
ar
X

iv
:2

00
5.

13
96

0v
1 

 [
m

at
h.

D
G

] 
 2

8 
M

ay
 2

02
0

DOMINATION RESULTS IN n-FUCHSIAN FIBERS IN THE MODULI SPACE

OF HIGGS BUNDLES

SONG DAI1 AND QIONGLING LI2

Abstract. In this article, we show some domination results on the Hitchin fibration, mainly
focusing on the n-Fuchsian fibers. More precisely, we show the energy density of associated harmonic
map of an n-Fuchsian representation dominates the ones of all other representations in the same
Hitchin fiber, which implies the domination of topological invariants: translation length spectrum
and entropy. As applications of the energy density domination results, we obtain the existence and
uniqueness of equivariant minimal (or maximal) surfaces in certain product Riemannian (or pseudo-
Riemannian) manifold. Our proof is based on establishing an algebraic inequality generalizing a
GIT theorem of Ness on the nilpotent orbits to general orbits.
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1. Introduction

Let S be an oriented closed surface of genus at least 2 and Σ = (S,J) be a Riemann surface
structure on S. The celebrated non-Abelian Hodge correspondence developed by Hitchin [15],
Simpson [35], Corlette [7], and Donaldson [10], is a homeomorphism between the representation
variety MBetti(S) of reductive representations from π1(S) into SL(n,C) and the moduli space
MHiggs(Σ) of polystable SL(n,C)-Higgs bundles over Σ. The correspondence is transcendental
since it involves solving the Hitchin equation for Higgs bundles, which is a nonlinear second-order
elliptic system. In this paper, without analyzing the Hitchin equation, we investigate the properties
of corresponding representations under certain algebraic restrictions of Higgs bundles. This sheds
light on understanding part of the non-Abelian Hodge correspondence.

The properties we are going to deduce are in terms of domination results on the translation
length spectrum. This is motivated from the result by Deroin-Tholozan [9] that any SL(2,C)-
representation can be dominated by some Fuchsian representation using harmonic map method (for
SL(2,R)-representations, the result is also proved independently by Guéritaud-Kassel-Wolff [12]
with a different method). Recently, such domination results are generalized to complete surfaces
by Sagman [28] and surfaces with boundary by Gupta-Su [13]. One can view the domination
results in this paper as a generalization to the SL(n,C)-case as much as possible. If we move to
consider SL(n,C)-representations, the main disadvantage is that the associated symmetric space
of SL(n,C) is no longer negatively curved, a key property being used in Deroin-Tholozan’s work.
However, we manage to recover the property of being negatively curved for certain Higgs bundles
and thus are able to make use the techniques developed in Deroin-Tholozan’s work,

1.1. Main results. An SL(n,C)-Higgs bundle over the Riemann surface Σ is a pair (E,φ), where
E is a holomorphic rank n vector bundle of trivial determinant and φ is a trace-free End(E)-
valued holomorphic 1-form. Let KΣ be the canonical bundle of Σ. The Hitchin fibration is a map
p ∶ MHiggs(Σ) → ⊕n

i=2H
0(Σ,Ki

Σ) and the Hitchin section is constructed in Hitchin [16] explic-
itly using the principal 3-dimensional Lie subalgebra. Under the non-Abelian Hodge correspon-
dence, the Hitchin section corresponds to a connected component in the representation variety of
SL(n,R), called the Hitchin component. Elements in the Hitchin component are called Hitchin
representations, which is the main subject in the higher Teichmüller theory. The Teichmüller space
T (S) consists of Fuchsian representations from π1(S) to PSL(2,R), which can always be lifted to
SL(2,R). Composing with the irreducible representation τn ∶ SL(2,R) → SL(n,R), T (S) embeds
naturally into the Hitchin component, as the sublocus consisting of τn ○ j which will be called
n-Fuchsian representations. The Hitchin fiber containing an n-Fuchsian representation is call an
n-Fuchsian fiber.

From the non-Abelian Hodge theory, for every representation ρ ∈ MBetti(S), there exists a ρ-

equivariant harmonic map f ∶ Σ̃→X ∶= SL(n,C)/SU(n), where X is equipped with the SL(n,C)-
invariant metric induced by the rescaled Killing form on sl(n,C). Denote e(f) as the energy density
of f , gfρ as the pullback metric of f . Let j ∶ π1(S) → SL(2,R) be a Fuchsian representation. From
Wolf [39] and Hitchin [15], for every holomorphic quadratic differential q2 on Σ, there is a unique
Fuchsian representation j up to conjugacy, so that the Hopf differential of the unique j-equivariant
harmonic map fj ∶ Σ̃→ H

2 is a lift of q2 to Σ̃.
In the following theorem, we show that an n-Fuchsian representation dominates other repre-

sentations in the same Hitchin fiber in the geometric and topological sense. For a representation
ρ ∶ π(S)→ SL(n,C), denote by P(ρ) the composition of ρ with the natural projection from SL(n,C)
to PSL(n,C).

Theorem 1.1. (Theorem 4.8) Suppose ρ ∈ MBetti(S) is in an n-Fuchsian fiber of MHiggs(Σ)
containing τn ○ j, then
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(1) the energy density satisfies e(f) < e(fτn○j);
(2) the pullback metric satisfies gf < gfτn○j ;
(3) the translation length spectrum satisfies lρ < λ ⋅ lτn○j for some positive constant λ < 1;
(4) the energy satisfies E(f) < E(fτn○j);
(5) the entropy satisfies h(ρ) > h(τn ○ j) =

√
6

n3−n
,

unless P(ρ) = P(τn ○ j).

Remark 1.2. For P(ρ) = P(τn ○ j), we mean ρ is conjugate to (τn ○ j) ⋅ µ(n) for some unitary

representation µ(n) ∶ π1(S) → G(n) = {e
2kπ

√
−1

n , k = 1,⋯, n} ⋅ In, in which case, it has the same
harmonic map and the same translation length spectrum as τn ○ j.

Remark 1.3. In the case of SL(2,C), Theorem 1.1 were shown by Deroin and Tholozan [9]. Note
that in this case, every Hitchin fiber is an 2-Fuchsian fiber.

Remark 1.4. The second author in [22] shows a more refined domination result inside the nilpotent
cone.

Remark 1.5. Potrie and Sambarino [25] showed that for any Hitchin representation ρ ∶ π1(S) →
SL(n,R), one has the entropy h(ρ) ≤ h(τn ○ j) =

√
6

n3−n
and the equality holds only if ρ is n-

Fuchsian. We can see that the n-Fuchsian fibers possess an opposite behavior comparing to the
Hitchin section in the Hitchin fibration.

The Higgs bundles in n-Fuchsian fibers has characteristic polynomial

det(λI − φ) = (λ2
− (n − 1)2q2)⋯(λ2

− (n − 2[n
2
])2q2)λn−2[n

2
].

More generally, for the Hitchin fibers with the characteristic polynomial det(λI − φ) is either
(1) (λ2

− a21q2)⋯(λ2
− a2[n

2
]q2)λn−2[n

2
] for q2 ∈H0(Σ,K2

Σ) and ai ∈ R>0 are distinct; or

(2) (λ − b1ω)⋯(λ − bnω) for ω ∈H0(Σ,KΣ) and bi ∈ R are distinct,
we show the domination results in Theorem 4.13.

Suppose the Higgs field is of rank at most 2 everywhere, we also show the domination results in
Theorem 4.17.

1.2. Geometric applications. One nice application of the energy density domination result in
Theorem 1.1 is to study the associated equivariant minimal (maximal) surface in certain product
Riemannian (pseudo-Riemannian) manifold.

Let τ̄n be the induced map from H
2 to X = SL(n,C)/SU(n) by τn and gn be the normalized

invariant Riemannian metric on X such that τ̄∗ngn = gH2 . Then (fj, fρ) gives a (j, ρ)-equivariant
harmonic map

(fj , fρ)+ ∶ Σ̃→ (H2
×X,gH2 + gn), (fj , fρ)− ∶ Σ̃→ (H2

×X,gH2 − gn).
Since fj is a diffeomorphism, (fj, fρ)± must be an embedding. The Hopf differential of (fj , fρ)± is

Hopf((fj, fρ)±) = Hopf(fj) ±Hopf(fρ). Using Theorem 1.1, we will show that the composed map

f ○ f−1j is area-decreasing if Hopf(fj, fρ)+ = 0; distance-decreasing if Hopf(fj , fρ)− = 0.
Minimal surface: Suppose Hopf(fj) = −Hopf(fρ) = q2, then the product map (fj, fρ)+ is

conformal. Together with the harmonicity, (fj, fρ)+ gives a (j, ρ)-equivariant embedded minimal
surface. We obtain the following proposition by making use of a result of Lee-Wang in [20], which
states that if fρ ○ f

−1
j is area-decreasing, then the minimal surface is stable.
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Proposition 1.6. (Proposition 6.1) Let q2 be a holomorphic quadratic differential on Σ. Let j, ĵ
be Fuchsian representations which correspond to q2,−q2 respectively. Suppose ρ ∈ MBetti(S) is in

the n-Fuchsian fiber ofMHiggs(Σ) containing τn ○ ĵ, then the (j, ρ)-equivariant embedded minimal

surface (fj , fρ)+ ∶ Σ̃→ (H2
×X,gH2 + gn) is stable.

In particular, suppose G is a semisimple Lie group of rank 1, the sectional curvature of the
symmetric space XG associated to G is strictly negative. Denote g−c as the rescaling metric of gXG

such that the maximum of the sectional curvature of g−c is −c.

Proposition 1.7. (Proposition 6.3) Let j be a Fuchsian representation and ρ ∶ π1 → G be an
irreducible representation to a reductive Lie group of rank 1. Suppose ρ does not preserve any
geodesic arc in XG. Then for c ≥ 1, there exists a unique (j, ρ)-equivariant minimal surface f ∶ S̃ →(H2
×XG, gH2 + g−c).

Remark 1.8. 1. Proposition 1.7 is closely related to Labourie’s conjecture in [18] on the uniqueness
of equivariant minimal surface for Hitchin representations and maximal representations. Labourie’s
conjecture is an important problem in higher Teichmüller theory and there are lots of studies on it,
e.g. [1, 5, 6, 17, 19, 23]. It still remains open for Hitchin representation into real split Lie groups
of rank ≥ 3 and maximal representations into Hermitian Lie groups of rank ≥ 3.
2. For G = SL(2,R), ρ being Fuchsian, Proposition 1.7 recovers the theorem of Schoen [31],
i.e., Labourie’s conjecture holds for Hitchin representations into PSL(2,R) × PSL(2,R). For G =
SL(2,C), let Rep∗(SL(2,C)) denote the space of conjugacy classes of irreducible no-elementary
representations of π1(S) into SL(2,C). Proposition 1.7 implies for each representation σ ∈ T (S)×
Rep∗(SL(2,C)), Labourie’s conjecture holds, that is, there exists a unique σ-equivariant minimal
surface in H

2
×H

3.

Maximal surface: Suppose Hopf(fj) = Hopf(fρ) = q2, then the product map (fj, fρ)− is con-

formal. If f∗j gH2 > f∗ρ gn, the image of Σ̃ is spacelike. Together with the harmonicity, (fj, fρ)− gives

a (j, ρ)-equivariant embedded spacelike maximal surface. We obtain the following proposition by
making use of a result in Tholozan [36] which showed the uniqueness of the conformal class of the
maximal surface under the condition that fρ ○ f

−1
j is strictly distance-decreasing.

Proposition 1.9. (Proposition 6.6) Suppose ρ ∈ MBetti(S) is in the same Hitchin fiber as τn ○ j in

MHiggs(Σ). Suppose P(ρ) ≠ P(τn○j), then (fj, fρ)− ∶ Σ̃ → (H2×X,gH2−gn) gives a (j, ρ)-equivariant
embedded spacelike maximal surface.

Moreover, the conformal class [Σ] ∈ T (S) is unique among all the (j, ρ)-equivariant spacelike
maximal surfaces.

1.3. Key step. The key step in proving our main theorem is establishing an inequality generalizing
a theorem of Ness on the adjoint orbit. This result characterizes the critical property of the standard
sl(2,C), which has its own interests in the orbit theory. Consider the functionK0 ∶ sl(n,C)∖{0} → R

given by K0(A) = ∣[A,A∗]∣2
∣A∣4 , where ∣A∣2 = tr(AA∗). Denote OA as the SL(n,C)-adjoint orbit of A.

Restricting K0 on OA for A being nilpotent, Ness in [24] proved the following theorem of geometric
invariant theory and the precise statement is in Schmid-Vilonen [30].

Theorem 1.10. (Ness [24], Schmid-Vilonen [30]) For a nilpotent matrix A ∈ sl(n,C)∖{0}, A is a
critical point of the function K0 on the orbit OA if and only if there exists a real number a, a < 0,
such that [[A,A∗],A] = aA, and [[A,A∗],A∗] = −aA∗.
The set of the critical points is non-empty and consists of a single SU(n) ×C∗-orbit.

Moreover, the function K0 on OA assumes its minimum value exactly on the critical set.
4



However, when the matrixA is not nilpotent, for instance diagonalizable, K0 always has minimum
0 on the orbit OA and fails to detect any special unitary orbit. We would like to generalize K0 to
apply to other orbits. Motivated by the curvature formula of the symmetric space SL(n,C)/SU(n),
we define a function K ∶ sl(n,C) ∖Z → R given by

K(A) = ∣[A,A∗]∣2∣A∣4 − ∣tr(A2)∣2 ,
where Z = {A ∈ sl(n,C) ∶ ∣A∣4 − ∣tr(A2)∣2 = 0}. The function K coincides with Ness’ function K0

for A being nilpotent.

Theorem 1.11. (Theorem 2.14) Suppose A ∈ sl(n,C) is not conjugate to any element in W ={A ∈ sl(n,C) ∶ [A,A∗] = 0}. Then A is a critical point of the function K on OA ∖Z if and only if
A,A∗, [A,A∗] generate a three-dimensional Lie subalgebra, which is SU(n)-conjugate to a standard
sl(2,C).

Moreover, if A is of even Jordan type, the function K on OA ∖ Z assumes its minimum value
exactly on the critical set.

1.4. Further questions. Theorem 1.1 is closely related to the following conjecture.

Conjecture 1.12. (Dai-Li [8]) Inside each Hitchin fiber of the moduli spaceMHiggs(Σ), the Hitchin
section maximizes the energy density of the corresponding harmonic maps.

Remark 1.13. Theorem 1.1 actually proves the conjecture for all n-Fuchsian fibers. In [9], the
result of Deroin and Tholozan implied this conjecture for n = 2. In [8], the authors showed this
conjecture for cyclic SL(n,R)-Higgs bundle with n = 3,4.

As a corollary of Proposition 6.6, we study the structure of the n-Fuchsian fibers of τn ○ j when
the Riemann surface varies.

Corollary 1.14. (Proposition 6.9) Let ρ ∈ MBetti(S) such that P(ρ) ≠ P(τn ○ j), then there is at
most one Riemann surface structure [Σ] ∈ T (S) such that ρ is in the same Hitchin fiber of τn ○ j
in MHiggs(Σ).

We conjecture Proposition 1.14 holds for general Hitchin fibers.

Conjecture 1.15. Let ρ̂ be a Hitchin representation. Let ρ ∈ MBetti(S) such that P(ρ) ≠ P(ρ̂),
then there is at most one Riemann surface structure [Σ] ∈ T (S) such that ρ is in the same Hitchin
fiber of ρ̂ in MHiggs(Σ).
1.5. Organization. In Section 2, we recall Ness’ theorem on the nilpotent orbits in Section 2.2.
And then we generalize this result to the general case in Theorem 2.14 in Section 2.3. In Section
3, we prove Theorem 2.14. In Section 4, under Proposition 4.3, we show our main theorem on the
domination results of the n-Fuchsian representations in Theorem 4.8 in Section 4.2. We also show
the domination results in some other cases in Section 4.3. In Section 5, we prove Proposition 4.3.
In Section 6, we show some applications of the domination results.

Acknowledgement. The second author wants to thank Nicolas Tholozan for the helpful discussion
on Ness’ theorem in the early stage of this article and to thank Brian Collier for the helpful
discussion on the minimal surfaces. The first author is supported by NSF of China (No.11871283
and No.11971244). The second author acknowledges support from Nankai Zhide Foundation.
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2. A Generalization of Ness’ Theorem

In this section, we recall some results of a function on nilpotent orbits firstly introduced by Ness.
We generalize Ness’ function to arbitrary orbits and state a theorem similar to Ness’ theorem. This
result plays a key role in this article. The proof will be postponed to the next section. We first
review some basic knowledge on the relationship between partitions and nilpotent orbits, one can
refer to Section 3.1 in the book of Collingwood and McGovern [2].

2.1. sl(2,C) in sl(n,C). Set e = ( 0 1
0 0

) , ẽ = ( 0 0
1 0

) , x = ( 1 0
0 −1

). Then e, ẽ, x form an

sl(2,C)-triple, that is, they satisfy

[e, ẽ] = x, [x, e] = 2e, [x, ẽ] = −2ẽ.
There is a canonical irreducible representation τn ∶ SL(2,C) → SL(n,C). It is defined as follows.

Identifying C2,Cn with the homogeneous polynomials in (X,Y ) of degree 1, n−1 respectively. Then
τn is defined as the induced action of the natural action of SL(2,C) on C

2, that is, for g ∈ SL(2,C),
τn(g) ∶ P (X,Y )↦ P (gX,gY ).

The differential of τn at I ∈ SL(2,C) gives a Lie algebra representation

jn ∶= dτn∣I ∶ sl(2,C) → sl(n,C).
Choose the basis of the space of homogeneous polynomials in (X,Y ) of degree n − 1 as

(Xn−1,⋯,
√

Ck−1
n−1X

n−kY k−1,⋯, Y n−1).
For A ∈ sl(2,C), then the images of e, ẽ, x under jn ∶ sl(2,C) → sl(n,C) are

en =

⎛⎜⎜⎜⎜⎜⎝

0 r1
0 r2
⋱ ⋱

0 rn−1
0

⎞⎟⎟⎟⎟⎟⎠
, ẽn =

⎛⎜⎜⎜⎜⎜⎝

0
r1 0

r2 0
⋱ ⋱

rn−1 0

⎞⎟⎟⎟⎟⎟⎠
, xn =

⎛⎜⎜⎜⎜⎜⎝

n − 1
n − 3

⋱

3 − n
1 − n

⎞⎟⎟⎟⎟⎟⎠
.

where rk =
√
k(n − k).

Lemma 2.1. Let M be a nonzero element in jn(sl(2,C)), then either M has eigenvalues

{t(n − 1), t(n − 3),⋯, t(3 − n), t(1 − n)}, t ∈ C∗,
or M is nilpotent of rank n − 1.

Proof. Let M = jn(M̃), for M̃ ∈ sl(2,C). Then either M̃ has eigenvalues {t,−t}, t ∈ C
∗ with

eigenvector X̃, Ỹ , or M̃ is nilpotent and nonzero. In the first case, X̃n−kỸ k−1 is the eigenvector of
M with eigenvalue 2k − n − 1, for 1 ≤ k ≤ n. In the latter case, suppose M̃X̃ ≠ 0, then M i

⋅ X̃n−1,
i = 0,⋯, n − 1 forms a desired basis such that M is nilpotent of rank n − 1. �

A partition of n is a non-increasing array π = (n1,⋯, nn) of integers n1 ≥ n2 ≥ ⋯ ≥ nn satisfying

ni ≥ 0,
n

∑
p=1

np = n. Sometimes we omit the zeros, and use the superscript to denote the multiple,

for example (2,2,1) = (22,1). Denote Pn as the space of all partitions of n. The space Pn has a
natural partial ordering, called the dominance ordering. Given π = (n1,⋯, nn), π′ = (n′1,⋯, n′n) two
partitions of n, π is said to dominate π′ (π ≥ π′) if for 1 ≤ p ≤ n,

p

∑
i=1

ni ≥
p

∑
i=1

n′i. For example, in the

case n = 4, (4) > (3,1) > (2,2) > (2,1,1) > (1,1,1,1).
Definition 2.2. Given π = (n1,⋯, ns) ∈ Pn, the image of jπ = (jn1

,⋯, jns) ∶ sl(2,C) → sl(n,C) is
called the standard sl(2,C) of type π.
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A basis of the standard sl(2,C) of type π is given by

Eπ = diag(en1
,⋯, ens), Ẽπ = diag(ẽn1

,⋯, ẽns), Xπ = diag(xn1
,⋯, xns).

Note that {Eπ, Ẽπ,Xπ} form a sl(2,C)-triple. And the matrix Eπ is clearly a nilpotent element of
sl(n,C). In fact, we have the following well-known result, see [11] for references.

Proposition 2.3. Every sl(2,C) copy in sl(n,C) is SL(n,C)-conjugate to a standard sl(2,C).
Denote Λn = (n−1, n−3,⋯,3−n,1−n). Then from Lemma 2.1 the eigenvalues of a non-nilpotent

element in a standard sl(2,C) has the form c(Λn1
,⋯,Λns) for some c ∈ C∗. It may happen that

two standard sl(2,C) from different partitions give the same form up to a factor.

Lemma 2.4. Suppose the eigenvalues of A ∈ sl(n,C) can be expressed in more than one way as
c(Λn1

,⋯,Λns) for some c ∈ C∗. Then it must be the case

c(Λ2m1+1,⋯,Λ2ms+1) and 2c(Λm1
,Λm1+1,⋯,Λms ,Λms+1).

Proof. Suppose the eigenvalues of A can be expressed as c(Λn1
,⋯,Λns) and c′(Λn′

1
,⋯,Λn′s) for

some c, c′ ∈ C∗. Consider d = min
λi≠λj

∣λi − λj ∣, λi’s are the elements of (Λn1
,⋯,Λns). Then d = 1 or

2. d′ is similarly defined. Then cd = c′d′. It is easy to see c ≠ c′. So we assume d = 2, d′ = 1.
Since d′ = 1, we see 0 is in (Λn′

1
,⋯,Λn′s). So 0 is also in (Λn1

,⋯,Λns). Together with d = 2, the
elements in (Λn1

,⋯,Λns) are all even, in other words, ni’s are all odd. Let ni = 2mi + 1. Then(Λ2m1+1,⋯,Λ2ms+1) is uniquely expressed as 2(Λm1
,Λm1+1,⋯,Λms ,Λms+1). We finish the proof. �

2.2. Nilpotent orbits and Ness’ theorem. Recall the Cartan decomposition of sl(n,C) is

sl(n,C) = su(n) ⊕ √−1su(n) and the Cartan involution is σ(X) = −X∗, where X∗ = X
T
. Us-

ing the rescaled Killing form B(X,Y ) = tr(XY ) on sl(n,R) and the Cartan involution, we then
have an SU(n)-invariant Hermitian inner product on sl(n,C) by

⟨X,Y ⟩ = −B(X,σ(Y )) = tr(XY ∗), for X,Y ∈ sl(n,C).
As usual, ∣X ∣2 denotes ⟨X,X⟩. Ness in [24] defined a map m ∶ sl(n,C)→√−1su(n) by

⟨m(ξ), η⟩ = 1

2∣ξ∣2 ( ddt ∣Ad(exp(tη)ξ∣2)∣t=0 for ξ, η ∈ sl(n,C),
which measures the change of the square norm of a vector under the adjoint action. Ness in [24]

showed that
√
−1m ∶ sl(n,C) → su(n) is the moment map for the induced action of SU(n) on

P(sl(n,C)). One may consider the function K0 ∶ sl(n,C)→ R given by

K0(A) = ∣m(A)∣2 = ∣[A,A∗]∣2∣A∣4 .

Denote by N the space of nilpotent matrices inside sl(n,C) and by OA the adjoint orbit of
A ∈ sl(n,C). Ness proved the following theorem.

Theorem 2.5. (Theorem 6.1 and 6.2 in Ness [24] and Lemma 2.11 in Schmid-Vilonen [30]) For
a nilpotent matrix A ∈ sl(n,C), A ≠ 0,
(1) A is a critical point of the function K0 on its adjoint orbit OA if and only if there exists a real
number a, a < 0, such that

(1) [[A,A∗],A] = aA, and [[A,A∗],A∗] = −aA∗.
The set of the critical points is non-empty and consists of a single SU(n) ×C∗-orbit.
(2) The function K0 on OA achieves its minimum value exactly on the critical set.
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We will provide a proof of Theorem 2.5 in Section 3.4 which is different from the original proof
in Ness [24].

For each π = (n1,⋯, nk) ∈ Pn, we associate a constant

Cπ ∶=K0(Eπ) = 12
k

∑
p=1

np(n2
p − 1)

.

The constant Cπ has monotonicity with respect to the partial order of π, which is proved in [22].

Lemma 2.6. If π1, π2 ∈ Pn satisfy π1 < π2, then the constants satisfy Cπ1
> Cπ2

.

Definition 2.7. For a nilpotent matrix A ∈ sl(n,C), we say it is of Jordan type π ∈ Pn if the
block sizes of A’s Jordan normal form give the partition π of n.

Theorem 2.5 gives a lower bound of K0 with respect to the Jordan type.

Proposition 2.8. Suppose A ∈ N is of Jordan type at most π ∈ Pn, then
K0(A) ≥ Cπ,

and equality holds if and only A is SU(n)-conjugate to c ⋅Eπ, for some constant c ∈ C∗.
Proof. Apply Theorem 2.5 to our case that A is nilpotent of Jordan type π′ ∈ Pn for some π′ ≤ π.
Since Eπ′ satisfies Equation (1), we obtain that all the minimum points are SU(n)-conjugate to

c ⋅ Eπ′ for some constant c ∈ C∗ and hence K0(A) ≥ K0(Eπ′) = Cπ′ . From the monotonicity in
Lemma 2.6, we have Cπ′ ≥ Cπ and hence K0(A) ≥ Cπ. The rigidity also follows from Theorem
2.5. �

Note that among Pn, λ = (n) is the absolute maximum. Therefore, we have an immediate
corollary of Proposition 2.8.

Corollary 2.9. For every A ∈ N , we have

K0(A) ≥ C(n) = 12

n(n2 − 1) ,
and equality holds if and only if A is SU(n)-conjugate to c ⋅ en, for some constant c ∈ C∗.
2.3. From nilpotent elements to sl(2,C)-copies.
Definition 2.10. Let s be an sl(2,C)-copy in sl(n,C). The Jordan type of s is defined to be the
Jordan type of the nilpotent elements in s.

From the previous section, the minimum of the function K0(A) is powerful detecting an SU(n)-
orbit inside an SL(n,C)-orbit of a nilpotent matrix. However, when the matrix A is not nilpotent,
for instance diagonalizable, K0 always has minimum 0 on the orbit OA and fails to detect any
special unitary orbit. We would like to generalize K0 to apply to other orbits. Motivated by the
curvature formula of the symmetric space SL(n,C)/SU(n), see Lemma 4.2, we define a function
K ∶ sl(n,C) ∖Z → R,

(2) K(A) = ∣[A,A∗]∣2∣A∣4 − ∣tr(A2)∣2 ,
where Z = {A ∈ sl(n,C) ∶ ∣A∣4 − ∣tr(A2)∣2 = 0}. The function K(A) coincides with Ness’ function

K0(A) = ∣[A,A∗]∣2
∣A∣4 for A being nilpotent. By the Cauchy inequality, ∣⟨A,A∗⟩∣ ≤ ∣A∣∣A∗∣ and so∣A∣4− ∣tr(A2)∣2 ≥ 0. Then K takes nonnegative value in R. Denote W = {A ∈ sl(n,C) ∶ [A,A∗] = 0}.
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Lemma 2.11. (1) The function K is invariant under scaling and unitary conjugation.
(2) W = {U−1diag(λ1,⋯, λn)U, λ1,⋯, λn ∈ C,U ∈ SU(n)}
(3) Z = {U−1diag(cλ1,⋯, cλn)U, λ1,⋯, λn ∈ R, c ∈ C,U ∈ SU(n)}.
Proof. Part (1) is by direct calculation. Part (2) is from basic linear algebra. For Part (3), by the
Cauchy inequality, if A ∈ Z, then there exists a ∈ C such that A = aA∗. So ∣a∣2 = 1 and set a = e2iθ.
Then e−iθA = (e−iθA)∗ for A ∈ Z. Then from basic linear algebra we finish the proof. �

To make sure OA ∖Z is not empty, we always need to assume A is not a scalar matrix.

Definition 2.12. Let (λ1,⋯, λn) ∈ Cn. If (λ1,⋯, λn) = c(µ1,⋯, µn) for µi ∈ R, i = 1,⋯, n, and c ∈ C,
then we call (λ1,⋯, λn) is uni-real.

Fix A ∈ sl(n,C), we study the minimum (infimum) of the function K on the adjoint orbit OA∖Z.
From Lemma 2.11, min

OA∖Z
K = 0 if and only if A is diagonalizable and the eigenvalues of A are not

uni-real.

Definition 2.13. A partition π = (n1,⋯, nn) ∈ Pn is said to be even, if n1,⋯, nn have the same
parity. Correspondingly, a nilpotent matrix A or an sl(2,C)-copy s in sl(n,C) is said to be even,
if it is of Jordan type of an even π ∈ Pn. A partition π = (n1,⋯, nn) ∈ Pn is said to be odd, if it is
not even.

We generalize Theorem 2.5 as follows and postpone the proof in the next section.

Theorem 2.14. Let A ∈ sl(n,C), which is not a scalar matrix. Suppose A is not SL(n,C)-
conjugate to an element in W ∖Z. Then

(1) A is a critical point of the function K in OA ∖ Z if and only if A,A∗, [A,A∗] generate a
three-dimensional Lie subalgebra s, which is SU(n)-conjugate to a standard sl(2,C).

(2) On the standard sl(2,C) of type π ∈ Pn, the function K ≡ Cπ outside Z.
(3) Suppose A is nilpotent, then the function K on OA ∖Z achieves its minimum value at A if

and only if A is SU(n)-conjugate to an element in a standard sl(2,C).
(4) Suppose A is not nilpotent, then the function K on OA ∖ Z achieves its minimum value at

A if and only if A is SU(n)-conjugate to an element in an even standard sl(2,C).
From Theorem 2.14, analogous to Proposition 2.8, we have the following proposition.

Proposition 2.15. For A ∈ sl(n,C), A ∉ Z, if A is conjugate to an element in a standard sl(2,C)
whose Jordan type is even and at most π ∈ Pn, then K(A) ≥ Cπ.

Equality holds if and only if π is even and A is SU(n)-conjugate to an element in the standard
sl(2,C) of Jordan type π.

Proof. Suppose A is conjugate to an element in the standard sl(2,C) of even Jordan type π′ ∈ Pn.
From the part (2) and (4) in the Theorem 2.14, we see that this standard sl(2,C) achieves the
minimum of K, which is Cπ′ . Since π ≥ π′, together with Lemma 2.6, we obtain K(A) ≥ Cπ′ ≥ Cπ.
The rigidity also follows from Theorem 2.14. �

Since (n) ∈ Pn is the absolute maximum and is even, we have an immediately corollary.

Corollary 2.16. For A ∈ sl(n,C)∖Z, if A is conjugate to an element in a standard sl(2,C) whose
Jordan type is even, then K(A) ≥ C(n) = 12

n(n2−1) .

Equality holds if and only if A is SU(n)-conjugate to an element in the standard sl(2,C) of
Jordan type (n).

From Lemma 2.1, we have the following corollary which will be used later.
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Corollary 2.17. Let A ∈ sl(n,C) ∖ Z. Suppose A has the same eigenvalues as ten + ẽn for some
t ∈ C. Then K(A) ≥ C(n) = 12

n(n2−1) .

If the rank of A is at most 2, we have the following corollary.

Corollary 2.18. For A ∈ sl(n,C) ∖Z, if A is of rank at most 2, then K(A) ≥ 1
2
.

Equality holds if and only if A is SU(n)-conjugate to an element in the standard sl(2,C) of
Jordan type (3,1,⋯,1) ∈ Pn.
Proof. Since A is at most rank 2 and trA = 0, the Jordan normal form has the following types:

diag(J3,0,⋯,0); diag(J2, J2,0,⋯,0); diag(λ,−λ,0,⋯,0), λ ≠ 0; diag(J2,0,⋯,0); 0.

Notice that if A is in the orbit of diag(λ,−λ,0,⋯,0), λ ≠ 0, i.e. λ
2
diag(diag(2,0,−2),0,⋯,0), λ ≠ 0,

then A is in an even sl(2,C) copy of Jordan type (3,1,⋯,1). From Proposition 2.15, K(A) ≥
C(3,1,⋯,1). We have the similar estimates in the other nilpotent cases. Together with Lemma 2.6,

noticing (3,1,⋯,1) > (2,2,1,⋯,1), we obtain K(A) ≥ C(3,1,⋯,1) = 1
2
. The rigidity also follows from

Theorem 2.14. �

3. Proof of Theorem 2.14

We prove Theorem 2.14 by considering the infimum of the function K. We consider the following
three kinds of candidates of the infimum of K on OA ∖Z:
(a) the critical values in the interior of OA ∖Z,
(b) the inferior limit when A approaches to Z,
(c) the inferior limit when A approaches to the boundary of OA or infinity.

3.1. Critical points of K in OA ∖Z. First we calculate the values of K on a standard sl(2,C).
Lemma 3.1. On the standard sl(2,C) of type π ∈ Pn, the function K ≡ Cπ outside Z.

Proof. A basis of the standard sl(2,C) of type π = (n1,⋯, ns) is
E = diag(en1

,⋯, ens), Ẽ = diag(ẽn1
,⋯, ẽns), X = diag(xn1

,⋯, xns).
Then E, Ẽ,X are orthogonal to each other and

∣E∣2 = ∣Ẽ∣2 = s

∑
i=1

∣eni
∣2 = s

∑
i=1

ni

∑
k=1

k(ni − k) = s

∑
i=1

(n2
i (ni + 1)

2
−
ni(ni + 1)(2ni + 1)

6
) = s

∑
i=1

n3
i − ni

6
,

∣X ∣2 = s

∑
i=1

∣xni
∣2 = s

∑
i=1

ni

∑
k=1

(ni − 2k + 1)2 = s

∑
i=1

(−(ni + 1)2ni +
2ni(ni + 1)(2ni + 1)

3
) = s

∑
i=1

n3
i − ni

3
.

Let A = aE + bẼ + cX, a, b, c ∈ C. Then A∗ = b̄E + āẼ + c̄X. And

[A,A∗] = (∣a∣2 − ∣b∣2)[E, Ẽ] + (ac̄ − cb̄)[E,X] + (bc̄ − cā)[Ẽ,X]
= 2(cb̄ − ac̄)E + 2(bc̄ − cā)Ẽ + (∣a∣2 − ∣b∣2)X,

∣[A,A∗]∣2 = 4(∣cb̄ − ac̄∣2 + ∣bc̄ − cā∣2)∣E∣2 + (∣a∣2 − ∣b∣2)2∣X ∣2 = 2(4∣ac̄ − b̄c∣2 + (∣a∣2 − ∣b∣2)2)∣E∣2.∣A∣2 = (∣a∣2 + ∣b∣2)∣E∣2 + ∣c∣2∣X ∣2 = (∣a∣2 + ∣b∣2 + 2∣c∣2)∣E∣2,⟨A,A∗⟩ = c2∣X ∣2 + 2ab∣E∣2 = 2(c2 + ab)∣E∣2,
∣A∣4 − ∣⟨A,A∗⟩∣2 = (∣a∣2 + ∣b∣2 + 2∣c∣2)2∣E∣4 − 4∣c2 + ab∣2∣E∣4 = (4∣ac̄ − b̄c∣2 + (∣a∣2 − ∣b∣2)2)∣E∣4.
So K(A) = ∣[A,A∗]∣2

∣A∣4−∣⟨A,A∗⟩∣2 = 2
∣E∣2 = Cπ, outside the points such that 4∣ac̄ − b̄c∣2 + (∣a∣2 − ∣b∣2)2 = 0 which

lie in Z. �
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Now we calculate the variation formula. The following Lemma is useful, whose proof is by direct
calculation. Recall the Hermitian inner product is defined as ⟨X,Y ⟩ = tr(XY ∗).
Lemma 3.2. ⟨[A,X], Y ⟩ = ⟨X, [A∗, Y ]⟩, [X,Y ]∗ = [Y ∗,X∗], ⟨X∗, Y ∗⟩ = ⟨X,Y ⟩.

The following inequality is the key to characterize the critical point.

Lemma 3.3. Let X1,X2,X3 ∈ Cm and ⟨⋅, ⋅⟩ be the standard Hermitian inner product. Then

∣X1∣2∣X2∣2∣X3∣2 + 2Re(⟨X1,X2⟩⟨X2,X3⟩⟨X3,X1⟩)
≥ ∣X1∣2∣⟨X2,X3⟩∣2 + ∣X2∣2∣⟨X3,X1⟩∣2 + ∣X3∣2∣⟨X1,X2⟩∣2.(3)

Equality holds if and only if X1,X2,X3 are linearly dependent.

Proof. Consider the term X1∧X2∧X3 = ∑
σ∈S3

(−1)sign(σ)Xσ(1)⊗Xσ(2)⊗Xσ(3). The inequality follows

from ∣X1 ∧X2 ∧X3∣2 ≥ 0. In fact

⟨X1 ∧X2 ∧X3,X1 ∧X2 ∧X3⟩
= ⟨ ∑

σ∈S3

(−1)sign(σ)Xσ(1) ⊗Xσ(2) ⊗Xσ(3), ∑
τ∈S3

(−1)sign(τ)Xτ(1) ⊗Xτ(2) ⊗Xτ(3)⟩
= 6⟨X1 ⊗X2 ⊗X3, ∑

τ∈S3

(−1)sign(τ)Xτ(1) ⊗Xτ(2) ⊗Xτ(3)⟩
= 6⟨X1 ⊗X2 ⊗X3,X1 ⊗X2 ⊗X3 −X1 ⊗X3 ⊗X2 +X2 ⊗X3 ⊗X1 −X2 ⊗X1 ⊗X3

+X3 ⊗X1 ⊗X2 −X3 ⊗X2 ⊗X1⟩
= 6(∣X1∣2∣X2∣2∣X3∣2 + 2Re(⟨X1,X2⟩⟨X2,X3⟩⟨X3,X1⟩) − ∣X1∣2∣⟨X2,X3⟩∣2
−∣X2∣2∣⟨X3,X1⟩∣2 − ∣X3∣2∣⟨X1,X2⟩∣2).

So we show the inequality. And equality holds if and only if X1∧X2∧X3 = 0 if and only ifX1,X2,X3

are linearly dependent. �

Now we show the characterization of the critical points of K.

Proposition 3.4. Let A ∈ sl(2,C), A ∉ Z, [A,A∗] ≠ 0. The following statements are equivalent.
(1) The point A is a critical point of the function K on its orbit OA ∖Z;
(2) A,A∗, [A,A∗] generate a three-dimensional Lie subalgebra s, which is SU(n)-conjugate to a
standard sl(2,C).
Proof. First we show (1) implies (2).

Step 1: We claim that if A is a critical point of K on OA ∖ Z, then A,A∗, [A, [A,A∗]] are
linearly dependent. Consider a family At = T −1t ATt in OA, where T0 = Id, d

dt
∣
t=0

Tt = M . Then

H ∶= d
dt
∣
t=0

At = [A,M]. By using Lemma 3.2,

d

dt
∣
t=0
[At,A

∗
t ] = [ ddt ∣t=0At,A

∗] + [A, d
dt
∣
t=0

A∗t ] = [H,A∗] + [A,H∗],
d

dt
∣
t=0
∣[At,A

∗
t ]∣2 = 2Re⟨ d

dt
∣
t=0
[At,A

∗
t ], [A,A∗]⟩ = 2Re⟨[H,A∗] + [A,H∗], [A,A∗]⟩

= 4Re⟨[A, [A∗,A]],H⟩,
d

dt
∣
t=0
∣At∣4 = 2∣A∣2 ⋅ d

dt
∣
t=0
∣At∣2 = 4∣A∣2Re⟨A, d

dt
∣
t=0

At⟩ = 4Re⟨∣A∣2A,H⟩,
d

dt
∣
t=0
∣tr(A2

t )∣2 = d

dt
∣
t=0
∣tr(A2)∣2 = 0.
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If A is a critical point of K(A) on OA ∖Z, then

d

dt
∣
t=0

K(At) = 1(∣A∣4 − ∣tr(A2)∣2)2 (4Re⟨[A, [A∗,A]],H⟩(∣A∣4 − ∣tr(A2)∣2) − ∣[A,A∗]∣24Re⟨∣A∣2A,H⟩).
Since A is a critical point, we have

4Re⟨H, (∣A∣4 − ∣tr(A2)∣2)[A, [A∗,A]] − ∣[A,A∗]∣2∣A∣2A⟩ = 0.
Recall H = [A,M], then
(4) Re⟨M, (∣A∣4 − ∣tr(A2)∣2)[A∗, [A, [A∗,A]]] − ∣[A,A∗]∣2∣A∣2[A∗,A]⟩ = 0.
Now M is an arbitrary matrix in sl(n,C), set M = [A,A∗] and we obtain from Equation (4),

4Re⟨[A, [A,A∗]], (∣A∣4 − ∣tr(A2)∣2)[A, [A∗,A]] − ∣[A,A∗]∣2∣A∣2A⟩ = 0.
Using Lemma 3.2, we have

(5) (∣A∣4 − ∣tr(A2)∣2)∣[A, [A∗,A]]∣2 = ∣[A,A∗]∣4∣A∣2.
Applying Lemma 3.3, letting X1 = [A, [A∗,A]], X2 = A, X3 = A∗, inequality (3) becomes

∣A∣4∣[A, [A∗,A]]∣2 ≥ ∣tr(A2)∣2∣[A, [A∗,A]]∣2 + ∣[A,A∗]∣4∣A∣2.
and

(6) (∣A∣4 − ∣tr(A2)∣2)∣[A, [A∗,A]]∣2 ≥ ∣[A,A∗]∣4∣A∣2.
Comparing with Equation (5), the equality of Equation (6) holds, meaning that there exist a, b, c ∈ C
not all vanishing, such that

a[A, [A∗,A]] + bA + cA∗ = 0.
So we finish the proof of Step 1.

Step 2: We claim that A,A∗ generate a 3-dimensional Lie subalgebra s. If a = 0, then A ∈ Z.
So a ≠ 0, which means [A, [A∗,A]] ∈ span{A,A∗}. By conjugation, we have [A∗, [A∗,A]] also
lies in the vector space spanned by {A,A∗}. So A,A∗, [A,A∗] generate a Lie subalgebra s which
is spanned by {A,A∗, [A,A∗]} as a complex vector space. To see it is three-dimensional, if not,
then there exists a, b, c ∈ C not all vanishing, such that a[A∗,A] + bA + cA∗ = 0. By Lemma 3.2,⟨[A∗,A],A⟩ = ⟨[A∗,A],A∗⟩ = 0, so we have a∣[A∗,A]∣2 = 0. Since a ≠ 0, we have [A∗,A] = 0,
contradiction. So we finish the proof of the Step 2.

Step 3: We claim that there is a complex Lie algebra representation ρ ∶ sl(2,C) → sl(n,C) com-
muting with the conjugate transpose operator ∗, such that the image of ρ is the three-dimensional
Lie subalgebra s in Step 2. First we notice that since s is ∗-invariant, it must contain a nonzero Her-
mitian matrix M (for example [A,A∗]). Consider the adjoint representation ad(M) on s. Since
M is Hermitian, we see ad(M) is also Hermitian and hence has only real eigenvalues. Suppose[M,P ] = λP , where P ∈ s, λ ∈ R. Since [A,A∗] ≠ 0, s is not commutative. We can choose λ ≠ 0.
By rescaling M , we may assume λ = 2. Then [M,P ] = 2P , [M,P ∗] = −2P ∗ and [M,M] = 0. Since
P,P ∗,M are eigenvectors of distinct eigenvalues of ad(M) and form a basis of s. So we assume[P,P ∗] = aM + bP + cP ∗. Taking ∗−operation on both sides, we have a ∈ R and b = c̄. By using the
Jacobian identity [M, [P,P ∗]] + [P, [P ∗,M]] + [P ∗, [M,P ]] = 0, we see bP − b̄P ∗ = 0. If b ≠ 0, then[P,P ∗] = 0, which implies b = 0. So b must be zero and [P,P ∗] = aM . Then

a∣M ∣2 = ⟨[P,P ∗],M⟩ = ⟨P ∗, [P ∗,M]⟩ = 2∣P ∗∣2.
It is obvious that a > 0 and by rescaling P we may assume a = 1. Letting ρ(e) = P , ρ(ẽ) = P ∗,
ρ(x) = M , and by complex linear extension, we obtain a representation ρ ∶ sl(2,C) → sl(n,C).
From the construction, it is clear that ρ is a ∗-equivariant complex Lie algebra representation. So
we finish the proof of the Step 3.

12



Step 4: We claim that s is SU(n)-conjugate to a standard sl(2,C) and finish the proof of the
direction from (1) to (2). From the terminology of Sekiguchi [34], (M,P,P ∗) is a strictly normal
S-triple. Then by Lemmas 1.4 and 1.5 in [34], our claim holds. For the convenience of the readers,
we give a proof briefly in our setting. Since ρ is ∗-equivariant, the orthogonal complement of a
∗-invariant subspace is also ∗-invariant. So we may assume ρ is irreducible. From Proposition 2.3,
there exists g ∈ SL(n,C) such that ρ(v) = g−1j(v)g for every v ∈ sl(2,C), where j is the canonical
one. Since ρ and j are both ∗-equivariant, we have

ρ(v∗) = (ρ(v))∗ = (g−1j(v)g)∗ = g∗(j(v))∗(g∗)−1 = g∗j(v∗)(g∗)−1 = g∗gρ(v∗)g−1(g∗)−1.
So ρ(g∗g) = (g∗g)ρ. Since ρ is irreducible, then by Schur’s Lemma, g∗g = λI for some λ ∈ C. By
taking trace, we see λ is a positive real number. So by rescaling we may assume g∗g = I, which
means g ∈ U(n). Since g ∈ SL(n,C), g ∈ SU(n). So we finish the proof of this direction.

Next we show (2) implies (1). From Equation 4, we want to show

(7) (∣A∣4 − ∣tr(A2)∣2)[A∗, [A, [A∗,A]]] − ∣[A,A∗]∣2∣A∣2[A∗,A] = 0.
Notice that this equation is invariant under SU(n) adjoint action. We may assume A is in a
standard sl(2,C). As the calculation in Lemma 3.1, we have

A = aE + bẼ + cX,[A,A∗] = 2(cb̄ − ac̄)E + 2(bc̄ − cā)Ẽ + (∣a∣2 − ∣b∣2)X,

[A, [A∗,A]] = 2(∣a∣2a − ∣b∣2a − 2b̄c2 + 2∣c∣2a)E + 2(−∣a∣2b + ∣b∣2b + 2∣c∣2b − 2āc2)Ẽ
+2(−2abc̄ + ∣a∣2c + ∣b∣2c)X,

[A∗, [A, [A∗,A]]] = 2(∣a∣2 + ∣b∣2 + 2∣c∣2)(2(cb̄ − ac̄)E + 2(bc̄ − cā)Ẽ + (∣a∣2 − ∣b∣2)X).
From Lemma 3.1, we have ∣[A,A∗]∣2 = Cπ(∣A∣4 − ∣tr(A2)∣2) and ∣A∣2 = 2(∣a∣2+∣b∣2+2∣c∣2)

Cπ
. So Equation

(7) follows. We finish the whole proof. �

3.2. Inferior limit at Z. Let A ∈ sl(n,C). Suppose A is not nilpotent. We will discuss the
nilpotent case in Section 3.4. Let Ai, i = 1,2,⋯ be a sequence in OA ∖ Z. Suppose Ai has a limit
point in Z. Then from the lemma below, if A is diagonalizable, then the eigenvalues are uni-real.

Lemma 3.5. Let D = diag(λ1,⋯, λn), then its orbit OD is closed in sl(n,C).
Proof. Suppose Ai ∈ OD, i = 1,2,⋯, and Ai → A∞ in sl(n,C). We need to show A∞ ∈ OD. Let
f(λ) be the minimal polynomial of OA. Then f(λ) has no multiple root and f(Ai) = 0. By taking
the limit, f(A∞) = 0. So the minimal polynomial of A∞ also has no multiple root. Consider the
characteristic polynomial of OA,

χ(λ) = det(λI −Ai) = n

∏
i=1

(λ − λi).
By taking the limit, the characteristic polynomial of A∞ is also χ(λ). Together with the minimal
polynomial having no multiple root, we obtain A∞ ∈ OA. �

In fact, if A is diagonalizable and Ai approaches to a point P ∈ Z, then from the closedness
of OA, we have P ∈ OA. From Lemma 2.11, the eigenvalues of P are uni-real, which implies the
eigenvalues of A are uni-real.

Now we consider the inferior limit of K in the orbit of A as approaching to Z. Denote by Jλ
k the

matrix

⎛⎜⎜⎜⎝
λ

1 λ

⋱ ⋱

1 λ

⎞⎟⎟⎟⎠ of size k.

13



Proposition 3.6. (Inferior limit as approaching to Z)
(1) Let D = diag(λ1,⋯, λn), λi ∈ R, i = 1,⋯, n. Suppose D is not a scalar matrix, then

lim inf
A→Z, A∈OD∖Z

K(A) = min
λi≠λj

∣λi − λj ∣2
n

∑
i=1
∣λi∣2 ,

(2) Let D be c ⋅Xπ for some π ∈ Pn and c ∈ C∗, then

lim inf
A→Z, A∈OD∖Z

K(A) = { Cπ, if π is even,
Cπ

4
, if π is odd.

(3) Let J = diag(Jλ1

k1
,⋯, J

λp

kp
) and neither nilpotent nor diagonal, then

lim inf
A→Z, A∈OJ∖Z

K(A) = 0.
Proof. For the proof of Part (1): Suppose the sequence Ai = giDg−1i is approaching a point P in
Z. Since OA is closed, P is also in this orbit, set P = CDC−1, where C is unitary. Then the
family C−1giDg−1i C converges to D which has the same value of K since K is invariant under
unitary conjugation. So without loss of generality, we can assume the sequence Ai = giDg−1i is
approaching D. From linear algebra, we know for any g ∈ SL(n,C), there is a unitary matrix
U and a Hermitian positive matrix R such that g = RU . Since K is invariant under unitary
conjugation, K(gDg−1) = K(RDR−1). So we may assume gi is Hermitian positive. Notice that
the convergence is with respect to the topology of OD which is induced from the natural topology
of sl(n,C). Since the orbit OD is closed, it must be locally compact. Then from Theorem 3.2 in
[14], OD is homeomorphism to the homogeneous space SL(n,C)/H, where H is the subgroup of
SL(n,C) fixing D. The topology of the homogeneous space is from quotient topology. So we have
Ai = giDg−1i converges to D in the quotient topology, which means there is sequence g′i ∈ giH such
that g′i approaches to identity. Since D is invariant under the action of H, we may assume gi is

approaching to identity. Let gi = eBi . Then it is enough to consider the family Ai = eBiDe−Bi where
Bi is Hermitian and approaching to 0.

From now on, we omit the subscript i. Consider A(t) = AdtBD = etBDe−tB , then

(8) A(n)(0) = (adB)nD.

Suppose B is approaching to 0, then

A(1) = A = eBDe−B =D + [B,D] +O(∣B∣∣[B,D]∣).
As assumption B∗ = B, D∗ =D, then [B,D]∗ = [D∗,B∗] = −[B,D]. Then

[A,A∗] = [[B,D],D] + [D,−[B,D]] +O(∣B∣∣[B,D]∣) = 2[[B,D],D] +O(∣B∣∣[B,D]∣),
∣[A,A∗]∣2 = 4∣[[B,D],D]∣2 +O(∣B∣∣[B,D]∣2).

From Equation 8, we know that

A = eBDe−B =D +
∞

∑
i=1

1

i!
(adB)iD =D + [B,D] + 1

2
[B, [B,D]] +O(∣B∣2∣[B,D]∣).

14



Note that ⟨D, [B,D]⟩ = ⟨[D,D∗],B⟩ = 0. Also, use B∗ = B, then

∣A∣2 = ∣D∣2 + ∣[B,D]∣2 +Re⟨D, [B, [B,D]]⟩ +Re⟨D,
∞

∑
i=3

1

i!
(adB)iD⟩ +O(∣B∣∣[B,D]∣2)

= ∣D∣2 + 2∣[B,D]∣2 +Re⟨[B,D], ∞∑
i=2

1(i + 1)!(adB)iD⟩ +O(∣B∣∣[B,D]∣2)
= ∣D∣2 + 2∣[B,D]∣2 +O(∣B∣∣[B,D]∣2),⟨A,A∗⟩ = tr(A2) = tr(D2) = ∣D∣2,

∣A∣4 − ∣⟨A,A∗⟩∣2 = 4∣D∣2∣[B,D]∣2 +O(∣B∣∣[B,D]∣2).
We obtain

K(A) = ∣[A,A∗]∣2∣A∣4 − ∣⟨A,A∗⟩∣2 = 4∣[[B,D],D]∣2 +O(∣B∣∣[B,D]∣2)
4∣D∣2∣[B,D]∣2 +O(∣B∣∣[B,D]∣2)

For the inferior limit of K(A),
K(A) = 4∣[[B,D],D]∣2 +O(∣B∣∣[B,D]∣2)

4∣D∣2∣[B,D]∣2 +O(∣B∣∣[B,D]∣2)
=

4∑
i,j
∣λi − λj ∣2∣[B,D]ij ∣2 +O(∣B∣∣[B,D]∣2)
4

n

∑
i=1
∣λi∣2∣[B,D]∣2 +O(∣B∣∣[B,D]∣2)

≥
4 min
λi≠λj

∣λi − λj ∣2 ⋅ ∑
λi≠λj

∣[B,D]ij ∣2 +O(∣B∣∣[B,D]∣2)
4

n

∑
i=1
∣λi∣2 ⋅ ∣[B,D]∣2 +O(∣B∣∣[B,D]∣2)

=
4 min
λi≠λj

∣λi − λj ∣2 ⋅ ∣[B,D]∣2 +O(∣B∣∣[B,D]∣2)
4

n

∑
i=1
∣λi∣2 ⋅ ∣[B,D]∣2 +O(∣B∣∣[B,D]∣2) .

So as B → 0,

lim inf
B→0

K(A) ≥ min
λi≠λj

∣λi − λj ∣2
n

∑
i=1
∣λi∣2 .

To see the equality, suppose (i0, j0) achieves min
λi≠λj

∣λi−λj ∣, chooseB0 satisfying (B0)i0j0 = (B0)j0i0 = 1
and 0 for other entries. Let Bt = tB0. Then from the discussion above, K(Bt) gives the desired

limit
min
λi≠λj

∣λi−λj ∣2

n

∑
i=1
∣λi∣2

when t→ 0.

For the proof of Part (2): It follows from direct calculation, notice that ∣Xπ ∣2 = 4
Cπ

.
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For the proof of Part (3): Denote by Jλ
k,t the matrix

⎛⎜⎜⎜⎝
λ

t λ

⋱ ⋱

t λ

⎞⎟⎟⎟⎠
of size k, t > 0, which is

conjugate to Jλ
k . Then we consider At = diag(Jλ1

k1,t
,⋯, J

λp

kp ,t
) which is conjugate to J . Let

D = diag(λ̃1, λ̃2,⋯, λ̃n−1, λ̃n) = diag(λ1, λ1,⋯, λp, λp),
then At =D+tM0, whereM0 is nilpotent and nonzero since E is not diagonal. SinceM0 is nilpotent,⟨M0,M

∗
0 ⟩ = tr(M2

0 ) = 0. Also, ⟨D,M0⟩ = 0, and [M0,D] = 0, [M∗
0 ,D] = 0. So we have

[At,A
∗
t ] = t2[M0,M

∗
0 ],∣At∣2 = ⟨At,At⟩ = ⟨D + tM0,D + tM0⟩ = ∣D∣2 + t2∣M0∣2,⟨At,A

∗
t ⟩ = ⟨D + tM0,D

∗
+ tM∗

0 ⟩ = ⟨D,D∗⟩ = ∣D∣2,
∣At∣4 − ∣⟨At,A

∗
t ⟩∣2 = 2t2∣D∣2∣M0∣2 + t4∣M0∣4.

We then obtain

K(At) = ∣[At,A
∗
t ]∣2∣At∣4 − ∣⟨At,A

∗
t ⟩∣2 =

t2∣[M0,M
∗
0 ]∣2

2∣D∣2∣M0∣2 + t2∣M0∣4 .
Since J is not nilpotent, D is not a zero matrix, so lim

t→0
K(At) = 0. We finish the proof. �

3.3. Limit behavoir at boundary or infinity. In this subsection, we study the limit behavior
when A approaches the boundary of OA or infinity, in other words, the boundary of P(OA) ⊂
P(sl(n,C)).

Given an n × n matrix A, denote by π(A) = (m1,⋯,mn1
) ∈ Pn, where ma is the degree of the

a-th invariant factor da(λ) of A. For A being nilpotent, π(A) coincides with its Jordan type. So
one can view π(A) as a generalization of Jordan type from nilpotent matrix to a general matrix.

The following proposition shows that π(A) satisfy a lower semi-continuous property in P(sl(n,C)).
Proposition 3.7. (Lower semi-continuity of π(A)) Suppose Ai is a sequence of matrices in the

adjoint orbit OA and ci ∈ C
∗ is a sequence of constants such that Ai

ci
→ A∞ ∈ sl(n,C), then

π(A∞) ≤ π(A).
In the case ci is bounded, equality holds if and only if A∞ ∈ OA.
In the case ci is unbounded, then A∞ is nilpotent. And π(A) can be achieved for suitable Ai, ci.

Proof. We divide the proof into two cases: the case ci is bounded and the case ci is unbounded.
Before going into the proof, we first review the elementary factors and invariant factors of a matrix.

Let p ∈ N+, n1 ≥ ⋯ ≥ np ∈ N+, and λ1,⋯, λp ∈ C be distinct. Let

k11 ≥ ⋯ ≥ kn11, ⋯ , k1b ≥ ⋯ ≥ knbb, ⋯ , k1p ≥ ⋯ ≥ knpp

be positive integers satisfying
p

∑
b=1

nb∑
a=1

kab = n. Suppose A has Jordan normal form as

diag(Jλ1

k11
,⋯, Jλ1

kn11
, ⋯ , J

λb

k1b
,⋯, J

λb

knbb
, ⋯ , J

λp

k1p
,⋯, J

λp

knpp
).

The elementary factors ejb(A), invariant factors dj(A) of A are respectively

ejb(λ) = (λ − λb)kjb , for j = 1,⋯, nb

dj(λ) = (λ − λ1)kj1(λ − λ2)kj2⋯(λ − λp)kjp , for j = 1,⋯, n1.
16



Let mj ∶= deg dj(λ) = kj1 +⋯+ kjp. Then π(A) = (m1,m2,⋯,mn1
) ∈ Pn. Note that

A − λbI = diag(Jλ1−λb

k11
,⋯, J

λ1−λb

kn11
, ⋯ , J0

k1b
,⋯, J0

knbb
, ⋯ , J

λp−λb

k1p
,⋯, J

λp−λb

knpp
),

and

(9) ejb(A) = (A − λbI)kjb , dj(A) = (A − λ1I)kj1(A − λ2I)kj2⋯(A − λpI)kjp ,
where we use the convention kji = 0 for j > ni. Since the rank of (Jµ

k
)l is

rk{(Jµ
k
)l} = { max{k − l,0} for µ = 0

k for µ ≠ 0,(10)

we have

rk(ejb(A)∣Vjb
) = j

∑
a=1

rk{(J0
kab
)kjb} = j

∑
a=1

(kab − kjb) = ( j

∑
a=1

kab) − jkjb,
rk(ejb(A)) = ( j

∑
a=1

kab) − jkjb + n − lb,(11)

where Vjb is the subspace corresponding to the Jordan block J
λb

jb
and lb is the multiple of λb in the

characteristic polynomial of A∞ (and Ai). Then

(12) rk(dj(A)) = p

∑
b=1

j

∑
a=1

rk{(J0
kab
)kjb} = p

∑
b=1

j

∑
a=1

(kab − kjb) = j

∑
a=1

p

∑
b=1

(kab − kjb) = ( j

∑
a=1

ma) − jmj .

Case 1: ci is bounded. Then we may assume it has a limit c. So we can also view 1
c
A∞ as the

limit of Ai. Without loss of generality, we can assume Ai → A∞ ∈ sl(n,C).
We make use of elementary factors. Since A∞ is a limit of Ai ∈ OA, A∞ has the same characteristic

polynomial, which means the same eigenvalue set of A as well as multiplicities. For each 1 ≤ b ≤ p,
denote

k∞1b ≥ k∞2b ≥ ⋯ ≥ k∞nbb

as the degrees of the elementary factors of A∞ for eigenvalue λb and m∞j =
p

∑
b=1

k∞jb , j = 1,⋯, n1 the

degree of the invariant divisor of A∞. Note that
nb∑
a=1

k∞ab =
nb∑
a=1

kab, since the multiplicity of eigenvalue

λb of A∞ is the same as the one of A. It is enough to show the following claim.

Claim: For each fixed b,
s

∑
a=1

k∞ab ≤
s

∑
a=1

kab,∀s ≥ 1.

Because
s

∑
a=1

ma =
s

∑
a=1

p

∑
b=1

kab =
p

∑
b=1
( s

∑
a=1

kab), and s

∑
a=1

m∞a =
s

∑
a=1

p

∑
b=1

k∞ab =
p

∑
b=1
( s

∑
a=1

k∞ab), then the claim

implies that
s

∑
a=1

m∞a ≤
s

∑
a=1

ma.

We will prove the claim by induction. From (9), we have ejb(A∞) = (A∞ −λbI)kjb and A∞ −λbI

is conjugate to

diag(Jλ1−λb

k∞
11

,⋯, J
λ1−λb

k∞n11

, ⋯ , J0
k∞
1b
,⋯, J0

k∞
nbb

, ⋯ , J
λp−λb

k∞
1p

,⋯, J
λp−λb

k∞npp
).

From (10), we have

(13) rk(ejb(A∞)) = j

∑
a=1

rk{(J0
k∞
ab
)kjb} + n − lb,
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Since the rank is a lower semi-continuous function on the space of matrices, we obtain

(14) rk(ejb(A∞)) ≤ lim
i→∞

rk(ejb(Ai)) = ( j

∑
a=1

kab) − jkjb + n − lb,
where the equality follows from Equation (11).

First we show k∞1b ≤ k1b. From Equation (13),

rk(e1b(A∞)) = rk(J0
k∞
1b
)k1b + n − lb =max{k∞1b − k1b,0} + n − lb ≥ k∞1b − k1b + n − lb.

Since Ai ∈ OA, from Equation (14), we have

rk(e1b(A∞)) ≤ lim
i→∞

rk(e1b(Ai)) = n − lb.
So k∞1b ≤ k1b.

Assume that
j−1

∑
a=1

k∞ab ≤
j−1

∑
a=1

kab, we are going to show that
j

∑
a=1

k∞ab ≤
j

∑
a=1

kab. It suffices to show the

case when k∞jb > kjb since the statement follows immediately from assumption when k∞jb ≤ kjb.
Since k∞jb ≥ kjb, then k∞ab ≥ kjb for 1 ≤ a ≤ j. Using the fact that rk{(J0

k )l} = k − l for k ≥ l, from
Equation (13), we have

(15) rk(ejb(A∞)) = ( j

∑
a=1

k∞ab) − jkjb + n − lb.
Combining Equation (14) and (15), we obtain that

j

∑
a=1

k∞ab ≤
j

∑
a=1

kab.

For π(A∞) = π(A), the Jordan norm form of A∞ coincides with the the one of A0, then A∞ ∈ OA.
Conversely it is clear.

Case 2: ci is unbounded. We make use of invariant factors. Suppose ci →∞, Âi = Ai

ci
→ N . Since

tr(Nk) = lim
i→∞

tr(Âi
k) = lim

i→∞

tr(Ak)
cki
= 0, for k = 1,⋯, n, then N is nilpotent. Suppose the Jordan type

of N is π(N) = (k1,⋯, kn). We want to show that π(N) ≤ π(A) by induction.

We know that the invariant factors of Âi are

dÂi

j (λ) = (λ − λ1

ci
)kj1(λ − λ2

ci
)kj2⋯(λ − λp

ci
)kjp , for j = 1,⋯, n1.

For each 1 ≤ j ≤ n1, we have

(16) lim
i→∞

dÂi

j (Âi) = Nmj .

Since the Jordan type of N is π(N) = (k1,⋯, kn), N is conjugate to diag(J0
k1
,⋯, J0

kn
) and

(17) rk(Nmj) = j

∑
a=1

rk(J0
ka
)mj .

First we show k1 ≤ m1. Since the first invariant polynomial is the minimal polynomial, from
Equation (16), we haveNm1 = 0. So from Equation (17), 0 = rk(Nm1) = rk(J0

k1
)m1 =max{k1−m1,0}.

So k1 ≤m1.

Assume that
j−1

∑
a=1

ka ≤
j−1

∑
a=1

ma, we are going to show that
j

∑
a=1

ka ≤
j

∑
a=1

ma.
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We only need to show the case that kj > mj since the inequality follows immediately from the
assumption when kj ≤ mj. Since the rank is a lower semi-continuous function on the space of
matrices, we obtain

(18) rk(Nmj) = rk( lim
i→∞

dÂi

j (Âi)) ≤ lim
i→∞

rk(dÂi

j (Âi)) = ( j

∑
a=1

ma) − jmj ,

where the left equality follows from Equation (16) and the right equality follows from Equation
(12). Since kj ≥mj , ka ≥mj for 1 ≤ a ≤ j. By using the fact rk(J0

k )l = k − l for k ≥ l, from Equation
(17), we have

(19) rk(Nmj ) = ( j

∑
a=1

ka) − jmj .

Combining Equation (18) and (19), we obtain
j

∑
a=1

ka ≤
j

∑
a=1

ma. So we finish the proof of the induction.

To see the equality, we construct a sequence Ai ∈ OA as follows. Let Aj = diag(Jλ1

kj1
,⋯, J

λq

kjq
) be

the submatrix of A corresponding to the invariant factor dj(λ) = (λ−λ1)kj1(λ−λ2)kj2⋯(λ−λq)kjq
for kjq > 0. Define A

j
i = diag(λ1Ikj1 ,⋯, λqIkjq) + iJ0

mj
, where mj = deg(dj(λ)) = q

∑
l=1

kjl. Let

Ai = diag(A1
i ,⋯,A

n1

i ). By direct calculation, the λ-matrix of Ai is equivalent to the λ-matrix of

A. From the λ-matrix theory, Ai is similar to A. Let N = lim
i→∞

Ai

∣Ai∣ = diag(J0
m1

,⋯, J0
mn1

). Then N is

nilpotent of Jordan type π(A). �

3.4. Nilpotent case. We are ready to give a new proof of Theorem 2.5.

Proof. (of Theorem 2.5) The Part (1) of Theorem 2.5 follows from Proposition 3.4 and the fact
that the nilpotent elements in a standard sl(2,C) satisfy Equation (1).

For Part (2), we prove it by induction on the partial order of the partitions of n.
Suppose π(N) = (2,1,⋯,1) ∈ Pn. Note that this partition is a global minimum among all parti-

tions except (1,⋯,1), which means N = 0. Suppose there is a sequence Ni inside the orbit such that
K(Ni), i = 1,2,⋯ approaches to the infimum. Consider a limit [N∞] of [Ni] ∈ P(sl(n,C)), which
means there exists a sequence ci such that Ni

ci
→ N∞. From Proposition 3.7, π(N∞) ≤ π(N). But

π(N) is already the minimum among partitions except (1,⋯,1), so π(N∞) = π(N) and N∞ ∈ ON .
So the infimum must be achieved in the interior. From Proposition 3.4, K(N) achieves its minimum

Cπ(N) exactly at an SU(n)-adjoint orbit of Eπ(N).
Assume that for any π1 < π, if N is nilpotent of Jordan type π1, the function K on the orbit ON

achieves its minimum Cπ1
exactly at an SU(n)-adjoint orbit of Eπ1 . Now we are going to show the

same statement holds if N is nilpotent of Jordan type π.
Suppose there is a sequence Ni inside the orbit such that K(Ni), i = 1,2,⋯ approaches to the

infimum. Consider a limit [N∞] of [Ni] ∈ P(sl(n,C)). Since K is scaling invariant, lim
i→∞

K(Ni) =
K(N∞). From Proposition 3.7, π(N∞) ≤ π(N) = π. If π(N∞) < π(N), then by the assumption
step in the induction, we have K(N∞) ≥ Cπ(N∞). Since π(N∞) < π(N), from Lemma 2.6, Cπ(N∞) >
Cπ(N). So we have K(N∞) > Cπ, which is is impossible since from Proposition 3.4 and Lemma
3.1, Cπ is a critical value of K, but K(N∞) is the infimum of K on OA. If π(N∞) = π(N), then
N∞ ∈ ON . From Proposition 3.4, the minimum is Cπ. Therefore, we finish the proof. �

3.5. General case. In this subsection, we solve the infimum problem of K in general cases, which
implies Theorem 2.14. First we continue the discussion on the inferior limit of K(A) when A

approaches to the boundary of OA or infinity.
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For the boundary, the nilpotent case is discussed in Section 3.4. If A is neither diagonalizable
nor nilpotent, from the proof of Part (3) in Proposition 3.6, we see the inferior limit of K(A) is zero
when A approaches to the boundary of OA. For A being diagonalizable, since the orbit is closed,
there is no boundary.

Now we consider the situation when A approaches to infinity.

Proposition 3.8. Let A ∈ sl(n,C), which is not a scalar matrix. Let π(A) be the partition of n
determined by the degree of the invariant factor of A. Then

lim inf
B∈OA∖Z, ∣B∣→∞

K(B) = Cπ(A).

Proof. Considering subsequence, we assume An

∣An∣ → N where N is nilpotent. Then

lim
n→∞

K(An) = lim
n→∞

K( An∣An∣ ) =K(N).
From Theorem 2.5, K(N) ≥ Cπ(N). From Proposition 3.7, π(A) ≥ π(N). Then from Lemma 2.6,
Cπ(A) ≤ Cπ(N). So we obtain lim

n→∞
K(An) ≥ Cπ(A).

To see the equality, from Proposition 3.7, we see that there exists a sequence Ai ∈ OA, ci ∈ C∗
unbounded such that Ai

ci
limits to a nilpotent matrix N with π(N) = π(A). Then there exists a

g ∈ sl(n,C) such that N = g−1Eπ(A)g and so the family gAig
−1

ci
limits to Eπ. Therefore,

lim
n→∞

K(gAig
−1) = lim

n→∞
K(gAig

−1

ci
) =K(Eπ(A)) = Cπ(A).

So we finish the proof. �

To consider the infimum of K on OA ∖ Z, we summarize what we have obtained now. For A

being nilpotent, it is discussed in Section 3.4. For A being neither diagonalizable nor nilpotent, the
infimum is 0 from Section 3.2. For A being diagonalizable but the eigenvalues being not uni-real,
from Section 2.3 the infimum is 0 and it is also the minimum. Now we consider the situation that
A is diagonalizable and the eigenvalues are uni-real. From the sections above, we see there two

possible values as the infimum, Cπ(A) in Section 3.4, 3.3 and
min
λi≠λj

∣λi−λj ∣2

n

∑
i=1
∣λi∣2

in Section 3.2. The next

lemma gives the comparison of these two values. Denote Λn = (n − 1, n − 3,⋯,3 − n,1 − n).
Lemma 3.9. Suppose A ∈ sl(n,C) is diagonalizable and is not a scalar matrix. Suppose the
eigenvalues (λ1,⋯, λn) of A are uni-real. The degree of the invariant factors π(A) = (n1,⋯, ns)
gives a partition of n. Then

min
λi≠λj

(λi − λj)2
n

∑
i=1

λ2
i

≤ Cπ(A).

Equality holds if and only if the eigenvalues have the form c(Λn1
,⋯,Λns) with even π(A).

Proof. Suppose the eigenvalues ofA are uni-real, we assume the eigenvalues have the form (λ1,⋯, λn)
with λi ∈ R, i = 1,⋯, n, c ∈ C∗. Since A ∈ sl(n,C) is diagonalizable, each invariant factor di has
distinct eigenvalues (λi

1,⋯, λ
i
ni
). Without loss of generality, we can assume min

λi≠λj

∣λi − λj ∣ ≥ 2. It is

enough to show for each i,
ni∑
l=1

λ2
l ≥

n3

i −ni

3
. It reduces to show the following claim.
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Claim: Suppose λ1 > λ2 > ⋯ > λn and λi − λi+1 ≥ 2, i = 1,⋯, n − 1, then
n

∑
i=1

λ2
i ≥ n3−n

3
. Equality

holds if and only if (λi) = Λn.

To minimize
n

∑
i=1

λ2
i , we may assume λi − λi+1 = 2, i = 1,⋯, n − 1. In fact, for λi > λi+1 ≥ 0,

set λ′i+1 = λi+1, λi = λi+1 + 2, for λi+1 < λi ≤ 0, set λ′i = λi, λi+1 = λi − 2, for λi > 0 > λi+1, set

λ′i = 2
λi−λi+1

λi, λ′i+1 = 2
λi−λi+1

λi+1. Then
n

∑
i=1

λ2
i decreases preserving the condition λ1 > λ2 > ⋯ > λn

and λi − λi+1 ≥ 2. So we assume λ1,⋯, λn is an arithmetic progression with common difference

2. Let a = λ1+λn

2
. Then for n = 2m + 1 odd,

n

∑
i=1

λ2
i = a2 +

m

∑
k=1
((a + 2k)2 + (a − 2k)2); for n = 2m

even,
n

∑
i=1

λ2
i =

m

∑
k=1
((a + 2k − 1)2 + (a − 2k + 1)2). Notice that the terms of odd power of a vanish and

the coefficients of even power of a is positive. So
n

∑
i=1

λ2
i is minimized when a = 0, in which case

n

∑
i=1

λ2
i = n3−n

3
. So we finish the proof of the claim and the lemma. �

Now we are in the position to give the full answer to the infimum problem.

Theorem 3.10. Let A ∈ sl(n,C), which is not a scalar matrix. Consider K(B) = ∣[B,B∗]∣2
∣B∣4−∣tr(B2)∣2 on

OA ∖Z.
(1) Suppose A is diagonalizable, and the eigenvalues (λ1,⋯, λn) are not uni-real. Then K achieves
its minimum 0 exactly at the SU(n)-adjoint orbit of diag(λ1,⋯, λn) and has no other critical points;
(2) Suppose A is diagonalizable, and the eigenvalues have the form c(Λ2m1+1,⋯,Λ2ms+1), c ∈ C∗,
which gives an even partition π = (2m1 + 1,⋯,2ms + 1) ∈ Pn. The eigenvalues also correspond to
2c(Λm1

,Λm1+1,⋯,Λms ,Λms+1), which gives another partition π′ = (m1,m1 + 1,⋯,ms,ms + 1) ∈ Pn.
Then K achieves its minimum Cπ exactly at the SU(n)-adjoint orbit of jπ(sl(2,C)) ∖ Z. K has
other critical points, which is the SU(n)-adjoint orbit of jπ′(sl(2,C))∖Z of the same critical value
Cπ′ = 4Cπ.
(3) Suppose A is diagonalizable, and the eigenvalues have the form c(Λ2m1

,⋯,Λ2ms), c ∈ C∗, which
gives an even partition π = (2m1,⋯,2ms) ∈ Pn. Then K achieves its minimum Cπ exactly at the
SU(n)-adjoint orbit of jπ(sl(2,C)) ∖Z. K has no other critical points.
(4) Suppose A is diagonalizable, and the eigenvalues have the form c(Λn1

,⋯,Λns), c ∈ C∗, which
gives a partition π = (n1,⋯, ns) ∈ Pn. Suppose π is odd, and π ≠ (m1,m1 + 1,⋯,ml,ml + 1). Then

K can’t achieve its minimum in the interior of OA ∖Z and the infimum of K is Cπ

4
. The critical

points of K is the SU(n)-adjoint orbit of jπ(sl(2,C)) ∖Z of the same critical value Cπ.
(5) Suppose A is diagonalizable, and the eigenvalues (λ1,⋯, λn) are uni-real but can’t have the form
c(Λn1

,⋯,Λns), c ∈ C∗. Then K can’t achieve its minimum in the interior of OA ∖Z. The infimum

of K is
min
λi≠λj

(λi−λj)2

n

∑
i=1

λ2

i

. K has no critical points.

(6) Suppose A is nilpotent, let π = (n1,⋯, ns) be its Jordan type. Then K achieves its minimum
Cπ exactly at the SU(n)-adjoint orbit of jπ(sl(2,C)). K has no other critical points.
(7) Suppose A is neither diagonalizable nor nilpotent. Then the infimum of K is 0. K has no
critical points.

Proof. For the critical points, from Proposition 3.4 and Lemma 2.1, they can only happen in the
case (2)(3)(4)(6). The critical value is from Lemma 3.1. Now we consider the infimum. For the
case (6), it follow from Theorem 2.5. For the case (7), it follows from the Part (3) of Proposition
3.6. For the case (1), it follows from Lemma 2.11. Now we assume A is diagonalizable and the
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eigenvalues (λ1,⋯, λn) are uni-real. From Lemma 3.5, OA is closed. So the infimum may happen in
the following three situations: (a) interior of OA, (b) Z, (c) infinity. From Lemma 3.1, Propositions

3.4, 3.6, and 3.8, we see the possible infimum values are Cπ and
min
λi≠λj

(λi−λj)2

n

∑
i=1

λ2

i

. For the case (5), the

eigenvalues (λ1,⋯, λn) can’t have the form c(Λ1,⋯,Λns), so it follows from Lemma 3.9. Suppose(λ1,⋯, λn) = c(Λ1,⋯,Λns), from Lemma 2.4, if it has more than one expression in this manner,
then it must be

(λ1,⋯, λn) = c(Λ2m1+1,⋯,Λ2ms+1) = 2c(Λm1
,Λm1+1,⋯,Λms ,Λms+1).

This is the situation in the case (2). Then it follows from Lemma 3.9. The critical value Cπ′ = 4Cπ

follows from direct calculation. For the case (3), we see that π is also an even partition, so it
follows from Lemma 3.9. Finally, for the case (4), the partition π is odd and can’t be written in

an even partition, so from Lemma 3.9 the infimum is
min
λi≠λj

(λi−λj)2

n

∑
i=1

λ2

i

, which is Cπ

4
from the Part (2)

of Proposition 3.6. �

Theorem 2.14 follows from Theorem 3.10.

Proof. (of Theorem 2.14) The statement (1) follows from Proposition 3.4. The statement (2) follows
from Proposition 3.1. The statement (3) follows from Theorem 2.5. For the statement (4), since
A ∉ W ∖ Z and not nilpotent, we rule out the case (1) and case (6) in Theorem 3.10. We check
each case in Theorem 3.10. Then we find the minimum is achieved only in the case (2) and case
(3), that is the partition π is even. So we finish the proof. �

Together with Lemma 3.9, we obtain

Corollary 3.11. Suppose A is diagonalizable with uni-real eigenvalues (λ1,⋯, λn) and is not a

scalar matrix, then K ≥
min
λi≠λj

(λi−λj)2

n

∑
i=1

λ2

i

on OA ∖ Z. The equality holds if and only if the eigenvalues

have the form c(Λn1
,⋯,Λns) for some even partition (n1,⋯, ns) ∈ Pn.

4. Domination results

In this section, we first briefly recall some preliminaries in the the non-Abelian Hodge theory
and higher Teichmüller theory, see [21] for more details, and then prove the main theorems.

4.1. Hitchin fibration. Let S be an oriented closed surface with genus at least 2. Denote the
fundamental group π1(S,p) of S by π1. Let Σ = (S,J) be a Riemann surface structure on S

and KΣ be the canonical line bundle of Σ. Denote X as the symmetric space SL(n,C)/SU(n)
equipped with the Riemannian metric gX induced by the normalized Killing form on sl(n,C),
i.e. ⟨A,B⟩ = 2tr(AB) for A,B ∈ sl(n,C). We do this normalization to make SL(2,R)/SO(2) of
constant curvature −1.

Definition 4.1. An SL(n,C)-Higgs bundle over Σ is a pair (E,φ), where E is a holomorphic
vector bundle over Σ of rank n satisfying detE = O and φ ∈ H0(Σ,End(E)⊗KΣ) is a trace-free
holomorphic End(E)-valued 1-form.

We consider the moduli space MHiggs(Σ) consisting of gauge equivalent classes of polystable
SL(n,C)-Higgs bundles over Σ. From the the non-Abelian Hodge theory [7][10][15][35], the moduli
spaceMHiggs(Σ) is homeomorphic toMBetti(S) andMHarmonic(Σ):
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● MBetti(S) is the moduli space consisting of conjugacy classes of reductive representations
ρ ∶ π1 → SL(n,C);
● MHarmonic(Σ) is the moduli space consisting of equivalent pairs (ρ, f), where ρ is a repre-
sentation from π1 to SL(n,C) and f is a ρ-equivariant harmonic map from the universal

cover Σ̃ to X.

We usually abuse the notation to denote both the equivalent class and the representative element.
MBetti(S) is also called the SL(n,C)-representation variety.

The moduli spaceMHarmonic(Σ) can be also described as the moduli space of harmonic bundles(E,φ,h), where (E,φ) is an SL(n,C)-Higgs bundle over Σ and h is a harmonic metric compatible
with the SL(n,C) structure, solving the Hitchin equation F (∇h) + [φ,φ∗h] = 0, where ∇h is the
Chern connection uniquely determined by h, ∂̄E , F (∇h) is the curvature of ∇h and φ∗h is the
Hermitian adjoint of φ with respect to h.

In particular, from [39] and [15], for every holomorphic quadratic differential q2 on Σ, there
is a unique Fuchsian representation j ∶ π1 → SL(2,R) which corresponds to the Higgs bundle

(K 1

2

Σ
⊕K

− 1

2

Σ
,(0 q2
1 0

)). So for fixed Σ, the Fuchsian representations are parameterized byH0(Σ,K2
Σ).

For a Fuchsian representation j ∶ π1 → SL(2,R), the representation τn ○ j ∶ π1 → SL(n,R)
is called an n-Fuchsian representation. Hitchin representations are the representations ρ ∶ π1 →
PSL(n,R) which can be deformed to n-Fuchsian representations in the moduli space of PSL(n,R)-
representations.

Each Higgs bundle (E,φ) inMHiggs(Σ) corresponds to a pair (ρ, f) ∈ MHarmonic(Σ). We consider
the pullback metric gf = f∗gX , which is a (possibly degenerate) symmetric 2-tensor. From the ρ-
equivariancy, gf descends to Σ, still denoted as gf . Let g0 be the uniformization hyperbolic metric
over Σ. From [21], the Hopf differential and the energy density of f are given by

(20) Hopf(f) ∶= g2,0
f
= 2tr(φ2), e(f) ⋅ g0 ∶= 1

2
∣df ∣2gX = 2tr(φφ∗h),

where h is the harmonic metric. Notice that the formulae here differ by n from the formulae in
[21] because of the renormalization of the Riemannian metric on X. The pullback metric gf is
decomposed into (2,0) + (1,1) + (0,2)-parts as

(21) gf = Hopf(f) + e(f) ⋅ g0 +Hopf(f).
Let p be an immersed point of f . Denote κf(p) as the extrinsic sectional curvature of the tangent

plane f∗(TpΣ̃) at f(p). We omit the subscript f if there is no confusion. The following lemma
relates the extrinsic curvature κ with the function K defined in Section 2.3.

Lemma 4.2. Let (E,φ) be a polystable SL(n,C)-Higgs bundle over Σ and (ρ, f) be the correspond-
ing holonomy representation and harmonic map. Let p be an immersed point of f , then

κ(p) = − 1

2n
K(Φ),

where Φ ∈ sl(n,C) is the matrix presentation of φ( ∂
∂z
) ∶ Ep → Ep for some local coordinate z and

a unitary frame of Ep with respect to the harmonic metric h. The function K ∶ sl(n,C) → R is
defined in Equation (2) in Section 2.3.

Proof. Denote by φ̃ the transformation map φ( ∂
∂z
) ∶ Ep → Ep. From [21], we have that p is immersed

if and only if ∣tr(φ̃φ̃∗h)∣2 > ∣tr(φ̃2)∣2, and
κ(p) = − 1

2n

tr([φ̃, φ̃∗h]2)∣tr(φ̃φ̃∗h)∣2 − ∣tr(φ̃2)∣2 .
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Under a unitary frame of the fiber Ep with respect to h, the metric h = I and φ̃ has a matrix
presentation Φ ∈ sl(n,C), then

κ(p) = − 1

2n

tr([Φ,Φ∗]2)∣Φ∣4 − ∣tr(Φ2)∣2 = − 1

2n
K(Φ).

�

To apply the estimates of K, we study the eigenvalues of φ. The Hitchin fibration in fact charac-

terizes the eigenvalue information. The Hitchin fibration is a map p ∶MHiggs(Σ) → n⊕
j=2

H0(Σ,Ki
Σ)

given by

p((E,φ)) = (p2(φ),⋯, pn(φ)),
where pi is an SL(n,C)-invariant homogeneous polynomial on sl(n,C) of degree i for i = 2,⋯, n.
Two Higgs bundles (E1, φ1) and (E2, φ2) being in the same Hitchin fibers is equivalent to φ1 and
φ2 having the same characteristic polynomial det(λIn − φ), in particular the same eigenvalues at
every point. Note that two Higgs bundles sharing the same Hitchin fiber is independent of the
choice of the polynomials p2,⋯, pn.

Hitchin [16] defined a section sp of this fibration, whose image exactly corresponds to the Hitchin
representations from the non-Abelian Hodge theory. For suitable choice of pi’s, the Hitchin section

sp is given by mapping (q2,⋯, qn) ∈ n⊕
j=2

H0(Σ,Ki
Σ) to

(E = n

⊕
k=1

K
n+1−2k

2

Σ
, φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 r1q2 r1r2q3 ⋯ (∏n−2
i=1 ri)qn−1 (∏n−1

i=1 ri)qn
r1 0 r2q2 ⋯ ⋯ (∏n−1

i=2 ri)qn−1
r2 0 r3q2 ⋯ ⋮

⋱ ⋱ ⋱ ⋮

rn−2 0 rn−1q2
rn−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
),

with rk =
√
k(n − k). For the Fuchsian representation j which corresponds to q2, the n-Fuchsian

representation τn ○ j corresponds to the Higgs bundle sp(q2,0,⋯,0), in other words, φ = ẽn + q2en,
where en, ẽn are defined in Section 2.1. So the Hopf(f) = 2(n3−n)

3
q2 = 8

C(n)
q2.

Given a partition π = (λk1
1 ,⋯, λkr

r ) ∈ Pn, define
τπ ∶ SL(2,R) (

k1-times

³ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τλ1 ,⋯,τλ1 ,⋯⋯,

kr-times

³ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τλr ,⋯,τλr )ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

r

∏
i=1

SL(λi,R)ki ↪ SL(n,C).
Define the subgroup Gπ of SU(n) as

Gπ = {A ∈ diag(U(k1)⊗ Iλ1
,⋯,U(kr)⊗ Iλr) ∩ SU(n)},

which lies in the centralizer of τπ inside SL(n,C). Given two representations j ∶ π1 → SL(2,R)
and µπ ∶ π1 → Gπ, there is a natural well-defined representation (τπ ○ j) ⋅ µπ ∶ π1 → SL(n,C),
γ ↦ (τπ ○ j)(γ) ⋅ µπ(γ), where the multiplication is the matrix multiplication.

For a Fuchsian representation j ∶ π1 → SL(2,R), denote fj ∶ Σ̃ → H
2 as the corresponding

j-equivariant harmonic map, which is in fact a diffeomorphism. Denote

τ̄π ∶ H
2 →X

as the induced map from τπ, which is injective. From Theorem 7.2 in [14], τ̄π is a totally geodesic
map. Then fτπ○j = τ̄π ○fj is a harmonic map which is equivariant with respect to the representation(τπ ○ j) ⋅ µπ for any representation µπ ∶ π1 → Gπ and it is a totally geodesic embedding.
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4.2. Domination results in n-Fuchsian fibers. Together with the curvature formula Lemma 4.2
and the algebraic inequality in Theorem 3.10, we obtain the estimate of the extrinsic curvature. The
following Proposition 4.3 is the key reason why the extrinsic curvature of the equivariant harmonic
maps will deduce the domination results for the harmonic maps and the associated representations.
We will postpone the proof of Proposition 4.3 until the end of Section 5.

Proposition 4.3. Let f ∶ Σ̃ → X be a ρ-equivariant harmonic map. Suppose there is a positive
constant c such that the extrinsic curvature κ(p) ≤ −c for each immersed point p. (If there is no
immersed points, c can be arbitrary positive constant.) Let j be the Fuchsian representation such
that, the Hopf differential of the corresponding j-equivariant harmonic map fj is c ⋅Hopf(f). Then
the energy density satisfies

e(f) ≤ 1

c
e(fj).

Moreover, the equality holds at one point if and only if there exists a partition π ∈ Pn and an
element x ∈ SL(n,C), such that

c = 1

2
Cπ, ρ = Adx−1 ○ ((τπ ○ j) ⋅ µπ), f = Lx ○ τ̄π ○ fj,

for some representation µπ ∶ π1 → Gπ.

Remark 4.4. Under the assumptions of Proposition 4.3, using the same method, the assertion
e(f) ≤ 1

c
e(fj) still holds if X = SL(n,C)/SU(n) is replaced by G/K for any reductive Lie group G.

We obtain the domination of the pullback metric from the domination of the energy density.

Corollary 4.5. Under the assumptions of Proposition 4.3, the pullback metric satisfies f∗ρ gX ≤
1
c
f∗j gH2 . If the equality holds at one vector, then the same condition holds as in Proposition 4.3.

Proof. From Equation (21), the conformal factor of the (1,1) part of the pullback metric is the
energy density, for which we have the domination results from Proposition 4.3. For the (2,0) part,
we have g2,0 = Hopf(f) = 1

c
Hopf(fj). The (0,2) part is just the conjugation of (2,0) part. So we

finish the proof. �

In the following, we collect several useful concepts of a representation ρ ∶ π1 → SL(n,C).
● The translation length spectrum of π1 with respect to a representation ρ is defined by

lρ(γ) ∶= inf
x∈X

d(x,ρ(γ)x), id ≠ γ ∈ π1,

where d(⋅, ⋅) is the distance induced by the Riemannian metric gX on X.
● The entropy of a representation ρ is defined as

h(ρ) ∶= lim sup
R→∞

log(#{γ ∈ π1∣lρ(γ) ≤ R})
R

.

Note that h(ρ) can be +∞.

The translation length spectrum and entropy of a representation j ∶ π1 → SL(2,R) are defined
similarly.

In the following lemma, we deduce the domination of the translation length spectrum from the
domination of the pullback metric for Fuchsian representations.

Lemma 4.6. Let j be a Fuchsian representation and fj be the corresponding j-equivariant harmonic
map. Suppose ρ ∶ π1 → SL(n,C) is a reductive representation such that the corresponding ρ-

equivariant harmonic map f ∶ Σ̃→X satisfies f∗gX ≤ 1
c
f∗j gH2 , for some c > 0. Then lρ ≤ 1√

c
lj .

25



Proof. We associate to a Riemannian metric g on Σ̃, a length function on π1 given by

lg(γ) ∶= inf
x∈Σ̃

dg(x,γx).
For any non-identity element γ ∈ π1,

lρ(γ) = inf
x∈X

dX(x,ρ(γ)x) ≤ inf
x∈f(Σ̃)

dX(x,ρ(γ)x) ≤ inf
x∈f(Σ̃)

d
f(Σ̃)(x,ρ(γ)x).

From the ρ-equivariancy, inf
x∈f(Σ̃)

df(Σ̃)(x,ρ(γ)x) = inf
y∈Σ̃

df∗gX(y, γy) = lf
∗gX(γ), and thus lρ(γ) ≤

lf
∗gX(γ). By the assumption f∗gX ≤ 1

c
f∗j gH2 , we have lρ(γ) ≤ 1√

c
lf
∗
j gH2(γ). Since fj is a diffeomor-

phism, it is clear that lj = lf
∗
j gH2 . So we finish the proof. �

The relation of the geometric invariants between the Fuchsian representation j and the n-Fuchsian
representation τπ ○ j is as follows.

Lemma 4.7. Let j be a Fuchsian representation, fj be the corresponding j-equivariant harmonic

map. Let π ∈ Pn, fτπ○j be the corresponding (τπ ○ j)-equivariant harmonic map. Let c = 1
2
Cπ. Then

κτ̄π○fj = −c, 1
c
f∗j gH2 = f∗τπ○jgX , lτπ○j = 1√

c
lj.

Proof. Since fτπ○j is a totally geodesic embedding, κτπ○j is just the sectional curvature of the image
of τ̄n in X. Then T[e]X can be identified with p = {A ∶ A = A∗, trA = 0}. Recall the Killing form is

given by ⟨A,B⟩ = 2tr(AB), A,B ∈ p. From Theorem 4.2 in [14], the sectional curvature of the plane

spanned by A,B is κ = − ∣[A,B]∣2
∣A∣2∣B∣2−∣<A,B>∣2 . One can easily check κ = −1

2
K(U), for U = A +

√
−1B.

From the definition of τπ, the tangent plane of the image of fτπ○j is spanned by

A = diag(en1
,⋯, ens) + diag(ẽn1

,⋯, ẽns), B = diag(xn1
,⋯, xns).

From Lemma 3.1, we obtain K(U) = −1
2
Cπ. So κτ̄π○fj = −c. Therefore, 1

c
f∗j gH2 = f∗τπ○jgX .

To show lτπ○j = 1√
c
lj, note that the image fτπ○j(Σ̃) is a totally geodesic plane P inside X, also

acted by π1. Clearly,

inf
x∈X

dX(x, (τπ ○ j)(γ)x) ≤ inf
x∈P

dX(x, (τπ ○ j)(γ)x).
Next we show

inf
x∈X

dX(x, (τπ ○ j)(γ)x) ≥ inf
x∈P

dX(x, (τπ ○ j)(γ)x).
Since the symmetric space X is of non-positive curvature, from Proposition 2.4 on Page 176 in [4],
the projection map p to P is well-defined and distance-decreasing, that is,

dX(x, y) ≥ dP(p(x), p(y)).
Since SL(n,C) acts isometrically on X, the projection map p is also equivariant,

p((τπ ○ j)(γ)x) = (τπ ○ j)(γ)(p(x)).
Hence

inf
x∈X

dX(x, (τπ ○ j)(γ)x) ≥ inf
x∈X

dP(p(x), p((τπ ○ j)(γ)x))
= inf

x∈X
dP(p(x), (τπ ○ j)(γ)(p(x)))

= inf
y∈P

dP(y, (τπ ○ j)(γ)y).
Therefore, lτπ○j = lf

∗
τπ○jgX = 1√

c
lf
∗
j gH2 = 1√

c
lj. �
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Now we are in the position to show the main theorem proving that n-Fuchsian representations
are maximal in their Hitchin fibers as follows.

Theorem 4.8. Let τn ○ j be an n-Fuchsian representation. Given a Riemann surface structure
Σ = (S,J) on S. Suppose ρ ∈ MBetti(S) corresponds to the Higgs bundle (E,φ) which is in the

same Hitchin fiber as τn ○ j in MHiggs(Σ). Let f ∶ Σ̃ → X be the corresponding ρ-equivariant
harmonic map. Then
(1) the energy density satisfies e(f) < e(τ̄n ○ fj);
(2) the pullback metric satisfies gf < gτ̄n○fj ;
(3) the translation length spectrum satisfies lρ ≤ λ ⋅ lτn○j for some positive constant λ < 1;
(4) the energy satisfies E(f) < E(τ̄n ○ fj);
(5) the entropy satisfies h(ρ) > h(τn ○ j) =√ 6

n3−n
,

unless ρ is conjugate to (τn ○ j) ⋅ µ(n) for some representation µ(n) ∶ π1 → G(n) = {e 2kπ
√
−1

n , k =
1,⋯, n} ⋅In, in which case, it has the same harmonic map and the same translation length spectrum
as τn ○ j.

Proof. Suppose j corresponds to the Higgs bundle parameterized by q2, then τn ○ j corresponds to
the Higgs bundle sp(q2,0,⋯,0) where the Higgs field φ has the same eigenvalues as q2en + ẽn. The
Higgs field φ has the eigenvalues of the type (n − 1, n − 3,⋯,3 −n,1−n)√q2. From Lemma 4.2 and

Corollary 2.17, we have at each immersed point p, κ(p) = −1
2
K(Φ) ≤ −1

2
C(n) = − 6

n3−n .

By Proposition 4.3 we obtain either e(f) < e(τn ○ j) or ρ is conjugate to (τn ○ j) ⋅ µ(n) for some
representation µ(n) ∶ π1 → G(n).

We only need to consider the first case, which also implies the domination of the energy. Then

for any X ∈ T Σ̃, g
(1,1)
τ̄n○fj
(X,X) − g(1,1)

f
(X,X) > 0. By the assumption, the Higgs bundles for ρ

and τn ○ j are in the same Hitchin fiber, hence f and τ̄n ○ fj have the same Hopf differential and
thus gτ̄n○fj(X,X) > gf(X,X). Since S is compact, we have gf(X,X) < λ2gτ̄n○fj(X,X) for some

0 < λ < 1, that is gf < λ2gτ̄n○fj . Then from Lemma 4.6, we obtain lρ ≤ λ ⋅ lτn○j and ρ is strictly
dominated by τn ○ j.

Since for a Fuchsian representation j, its volume entropy h(j) = 1, By Lemma 4.7, lτn○j = 1√
c
lj ,

where c = 1
2
C(n). Then for the n-Fuchsian representation τn ○ j, its volume entropy h(τn ○ j) =√c.

Since lρ < lτn○j, then h(ρ) > h(τn ○ j) =√ 6
n3−n

. We finish the proof. �

Remark 4.9. The representation µ(n) appears naturally in the rigidity part, since the Higgs bundles(E,φ) and (E,φ)⊗L give the same harmonic map and in the SL(n,C) setting L must be an nth root
of the trivial bundle. We may consider PSL(n,C)-representations and PSL(n,C)-Higgs bundles
to avoid µ(n).

Remark 4.10. In the SL(2,C) case, every Higgs bundle is in the Hitchin fiber at (q2) for some
q2. This case is shown by Deroin and Tholozan [9].

In the following proposition, we find another n-Fuchsian representation which also dominates
the representation ρ sharing the Hitchin fiber with τn ○ j.

Proposition 4.11. Let ρ be in an n-Fuchsian fiber in MHiggs(Σ). Let ĵ be the Fuchsian repre-

sentation corresponding to the complex structure Ĵ determined by the pullback metric f∗gX . Then
either ρ is strictly dominated by τn ○ ĵ or ρ is conjugate to (τn ○ ĵ) ⋅ µ(n) for some representation
µ(n) ∶ π1 → G(n).

Proof. Similar to the beginning of the proof in Theorem 4.8, at each immersed point p, κ(p) ≤
−
1
2
C(n) = − 6

n3−n
. Let Σ̂ = (S, Ĵ). Let ĝ be the unique uniformization hyperbolic metric over Σ̂. Let
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fĵ be the harmonic map corresponding to ĵ with respect to Σ̂. Then f∗
ĵ
gH = ĝ. By Lemma 5.1

below, the Gaussian curvature k of f∗gX , satisfies k ≤ κ ≤ c = −1
2
C(n). From the strong maximum

principle, either f∗gX < 1
c
ĝ or f∗gX ≡ 1

c
ĝ. From the rigidity part of Proposition 4.3, if f∗gX ≡ 1

c
ĝ

then ρ is conjugate to (τn ○ ĵ) ⋅ µ(n) for some µ(n). Now suppose ρ is not conjugate to ρ̂ ⋅ µ(n).

Since the metrics can descend to S, there is a constant 0 < λ < 1 such that f∗gX < λ2

c
ĝ. Then from

Lemma 4.6 and Lemma 4.7, we obtain lρ ≤ λ√
c
⋅ lj = λ ⋅ lτn○j and ρ is strictly dominated by τn ○ ĵ. �

Remark 4.12. Given a representation ρ sharing the Hitchin fiber with an n-Fuchsian representa-
tion τn ○ j for some Riemann surface Σ such that ρ is not conjugate to (τn ○ j) ⋅µ(n), from Theorem
4.8, we see τn ○ j strictly dominates ρ. If we only aim to find an n-Fuchsian representation which
dominates ρ, the representation τn ○ ĵ from Proposition 4.11 is enough and easier to find. Note that
the two n-Fuchsian representations τn ○ j and τn ○ ĵ never coincide unless ρ is in the nilpotent cone
for the Riemann surface Σ.

4.3. Domination results in other cases. Next we consider a more general family and show the
domination results.

Theorem 4.13. Let (E,φ) ∈ MHiggs(Σ) corresponding to (ρ, f). Suppose φ is diagonalizable on a
dense set of Σ. Suppose the characteristic polynomial det(λIn − φ) of φ has the form

(a) (λ2 − a21q)(λ2 − a22q)⋯(λ2 − a2[n
2
]q)λn−2[n

2
], for q ∈H0(Σ,K2

Σ) and ai ∈ R, i = 1,⋯, [n2 ], or
(b) (λ − b1ω)(λ − b2ω)⋯(λ − bnω) satisfying bi ∈ R, i = 1,⋯, n and

n

∑
i=1

bi = 0, for ω ∈H0(Σ,KΣ).
Let (λ1,⋯, λn) = (±a1,⋯,±a[n

2
], (0)) or (b1,⋯, bn) and c = 1

2

min
λi≠λj

(λi−λj)2

n

∑
i=1

λ2

i

. Let j be the Fuchsian

representation which corresponds to q2 = c
4
tr(φ2). Then

(1) the energy density satisfies e(f) < 1
c
e(fj);

(2) the pullback metric satisfies gf < 1
c
gfj ;

(3) the translation length spectrum satisfies lρ < λ ⋅ 1√
c
lj for some positive constant λ < 1;

(4) the energy satisfies E(f) < 1
c
E(fj);

(5) the entropy satisfies h(ρ) >√ch(j) =√c,
unless (λ1,⋯, λn) has the form t(Λn1

,⋯,Λns), t ∈ C∗, for some even partition π = (n1,⋯, ns) ∈ Pn,
and ρ is conjugate to (τπ ○ j) ⋅ µπ for some representation µπ ∶ π1 → Gπ, in which case, it has the
same harmonic map and the same translation length spectrum as τπ ○ j.

Proof. Since f is harmonic, from Sampson [29], the set of the immersed points is either open and
dense or empty. If it is empty, from the proof of Lemma 5.2 below, we have

e(f) = 2∣Hopf(f)∣ = 2

c
∣Hopf(fj)∣ < 1

c
e(fj).

So we assume the set of immersed points is open and dense, denoted as U . From Corollary 3.11,
at the point p ∈ U , at which φ is diagonalizable, we have κ(p) ≤ −c. Since φ is diagonalizable on a
dense set, we obtain κ(p) ≤ −c on U . Then by using the similar argument in the proof of Theorem
4.8, we finish the proof. �

Remark 4.14. If the eigenvalues (λ1,⋯, λn) in Theorem 4.13 are distinct, then the Higgs field is
automatically diagonalizable. So the estimates in Theorem 4.13 hold for the whole Hitchin fiber. In
this case, the inequality is strictly unless the representation ρ is n-Fuchsian.

Remark 4.15. (1) The fiber at (λ2
−a21q)(λ2

−a22q)⋯(λ2
−a2[n

2
]q)λn−2[n

2
] contains the Higgs bundle

with the corresponding representation diag(ρ1, ρ2,⋯, ρ[n
2
],1), where each ρi ∶ π1(S) → SL(2,R) is
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the Fuchsian representation corresponding to the Higgs bundle parameterized by a2i q.
(2) The fiber at (λ − a1ω)(λ − a2ω)⋯(λ − anω) contains the Higgs bundle with the corresponding
representation diag(ρ1,⋯, ρn), where each ρi ∶ π1(S) → C

∗ is the representation corresponding to

the Higgs bundle (Li, aiω) for some holomorphic line bundle Li of degree 0 satisfying
n

∏
i=1

Li = O.

(3) The fiber at (λ2 − (n − 1)2q)(λ2 − (n − 3)2q)⋯(λ2 − (n + 1 − 2[n
2
])2q)λn−2[n

2
] contains the Higgs

bundle with the corresponding representation τn ○ j, where j ∶ π1(S) → SL(2,R) is the Fuchsian
representation corresponding to the Higgs bundle parameterized by q.

In the next proposition, we show that the cases (a)(b) in Theorem 4.13 are exactly the cases
when the eigenvalues of the Higgs field φ are uni-real everywhere.

Proposition 4.16. For a Higgs bundle (E,φ), the eigenvalues of φ are uni-real everywhere on Σ
if and only if the characteristic polynomial

(22) det(λIn − φ) = (λ2
− a21q)(λ2

− a22q)⋯(λ2
− a2[n

2
]q)λn−2[n

2
],

for q ∈H0(Σ,K2
Σ) and ai ∈ R, i = 1,⋯, [n2 ], or

(23) det(λIn − φ) = (λ − b1ω)(λ − b2ω)⋯(λ − bnω)
for ω ∈H0(Σ,KΣ) and bi ∈ R, i = 1,⋯, n,

n

∑
i=1

bi = 0.

Proof. If the Hitchin fiber is uni-real, the coefficients in the characteristic polynomial

det(λIn − φ) = λn
+

n

∑
k=2

qkλ
n−k

satisfies that for any 2 ≤ i < j ≤ n, there exists real numbers c1, c2, c
2
1+c

2
2 ≠ 0, such that c1q

j
i +c2q

i
j = 0,

since the real valued meromorphic function must be a constant.
Suppose at each point z, the eigenvalues (with multiple in the characteristic polynomial) of φ(z)

equals c(λ1,⋯, λn), where λ1,⋯, λn ∈ R,
n

∑
i=1

λi = 0 and c ∈ C∗. Then q2(z) = c2
n

∑
i=1

λ2
i . Therefore,

q2(z) = 0 if and only if λ1 = ⋯ = λn = 0. That is, q2(z) = 0 at point z if and only if q3(z) = ⋯ =
qn(z) = 0 at point z. So on Σ either q2 = 0 which implies φ is nilpotent or q2 is nonzero.

We only need to check the case q2 is nonzero. Clearly, q2k = ckqk2 for some real constant ck.

If q2k+1 = 0 for every k, then det(λIn − φ) = λn
+∑[

n
2
]

k=1 ckq
k
2λ

n−2k. So the solution at each point
will be (±a1,⋯,±a[n

2
], (0))√q2, where ai’s are either real or purely imaginary. Since the eigenvalue

of φ is uni-real, we may assume ai’s are real. So the characteristic polynomial has the expression
(22).

If there exists k0 such that q2k0+1 ≠ 0, we have q22k0+1 = dk0q
2k0+1
2 , for some real constant dk0 ≠ 0.

So ω = q2k0+1/qk02 is a well-defined nonzero holomorphic 1-form and q2 = 1
dk0

ω2. Set qk = ckωk for

some real constant ck, k = 2,⋯, n. Then det(λIn −φ) = λn
+∑n

k=2 ckω
kλn−k. So the solution at each

point will be (b1,⋯, bn) ⋅ ω, where bi ∈ C satisfying
n

∑
i=1

bi = 0. Since the eigenvalue of φ is uni-real,

we may assume bi’s are real. So the characteristic polynomial has the expression (23). �

In the next Theorem, we impose an assumption on the rank of the Higgs field φ instead of the
eigenvalues.

Theorem 4.17. Let (E,φ) ∈ MHiggs(Σ) corresponding to (ρ, f). Suppose the rank of φ is at most
2 at every point on Σ. Let j be the Fuchsian representation corresponding to the Higgs bundle
parameterized by q2 = 1

8
tr(φ2). Let π3 = (3,1,⋯,1) ∈ Pn. Then
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(1) the energy density satisfies e(f) < e(fτπ3○j);
(2) the pullback metric satisfies gf < gfτπ3 ○j ;
(3) the translation length spectrum satisfies lρ ≤ λ ⋅ lτπ3○j for some positive constant λ < 1;
(4) the energy satisfies E(f) < E(fτπ3○j);
(5) the entropy satisfies h(ρ) > h(τπ3

○ j) = 1
2
,

unless ρ is conjugate to ρπ3
⋅ µπ3

for some representation µπ3
∶ π1 → Gπ3

= {diag(cI3,U(n −
3))⋂SU(n)}, in which case, it has the same harmonic map and the same translation length spec-
trum as τπ3

○ j.

Proof. If the rank of the Higgs field is at most 2, from Corollary 2.18 and Lemma 4.2, we obtain
at each immersed point p, κ(p) ≤ −1

2
Cπ3
= −1

4
. The remaining proof is similar to Theorem 4.8. �

5. Proof of Proposition 4.3

This whole section is devoted to prove Proposition 4.3, which plays an important role in the
proof of the theorems in the previous section. We use the same notations as in Section 4.

5.1. Intrinsic curvature. Now we consider the Gauss curvature k of the pullback metric f∗gX on
Σ̃. The pullback metric and the immersed points can descend to Σ and we abuse the same notation
if there is no confusion.

Lemma 5.1. Let f ∶ Σ̃ → (X,gX) be a harmonic map. Let p be an immersed point. Suppose
κ(p) ≤ −c. Then k(p) ≤ −c. The equality holds if and only if κ(p) = −c and f is totally geodesic at
p.

Proof. Let e1, e2 be an orthonormal basis of the induced metric at p. Then from the Gauss equation,
at p

k = κ + ⟨II(e1, e1), II(e2, e2)⟩ − ∣II(e1, e2)∣2,
where II is the second fundamental form of f defined by II(X,Y ) = (∇f∗Xf∗Y )⊥.

Let σ1, σ2 be an orthonormal basis of g0 at p, where g0 is the hyperbolic metric with respect to
Σ̃. The harmonicity condition for f means

trg0∇df = ∇df(σ1, σ1) +∇df(σ2, σ2) = 0,
where ∇df(X,Y ) = ∇f∗Xf∗Y − f∗(∇XY ).
By projection to the normal bundle, the equation above implies

II(σ1, σ1) + II(σ2, σ2) = 0.
Denote

x = II(σ1, σ1) = −II(σ2, σ2), y = II(σ1, σ2) = II(σ2, σ1).
Set e1 = aσ1 + bσ2, e2 = cσ1 + dσ2. Note that ad − bc ≠ 0. So

< II(e1, e1), II(e2, e2) > −∣II(e1, e2)∣2
= < (a2 − b2)x + 2aby, (c2 − d2) + 2cdy > −∣(ac − bd)x + (bc + ad)y∣2
= −(bc − ad)2(∣x∣2 + ∣y∣2) ≤ 0.

So k(p) ≤ κ(p) ≤ −c. The equality holds if and only if κ(p) = −c and II(p) = 0. �
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5.2. Energy density. In this subsection, we derive the domination of the energy density from the
domination of the curvature. We leave the rigidity part to next subsection. Our proof is mainly
adapted on Deroin-Tholozan [9] and Wan [38], except that we do not need the target manifold is
negatively curved but the curvature of the tangent plane is negatived curved.

First we recall some calculations in [33]. Let (Σ, σ(z)∣dz∣2) be a Riemann surface with a Kähler
metric. Let (M,g) be a Riemannian manifold. Suppose f ∶ (Σ, σ(z)∣dz∣2) → (M,g) is a harmonic
map. Let p be an immersed point of f . Then locally, in a neighborhood U of p, f ∣U ∶ U → f(U)
is a diffeomorphism and also harmonic with respect to the induced metric. We can choose a local
complex coordinate system {u} in f(U) such that the induced metric is µ(u)∣du∣2.

Then locally, the harmonicity of f ∣U reads as

uzz̄ +
∂ logµ

∂u
uzuz̄ = 0.

Denote ∂u as the (1,0), (1,0) part of du ∈ T ∗Σ⊗f∗Tf(U)⊗C with respect to the complex struc-
ture of Σ and f(U). Similarly denote ∂̄u as the (0,1), (1,0) part. Locally,

∂u = uzdz ⊗
∂

∂u
and ∂̄u = uz̄dz̄ ⊗

∂

∂u
.

Set H = ∣∣∂u∣∣2 = ∣uz ∣2 µ
σ
, L = ∣∣∂̄u∣∣2 = ∣uz̄ ∣2 µ

σ
. Then the energy density e(f) ∶= 1

2
∣∣df ∣∣2σ,g = H + L.

The Jacobian J(f) = H − L. The Hopf differential Hopf(f) ∶= (f∗g)(2,0) = uzūzµdz ⊗ dz̄, so∣∣Hopf(f)∣∣2σ =HL. Let kσ , kµ be the Gauss curvature of Σ, f(U) respectively. Then
at nonzero of H,

(24) △σ logH = −2kµH + 2kµL + 2kσ,

at nonzero of L,

(25) △σ logL = −2kµL + 2kµH + 2kσ .

Lemma 5.2. For any ρ-equivariant harmonic map f ∶ Σ̃ → X, suppose the curvature kµ of the
corresponding pullback metric satisfies kµ ≤ −c for some constant c > 0 at the immersed points. (If
there is no immersed points, c > 0 can be arbitrary.) Set q = Hopf(f). Then the energy density

e(f) ≤ 1
c
e(fj), where fj ∶ Σ̃ → H

2 is the unique j-equivariant harmonic map with Hopf differential
cq for a suitable Fuchsian representation j ∶ π1 → SL(2,R). If the equality holds at one point, then
kµ ≡ −c.

Proof. Let U be the set of the immersed points of f in Σ̃. Since f is harmonic, from Sampson [29],
U is either open and dense or empty. Firs we suppose U is nonempty. Let g0 be the hyperbolic
metric corresponding to Σ̃. As the discussion above, we consider ρ-equivariant harmonic map
f ∶ (U,g0∣dz∣2) → (f(U), µ(u)∣du∣2) and the quantity H,L satisfying Equation (24)(25). We use
the similar notation for fj. Since j is Fuchsian, fj is a diffeomorphism. By choosing a suitable
orientation we assume Hj > Lj.

Since on U , the Jacobian J is non-vanishing, i.e. H − L ≠ 0. Consider a connected component
of U , still denoted by U , then choosing a suitable orientation we assume H > L. Notice that
H > L,Hj > Lj implies H,Hj > 0. Set H = ew 1

c
Hj, for w a smooth function on U . Then on U by

using HL = ∣∣q∣∣2g0 ,HjLj = c2∣∣q∣∣2g0 ,
△0w = −2kµH + 2kµL − 2Hj + 2Lj

= 2c(H − 1

c
Hj) − 2c∣∣q∣∣2g0(H−1 − cH−1j ) + (−2kµ − 2c)(H −L).
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Since kµ ≤ −c,

△0w ≥ 2c(H − 1

c
Hj) − 2c∣∣q∣∣2g0(H−1 − cH−1j )

= 2(ew − 1)Hj − 2c
2∣∣q∣∣2g0H−1j (e−w − 1)

On the boundary of U , the Jacobian of f , Jf = 0. So

H = L = ∣∣q∣∣g0 = 1

c

√
HjLj <

1

c
Hj.

So on the boundary of U , w < 0. From the equivariancy, Ū descends to a compact domain. Therefore
by maximum principle, we obtain either w < 0 or w ≡ 0.

If w < 0, H < 1
c
Hj, so L > 1

c
L1, by HL = 1

c2
HjLj . Therefore we have on Ū

0 <H −L < 1

c
(Hj −Lj).

Again from HL = 1
c2
HjLj , we obtain e(f) =H +L < 1

c
(Hj +Lj) = 1

c
e(fj).

If w ≡ 0, then kµ ≡ −c on U and e(f) = 1
c
e(fj). If it is the case, since w < 0 on ∂U , it must be

∂U = ∅. Then kµ ≡ −c on Σ̃.
Suppose U is empty, which means J = H − L = 0 everywhere on Σ. Then from the discussion

above, we have e(f) = 2∣∣q∣∣g0 < 1
c
e(fj). So we finish the proof. �

Remark 5.3. The curvature functions κ, k and the energy density e(f) only depend on the equiv-
alent class inMHiggs(Σ).
5.3. Rigidity. In this subsection, we show the rigidity part of Proposition 4.3. From Lemma 5.1
and Lemma 5.2, if the equality holds at one point for the domination of the energy density, then
the ρ-equivariant harmonic map f ∶ Σ̃ → SL(n,C)/SU(n) must be a totally geodesic immersion
and the curvature of its image must be a negative constant −c. The rigidity means that such (ρ, f)
is unique in the moduli space of PSL(n,C). More precisely, up to conjugate class, (ρ, f) must
be ((τπ ○ j) ⋅ µπ, τ̄π ○ fj) for some Fuchsian representation j, partition π ∈ Pn and representation

µπ ∶ π1 → Gπ. And then constant c must be 1
2
Cπ. To show the rigidity, first we establish some

Schur’s type lemmas. Let jπ = dτπ ∣I .
Lemma 5.4. Suppose A is a complex matrix of size n ×m. Suppose either (1) for any trace-free
Hermitian matrix X of size 2 × 2,

jn(X) ⋅A = A ⋅ jm(X);
or (2) for any g ∈ SL(2,R),

τn(gg∗) ⋅A = A ⋅ τm(gg∗).
Then A = 0 if n ≠m; A = cIn for some constant c if n =m.

Proof. First we see that Part (2) is equivalent to Part (1) by differentiating at identity or the
exponential map. So we only need to prove Part (1).

Take X = (1 0
0 −1

), then τn(X) = diag(n− 1, n− 3,⋯,3−n,1−n). Suppose A = (aij), τn(X) ⋅A =
A ⋅ τm(X) implies (n + 1 − 2i)aij = aij(m + 1 − 2j). If m,n are not of the same parity, then aij = 0
for every pair i, j. If m,n are of the same parity, then aij = 0 whenever n+ 1− 2i ≠m+ 1− 2j. Then

if n = m + 2k, k ≥ 0, A =
⎛⎜⎝
0
D

0

⎞⎟⎠ where D = diag(a1,⋯, am) and each 0 in the matrix refers to a zero

matrix of size k ×m; if m = n + 2k, k > 0, (0 D 0), where D = diag(a1,⋯, an) and each 0 in the
matrix refers to a zero matrix of size n × k.
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Take X0 = (0 1
1 0
), then

jn(X0) = jn((0 1
1 0
)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 r1
r1 0 r2

r2 0 ⋱

⋱ ⋱ ⋱

⋱ 0 rn−1
rn−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where ri =
√
i(n − i) for i = 1,⋯, n − 1.

Suppose n ≥m. Denote by (jn(X0))(m) the m ×m-minor of jn(X0) formed by the entries (i, j)
satisfying k + 1 ≤ i, j ≤ k +m. So

(jn(X0))(m) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 rk+1
rk+1 0 rk+2

rk+2 0 ⋱

⋱ ⋱ ⋱

⋱ 0 rm+k−1
rm+k−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The equation jn(X0) ⋅A = A ⋅ jm(X0) implies (jn(X0))(m)D =Djm(X0), which is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 a2rk+1
a1rk+1 0 a3rk+2

a2rk+2 0 ⋱
⋱ ⋱ ⋱

⋱ 0 amrm+k−1
am−1rm+k−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 a1s1

a2s1 0 a2r2
a3s2 0 ⋱

⋱ ⋱ ⋱
⋱ 0 am−1sm−1

amsm−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where si =
√
i(m − i) for s = 1,⋯,m − 1.

If n =m, then k = 0, rp = sp, p = 1,⋯, n − 1. By comparing the entries of the above two matrices,
we have a1 = a2 = ⋯ = an. Hence A = cIn for some constant c.

If n > m, the k > 0, we have rk+1a2 = s1a1, rk+1a1 = s1a2. Hence r2k+1a1a2 = s21a1a2 and thus

a1a2 = 0 since s1 =
√
m − 1 <

√(k + 1)(m + k − 1) = rk+1. Then either a1 = 0 or a2 = 0. In either
case, by comparing the above two matrices, it follows a1 = ⋯ = am = 0. Hence A = 0.

The proof of the other case m = n + 2k is similar. Therefore we finish the proof. �

Lemma 5.5. Let π = (λk1
1 ,⋯, λkr

r ) ∈ Pn with distinct λi’s. Suppose A is a complex matrix of size
n × n. Suppose either (1) for any trace-free Hermitian matrix X of size 2 × 2,

jπ(X) ⋅A = A ⋅ jπ(X);
or (2) for any g ∈ SL(2,R),

τπ(gg∗) ⋅A = A ⋅ τπ(gg∗).
Then

A = diag(A1 ⊗ Iλ1
,A2 ⊗ Iλ2

,⋯,Ar ⊗ Iλr),
where Ai is a complex matrix of size ki × ki for i = 1,⋯, r, and Ik is the identity matrix of size k.

Proof. It suffices to prove the result under Condition (2) since Condition (1) and Condition (2) are
equivalent. First, we have

jπ(X) = diag(jλ1
(X),⋯, jλ1

(X)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1 terms

, jλ2
(X),⋯, jλ2

(X)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k2 terms

,⋯, jλr(X),⋯, jλr (X)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kr terms

).
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Let A = (Uij) where each Uij is a matrix of size (λiki)×(λjkj) for 1 ≤ i, j ≤ r. Let Uij = (Ukl
ij ), where

each Ukl
ij is a matrix of size λi×λj for 1 ≤ k ≤ ki,1 ≤ l ≤ kj . Therefore the equation jπ(X)A = Ajπ(X)

for any trace-free Hermitian matrix X implies for any 1 ≤ i, j ≤ r,

jλi
(X) ⋅Ukl

ij = Ukl
ij ⋅ jλj

(X)
for any trace-free Hermitian matrix X. Note that for any i ≠ j, λi ≠ λj. By Lemma 5.4, Ukl

ij = 0
for any i ≠ j and 1 ≤ k ≤ ki,1 ≤ l ≤ kj ; U

kl
ii = ckl ⋅ Iλi

for a constant ckl. So Uij = 0 when i ≠ j;
Uij = Ai ⊗ Iλi

for some Ai ∈ gl(ki,C) when i = j. �

The proof of the rigidity has two steps. First we show that f can factor through SL(2,R)/SO(2).
Next we show that ρ can factor through SL(2,R).
Lemma 5.6. Suppose the ρ-equivariant harmonic map f ∶ Σ̃ → SL(n,C)/SU(n) is a totally ge-
odesic immersion and the curvature of its image is a negative constant −c. Then there is an
immersion f̂ ∶ Σ̃→ SL(2,R)/SO(2), a partition π ∈ Pn and an element x ∈ SL(n,C) such that

f = Lx ○ τ̄π ○ f̂ ,

where Lx is the left action on SL(n,C)/SU(n). Furthermore f̂ is immersed, harmonic and surjec-
tive.

Proof. First we show f can factor through SL(2,R)/SO(2).
Step 1: We show that in the Lie algebra level the image of f is standard. More precisely, let

p ∈ Σ̃, there exists π ∈ Pn and x ∈ SL(n,C) such that (L−1x ○ f)(p) = [I] and Image(d(L−1x ○ f)∣p) =
Image(dτ̄π ∣[I]).

Let f(p) = [x1], then (L−1x1
○f)(p) = [I]. Recall the Cartan decomposition of sl(n,C) as sl(n,C) =

k⊕ p, where k consists of trace-free skew-Hermitian matrices and p consists of trace-free Hermitian
matrices. The direct sum is orthogonal with respect to the Killing form, ⟨⋅, ⋅⟩ on sl(n,C). Note
that at [I], T[I](SL(n,C)/SU(n)) = p. Denote by s the tangent space of the image of f at [I],
which is of real dimension 2.

Since f is totally geodesic, from Theorem 7.2 in [14], s ⊆ p is a Lie triple system, that is,[s, [s, s]] ⊆ s. Also, s generates a Lie subalgebra g1 of sl(n,C) as follows:
g1 = [s, s] + s, [s, s] ⊆ k, s ⊆ p.

Since s is of real dimension 2, let X,Y ∈ s be an orthonormal basis with respect to the Killing
form. Since the curvature of the tangent plane spanned by s is strictly negative, by the curvature
formula Theorem 4.2 in [14], [X,Y ] ≠ 0. Then [s, s] is of 1-dimensional spanned by [X,Y ]. Let
H = [X,Y ] ≠ 0. Since H ∈ k,X,Y ∈ p, then [H,X], [H,Y ] ∈ p ∩ g1 = s = span{X,Y }. Suppose[H,X] = c1X + c2Y . We have

⟨[H,X], Y ⟩ = ⟨H, [X,Y ]⟩ = ⟨H,H⟩ < 0, and ⟨[H,X], Y ⟩ = ⟨c1X + c2Y,Y ⟩ = c2∣Y ∣2 = c2.
So c2 < 0. And

⟨[H,X],X⟩ = ⟨H, [X,X]⟩ = 0, and ⟨[H,X],X⟩ = ⟨c1X + c2Y,X⟩ = c1∣X ∣2 = c1.
So c1 = 0. Hence [H,X] = c2Y where c2 < 0. Similarly, we have [H,Y ] = c3X where c3 > 0.

Let a = 2√
−c2

, b = 2√
c3

and X ′ = aX,Y ′ = bY,H ′ = ab
2
H. Then we obtain a basis {H ′,X ′, Y ′} ⊆ g1

satisfying H ′ ∈ [s, s] ⊆ k, X ′, Y ′ ∈ s ⊆ p, ⟨X ′, Y ′⟩ = 0, and
[X ′, Y ′] = 2H ′, [H ′,X ′] = −2Y ′, [H ′, Y ′] = 2X ′.
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We may then construct a Lie algebra isomorphism φ ∶ sl(2,R) → g1 by

φ ∶ ( 0 1
−1 0

)↦H ′, (1 0
0 −1

)↦ X ′, (0 1
1 0
)↦ Y ′.

So φ is in fact a Lie algebra homomorphism from sl(2,R) to sl(n,C) with image as g1. From
Proposition 2.3, there exists a g0 ∈ SL(n,C) and a partition π ∈ Pn such that

φ = Adg0 ○ jπ ∶ sl(2,R) → sl(n,C).
Since X ′, Y ′ ∈ s ⊆ p, then for any S ∈ span{(1 0

0 −1
) ,(0 1

1 0
)}, we have φ(S) ∈ p,

(Adg0 ○ jπ(S))∗ = Adg0 ○ jπ(S).
That is, (g−10 )∗jπ(S)g∗0 = g0jπ(S)g−10 . So jπ(S) ⋅ (g∗0g0) = (g∗0g0) ⋅ jπ(S). Then by Lemma 5.5,

suppose π = (λk1
1 ,⋯, λkr

r ), we have g∗0g0 = diag(A1 ⊗ Iλ1
,⋯,Ar ⊗ Iλr) for some Ai’s. Then each

Ai is positive Hermitian for i = 1,⋯, n. Then we may choose a positive Hermitian matrix Ti such
that T 2

i = Ai. Let T = diag(T1 ⊗ Iλ1
,⋯, Tr ⊗ Iλr). Then T is positive Hermitian and g∗0g0 = T 2.

Let g1 = g0T
−1. Then g∗1g1 = I. Notice that T is in the centralizer of the image of jπ. Then

φ = Adg1 ○jπ. We may further assume det(g1) = 1, then g1 ∈ SU(n). Let x = x1g−11 . Then x satisfies
the requirements, so we finish the proof of Step 1.

Step 2: We show that in the Lie group level the image of f is standard. More precisely,
Image(L−1x ○ f) ⊆ Image(τ̄π).

Consider L−1x ○ f , from Step 1, the image of d(L−1x ○ f) at p is the same as the image of dτ̄π
at [I]. From Theorem 7.2 in [14], the image of τ̄π is a complete totally geodesic submanifold.
Since a totally geodesic submanifold is determined by its tangent space at one point, we have
Image(L−1x ○ f) ⊆ Image(τ̄π). We finish the proof of Step 2.

Step 3: We show the existence and the property of f̂ .
Since the image of L−1x ○ f is in the image of τ̄π and the map τ̄π is injective, the map

f̂ ∶= τ̄−1π ○ f ∶ Σ̃→ SL(2,R)/SO(2)
is well-defined. Since f is a harmonic immersion and τ̄π is a totally geodesic embedding satisfying
τ̄∗πgSL(n,C)/SU(n) = 1

2
CπgSL(2,R)/SO(2), f̂ is also a harmonic immersion. To show f̂ is surjective, we

consider the pullback metric gf of f , by ρ-equivariancy gf can descend to Σ, which is compact.
So gf is complete. Since f maps geodesics to geodesics, then the image of f is geodesic complete,

which also means complete. Since the image of Lx ○ τ̄π is complete, we obtain f̂ is surjective. We
finish the proof of Step 3 and then the whole proof. �

Lemma 5.7. Under the assumption and the conclusion of Lemma 5.6, then there is a Fuchsian
representation j and a representation µπ ∶ π1 → Gπ such that the corresponding j-equivariant
harmonic map fj ∶ Σ̃→ SL(2,R)/SO(2) coincides with f̂ and

ρ = Adx−1 ○ ((τπ ○ j) ⋅ µπ),
where Ad is the adjoint action on SL(n,C).
Proof. From Lemma 5.6 and the ρ-equivariancy of f , we have the following commutative diagram,
for any γ ∈ π1,

Σ̃
f̂Ð→ SL(2,R)/SO(2) τ̄πÐ→ SL(n,C)/SU(n) LxÐ→ SL(n,C)/SU(n)

↓ γ ↓ Lρx(γ) ↓ Lρ(γ)

Σ̃
f̂Ð→ SL(2,R)/SO(2) τ̄πÐ→ SL(n,C)/SU(n) LxÐ→ SL(n,C)/SU(n)
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where ρx(γ) = x−1ρ(γ)x = (Adx−1 ○ ρ)(γ). Since τ̄π is injective and f̂ is surjective,

sx(γ) ∶= τ̄−1π Lρx(γ)τ̄π ∶ SL(2,R)/SO(2) → SL(2,R)/SO(2)
is a well-defined map. Since sx(γ) is also an isometry of the hyperbolic space SL(2,R)/SO(2),
there exists a unique element ρ̃x(γ) ∈ PSL(2,R), such that sx(γ) = Lρ̃x(γ). From the uniqueness

of ρ̃x(γ), it is easy to see ρ̃x ∶ π1 → PSL(2,R) is a homomorphism. By the definition of ρ̃x, f̂

is ρ̃x-equivariant. Since f̂ is an immersed ρ̃x-equivariant harmonic map, the pullback metric is a
hyperbolic metric on S. So ρ̃x is the holomony of the hyperbolic metric, which is Fuchsian, and
can be lifted to ρ̂x ∶ π1 → SL(2,R). So we can complete the commutative diagram as follows:

Σ̃
f̂Ð→ SL(2,R)/SO(2) τ̄πÐ→ SL(n,C)/SU(n) LxÐ→ SL(n,C)/SU(n)

↓ γ ↓ Lρ̂x(γ) ↓ Lρx(γ) ↓ Lρ(γ)

Σ̃
f̂Ð→ SL(2,R)/SO(2) τ̄πÐ→ SL(n,C)/SU(n) LxÐ→ SL(n,C)/SU(n)

For any y ∈ SL(2,R), we have

Lρx(γ)(τ̄π([y])) = τ̄π(Lρ̂x(γ)([y])),
which implies [ρx(γ) ⋅ τπ(y)] = [τπ(ρ̂x(γ) ⋅ y)] = [(τπ ○ ρ̂x)(γ) ⋅ τπ(y)].
Let A = (τπ ○ ρ̂x)(γ)−1 ⋅ ρx(γ). Then τπ(y)−1Aτπ(y) ∈ SU(n) for ∀y ∈ SL(2,R), which implies

I = τπ(y)−1Aτπ(y)(τπ(y)−1Aτπ(y))∗ = τπ(y)−1Aτπ(yy∗)A∗(τπ(y)∗)−1
Then ASA∗ = S for every S = τπ(yy∗), y ∈ SL(2,R). Let y = I, then AA∗ = I. So we obtain
AS = SA for every S = τπ(yy∗), y ∈ SL(2,R). Then from Lemma 5.5, we obtain A = diag(A1 ⊗

Iλ1
,⋯,Ar ⊗ Iλr). Since A ∈ SU(n), we obtain A ∈ Gπ. Since A commutes with the image of τπ, A

gives a representation µπ ∶ π1 → Gπ. So ρx = (τπ ○ ρ̂x) ⋅ µπ. Let j = ρ̂x, we finish the proof. �

Finally, we are ready to give the proof of Proposition 4.3.

Proof. (of Proposition 4.3) By Lemma 5.1, we obtain that the Gaussian curvature k of its pullback
metric satisfies k ≤ κ ≤ −c. After obtaining the curvature estimate, from Lemma 5.2, we obtain the
energy density e(f) ≤ 1

c
e(fj). And if the equality holds at one point, then κ ≡ −c and the map is

totally geodesic. The rigidity part of the statement follows from Lemma 5.6 and Lemma 5.7. We
finish the proof. �

6. Geometric applications

In this section, we will derive two main applications from Section 4 and 5 to equivariant minimal
surfaces and maximal surfaces in product spaces. We normalize the induced Riemannian metric on
X = SL(n,C)/SU(n) from the Killing form of sl(n,C) to gn, such that τ̄∗ngn = gH2 .

Let j ∶ π1 → SL(2,R) be a Fuchsian representation, ρ ∶ π1 → SL(n,C) be a reductive repre-
sentation. Let Σ = (S,J) be a Riemann surface. By the non-Abelian Hodge theory, we obtain a

j-equivariant harmonic map fj ∶ Σ̃ → (H2, gH2) and a ρ-equivariant harmonic map fρ ∶ Σ̃→ (X,gn).
Since j is Fuchsian, fj is a diffeomorphism.

6.1. Minimal surfaces. The map (fj , fρ) gives a (j, ρ)-equivariant harmonic embedding

(fj , fρ) ∶ Σ̃→ (H2
×X,gH2 + gn).

It is also the graph of fρ ○ f
−1
j ∶ H

2 → X. The Hopf differential of (fj , fρ) is Hopf((fj, fρ)) =
Hopf(fj)+Hopf(fρ). Suppose Hopf(fj) = −Hopf(fρ), then (fj, fρ) is conformal. Together with the
harmonicity, the map (fj, fρ) gives a (j, ρ)-equivariant embedded minimal surface.
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Proposition 6.1. Let Σ = (S,J) be a Riemann surface and q2 ∈ H0(Σ,K2
Σ). Let j, ĵ be the

Fuchsian representations which correspond to q2,−q2 respectively. Suppose ρ ∶ π1 → SL(n,C) is a

reductive representation in the same Hitchin fiber as the n-Fuchsian representation τn ○ ĵ in the
moduli space of Higgs bundles over Σ. Then

(fj, fρ) ∶ Σ̃→ (H2
×X,gH2 + gn)

gives a stable (j, ρ)-equivariant embedded minimal surface.

Proof. One only needs to show the minimal surface is stable. Since τ̄n ∶ (H2, gH2) → (X,gn)
is isometric, the energy density of fτn○j is just the energy density of fj. Suppose the Fuchsian

representation corresponds to the Higgs bundle (E,φ) = (K 1

2

Σ
⊕K

− 1

2

Σ
,( 0 q2

1 0
) ). Suppose h solves

the Hitchin equation for (E,φ). In this case, h = diag(h1, h−11 ) and locally, the Hitchin equation
reduces to ∂z∂z̄ logh1+h

−2
1 − ∣q2∣2h21 = 0. From Equation (20), e(fj) ⋅g0 = 2tr(φφ∗h) = 2(∣q2∣2h21+h−21 ).

Notice that the energy density and the Hitchin equation are invariant under the U(1) action on

q2. In particular, e(fj) = e(fĵ). Since ρ and τn ○ ĵ share the same Hitchin fiber of MHiggs(Σ), it
follows from Theorem 4.8 that e(fτn○ĵ) ≥ e(fρ). So e(fj) = e(fĵ) = e(fτn○ĵ) ≥ e(fρ).

We claim the map fρ ○ f
−1
j is area-decreasing. It is enough to consider the immersion points

of fρ. At the immersion points, locally fρ ○ f
−1
j maps a surface to a surface. Fix a basis, the

area-decreasing condition is equivalent to the Jacobian ∣J(fρ ○ f−1j )∣ ≤ 1, which is ∣J(fρ)∣ ≤ ∣J(fj)∣.
We use the notation in Section 5.2. Then J(f) = H − L, e(f) = H + L, ∣∣Hopf(f)∣∣2g0 = HL. So∣J(f)∣2 = ∣e(f)∣2 − 4∣∣Hopf(f)∣∣2g0 . Therefore∣J(fj)∣2 = ∣e(fj)∣2 − 4∣∣q2∣∣2g0 = ∣e(fĵ)∣2 − 4∣∣q2∣∣2g0 ≥ ∣e(fρ)∣2 − 4∣∣q2∣∣2g0 = ∣J(fρ)∣2.
So fρ ○ f

−1
j is area-decreasing. Then from Lee-Wang [20] Theorem 4.1, we obtain the stability of

the minimal surface. �

For the completeness, we prove the following existence result, which is well-known. Let G be a
reductive Lie group, K be a maximal compact subgroup of G. Denote gG/K as the Riemannian
metric of G/K induced from the Killing form of Lie(G).
Proposition 6.2. For any Fuchsian representation j, reductive representation ρ ∶ π1 → G, constant
c > 0, there exists a Riemann surface Σ = (S,J), such that the corresponding j-equivariant harmonic

map fj ∶ Σ̃ → H
2, ρ-equivariant harmonic map fρ ∶ Σ̃ → G/K gives a (j, ρ)-equivariant embedded

minimal surface (fj , fρ) ∶ Σ̃→ (H2
×G/K,gH2 + cgG/K).

Proof. It is enough to show there exists a Riemann surface Σ = (S,J) such that the (fj, fρ) is
conformal with respect to Σ. Consider the energy function E(j,ρ) on the Teichmüller space T (S),
E(j,ρ)([Σ]) ∶= ∫Σ e(fΣ

(j,ρ))dV . The (j, ρ)-equivariant harmonic map fΣ
(j,ρ) = (fΣ

j , f
Σ
ρ ) is from the

non-Abelian Hodge theory with respect to Σ, which is unique up to isometry. And it is clear that
E(j,ρ) only depends on the class [Σ] ∈ T (S). So E(j,ρ) is well-defined on T (S). By the classical
results of Sacks-Uhlenbeck [26, 27] and Schoen-Yau [32], if the Riemann surface Σ is a critical of
E(j,ρ), then the corresponding harmonic map fΣ

(j,ρ) is conformal. Notice that E(j,ρ) ≥ 0. We show

E(j,ρ) is proper, then it has a minimum point. In fact, E(j,ρ) = Ej +Eρ ≥ Ej . From Tromba [37],
Ej is proper. So E(j,ρ) is proper and we finish the proof. �

Suppose G is a semisimple Lie group of rank 1, then the sectional curvature of G/K is strictly
negative. For a constant c > 0, denote g−c as the rescaling metric of gG/K such that the maximum
of the sectional curvature of g−c is −c.
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Proposition 6.3. Let j be a Fuchsian representation. Let G be a reductive Lie group of rank 1,
ρ ∶ π1 → G be an irreducible representation. Suppose ρ does not preserve any geodesic arc in G/K.

Then for c ≥ 1, there is a unique (j, ρ)-equivariant minimal surface f ∶ S̃ → (H2
×G/K,gH2 + g−c).

Moreover, it is an embedding.

Proof. The existence part follows from Proposition 6.2. For the uniqueness, let f be such a minimal
surface. Then f = (fj, fρ) is a pair a harmonic maps with respect to the pullback metric. Since
j is Fuchsian, from the discussion at the beginning of this section, the minimal surface is the
graph of f̃ = fρ ○ f

−1
j . Since the sectional curvature kG/K of G/K satisfies kG/K ≤ −c ≤ −1, from

Proposition 4.3, we obtain e(fρ) ≥ e(fj). So as the same proof as in Proposition 6.1, we have f̃ is
area-decreasing. Then from Theorem 4.1 in Lee-Wang [20], f gives a stable minimal surface.

By carefully checking the proof of Theorem 4.1 in [20], for a variational vector field V along f̃ ,

a deformation family f̃t with respect to V , t ∈ (−ǫ, ǫ), we have

d2At

dt2
∣
t=0
≥ ∫

Σ

2

∑
i=1

−⟨R(V,df(ai))df(ai), V ⟩dvolg0 ,
where A is the area functional, R is the Riemannian curvature tensor on G/K, and ai’s form an
orthonormal basis on the tangent space of H2 with respect to the metric g0. If fρ has no immersion
point, from Sampson [29], the image of fρ lies in a geodesic arc. By the ρ-equivariancy, ρ preserves
this geodesic arc, which cannot happen by the assumption. So fρ has at least one immersion point

and thus the set of immersion points is open and dense following from [29]. So if d2At

dt2
∣
t=0
= 0, G/K

being negatively curved forces V = 0. Hence the minimal surface f is strictly stable.
Fix a conformal class Σ ∈ T (S), since j, ρ are irreducible, there is a unique j-equivariant harmonic

map fΣ
j ∶ Σ̃ → H

2 and a unique ρ-equivariant harmonic map fΣ
ρ ∶ Σ̃ → X. To show the uniqueness

of the minimal surface, one only needs to show in T (S) there is a unique [Σ] such that (fΣ
j , f

Σ
ρ )

is conformal. As in the proof of Proposition 6.2, it is equivalent to the uniqueness of the critical
point of E(j,ρ)([Σ]) = E(fΣ

(j,ρ)). Consider the restriction of the area functional A on the maps fΣ
(j,ρ)

parameterized by T (S). Notice that the critical point of E is minimal, which is also the critical
point of A. And E = ∫Σ(H + L)dvolg0 ≥ ∫Σ ∣H − L∣dvolg0 = A, the equality holds if and only if∣∣Hopf(fΣ

(j,ρ))∣∣2g0 = HL = 0, which is the critical point of E. Since for every critical point of A, it is

strictly stable, which means strictly locally minimal, then we have for every critical point of E, it
is strictly locally minimal. Since T (S) is of finite dimension, then the critical point of E is unique.
So we finish the proof. �

Remark 6.4. For G = SL(2,C), which is simple and of rank 1, the irreducible representations
not preserving any geodesic arc are precisely the non-elementary representations. The elementary
representation ρ is of the following three types: (1) ρ is reducible; (2) the image of ρ lies in SU(2);
(3) the image of ρ lies in the subgroup generated by ( λ 0

0 λ−1
) , λ ∈ C∗ and ( 0 1

−1 0
) .

The harmonic maps are unique up to the centralizer of the representation. For the product
representation (j, ρ) with j Fuchsian, the centralizer of (j, ρ) is just the centralizer of ρ.

6.2. Maximal surfaces and structure of n-Fuchsian fibers. The map (fj, fρ) gives a (j, ρ)-
equivariant harmonic embedding

(fj, fρ) ∶ Σ̃→ (H2
×X,gH2 − gn).

Suppose f∗j gH2 > f∗ρ gn, then the pullback metric (fj , fρ)∗(gH2 −gn) is Riemannian, which means the

image of Σ̃ is spacelike. The Hopf differential of (fj , fρ) is Hopf((fj , fρ)) = Hopf(fj) −Hopf(fρ).
Suppose Hopf(fj) = Hopf(fρ), then (fj, fρ) is conformal. Together with the harmonicity, we obtain
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(fj, fρ) gives a (fj, fρ)-equivariant embedded spacelike maximal surface. For the basic materials
on maximal surfaces, one may refer [3].

We recall a result from Tholozan [36], Section 2.

Proposition 6.5. (Tholozan [36]) For a Fuchsian representation j and a reductive representation
ρ ∶ π1 → SL(n,C), suppose there is a (j, ρ)-equivariant smooth map

f ∶ (H2, gH2)→ (X,gn)
with Lipschitz constant strictly less than 1. Then there is a unique conformal class [Σ] ∈ T (S),
such that (fj , fρ) ∶ Σ̃ → (H2 ×X,gH2 − gn) gives a (j, ρ)-equivariant embedded spacelike maximal
surface satisfying the conformal class of the induced metric is [Σ].

From Theorem 4.8, the n-Fuchsian representation dominates the representations in the same
Hitchin fiber, which implies the assumption in Proposition 6.5. So we can construct maximal
surfaces as follows.

Proposition 6.6. Let Σ = (S,J) be a Riemann surface. Suppose ρ ∈ MBettis(S) is in the n-
Fuchsian fiber containing τn ○ j in MHiggs(Σ). Suppose ρ is not conjugate to (τn ○ j) ⋅ µn for any

representation µn ∶ π1 → Gn. Then (fj , fρ) ∶ Σ̃ → (H2
× X,gH2 − gn) gives a (j, ρ)-equivariant

embedded spacelike maximal surface.
Moreover, the conformal class Σ is unique among all the (j, ρ)-equivariant maximal space-like

surfaces.

Proof. From Theorem 4.8, f∗j gH2 > f∗ρ gn, which means f ○ f−1j is a (j, ρ)-equivariant distance-
decreasing map. So the assumption of Proposition 6.5 holds. Then the statement follows from the
uniqueness in Proposition 6.5. �

Remark 6.7. From Proposition 6.6, the uniqueness of the (j, ρ)-equivariant spacelike maximal
surfaces is reduced to the uniqueness of the (j, ρ)-equivariant harmonic maps with respect to a
Riemann surface Σ = (S,J). From the non-Abelian Hodge theory, the uniqueness of the harmonic
maps is up to the centralizer of the representation (j, ρ). Since j is Fuchsian, the uniqueness is
just up to the centralizer of ρ.

Remark 6.8. In fact, one may also carry a similar computation as in Lee-Wang [20] Theorem 3.1
and show the spacelike maximal surface in Proposition 6.6 is automatically stable.

Combining with Proposition 6.5 and Theorem 4.8, we obtain the following description on the
space of n-Fuchsian fibers.

Proposition 6.9. Let τn ○ j be an n-Fuchsian representation. Let ρ ∶ π1 → SL(n,C) be a reductive
representation, not conjugate to (τn ○ j) ⋅ µn for any representation µn ∶ π1 → Gn. Suppose τn ○ j

and ρ are in the same Hitchin fiber of MHiggs(Σ) for some Σ. Then for another Σ
′
, [Σ′] ≠ [Σ] in

T (S), τn ○ j and ρ can not be in the same Hitchin fiber of MHiggs(Σ′).
Proof. As in the proof of Proposition 6.6, if τn ○ j and ρ are in the same Hitchin fiber for some
conformal class, then the assumption of Proposition 6.5 holds. So Proposition 6.9 follows from the
uniqueness in Proposition 6.5. �
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