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ABSTRACT. We prove genuinely multilinear weighted estimates for singular integrals in
product spaces. The estimates complete the qualitative weighted theory in this setting.
Such estimates were previously known only in the one-parameter situation. Extrapolation
gives powerful applications – for example, a free access to mixed-norm estimates in the
full range of exponents.

1. INTRODUCTION

For given exponents 1 < p1, . . . , pn < ∞ and 1/p =
∑

i 1/pi > 0, a natural form of a
weighted estimate in the n-variable context has the form∥∥∥g n∏

i=1

wi

∥∥∥
Lp
.

n∏
i=1

‖fiwi‖Lpi

for some functions f1, . . . , fn and g. It is natural to initially assume that wpii ∈ Api , where
Aq stands for the classical Muckenhoupt weights. Even with this assumption the target
weight only satisfies

∏n
i=1w

p
i ∈ Anp ) Ap making the case n ≥ 2 have a different flavour

than the classical case n = 1. Importantly, it turns out to be very advantageous – we get
to the application later – to only impose a weaker joint condition on the tuple of weights
~w = (w1, . . . , wn) rather than to assume individual conditions on the weights wpii . This
gives the problem a genuinely multilinear nature. For many fundamental mappings
(f1, . . . , fn) 7→ g(f1, . . . , fn), such as the n-linear maximal function, these joint conditions
on the tuple ~w are necessary and sufficient for the weighted bounds.

Genuinely multilinear weighted estimates were first proved for n-linear one-parameter
singular integral operators (SIOs) by Lerner, Ombrosi, Pérez, Torres and Trujillo-González
in the extremely influential paper [35]. A basic model of an n-linear SIO T in Rd is ob-
tained by setting

T (f1, . . . , fn)(x) = U(f1 ⊗ · · · ⊗ fn)(x, . . . , x), x ∈ Rd, fi : Rd → C,

where U is a linear SIO in Rnd. See e.g. Grafakos–Torres [19] for the basic theory. Esti-
mates for SIOs play a fundamental role in pure and applied analysis – for example, Lp

estimates for the homogeneous fractional derivative Dαf = F−1(|ξ|αf̂(ξ)) of a product
of two or more functions, the fractional Leibniz rules, are used in the area of dispersive
equations, see e.g. Kato–Ponce [33] and Grafakos–Oh [18].
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In the usual one-parameter context of [35] there is a general philosophy that the maxi-
mal function controls SIOs T – in fact, we have the concrete estimate

(1.1) ‖T (f1, . . . , fn)w‖Lp . ‖M(f1, . . . , fn)w‖Lp , p > 0, wp ∈ A∞.
Thus, the heart of the matter of [35] reduces to the maximal function

M(f1, . . . , fn) = sup
I

1I

n∏
i=1

〈|fi|〉I ,

where 〈|fi|〉I =
ffl
I |fi| =

1
|I|
´
I |fi| and the supremum is over cubes I ⊂ Rd.

In this paper we prove genuinely multilinear weighted estimates for multi-parameter
SIOs in the product space Rd =

∏m
i=1 Rdi . For the classical linear multi-parameter theory

and some of its original applications see e.g. [7, 8, 22, 23, 24, 25, 26, 32]. Multilinear multi-
parameter estimates arise naturally in applications whenever a multilinear phenomena,
like the fractional Leibniz rules, are combined with product type estimates, such as those
that arise when we want to take different partial fractional derivativesDα

x1D
β
x2f . We refer

to our recent work [40] for a thorough general background on the subject.
It is already known [16] that the multi-parameter maximal function (f1, . . . , fn) 7→

supR 1R
∏n
i=1〈|fi|〉R, where the supremum is over rectangles R =

∏m
i=1 I

i ⊂
∏m
i=1 Rdi

with sides parallel to the axes, satisfies the desired genuinely multilinear weighted esti-
mates. However, in contrast to the one-parameter case, there is no known general prin-
ciple which would automatically imply the corresponding weighted estimate for multi-
parameter SIOs from the maximal function estimate. In particular, no estimate like (1.1)
is known. In the paper [40] we developed the general theory of bilinear bi-parameter
SIOs including weighted estimates under the more restrictive assumption wpii ∈ Api .
In fact, we only reached these weighted estimates without any additional cancellation
assumptions of the type T1 = 0 in [1].

There are no genuinely multilinear weighted estimates for any multi-parameter SIOs
in the literature – not even for the bi-parameter analogues (see e.g. [40, Appendix A])
of Coifman–Meyer [9] type multilinear multipliers. Almost ten years after the maximal
function result [16] we establish these missing bounds – not only for some special SIOs
– but for a very general class of n-linear m-parameter SIOs. With weighted bounds pre-
viously being known both in the linear multi-parameter setting [22, 23, 28] and in the
multilinear one-parameter setting [35], we finally establish a holistic view completing
the theory of qualitative weighted estimates in the joint presence of multilinearity and
product space theory.

With the understanding that a Calderón–Zygmund operator (CZO) is an SIO satisfy-
ing natural T1 type assumptions, our main result reads as follows.

1.2. Theorem. Suppose T is an n-linearm-parameter CZO in Rd =
∏m
i=1 Rdi . If 1 < p1, . . . , pn ≤

∞ and 1/p =
∑n

i=1 1/pi > 0, we have

‖T (f1, . . . , fn)w‖Lp .
n∏
i=1

‖fiwi‖Lpi , w =
n∏
i=1

wi,

for all n-linear m-parameter weights ~w = (w1, . . . , wn) ∈ A~p, ~p = (p1, . . . , pn). Here ~w ∈ A~p if

[~w]A~p := sup
R
〈wp〉

1
p

R

n∏
i=1

〈w−p
′
i

i 〉
1
p′
i
R <∞,
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where the supremum is over all rectangles R ⊂ Rd.

For the exact definitions, see the main text.
Recent extrapolation methods are crucial both for the proof and for the applications.

The extrapolation theorem of Rubio de Francia says that if ‖g‖Lp0 (w) . ‖f‖Lp0 (w) for some
p0 ∈ (1,∞) and all w ∈ Ap0 , then ‖g‖Lp(w) . ‖f‖Lp(w) for all p ∈ (1,∞) and all w ∈ Ap.
In [17] (see also [15]) a multivariable analogue was developed in the setting wpii ∈ Api ,
i = 1, . . . , n. Such extrapolation results are already of fundamental use in proving other
estimates – often just to even deduce the full n-linear range of unweighted estimates∏n
j=1 L

pj → Lp,
∑

j 1/pj = 1/p, 1 < pj < ∞, 1/n < p < ∞, from some particular single
tuple (p1, . . . , pn, p). Indeed, reaching p ≤ 1 can often be a crucial challenge, particularly
so in multi-parameter settings where many other tools are completely missing.

Very recently, in [37] it was shown that also the genuinely multilinear weighted esti-
mates can be extrapolated. In the subsequent paper [38] (see also [45]) a key advantage
of extrapolating using the general weight classes was identified: it is possible to both
start the extrapolation and, importantly, to reach – as a consequence of the extrapolation
– weighted estimates with pi = ∞. See Theorem 3.12 for a formulation of these general
extrapolation principles. Moreover, extrapolation is flexible in the sense that one can
extrapolate both 1-parameter and m-parameter, m ≥ 2, weighted estimates.

These new extrapolation results are extremely useful e.g. in proving mixed-norm esti-
mates – for example, in the bi-parameter case they yield that

‖T (f1, . . . , fn)‖Lp(Rd1 ;Lq(Rd2 )) .
n∏
i=1

‖fi‖Lpi (Rd1 ;Lqi (Rd2 )),

where 1 < pi, qi ≤ ∞, 1
p =

∑
i

1
pi
> 0 and 1

q =
∑

i
1
qi
> 0. The point is that even all of

the various cases involving ∞ become immediate. See e.g. [14, 38, 40] for some of the
previous mixed-norm estimates. Compared to [38] we can work with completely general
n-linear m-parameter SIOs instead of bi-parameter tensor products of 1-parameter SIOs,
and the proof is much simplified due to the optimal weighted estimates, Theorem 1.2.

We also use extrapolation to give a new short proof of the boundedness of the multi-
parameter n-linear maximal function [16] – see Proposition 4.1.

On the technical level there is no existing approach to our result: the modern one-
parameter tools (such as sparse domination in the multilinear setting, see e.g. [6]) are
missing and many of the bi-parameter methods [40] used in conjunction with the as-
sumption that each weight individually satisfies wpii ∈ Api are of little use. Aside from
maximal function estimates, multi-parameter estimates require various square function
estimates (and combinations of maximal function and square function estimates). Simi-
larly as one cannot use

∏
iMfi instead of M(f1, . . . , fn) due to the nature of the multilin-

ear weights, it is also not possible to use classical square function estimates separately for
the functions fi. Now, this interplay makes it impossible to decouple estimates to terms
like ‖Mf1 · w1‖Lp1‖Sf2 · w2‖Lp2 , since neither of them would be bounded separately as
wp11 6∈ Ap1 and wp22 6∈ Ap2 . However, such decoupling of estimates has previously seemed
almost indispensable.

Our proof starts with the reduction to dyadic model operators [2] (see also [13, 31, 41,
43, 47]), which is a standard idea. After this we introduce a family of n-linear multi-
parameter square function type objects Ak. On the idea level, a big part of the proof
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works by taking a dyadic model operator S and finding an appropriate square function
Ak so that

‖S(f1, . . . , fn)w‖Lp . ‖Ak(f1, . . . , fn)w‖Lp .
This requires different tools depending on the model operator in question and is a new
way to estimate model operators that respects the n-linear structure fully. We then prove
that all of our operators Ak satisfy the genuinely n-linear weighted estimates

‖Ak(f1, . . . , fn)w‖Lp .
n∏
i=1

‖fiwi‖Lpi .

This is done with an argument that is based on using duality and lower square function
estimates iteratively until all of the cancellation present in these square functions has
been exploited.

Aside from the full range of mixed-norm estimates, the weighted estimates immedi-
ately give other applications as well. We present here a result on commutators, which
greatly generalises [40]. Commutator estimates appear all over analysis implying e.g.
factorizations for Hardy functions [10], certain div-curl lemmas relevant in compensated
compactness, and were recently connected to the Jacobian problem Ju = f in Lp (see
[29]). For a small sample of commutator estimates in various other key setting see e.g.
[26, 27, 28, 36].

1.3. Theorem. Suppose T is an n-linearm-parameter CZO in Rd =
∏m
i=1 Rdi , 1 < p1, . . . , pn ≤

∞ and 1/p =
∑n

i=1 1/pi > 0. Suppose also that ‖b‖bmo = supR
1
|R|

´
R |b − 〈b〉R| < ∞. Then

for all 1 ≤ k ≤ n we have the commutator estimate

‖[b, T ]k(f1, . . . , fn)w‖Lp . ‖b‖bmo

n∏
i=1

‖fiwi‖Lpi ,

[b, T ]k(f1, . . . , fn) := bT (f1, . . . , fn)− T (f1, . . . , fk−1, bfk, fk+1, . . . , fn),

for all n-linearm-parameter weights ~w = (w1, . . . , wn) ∈ A~p. Analogous results hold for iterated
commutators.

We note that we can also finally dispose of some of the sparse domination tools that
restricted some of the theory of [40] to bi-parameter.

Acknowledgements. K. Li was supported by the National Natural Science Foundation
of China through project number 12001400. H. Martikainen and E. Vuorinen were sup-
ported by the Academy of Finland through project numbers 294840 (Martikainen) and
327271 (Martikainen, Vuorinen), and by the three-year research grant 75160010 of the
University of Helsinki.

The authors thank the anonymous referee for careful reading of the paper and for
suggestions which improve the readability of the paper.

2. PRELIMINARIES

Throughout this paper A . B means that A ≤ CB with some constant C that we
deem unimportant to track at that point. We write A ∼ B if A . B . A. Sometimes we
e.g. write A .ε B if we want to make the point that A ≤ C(ε)B.
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2.A. Dyadic notation. Given a dyadic grid D in Rd, I ∈ D and k ∈ Z, k ≥ 0, we use the
following notation:

(1) `(I) is the side length of I .
(2) I(k) ∈ D is the kth parent of I , i.e., I ⊂ I(k) and `(I(k)) = 2k`(I).
(3) ch(I) is the collection of the children of I , i.e., ch(I) = {J ∈ D : J (1) = I}.
(4) EIf = 〈f〉I1I is the averaging operator, where 〈f〉I =

ffl
I f = 1

|I|
´
I f .

(5) ∆If is the martingale difference ∆If =
∑

J∈ch(I)EJf − EIf .
(6) ∆I,kf is the martingale difference block

∆I,kf =
∑
J∈D
J(k)=I

∆Jf.

For an interval J ⊂ R we denote by Jl and Jr the left and right halves of J , respectively.
We define h0

J = |J |−1/21J and h1
J = |J |−1/2(1Jl − 1Jr). Let now I = I1 × · · · × Id ⊂ Rd be

a cube, and define the Haar function hηI , η = (η1, . . . , ηd) ∈ {0, 1}d, by setting

hηI = hη1I1 ⊗ · · · ⊗ h
ηd
Id
.

If η 6= 0 the Haar function is cancellative:
´
hηI = 0. We exploit notation by suppressing

the presence of η, and write hI for some hηI , η 6= 0. Notice that for I ∈ D we have
∆If = 〈f, hI〉hI (where the finite η summation is suppressed), 〈f, hI〉 :=

´
fhI .

We make a few clarifying comments related to the use of Haar functions. In the model
operators coming from the representation theorem there are Haar functions involved.
There we use the just mentioned convention that hI means some unspecified cancella-
tive Haar function hηI which we do not specify. On the other hand, the square function
estimates in Section 5 are formulated using martingale differences (which involve mul-
tiple Haar functions as ∆If =

∑
η 6=0〈f, h

η
I 〉h

η
I ). When we estimate the model operators,

we carefully consider this difference by passing from the Haar functions into martingale
differences via the simple identity

(2.1) 〈f, hI〉 = 〈∆If, hI〉,

which follows from ∆If =
∑

η 6=0〈f, h
η
I 〉h

η
I and orthogonality.

2.B. Multi-parameter notation. We will be working on the m-parameter product space
Rd =

∏m
i=1 Rdi . We denote a general dyadic grid in Rdi by Di. We denote cubes in Di by

Ii, J i,Ki, etc. Thus, our dyadic rectangles take the forms
∏m
i=1 I

i,
∏m
i=1 J

i,
∏m
i=1K

i etc.
We usually denote the collection of dyadic rectangles by D =

∏m
i=1Di.

If A is an operator acting on Rd1 , we can always let it act on the product space Rd
by setting A1f(x) = A(f(·, x2, . . . , xn))(x1). Similarly, we use the notation Aif if A is
originally an operator acting on Rdi . Our basic multi-parameter dyadic operators – mar-
tingale differences and averaging operators – are obtained by simply chaining together
relevant one-parameter operators. For instance, an m-parameter martingale difference is

∆Rf = ∆1
I1 · · ·∆

m
Imf, R =

m∏
i=1

Ii.
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When we integrate with respect to only one of the parameters we may e.g. write

〈f, hI1〉1(x2, . . . , xn) :=

ˆ
Rd1

f(x1, . . . , xn)hI1(x1) dx1

or

〈f〉I1,1(x2, . . . , xn) :=

 
I1
f(x1, . . . , xn) dx1.

2.C. Adjoints. Consider an n-linear operator T on Rd = Rd1 × Rd2 . Let fj = f1
j ⊗ f2

j ,
j = 1, . . . , n + 1. We set up notation for the adjoints of T in the bi-parameter situation.
We let T j∗, j ∈ {0, . . . , n}, denote the full adjoints, i.e., T 0∗ = T and otherwise

〈T (f1, . . . , fn), fn+1〉 = 〈T j∗(f1, . . . , fj−1, fn+1, fj+1, . . . , fn), fj〉.

A subscript 1 or 2 denotes a partial adjoint in the given parameter – for example, we
define

〈T (f1, . . . , fn), fn+1〉 = 〈T j∗1 (f1, . . . , fj−1, f
1
n+1 ⊗ f2

j , fj+1, . . . , fn), f1
j ⊗ f2

n+1〉.

Finally, we can take partial adjoints with respect to different parameters in different slots
also – in that case we denote the adjoint by T j1∗,j2∗1,2 . It simply interchanges the functions
f1
j1

and f1
n+1 and the functions f2

j2
and f2

n+1. Of course, we e.g. have T j∗,j∗1,2 = T j∗ and
T 0∗,j∗

1,2 = T j∗2 , so everything can be obtained, if desired, with the most general notation
T j1∗,j2∗1,2 . In any case, there are (n + 1)2 adjoints (including T itself). These notions have
obvious extensions to m-parameters.

2.D. Structure of the paper. To avoid unnecessarily complicating the notation, we start
by proving everything in the bi-parameter case m = 2. Importantly, we present a proof
which does not exploit this in a way that would not be extendable to m-parameters (e.g.,
our proof for the partial paraproducts does not exploit sparse domination for the ap-
pearing one-parameter paraproducts). At the end, we demonstrate for some key model
operators how the general case can be dealt with.

3. WEIGHTS

The following notions have an obvious extension tom-parameters. A weightw(x1, x2)
(i.e. a locally integrable a.e. positive function) belongs to the bi-parameter weight class
Ap = Ap(Rd1 × Rd2), 1 < p <∞, if

[w]Ap := sup
R
〈w〉R〈w1−p′〉p−1

R = sup
R
〈w〉R〈w−

1
p−1 〉p−1

R <∞,

where the supremum is taken over rectanglesR – that is, overR = I1×I2 where Ii ⊂ Rdi
is a cube. Thus, this is the one-parameter definition but cubes are replaced by rectangles.

We have

(3.1) [w]Ap(Rd1×Rd2 ) <∞ iff max
(

ess sup
x1∈Rd1

[w(x1, ·)]Ap(Rd2 ), ess sup
x2∈Rd2

[w(·, x2)]Ap(Rd1 )

)
<∞,

and that

max
(

ess sup
x1∈Rd1

[w(x1, ·)]Ap(Rd2 ), ess sup
x2∈Rd2

[w(·, x2)]Ap(Rd1 )

)
≤ [w]Ap(Rd1×Rd2 ),
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while the constant [w]Ap is dominated by the maximum to some power. It is also useful
that 〈w〉I2,2 ∈ Ap(Rd1) uniformly on the cube I2 ⊂ Rd2 . For basic bi-parameter weighted
theory see e.g. [28]. We say w ∈ A∞(Rd1 × Rd2) if

[w]A∞ := sup
R
〈w〉R exp

(
〈logw−1〉R

)
<∞.

It is well-known that

A∞(Rd1 × Rd2) =
⋃

1<p<∞
Ap(Rd1 × Rd2).

We also define
[w]A1 = sup

R
〈w〉R ess sup

R
w−1.

We introduce the classes of multilinear Muckenhoupt weights that we will use.

3.2. Definition. Given ~p = (p1, . . . , pn) with 1 ≤ p1, . . . , pn ≤ ∞ we say that ~w =
(w1, . . . , wn) ∈ A~p = A~p(Rd1 × Rd2), if

0 < wi <∞, i = 1, . . . , n,

almost everywhere and

[~w]A~p := sup
R
〈wp〉

1
p

R

n∏
i=1

〈w−p
′
i

i 〉
1
p′
i
R <∞,

where the supremum is over rectangles R,

w :=
n∏
i=1

wi and
1

p
=

n∑
i=1

1

pi
.

If pi = 1 we interpret 〈w−p
′
i

i 〉
1
p′
i
R as ess supR w

−1
i , and if p = ∞ we interpret 〈wp〉

1
p

R as
ess supR w.

3.3. Remark. (1) It is important that the lower bound

(3.4) 〈wp〉
1
p

R

n∏
i=1

〈w−p
′
i

i 〉
1
p′
i
R ≥ 1

holds always. To see this recall that for α1, α2 > 0 we have by Hölder’s inequality
that

1 ≤ 〈w−α1〉
1
α1
R 〈w

α2〉
1
α2
R .(3.5)

Apply this with α2 = p and α1 = 1
n− 1

p

. Then apply Hölder’s inequality with the

exponents ui =
(
n− 1

p

)
p′i to get

〈(∏n
i=1wi

)− 1

n− 1
p

〉n− 1
p

R
≤
∏n
i=1〈w

−p′i
i 〉

1
p′
i
R .

(2) Our definition is essentially the usual one-parameter definition [35] with the dif-
ference that cubes are replaced by rectangles. However, we are also using the
renormalised definition from [38] that works better with the exponents pi = ∞.

Compared to the usual formulation of [35] the relation is that [wp11 , . . . , w
pn
n ]

1
p

A~p

with A~p defined as in [35] agrees with our [~w]A~p when pi <∞.
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(3) The case p1 = · · · = pn =∞ = p can be used as the starting point of extrapolation.
This is rarely useful but we will find use for it when we consider the multilinear
maximal function.

The following characterization of the class A~p is convenient. The one-parameter re-
sult with the different normalization is [35, Theorem 3.6]. We record the proof for the
convenience of the reader.

3.6. Lemma. Let ~p = (p1, . . . , pn) with 1 ≤ p1, . . . , pn ≤ ∞, 1/p =
∑n

i=1 1/pi ≥ 0, ~w =
(w1, . . . , wn) and w =

∏n
i=1wi. We have

[w
−p′i
i ]Anp′

i
≤ [~w]

p′i
A~p
, i = 1, . . . , n,

and
[wp]Anp ≤ [~w]pA~p .

In the case pi = 1 the estimate is interpreted as [w
1
n
i ]A1 ≤ [~w]

1/n
A~p

, and in the case p =∞ we have

[w−
1
n ]A1 ≤ [~w]

1/n
A~p

.
Conversely, we have

[~w]A~p ≤ [wp]
1
p

Anp

n∏
i=1

[w
−p′i
i ]

1
p′
i
Anp′

i

.

Proof. We fix an arbitrary j ∈ {1, . . . , n} for which we will show [w
−p′j
j ]Anp′

j
≤ [~w]

p′j
A~p

.

Notice that

(3.7)
1

p
+
∑
i 6=j

1

p′i
= n− 1 +

1

pj
.

We define qj via the identity
1

qj
=

1

n− 1 + 1
pj

· 1

p

and for i 6= j we set
1

qi
=

1

n− 1 + 1
pj

· 1

p′i
.

From (3.7) we have that
∑

i
1
qi

= 1. By definition we have

(3.8) [w
−p′j
j ]Anp′

j
= sup

R
〈w
−p′j
j 〉R〈w

p′j
1

np′
j
−1

j 〉
np′j−1

R .

Notice that
p′j

1

np′j − 1
=

1

n− 1
p′j

=
1

n− 1 + 1
pj

.

Using Hölder’s inequality with the exponents q1, . . . , qn we have the desired estimate

〈w
−p′j
j 〉

1
p′
j

R 〈w
p
qj

j 〉
qj
p

R = 〈w
−p′j
j 〉

1
p′
j

R 〈w
p
qj

∏
i 6=j

w
− p
qj

i 〉
qj
p

R ≤ 〈w
p〉

1
p

R

∏
i

〈w−p
′
i

i 〉
1
p′
i
R ≤ [~w]A~p .

When pj = 1 this is ess supR w
−1
j 〈w

1
n
j 〉nR ≤ [~w]A~p , and so [w

1
n
j ]nA1

≤ [~w]A~p .
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We now move on to bounding [wp]Anp . Notice that by definition

(3.9) [wp]Anp = sup
R
〈wp〉R〈w−

p
np−1 〉np−1

R .

We define si via
− p

np− 1
· si = −p′i

and notice that then
∑

i
1
si

= 1. Then, by Hölder’s inequality with the exponents s1, . . . , sn
we have

〈wp〉R〈w−
p

np−1 〉np−1
R ≤ 〈wp〉R

∏
i

〈w−p
′
i

i 〉

(
p

np−1

)
1
p′
i
(np−1)

R =
[
〈wp〉

1
p

R

∏
i

〈w−p
′
i

i 〉
1
p′
i
R

]p
≤ [~w]pA~p ,

which is the desired bound for [wp]Anp . Notice that in the case p =∞we get

[w−
1
n ]nA1

= sup
R

〈
w−

1
n
〉n
R

ess sup
R

w ≤ sup
R

[∏
i

〈w−1
i 〉R

]
ess sup

R
w = [~w]A~p .

We then move on to bounding [~w]A~p . It is based on the following inequality

(3.10) 1 ≤ 〈w−
p

np−1 〉
n− 1

p

R

∏
i

〈
w

1

n−1+ 1
pi

i

〉n−1+ 1
pi

R
.

Before proving this, we show how it implies the desired bound. We have

[~w]A~p = sup
R
〈wp〉

1
p

R

∏
i

〈w−p
′
i

i 〉
1
p′
i
R

≤ sup
R

[
〈wp〉R〈w−

p
np−1 〉np−1

R

] 1
p
∏
i

[
〈w−p

′
i

i 〉R
〈
w
p′i

1
np′
i
−1

i

〉np′i−1

R

] 1
p′
i ≤ [wp]

1
p

Anp

∏
i

[w
−p′i
i ]

1
p′
i
Anp′

i

,

where in the last estimate we recalled (3.8) and (3.9).
Let us now give the details of (3.10). We apply (3.5) with α1 = p

np−1 and α2 = 1
n(n−1)+ 1

p

to get

1 ≤ 〈w−
p

np−1 〉
n− 1

p

R

〈
w

1

n(n−1)+ 1
p

〉n(n−1)+ 1
p

R
.

The first term is already as in (3.10). Define ui via

1

n(n− 1) + 1
p

ui =
1

n− 1 + 1
pi

and notice that by Hölder’s inequality with these exponents (
∑

i
1
ui

= 1) we have〈
w

1

n(n−1)+ 1
p

〉n(n−1)+ 1
p

R
≤
∏
i

〈
w

1

n−1+ 1
pi

i

〉n−1+ 1
pi

R
,

which matches the second term in (3.10). �

The following duality of multilinear weights is handy – see [42, Lemma 3.1]. We give
the short proof for convenience.
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3.11. Lemma. Let ~p = (p1, . . . , pn) with 1 < p1, . . . , pn < ∞ and 1
p =

∑n
i=1

1
pi
∈ (0, 1). Let

~w = (w1, . . . , wn) ∈ A~p with w =
∏n
i=1wi and define

~w i = (w1, . . . , wi−1, w
−1, wi+1, . . . , wn),

~p i = (p1, . . . , pi−1, p
′, pi+1, . . . , pn).

Then we have
[~w i]A~p i = [~w]A~p .

Proof. We take i = 1 for notational convenience. Notice that 1
p′ +

∑n
i=2

1
pi

= 1
p′1

. Notice

also that w−1
∏n
i=2wi = w−1

1 . Therefore, we have

[~w i]A~p i = 〈w−p
′
1

1 〉
1
p′1
R 〈w

p〉
1
p

R

n∏
i=2

〈w−p
′
i

i 〉
1
p′
i
R = [~w]A~p .

�

We now recall the recent extrapolation result of [38]. The previous version, which did
not yet allow exponents to be∞ appeared in [37]. For related independent work see [45].
The previous extrapolation results with the separate assumptions wpii ∈ Api appear in
[17] and [15]. An even more general result than the one below appears in [38], but we
will not need that generality here. Finally, we note that the proof of this extrapolation
result can be made to work in m-parameters even though [38] provides the details only
in the one-parameter case – we give more details later in Section 8.

3.12. Theorem. Let f1, . . . , fn and g be given functions. Given ~p = (p1, . . . , pn) with 1 ≤
p1, . . . , pn ≤ ∞ let 1

p =
∑n

i=1
1
pi

. Assume that given any ~w = (w1, . . . , wn) ∈ A~p the inequality

(3.13) ‖gw‖Lp .
n∏
i=1

‖fiwi‖Lpi

holds, where w :=
∏n
i=1wi. Then for all exponents ~q = (q1, . . . , qn), with 1 < q1, . . . , qn ≤ ∞

and 1
q =

∑n
i=1

1
qi
> 0, and for all weights ~v = (v1, . . . , vn) ∈ A~q the inequality

‖gv‖Lq .
n∏
i=1

‖fivi‖Lqi

holds, where v :=
∏n
i=1 vi.

Given functions f j1 , . . . , f
j
n and gj so that (3.13) holds uniformly on j, we have for the same

family of exponents and weights as above, and for all exponents ~s = (s1, . . . , sn) with 1 <
s1, . . . , sn ≤ ∞ and 1

s =
∑

i
1
si
> 0 the inequality

(3.14) ‖(gjv)j‖Lq(`s) .
n∏
i=1

‖(f ji vi)j‖Lqi (`si ).

3.15. Remark. Using Lemma 3.11 and extrapolation, Theorem 3.12, we see that the weighted
boundedness of T transfers to the adjoints T j∗. Partial adjoints have to always be con-
sidered separately, though.
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As a final thing in this section, we demonstrate the necessity of the A~p condition for
the weighted boundedness of SIOs. We work in the m-parameter setting and let Rd =
Rd1 × · · · × Rdn . Let Rj be the following version of the n-linear one-parameter Riesz
transform in Rdj :

Rj(f1, . . . , fn) = p.v.
ˆ
Rdjn

∑n
i=1

∑dj
k=1(x− yi)k

(
∑n

i=1 |x− yi|)djn+1
f1(y1) · · · fn(yn) dy1 · · · dyn,

where (x − yi)k is the k-th coordinate of x − yi ∈ Rdj . Consider the tensor product
R1 ⊗ R2 ⊗ · · · ⊗ Rm. Let ~w = (w1, . . . , wn) be a multilinear weight, that is, 0 < wi < ∞
a.e., and denote w =

∏n
i=1wi. Suppose that for some exponents 1 < p1, . . . , pn ≤ ∞ with

1/p =
∑n

i=1 1/pi > 0 the estimate

‖R1 ⊗R2 ⊗ · · · ⊗Rm(f1, . . . , fn)‖Lp,∞(wp) .
n∏
i=1

‖fiwi‖Lpi

holds for all fi ∈ L∞c . We show that ~w is an m-parameter A~p weight.

Define σi = w
−p′i
i . Let E ⊂ Rd be an arbitrary set such that 1Eσi ∈ L∞c for all i =

1, . . . , n. Fix an m-parameter rectangle R = R1× · · · ×Rm ⊂ Rd, where each Rj is a cube.
Let R+ = (R1)+ × · · · × (Rm)+, where (Rj)+ := Rj + (`(Rj), . . . , `(Rj)).

Using the kernel of R1 ⊗ · · · ⊗Rm we have for all x ∈ R+ that

R1 ⊗R2 ⊗ · · · ⊗Rm(1Eσ11R, . . . , 1Eσn1R)(x) &
n∏
i=1

〈1Eσi〉R.

Hence

wp(R+)
1
p

n∏
i=1

〈1Eσi〉R .
n∏
i=1

‖1Eσi1Rwi‖Lpi =
n∏
i=1

σi(E ∩R)
1
pi ,

which gives that 〈wp〉
1
p

R+

∏n
i=1〈1Eσi〉

1
p′
i
R . 1. Since E was arbitrary this implies the esti-

mate

(3.16) 〈wp〉
1
p

R+

n∏
i=1

〈σi〉
1
p′
i
R . 1.

Similarly, we can show that

(3.17) 〈wp〉
1
p

R

n∏
i=1

〈σi〉
1
p′
i

R+ . 1.

By Hölder’s inequality we have that

〈w−
p

np−1 〉
np−1
p

R+ ≤
n∏
i=1

〈σi〉
1
p′
i

R+ .

Hence, (3.17) shows that

〈wp〉
1
p

R〈w
− p
np−1 〉

np−1
p

R+ . 1.
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Therefore,

〈wp〉
1
p

R

〈wp〉
1
p

R+

=
〈wp〉

1
p

R〈w
− p
np−1 〉

np−1
p

R+

〈wp〉
1
p

R+〈w−
p

np−1 〉
np−1
p

R+

. 1,

where the denominator in the middle term was ≥ 1. Thus, 〈wp〉
1
p

R . 〈wp〉
1
p

R+ , which

together with (3.16) gives that 〈wp〉
1
p

R

∏n
i=1〈σi〉

1
p′
i
R . 1.

4. MAXIMAL FUNCTIONS

It was proved in [16] that the multilinear bi-parameter (or multi-parameter) maximal
function is bounded with respect to the genuinely multilinear bi-parameter weights. We
give a new efficient proof of this. Let D = D1 ×D2 be a fixed lattice of dyadic rectangles
and define

MD(f1, . . . , fn) = sup
R∈D

n∏
i=1

〈|fi|〉R1R.

4.1. Proposition. If 1 < p1, . . . , pn ≤ ∞ and 1/p =
∑n

i=1 1/pi we have

‖MD(f1, . . . , fn)w‖Lp .
n∏
i=1

‖fiwi‖Lpi

for all multilinear bi-parameter weights ~w ∈ A~p.

Proof. Our proof is based on the proof of the case ~p = (p1, . . . , pn) = (∞, . . . ,∞) and
extrapolation, Theorem 3.12. We have

sup
R

[∏
i

〈w−1
i 〉R

]
· ess sup

R
w = [~w]A~p ,

and therefore ∏
i

〈w−1
i 〉R .

1

ess supR w
.

For every R ∈ D let NR ⊂ R be such that |NR| = 0 and w(x) ≤ ess supR w for all
x ∈ R \NR. Let N =

⋃
R∈DNR. Then |N | = 0 and for every x ∈ Rd \N we have

1

w(x)
≥ sup

R∈D

1R(x)

ess supR w
.

Thus, we have

MD(f1, . . . , fn)(x)w(x) ≤
[∏

i

‖fiwi‖L∞
]

sup
R∈D

[
1R(x)

∏
i

〈w−1
i 〉R

]
· w(x)

.
[∏

i

‖fiwi‖L∞
]

sup
R∈D

[ 1R(x)

ess supR w

]
· w(x) ≤

∏
i

‖fiwi‖L∞

almost everywhere, and so ‖MD(f1, . . . , fn)w‖L∞ .
∏
i ‖fiwi‖L∞ as desired.

�
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If an average is with respect to a different measure µ than the Lebesgue measure, we
write 〈f〉µR := 1

µ(R)

´
R f dµ and define

Mµ
Df = sup

R
1R〈|f |〉µR.

The following is a result of R. Fefferman [24]. Recently, we also recorded a proof in [39,
Appendix B].

4.2. Proposition. Let λ ∈ Ap, p ∈ (1,∞), be a bi-parameter weight. Then for all s ∈ (1,∞) we
have

‖Mλ
Df‖Ls(λ) . [λ]

1+1/s
Ap

‖f‖Ls(λ).

We formulate some vector-valued versions of Proposition 4.2. We state the following
version with two sequence spaces – of course, a version with arbitrarily many also works.
Proposition 4.3 is proved in the end of Section 8.

4.3. Proposition. Let µ ∈ A∞, w ∈ Ap(µ) and 1 < p, s, t <∞. Then we have∥∥∥∥∥∥∥∥{Mµf ij}
∥∥
`s

∥∥∥
`t

∥∥∥
Lp(wµ)

.
∥∥∥∥∥∥∥∥{f ij}∥∥`s∥∥∥`t∥∥∥Lp(wµ)

.

In particular, we have ∥∥∥∥∥∥∥∥{Mµf ij}
∥∥
`s

∥∥∥
`t

∥∥∥
Lp(µ)

.
∥∥∥∥∥∥∥∥{f ij}∥∥`s∥∥∥`t∥∥∥Lp(µ)

.

Finally, we point out that everything in this section works easily in the general multi-
parameter situation.

5. SQUARE FUNCTIONS

LetD = D1×D2 be a fixed lattice of dyadic rectangles. We define the square functions

SDf =
( ∑
R∈D
|∆Rf |2

)1/2
, S1
D1f =

( ∑
I1∈D1

|∆1
I1f |

2
)1/2

and define S2
D2f analogously.

The following lower square function estimate valid for A∞ weights is important for
us. The importance comes from the fact that by Lemma 3.6 some of the key weights wp

and w−p
′
i

i are at least A∞ for the multilinear weights of Definition 3.2.

5.1. Lemma. There holds

‖f‖Lp(w) . ‖SiDif‖Lp(w) . ‖SDf‖Lp(w)

for all p ∈ (0,∞) and bi-parameter weights w ∈ A∞.

For a proof of the one-parameter estimate see [48, Theorem 2.5]. The bi-parameter
results can be deduced using the following extremely useful A∞ extrapolation result
[11], which will be applied several times during the paper. We also mention that square
function estimates related to Lemma 5.1 also appear in [3].
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5.2. Lemma. Let (f, g) be a pair of non-negative functions. Suppose that there exists some
0 < p0 <∞ such that for every w ∈ A∞ we haveˆ

fp0w .
ˆ
gp0w.

Then for all 0 < p <∞ and w ∈ A∞ we haveˆ
fpw .

ˆ
gpw.

Proof of Lemma 5.1. Let w ∈ A∞ be a bi-parameter weight. The first estimate in the
statement follows from the one-parameter result [48, Theorem 2.5] and the fact that
w(x1, ·) ∈ A∞(Rd2) and w(·, x2) ∈ A∞(Rd1). Using this, we have that

‖f‖L2(w) . ‖S1
D1f‖L2(w) =

( ∑
I1∈D1

‖∆1
I1f‖

2
L2(w)

) 1
2
.

For each I1 we again use the one-parameter estimate to get

‖∆1
I1f‖L2(w) . ‖S2

D2∆1
I1f‖L2(w) =

( ∑
I2∈D2

‖∆2
I2∆1

I1f‖
2
L2(w)

) 1
2
.

Since ∆2
I2∆1

I1f = ∆I1×I2f , inserting the last estimate into the previous one shows that

‖f‖L2(w) .
( ∑
I1×I2∈D1×D2

‖∆I1×I2f‖2L2(w)

) 1
2

= ‖SDf‖L2(w).

Since this holds for every bi-parameter weight w ∈ A∞, Lemma 5.2 concludes the proof.
We point out that with further extrapolation we could obtain vector-valued versions
analogous to Proposition 4.3, see the end of Section 8. �

5.3. Remark. We often use the lower square function estimate with the additional obser-
vation that we e.g. have for all k = (k1, k2) ∈ {0, 1, . . .}2 that

SDf =
( ∑
K=K1×K2∈D

|∆K,kf |2
)1/2

, ∆K,k = ∆1
K1,k1

∆2
K2,k2

.

This simply follows from disjointness.

For k = (k1, k2) we define the following family of n-linear square functions. First, we
set

A1(f1, . . . , fn) = A1,k(f1, . . . , fn) =
( ∑
K∈D
〈|∆K,kf1|〉2K

n∏
j=2

〈|fj |〉2K1K

) 1
2
.

In addition, we understand this so thatA1,k can also take any one of the symmetric forms,
where each ∆i

Ki,ki
appearing in ∆K,k = ∆1

K1,k1
∆2
K2,k2

can alternatively be associated
with any of the other functions f2, . . . , fn. That is, A1,k can, for example, also take the
form

A1,k(f1, . . . , fn) =
( ∑
K∈D
〈|∆2

K2,k2
f1|〉2K〈|∆1

K1,k1
f2|〉2K

n∏
j=3

〈|fj |〉2K1K

) 1
2
.
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For k = (k1, k2, k3) we define

A2,k(f1, . . . , fn)

=
( ∑
K2∈D2

( ∑
K1∈D1

〈|∆2
K2,k1

f1|〉K〈|∆1
K1,k2

f2|〉K〈|∆1
K1,k3

f3|〉K
n∏
j=4

〈|fj |〉K1K

)2) 1
2
,

(5.4)

where we again understand this as a family of square functions. First, the appearing
three martingale blocks can be associated with different functions, too. Second, we can
have the K1 summation out and the K2 summation in (we can interchange them), but
then we have two martingale blocks with K2 and one martingale block with K1.

Finally, for k = (k1, k2, k3, k4) we define

A3,k(f1, . . . , fn) =
∑
K∈D
〈|∆K,(k1,k2)f1|〉K〈|∆K,(k3,k4)f2|〉K

n∏
j=3

〈|fj |〉K1K ,

where this is a family with two martingale blocks in each parameter, which can be moved
around.

5.5. Theorem. If 1 < p1, . . . , pn ≤ ∞ and 1
p =

∑n
i=1

1
pi
> 0 we have

‖Aj,k(f1, . . . , fn)w‖Lp .
n∏
i=1

‖fiwi‖Lpi , j = 1, 2, 3,

for all multilinear bi-parameter weights ~w ∈ A~p.

Proof. The proofs of all of the cases have the same underlying idea based on an iterative
use of duality and the lower square function estimate until all of the cancellation has
been utilised. One can also realise that the result for A3,k follows using the above scheme
just once if the result is first proved for A1,k and A2,k.

We show the proof for A2,k with the explicit form (5.4). Fix some ~p = (p1, . . . , pn)
with 1 < pi < ∞ and p > 1. This is enough by extrapolation, Theorem 3.12. To
estimate ‖A2,k(f1, . . . , fn)w‖Lp we take a sequence (fn+1,K2)K2 ⊂ Lp

′
(`2) with a norm

‖(fn+1,K2)K2‖Lp′ (`2) ≤ 1 and look at

(5.6)
∑
K

〈|∆2
K2,k1

f1|, 1K〉〈|∆1
K1,k2

f2|〉K〈|∆1
K1,k3

f3|〉K
n∏
j=4

〈|fj |〉K〈fn+1,K2w〉K .

There holds that

(5.7) 〈|∆2
K2,k1

f1|, 1K〉 = 〈∆2
K2,k1

f1, ϕK2,f1〉 = 〈f1,∆
2
K2,k1

ϕK2,f1〉, |ϕK2,f1 | ≤ 1K .

We now get that (5.6) is less than ‖f1w1‖Lp1 multiplied by∥∥∥∑
K

〈fn+1,K2w〉K〈|∆1
K1,k2

f2|〉K〈|∆1
K1,k3

f3|〉K
n∏
j=4

〈|fj |〉K∆2
K2,k1

ϕK2,f1w
−1
1

∥∥∥
Lp
′
1
.

We will now apply the lower square function estimate ‖gw−1
1 ‖Lp′1 . ‖S

2
D2(g)w−1

1 ‖Lp′1 ,

Lemma 5.1, with the weight w−p
′
1

1 ∈ A∞ (see Lemma 3.6). Here we use the block form of
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Remark 5.3. Using also that |∆2
K2,k1

ϕK2,f1 | . 1K we get that the last norm is dominated
by ∥∥∥(∑

K2

(∑
K1

〈|fn+1,K2 |w〉K〈|∆1
K1,k2

f2|〉K〈|∆1
K1,k3

f3|〉K
n∏
j=4

〈|fj |〉K1K

)2) 1
2
w−1

1

∥∥∥
Lp
′
1
.

We still have cancellation to use in the form of the other two martingale differences and
will continue the process.

We repeat the argument from above – this gives that the previous term is dominated
by ‖f2w2‖Lp2 multiplied by∥∥∥(∑

K1

(∑
K2

〈|fn+1,K2 |w〉K〈|f1,K2 |w−1
1 〉K〈|∆

1
K1,k3

f3|〉K
n∏
j=4

〈|fj |〉K1K

)2) 1
2
w−1

2

∥∥∥
Lp
′
2

where ‖(f1,K2)K2‖Lp1 (`2) ≤ 1. Running this argument one more time finally gives us that
this is dominated by ‖f3w3‖Lp3 multiplied by∥∥∥(∑

K1

(∑
K2

〈|fn+1,K2 |w〉K〈|f1,K2 |w−1
1 〉K〈|f2,K1 |w−1

2 〉K
n∏
j=4

〈|fj |〉K1K

)2) 1
2
w−1

3

∥∥∥
Lp
′
3

≤
∥∥∥(∑

K1

(∑
K2

MD(fn+1,K2w, f1,K2w−1
1 , f2,K1w−1

2 , f4, . . . , fn)
)2) 1

2
w−1

3

∥∥∥
Lp
′
3
,

where ‖(f2,K1)K1‖Lp2 (`2) ≤ 1.
Using Lemma 3.11 three times (we dualized three times) shows that

(w−1, w1, w2, w4, . . . , wn) ∈ A(p′,p1,p2,p4,...,pn).

The maximal function satisfies the weighted

Lp
′
(`∞K1(`2K2))× Lp1(`∞K1(`2K2))× Lp2(`2K1(`∞K2))× Lp4 × · · · × Lpn → Lp

′
3(`2K1(`1K2))

estimate. This gives that the last norm above is dominated by

‖(fn+1,K2ww−1)K2‖Lp′ (`2)‖(f1,K2w−1
1 w1)K2‖Lp1 (`2)‖(f2,K1w−1

2 w2)K1‖Lp2 (`2)

n∏
i=4

‖fiwi‖Lpi ,

where the first three norms are ≤ 1. This concludes the proof for A2,k and the rest of the
cases are similar. �

We also record some linear estimates. We will need these when we deal with the most
complicated model operators – the partial paraproducts.

5.8. Proposition. For u ∈ A∞ and p, s ∈ (1,∞) we have∥∥∥[∑
m

( ∑
K∈D
〈|∆K,kfm|〉2K

1K
〈u〉2K

) s
2
] 1
s
u

1
p

∥∥∥
Lp
.
∥∥∥(∑

m

|fm|s
) 1
s
u
− 1
p′
∥∥∥
Lp
.

Proof. By (3.5) we have for all n ≥ 2 that

1 ≤ 〈u〉K
〈
u−

1
n−1

〉n−1

K
.
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Simply using this we reduce to∥∥∥[∑
m

( ∑
K∈D
〈|∆K,kfm|〉2K

〈
u−

1
n−1

〉2(n−1)

K
1K

) s
2
] 1
s
u

1
p

∥∥∥
Lp

=
∥∥∥[∑

m

A1,k

(
fm, u

− 1
n−1 , . . . , u−

1
n−1
)s] 1

s
u

1
p

∥∥∥
Lp
,

where A1,k is a suitable square function as in Theorem 5.5.
We then fix n large enough so that u ∈ An. We then notice that this implies that

(5.9)
(
u
− 1
p′ , u

1
n−1 , . . . , u

1
n−1
)
∈ A(p,∞,...,∞).

To see this, notice that the target weight associated with this tuple is u−
1
p′ u = u

1
p and that

the target exponent is p, and so[(
u
− 1
p′ , u

1
n−1 , . . . , u

1
n−1
)]
A(p,∞,...,∞)

= sup
R
〈u〉1/pR 〈u〉

1/p′

R

〈
u−

1
n−1
〉n−1

R
= [u]An <∞.

It remains to use the weighted (with the weight (5.9)) vector-valued estimate Lp(`s)×
L∞ × · · · × L∞ → Lp(`s) of A1,k, which follows by Theorem 5.5 and (3.14). �

5.10. Remark. It is possible to prove the above proposition also directly with the duality
and lower square function strategy that was used in the proof of Theorem 5.5.

6. DYADIC MODEL OPERATORS

In this section we are working with a fixed set of dyadic rectangles D = D1 × D2. All
the model operators depend on this lattice, but it is not emphasised in the notation.

6.A. Shifts. Let k = (k1, . . . , kn+1), where kj = (k1
j , k

2
j ) ∈ {0, 1, . . .}2. An n-linear bi-

parameter shift Sk takes the form

〈Sk(f1, . . . , fn), fn+1〉 =
∑
K

∑
R1,...,Rn+1

R
(kj)

j =K

aK,(Rj)

n+1∏
j=1

〈fj , h̃Rj 〉.

Here K,R1, . . . , Rn+1 ∈ D = D1 × D2, Rj = I1
j × I2

j , R(kj)
j := (I1

j )(k1j ) × (I2
j )(k2j ) and

h̃Rj = h̃I1j
⊗ h̃I2j . Here we assume that for m ∈ {1, 2} there exist two indices jm0 , j

m
1 ∈

{1, . . . , n + 1}, jm0 6= jm1 , so that h̃Im
jm0

= hIm
jm0

, h̃Im
jm1

= hIm
jm1

and for the remaining indices

j 6∈ {jm0 , jm1 } we have h̃Imj ∈ {h
0
Imj
, hImj }. Moreover, aK,(Rj) = aK,R1,...,Rn+1 is a scalar

satisfying the normalization

(6.1) |aK,(Rj)| ≤
∏n+1
j=1 |Rj |1/2

|K|n
.

6.2. Theorem. Suppose Sk is an n-linear bi-parameter shift, 1 < p1, . . . , pn ≤ ∞ and 1
p =∑n

i=1
1
pi
> 0. Then we have

‖Sk(f1, . . . , fn)w‖Lp .
n∏
i=1

‖fiwi‖Lpi
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for all multilinear bi-parameter weights ~w ∈ A~p. The implicit constant does not depend on k.

Proof. We use duality to always reduce to one of the operators of type A3 in Theorem 5.5.
Performing the proof like this has the advantage that the form of the shift really plays
no role – it just affects which type of A3 operator we get. For example, we consider the
explicit case

Sk(f1, . . . , fn) =
∑
K

AK(f1, . . . , fn),

where

AK(f1, . . . , fn) =
∑

R1,...,Rn+1

R
(kj)

j =K

aK,(Rj)〈f1, hR1〉
n∏
j=2

〈fj , h̃Rj 〉hRn+1 .

Fix some ~p = (p1, . . . , pn) with 1 < pi < ∞ and p > 1, which is enough by extrapola-
tion. We will dualise using fn+1 with ‖fn+1w

−1‖Lp′ ≤ 1. The normalisation of the shift
coefficients gives the direct estimate∑

K

|〈AK(f1, . . . , fn), fn+1〉|

≤
∑
K

∑
R1,...,Rn+1

R
(kj)

j =K

∏n+1
j=1 |Rj |1/2

|K|n
∣∣∣〈∆K,k1f1, hR1〉

n∏
j=2

〈fj , h̃Rj 〉〈∆K,kn+1fn+1, hRn+1〉
∣∣∣

≤
∑
K

∑
R1,...,Rn+1

R
(kj)

j =K

1

|K|n
〈|∆K,k1f1|, 1R1〉

n∏
j=2

〈|fj |, 1Rj 〉〈|∆K,kn+1fn+1|, 1Rn+1〉

≤
∑
K

〈|∆K,k1f1|〉K
n∏
j=2

〈|fj |〉K〈|∆K,kn+1fn+1|〉K |K|

=
∥∥∥∑

K

〈|∆K,k1f1|〉K
n∏
j=2

〈|fj |〉K〈|∆K,kn+1fn+1|〉K1K

∥∥∥
L1
,

where we used (2.1) in the first step in the passage from Haar functions into martingale
differences. Notice that

(6.3) (w1, · · · , wn, w−1) ∈ A(p1,··· ,pn,p′), w =
n∏
i=1

wi.

The target weight associated to this data is ww−1 = 1 and the target exponent is 1/p +
1/p′ = 1. By using Theorem 5.5 with a suitableA3(f1, . . . , fn+1) and the above weight we
can directly dominate this by[ n∏

i=1

‖fiwi‖Lpi
]
· ‖fn+1w

−1‖Lp′ ≤
n∏
i=1

‖fiwi‖Lpi .

We are done. �



GENUINELY MULTILINEAR WEIGHTED ESTIMATES FOR SINGULAR INTEGRALS IN PRODUCT SPACES 19

6.B. Partial paraproducts. Let k = (k1, . . . , kn+1), where kj ∈ {0, 1, . . .}. An n-linear bi-
parameter partial paraproduct (Sπ)k with the paraproduct component on Rd2 takes the
form

(6.4) 〈(Sπ)k(f1, . . . , fn), fn+1〉 =
∑

K=K1×K2

∑
I11 ,...,I

1
n+1

(I1j )(kj)=K1

aK,(I1j )

n+1∏
j=1

〈fj , h̃I1j ⊗ uj,K2〉,

where the functions h̃I1j and uj,K2 satisfy the following. There are j0, j1 ∈ {1, . . . , n+ 1},
j0 6= j1, so that h̃I1j0

= hI1j0
, h̃I1j1

= hI1j1
and for the remaining indices j 6∈ {j0, j1} we have

h̃I1j
∈ {h0

I1j
, hI1j
}. There is j2 ∈ {1, . . . , n + 1} so that uj2,K2 = hK2 and for the remaining

indices j 6= j2 we have uj,K2 =
1K2

|K2| . Moreover, the coefficients are assumed to satisfy

(6.5) ‖(aK,(I1j ))K2‖BMO = sup
K2

0∈D2

( 1

|K2
0 |

∑
K2⊂K2

0

|aK,(I1j )|2
)1/2

≤
∏n+1
j=1 |I1

j |
1
2

|K1|n
.

Of course, (πS)k is defined symmetrically.
The following H1-BMO duality type estimate is well-known and elementary:

(6.6)
∑
K2

|aK2 ||bK2 | . ‖(aK2)‖BMO

∥∥∥(∑
K2

|bK2 |2
1K2

|K2|

)1/2∥∥∥
L1
.

Such estimates have natural multi-parameter analogues also, and the proofs in all pa-
rameters are analogous. See e.g. [44, Equation (4.1)].

Our result for the partial paraproducts has a significantly more difficult proof than for
the other model operators. It is also more inefficient in that is produces an exponential
– although crucially with an arbitrarily small exponent – dependence on the complexity.
This has some significance for the required kernel regularity of CZOs, but a standard
t 7→ tα type continuity modulus will still suffice.

6.7. Theorem. Suppose (Sπ)k is an n-linear partial paraproduct, 1 < p1, . . . , pn ≤ ∞ and
1
p =

∑n
i=1

1
pi
> 0. Then, for every 0 < β ≤ 1 we have

‖(Sπ)k(f1, . . . , fn)w‖Lp .β 2maxj kjβ
n∏
i=1

‖fiwi‖Lpi

for all multilinear bi-parameter weights ~w ∈ A~p.
Proof. Recall that (Sπ)k is of the form (6.4). Recall also the indices j0 and j1, which say
that h̃I1j = hI1j

at least for j ∈ {j0, j1}, and the index j2, which specifies the place of hK2

in the second parameter. It makes no difference for the argument what the indices j0
and j1 are, so we assume that j0 = 1 and j1 = 2. It makes a small difference whether
j2 ∈ {j0, j1} or j2 6∈ {j0, j1}, so we do not specify j2 yet. To make the following formulae
shorter we write h̃I1j for every j but keep in mind that these are cancellative at least for
j ∈ {1, 2}. We define

AK2(g1, . . . , gn+1) =
n+1∏
j=1

〈gj , uj,K2〉
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and write (Sπ)k in the form

〈(Sπ)k(f1, . . . , fn), fn+1〉 =
∑

K=K1×K2

∑
I11 ,...,I

1
n+1

(I1j )(kj)=K1

aK,(I1j )AK2(〈f1, h̃I11 〉1, . . . , 〈fn+1, h̃I1n+1
〉1).

Fix some ~p = (p1, . . . , pn) with 1 < pi < ∞ and p > 1, which is enough by extrapola-
tion. We will dualise using fn+1 with ‖fn+1w

−1‖Lp′ ≤ 1. We may assume fj ∈ L∞c . The
H1-BMO duality (6.6) gives that

|〈(Sπ)k(f1, . . . , fn), fn+1〉| .
∑
K1

∑
I11 ,...,I

1
n+1

(I1j )(kj)=K1

[∏n+1
j=1 |I1

j |
1
2

|K1|n

ˆ
Rd2

(∑
K2

|AK2(〈f1, h̃I11 〉1, . . . , 〈fn+1, h̃I1n+1
〉1)|2 1K2

|K2|

) 1
2

]
.

(6.8)

Suppose j ∈ {3, . . . , n + 1} is such that h̃I1j = h0
I1j

and kj > 0, that is, we have non-

cancellative Haar functions and non-zero complexity. We expand

|I1
j |−

1
2 〈fj , h0

I1j
〉1 = 〈f〉I1j ,1 = 〈fj〉K1,1 +

kj∑
ij=1

〈∆1

(I1j )(ij)
fj〉(I1j )(ij−1),1

.

For convenience, we further write that

〈∆1

(I1j )(ij)
fj〉(I1j )(ij−1),1

= 〈h
(I1j )(ij)

〉
(I1j )(ij−1)〈fj , h(I1j )(ij)

〉1,

where we are suppressing the summation over the 2d1 − 1 different Haar functions. We
perform these expansions inside the operators AK2 , and take the sums out of the `2K2

norm. This gives that the right hand side of (6.8) is less than a sum of at most
∏n
j=3(1+kj)

terms of the form∑
K1

∑
I11 ,...,I

1
n+1

(I1j )(kj)=K1

[∏n+1
j=1 |I1

j ||(I1
j )(ij)|−

1
2

|K1|n

ˆ
Rd2

(∑
K2

|AK2(〈f1, h̃(I11 )(i1)〉1, . . . , 〈fn+1, h̃(I1n+1)(in+1)〉1)|2 1K2

|K2|

) 1
2

]
.

Here we have the following properties. If j in an index such that we did not do the
expansion related to j, then ij = 0. Thus, at least i1 = i2 = 0. We also remind that
h̃

(I1j )(ij)
= h

(I1j )(ij)
for j = 1, 2. If ij < kj , then h̃

(I1j )(ij)
= h

(I1j )(ij)
. If ij = kj , then

h̃
(I1j )(ij)

∈ {hK1 , h0
K1}. We can further rewrite this as

(6.9)
∑
K1

∑
L1
1,...,L

1
n+1

(L1
j )

(lj)=K1

∏n+1
j=1 |L1

j |
1
2

|K1|n

ˆ
Rd2

(∑
K2

|AK2(〈f1, h̃L1〉1, . . . , 〈fn+1, h̃Ln+1〉1)|2 1K2

|K2|

) 1
2
.



GENUINELY MULTILINEAR WEIGHTED ESTIMATES FOR SINGULAR INTEGRALS IN PRODUCT SPACES 21

This is otherwise analogous to the right hand side of (6.8) except for the key difference
that if a non-cancellative Haar function appears, then the related complexity is zero.

We turn to estimate (6.9). We show that

(6.10) (6.9) .β 2maxj kj
β
2

[ n∏
j=1

‖fjwj‖Lpj
]
‖fn+1w

−1‖Lp′ .

Recalling that ‖fn+1w
−1‖Lp′ ≤ 1 this implies that the left hand side of (6.8) satisfies

LHS(6.8) .β (1 + max
j
kj)

n−12maxj kj
β
2

n∏
j=1

‖fjwj‖Lpj .β 2maxj kjβ
n∏
j=1

‖fjwj‖Lpj ,

which proves the theorem.
Let (v1, . . . , vn+1) ∈ A(2,...,2) and v =

∏n+1
j=1 vj . We will prove the (n+1)-linear estimate

∥∥∥∥∥∑
K1

∑
L1
1,...,L

1
n+1

(L1
j )

(lj)=K1

[∏n+1
j=1 |L1

j |
1
2

|K1|n
1K1

|K1|

(∑
K2

|AK2(〈f1, h̃L1〉1, . . . , 〈fn+1, h̃Ln+1〉1)|2 1K2

|K2|

) 1
2

]
v

∥∥∥∥∥
L

2
n+1

. 2maxj kj
β
2

n+1∏
j=1

‖fjvj‖L2 .

(6.11)

Extrapolation, Theorem 3.12, then gives that∥∥∥∥∥∑
K1

∑
L1
1,...,L

1
n+1

(L1
j )

(lj)=K1

∏n+1
j=1 |L1

j |
1
2

|K1|n
1K1

|K1|

(∑
K2

|AK2(〈f1, h̃L1〉1, . . . ,〈fn+1, h̃Ln+1〉1)|2 1K2

|K2|

) 1
2
v

∥∥∥∥∥
Lq

. 2maxj kj
β
2

n+1∏
j=1

‖fjvj‖Lqj

for all q1, . . . , qn+1 ∈ (1,∞] such that 1
q =

∑n+1
j=1

1
qj

> 0 and for all (v1, . . . , vn+1) ∈
A(q1,...,qn+1). Applying this with the exponent tuple (p1, . . . , pn, p

′) and the weight tuple
(w1, . . . , wn, w

−1) ∈ A(p1,...,pn,p′) gives (6.10).
It remains to prove (6.11). We denote σj = v−2

j . The A(2,...,2) condition gives that

〈v
2

n+1 〉n+1
K

n+1∏
j=1

〈σj〉K . 1.

Using this we have

|AK2(〈f1, h̃L1
1
〉1, . . . , 〈fn+1, h̃L1

n+1
〉1)| . 1

〈v
2

n+1 〉n+1
K

∣∣∣∣∣AK2

(
〈f1, h̃L1

1
〉1

〈σ1〉K
, . . . ,

〈fn+1, h̃L1
n+1
〉1

〈σn+1〉K

)∣∣∣∣∣.
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For the moment we abbreviate the last |AK2(· · · )| as cK,(L1
j )

. There holds that

1

〈v
2

n+1 〉n+1
K

cK,(L1
j )

=

[
1

〈v
2

n+1 〉K

〈
c

1
n+1

K,(L1
j )

1Kv
− 2
n+1 v

2
n+1

〉
K

]n+1

≤
(
Mv

2
n+1

D

(
c

1
n+1

K,(L1
j )

1Kv
− 2
n+1

)
(x)
)n+1

for all x ∈ K.
We substitute this into the left hand side of (6.11). This gives that the term there is

dominated by∥∥∥∥∥∑
K1

∑
L1
1,...,L

1
n+1

(L1
j )

(lj)=K1

∏n+1
j=1 |L1

j |
1
2

|K1|n+1

(∑
K2

Mv
2

n+1

D

(
c

1
n+1

K,(L1
j )

1Kv
− 2
n+1

)2(n+1) 1

|K2|

) 1
2
v

∥∥∥∥∥
L

2
n+1

.

We use the L2(`n+1
K1,(L1

j )
(`

2(n+1)
K2 )) boundedness of the maximal functionMv

2
n+1

D , see Propo-

sition 4.3. This gives that the last norm is dominated by

(6.12)

∥∥∥∥∥∑
K1

∑
L1
1,...,L

1
n+1

(L1
j )

(lj)=K1

∏n+1
j=1 |L1

j |
1
2

|K1|n+1
1K1

(∑
K2

c2
K,(L1

j )

1K2

|K2|

) 1
2
v−1

∥∥∥∥∥
L

2
n+1

.

Now, we recall what the numbers cK,(L1
j )

are. At this point it becomes relevant which

of the Haar functions h̃L1
j

are cancellative and what is the form of the operators AK2 . We

assume that h̃L1
j

= hL1
j

for j = 1, . . . , n and h̃L1
n+1

= h0
L1
n+1

= h0
K1
n+1

, which is a good
representative of the general case. First, we assume that the index j2, which specifies the
place of hK2 in AK2 , satisfies j2 ∈ {1, . . . , n}. The point is that then h̃L1

j2
= hL1

j2
. For

convenience of notation we assume that j2 = 1. With these assumptions there holds that

(6.13) cK,(L1
j )

=

∣∣∣∣∣〈f1, hL1
1
⊗ hK2〉

〈σ1〉K

n∏
j=2

〈
fj , hL1

j
⊗ 1K2

|K2|

〉
〈σj〉K

·

〈
fn+1, h

0
K1 ⊗

1K2

|K2|

〉
〈σn+1〉K

∣∣∣∣∣.
For j = 2, . . . , n we estimate that∣∣∣〈fj , hL1

j
⊗ 1K2

|K2|

〉∣∣∣
〈σj〉K

=

∣∣∣〈〈fj , hL1
j
〉1〈σj〉−1

K1,1
〈σj〉K1,1,

1K2

|K2|

〉∣∣∣
〈〈σj〉K1,1〉K2

≤M
〈σj〉K1,1

D2 (〈fj , hL1
j
〉1〈σj〉−1

K1,1
)(x2)

(6.14)

for all x2 ∈ K2. Also, there holds that∣∣∣〈fn+1, h
0
K1 ⊗

1K2

|K2|

〉∣∣∣
〈σn+1〉K

≤ |K1|
1
2M

σn+1

D (fn+1σ
−1
n+1)(x)
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for all x ∈ K. These give (recall that L1
n+1 = K1) that∑

L1
1,...,L

1
n+1

(L1
j )

(lj)=K1

∏n+1
j=1 |L1

j |
1
2

|K1|n+1
1K1

(∑
K2

c2
K,(L1

j )

1K2

|K2|

) 1
2 ≤

n∏
j=1

Fj,K1 ·Mσn+1

D (fn+1σ
−1
n+1),

where

(6.15) F1,K1 = 1K1

∑
(L1

1)(l1)=K1

|L1
1|

1
2

|K1|

(∑
K2

|〈f1, hL1
1
⊗ hK2〉|2

〈σ1〉2K
1K2

|K2|

) 1
2

and

(6.16) Fj,K1 = 1K1

∑
(L1
j )

(lj)=K1

|L1
j |

1
2

|K1|
M
〈σj〉K1,1

D2 (〈fj , hL1
j
〉1〈σj〉−1

K1,1
)

for j = 2, . . . , n.
We will now continue from (6.12) using the above pointwise estimates. Notice that∑

K1

n∏
j=1

Fj,K1 ≤
2∏
j=1

(∑
K1

(Fj,K1)2
)1/2

n∏
j=3

sup
K1

Fj,K1 ≤
n∏
j=1

(∑
K1

(Fj,K1)2
)1/2

.

Since v−1 =
∏n+1
j=1 v

−1
j , we have that

(6.12) .
n∏
j=1

∥∥∥(∑
K1

F 2
j,K1

) 1
2
v−1
j

∥∥∥
L2

∥∥Mσn+1

D (fn+1σ
−1
n+1)v−1

n+1

∥∥
L2 .

Since σj = v−2
j there holds by Proposition 4.2 that

‖Mσn+1

D (fn+1σ
−1
n+1)v−1

n+1‖L2 = ‖Mσn+1

D (fn+1σ
−1
n+1)‖L2(σn+1) . ‖fn+1vn+1‖L2 .

It remains to estimate the norms for j = 1, . . . , n.
We begin with j = 1. If l1 = 0, then we directly have that(∑

K1

F 2
1,K1

) 1
2

=
(∑

K

|〈f1, hK〉|2

〈σ1〉2K
1K
|K|

) 1
2
.

Since |〈f1, hK〉||K|−
1
2 ≤ 〈|∆Kf1|〉K , we may use Proposition 5.8 to have that∥∥∥(∑

K1

F 2
1,K1

) 1
2
v−1

1

∥∥∥
L2
. ‖f1σ

− 1
2

1 ‖L2 = ‖f1v1‖L2 .

Suppose then l1 > 0. There holds that∥∥∥(∑
K1

F 2
1,K1

) 1
2
v−1

1

∥∥∥
L2

=
(∑
K1

‖F1,K1v−1
1 ‖

2
L2

) 1
2
.

Let s ∈ (1,∞) be such that d1/s
′ = β/(2n). Then

F1,K1 ≤ 2
l1β
2n 1K1

( ∑
(L1

1)(l1)=K1

|L1
1|
s
2

|K1|s
(∑
K2

|〈f1, hL1
1
⊗ hK2〉|2

〈σ1〉2K
1K2

|K2|

) s
2

) 1
s

.
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Therefore, ‖F1,K1v−1
j ‖2L2 is less than

(6.17) 2
l1β
n

∥∥∥∥( ∑
(L1

1)(l1)=K1

|L1
1|
s
2

|K1|s
(∑
K2

|〈f1, hL1
1
⊗ hK2〉|2

〈σ1〉2K
1K2

|K2|

) s
2

) 1
s

〈σ1〉
1
2

K1,1

∥∥∥∥2

L2

|K1|.

Notice that |〈f1, hL1
1
⊗ hK2〉||K2|−

1
2 ≤ 〈|∆K2〈f1, hL1

1
〉1|〉K2 . Therefore, the one-parameter

case of Proposition 5.8 gives that

(6.17) . 2
l1β
n

∥∥∥∥( ∑
(L1

1)(l1)=K1

|L1
1|
s
2

|K1|s
|〈f1, hL1

1
〉1|s
) 1
s 〈σ1〉

− 1
2

K1,1

∥∥∥∥2

L2

|K1|

≤ 2
l1β
n

∥∥∥∥ ∑
(L1

1)(l1)=K1

|L1
1|

1
2

|K1|
|〈f1, hL1

1
〉1|〈σ1〉

− 1
2

K1,1

∥∥∥∥2

L2

|K1|.
(6.18)

Notice that ∑
(L1

1)(l1)=K1

|L1
1|

1
2

|K1|
|〈f1, hL1

1
〉1| ≤ 〈|∆1

K1,l1
f1|〉K1,1.

Thus, summing the right hand side of (6.18) over K1 leads to

2
l1β
n

ˆ
Rd2

∑
K1

〈|∆1
K1,l1

f1|〉2K1,1〈σ1〉−1
K1,1
|K1| = 2

l1β
n

ˆ
Rd

∑
K1

〈|∆1
K1,l1

f1|〉2K1,1

1K1

〈σ1〉2K1,1

σ1

. 2
l1β
n

ˆ
Rd
|f1|2v2

1,

where we used Proposition 5.8 again.
Finally, we estimate the norms related to j = 2, . . . , n, which are all similar. We assume

that lj > 0. It will be clear how to do the case lj = 0. As above we have

Fj,K1 ≤ 2
ljβ

2n 1K1

( ∑
(L1
j )

(lj)=K1

|L1
j |
s
2

|K1|s
M
〈σj〉K1,1

D2 (〈fj , hL1
j
〉1〈σj〉−1

K1,1
)s
) 1
s

.

Therefore, we get that

‖Fj,K1v−1
j ‖

2
L2 ≤ 2

ljβ

n

∥∥∥∥( ∑
(L1
j )

(lj)=K1

|L1
j |
s
2

|K1|s
M
〈σj〉K1,1

D2 (〈fj , hL1
j
〉1〈σj〉−1

K1,1
)s
) 1
s

〈σj〉
1
2

K1,1

∥∥∥∥2

L2

|K1|

. 2
ljβ

n

∥∥∥∥( ∑
(L1
j )

(lj)=K1

|L1
j |
s
2

|K1|s
|〈fj , hL1

j
〉1〈σj〉−1

K1,1
|s
) 1
s

〈σj〉
1
2

K1,1

∥∥∥∥2

L2

|K1|

≤ 2
ljβ

n

∥∥∥∥ ∑
(L1
j )

(lj)=K1

|L1
j |

1
2

|K1|
|〈fj , hL1

j
〉1|〈σj〉

− 1
2

K1,1

∥∥∥∥2

L2

|K1|,

where we applied the one-parameter version of Proposition 4.3. The last norm is like
the last norm in (6.18), and therefore the estimate can be concluded with familiar steps.
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Combining the estimates we have shown that
n∏
j=1

∥∥∥(∑
K1

F 2
j,K1

) 1
2
v−1
j

∥∥∥
L2
.

n∏
j=1

2
ljβ

2n ‖fjvj‖L2 ≤ 2max kj
β
2

n∏
j=1

‖fjvj‖L2 .

Above, we assumed that the index j2 related to the form of the paraproduct satisfied
j2 = 1, see the discussion before (6.13). It remains to comment on the case j2 = n+ 1. In
this case the formula corresponding to (6.13) is

cK,(L1
j )

=

∣∣∣∣∣
n∏
j=1

〈
fj , hL1

j
⊗ 1K2

|K2|

〉
〈σj〉K

·
〈fn+1, h

0
K1 ⊗ hK2〉

〈σn+1〉K

∣∣∣∣∣.
For j = 1, . . . , n we do the estimate (6.14). Also, there holds that

|〈fn+1, h
0
K1 ⊗ hK2〉|

〈σn+1〉K
= |K1|

1
2

∣∣〈〈fn+1, hK2〉2〈σn+1〉−1
K2,2
〈σn+1〉K2,2

〉
K1

∣∣
〈〈σn+1〉K2,2〉K1

≤ |K1|
1
2M

〈σn+1〉K2,2

D1 (〈fn+1, hK2〉2〈σn+1〉−1
K2,2

)(x1)

for any x1 ∈ K1. With the pointwise estimates we proceed as above. Related to fj ,
j = 1, . . . , n, this leads to terms which we know how to estimate. Related to fn+1 we get
a similar term except that the parameters are in opposite roles. We are done. �

6.C. Full paraproducts. An n-linear bi-parameter full paraproduct Π takes the form

(6.19) 〈Π(f1, . . . , fn), fn+1〉 =
∑

K=K1×K2

aK

n+1∏
j=1

〈fj , uj,K1 ⊗ uj,K2〉,

where the functions uj,K1 and uj,K2 are like in (6.4). The coefficients are assumed to
satisfy

‖(aK)‖BMOprod
= sup

Ω

( 1

|Ω|
∑
K⊂Ω

|aK |2
)1/2

≤ 1,

where the supremum is over open sets Ω ⊂ Rd = Rd1 × Rd2 with 0 < |Ω| < ∞. As al-
ready discussed theH1-BMO duality works also in bi-parameter (see again [44, Equation
(4.1)]):

(6.20)
∑
K

|aK ||bK | . ‖(aK)‖BMOprod

∥∥∥(∑
K

|bK |2
1K
|K|

)1/2∥∥∥
L1
.

We are ready to bound the full paraproducts.

6.21. Theorem. Suppose Π is an n-linear bi-parameter full paraproduct, 1 < p1, . . . , pn ≤ ∞
and 1/p =

∑n
i=1 1/pi > 0. Then we have

‖Π(f1, . . . , fn)w‖Lp .
n∏
i=1

‖fiwi‖Lpi

for all multilinear bi-parameter weights ~w ∈ A~p.
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Proof. We use duality to always reduce to one of the operators of type A1 in Theorem 5.5.
Fix some ~p = (p1, . . . , pn) with 1 < pi <∞ and p > 1, which is enough by extrapolation.
We will dualise using fn+1 with ‖fn+1w

−1‖Lp′ ≤ 1. The particular form of Π does not
matter – it only affects the form of the operator A1 we will get. We may, for example,
look at

Π(f1, . . . , fn) =
∑

K=K1×K2

aK

〈
f1, hK1 ⊗

1K2

|K2|

〉〈
f2,

1K1

|K1|
⊗ hK2

〉 n∏
j=3

〈fj〉K ·
1K
|K|

.

We have

|〈Π(f1, . . . , fn), fn+1〉| ≤
∑
K

|aK |
∣∣∣〈f1, hK1 ⊗

1K2

|K2|

〉〈
f2,

1K1

|K1|
⊗ hK2

〉∣∣∣ n+1∏
j=3

〈|fj |〉K .

We now apply the unweighted H1-BMO duality estimate from above to bound this with∥∥∥(∑
K

〈|∆1
K1f1|〉2K〈|∆2

K2f2|〉2K
n+1∏
j=3

〈|fj |〉2K1K

) 1
2
∥∥∥
L1
.

Recalling (6.3) it remains to apply Theorem 5.5 with a suitable A1(f1, . . . , fn+1). �

7. SINGULAR INTEGRALS

Let ω be a modulus of continuity: an increasing and subadditive function with ω(0) =
0. A relevant quantity is the modified Dini condition

(7.1) ‖ω‖Diniα :=

ˆ 1

0
ω(t)

(
1 + log

1

t

)αdt
t
, α ≥ 0.

In practice, the quantity (7.1) arises as follows:

(7.2)
∞∑
k=1

ω(2−k)kα =
∞∑
k=1

1

log 2

ˆ 2−k+1

2−k
ω(2−k)kα

dt

t
.
ˆ 1

0
ω(t)

(
1 + log

1

t

)αdt
t
.

We define what it means to be an n-linear bi-parameter SIO. Let Fdi denote the space
of finite linear combinations of indicators of cubes in Rdi , and let F denote the space of
finite linear combinations of indicators of rectangles in Rd. Suppose that we have n-linear
operators T j1∗,j2∗1,2 , j1, j2 ∈ {0, . . . , n}, each mapping F × · · · ×F into locally integrable
functions. We denote T = T 0∗,0∗ and assume that the operators T j1∗,j2∗1,2 satisfy the duality
relations as described in Section 2.C.

Let ωi be a modulus of continuity on Rdi . Assume fj = f1
j ⊗f2

j , j = 1, . . . , n+1, where
f ij ∈ Fdi .

Bi-parameter SIOs.

Full kernel representation. Here we assume that given m ∈ {1, 2} there exist j1, j2 ∈
{1, . . . , n+ 1} so that spt fmj1 ∩ spt fmj2 = ∅. In this case we demand that

〈T (f1, . . . , fn), fn+1〉 =

ˆ
R(n+1)d

K(xn+1, x1, . . . , xn)

n+1∏
j=1

fj(xj) dx,
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where

K : R(n+1)d \ {(x1, . . . , xn+1) ∈ R(n+1)d : x1
1 = · · · = x1

n+1 or x2
1 = · · · = x2

n+1} → C

is a kernel satisfying a set of estimates which we specify next.
The kernel K is assumed to satisfy the size estimate

|K(xn+1, x1, . . . , xn)| .
2∏

m=1

1(∑n
j=1 |xmn+1 − xmj |

)dmn .
We also require the following continuity estimates. For example, we require that we

have

|K(xn+1, x1, . . . , xn)−K(xn+1, x1, . . . , xn−1, (c
1, x2

n))

−K((x1
n+1, c

2), x1, . . . , xn) +K((x1
n+1, c

2), x1, . . . , xn−1, (c
1, x2

n))|

. ω1

( |x1
n − c1|∑n

j=1 |x1
n+1 − x1

j |

) 1(∑n
j=1 |x1

n+1 − x1
j |
)d1n

× ω2

( |x2
n+1 − c2|∑n

j=1 |x2
n+1 − x2

j |

) 1(∑n
j=1 |x2

n+1 − x2
j |
)d2n

whenever |x1
n−c1| ≤ 2−1 max1≤i≤n |x1

n+1−x1
i | and |x2

n+1−c2| ≤ 2−1 max1≤i≤n |x2
n+1−x2

i |.
Of course, we also require all the other natural symmetric estimates, where c1 can be in
any of the given n+ 1 slots and similarly for c2. There are (n+ 1)2 different estimates.

Finally, we require the following mixed continuity and size estimates. For example,
we ask that

|K(xn+1, x1, . . . , xn)−K(xn+1, x1, . . . , xn−1, (c
1, x2

n))|

. ω1

( |x1
n − c1|∑n

j=1 |x1
n+1 − x1

j |

) 1(∑n
j=1 |x1

n+1 − x1
j |
)d1n · 1(∑n

j=1 |x2
n+1 − x2

j |
)d2n

whenever |x1
n − c1| ≤ 2−1 max1≤i≤n |x1

n+1 − x1
i |. Again, we also require all the other

natural symmetric estimates.

Partial kernel representations. Suppose now only that there exist j1, j2 ∈ {1, . . . , n + 1} so
that spt f1

j1
∩ spt f1

j2
= ∅. Then we assume that

〈T (f1, . . . , fn), fn+1〉 =

ˆ
R(n+1)d1

K(f2j )(x
1
n+1, x

1
1, . . . , x

1
n)

n+1∏
j=1

f1
j (x1

j ) dx1,

where K(f2j ) is a one-parameter ω1-Calderón–Zygmund kernel but with a constant de-

pending on the fixed functions f2
1 , . . . , f

2
n+1. For example, this means that the size esti-

mate takes the form

|K(f2j )(x
1
n+1, x

1
1, . . . , x

1
n)| ≤ C(f2

1 , . . . , f
2
n+1)

1(∑n
j=1 |x1

n+1 − x1
j |
)d1n .

The continuity estimates are analogous.
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We assume the following T1 type control on the constant C(f2
1 , . . . , f

2
n+1). We have

C(1I2 , . . . , 1I2) . |I2|

and

(7.3) C(aI2 , 1I2 , . . . , 1I2) + C(1I2 , aI2 , 1I2 , . . . , 1I2) + · · ·+ C(1I2 , . . . , 1I2 , aI2) . |I2|

for all cubes I2 ⊂ Rd2 and all functions aI2 ∈ Fd2 satisfying aI2 = 1I2aI2 , |aI2 | ≤ 1 and´
aI2 = 0.
Analogous partial kernel representation on the second parameter is assumed when

spt f2
j1
∩ spt f2

j2
= ∅ for some j1, j2.

7.4. Definition. If T is an n-linear operator with full and partial kernel representations
as defined above, we call T an n-linear bi-parameter (ω1, ω2)-SIO.

Bi-parameter CZOs. We say that T satisfies the weak boundedness property if

|〈T (1R, . . . , 1R), 1R〉| . |R|

for all rectangles R = I1 × I2 ⊂ Rd = Rd1 × Rd2 .
An SIO T satisfies the diagonal BMO assumption if the following holds. For all rect-

angles R = I1 × I2 ⊂ Rd = Rd1 ×Rd2 and functions aIi ∈ Fdi with aIi = 1IiaIi , |aIi | ≤ 1
and

´
aIi = 0 we have

|〈T (aI1 ⊗ 1I2 , 1R, . . . , 1R), 1R〉|+ · · ·+ |〈T (1R, . . . , 1R), aI1 ⊗ 1I2〉| . |R|

and
|〈T (1I1 ⊗ aI2 , 1R, . . . , 1R), 1R〉|+ · · ·+ |〈T (1R, . . . , 1R), 1I1 ⊗ aI2〉| . |R|.

An SIO T satisfies the product BMO assumption if it holds

S(1, . . . , 1) ∈ BMOprod

for all the (n+ 1)2 adjoints S = T j1∗,j2∗1,2 . This can be interpreted in the sense that

‖S(1, . . . , 1)‖BMOprod
= sup
D=D1×D2

sup
Ω

( 1

|Ω|
∑

R=I1×I2∈D
R⊂Ω

|〈S(1, . . . , 1), hR〉|2
)1/2

<∞,

where the supremum is over all dyadic gridsDi on Rdi and open sets Ω ⊂ Rd = Rd1×Rd2
with 0 < |Ω| < ∞, and the pairings 〈S(1, . . . , 1), hR〉 can be defined, in a natural way,
using the kernel representations.

7.5. Definition. An n-linear bi-parameter (ω1, ω2)-SIO T satisfying the weak bounded-
ness property, the diagonal BMO assumption and the product BMO assumption is called
an n-linear bi-parameter (ω1, ω2)-Calderón–Zygmund operator ((ω1, ω2)-CZO).

Dyadic representation theorem. In Section 6 we have introduced the three different
dyadic model operators (DMOs). In this section we explain how and why the DMOs
are linked to the CZOs. Before stating the known representation theorem, to aid the
reader, we first outline the main structure and idea of representation theorems – for the
lenghty details in this generality see [2].

Step 1. There is a natural probability space Ω = Ω1 × Ω2, the details of which are
not relevant for us here (but see [31]), so that to each σ = (σ1, σ2) ∈ Ω we can associate
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a random collection of dyadic rectangles Dσ = Dσ1 × Dσ2 . The starting point is the
martingale difference decomposition

〈T (f1, . . . , fn), fn+1〉 =

n+1∑
j1,j2=1

EσΣj1,j2,σ + Eσ Remσ,

where
Σj1,j2,σ =

∑
R1,...,Rn+1

`(I1i1
)>`(I1j1

) for i1 6=j1
`(I2i2

)>`(I2j2
) for i2 6=j2

〈T (∆R1f1, . . . ,∆Rnfn),∆Rn+1fn+1〉

andR1 = I1
1×I2

1 , . . . , Rn+1 = I1
n+1×I2

n+1 ∈ Dσ = Dσ1×Dσ2 . Notice how we have already
started the proof working parameter by parameter. At this point the randomization is
not yet important: it is used at a later point in the proof to find suitable common parents
for dyadic cubes. Looking at the definition of shifts this is clearly critical: everything is
organised under the common parent K and they cannot be arbitrarily large.

Step 2. There are (n+1)2 main terms Σj1,j2,σ – these are similar to each other and all of
them produce shifts, partial paraproducts and exactly one full paraproduct. For example,
a further parameter by parameter T1 style decomposition of Σn,n+1,σ produces the full
paraproduct∑
R=K1×K2

〈T (1, . . . , 1, hK1 ⊗ 1), 1⊗ hK2〉
n−1∏
j=1

〈fj〉R
〈
fn, hK1 ⊗

1K2

|K2|

〉〈
fn+1,

1K1

|K1|
⊗ hK2

〉
,

where
〈T (1, . . . , 1, hK1 ⊗ 1), 1⊗ hK2〉 = 〈Tn∗1 (1, . . . , 1), hR〉.

For the quantitative part the product BMO assumption of Tn∗1 is critical here, and the
remaining product BMO assumptions are used to control the full paraproducts coming
from the other main terms.

The shifts and partial paraproducts structurally arise from the T1 decomposition com-
bined with probability. Again, the randomization is simply used to find suitably sized
common parents. After this completely structural part (for full details see [2]), the focus
is on providing estimates for the coefficients, like the coefficient aK,(Rj) of the shifts. As
in the full paraproduct case above, it is important to understand that the coefficients always have
a concrete form in terms of pairings involving T and various Haar functions. These pairings
are estimated in various ways:

• The shift coefficients are handled with kernel estimates only (various size and
continuity estimates). Only in the part Remσ, which we have not yet discussed,
also the weak boundedness is used to handle the diagonal case, where kernel
estimates are not valid.
• In the partial paraproduct case a size estimate does not suffice, as there is not

enough cancellation. A more refined BMO estimate needs to be proved – this is
done via a duality argument. This duality is the source of the atoms aI appearing
in some of the assumptions – e.g. in (7.3).

Step 3. The final step is to deal with the remainder Remσ. This only produces shifts
and partial paraproducts. Another difference to the main terms is that all the diagonal
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parts of the summation are here – to deal with them we need to assume the weak bound-
edness property and the diagonal BMO assumptions.

7.6. Remark. An m-parameter representation theorem is structurally identical: the pair-
ing 〈T (f1, . . . , fn), fn+1〉 is split into (n + 1)m main terms and the remainder. These are
then further split into shifts, partial paraproducts and full paraproducts. The full para-
product is produced parameter by parameter, as it is in the bi-parameter case, and this
produces partial paraproducts, where the paraproduct component can vary from being
1-parameter to being (m−1)-parameter. The definition of a CZO is adjusted so that all of
the appearing coefficients of the appearing model operators involving T and Haar func-
tions can be estimated. For the linear m-parameter representation theorem see Ou [47]
– this establishes the appropriate definition of a multi-parameter CZO. We discuss the
m-parameter case in more detail in Section 9. The point there is the following: while the
representation theorem itself is straightforward, some of the estimates of Section 6 are
harder in m-parameter.

In the paper [2], among other things, a dyadic representation theorem for n-linear bi-
parameter CZOs was proved. The minimal regularity required is ωi ∈ Dini 1

2
, but then the

dyadic representation is in terms of certain modified versions of the model operators we
have presented, and bounded, in this paper. It appears to be difficult to prove weighted
bounds for the modified operators with the optimal dependency on the complexity. In-
stead, we will rely on a lemma, which says that all of the modified operators can be
written as suitable sums of the standard model operators. This step essentially outright
loses 1

2 of kernel regularity, and puts us in competition to obtain our weighted bounds
with ωi ∈ Dini1. The bilinear bi-parameter representation theorem with the usual Hölder
type kernel regularity wi(t) = tαi appeared first in [40]. We now state a representation
theorem that we will rely on.

A consequence of [2, Theorem 5.35] and [2, Lemma 5.12] is the following.

7.7. Proposition. Suppose T is an n-linear bi-parameter (ω1, ω2)-CZO. Then we have

〈T (f1, . . . , fn), fn+1〉 = CTEσ
∑

u=(u1,u2)∈N2

ω1(2−u1)ω2(2−u2)〈Uu,σ(f1, . . . , fn), fn+1〉,

where CT enjoys a linear bound with respect to the CZO quantities and Uu,σ denotes some n-
linear bi-parameter dyadic operator (defined in the gridDσ) with the following property. We have
that Uu = Uu,σ can be decomposed using the standard dyadic model operators as follows:

(7.8) Uu = C

u1−1∑
i1=0

u2−1∑
i2=0

Vi1,i2 ,

where each V = Vi1,i2 is a dyadic model operator (a shift, a partial paraproduct or a full paraprod-
uct) of complexity kmj,V , j ∈ {1, . . . , n+ 1}, m ∈ {1, 2}, satisfying

kmj,V ≤ um.

7.9. Remark. We assumed that the operator T and its adjoints are initially well-defined
for finite linear combinations of indicators of rectangles. However, a careful proof of the
representation theorem [40] shows that this implies the boundedness of T (for related
details see also [21] and [30]). Therefore, we do not need to worry about this detail any
more at this point and we can work with general functions. Moreover, we do not need
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to work with the CZOs directly – after the representation theorem we only need to work
with the dyadic model operators.

Weighted estimates for CZOs. In this paper we were able to prove a complexity free
weighted estimate for the shifts. On the contrary, the weighted estimate for the partial
paraproducts is even exponential, however, with an arbitrarily small power. For these
reasons, we can prove a weighted estimate with mild kernel regularity for paraprod-
uct free T , and otherwise we will deal with the standard kernel regularity ωi(t) = tαi .
By paraproduct free we mean that the paraproducts in the dyadic representation of T
vanish, which could also be stated in terms of (both partial and full) “T1 = 0” type con-
ditions (only the partial paraproducts, and not the full paraproducts, are problematic in
terms of kernel regularity, of course). In the paraproduct free case the reader can think of
convolution form SIOs.

7.10. Theorem. Suppose T is an n-linear bi-parameter (ω1, ω2)-CZO. For 1 < p1, . . . , pn ≤ ∞
and 1/p =

∑
i 1/pi > 0 we have

‖T (f1, . . . , fn)w‖Lp .
∏
i

‖fiwi‖Lpi

for all multilinear bi-parameter weights ~w ∈ A~p, if one of the following conditions hold.
(1) T is paraproduct free and ωi ∈ Dini1.
(2) We have ωi(t) = tαi for some αi ∈ (0, 1].

Proof. Notice that in the paraproduct free case (1) by our results for the shifts we always
have

‖Uu,σ(f1, . . . , fn)w‖Lp . (1 + u1)(1 + u2)
∏
i

‖fiwi‖Lpi ,

where the complexity dependency comes only from the decomposition (7.8). We then
take some 1 < p1, . . . , pn < ∞ with p ∈ (1,∞), use the dyadic representation theorem
and conclude that T satisfies the weighted bound with these fixed exponents – recall (7.2)
and that ωi ∈ Dini1. Finally, we extrapolate using Theorem 3.12.

The case of a completely general CZO with the standard kernel regularity is proved
completely analogously. Just choose the exponent β in the exponential complexity de-
pendendency of the partial paraproducts to be small enough compared to α1 and α2. �

8. EXTRAPOLATION

This section is devoted to providing more details about Theorem 3.12 in the multi-
parameter setting. We also obtain the proof of the vector-valued Proposition 4.3. We give
the details in the bi-parameter case with the general case being similar.

We begin with the following definitions. Given µ ∈ A∞(Rn+m), we say w ∈ Ap(µ) if
w > 0 a.e. and

[w]Ap(µ) := sup
R
〈w〉µR

(〈
w
− 1
p−1
〉µ
R

)p−1
<∞, 1 < p <∞.

And we say w ∈ A1(µ) if w > 0 a.e. and

[w]A1(µ) = sup
R
〈w〉µR ess sup

R
w−1 <∞.

We begin with the following auxiliary result needed to build the required machinery.
This is an extension of Proposition 4.2.
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8.1. Remark. The so-called three lattice theorem states that there are lattices Dmj in Rdm ,
m ∈ {1, 2}, j ∈ {1, . . . , 3dm}, such that for every cube Qm ⊂ Rdm there exists a j and
Im ∈ Dmj so that Qm ⊂ Im and |Im| ∼ |Qm|. Given λ ∈ A∞ we have in particular that λ
is doubling: λ(2R) . λ(R) for all rectangles R. It then follows that also the non-dyadic
variant Mλ satisfies Proposition 4.2.

8.2. Lemma. Let µ ∈ A∞ and w ∈ Ap(µ), 1 < p <∞. Then we have

‖Mµf‖Lp(wµ) . ‖f‖Lp(wµ).

Proof. Fix x and f ≥ 0 and denote σ = w
− 1
p−1 . For an arbitrary rectangle R ⊂ Rd with

x ∈ R we have

〈f〉µR = 〈σ〉µR
(
〈w〉µR

) 1
p−1
(
〈w〉µR

)− 1
p−1

1

σµ(R)

ˆ
R
fµ

≤ [w]
1
p−1

Ap(µ)

(
Mwµ

(
[Mσµ(fσ−1)]p−1w−1

)
(x)
) 1
p−1 .

The idea of the above pointwise estimate is from [34]. If wµ, σµ ∈ A∞, then by (the
non-dyadic version of) Proposition 4.2 we have

‖Mµf‖Lp(wµ) .
∥∥∥(Mwµ

(
[Mσµ(fσ−1)]p−1w−1

)) 1
p−1

∥∥∥
Lp(wµ)

.
∥∥∥([Mσµ(fσ−1)]p−1w−1

) 1
p−1

∥∥∥
Lp(wµ)

= ‖Mσµ(fσ−1)‖Lp(σµ) . ‖f‖Lp(wµ).

Therefore, it remains to check that wµ, σµ ∈ A∞. We only explicitly prove that wµ ∈
A∞, since the other one is symmetric. First of all, write

〈w〉µR
(〈
w
− 1
p−1
〉µ
R

)p−1
≤ [w]Ap(µ)

in the form
〈wµ〉R

〈
w
− 1
p−1µ

〉p−1

R
≤ [w]Ap(µ)〈µ〉

p
R.

Then by the Lebesgue differentiation theorem, we have for all cubes I1 ⊂ Rd1 that

〈wµ〉I1,1(x2)
〈
w
− 1
p−1µ

〉p−1

I1,1
(x2) ≤ [w]Ap(µ)〈µ〉

p
I1,1

(x2), x2 ∈ Rd2 \NI1 ,

where |NI1 | = 0. By standard considerations there exists N so that |N | = 0 and for all
cubes I1 ⊂ Rd1 we have

〈wµ〉I1,1(x2)
〈
w
− 1
p−1µ

〉p−1

I1,1
(x2) ≤ [w]Ap(µ)〈µ〉

p
I1,1

(x2), x2 ∈ Rd2 \N.

In other words, w(·, x2) ∈ Ap(µ(·, x2)) (uniformly) for all x2 ∈ Rm \N . As µ ∈ A∞ there
exists s <∞ so that µ ∈ As. Then for all cubes I1 ⊂ Rd1 and arbitrary E ⊂ I1 we have

|E|
|I1|
.
( µ(·, x2)(E)

µ(·, x2)(I1)

) 1
s
.
(wµ(·, x2)(E)

wµ(·, x2)(I1)

) 1
ps
, a.e. x2 ∈ Rd2 ,

where the implicit constant is independent from x2. This means wµ(·, x2) ∈ A∞(Rd1)
uniformly for a.e. x2 ∈ Rd2 . Likewise we can show that wµ(x1, ·) ∈ A∞(Rd2) uniformly
for a.e. x1 ∈ Rd1 . This completes the proof and we are done. �

Now we are ready to formulate the following version of Rubio de Francia algorithm.
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8.3. Lemma. Let µ ∈ A∞ and p ∈ (1,∞). Let f be a non-negative function in Lp(wµ)
for some w ∈ Ap(µ). Let Mµ

k be the k-th iterate of Mµ, Mµ
0 f = f , and ‖Mµ‖Lp(wµ) :=

‖Mµ‖Lp(wµ)→Lp(wµ) be the norm of Mµ as a bounded operator on Lp(wµ). Define

Rf(x) =
∞∑
k=0

Mµ
k f

(2‖Mµ‖Lp(wµ))k
.

Then f(x) ≤ Rf(x), ‖Rf‖Lp(wµ) ≤ 2‖f‖Lp(wµ), and Rf is an A1(µ) weight with constant
[Rf ]A1(µ) ≤ 2‖Mµ‖Lp(wµ).

Proof. The statements f(x) ≤ Rf(x) and ‖Rf‖Lp(wµ) ≤ 2‖f‖Lp(wµ) are obvious. Since

Mµ(Rf) ≤
∞∑
k=0

Mµ
k+1f

(2‖Mµ‖Lp(wµ))k
≤ 2‖Mµ‖Lp(wµ)Rf,

we have
[Rf ]A1(µ) ≤ sup

R

(
inf
R
Mµ(Rf)

)(
ess inf
R

Rf
)−1 ≤ 2‖Mµ‖Lp(wµ).

We are done. �

With the above Rubio de Francia algorithm at hand, we are able to prove the bi-
parameter version of [37, Theorem 3.1] and the corresponding endpoint cases similarly
as in [38, Theorem 2.3]. On the other hand, the key technical lemma [38, Lemma 2.14]
can be extended to the bi-parameter setting very easily. Using these as in [38] we obtain
Theorem 3.12.

The above Rubio de Francia algorithm, of course, also yields the following standard
linear extrapolation. Let µ ∈ A∞ and assume that

(8.4) ‖g‖Lp0 (wµ) . ‖f‖Lp0 (wµ)

for all w ∈ Ap0(µ). Then the same inequality holds for all p ∈ (1,∞) and w ∈ Ap(µ). Us-
ing this and Lemma 8.2 we obtain Proposition 4.3 via the following standard argument.

Proof of Proposition 4.3. From Lemma 8.2 we directly have that∥∥∥(∑
i

(Mµf ij)
s
) 1
s
∥∥∥
Ls(wµ)

.
∥∥∥(∑

i

|f ij |s
) 1
s
∥∥∥
Ls(wµ)

, w ∈ As(µ).

Then, the extrapolation described around (8.4) gives that∥∥∥(∑
i

(Mµf ij)
s
) 1
s
∥∥∥
Lt(wµ)

.
∥∥∥(∑

i

|f ij |s
) 1
s
∥∥∥
Lt(wµ)

, w ∈ At(µ).

This in turn gives∥∥∥(∑
j

(∑
i

(Mµf ij)
s
) t
s
) 1
t
∥∥∥
Lt(wµ)

.
∥∥∥(∑

j

(∑
i

|f ij |s
) t
s
) 1
t
∥∥∥
Lt(wµ)

, w ∈ At(µ).

Extrapolating once more concludes the proof. �
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9. THE MULTI-PARAMETER CASE

One can approach the multi-parameter case as follows.

(1) What is the definition of an SIO/CZO? The important base case is the linear multi-
parameter definition given in [47]. That can be straightforwardly extended to the
multilinear situation as in Section 7. The definition becomes extremely lengthy
due to the large number of different partial kernel representations, and for this
reason we do not write it down explicitly. However, there is no complication
in combining the linear multi-parameter definition [47] and our multilinear bi-
parameter definition.

We mention that another way to define the operators would be to adapt a
Jourńe [32] style definition – this kind of vector-valued definition would be shorter
to state. In this paper we do not use the Journé style formulation. However,
for the equivalence of the Journé style definitions and the style we use here see
[20, 40, 47].

(2) Is there a representation theorem in this generality? Yes – see Remark 7.6. The
linear multi-parameter representation theorem is proved in [47]. The multilin-
ear representation theorems [2, 40] are stated only in the bi-parameter setting for
convenience. However, using the multilinear methods from [2, 40] the multi-
parameter theorem [47] can easily be generalised to the multilinear setting.

(3) How do the model operators look like? Studying the above presented bi-parameter
model operators, one realises that the philosophies in each parameter are inde-
pendent of each other – for example, if one has a shift type of philosophy in a
given parameter, one needs at least two cancellative Haar functions in that pa-
rameter. With this logic it is clear how to define the m-parameter analogues just
by working parameter by parameter. Alternatively, one can take all possible m-
fold tensor products of one-parameter n-linear model operators, and then just
replace the appearing product coefficients by general coefficients. This yields the
form of the model operators.

We demonstrate this with an example of a bilinear tri-parameter partial para-
product. Tri-parameter partial paraproducts have the shift structure in one or two
of the parameters. In the remaining parameters there is a paraproduct structure.
The following is an example of a partial paraproduct with the shift structure in the
first parameter and the paraproduct structure in the second and third parameters:∑

K=K1×K2×K3∈D

∑
I11 ,I

1
2 ,I

1
3∈D1

(I1j )(kj)=K1

[
aK,(I1j )

〈
f1, hI11 ⊗

1K2

|K2|
⊗ 1K3

|K3|

〉〈
f2, h

0
I12
⊗ 1K2

|K2|
⊗ hK3

〉〈
f3, hI13 ⊗ hK2 ⊗

1K3

|K3|

〉]
.

Here D = D1 ×D2 ×D3. The assumption on the coefficients is that when K1, I1
1 ,

I1
2 and I1

3 are fixed, then

‖(aK,(I1j ))K2×K3∈D2×D3‖BMOprod
≤ |I

1
1 |

1
2 |I1

2 |
1
2 |I1

3 |
1
2

|K1|2
.
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In the shift parameter there is at least two cancellative Haar functions and in the
paraproduct parameters there is exactly one cancellative Haar and the remaining
functions are normalised indicators. Thus, this is a generalization of S ⊗ π ⊗ π,
where S is a one-parameter shift and π is a one-parameter paraproduct – and all
model operators arise like this.

(4) Finally, is it more difficult to show the genuinely multilinear weighted estimates
for the m-parameter, m ≥ 3, model operators compared to the bi-parameter
model operators? When it comes to shifts and full paraproducts, there is no es-
sential difference – their boundedness always reduces to Theorem 5.5, which has
an obvious m-parameter version. With out current proof, the answer for the par-
tial paraproducts is more complicated. Thus, we will elaborate on how to prove
the weighted estimates for m-parameter partial paraproducts. Notice that previ-
ously e.g. in [40] we could only handle bi-parameter partial paraproducts as our
proof exploited the one-parameter nature of the paraproducts by sparse domina-
tion. Here we have already disposed of sparse domination, but the proof is still
complicated and leads to some new philosophies in higher parameters.

We now discuss how to prove a tri-parameter analogue of Theorem 6.7. We can have
a partial paraproduct with a bi-parameter paraproduct component and a one-parameter
shift component, or the other way around. Regardless of the form, the initial stages of
the proof of Theorem 6.7 can be used to reduce to estimating the weighted L2 norms of
certain functions which are analogous to (6.15) and (6.16). Most of these norms can be
estimated with similar steps as in the bi-parameter case. However, also a new type of
variant appears. An example of such a variant is given by

(9.1) Fj,K1 = 1K1

∑
(L1
j )

(lj)=K1

|L1
j |

1
2

|K1|

(∑
K2

1K2

|K2|
M
〈σj〉K1,2

D3

(
〈fj , hL1

j
⊗ hK2〉〈σj〉−1

K1,2

)2) 1
2
,

where fj : Rd1 × Rd2 × Rd3 → C. The goal is to estimate
∑

K1 ‖Fj,K1‖2L2(σj)
. Here we are

denoting K1,2 = K1×K2 the original tri-parameter rectangle being K = K1×K2×K3,
and for brevity we only write 〈σj〉K1,2 instead of 〈σj〉K1,2,1,2.

Comparing with (6.16), the key difference is that in (6.16) the measure of the maximal
function depended only on K1. Here, it depends also on K2, and therefore we have
maximal functions with respect to different measures inside the norms. We will use the
following lemma and the appearing new type of extrapolation trick to overcome this.

9.2. Lemma. Let µ ∈ A∞(Rd1 × Rd2) be a bi-parameter weight. Let D = D1 × D2 be a grid
of bi-parameter dyadic rectangles in Rd1 × Rd2 . Suppose that for each m ∈ Z and K1 ∈ D1 we
have a function fm,K1 : Rd2 → C. Then, for all p, s, t ∈ (1,∞), the estimate∥∥∥(∑

m

(∑
K1

1K1M
〈µ〉K1

D2 (fm,K1)t
) s
t
) 1
s
∥∥∥
Lp(wµ)

.
∥∥∥(∑

m

(∑
K1

1K1 |fm,K1 |t
) s
t
) 1
s
∥∥∥
Lp(wµ)

holds for all w ∈ Ap(µ).

Proof. By extrapolation, see the discussion around (8.4), it suffices to take a function
f : Rd2 → C and show that∥∥1K1M

〈µ〉K1

D2 f
∥∥
Lq(wµ)

. ‖1K1f‖Lq(wµ)
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for some q ∈ (1,∞) and for all w ∈ Aq(µ). We fix some w ∈ Aq(µ). The above estimate
can be rewritten as ∥∥M 〈µ〉K1

D2 f
∥∥
Lq(〈wµ〉K1 )

|K1|
1
q . ‖f‖Lq(〈wµ〉K1 )|K1|

1
q .

We have the identity

(9.3) 〈wµ〉K1(x2) =
〈wµ〉K1(x2)

〈µ〉K1(x2)
〈µ〉K1(x2) = 〈w(·, x2)〉µ(·,x2)

K1 〈µ〉K1(x2).

Define v(x2) = 〈w(·, x2)〉µ(·,x2)
K1 . We show that v ∈ Aq(〈µ〉K1). Let I2 be a cube in Rd2 .

First, we have thatˆ
I2
v〈µ〉K1 =

ˆ
I2
〈w(·, x2)〉µ(·,x2)

K1 〈µ(·, x2)〉K1 dx2 =

ˆ
K1×I2

wµ|K1|−1.

Therefore, 〈v〉〈µ〉K1

I2
= 〈w〉µ

K1×I2 . Hölder’s inequality gives that(
〈w(·, x2)〉µ(·,x2)

K1

)− 1
q−1 ≤

〈
w(·, x2)

− 1
q−1
〉µ(·,x2)

K1 ,

which shows thatˆ
I2
v
− 1
q−1 〈µ〉K1 ≤

ˆ
I2

〈
w(·, x2)

− 1
q−1
〉µ(·,x2)

K1 〈µ(·, x2)〉K1 dx2 =

ˆ
K1×I2

w
− 1
q−1µ|K1|−1.

Thus, we have that (
〈v−

1
q−1 〉〈µ〉K1

I2

)q−1 ≤
(
〈w−

1
q−1 〉µ

K1×I2
)q−1

.

These estimates yield that [v]Aq(〈µ〉K1 ) ≤ [w]Aq(µ).
Recall the identity (9.3). Since 〈µ〉K1 ∈ A∞, we have that∥∥M 〈µ〉K1

D2 f
∥∥
Lq(〈wµ〉K1 )

=
∥∥M 〈µ〉K1

D2 f
∥∥
Lq(v〈µ〉K1 )

. ‖f‖Lq(v〈µ〉K1 )) = ‖f‖Lq(〈wµ〉K1 )),

where we used Lemma 8.2. This concludes the proof. �

We now show how to estimate (9.1). First, we have that ‖Fj,K1‖2L2(σj)
is less than 2

2l1j d1

s′

multiplied by∥∥∥∥[ ∑
(L1
j )

(lj)=K1

[ |L1
j |

1
2

|K1|

(∑
K2

1K2

|K2|
M
〈σj〉K1,2

D3

(
〈fj , hL1

j
⊗ hK2〉〈σj〉−1

K1,2

)2) 1
2

]s] 1
s
∥∥∥∥2

L2(〈σj〉K1 )

|K1|.

The exponent s ∈ (1,∞) is chosen small enough so that we get a suitable dependence on

the complexity through 2
2l1j d1

s′ , see the corresponding step in the bi-parameter case. Since
〈σj〉K1 ∈ A∞(Rd2 × Rd3), we can use Lemma 9.2 to have that the last term is dominated
by ∥∥∥∥[ ∑

(L1
j )

(lj)=K1

[ |L1
j |

1
2

|K1|

(∑
K2

1K2

|K2|
∣∣〈fj , hL1

j
⊗ hK2〉〈σj〉−1

K1,2

∣∣2) 1
2

]s] 1
s
∥∥∥∥2

L2(〈σj〉K1 )

|K1|.

After these key steps it only remains to use Proposition 5.8 twice in a very similar way as
in the bi-parameter proof. We are done.
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10. APPLICATIONS

10.A. Mixed-norm estimates. With our main result, Theorem 1.2, and extrapolation,
Theorem 3.12, the following result becomes immediate.

10.1. Theorem. Let T be an n-linear m-parameter Calderón-Zygmund operator. Let 1 < pji ≤
∞, i = 1, . . . , n, with 1

pj
=
∑

i
1

pji
> 0, j = 1, . . . ,m. Then we have that

‖T (f1, . . . , fn)‖
Lp1 ···Lpm .

n∏
i=1

‖fi‖
Lp

1
i ···Lp

m
i
.

10.2. Remark. We understand this as an a priori estimate with fi ∈ L∞c – this is only a
concern when some pji is∞. In [38], which concerned the bilinear bi-parameter case with
tensor form CZOs, we went to great lengths to check that this restriction can always be
removed. We do not want to get into such considerations here, and prefer this a priori
interpretation at least when n ≥ 3. See also [40] for some previous results for bilinear
bi-parameter CZOs that are not of tensor form, but where, compared to [38], the range of
exponents had some limitations in the∞ cases. See also [14].

We also mention that mixed-norm estimates for multilinear bi-parameter Coifman-
Meyer operators have been previously obtained in [4] and [5]. Related to this, bi-parameter
mixed norm Leibniz rules were proved in [46].

The proof is immediate by extrapolating with tensor form weights. For the general
idea see [38, Theorem 4.5] – here the major simplification is that everything can be done
with extrapolation and the operator-valued analysis is not needed. This is because the
weighted estimate, Theorem 1.2, is now with the genuinely multilinear weights unlike
in [38, 40].

10.B. Commutators. We will state these applications in the bi-parameter case Rd = Rd1×
Rd2 . The m-parameter versions are obvious. We define

[b, T ]k(f1, . . . , fn) := bT (f1, . . . , fn)− T (f1, . . . , fk−1, bfk, fk+1, . . . , fn).

One can also define the iterated commutators as usual. We say that b ∈ bmo if

‖b‖bmo = sup
R

1

|R|

ˆ
R
|b− 〈b〉R| <∞,

where the supremum is over rectangles. Recall that given b ∈ bmo, we have

(10.3) ‖b‖bmo ∼ max
(

ess sup
x1∈Rd1

‖b(x1, ·)‖BMO(Rd2 ), ess sup
x2∈Rd2

‖b(·, x2)‖BMO(Rd1 )

)
.

See e.g. [28]. In the one-parameter case the following was proved in [12, Lemma 5.6].

10.4. Proposition. Let ~p = (p1, . . . , pn) with 1 < p1, . . . , pn < ∞ and 1
p =

∑
i

1
pi
< 1. Let

~w = (w1, . . . , wn) ∈ A~p. Then for any 1 ≤ j ≤ n we have

~wb,z := (w1, . . . , wje
Re(bz), . . . , wn) ∈ A~p

with [~wb,z]A~p . [~w]A~p provided that

|z| ≤ ε

max([wp]A∞ ,maxi[w
−p′i
i ]A∞)‖b‖BMO

,

where ε depends on ~p and the dimension of the underlying space.
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If 1 < p1, . . . , pn <∞, then there holds that [~w]A~p(Rd) <∞ if and only if

max
(

ess sup
x1∈Rd1

[~w(x1, ·)]A~p(Rd2 ), ess sup
x2∈Rd2

[~w(·, x2)]A~p(Rd1 )

)
<∞.

Moreover, we have that the above maximum satisfies max(·, ·) ≤ [~w]A~p(Rd) . max(·, ·)γ
where γ is allowed to depend on ~p and d. The first estimate follows from the Lebesgue
differentiation theorem. The second estimate can be proved by using Lemma 3.6 and the
corresponding linear statement, see (3.1). Using this, (10.3) and Proposition 10.4 gives a
bi-parameter version of Proposition 10.4 – the statement is obtained by replacing BMO
with bmo, and the quantitative estimate is of the form [wb,z]A~p . [~w]γA~p . Now, we have
everything ready to prove the following commutator estimate.

10.5. Theorem. Suppose T is an n-linear bi-parameter CZO in Rd = Rd1×Rd2 , 1 < p1, . . . , pn ≤
∞ and 1/p =

∑
i 1/pi > 0. Suppose also that b ∈ bmo. Then for all 1 ≤ k ≤ n we have the

commutator estimate

‖[b, T ]k(f1, . . . , fn)w‖Lp . ‖b‖bmo

n∏
i=1

‖fiwi‖Lpi

for all n-linear bi-parameter weights ~w = (w1, . . . , wn) ∈ A~p. Analogous results hold for iterated
commutators.

Proof. We assume ‖b‖bmo = 1. It suffices to study [b, T ]1, and in fact we shall prove the
following principle. Once we have

‖T (f1, . . . , fn)w‖Lp .
n∏
i=1

‖fiwi‖Lpi

for some ~p in the Banach range, then

‖[b, T ]1(f1, . . . , fn)w‖Lp .
n∏
i=1

‖fiwi‖Lpi .

In this principle the form of the n-linear operator plays no role (T does not need to be a
CZO). The iterated cases follow immediately from this principle and the full range then
follows from extrapolation.

Define
T 1
z (f1, . . . , fn) = ezbT (e−zbf1, f2, . . . , fn).

Then, by the Cauchy integral theorem, we get for nice functions f1, . . . , fn, that

[b, T ]1(f1, . . . , fn) =
d

dz
T 1
z (f1, . . . , fn)

∣∣∣
z=0

=
−1

2πi

ˆ
|z|=δ

T 1
z (f1, . . . , fn)

z2
dz, δ > 0.

Since p ≥ 1, by Minkowski’s inequality

‖[b, T ]1(f1, . . . , fn)w‖Lp ≤
1

2πδ2

ˆ
|z|=δ

‖T 1
z (f1, . . . , fn)w‖Lp |dz|.

We choose

δ ∼ 1

max([wp]A∞ ,maxi[w
−p′i
i ]A∞)

.
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This allows to use the bi-parameter version of Proposition 10.4 to have that

‖T 1
z (f1, . . . , fn)w‖Lp = ‖T (e−zbf1, f2, . . . , fn)weRe(bz)‖Lp

. ‖e−zbf1w1e
Re(bz)‖Lp1

n∏
i=2

‖fiwi‖Lpi =
n∏
i=1

‖fiwi‖Lpi .

The claim follows. �
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