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Abstract. Using Ge-Jiang-Shen’s extension method [8], we extend Ge-Xu’s discrete

Yamabe flows with R-curvature [11]. We show the solution to the extended flow is unique

and exists for all time t ≥ 0 if all vertex degree are no less than 23, which partly confirm

the Conjecture 1 in [11]. We give two sufficient conditions (the “energy gap condition”

and the “big regular triangulation” condition) for the convergence of the solution, which

partly confirm the Conjecture 2 in [11].

1. Introduction

Thurston [18] once built a deep connection between circle packings and hyperbolic 3-

manifolds. Inspired by Hamilton’s Ricci flow [15] methods, Chow and Luo [2] introduced

the combinatorial Ricci flow: r′i = −Kiri on surfaces to deform circle packings. For 3-

manifolds, Cooper and Rivin [3] considered the ball packings. In 2005, Glickenstein [13, 14]

introduced a combinatorial version of Yamabe flow which is a 3-dimensional analogue to

Chow-Luo’s combinatorial Ricci flows. In 2015, Ge and Xu [11] investigated a new nor-

malized discrete Yamabe flow r′i = (Rav−Ri)ri with ball packings, where the R-curvature

Ri = Ki/r
2
i . This flow seems “right” because it shares formally similar properties with the

smooth Yamabe flow such as the scaling property. There are some variations of these flows

in 3-manifolds, one may refer [4, 9, 10, 12]. Recently, Ge, Jiang and Shen [8] extended

the solution to Glickenstein’s flow so as it exists for all time. They also got some deep

convergence results by probing into the combinatorial curvatures Ki. In this article, we

revisit Ge-Xu’s discrete Yamabe flow r′i = (Rav −Ri)ri by Ge-Jiang-Shen’s methods.

Let (M, T ) be a triangulated closed 3-manifold with T = (T0, T1, T2, T3), where Ti is the

set of i-simplices. Denote V = T0, N = |V |. A ball packing is a positive function on V ,

r : V → R+, such that for each ijkl ∈ T3, by defining the length lij = ri + rj , ijkl can be

realized as a geometric tetrahedron in R3. Denote

Qijkl = (
1

ri
+

1

rj
+

1

rk
+

1

rl
)2 − 2(

1

r2i
+

1

r2j
+

1

r2k
+

1

r2l
).

The classical Descartes’ circle theorem tells us ijkl forms a geometric tetrahedron if and

only if Qijkl > 0. Denote the space of all ball packings by

MT = {r ∈ RN+ : Qijkl > 0, ∀ijkl ∈ T3}.
1



2 SONG DAI, HUABIN GE

Comparing with the smooth case, we may regard r2i as a discrete version of Riemannian

metric g, and regard Vol =
N∑
i=1

r3i as a discrete version of volume. Denote αijkl by the solid

angle at the vertex i in a tetrahedron ijkl. The combinatorial curvature is defined as

Ki = 4π −
∑

ijkl∈T3

αijkl.

Denote Ri = Ki

r2i
and Rav =

N∑
i=1

Kiri/Vol. Ri is called the R-curvature. It can be regarded

as the scalar curvature due to the scaling property. The Cooper-Rivin functional is defined

as S(r) =
N∑
i=1

Kiri. It may be regarded as the Einstein-Hilbert functional E(g) =
∫
RdV .

Based on these analogue, Ge and Xu [11] introduced the following discrete Yamabe flow:

r′i = −Riri,(1)

and the normalized discrete Yamabe flow:

r′i = (Rav −Ri)ri.(2)

In [11], Ge and Xu showed that the flows (1) and (2) are similar to the smooth (normalized)

Yamabe flow in many aspects.

Inspired by [1, 16][5]-[7], Xu [19] gave a natural extension α̃ijkl of the solid angle αijkl.

Roughly speaking, for ijkl ∈ T3, if ri is small enough such that Qijkl ≤ 0, then we define

α̃ijkl = 2π and 0 for others. Ge, Jiang and Shen [8] verified this extension is C0-continuous

in RN+ . We call r a real ball packing metric if r ∈ MT , a virtual ball packing metric if

r ∈ RN+ \MT . We will discuss the extension in more detail in Section 2.

By extending the solid angles, we extend the curvature Ki to K̃i, and also to other

terms, say R̃i, R̃av, S̃(r). Then we introduce the extended discrete Yamabe flow on RN+
r′i = −R̃iri(3)

and its normalization

r′i = (R̃av − R̃i)ri.(4)

Remark 1.1. Let r(t) be a solution to (3), then r̄(t̄) = c(t)r(t), where c(t) = e
∫ t
0 R̃av(s)ds,

t̄ =
∫ t
0 c

2(s)ds, gives a solution to (4). Conversely, let r(t) be a solution to 4), then

r̄(t̄) = c(t)r(t), where c(t) = e−
∫ t
0 R̃av(s)ds, t̄ =

∫ t
0 c

2(s)ds, gives a solution to (3).

Due to the above remark, we mainly study the flow (4). First, we show the uniqueness.

Theorem 1.2. Given an initial r(0), the solution to the flow (3) or (4) is unique.

Remark 1.3. The extension is just C0, so we can’t directly apply the standard ODE theory

to get the uniqueness result. We use Ge-Hua’s [4] mollifying method. We point that this

method also yields an affirmative answer to the uniqueness problem proposed in [8].
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Next, we consider the long time behavior of (4). Let ri(t), t ∈ [0, T ) be its solution,

with maximal existence time T ≤ +∞. For the extended flow (4), the singularity happens

only when ri degenerates to 0. We show that if a singularity happens in finite time, then

not only ri degenerates, but also rj degenerates simultaneously for some j adjacent to i.

Theorem 1.4. Given a triangulated closed 3-manifold (M, T ). Let r(t) be a solution to

the extended flow (4). Suppose the maximum existence time T is finite. Then there exists

an edge ij, such that ri(tn)→ 0, rj(tn)→ 0 for some tn → T .

For each vertex i, set deg3(i) = #{ijkl ∈ T3}. If min
i∈V

deg3(i) ≥ 23, we show the solution

to the extended flow (4) exists on [0,+∞), which partly confirm the Conjecture 1 in [11].

Theorem 1.5. Given a triangulated closed 3-manifold (M, T ), suppose min
i∈V

deg3(i) ≥ 23.

Let r(t) be a solution to the extended flow (4). Then the maximum existence time T = +∞.

Last, we consider the convergence behavior of the extended flow.

Definition 1.6. Let r(t) be a solution to the flow (4), T be the maximal existence time.

If r(t) is precompact in RN+ , we call r(t) a non-singular solution (in this case T = +∞).

We can show that for the non-singular solution, the flow sub-converges to a constant

R-curvature metric r̂. But unlike the non-extended case, we can’t directly check whether

r̂ is an attractor by using the linearization since the extension is just C0.

We give two sufficient conditions for a solution to (4) being non-singular. Denote

S3 = {r ∈ RN+ : Vol = 1}, Lc = {r ∈ RN+ : S̃(r) ≤ c}.

Definition 1.7. Given a triangulated closed 3-manifold (M, T ) with ball packings. Assume

{c : Lc ∩ S3 is compact} is non-empty. Define

Θ(T ) = sup{c : Lc ∩ S3 is compact}.

The invariant Θ(T ) plays the similar role as χ(r̂, T ) in [8]. One may regard Θ(T ) as an

energy gap. The solution is non-singular under the “energy gap” condition, which reads

as, the initial “energy”, i.e. the extended Cooper-Rivin functional, is smaller than Θ(T ).

Theorem 1.8. Suppose {c : Lc ∩ S3 is compact} is non-empty. For an initial data r(0),

if S̃(r(0)) ≤ Θ(T ), then r(t) is a non-singular solution to the flow (4).

We say T is regular, if deg3(i) are all equal. For a regular triangulation, the packing with

all ri = 1 has constant curvature 4π − deg3(i)(3 cos−1 1
3 − π). In order for this curvature

to be zero, deg3(i) ≈ 22.8. If deg3(i) ≥ 23 for all i, we say T is big. The following theorem

says that a solution is non-singular under the “big regular triangulation” condition.

Theorem 1.9. Assume deg3(i) are all equal and no less than 23. Let r(t) be the unique

solution to the extended flow (4). Then r(t) is non-singular. Moreover, r(t) converges

exponentially fast to a ball packing with all radii equal (and hence constant curvature).
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Organzition: We organize the article as follows. In Section 2, we recall some facts on the

extended solid angle and extended (normalized) discrete Yamabe flow. In Section 3, we

prove our main results. In Section 3.1, we consider the uniqueness and show Theorem 1.2.

In Section 3.2, we consider the long time existence, and show Theorem 1.4 and Theorem

1.5. In Section 3.3, we consider the convergence, and show Theorem 1.8 and Theorem 1.9.

Acknowledgement: The first author wish to thank W. Jiang for helpful discussions. The

first author is supported by NSFC grant No. 11601369. The second author is supported

by NSFC under grant No. 11501027 and No. 11871094.

2. extensions

Let (M, T ) be a triangulated closed 3-manifold with real or virtual ball packings r ∈ RN+ .

Recall MT is the set of all real ball packings, and Cooper and Rivin’s functional S(r) is

originally defined on MT . One important feature of S is the locally convexity.

Proposition 2.1 (convexity; [3, 14, 17]). Hess S is semi-positive of rank N−1. Its kernel

is spanned by r.

From Proposition 2.1, S is convex locally. However, its definition domain MT is not a

convex set. This is the main difficulty to get global properties for the energy S. Ge, Jiang

and Shen [8] overcame this difficulty by the extension method initialled in [1][16]. We

recall the extension method and quote some useful results obtained in [8]. For ijkl ∈ T3,
if Qijkl > 0, then define the extended solid angle α̃ijkl = αijkl. If Qijkl ≤ 0, then there

must be a strictly minimal one among {ri, rj , rk, rl}, say ri, then define α̃ijkl = 2π and 0

for others. Together with Proposition 6 in [14], Ge, Jiang and Shen proved

Proposition 2.2 (extension; [8]). The extended solid angle α̃ijkl is a C0 continuous ex-

tension of the solid angle αijkl.

For the extended solid angle α̃ijkl, Ge, Jiang and Shen [8] obtained deep comparison

principles. Denote ᾱ = 3 cos−1 1
3 − π by the solid angle of a regular tetrahedron (i.e. a

tetrahedron whose six edge lengthes are all equal).

Proposition 2.3 (comparison principle; [8]). For ijkl ∈ T3, if ri = min{ri, rj , rk, rl},
then α̃ijkl ≥ ᾱ. Similarly, if ri = max{ri, rj , rk, rl}, then α̃ijkl ≤ ᾱ.

From the extension of the solid angles, the extended scalar curvature is defined as

K̃ = 4π −
∑

ijkl∈T3

α̃ijkl.

Similarly, we define R̃i, R̃av and S̃. Although the extension of α̃ijkl is just C0-continuous,

the extended energy S̃ is C1-smooth.

Proposition 2.4 ([8]). S̃ is a C1-smooth convex extension of S to RN+ with ∂S̃
∂ri

= K̃i.
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Next we focus on the extended flows and prove some facts. For more results on the non-

extended flow, one may refer [11]. Recall the extended discrete Yamabe flow is r′i = −R̃iri,
and the normalized one is r′i = (R̃av − R̃i)ri. Obviously, the extended flows coincide with

the non-extended flows whenever the solution r(t) lies in MT . Consider the volume Vol

and the energy S̃, we have

Lemma 2.5. Along the the extended normalized discrete Yamabe flow (4), the volume Vol

is invariant and the energy S̃ is decreasing and uniformly bounded.

Proof. By direct calculation d
dtVol =

N∑
i=1

r2i (R̃av − R̃i)ri = 0. And

dS̃
dt

=
N∑
i=1

K̃i(R̃av − R̃i)ri =
N∑
i=1

r3i (R̃av − R̃i)R̃i.

Since
N∑
i=1

r3i (R̃av − R̃i) = 0, we have dS̃
dt = −

N∑
i=1

r3i (R̃av − R̃i)2 ≤ 0. To see |S| ≤ C, we

assume V ≡ 1, then

|S̃| =
∣∣∣ N∑
i=1

K̃iri

∣∣∣ ≤ ( N∑
i=1

|K̃i|
3
2

) 2
3
( N∑
i=1

r3i

) 1
3 ≤ C,

since the curvature K̃i are uniformly bounded only depending on T . �

Remark 2.6. The convexity of S̃ plays a crucial role in [8] since the restriction of S̃ on

{ri > 0 :
∑
ri = 1} is also convex. But unfortunately, we don’t have the convexity of S̃ on

{ri > 0 :
∑
r3i = 1} or on {ri > 0 :

∑
r2i = 1}.

3. Main Results

3.1. Uniqueness. In this section, we show the uniqueness of the solution to the flow (3)

and the flow (4). Notice that as a function of r, Rav and Ri are C0, not Lipschitz. So we

cannot apply the standard ODE theory directly.

First we show the uniqueness of the (unnormalized) flow (3), we use the method in [4].

Theorem 3.1. Given an initial r(0), the solution to the flow (3) is unique.

Proof. Let w = w(r) given by wi = 2
3r

3
2
i and r = r(w) be the inverse. Denote

Ŝ(w) = S̃(r(w)). Then equaition (3) becomes

w′i = −∇wi Ŝ.(5)

Suppose r1(t), r2(t) are two solutions to the equation (3) with the same initial value for

t ∈ [0, t0]. Let w1(t),w2(t) be the corresponding solutions to the equation (5). We claim

there exists a positive constant A such that for t ∈ [0, t0],

(∇wŜ(w1)−∇wŜ(w2)) · (w1 −w2) +A|w1 −w2|2 ≥ 0.
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To see this, set φε(r) = 1
εN
φ(rε ) be the standard mollifier with

φ(r) =

{
Ce
− 1

1−|r|2 , |r| < 1,

0, |r| ≥ 1,

where C is chosen such that
∫
φ = 1. Set S̃ε = S̃ ∗ φε defined on (ε,+∞)N . Since [0, t0] is

compact, all the components of r1(t), r2(t) are away from zero. Hence for ε small enough,

S̃ε is well defined along the flow for t ∈ [0, t0]. From Proposition 2.4, S̃ is a C1 convex

function, then S̃ε is smooth convex on (ε,+∞)N and

S̃ε → S in C1, on every compact set of RN+ , ε→ 0.

Moreover,

∇S̃ε = ∇S̃ ∗ φε = K̃ ∗ φε, on (ε,+∞)N .

Set Ŝε(w) = S̃ε(r(w)). Then

∇wŜε = ∇rS̃ε
∂r

∂w
.

∇wiwj Ŝε =
∂2S̃ε
∂ri∂rj

dri
dwi

drj
dwj

+
∂S̃ε
∂ri

∂2ri
∂wi∂wj

=
∂2S̃ε
∂ri∂rj

dri
dwi

drj
dwj

+ (K̃i ∗ φε)
d2ri
dw2

i

δij .

Since [0, t0] is compact, each term of (K̃i ∗ φε)d
2ri
dw2

i
δij is bounded. Then there exists a

constant A such that

|(K̃i ∗ φε)
d2ri
dw2

i

| ≤ A.

From the convexity of S̃ε, we have as quadratic forms, ∇2Ŝε ≥ −AI. For t ∈ [0, t0], w1,w2

lie in a compact convex set. Then

(∇wŜε(w1)−∇wŜε(w2)) · (w1 −w2) +A|w1 −w2|2 ≥ 0.

This is from the fact

∇wŜε(w1)−∇wŜε(w2) =

∫ 0

1

d

dt
∇wŜε(tw1 + (1− t)w2)dt.

Let ε→ 0, the claim follows.

Consider the function h(t) = |w1(t)−w2(t)|2. Then

h′(t) = −2(w1(t)−w2(t)) · (∇wŜ(w1(t))−∇wŜ(w2(t)))

≤ 2A|w1(t)−w2(t)|2 = 2Ah(t)

Hence h(t) ≤ h(0)e2At for t ∈ [0, t0]. Since h(0) = 0, h(t) ≡ 0 on [0, t0]. Since t0 is

arbitrary, we finish the proof. �
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Next, we consider the normalized flow (4). The uniqueness is basically from the equiv-

alence between the flow (3) and (4), which is explained in Remark 1.1.

Theorem 3.2. Given an initial r(0), the solution to the flow (4) is unique.

Proof. Let r1(t), r2(t) be two solutions of (4) with the same initial data. We use r1,i to

denote the value of r1 at the vertex i, and also for other terms. As in Remark 1.1, set

r̄1(t̄) = c1(t1(t̄))r1(t1(t̄)), r̄2(t̄) = c2(t2(t̄))r2(t2(t̄))

where

c1(t) = e−
∫ t
0 R̃1,av(t)dt, c2(t) = e−

∫ t
0 R̃2,av(t)dt, t̄ =

∫ t1

0
c21(s)ds =

∫ t2

0
c22(s)ds

Then r̄1(t̄) and r̄2(t̄) are two solutions of the equation (3). From Theorem 3.1, r̄1(t̄) =

r̄2(t̄). Then we have r1,i(t1(t̄)) = f(t̄)r2,i(t2(t̄)), where f(t̄) is independent of i. By taking

the t̄ derivative, we obtain

1

c21
(R̃1,av − R̃1,i)r1,i = f ′r2,i + f

1

c22
(R̃2,av − R̃2,i)r2,i.

Then

f ′ + (
R̃2,av − R̃2,i

c22
− R̃1,av − R̃1,i

c21
)f = 0.

Notice that for fixed t̄, r1 is a multiple of r2, so K̃1,i = K̃2,i. And R̃1,i = 1
f2
R̃2,i, Then

f ′ + (
1

c22
− 1

(c22)
1
f2 f2

)(R̃2,av − R̃2,i)f = 0.

Since R̃2,av = (
∑
R̃2,ir

3
2,i)/(

∑
r32,i), we obtain f ′ = 0. Since f(0) = 1, we have f(t) ≡ 1.

So we finish the proof. �

Remark 3.3. In [8], Ge, Jiang and Shen proposed the uniqueness problem on the extended

combinatorial Yamabe flow r′i = (λ̃ − K̃i)ri. One can show this uniqueness by using the

similar method in the proof of Theorem 3.1 and Theorem 3.2.

3.2. Long time existence. In this section, we consider the long time behavior of the

flow (3) and the flow (4). First we investigate the singularities in finite time. In [11], Ge

and Xu introduced two kinds of singularities for the (non-extended) flow (1) and (2).

Definition 3.4. We say flow (1) or (2) develops a removable singularity if there exists

a sequence of tn → T and a tetrahedron {ijkl} ∈ T4 such that Qijkl(tn) → 0. We say

flow (1) or (2) develops an essential singularity if there exists a sequence of tn → T and

a vertex i such that ri(tn)→ 0.

Similarly, we define the essential singularity for the extended flow (3) and (4). Notice

that for the extended flow, the “removable singularity” is not a singularity. We only need

to study the formation of the essential singularities for the extended flows.
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Theorem 3.5. Given a triangulated closed 3-manifold (M, T ). Let r(t) be a solution to

the flow (3) or (4). Suppose the maximum existence time T is finite. Then there exists

an edge ij, such that ri(tn)→ 0, rj(tn)→ 0 for some tn → T .

Proof. Since for the extended flow, there is no removable singularity, if the maximum

existence time T is finite, it must develop an essential singularity, i.e. there is a vertex i

such that lim
t→T

ri(t) = 0. If for all vertices j adjacent to i, lim
t→T

(ri + rj)(t) > 0, then for ri

small enough, ri must be the unique smallest one in {ri, rj , rk, rl} for {ijkl} ∈ T3. Then

from [8], Qijkl < 0 and by the definition of extended solid angle, α̃ijkl = 2π. Since the

manifold is without boundary, we have deg3 ≥ 2. So the curvature Ki = 4π−deg3(i)2π ≤
0, which means

for (3) − R̃i ≥ 0, for (4) R̃av,i − R̃i ≥ −C, C > 0

where −C is the lower bound of R̃av,i only depending on T , see Lemma 2.5. To summarize,

there is a constant ε, ε ≤ ri(0), such that if ri(t) ≤ ε then r′i(t) ≥ −Cri(t) at t. Then

ri(t) ≥ εe−CT for t ∈ [0, T ).

In fact, for t < T , suppose ri(t) < ε. Denote t1 = inf{s : 0 ≤ s < t, ri(s) ≤ ε}, then

ri(t1) = ε. So (ri(t)e
Ct)′ ≥ 0 for t ∈ [t1, t], which implies ri(t) ≥ ri(t1)e

−Ct1 ≥ εe−CT . It

is a contradiction. �

Remark 3.6. Theorem 3.5 tells us when a singularity is developed, the formation must

be a tetrahedron collapsing to a segment, but not to a triangle.

Remark 3.7. Theorem 3.5 is obvious for the non-extended flows. In fact, if only ri
degenerates but no rj degenerates for ij ∈ T1, then the flow must meet the removable

singulary before the essential singularity.

Next, we give a combinatorial condition to ensure the long time existence to the flow

(4).

Theorem 3.8. Given a triangulated closed 3-manifold (M, T ), suppose min
i∈V

deg3(i) ≥ 23.

Let r(t) be a solution of the extended flow (4). Then the maximum existence time T is

+∞.

Proof. Consider f(t) = min
i
ri(t). Then f(t) is piecewise C1. Suppose on the interval

[t1, t2], f(t) = ri(t). For ijkl ∈ T3, since ri is the minimal, from Proposition 2.3, α̃ijkl ≥
ᾱ = 3 cos−1 1

3 − π. Then K̃i = 4π −
∑
α̃ijkl ≤ 4π − deg3 ᾱ < 0. Then r′i(t) ≥ −Cri(t).

Hence we obtain f(t) ≥ f(0)e−Ct. So we finish the proof. �
In [11], Ge and Xu conjectured

Conjecture 3.9. For the discrete Yamabe flow (2), it won’t develop an essential singu-

larity in finite time.
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As a corollary of Theorem 3.8, we confirm this conjecture in the case min
i∈V

deg3(i) ≥ 23.

Corollary 3.10. Given a triangulated closed 3-manifold (M, T ), suppose min
i∈V

deg3(i) ≥
23. Then the flow (2) won’t develop an essential singularity in finite time.

Proof. In fact, if r(t) develops an essential singularity in finite time T , it then cannot

develop a removable singularity before T . So the flow (2) coincide with the extended flow

(4), then Theorem 3.8 applies. �

3.3. Convergence. In the last part we study the convergence of the flow. First we

introduce the notion of the non-singular solution.

Definition 3.11. Let r(t) be a solution to the flow (4), T be the maximal existence time.

If r(t) is precompact in RN+ , we call r(t) a non-singular solution. Obviously, in this case,

T must be +∞.

Proposition 3.12. Let r(t) be a non-singular solution to the flow (4). Then there exists

a subsequence tn → +∞, such that r(tn) converges to a real or virtual ball packing metric

r∞ with constant extended R-curvature.

Proof. From Lemma 2.5, since S̃ is decreasing and bounded, it must have a limit S̃∞.

Then there exists tn such that S̃(n+1)−S̃(n) = S̃ ′(tn)→ 0. Since S̃ ′ = −
N∑
i=1

r3i (R̃av−R̃i)2,

we have R̃av(tn) − R̃i(tn) → 0. Since r(tn) is bounded, we may choose a subsequence of

tn, also denoted as tn, such that r(tn) converges, then r(tn) converges to a ball packing

metric with constant extended R-curvature. �

Remark 3.13. Notice that the non-singular solution only gives the subsequence conver-

gence. For the convergence on time t, in the non-extended setting, if the limit of the sub-

sequence is an attractor, then the subsequence convergence will become the convergence.

One way to show the limit is an attractor is to show the linearized operator of (Rav−Ri)ri
is negative definite, as in [8]. But in the extended setting, (R̃av− R̃i)ri is just C0, we can’t

do linearization. So we don’t know whether the subsequence convergence can become the

convergence.

Now we give two sufficient conditions for r(t) being non-singular. Denote

S3 = {r ∈ RN+ :

N∑
i=1

r3i = 1}, Lc = {r ∈ RN+ : S̃(r) ≤ c}.

Definition 3.14. Given a triangulated closed three manifold (M, T ). Suppose the set

{c : Lc ∩ S3 is compact} is non-empty. Define

Θ(T ) = sup{c : Lc ∩ S3 is compact.}.
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Remark 3.15. The invariant Θ(T ) plays the similar role as χ(r̂, T ) in [8], which can be

regarded as an energy gap for the energy S̃.p

Theorem 3.16. Suppose {c : Lc ∩S3 is compact} is non-empty. For an initial data r(0),

if S̃(r(0)) ≤ Θ(T ), then r(t) is a non-singular solution to flow (4).

Proof. If d
dt

∣∣
t=0

S̃ = 0, then from the proof of Lemma 2.5, we see R̃i = R̃av for every i,

which is a constant. And from the uniqueness r(t) ≡ r(0). Now we assume d
dt

∣∣
t=0

S̃ 6= 0,

that means d
dt S̃|t=0 < 0. So after a short while t1, S̃(r(t1)) < Θ(T ), which implies LS̃(r(t1))

is compact. From Lemma 2.5, r(t) always lie in LS̃(r(t1)) for t > t1. So r(t) is a non-singular

solution. �
From Theorem 3.8, we see if deg3(i) ≥ 23 for all i ∈ V , the we have the long time

existence. Furthermore if all the deg3 are all equal, then we obtain the non-singularity.

Theorem 3.17. Given a triangulated closed 3-manifold (M, T ), suppose deg3(i) are all

equal and not less than 23. Let r(t) be a solution to the flow (4). Then r(t) is non-singular.

Proof. Consider f(t) =
min
i
ri(t)

max
j
rj(t)

. Then f(t) is piecewise C1. Suppose on the interval

[t1, t2], f(t) = ri(t)
rj(t)

. Consider ln f , we have

f ′(t) = f(t)
(K̃j(t)

r2j (t)
− K̃i(t)

r2i (t)

)
.

Since ri is minimal and rj is maximal, from [8], for iabc, jpqr ∈ T3, we have solid angle

α̃iabc ≥ ᾱ ≥ α̃jpqr, where ᾱ = 3 cos−1 1
3 − π. Hence

K̃j = 4π −
∑

α̃jpqr ≥ 4π −
∑

α̃iabc = K̃i, K̃i ≤ 4π − deg3 ᾱ < 0.

So f ′ ≥ 0. Since Vol =
∑

r3i is invariant, max rj ≥ ( VN )
1
3 . So min ri has a uniformly

positive lower bound. �

Remark 3.18. One may study the extension of the α-flow r′i(t) = sαr
α
i −Ki introduced

in [12], where sα = S/‖r‖α+1, α ∈ R. The results are similar to those in this paper.
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