (2.7), we adopt the first approach mentioned
above to obtain the existence results. The basic reason, which tempts us into choosing this
approach, is that we shall use the C2 property and the reduction procedure to go further to
get some useful estimate on the critical levels so that we could draw more information on our
geometric objects.

Let’s begin with the following compactness result of the functional Lε. Since the proof is
classical, we simply omit it here.

Lemma 3.1. For each ε > 0 small, Lε satisfies the (P.S.)c-condition for c ≥ 0, that is,

Lε(ψn) → c

L′
ε(ψn) → 0

}
⇒ {ψn} possesses a convergent subsequence in H.
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Moreover, ψn → 0 if and only if c = 0.

Now, for the functionals Lε, we have

Proposition 3.2. For each ε > 0 small,

(1) there exists gε ∈ C1(H+
ε ,H−

ε ) such that

∀w ∈ H−
ε , w ̸= gε(u) ⇒ Lε(u+ w) < Lε(u+ gε(u)),

in particular,

∥gε(u)∥2ε ≤
2

εm p

∫
M

b|u|pdvolg

and L′
ε(u+ gε(u))[w] ≡ 0 for all w ∈ H−

ε ;

(2) denoted by
Iε : H+

ε → R, Iε(u) = Lε(u+ gε(u)),

if {un} is a (P.S.)-sequence for Iε then {un + gε(un)} is a (P.S.)-sequence for Lε;

(3) there exists ψε ∈ H such that L′
ε(ψε) = 0 and ψε ̸= 0.

Proof. By Lemma 3.1, we may apply the arguments in [22, Section 2] to get the existence of
one critical point for Iε of Mountain Pass type.

Next we are intend to give a characterization of the critical point ψε obtained in the above
proposition.

Lemma 3.3. For every u ∈ H+
ε \ {0}, the map Iε,u : R → R, Iε,u(t) = Iε(tu), is of class C2

and satisfies
I ′ε,u(t) = 0, t > 0 =⇒ I ′′ε,u(t) < 0.

Moreover Iε,u(0) = I ′ε,u(0) = 0, I ′′ε,u(0) > 0.

Proof. In order to see this, we compute I ′ε,u(t) = L′
ε(tu+ gε(tu))[u] which suggests that Iε,u is

C2. As we can see, the implication is equivalent to:

I ′ε(u)[u] = 0, u ̸= 0 =⇒ I ′′ε (u)[u, u] < 0. (3.1)

For simplicity, let us denote Ψε : H → R by Ψε(ψ) =
1

εm p

∫
M
b|ψ|pdvolg and set ψ = u+gε(u)

and χ = g′ε(u)[u] − gε(u). By using L′
ε(u + gε(u))|H−

ε
≡ 0, we have (3.1) is a consequence of

the following computations: L′′
ε(ψ)[u+ g′ε(u)[u], ·]

∣∣
H−

ε
≡ 0 and

I ′′ε (u)[u, u] = L′′
ε(ψ)[u+ g′ε(u)[u], u] = L′′

ε(ψ)[ψ + χ, ψ + χ]

= L′′
ε(ψ)[ψ, ψ] + 2L′′

ε(ψ)[ψ, χ] + L′′
ε(ψ)[χ, χ]

= I ′ε(u)[u] +
(
Ψ′
ε(ψ)[ψ]−Ψ′′

ε(ψ)[ψ, ψ]
)
+ 2
(
Ψ′
ε(ψ)[χ]−Ψ′′

ε(ψ)[ψ, χ]
)

−Ψ′′
ε(ψ)[χ, χ]− ∥χ∥2ε

≤ I ′ε(u)[u]−
1

εm
p− 2

p− 1

∫
M

b|ψ|pdvolg − ∥χ∥2ε, (3.2)
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where the last inequality comes from the facts(
Ψ′′
ε(ψ)[ψ, ψ]−Ψ′

ε(ψ)[ψ]
)
++2

(
Ψ′′
ε(ψ)[ψ, χ]−Ψ′

ε(ψ)[χ]
)
+Ψ′′

ε(ψ)[χ, χ]

=
p− 2

εm

∫
M

b|ψ|p−2
[
|ψ|2 + 2Re(ψ, χ) +

|Re(ψ, χ)|2

|ψ|2
]
dvolg +

1

εm

∫
M

b|ψ|p−2|χ|2dvolg

≥ 1

εm

∫
M

b|ψ|p−2
[
(p− 2)|ψ|2 + 2(p− 2)Re(ψ, χ) + (p− 1)

|Re(ψ, χ)|2

|ψ|2
]
dvolg

and

2|Re(ψ, χ)| ≤ p− 1

p− 2

|Re(ψ, χ)|2

|ψ|2
+
p− 2

p− 1
|ψ|2

for |ψ| ≠ 0.

A natural constraint for Iε is to consider the associated Nehari manifold:

Nε :=
{
u ∈ H+

ε \ {0} : I ′ε(u)[u] = 0
}
.

By Lemma 3.3 this is a smooth submanifold of codimension 1 in H+
ε . And consequently, the

critical point found in Proposition 3.2 (3) can be characterized by

γε := Lε(ψε) = inf
u∈H+

ε \{0}
max

ψ∈Ru⊕H−
ε

Lε(ψ) = inf
u∈H+

ε \{0}
max
t>0

Iε(tu) = inf
u∈Nε

Iε(u). (3.3)

For later purpose, it is worth to point out that, by Lemma 2.4, there holds

Iε(tu) ≥
t2

2
∥u∥2ε −

cpp t
p

p
max b ∥u∥pε ∀u ∈ H+

ε \ {0}, ∀t > 0. (3.4)

Hence there exists τ0 > 0 independent of ε such that γε ≥ τ0.
In what follows, we intend to pass to the limit ε → 0 and consider the convergence of the

min-max level γε. The idea is to use certain test spinors in the functional Lε. For this purpose,
first of all, we need to establish an upper bound estimate. Without loss of generality, we assume
that {ϕε} ⊂ H is an arbitrary sequence such that

c1 ≤ Lε(ϕε) ≤ c2 and ∥L′
ε(ϕε)∥ε → 0 (3.5)

as ε→ 0 for some constants c1, c2 > 0. Here, we have identified the dual space H∗ with H.

Lemma 3.4. Under (3.5), we have

(1) ∥ϕε∥ε is uniformly bounded in ε;

(2) ∥ϕ−
ε − gε(ϕ

+
ε )∥ε ≤ O

(
∥L′

ε(ϕε)∥ε
)

as ε→ 0;

(3) I ′ε(ϕ
+
ε ) → 0 as ε→ 0 in the dual space of H+

ε .

Proof. For the boundedness, we recall that Lemma 2.4 implies the embedding constant for
H ↪→ Lp

∗ is independent of ε, and hence the arguments in Lemma 3.1 can be employed.
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For (2), let us first set zε = ϕ+
ε + gε(ϕ

+
ε ) and vε = ϕ−

ε − gε(ϕ
+
ε ). Then we have vε ∈ H−

ε

and, by the definition of gε,

0 = L′
ε(zε)[vε] = −

〈
gε(ϕ

+
ε ), vε

〉
ε
− 1

εm
Re
∫
M

b|zε|p−2(zε, vε)dvolg.

Since ∥L′
ε(ϕε)∥ε → 0 as ε→ 0, it follows that

o(∥vε∥ε) = L′
ε(ϕε)[vε] = −

〈
ϕ−
ε , vε

〉
− 1

εm
Re
∫
M

b|ϕε|p−2(ϕε, vε)dvolg.

And hence, we get

o(∥vε∥ε) = ∥vε∥2ε +
1

εm
Re
∫
M

b|ϕε|p−2(ϕε, vε)dvolg

− 1

εm
Re
∫
M

b|zε|p−2(zε, vε)dvolg.

(3.6)

Remark that the map ψ → |ψ|p is convex, we have

1

εm
Re
∫
M

b|ϕε|p−2(ϕε, vε)dvolg −
1

εm
Re
∫
M

b|zε|p−2(zε, vε)dvolg ≥ 0.

Thus, from (3.6), we can infer that ∥vε∥ε ≤ O
(
∥L′

ε(ϕε)∥ε
)

as ε→ 0.
In order to check (3) we compute I ′ε(ϕ

+
ε ) = L′

ε

(
ϕ+
ε +gε(ϕ

+
ε )
)
, which implies ∥I ′ε(ϕ+

ε )∥ε → 0
as ε→ 0 is a direct consequence of the C2 smoothness of Lε.

Next, let us introduce the functional Hε : H+
ε → R by Hε(u) = I ′ε(u)[u]. Then, it is clear

that Hε is C1 and its derivative is given by the formula

H ′
ε(u)[w] = I ′ε(u)[w] + I ′′ε (u)[u,w]

for u,w ∈ H+
ε . We also have Nε = H−1

ε (0) \ {0}. Moreover, by (3.2), we have

H ′
ε(u)[u] ≤ 2Hε(u)−

1

εm
p− 2

p− 1

∫
M

b
∣∣u+ gε(u)

∣∣pdvolg. (3.7)

for any u ∈ H+
ε .

Proposition 3.5. For the sequence {ϕε} in (3.5), there exists {tε} ⊂ R such that tεϕ+
ε ∈ Nε

and |tε − 1| ≤ O
(
∥I ′ε(ϕ+

ε )∥ε
)
.

Proof. We begin with the observation: due to the condition (3.5) and Lemma 3.4 (3), there
holds

lim inf
ε→0

1

εm

∫
M

b
∣∣ϕ+
ε + gε(ϕ

+
ε )
∣∣pdvolg ≥ c0 (3.8)

for some constant c0 > 0. Let us set ηε : (0,∞) → R by ηε(t) = Hε(tϕ
+
ε ). One easily checks

that tη′ε(t) = H ′
ε(tϕ

+
ε )[tϕ

+
ε ] for all t > 0. Hence, by (3.7) and Taylor’s formula, we get

tη′ε(t) ≤ 2ηε(1)−
1

εm
p− 2

p− 1

∫
M

b
∣∣ϕ+
ε + gε(ϕ

+
ε )
∣∣pdvolg + C|t− 1| (3.9)
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for t close to 1 with C > 0 independent of ε. Here we have used the uniform boundedness of
η′ε(t) on bounded intervals.

Notice that ηε(1) = I ′ε(ϕ
+
ε )[ϕ

+
ε ] → 0 as ε → 0, we conclude from (3.8) and (3.9) that there

exists a small constant δ > 0 such that

η′ε(t) ≤ −δ for all t ∈ (1− δ, 1 + δ) and ε small enough.

Moreover, from Lemma 3.3, we have ηε(1 − δ) > 0 and ηε(1 + δ) < 0. Then, by Inverse
Function Theorem, tε := η−1

ε (0) exists and

uε := tεϕ
+
ε ∈ Nε ∩ span{ϕ+

ε }

is well-defined for all ε small enough. Furthermore, since |η′ε(t)−1| is bounded by a constant,
say cδ > 0, on (1− δ, 1 + δ), we consequently get

∥uε − ϕ+
ε ∥ε = |η−1

ε (0)− η−1
ε (Hε(ϕ

+
ε ))| · ∥ϕ+

ε ∥ε ≤ cδ|Hε(ϕ
+
ε )| · ∥ϕ+

ε ∥ε.

Now the conclusion follows from Hε(ϕ
+
ε ) ≤ O

(
∥I ′ε(ϕ+

ε )∥ε
)
.

Corollary 3.6. For the sequence {ϕε} in (3.5), there exists {uε} such that uε ∈ Nε and ∥ϕε −
uε − gε(uε)∥ε ≤ O(∥L′

ε(ϕε)∥ε). Particularly,

max
t>0

Iε(tϕ
+
ε ) = Iε(uε) ≤ Lε(ϕε) +O

(
∥L′

ε(ϕε)∥2ε
)
.

Proof. To see this, let uε = tεϕ
+
ε be as in Proposition 3.5 and set zε = ϕ+

ε + gε(ϕ
+
ε ). Then one

obtains from Lemma 3.4 that

∥ϕε − uε − gε(uε)∥ε ≤ ∥ϕε − zε∥ε + |tε − 1| · ∥ϕ+
ε ∥ε + ∥gε(ϕ+

ε )− gε(uε)∥ε
≤ O

(
∥L′

ε(ϕε)∥ε
)
+O

(
∥I ′ε(ϕ+

ε )∥ε
) (3.10)

where we have used an easily checked inequality

∥gε(ϕ+
ε )− gε(uε)∥ε ≤ ∥g′ε(τϕ+

ε )∥H+
ε →H−

ε
· ∥ϕ+

ε − uε∥ε = O(|tε − 1|)

for some τ between tε and 1. Remark that I ′ε(ϕ
+
ε ) = L′

ε(zε), by using the C2 smoothness of Lε,
we have

∥I ′ε(ϕ+
ε )∥ε = ∥L′

ε(zε)∥ε ≤ ∥L′
ε(ϕε)∥ε +O(∥ϕε − zε∥ε) = O(∥L′

ε(ϕε)∥ε)

This together with (3.10) implies

∥ϕε − uε − gε(uε)∥ε ≤ O(∥L′
ε(ϕε)∥ε).

Now, by Talyor’s formula, we can obtain

Lε(ϕε) = Lε(uε + gε(uε)) + L′
ε(uε + gε(uε))[ϕε − uε − gε(uε)] +O

(
∥L′

ε(ϕε)∥2ε
)

= Iε(uε) + I ′ε(uε)[ϕ
+
ε − uε] +O

(
∥L′

ε(ϕε)∥2ε
)
.

Notice that uε = tεϕ
+
ε ∈ Nε, we have I ′ε(uε)[ϕ

+
ε −uε] ≡ 0 and this implies the last estimate.

As a immediate consequence of Corollary 3.6, we can show a explicit upper bound of γε if
we find some test spinors {ϕε} satisfying (3.5).
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4 Energy gap for solutions in Euclidean spaces: the bubbles
We consider solutions to the equation

D̃gRmψ + νωC · ψ = κ|ψ|p−2ψ on Rm (4.1)

belonging to the class W
1
2
,2(Rm, S̃(Rm)), where ν, κ > 0 are constants,

S̃(Rm) =

{
S(Rm)⊕ S(Rm) m is odd,

S(Rm) m is even,

D̃gRm = DgRm ⊕−DgRm ifm is odd and D̃gRm = DgRm ifm is even. These solutions correspond
to ”bubbles” or test spinors for our variational problem.

First of all, let us denote Aν = D̃gRm + νωC. Then we have A2
ν = −∆ + ν2. By a

straightforward calculation we see that Aν is a self-adjoint operator on L2 and has its spec-
trum Spec(Aν) = (−∞,−ν] ∪ [ν,+∞). Following Amann [3], denote (Eλ)λ∈R the spectral
resolution of Aν and define the orthogonal projections by

Pν =

∫ 0

−∞
dEλ, Qν =

∫ ∞

0

dEλ.

Then the decomposition of E = W
1
2
,2(Rm, S̃(Rm)) = E+

ν ⊕ E−
ν is induced by

E−
ν = E ∩ Pν(L2) and E+

ν = E ∩Qν(L
2).

We can introduce the following operators

Sν =

∫ 0

−∞
|λ|

1
2dEλ and Tν =

∫ ∞

0

|λ|
1
2dEλ.

We may now introduce a new inner product on E by the formula

⟨ψ, φ⟩ν = Re
(
(Sν + Tν)ψ, (Sν + Tν)φ

)
2
, ψ, φ ∈ E

and the corresponding norm ∥ · ∥ν . And we easily see that (4.1) is the Euler-Lagrange equation
of the functional

Φνκ(ψ) =
1

2

(
∥Qνψ∥2ν − ∥Pνψ∥2ν

)
− κ

p
|ψ|pp. (4.2)

Lemma 4.1. If {ψn} ⊂ E is a bounded sequence such that

Φ′
νκ(ψn) → 0 and lim inf

n→∞
|ψn|p > 0.

Then there exists ψ ̸= 0 with Φ′
νκ(ψ) = 0.

Proof. Let B0
R denote the open ball of radius R centered at the origin. If

lim
n→∞

sup
y∈Rm

∫
y+B0

R

|ψn|2dx = 0, ∀R > 0,
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then by Lions’ result [35] ψn → 0 in Lq for all q ∈ (2,m∗) and therefore |ψn|p → 0, which is a
contradiction.

Passing to a subsequence, we have

lim inf
n→∞

∫
yn+B0

R

|ψn|2dx > 0

for some R > 0 and {yn} ⊂ Rm. Using the invariance of the operator Aν under translations,
we can find R > 0 and a new sequence {ψ̃n} such that

Φ′
νκ(ψ̃n) → 0 and lim inf

n→∞

∫
B0

R

|ψ̃n|2dx > 0.

Up to a subsequence if necessary, we have ψ̃n ⇀ ψ and the compact embedding E ↪→ L2
loc

shows that ψ ̸= 0. Note that |ψ̃n|p−2ψ̃n ⇀ |ψ|p−2ψ in L
p

p−1 , by taking the limit in Φ′
νκ(ψ̃n) → 0,

we obtain Φ′
νκ(ψ) = 0 as desired.

Corollary 4.2. For each ν, κ > 0, there exists a nontrivial solution ψ ∈ E to Eq. (4.1).

Proof. By Lemma 4.1, this is a direct consequence of [22, Theorem 2.1].

Now we may define

γ(ν, κ) = inf
{
Φνκ(ψ) : ψ ∈ E \ {0} s.t. Φ′

νκ(ψ) = 0
}
.

Because the super-quadratic part in (4.2) is simply the Lp norm, we easily see that γ(ν, κ) > 0 is
attained. Particularly, by [22] and a similar argument as of Lemma 3.3, the following reduction
principle holds.

Lemma 4.3. For each ν, κ > 0,

(1) there exists a C1 map hνκ : E+
ν → E−

ν such that Φνκ(u+ hνκ(u)) = max
v∈E−

ν

Φνκ(u+ v);

(2) denoted by Jνκ(u) = Φνκ(u+ hνκ(u)), then critical points of Jνκ and Φνκ are in one-to-
one correspondence via the injective map u 7→ u+ hνκ(u);

(3) for each u ∈ E+
ν \ {0}, the map t 7→ Jνκ(tu) has only one maximum on (0,+∞) and

γ(ν, κ) = inf
u∈E+

ν \{0}
max
t>0

Jνκ(tu).

In the next step, we will study the behavior of the map (ν, κ) 7→ γ(ν, κ). Specifically, the
monotonicity of γ with respect to the two parameters is at the core of this paper.

Proposition 4.4. γ(ν, κ) = ν−(m−1)+ 2
p−2 κ−

2
p−2 γ(1, 1).

Proof. In fact, taking ρ > 0 as a parameter, we can assert that: ψ is a nontrivial solution of Eq.
(4.1) with energy γ(ν, κ) if and only if φ(x) = ρψ(x/ν) solves

D̃gRmφ+ ωC · φ =
ν−1κ

ρp−2
|φ|p−2φ on Rm
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with the energy

γ
(
1,
ν−1κ

ρp−2

)
= νm−1 ρ2 γ(ν, κ).

Therefore, the conclusion follows easily by substituting ρ = (ν−1κ)
1

p−2 .

Remark 4.5. Since p ∈ (2,m∗), we have −(m−1)+ 2
p−2

> 0 and the value of γ(ν, κ) decreases
as ν goes smaller and κ goes larger.

5 Bubbling analysis
Let us recall that the coefficients a, b in the model problem Eq. (2.7) are positive functions in
the class C1(M). Motivated by Proposition 4.4, we introduce a potential function α : M → R
as

α = a−(m−1)+ 2
p−2 b−

2
p−2 ,

and we write αmin = min
M

α. The set of minimum points of α will be denoted by

C =
{
ξ ∈M : α(ξ) = αmin

}
. (5.1)

Fix ξ0 ∈ C arbitrarily, we can denote ν0 = a(ξ0) and κ0 = b(ξ0). Then, by Lemma 4.3, there
exists ψ0 ∈ E such that

D̃gRmψ0 + ν0ωC · ψ0 = κ0|ψ0|p−2ψ0 on Rm (5.2)

and
Φν0κ0(ψ0) = γ(ν0, κ0) ≡ αminγ(1, 1). (5.3)

Let η ∈ C∞(Rm) be such that η(x) = 1 for |x| ≤ 1/2 and η(x) = 0 for |x| ≥ 1. We define a
spinor φε ∈ Γ(S̃(Rm)) by

φε(x) = ηε(x)ψ0(x) where ηε(x) = η(ε
1
2x).

Suppose ξ0 ∈ V ⊂ M and let (x1, . . . , xm) be the normal coordinates given by the expo-
nential map expξ0 : U ⊂ Tξ0M

∼= Rm → V , x 7→ y = expξ0 x. We define

µε(x) = expξ0(εx)

such that ε|x| < injM , where injM > 0 is the injectivity radius of M .
Denoted by B0

R = {x ∈ Rm : |x| < R}, where | · | is the Euclidean norm in Rm, we have a
conformal equivalence (B0

ε−1/2 , ε
−2µ∗

εg) ∼= (Bε1/2(ξ0), g) ⊂M for all ε small.
To ease the notation, we set gε = ε−2µ∗

εg. Writing the metric g in geodesic normal coordi-
nates centered at ξ0, one immediately sees that gε on B0

ε−1/2 converges to the Euclidean metric
locally uniformly in Ck

loc for any k ≥ 1.
We point out here that, by using the idea of Bourguignon-Gauduchon trivialization [21]

(see also [8]), the coordinate map µε induces a bundle identification (µε)∗ : Sx(B0
ε−1/2 , gε) →

Sµε(x)(Bε1/2(ξ0), g). Hence we can define spinors on Bε1/2(ξ0) by

ϕε := (µε)∗ ◦ φε ◦ µ
−1
ε . (5.4)
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Then, by the transformation property of the Dirac operator under conformal change of the metric
(see [27, 29]), a straightforward calculation shows that

εD̃gϕε = (µε)∗ ◦ (Dgεφε) ◦ µ
−1
ε , (5.5)

and moreover,

1

εm

∫
B

ε1/2
(ξ0)

ε(D̃gϕε, ϕε)dvolg =

∫
B0

ε−1/2

(Dgεφε, φε)dvolgε , (5.6)

1

εm

∫
B

ε1/2
(ξ0)

(ωC ·g ϕε, ϕε)dvolg =
∫
B0

ε−1/2

(ωC ·gε φε, φε)dvolgε , (5.7)

1

εm

∫
B

ε1/2
(ξ0)

|ϕε|pdvolg =
∫
B0

ε−1/2

|φε|pdvolgε , (5.8)

where ωC·g and ωC·gε denote the Clifford multiplication by the chirality operators with respect
to the metric g and gε respectively.

Lemma 5.1. ∥L′
ε(ϕε)∥ε → 0 as ε→ 0.

Proof. Let φ ∈ H be an arbitrary test spinor, it follows that

L′
ε(ϕε)[φ] =

1

εm
Re
∫
M

(Aϕε, φ)− b|ϕε|p−2(ϕε, φ)dvolg. (5.9)

Notice that ϕε = (µε)∗ ◦ φε ◦ µ−1
ε , we have

εD̃gϕε = (µε)∗ ◦ (∇ηε ·gε ψ0) ◦ µ−1
ε + (µε)∗ ◦ (ηεD̃gεψ0) ◦ µ−1

ε

where ·gε is the Clifford multiplication with respect to the metric gε. Substituting this into (5.9),
we get

L′
ε(ϕε)[φ] = l1 + l2 + l3 + l4 (5.10)

where
l1 =

1

εm
Re
∫
M

(
(µε)∗ ◦ (∇ηε ·gε ψ0) ◦ µ−1

ε , φ)dvolg

= Re
∫
B0

ε−1/2

(
∇ηε ·gε ψ0, (µε)

−1

∗ ◦ φ ◦ µε
)
dvolgε ,

l2 =
1

εm
Re
∫
M

(ηε ◦ µ−1
ε )
(
(µε)∗ ◦ (D̃gεψ0 − D̃gRmψ0) ◦ µ−1

ε , φ)dvolg

= Re
∫
B0

ε−1/2

ηε ·
(
D̃gεψ0 − D̃gRmψ0, (µε)

−1

∗ ◦ φ ◦ µε
)
dvolgε ,

l3 =
1

εm
Re
∫
M

(ηε ◦ µ−1
ε )
(
(µε)∗ ◦ (D̃gRmψ0 + aωC ·gε ψ0 − b|ψ0|p−2ψ0) ◦ µ−1

ε , φ
)
dvolg

= Re
∫
B0

ε−1/2

ηε ·
(
D̃gRmψ0 + (a ◦ µε)ωC ·gε ψ0 − (b ◦ µε)|ψ0|p−2ψ0, (µε)

−1

∗ ◦ φ ◦ µε
)
dvolgε ,
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and

l4 =
1

εm
Re
∫
M

(
(µε)∗ ◦ (b · ηε|ψ0|p−2ψ0 − b · ηp−1

ε |ψ0|p−2ψ0) ◦ µ−1
ε , φ)dvolg

= Re
∫
B0

ε−1/2

(b ◦ µε)(ηε − ηp−1
ε )|ψ0|p−2(ψ0, (µε)

−1

∗ ◦ φ ◦ µε)dvolgε .

For l1, by the Hölder inequality and Lemma 2.4, we have

|l1| ≤
(∫

B0

ε−1/2

|∇ηε ·gε ψ0|2dvolgε
) 1

2
( 1

εm

∫
B0

ε−1/2

|φ ◦ µε|2dvolµ∗εg

) 1
2

≤ Cε
1
2

(∫
B0

ε−1/2
\B0

1
2 ε−1/2

|ψ0|2dvolgRm
) 1

2 · |φ|2,ε

≤ Cε
1
2 |ψ0|2 · ∥φ∥ε,

where we used dvolgε ≤ CdvolgRm on B0
ε−1/2 for some constant C > 0 as ε → 0. We soon

obtain
|l1| ≤ oε(1)∥φ∥ε as ε→ 0. (5.11)

In order to estimate l2, let us mention that, by (5.2) and the Lp-theory for Dirac operators,
we have ∇ψ0 ∈ L

p
p−1 (Rm, S̃(Rm)). And hence, we get

|l2| ≤
(∫

B0

ε−1/2

|D̃gεψ0 − D̃gRmψ0|
p

p−1dvolgε

) p−1
p
( 1

εm

∫
B0

ε−1/2

|φ ◦ µε|pdvolµ∗εg

) 1
p

≤ C
(∫

B0

ε−1/2

|D̃gεψ0 − D̃gRmψ0|
p

p−1dvolgRm

) p−1
p ∥φ∥ε.

Since gε → gRm onB0
ε−1/2 inC∞-topology as ε→ 0, we can get further from the above estimate

that
|l2| ≤ oε(1)∥φ∥ε as ε→ 0. (5.12)

The estimate for l3 is much more clear. Indeed, by the definition of µε, we have

a ◦ µε → ν0 and b ◦ µε → κ0

uniformly on B0
ε−1/2 and, therefore, it follows that

|l3| ≤ C
(∫

B0

ε−1/2

|a ◦ µε − ν0|2|ψ0|2dvolgRm
) 1

2 |φ|2,ε

+C
(∫

B0

ε−1/2

|b ◦ µε − κ0|
p

p−1 |ψ0|pdvolgRm
) p−1

p |φ|p,ε

≤ oε(1)∥φ∥ε (5.13)

as ε→ 0.
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It remains to estimate l4. Similarly as was argued in the above, we have

|l4| ≤ C
(∫

B0

ε−1/2

(ηε − ηp−1
ε )

p
p−1 |ψ0|pdvolgRm

) p−1
p |φ|p,ε

≤ C
(∫

B0

ε−1/2
\B0

1
2 ε−1/2

|ψ0|pdvolgRm
) p−1

p ∥φ∥ε

where ∫
B0

ε−1/2
\B0

1
2 ε−1/2

|ψ0|pdvolgRm → 0

as ε→ 0. Hence we have
|l4| ≤ oε(1)∥φ∥ε as ε→ 0. (5.14)

Combining (5.11)-(5.14), we have ∥L′
ε(ϕε)∥ε → 0 as ε→ 0 as desired.

Lemma 5.2. Lε(ϕε) → γ(ν0, κ0) as ε→ 0.

Proof. Due to the definition of the test spinor ϕε in (5.4), we can find a constant C > 0 inde-
pendent of ε such that ∥ϕε∥ε ≤ C. And thus, by Lemma 5.1, we easily see that

Lε(ϕε) = Lε(ϕε)−
1

2
L′
ε(ϕε)[ϕε] + oε(1) =

p− 2

2εm p

∫
M

b|ϕε|pdvolg + oε(1) (5.15)

as ε→ 0.
Observe that

1

εm

∫
M

b|ϕε|pdvolg =
1

εm

∫
B

ε1/2
(ξ0)

b|ϕε|pdvolg =
∫
B0

ε−1/2

b ◦ µε|ηε · ψ0|pdvolgε ,

where ∫
B0

ε−1/2

b ◦ µε|ηε · ψ0|pdvolgε = κ0

∫
Rm

|ψ0|pdvolgRm + oε(1)

as ε→ 0.
Thus, by (5.2) and (5.3), we soon have

Lε(ϕε) =
p− 2

2p
κ0

∫
Rm

|ψ0|pdvolgRm + oε(1) = γ(ν0, κ0) + oε(1)

as ε→ 0 which completes the proof.

Here, we emphasize that the above two lemmas yield a description of the limiting behavior
of the critical value γε obtained in (3.3). Namely, applying Corollary 3.6 for {ϕε}, we obtain
the following estimate.

Corollary 5.3. lim sup
ε→0

γε ≤ γ(ν0, κ0) = αminγ(1, 1).
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6 Asymptotic profiles of the solutions
In the present section we will firstly establish a complete description for the model problem
(2.7). After that we will return to the analysis of the limiting behavior of the conformal metrics
induced by (2.6).

To begin with, let {ψε} be a family of solutions to (2.7) found by (3.3), i.e.,

Lε(ψε) = γε and L′
ε(ψε) = 0. (6.1)

Then, as was mentioned in (3.4), we find

p− 2

2εm p

∫
M

b|ψε|pdvolg = γε ≥ τ0 > 0 (6.2)

for some τ0 > 0. In what follows, for any ξ ∈ M and r > 0, Br(ξ) ⊂ M denote the distance
ball of radius r with respect to the metric g.

Lemma 6.1. There exist ξε ∈M , r0, δ0 > 0 such that

lim inf
ε→0

1

εm

∫
Bεr0 (ξε)

|ψε|2dvolg ≥ δ0.

Proof. Assume on the contrary that for any r > 0

sup
ξ∈M

1

εm

∫
B2εr(ξ)

|ψε|2dvolg → 0 as ε→ 0. (6.3)

For each ξ ∈ M , let us now choose a smooth real cut-off function χξ,ε ≡ 1 on Bεr(ξ) and
suppχξ,ε ⊂ B2εr(ξ). Then, for s ∈ (0, 1), we consider qs = 2 + (m∗ − 2)s ∈ (2,m∗) and we
have ∫

B2εr(ξ)

|χξ,εψε|qsdvolg ≤
(∫

B2εr(ξ)

|χξ,εψε|2dvolg
)1−s(∫

B2εr(ξ)

|χξ,εψε|
2m
m−1dvolg

)s
.

Taking s = 2
m∗ , we obtain from Lemma 2.4 that( 1

εm

∫
B2εr(ξ)

|χξ,εψε|m
∗
dvolg

)s
≤ C∥χξ,εψε∥2ε.

Now, covering M by balls of radius εr such that any point ξ ∈ M is contained in at most
KM balls, where KM does not depend on ε. This condition can be satisfied for ε small by the
compactness of M . And thus, we find

1

εm

∫
M

|ψε|qsdvolg ≤ C ·KM

(
sup
ξ∈M

∫
B2εr(ξ)

|χξ,εψε|2dvolg
)1−s

∥ψε∥2ε.

Notice that ∥ψε∥ε is bounded, it follows from (6.3) that |ψε|qs,ε → 0. Since 2 < qs < m∗, we
see easily that |ψε|q,ε → 0 for all q ∈ (2,m∗) which contradict to (6.2)
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We may now fix the sequence {ξε} ⊂ M and the constants r0, δ0 > 0 in Lemma 6.1. Up to
a subsequence if necessary, we assume that ξε → ξ∞ ∈ M as ε → 0. Then, similar to Section
5, we can consider the rescaled geodesic normal coordinates near each ξε via the formula

Θε(x) = expξε(εx).

For any R ≥ r0, we have a conformal equivalence (B0
R, ε

−2Θ∗
εg) ∼= (BεR(ξε), g) for all small ε.

Denoting by gΘε
= ε−2Θ∗

εg, then we have gΘε
→ gRm in C∞(B0

R) as ε→ 0.
Let (Θε)∗ : Sx(B0

R, gΘε
) → SΘε(x)(BεR(ξε), g) denote the bundle identification for spinors,

we can introduce a family of spinors on B0
R by

zε = (Θε)
−1

∗ ◦ ψε ◦Θε. (6.4)

Along this line of consideration, we have

D̃gΘε
zε = (Θε)

−1

∗ ◦ (εD̃gψε) ◦Θε,∫
B0

R

(D̃gΘε
zε, zε)dvolgΘε

=
1

εm

∫
BεR(ξε)

(εD̃gψε, ψε)dvolg, (6.5)∫
B0

R

(ωC ·gΘε
zε, zε)dvolgΘε

=
1

εm

∫
BεR(ξε)

(ωC ·g ψε, ψε)dvolg, (6.6)∫
B0

R

|zε|pdvolgΘε
=

1

εm

∫
BεR(ξε)

|ψε|pdvolg. (6.7)

Particularly, since ∥ψε∥ε is bounded, we have

0 < lim inf
ε→0

∫
B0

R

|zε|pdvolgΘε
≤ lim sup

ε→0

1

εm

∫
M

|ψε|pdvolg <∞ (6.8)

for any R > r0.
Recalling the set C ⊂M defined in (5.1), we have

Lemma 6.2. ξ∞ ∈ C, i.e., distg(ξε, C) → 0 as ε→ 0.

Proof. Since {zε} isW
1
2
,2

loc (Rm, S̃(Rm))-bounded, that is, {βzε} ⊂ W
1
2
,2(Rm, S̃(Rm)) is bounded

for any β ∈ C∞
c (Rm). We can assume, up to a subsequence, zε ⇀ z∞ in W

1
2
,2

loc (Rm, S̃(Rm)) and
zε → z∞ in Lqloc(Rm, S̃(Rm)) for 2 ≤ q < 2m

m−1
. At the same time, by (6.8), we see easily that

z∞ ∈ Lp(Rm, S̃(Rm)).
Let φ ∈ W

1
2
,2(Rm, S̃(Rm)) be such that suppφ is compact, i.e. suppφ ⊂ B0

R for some R
large. Then, we have∫

Rm

(
D̃gRmz∞ + a(ξ∞)ωC ·gRm z∞ − b(ξ∞)|z∞|p−2z∞, φ

)
dvolgRm

= lim
ε→0

∫
suppφ

(
D̃gΘε

zε + (a ◦Θε)ωC ·gΘε
zε − (b ◦Θε)|zε|p−2zε, φ

)
dvolgΘε

= lim
ε→0

1

εm

∫
BεR(ξε)

(
εD̃gψε + aωC ·g ψε − b|ψε|p−2ψε, (Θε)∗ ◦ φ ◦Θ−1

ε

)
dvolg

= 0
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Hence, we have z∞ satisfies

D̃gRmz∞ + a(ξ∞)ωC ·gRm z∞ = b(ξ∞)|z∞|p−2z∞ on Rm. (6.9)

This implies, by the elliptic regularity, D̃gRmz∞+a(ξ∞)ωC ·gRm z∞ ∈ L
p

p−1 (Rm, S̃(Rm)). More-
over, combined with the Sobolev embedding L

p
p−1 (Rm, S̃(Rm)) ↪→ W− 1

2
,2(Rm, S̃(Rm)), we get

z∞ ∈ W
1
2
,2(Rm, S̃(Rm)).

Now, by collecting (6.1), (6.2) and (6.5)-(6.8), we conclude that z∞ is a nontrivial solution
to (6.9) and

lim sup
ε→0

Lε(ψε) = lim sup
ε→0

p− 2

2p εm

∫
M

b|ψε|pdvolg

≥ lim inf
ε→0

p− 2

2p
b(ξ∞)

∫
B0

R

|zε|pdvolgΘε

≥ p− 2

2p
b(ξ∞)

∫
B0

R

|z∞|pdvolgRm

where in the last inequality we have used the Fatou’s lemma. Due to the arbitrariness of R > 0,
combined with the results obtained in Section 4, we have

lim sup
ε→0

Lε(ψε) ≥ γ
(
a(ξ∞), b(ξ∞)

)
= α(ξ∞)γ(1, 1).

Then Corollary 5.3 suggests α(ξ∞) = αmin, i.e., ξ∞ ∈ C, which completes the proof.

With Lemma 6.1 and 6.2 in hand, we may now choose β ∈ C∞(M) be a cut-off function
such that β ≡ 1 on Br(ξ∞) and supp β ⊂ B2r(ξ∞) for some r > 0 and define spinors on M as

ζε = β(·)(Θε)∗ ◦ z∞ ◦Θ−1
ε .

Setting wε = ψε− ζε, we soon have |wε|p,ε → 0 as ε→ 0 (otherwise, we can apply Lemma 6.1
and 6.2 for {wε} instead of {ψε} to get Lε(ψε) ≥ 2αminγ(1, 1) which is absurd).

Lemma 6.3. ∥L′
ε(ζε)∥ε → 0 and ∥L′

ε(wε)∥ε → 0 as ε→ 0.

Proof. We point out that, after some minor revision, the proof of Lemma 5.1 can be applied
here to show ∥L′

ε(ζε)∥ε → 0 as ε→ 0. Hence, we only need to check the second estimate.
Again, we choose φ ∈ H be an arbitrary test spinor. We then have

L′
ε(wε)[φ] =

1

εm
Re
∫
M

(εD̃gwε + aωC · wε − b|wε|p−2wε, φ)dvolg

= L′
ε(ψε)[φ]− L′

ε(ζε)[φ] +
1

εm
Re
∫
M

(Ψε, φ)dvolg, (6.10)

where
Ψε = b|ψε|p−2ψε − b|ζε|p−2ζε − b|wε|p−2wε.

Since L′
ε(ψε) = 0 for all ε small, it remains to estimate the last integral in (6.10).

To proceed, we first mention that there exists C > 0 (independent of ε) such that

|Ψε| ≤ C|ζε|p−2|wε|+ C|wε|p−2|ζε|. (6.11)



28

Thus, for any R > 0, we have

1

εm

∫
M\BεR(ξε)

|ζε|p−2 · |wε| · |φ|dvolg

≤
( 1

εm

∫
M\BεR(ξε)

|ζε|pdvolg
) p−2

p
( 1

εm

∫
M\BεR(ξε)

|wε|pdvolg
) 1

p |φ|p,ε

≤ C
(∫

B0
2r/ε

\B0
R

|z∞|pdvolgΘε

) p−2
p ∥wε∥ε · ∥φ∥ε = oR(1)∥φ∥ε

and
1

εm

∫
M\BεR(ξε)

|wε|p−2 · |ζε| · |φ|dvolg

≤
( 1

εm

∫
M\BεR(ξε)

|wε|pdvolg
) p−2

p
( 1

εm

∫
M\BεR(ξε)

|ζε|pdvolg
) 1

p |φ|p,ε

≤ C
(∫

B0
2r/ε

\B0
R

|z∞|pdvolgΘε

) 1
p∥wε∥p−2

ε · ∥φ∥ε = oR(1)∥φ∥ε,

where oR(1) → 0 as R → ∞. At the same time, inside BεR(ξε), we have

1

εm

∫
BεR(ξε)

|ζε|p−2 · |wε| · |φ|dvolg

≤
( 1

εm

∫
BεR(ξε)

|ζε|pdvolg
) p−2

p
( 1

εm

∫
BεR(ξε)

|wε|pdvolg
) 1

p |φ|p,ε

≤ C
(∫

Rm

|z∞|pdvolgRm
) p−2

p
(∫

B0
R

|zε − z∞|pdvolgRm
) 1

p · ∥φ∥ε = oε(1)∥φ∥ε

and

1

εm

∫
BεR(ξε)

|wε|p−2 · |ζε| · |φ|dvolg

≤
( 1

εm

∫
BεR(ξε)

|wε|pdvolg
) p−2

p
( 1

εm

∫
BεR(ξε)

|ζε|pdvolg
) 1

p |φ|p,ε

≤ C
(∫

B0
R

|zε − z∞|pdvolgRm
) p−2

p
(∫

Rm

|z∞|pdvolgRm
) 1

p · ∥φ∥ε = oε(1)∥φ∥ε

as ε → 0, where we have used zε ⇀ z∞ in W
1
2
,2

loc (Rm, S̃(Rm)) and the compact Sobolev em-

bedding W
1
2
,2

loc (Rm, S̃(Rm)) ↪→ Lploc(Rm, S̃(Rm)).
Therefore, we can conclude that

1

εm
Re
∫
M

(Ψε, φ)dvolg = oε(1)∥φ∥ε as ε→ 0.

And hence, by (6.10), we have ∥L′
ε(wε)∥ε → 0 as ε→ 0.
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At this point, we have the following result which summarizes the concentration phenomenon
of the family {ψε} for the model problem (2.7).

Proposition 6.4. Let {ψε} be the family of solutions to (2.7) found by (3.3). Then there exist a
convergent sequence {ξε} ⊂ M , ξε → ξ∞ as ε → 0 and a non-trivial solution z∞ of Eq. (6.9)
such that

α(ξ∞) = αmin

and
ψε = β(·)(Θε)∗ ◦ z∞ ◦Θ−1

ε + wε in H (6.12)

where ∥wε∥ε → 0 as ε → 0, Θε(x) = expξε(εx) and β ∈ C∞(M) is a cut-off function such
that β ≡ 1 on Br(ξ∞) and supp β ⊂ B2r(ξ∞), some r > 0. Moreover, there holds

lim
ε→0

γε = lim
ε→0

Lε(ψε) = αminγ(1, 1).

Proof. By collecting Lemmas 6.1-6.2, it remains to show that ∥wε∥ε → 0 as ε→ 0 in (6.12).
Since ∥L′

ε(wε)∥ε → 0 is already suggested by Lemma 6.3, we soon have

∥wε∥ε ≤
1

εm

∫
M

b|wε|p−1|w+
ε − w−

ε |dvolg + oε(1)

≤
( 1

εm

∫
M

b|wε|pdvolg
) p−1

p
( 1

εm

∫
M

b|w+
ε − w−

ε |pdvolg
) 1

p
+ oε(1)

≤ C|wε|p,ε∥wε∥ε + oε(1)

as ε → 0. As was remarked before Lemma 6.3, we have |wε|p,ε → 0. Thus, we can infer
∥wε∥ε → 0 as ε→ 0.

The above proposition yields a description of the profiles of the solutions to our original
problem (2.6). Namely, we can simply substitute m = m1, p = n∗ = 2(m1+m2)

m1+m2−1

a = λθ and b = θm1−m1−1
2

n∗

into Eq. (2.7) and calculate the potential function as

α = a−(m1−1)+ 2
n∗−2 b−

2
n∗−2 ≡ λm2 on M1.

Applying the same argument that we have done previously, we obtain our main result as a
corollary of Proposition 6.4. (cf. [4, Chapter 3] for regularity results of Dirac operators).

Theorem 6.5. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), Eq. (2.6) has a solution ψε ∈
C1(M1, S̃(M1)) ∩ C∞(M1 \ ψ−1

ε (0), S̃(M1)). Furthermore, there exist a convergent sequence
{ξε} ⊂M1, ξε → ξ0 as ε→ 0 and a non-trivial solution z0 of

D̃gRm1
z + λθ(ξ0)ωC ·gRm1

z = θ(ξ0)
m1−m1−1

2
n∗|z|n∗−2z on Rm1

such that
ψε = β(·)(Θε)∗ ◦ z0 ◦Θ

−1
ε + wε in H

where ∥wε∥ε → 0 as ε → 0, Θε(x) = expξε(εx) and β ∈ C∞(M1) is a cut-off function such
that β ≡ 1 on Br(ξ∞) and supp β ⊂ B2r(ξ∞), some r > 0. Moreover, there holds

lim
ε→0

1

εm1

∫
M1

θm1−m1−1
2

n∗|ψε|n
∗
dvolg = 2n · λm2 · γ(1, 1).
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7 Application: CMC immersions for Unduloids
In this section, comparing with that we have considered previously, we will consider the sim-
plest case of the product construction.

For a given positive ℓ, we can choose a parameter t on S1 via the identification S1 =
R/2πℓZ. And from now on, ℓS1 will stand for this parametrization. Then spinors on ℓS1 can
be viewed as complex vector functions on R which are periodic and such that 2πℓ is a period.
Particularly, on N = ℓS1 × S1, we may write g = dt2 ⊕ dτ 2, where dτ 2 is the standard metric
on the second factor with total length 2π.

As was shown in Section 2.1, one dimension spinor space is simply C and the Clifford multi-
plication by positively oriented unit vector is multiplication by i. With respect to the coordinates
t of ℓS1 and τ of S1, the Dirac operator on M can be written as

Dgψ = i
( d
dt
ψ1 ⊕− d

dt
ψ2

)
⊗ φ− (ψ2 ⊕−ψ1)⊗

d

dτ
φ

for all ψ = (ψ1 ⊕ ψ2)⊗ φ ∈ Γ(S(N)) where the spinor bundle of N is

S(N) =
(
S(ℓS1)⊕ S(ℓS1)

)
⊗ S(S1) ∼= C2.

We point out that S1 has two different spin structures. Recall that a spin structure is a two-
fold covering of the frame bundle PSO(S1). Hence we can either take the trivial covering σ1 :
S1 × Z2 → S1 given by two copies of the identity or we may take σ2 : S1 → S1 via the
mapping z 7→ z2 in complex notation. Furthermore, it is interesting to see that eigenvalues
and eigenspinors can be explicitly computed in both structures since a Fourier decomposition
is available in this situation. And particularly, in each spin structure, all the eigenspinors are of
constant length. To give an idea of our results, we simply consider the first positive eigenvalue
of the Dirac operator DgS1 = i d

dτ
on (S1, gS1 , σ), i.e. the equation

DgS1φS1 = λ1φS1

with eigenvalue λ1 = 1 and eigenspinor φS1 = e−iτ if σ = σ1 or λ1 = 1
2

and φS1 = e−iτ/2 if
σ = σ2 (here φS1 ∈ C∞(S1,S(S1)) is a smooth section). The proof remains the same if one
considers other eigenvalues and eigenspinors.

Substituting ψ = (ψ1 ⊕ ψ2)⊗ φS1 into the conformal invariant equation

Dgψ = |ψ|2ψ on N = ℓS1 × S1, (7.1)

we are led to an equivalent system of equations
i
d

dt
ψ1 + iλ1ψ2 =

(
|ψ1|2 + |ψ2|2

)
ψ1

−i d
dt
ψ2 − iλ1ψ1 =

(
|ψ1|2 + |ψ2|2

)
ψ2

(7.2)

where ψ1, ψ2 : R/2πℓZ → C.
Clearly, by taking the complex conjugation, the second equation in Eq. (7.2) becomes

i
d

dt
ψ∗
2 + iλ1ψ

∗
1 =

(
|ψ∗

1|2 + |ψ∗
2|2
)
ψ∗
2, (7.3)



31

where ψ∗
j stands for the complex conjugation of ψj in S(ℓS1), j = 1, 2. Notice that (7.3) co-

incides with the first equation in (7.2), via the obvious replacement ψ1 ↔ ψ∗
2 . If we write

ψ1 = u1 + iv1 and ψ2 = u2 + iv2 for real functions u1, v1, u2 and v2, then we are reduced to
consider {

u′ + λ1u = 2(u2 + v2)v

−v′ + λ1v = 2(u2 + v2)u
(7.4)

where u = u1 = u2 and v = v1 = −v2.
For any solution (u, v) to Eq. (7.4), after multiplication by u and v on both sides of the

equations, we obtain

(uv)′ = u′v + uv′ = 2(u2 + v2)(v2 − u2) and

{
uu′ + λ1u

2 = 2(u2 + v2)uv,

−vv′ + λ1v
2 = 2(u2 + v2)uv.

(7.5)

Hence if there exists t0 such that (uv)(t0) = 0 and (uv)′(t0) = 0 then we must have u = v ≡ 0.
Since we are looking for non-trivial periodic solutions of Eq. (7.4), without loss of generality,
we may assume that (in one period) there exist t1 < t2 such that (uv)(t1) = (uv)(t2) = 0 and
(uv)′(t1) > 0 and (uv)′(t2) < 0 and that uv does not change sign in the interval [t1, t2]. Then it
follows from Eq. (7.4) and the relations (7.5) that

u(t1) = 0 and

{
v′(t1) > 0, u′(t1) > 0 if v(t1) > 0,

v′(t1) < 0, u′(t1) < 0 if v(t1) < 0,

v(t2) = 0 and

{
u′(t2) < 0, v′(t2) < 0 if u(t2) > 0,

u′(t2) > 0, v′(t2) > 0 if u(t2) < 0.

Since we assumed uv does not have any other zero in (t1, t2), the admissible pairs are{
u(t1) = 0, v(t1) > 0, v′(t1) > 0, u′(t1) > 0,

v(t2) = 0, u(t2) > 0, u′(t2) < 0, v′(t2) < 0,

and {
u(t1) = 0, v(t1) < 0, v′(t1) < 0, u′(t1) < 0,

v(t2) = 0, u(t2) < 0, u′(t2) > 0, v′(t2) > 0.

And hence, in either cases, there exists t∗ ∈ (t1, t2) such that u(t∗) = v(t∗) ̸= 0. Note that the
second relation in (7.5) implies (u, v) satisfies the equation{

(u2 + v2)′ = 2λ1(v
2 − u2),

(u2 − v2)′ + 2λ1(u
2 + v2) = 8(u2 + v2)uv.

Combining the initial data u(t∗) = v(t∗), we find u2 + v2 ≡ constant and u2 − v2 ≡ 0 which
gives that uv ≡ constant, a contradiction. Therefore, uv has no zero at all. If uv < 0, the
second relation in (7.5) implies that u′ and v′ can not vanish. So u and v are not periodic.

Now, let us consider Eq. (7.4) with u, v : R/2πℓZ → (0,∞). Evidently, Eq. (7.4) has an
“obvious” constant solution u = v =

√
λ1
2

for all ℓ > 0. From now on, we intend to look for
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non-constant periodic solutions u, v for Eq. (7.4). Setting f = 2u2 + 2v2 and g = 2u2 − 2v2,

we have uv =

√
f2−g2
4

and Eq. (7.4) becomes
g = − 1

2λ1
f ′,

2gg′ − 2ff ′ = −2f

λ1
f ′
√
f 2 − g2.

(7.6)

After multiplication by 1
2
(f 2 − g2)−

1
2 in the second equation, we have

d

dt

(√
f 2 − g2

)
=

d

dt

( 1

2λ1
f 2
)
.

Thus, for any solutions f and g, there exists a constant K such that
√
f 2 − g2 = 1

2λ1
f 2 + K,

that is,

g2 = f 2 −
( 1

2λ1
f 2 +K

)2
and

1

2λ1
f 2 +K ≥ 0. (7.7)

For K ∈ R, let us denote

FK(s) = s2 −
( 1

2λ1
s2 +K

)2
for s ≥ 0.

Remark that, due to the geometric meaning of Eq. (7.1), the function f defines a conformal
metric g̃ = f 2g on ℓS1×S1. And this, together with the first equation in (7.6), implies FK should
vanish twice at some points s0, s1 > 0. Thus, the condition on K is particularly restrictive.
In fact, for K = 0, we can combine the first equation in (7.6) and (7.7) together to obtain
(f ′)2 = 4λ21f

2 − f 4, whose solutions cannot be periodic except for the trivial one (i.e., f ≡ 0
since f ≡ 2λ1 does not create any solution when we put it back to Eq. (7.4)). And, for K < 0,
we can directly solve the algebraic equation FK(s) = 0 to obtain

s20 = 2λ21

(
1− K

λ1
−
√

1− 2K

λ1

)
and s21 = 2λ21

(
1− K

λ1
+

√
1− 2K

λ1

)
,

but we find 1
2λ1
s20 + K < 0, which fails to satisfy the second inequality in (7.7). So the only

possible range for K is (0, λ1
2
]. And, if K = λ1

2
, we have f ≡ λ1 and g ≡ 0 (which correspond

exactly the constant solution u = v =
√
λ1
2

).
Let K ∈ (0, λ1

2
), and take 0 < s0 < s1 be the points such that FK vanishes. Then the

function FK is positive on the interval (s0, s1). And Eq. (7.7) is now equivalent to

df

2λ1
√
FK(f)

= ±dt,

that is ηK(f) = ±t+ c, where

ηK(f) =

∫ f

s0

ds

2λ1
√
FK(s)

.
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Of course, ηK is defined on the interval (s0, s1). By noting that s0 and s1 are simple roots of FK ,
we have ηK is well-defined. Moreover, we have η′K(s) = 1

2λ1
√
FK(s)

> 0 and η′K(s) → +∞

as s → s0 or s1. Hence ηK has an inverse η−1
K which increases from s0 to s1 on the interval

[0, ηK(s1)]. And solutions to (7.7) can be given by f(t) = η−1
K (±t+ c) for c ∈ R.

Setting

fK(t) =

{
η−1
K (t) t ∈ [0, ηK(s1)],

η−1
K (−t) t ∈ [−ηK(s1), 0],

it follows that the positive periodic solutions of Eq. (7.6) can be characterized by fK(t + c)
which is a 2ηK(s1)-periodic function. We are looking for solutions having period 2πℓ, that is,
functions whose smallest positive period is of the form 2πℓ/k for some k ∈ N. Thus the non-
constant solutions of our problem are functions fK,c : t 7→ fK(t + c) for which there exists
k ∈ N such that

ηK(s1) =
πℓ

k
. (7.8)

Lemma 7.1. ηK(s1) decreases with respect to the factor K ∈ (0, λ1
2
). Particularly,

lim
K→0

ηK(s1) → +∞ and lim
K→λ1

2

ηK(s1) =
π

2λ1
.

Proof. To begin with, let us rewrite FK in its factorization

FK(s) =
1

2λ1
(s− s0)(s1 − s)

(
s+

1

2λ1
s2 +K

)
.

in which we have the explicit formulation

s0 = λ1 −
√
λ21 − 2λ1K and s1 = λ1 +

√
λ21 − 2λ1K.

Then, we get

ηK(s1) =

∫ s1

s0

ds√
(s− s0)(s1 − s)(s2 + 2λ1s+ 2λ1K)

.

Consider the change of variable s = st = s0 + (s1 − s0)t, t ∈ [0, 1], we obtain

ηK(s1) =

∫ 1

0

dt√
t(1− t)(s2t + 2λ1st + 2λ1K)

.

For each (t,K) ∈ (0, 1)× (0, λ1
2
), let’s denote

H(t,K) =
1√

t(1− t)(s2t + 2λ1st + 2λ1K)

Notice st = λ1 −
√
λ21 − 2λ1K(1− 2t), it follows from a straightforward calculation that

∂

∂K
H(t,K) = −H(t,K)3 · t(1− t) ·

[
(st + λ1)

∂st
∂K

+ λ1

]
,
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where
(st + λ1)

∂st
∂K

= 2λ21(λ
2
1 − 2λ1K)−

1
2 (1− 2t)− λ1(1− 2t)2.

Particularly, ∂
∂K
H(t,K) has the following simplified formulation

∂

∂K
H(t,K) = λ1(λ1 − 2λ1K)−1 · L(t,K) ·H(t,K)− λ1H(t,K)3 · t(1− t) (7.9)

with

L(t,K) =

(
λ1 −

√
λ21 − 2λ1K(1− 2t)

)2 − λ21(
2λ1 −

√
λ21 − 2λ1K(1− 2t)

)2 − λ21 + 2λ1K
.

Thus, we see easily that the map t 7→ ∂
∂K
H(t,K) is in L1(0, 1) for all K ∈ (0, λ1

2
).

Since t ∈ (0, 1), one checks that L(1
2
, K) ≡ 0,

L(t,K) < 0 if 0 ≤ t <
1

2
and L(t,K) > 0 if

1

2
< t ≤ 1.

Moreover, by an elementary computation, we can find

−L(t,K) > L(1− t,K) for all t ∈ (0,
1

2
). (7.10)

Notice that the values of the function t 7→ s2t + 2λ1st + 2λ1K for t ∈ [0, 1
2
) is strictly smaller

than that for t ∈ (1
2
, 1]. Then, we can substitute (7.10) into (7.9) to get

d

dK
ηK(s1) < λ1(λ1 − 2λ1K)−1

(∫ 1
2

0

L(t,K) ·H(t,K)dt+

∫ 1

1
2

L(t,K) ·H(t,K)dt
)
< 0

which shows ηK(s1) is decreasing with respect to K.
In order to calculate the limits, let us mention that, asK → 0, we have s = s0+(s1−s0)t→

2λ1t for t ∈ [0, 1]. Hence, for arbitrary δ > 0, it follows from Fatou’s lemma that

lim
K→0

ηK(s1) ≥ lim
K→0

∫ 1
2

δ

dt√
t(1− t)(s2 + 2λ1s+ 2λ1K)

≥ 1

2λ1

∫ 1
2

δ

dt

t
√
1− t2

>
1

2λ1

(
ln

1

2
− ln δ

)
.

And thus, by taking δ → 0, we have limK→0 ηK(s1) = +∞.
For K → λ1

2
, we shall use the fact s0, s1 → λ to obtain

lim
K→λ1

2

ηK(s1) =
1

2λ1

∫ 1

0

dt√
t(1− t)

=
π

2λ1
,

which completes the whole proof.

Recall that we are looking for the existence of 2ηK(s1)-periodic solutions of Eq. (7.6) satis-
fying (7.8), then Lemma 7.1 implies
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(1) For every ℓ > 0, Eq. (7.6) has the constant solution f0 ≡ λ1 and g0 ≡ 0 which gives the
constant solution ψ1 =

√
λ1
2

+ i
√
λ1
2

and ψ2 =
√
λ1
2

− i
√
λ1
2

to Eq. (7.2). Such a solution
satisfies

Vol(N, f 2
0 g) =

∫
N=ℓS1×S1

f 2
0dtdτ = 4π2λ21ℓ. (7.11)

And, for ℓ ≤ 1
2λ1

, this is the only solution of Eq. (7.6).

(2) Let d ∈ N with d
2λ1

< ℓ ≤ d+1
2λ1

. Then for any k = 1, 2, . . . , d, we have πℓ
k
≥ πℓ

d
> π

2λ1
and

there exists K = K(ℓ/k) ∈ (0, λ1
2
) such that ηK(s1) = πℓ

k
. And the solution fk of Eq.

(7.6) corresponding to K satisfies

Vol(N, f 2
kg) =

∫
ℓS1×S1

f 2
kdtdτ =

2kπ

λ1

∫ s1

s0

s2√
FK(s)

ds. (7.12)

Lemma 7.2. For any ℓ > 1
2λ1

, we have Vol(N, f 2
1 g) < min

{
Vol(N, f 2

0 g), 8λ1π
}

.

Proof. Since f1 has only one period on ℓS1, by Lemma 7.1, we can fix K = K(ℓ) > 0 such
that ηK(s1) = πℓ. Following from (7.11) and (7.12), we have to show that

1

2λ1

∫ s1

s0

s2√
FK(s)

ds < πλ21ℓ. (7.13)

Similar to the calculations in Lemma 7.1, let us consider the change of variable s = st =
s0 + (s1 − s0)t for t ∈ [0, 1]. Then we have

πλ21ℓ−
1

2λ1

∫ s1

s0

s2√
FK(s)

ds =

∫ 1

0

λ21 − s2t√
t(1− t)(s2t + 2λ1st + 2λ1K)

dt

=
√
λ21 − 2λ1K

∫ 1

0

(1− 2t) ·B(t)√
t(1− t)

dt. (7.14)

where

B(t) =
2λ1 −

√
λ21 − 2λ1K(1− 2t)√

(s2t + 2λ1st + 2λ1K)
.

Clearly, B(t) > 0 for all t ∈ (0, 1). Furthermore, it follows immediately from the computations

(s2t + 2λ1st + 2λ1K)
3
2

2
√
λ21 − 2λ1K

B′(t) = (s2t + 2λ1st + 2λ1K)−
(
2λ1 −

√
λ21 − 2λ1K(1− 2t)

)2
and

s2t + 2λ1st + 2λ1K =
(
2λ1 −

√
λ21 − 2λ1K(1− 2t)

)2
− λ21 + 2λ1K

that B′(t) < 0. Therefore, we can see from (7.14) that the total integral is positive and this
implies (7.13). And thus,

Vol(N, f 2
1 g) < 4π2λ21ℓ = Vol(N, f 2

0 g). (7.15)
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To give another upper bound for Vol(N, f 2
1 g), let us first set δ =

√
λ21 − 2λ1K ∈ (0, λ1).

Then, for the change of variable s = st = λ1 − δ(1− 2t) for t ∈ [0, 1], we have

1

2λ1

∫ s1

s0

s2√
FK(s)

ds =

∫ 1

0

s2t√
t(1− t)(s2t + 2λ1st + 2λ1K)

dt <

∫ 1

0

Z(t, δ)√
t(1− t)

dt

where

Z(t, δ) =
s2t√

s2t + 2λ1st
.

Notice that, for x > 0,

d

dx

( x2√
x2 + 2λ1x

)
> 0,

d2

dx2

( x2√
x2 + 2λ1x

)
> 0.

And, for t ∈ (0, 1),

∂

∂δ
Z(t, δ) =

d

dst

( s2t√
s2t + 2λ1st

)dst
dδ

= (2t− 1)
d

dst

( s2t√
s2t + 2λ1st

)
.

Hence we have
d

dδ

∫ 1

0

Z(t, δ)√
t(1− t)

dt =

∫ 1

0

∂
∂δ
Z(t, δ)√
t(1− t)

dt > 0,

that is, the integral
∫ 1

0
Z(t,δ)√
t(1−t)

dt is strictly increasing with respect to δ. At the same time, one

calculates easily that

lim
δ→λ1

∫ 1

0

Z(t, δ)√
t(1− t)

dt =

∫ 1

0

2λ1t
2√

t2(1− t2)
dt = 2λ1

Therefore, we conclude

Vol(N, f 2
1 g) =

2π

λ1

∫ s1

s0

s2√
FK(s)

ds < 4π

∫ 1

0

Z(t, δ)√
t(1− t)

dt < 8λ1π

and, together with (7.15), we complete the proof.

Theorem 7.3. Let λ > 0 denote a positive eigenvalue of the Dirac operator on the second circle
in N = ℓS1 × S1, then the following facts valid

(1) For every ℓ > 0, the spinorial Yamabe equation

Dgϕ = |ϕ|2ϕ on N = ℓS1 × S1 (7.16)

has a constant length solution

ϕ0 = e−i(λτ+ϑ)

(√
λ
2

+ i
√
λ
2√

λ
2

− i
√
λ
2

)
∈ C2

for any ϑ ∈ [0, 2π] such that

Vol
(
N, |ϕ0|4g

)
= 4π2λ2ℓ.

And, for ℓ ≤ 1
2λ

, this is the only solution of the form ϕ = ψe−iλτ ∈ S(N) to Eq. (7.16).
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(2) Let ℓ > 1
2λ

and d ∈ N with d
2λ
< ℓ ≤ d+1

2λ
, Eq. (7.16) has d + 1 inequivalent solutions.

Particularly, these solutions are given by the constant length solution and k periods of a
solution ϕℓ,k on N with fundamental period 2πℓ

k
for k = 1, 2, . . . , d.

(3) Let ℓ > 1
2λ

and ϕℓ,1 denote the 2πℓ-periodic solution of Eq. (7.16), then

Vol
(
N, |ϕℓ,1|4g

)
< min

{
Vol
(
N, |ϕ0|4g

)
, 8πλ

}
.

and
lim
ℓ→∞

Vol
(
N, |ϕℓ,1|4g

)
= 8πλ.

(4) Let σ∗
N denote the nontrivial spin structure on N = ℓS1 × S1 such that λ = 1

2
is the first

positive eigenvalue of the Dirac operator on the second circle, then

λ+min(N, g, σ
∗
N) ≤ Vol

(
N, |ϕℓ,1|4g

) 1
2 < 2

√
π

for all ℓ > 0.

Theorem 7.3, together with the spinorial Weierstraß representation, yields the existence of
periodic conformal immersions based on (ℓS1×S1, |ϕℓ,k|4g) in R3 with constant mean curvature
1, and the area of a fundamental domain is given by (7.12). In particular, for ℓ > 1

2λ1
, we can see

from Lemma 7.2 that the metric |ϕℓ,1|4g is not equal to the flat one, i.e., the length of ϕℓ,1 is not
constant. Hence we obtain an immersion corresponding to the unduloid immersion (see Figure
1, an unduloid is a surface of revolution of constant mean curvature). For k > 1, the picture

Figure 1: An unduloid in R3

is much more complicated since Wente torus and twisted torus also correspond to periodic
solutions of Eq. (7.16). Hence, it is not known which CMC-immersion we exactly obtain.
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multiplicité pour les problèmes de Nirenberg et Yamabe, Indiana Univ. Math. J. 41 (2)
(1992) 377-407.

[27] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and
Killing spinors, Comm. Math. Phys. 104 (1986), 151-162.

[28] O. Hijazi, Spectral properties of the Dirac operator and geometrical structures, in ”Geo-
metric Methods for Quantum Field Theory”. Proceedings of the Summer School, eds. H.
Ocampo et al.,Villa de Leyva, Colombia, July 12-30, 1999, World Scientific, Singapore,
2001, 116-169.

[29] N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1-55.

[30] H. Hofer, On strongly indefinite functionals with applications, Trans. Amer. Math. Soc.
275 (1983), no. 1, 185-214.

[31] O. Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (2) (1987)
253-265.

[32] W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to semilinear
Schrödinger equation, Adv. Diff. Equ., 3, (1998): 441–472.



40

[33] R. Kusner, N. Schmitt, Representation of surfaces in space, arXiv:dg-ga/9610005, (1996).

[34] H.B. Lawson, M.L. Michelson, Spin Geometry, Princeton University Press (1989).

[35] P.L. Lions, The concentration-compactness principle in the calculus of variations: The
locally compact case, Part II, AIP Anal. non linéaire 1 (1984), 223-283.
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