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ABSTRACT. We study the bi-commutators [T1, [b, T2]] of pointwise multiplication and
Calderón–Zygmund operators, and characterize their Lp1Lp2 → Lq1Lq2 boundedness for
several off-diagonal regimes of the mixed-norm integrability exponents (p1, p2) 6= (q1, q2).
The strategy is based on a bi-parameter version of the recent approximate weak factoriza-
tion method.

1. INTRODUCTION

In this paper we characterise many new estimates for bi-commutators. The classical
commutators have the form [b, T ] : f 7→ bTf − T (bf), where T is a singular integral
operator

(1.1) Tf(x) =

ˆ
Rd
K(x, y)f(y) dy.

The expression (1.1) represents a broad class of linear transformations of functions arising
across analysis. Distinguished special cases are the Hilbert transform H in dimension
d = 1, which has the kernel K(x, y) = 1

x−y , and the Riesz transforms Rj in dimensions

d ≥ 2, which have the kernel Kj(x, y) =
xj−yj
|x−y|d+1 , j = 1, . . . , d.

The Hilbert transform lies in the scope of complex analysis, and the Hilbert commu-
tator [b,H] is connected to Hankel operators. A classical theorem of Nehari [42] char-
acterises the boundedness of the Hilbert commutators [b,H] via this link. On the other
hand, the result of Coifman–Rochberg–Weiss [7] brings the commutators to the heart of
harmonic analysis by showing that

(1.2) ‖b‖BMO . ‖[b, T ]‖Lp(Rd)→Lp(Rd) . ‖b‖BMO, p ∈ (1,∞),

for a class of non-degenerate singular integrals T on Rd. Here BMO stands for the usual
space of functions of bounded mean oscillation:

‖b‖BMO := sup
I

 
I
|b− 〈b〉I |,

where the supremum is over all cubes I ⊂ Rd and 〈b〉I =
ffl
I b := 1

|I|
´
I b.

The off-diagonal situation [b, T ] : Lp → Lq, p 6= q, is also completely understood. In
the case 1 < p < q < ∞, a two-sided estimate like (1.2) with BMO replaced by the
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homogeneous Hölder space Ċ0,α,

‖b‖Ċ0,α := sup
x 6=y

|b(x)− b(y)|
|x− y|α

, α := d
(1

p
− 1

q

)
,

was obtained by Janson [30]. The remaining range with 1 < q < p <∞was characterised
only very recently in [24]:

‖[b, T ]‖Lp→Lq ∼ ‖b‖L̇r := inf
c∈C
‖b− c‖Lr ,

1

r
:=

1

q
− 1

p
.

As the commutator annihilates constants, all of the spaces above also have the feature
that they do not see constants. This philosophy is more complicated in the bi-parameter
setting where the bi-commutator annihilates all functions that depend only on one of the
variables (x1, x2) ∈ Rd1 × Rd2 .

The motivation for commutator estimates stems from their many applications and con-
nections to modern harmonic analysis. For example, the Lp → Lp characterization yields
factorizations for Hardy spaces [7] and implies various div-curl lemmas relevant for com-
pensated compactness [8]. In [24], the off-diagonal Lp → Lq boundedness for q < p is
connected to a conjecture of Iwaniec [29] about the prescribed Jacobian problem.

In this paper, we address the question of the off-diagonal Lp(Rd)→ Lq(Rd) bounded-
ness of the bi-commutators [T1, [b, T2]], where each Ti is a Calderón–Zygmund operator
on Rdi and Rd is viewed as the bi-parameter product space Rd = Rd1 × Rd2 . Due to the
product space nature of the problem, it is natural to introduce an additional level of gen-
erality by allowing different integrability exponents in the x1 and x2 coordinates, thereby
leading to the question of Lp1x1L

p2
x2 → Lq1x1L

q2
x2 boundedness. In contrast to the three qual-

itatively different regimes p < q, p = q and p > q for the commutator, there will now
be nine different situations depending on the relative size of both p1, q1 on the one hand,
and p2, q2 on the other hand.

Our question is the natural bi-parameter analogue of [24]. In fact, [24] already sug-
gests a naive conjecture, where in each regime of the exponents, we should have the
corresponding natural vector-valued space. For example, in the case

p1 < q1 and p2 = q2

we could expect the space Ċ0,β1
x1 (BMOx2) and in the case

p1 = q1 and p2 < q2

we could expect the space BMOx1(Ċ0,β2
x2 ), where βi := di

(
1
pi
− 1

qi

)
. Somewhat strikingly,

we show that the naive conjecture is not always the right one. In the second case, the
space Ċ0,β2

x2 (BMOx1), where the order of the spaces Ċ0,β2
x2 and BMOx1 has been switched

to an unexpected order, provides the correct sufficient and necessary condition.
The following Theorem 1.3 is our main result. It verifies the naive conjecture in some

cases and proves an unexpected necessary and sufficient condition in some other cases.
Some characterisations are left for future work as they do not appear to be amenable to
our current methods. The stated theorem is a simplified and shortened version of the
obtained new estimates – for example, the symmetry assumption is used here purely for
convenience in order not to have to include partial adjoints [T ∗1 , [b, T2]] in the estimates.
In the three lower-right cases of the table of Theorem 1.3, where only an upper bound
is stated, we also obtain certain related lower bounds, but these do not admit a simple
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formulation in terms of classical function spaces, and are therefore omitted in this Intro-
duction.

1.3. Theorem. Let T1 and T2 be two symmetrically non-degenerate CZOs on Rd1 and Rd2 ,
respectively, b ∈ L2

loc(Rd1+d2) and p1, p2, q1, q2 ∈ (1,∞). Let

βi := di

( 1

pi
− 1

qi

)
, if pi < qi;

1

ri
:=

1

qi
− 1

pi
, if pi > qi.

Then ‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2

has upper and lower bounds according to the following table:

p1 < q1 p1 = q1 p1 > q1

p2 < q2 ∼ ‖b‖
Ċ

0,β1
x1

(Ċ
0,β2
x2

)
∼ ‖b‖

Ċ
0,β2
x2

(BMOx1 )
. ‖b‖

L̇
r1
x1

(Ċ
0,β2
x2

)

& ‖b‖
Ċ

0,β2
x2

(L̇
r1
x1

)

p2 = q2 ∼ ‖b‖
Ċ

0,β1
x1

(BMOx2 )
. ‖b‖BMOprod

. ‖b‖L̇r1x1 (BMOx2 )

& ‖b‖BMOrect

p2 > q2 ∼ ‖b‖
Ċ

0,β1
x1

(L̇
r2
x2

)
. ‖b‖BMOx1 (L̇

r2
x2

) . ‖b‖L̇r1x1 (L̇
r2
x2

)

As one can see from the table, all of the four cases, where we obtain a complete charac-
terization, are about off-diagonal mapping properties in the sense that (p1, p2) 6= (q1, q2).
The diagonal case, involving the product BMO space of Chang and Fefferman [5, 6],
has been studied by Ferguson–Sadosky [14] and Ferguson–Lacey [15], with further ex-
tensions appearing in [32, 33, 44]. Very recently, the celebrated characterization in [15]
has been found to contain a gap, see [21], which remains open at the time of writing,
and reappears in several subsequent works on the topic. The original counterexample
to a key step in [15] is presented in [21], and we provide another counterexample in
Appendix A. It should be observed that these are only counterexamples to the existing
proofs, not to the Ferguson–Lacey characterization itself, so that the truth of the actual
result remains open. The ongoing quest to repair the Ferguson–Lacey characterization
significantly adds to the interest in finding alternative approaches to the difficult lower
bounds for bi-commutators, and it might be worthwhile investigating whether our new
bi-parameter weak factorization methods could also shed some light on the diagonal
case and the product BMO space.

While it is clear that the rectangular oscillations appearing in this paper cannot, as
such, directly characterize the product BMO norm involving general open sets, even the
product BMO norm can be obtained by suitably dualizing against product Hardy space
atoms using the product space theory of Chang and Fefferman. It is not unthinkable
that one could directly construct suitable weak factorizations even for these complicated
atoms; presumably, this should involve considerations in the spirit of Journé’s covering
lemma for product spaces [31] or its variants [4, 46]. Even if the gap in [15] is eventually
fixed by modifying the original proof, a shift of paradigm from the Fourier-analytic meth-
ods of [15, 32, 33, 44] to real-variable methods of our approach would have other posi-
tive effects – for example, it could aid the development of related commutator bounds
in other settings like those of [11, 12, 13]. For the time being, our result concerning the
rectangular BMO lower bound is in fact the best that is available in the diagonal case.
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It is important to realize that commutator upper bounds are expected for all bounded
singular integrals, while the lower bounds obviously require some non-degeneracy. All
our lower bounds hold under weak non-degeneracy assumptions on the operators, and
neither the homogeneity nor the translation-invariance of the operators, crucially used
in [15, 32], is needed here.

There has been a vast amount of other recent activity regarding both one-parameter
and multi-parameter commutators. For example, the two-weight commutator estimates,
which include [18, 19, 20, 24, 34, 35, 36, 37], have been one of the main lines of develop-
ment. Commutators are also actively studied in other settings: see for example [11] for
the flag setting, [12] for the Zygmund dilation setting and [13] for the Bessel setting.

The motivation for this paper is not just the results in Theorem 1.3 but also the asso-
ciated methodology. We develop some interesting bi-parameter versions of the flexible
one-parameter commutator methods [24]. In more detail, our strategy requires us to de-
velop new bi-parameter methods that exploit the following known interplay between
commutator bounds and weak factorizations. The logic of this connection is that while
Nehari’s theorem [42] may be seen as a corollary of the classical factorization of H1(D),
Coifman, Rochberg and Weiss [7] reversed the reasoning and deduced from the com-
mutator estimate (1.2), using duality, a weak factorization (involving sums of products,
rather than just products) of the real-variable Hardy space H1(Rd). This connection be-
tween commutators estimates and factorizations of functions stems from identities like

(1.4) 〈[b, T ]f, g〉 = 〈b, Tf · g − f · T ∗g〉.

Recently, in [24] the idea was to reverse the reasoning again, and to first directly prove
a suitable factorization, and then use it to prove the desired commutator estimate. This
leads to the approximate weak factorization method, where a function h is expanded in
the form

(1.5) h =
h

T ∗g
T ∗g =: −f · T ∗g = −f · T ∗g + Tf · g + h′, h′ := −Tf · g,

and a suitable g above allows to absorb the error ‖h′‖ � ‖h‖.
Instead of (1.4), in the bi-parameter setting we have

〈[T1, [b, T2]]f, g〉 = 〈b, T2f · T ∗1 g − f · T ∗1 T ∗2 g − T1T2f · g + T1f · T ∗2 g〉.

We develop our new weak factorizations in Section 4. In Lemma 4.4 we expand a func-
tion f supported on a rectangle R = I × J and satisfying

´
I f =

´
J f = 0 using the

approximate weak factorization logic. This produces more error terms, with more com-
plicated supports, when compared to the one-parameter analogue (1.5), and makes the
repeated use of the factorization more tricky. Nevertheless, we manage to use our bi-
parameter approximate weak factorization to e.g. prove Theorem 4.18, which is the key
to many commutator lower bounds.

Here is an outline of the paper. After the short preliminaries of Section 2 we move on
to the oscillatory characterizations of various function spaces in Section 3. These func-
tion space characterizations will be combined with the weak factorizations of Section 4
to prove our necessary conditions for commutator boundedness in Section 5. Section 6
collects all the sufficient conditions. Sections 5 and 6 combined give Theorem 1.3. Section
7 records some additional vector-valued estimates for commutators that are of indepen-
dent interest – see e.g. Theorem 7.12.
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2. PRELIMINARIES

2.A. Basic notation. We denote A . B if A ≤ CB for some absolute constant C. The
constant C can at least depend on the dimensions of the appearing Euclidean spaces,
on integration exponents, and on various Banach space constants. It can also depend
on various other fixed constants, like those related to singular integrals, and so on. We
denote A ∼ B if B . A . B.

When we consider Rd as a bi-parameter product space Rd = Rd1×Rd2 we often denote
the mixed-norm space Lp1(Rd1 ;Lp2(Rd2)) by Lp1x1L

p2
x2 – this is suggested by the notation

x = (x1, x2) ∈ Rd = Rd1 × Rd2 . We also always identify f : Rd → C satisfying(ˆ
Rd1

(ˆ
Rd2
|f(x1, x2)|p2 dx2

)p1/p2
dx1

)1/p1
<∞

with the function φf ∈ Lp1(Rd1 ;Lp2(Rd2)), φf (x1) = f(x1, ·).
Often integral pairings – denoted with the bracked notation 〈f, g〉 =

´
fg – need to be

taken with respect to one of the variables only. For example, if f : Rd → C and h : Rd1 →
C, then 〈f, h〉1 : Rd2 → C is defined by

〈f, h〉1(x2) =

ˆ
Rd1

f(y1, x2)h(y1) dy1.

We denote averages by

〈f〉A =

 
A
f :=

1

|A|

ˆ
A
f,

where |A| is the Lebesgue measure of the set A. The indicatator function of a set A
is denoted by 1A. We try to denote cubes in Rdi by Ii, Ji, Li and so on – that is, the
dimension of the cube can be read from the subscript. Various rectangles then take the
form I1 × I2, J1 × J2, etc. The side length of a cube Ii is denoted by `(Ii).

2.B. Singular integrals and commutators. We call

Ki : Rdi × Rdi \ {(xi, yi) ∈ Rdi × Rdi : xi = yi} → C

a standard Calderón-Zygmund kernel on Rdi if we have

|K(xi, yi)| ≤
C

|xi − yi|di

and, for some αi ∈ (0, 1], we have

(2.1) |K(xi, yi)−K(x′i, yi)|+ |K(yi, xi)−K(yi, x
′
i)| ≤ C

|xi − x′i|α

|xi − yi|di+αi

whenever |xi − x′i| ≤ |xi − yi|/2.
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Many of our results hold with (2.1) replaced by a significantly weaker assumption –
see Remark 4.6. However, we do not emphasise this too much as it is not a novelty of
this paper (see e.g. [24]).

A singular integral operator (SIO) is a linear operator Ti on Rdi (initially defined, for
example, on bounded and compactly supported functions) so that there is a standard
kernel Ki for which

〈Tif, g〉 =

¨
Rdi×Rdi

Ki(xi, yi)f(yi)g(xi) dyi dxi

whenever the functions f and g are nice and have disjoint supports. A Calderón–Zygmund
operator (CZO) is an SIO Ti, which is bounded from Lp(Rdi) → Lp(Rdi) for all (equiva-
lently for some) p ∈ (1,∞). The T1 theorem [10] says that an SIO is a CZO if and only
if ˆ

Ii

|Ti1Ii |+
ˆ
Ii

|T ∗i 1Ii | . |Ii|

for all cubes Ii ⊂ Rdi . Here T ∗i is the linear adjoint of Ti. We know a lot about the
structure of a CZO Ti: we can represent Ti with certain dyadic model operators (DMOs)
– see [22, 23]. We will have use for this later.

If b ∈ Lsloc(Rd) for some s ∈ (1,∞) and T is a CZO on Rd, then the pairing

〈[b, T ]f, g〉 = 〈Tf, bg〉 − 〈T (bf), g〉

is well-defined for f, g ∈ L∞c . If Rd = Rd1 × Rd2 and Ti is a CZO on Rdi , we can simi-
larly define 〈[T1, [b, T2]]f, g〉. Then we can ask, via duality, if [T1, [b, T2]] maps Lp1x1L

p2
x2 →

Lq1x1L
q2
x2 . However, when a commutator lower bound is proved, the full norm

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2

is not actually needed. We will define so-called off-support versions of the norm, which
can be defined even if we only have b ∈ L1

loc. In fact, these off-support constants depend
only on the kernels K1 and K2 and not on the CZOs themselves.

When we are given a CZO Ti we always write Ki for its kernel without explicit men-
tion.

3. FUNCTION SPACES AND OSCILLATORY CHARACTERIZATIONS

In our goal of linking the boundedness of the commutator [T1, [b, T2]] with the mem-
bership of b in a suitable function space, a useful intermediate notion is provided by var-
ious oscillatory characterizations of the different function space norms. In this section
we specifically go through all the oscillatory conditions that appear in our commutator
lower bounds.

3.A. One-parameter spaces. We begin by recalling the relevant characterizations in the
one-parameter situation, as this will motivate the necessarily more complicated expres-
sions in the two parameter case.

The case of BMO is most immediate, as the norm is directly given by the oscillatory
quantity

‖b‖BMO(Rd) := sup
I

 
I
|b− 〈b〉I |.
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For the homogeneous Hölder norms

‖b‖Ċ0,α(Rd) := sup
x 6=y

|b(x)− b(y)|
|x− y|α

,

there is a well-known analogous equivalent norm:

3.1. Proposition. We have

‖b‖Ċ0,α(Rd) ∼ sup
I

1

`(I)α

 
I
|b− 〈b〉I |,

where the supremum is over all cubes I ⊂ Rd.

Proof. “&” is immediate, since |b(x) − 〈b〉I | ≤
ffl
I |b(x) − b(y)|dy, where |b(x) − b(y)| .

‖b‖Ċ0,α(Rd)`(I)α for all x, y ∈ I .
For “.”, denote the right-hand side of the claim by C0, and fix x 6= y ∈ Rd. Define

xk := (1− 2−k)x+ 2−ky and yk := (1− 2−k)y + 2−kx, and note that x1 = y1 = 1
2(x+ y).

If Qk(x) := Q(xk, 2
−k|x − y|) is the cube of centre xk and side-length 2 · 2−k|x − y|, we

easily check that Qk+1(x) ⊂ Qk(x) and Qk(x) ⊂ B(x,C2−k|x− y|). Thus, we have

b(x) =

∞∑
k=1

( 
Qk+1(x)

b−
 
Qk(x)

b
)

+

 
Q( 1

2
(x+y), 1

2
|x−y|)

b

and hence∣∣∣b(x)−
 
Q( 1

2
(x+y), 1

2
|x−y|)

b
∣∣∣ ≤ ∞∑

k=1

 
Qk+1(x)

∣∣∣b− 〈b〉Qk(x)

∣∣∣ . ∞∑
k=1

 
Qk(x)

∣∣∣b− 〈b〉Qk(x)

∣∣∣
. C0

∞∑
k=1

`(Qk(x))α . C0|x− y|α
∞∑
k=1

2−kα . C0|x− y|α.

A similar bound for y in place of x and the triangle inequality show that |b(x) − b(y)| .
C0|x− y|α. �

The final space of interest in the one-parameter case is

‖b‖L̇r(Rd) := inf
c
‖b− c‖Lr ,

where the infimum is taken over all constants. For this space we have the following
characterisation – similar estimates already appeared in [24], but we single them out
here as a separate proposition. A collection of cubes S is called γ-sparse if there are
pairwise disjoint subsets E(S) ⊂ S, S ∈ S , with |E(S)| ≥ γ|S|. We can often work with
γ = 1/2 and simply talk about sparseness.

3.2. Proposition. For r ∈ (1,∞) we have

‖b‖L̇r(Rd) ∼ sup
Q
‖b− 〈b〉Q‖Lr(Q) ∼ ‖M#b‖Lr(Rd)

∼ sup
{ ∑
S∈S

λS

ˆ
S
|b− 〈b〉S | : S is sparse,

∑
S∈S

|S|λr′S ≤ 1
}
,

where M#b is the sharp maximal function M#b(x) = supQ3x
ffl
Q |b− 〈b〉Q| and the supremum

is taken over all cubes Q ⊂ Rd.
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Proof. We prove a chain of upper bounds both starting and finishing with ‖b‖L̇r(Rd), and
covering all other expressions as intermediate steps. To begin with, we have

‖b‖L̇r(Rd) . sup
Q
‖b− 〈b〉Q‖Lr(Q) =: C0.

To see this, fix an increasing sequence of cubes (Qi)i that exhaust Rd. Let i ≤ j and write

|〈b〉Qj − 〈b〉Qi | =
(  

Qi

|[〈b〉Qj − b(x)] + [b(x)− 〈b〉Qi ]|r dx
)1/r

≤ |Qi|−1/r(‖b− 〈b〉Qj‖Lr(Qi) + ‖b− 〈b〉Qi‖Lr(Qi))

≤ |Qi|−1/r(‖b− 〈b〉Qj‖Lr(Qj) + ‖b− 〈b〉Qi‖Lr(Qi)) ≤ 2|Qi|−1/rC0.

Thus, (〈b〉Qj )j is a Cauchy sequence and the limit c := limj→∞〈b〉Qj exists. Fatou’s lemma
yields the desired estimate:

‖b‖r
L̇r(Rd)

≤
ˆ
Rd
|b− c|r =

ˆ
lim
j→∞

1Qj |b− 〈b〉Qj |r ≤ lim inf
j→∞

ˆ
Qj

|b− 〈b〉Qj |r ≤ Cr0 .

For a fixed cube Q ⊂ Rd, we have

1Q|b− 〈b〉Q| .
∑
S∈S

1S

 
S
|b− 〈b〉S |

for a suitable sparse subcollection S ⊂ D(Q). Here D(Q) consists of the dyadic subcubes
of Q obtained by dividing Q in the natural way. For this elementary variant of Lerner’s
oscillation formula see e.g. [24, Lemma 3.4]. Using this we now have

‖b− 〈b〉Q‖Lr(Q) .
∥∥∥ ∑
S∈S

1S

 
S
|b− 〈b〉S |

∥∥∥
Lr(Rd)

.
( ∑
S∈S

|S|
[  

S
|b− 〈b〉S |

]r)1/r
,

where the last step is easily verified by dualising with φ ∈ Lr′ and using the definition of
sparseness:

ˆ ( ∑
S∈S

1ScS

)
φ .

∑
S∈S

cS

ˆ
ES

〈φ〉S ≤
ˆ ( ∑

S∈S

1E(S)cS

)
Mφ

≤
∥∥∥ ∑
S∈S

1E(S)cS

∥∥∥
Lr
‖Mφ‖Lr′ .

( ∑
S∈S

|E(S)|crS
)1/r
‖φ‖Lr′ .

(3.3)

Dualizing the `r norm with `r
′
, we find that( ∑

S∈S

[
|S|1/r

 
S
|b− 〈b〉S |

]r)1/r
=
∑
S∈S

λ̃S |S|1/r
 
S
|b− 〈b〉S | =

∑
S∈S

λS

ˆ
S
|b− 〈b〉S |

for suitable coefficients λS with
∑

S∈S |S|λr
′
S =

∑
S∈S λ̃r

′
S ≤ 1.

Next, using sparseness and the definition of the sharp maximal operator, we observe
that given an arbitrary sparse collection S and coefficients λS with

∑
S∈S |S|λr

′
S ≤ 1, we
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have∑
S∈S

|S|λS
 
S
|b− 〈b〉S | .

∑
S∈S

|E(S)|λS inf
z∈S

M#b(z) ≤
ˆ ( ∑

S∈S

1E(S)λS

)
M#b

≤
∥∥∥ ∑
S∈S

1E(S)λS

∥∥∥
Lr′
‖M#b‖Lr =

( ∑
S∈S

|E(S)|λr′S
)1/r′

‖M#b‖Lr ,

where the first factor is bounded by 1. Lastly, we have

‖M#b‖Lr = ‖M#(b− c)‖Lr . ‖b− c‖Lr

for every constant c, and hence ‖M#b‖Lr . ‖b‖L̇r . �

3.B. Bi-parameter spaces. For b ∈ L1
loc and a rectangle R = I1 × I2 we denote

(3.4) oscv1,v2(b, R) := ‖b− 〈b〉I1,1 − 〈b〉I2,2 + 〈b〉R‖Lv1x1L
v2
x2

(R), 1 ≤ vi ≤ ∞.

Homogeneous Hölder spaces. If X is a Banach space with norm | · |X and b : Rd → X , we
define

‖b‖Ċ0,α(X) = sup
x 6=y

|b(x)− b(y)|X
|x− y|α

.

In Rd = Rd1 × Rd2 the natural bi-parameter homogeneous Hölder norm is

‖b‖Ċ0,α,β(Rd) := ‖b‖
Ċ0,α
x1

(Ċ0,β
x2

)
= ‖b‖

Ċ0,β
x2

(Ċ0,α
x1

)

= sup
x1 6=y1

∥∥∥b(x1, ·)− b(y1, ·)
|x1 − y1|α

∥∥∥
Ċ0,β

= sup
x2 6=y2

∥∥∥b(·, x2)− b(·, y2)

|x2 − y2|β
∥∥∥
Ċ0,α

= sup
x1 6=y1
x2 6=y2

|b(x1, x2)− b(x1, y2)− b(y1, x2) + b(y1, y2)|
|x1 − y1|α|x2 − y2|β

.

The following oscillatory characterization holds for this norm.

3.5. Proposition. We have

‖b‖Ċ0,α,β(Rd) ∼ sup
{ 1

`(I1)α`(I2)β
osc1,1(b, R)

|R|
: R = I1 × I2 rectangle

}
.

Proof. We denote the supremum on the right hand side by C0.
“&” is immediate, since for all xi ∈ Ii we have

|b(x1, x2)−〈b〉I1,1(x2)− 〈b〉I2,2(x1) + 〈b〉I1×I2 |

≤
 
I1×I2

|b(x1, x2)− b(x1, y2)− b(y1, x2) + b(y1, y2)|dy1 dy2

. ‖b‖Ċ0,α,β(Rd)`(I1)α`(I2)β.

For “.”, notice that by Proposition 3.1 we have

‖b‖Ċ0,α,β(Rd) = sup
x2 6=y2

∥∥∥b(·, x2)− b(·, y2)

|x2 − y2|β
∥∥∥
Ċ0,α

∼ sup
x2 6=y2

1

|x2 − y2|β
sup
I1

1

`(I1)α

 
I1

|bx2,y2 − 〈bx2,y2〉I1 |,
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where
bx2,y2 = b(·, x2)− b(·, y2).

So we fix x2 6= y2 and a cube I1 ⊂ Rd1 . By expanding b(·, x2) as in the proof of Proposition
3.1 (using the same notation as there) we get

b(·, x2) =
∞∑
k=1

( 
Qk+1(x2)

b(·, z2) dz2−
 
Qk(x2)

b(·, z2) dz2

)
+

 
Q( 1

2
(x2+y2), 1

2
|x2−y2|)

b(·, z2) dz2.

Hence

bx2,y2 =

∞∑
k=1

[
〈b〉Qk+1(x2),2 − 〈b〉Qk(x2),2

]
−
∞∑
k=1

[
〈b〉Qk+1(y2),2 − 〈b〉Qk(y2),2

]
.

We first consider the contribution of the first summand. We have 
I1

∣∣∣[〈b〉Qk+1(x2),2 − 〈b〉Qk(x2),2

]
−
〈[
〈b〉Qk+1(x2),2 − 〈b〉Qk(x2),2

]〉
I1

∣∣∣
=

 
I1

∣∣〈b− 〈b〉I1,1〉Qk+1(x2),2 − 〈b− 〈b〉I1,1〉Qk(x2),2

∣∣
.
 
I1×Qk(x2)

∣∣b− 〈b〉I1,1 − 〈b− 〈b〉I1,1〉Qk(x2),2

∣∣
. C0`(I1)α(2−k|x2 − y2|)β.

Thus, the contribution of the first summand to the average
ffl
I1
|bx2,y2 − 〈bx2,y2〉I1 |, can be

dominated by C0`(I1)α|x2 − y2|β . Likewise, the second summand contributes the same.
Thus, we have established 

I1

|bx2,y2 − 〈bx2,y2〉I1 | . C0`(I1)α|x2 − y2|β

proving that ‖b‖Ċ0,α,β(Rd) . C0 as desired. �

For the norm

‖b‖
Ċ0,α
x1

(BMOx2 )
= sup

x1 6=y1

∥∥∥∥b(x1, ·)− b(y1, ·)
|x1 − y1|β1

∥∥∥∥
BMO(Rd2 )

the following oscillatory characterization holds.

3.6. Proposition. We have

‖b‖
Ċ0,α
x1

(BMOx2 )
∼ sup

{ 1

`(I1)α
osc1,1(b, R)

|R|
: R = I1 × I2 rectangle

}
.

Proof. We denote the supremum on the right hand side by C0.
We again first prove the “&” direction. For all xi ∈ Ii we have

|b(x1, x2)−〈b〉I1,1(x2)− 〈b〉I2,2(x1) + 〈b〉I1×I2 |

=

∣∣∣∣ 
I1×I2

(
b(x1, x2)− b(x1, y2)− b(y1, x2) + b(y1, y2)

)
dy1 dy2

∣∣∣∣
=

∣∣∣∣ 
I1

|x1 − y1|α
(b(x1, x2)− b(y1, x2)

|x1 − y1|α
−
〈b(x1, ·)− b(y1, ·)

|x1 − y1|α
〉
I2

)
dy1

∣∣∣∣
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. `(I1)α
 
I1

∣∣∣b(x1, x2)− b(y1, x2)

|x1 − y1|α
−
〈b(x1, ·)− b(y1, ·)

|x1 − y1|α
〉
I2

∣∣∣dy1.

Then taking the average over I1× I2 and using Fubini we obtain the estimate as desired.
For “.” we fix x1, y1 ∈ Rd1 with x1 6= y1. Similarly as Proposition 3.5 (just let α = 0

there) we see that for all cubes I2 ⊂ Rd2

 
I2

|bx1,y1 − 〈bx1,y1〉I2 | . C0|x1 − y1|α,

where bx1,y1 = b(x1, ·)− b(y1, ·). This proves the claim. �

The final Ċ0,α(X) type space of interest to us is the bi-parameter space Ċ0,α
x1 (L̇rx2).

3.7. Proposition. We have

‖b‖
Ċ0,α
x1

(L̇rx2 )
∼ sup

{ 1

|I1|`(I1)α

∑
S2∈S2

λS2 osc1,1(b, I1 × S2) :

I1 ⊂ Rd1 ,S2 sparse,
∑
S2∈S2

|S2|λr
′
S2
≤ 1
}
,

where I1 ⊂ Rd1 is a cube and S2 is a sparse collection of cubes in Rd2 .

Proof. “&”: We apply Proposition 3.2 to the function b(x1, ·) − 〈b〉I1,1 for each x1 ∈ I1.
This shows that∑
S2∈S2

λS2

ˆ
S2

|b(x1, ·)− 〈b〉I1,1 − 〈b〉S2,2(x1) + 〈b〉I1×S2 |

. ‖b(x1, ·)− 〈b〉I1,1‖L̇rx2 .
 
I1

‖b(x1, ·)− b(y1, ·)‖L̇rx2 dy1 . ‖b‖Ċ0,α
x1

(L̇rx2 )
`(I1)α.

The penultimate estimate is easy to see using Proposition 3.2. Integrating over x1 ∈ I1,
we deduce the claimed bound.

“.”: Denoting byC0 the right-hand side, we need to prove that ‖b(x1, ·)−b(y1, ·)‖L̇rx2 .
C0|x1 − y1|α for all x1 6= y1 ∈ Rd1 . By Proposition 3.2, this is equivalent to

(3.8)
∑
S2∈S2

λS2

ˆ
S2

|b(x1, ·)− b(y1, ·)− 〈b(x1, ·)− b(y1, ·)〉S2 | . C0|x1 − y1|α,

where S2 and λS2 are as in the claim. We then expand b(x1, ·) as in the proof of Proposi-
tion 3.1 (using the same notation as there):

b(x1, ·) =

∞∑
k=1

(  
Qk+1(x1)

b(z1, ·) dz1−
 
Qk(x1)

b(z1, ·) dz1

)
+

 
Q( 1

2
(x1+y1), 1

2
|x1−y1|)

b(z1, ·) dz1.
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Doing the same with b(y1, ·) and using the triangle inequality, we find that

LHS(3.8)

≤
∑

u1=x1,y1

∞∑
k=1

∑
S2∈S2

λS2

ˆ
S2

|〈b〉Qk+1(u1),1 − 〈b〉Qk(u1),1 − (〈b〉Qk+1(u1)×S2
− 〈b〉Qk(u1)×S2

)|

≤
∑

u1=x1,y1

∞∑
k=1

∑
S2∈S2

λS2

ˆ
S2

 
Qk+1(u1)

|b− 〈b〉Qk(u1),1 − (〈b〉S2,2 − 〈b〉Qk(u1)×S2
)|

.
∑

u1=x1,y1

∞∑
k=1

∑
S2∈S2

λS2

ˆ
S2

 
Qk(u1)

|b− 〈b〉Qk(u1),1 − 〈b〉S2,2 + 〈b〉Qk(u1)×S2
|

≤
∑

u1=x1,y1

∞∑
k=1

C0`(Qk(u1))α .
∑

u1=x1,y1

∞∑
k=1

C0(2−k|x1 − y1|)α . C0|x1 − y1|α,

and this proves (3.8). �

3.9. Remark. Note that it seems somewhat important that in the above proof we apply
Proposition 3.2 directly to the defining condition ‖b(x1, ·)−b(y1, ·)‖L̇rx2 . |x1−y1|α, so that
the extremizing S2 and λS2 depend on x1, y1 only, and only then apply the (considera-
tions of) Proposition 3.1. Alternatively, it might occur to one to start with (a vector-valued
version of) Proposition 3.1, reducing the proof to estimating

ffl
I1
‖b(z1, ·)−〈b〉I1,1‖L̇rx2 dz1 .

`(I1)α. If we now tried to continue with Proposition 3.2, applied to b(z1, ·) − 〈b〉I1,1 for
each z1 ∈ Ii, the resulting S2 and λS2 would in general depend on the integration pa-
rameter z1 ∈ I1.

Bounded mean oscillation. We define, for 1 ≤ pi <∞, the rectangular BMO norm

‖b‖BMOrect(p1,p2) = sup
R=I1×I2

oscp1,p2(b, R)

|I1|1/p1 |I2|1/p2
.

This space is directly in the oscillatory form. It does not appear to enjoy the John–
Nirenberg property, and so the choice of the exponents can matter. Usually in the lit-
erature

‖b‖BMOrect := ‖b‖BMOrect(2,2).

For many purposes this is not the correct or optimal bi-parameter BMO space.
We will later have use for the smaller product BMO space, but it does not enjoy an

oscillatory characterisation, and we will not discuss its definition now.
If X is a Banach space, we say that a locally integrable b : Rd → X belongs to the

X-valued BMO space BMO(p,X), 0 < p <∞, if

‖b‖BMO(p,X) := sup
I

( 
I
|b− 〈b〉I |pX

)1/p
<∞.

By the Banach-valued John–Nirenberg theorem (see e.g. [26, Theorem 3.2.30]) we have
that all these norms are equivalent when p varies, and we may again set

‖b‖BMO(X) := sup
I

 
I
|b− 〈b〉I |X .
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From this point on, we do not obtain oscillatory characterization for our spaces, but we
can record one-sided estimates of oscillatory quantities by function space norms. These
are of philosophical use. Later, we may obtain commutator lower bounds with respect
to these potentially smaller oscillatory quantities. We start with the bi-parameter space
BMOx1(L̇rx2).

3.10. Lemma. We have

sup
{ 1

|I1|
∑
S2∈S2

λS2 osc1,1(b, I1 × S2) : I1 ⊂ Rd1 ,S2 sparse,
∑
S2∈S2

|S2|λr
′
S2
≤ 1
}

. ‖b‖BMOx1 (L̇rx2 ),

where I1 ⊂ Rd1 is a cube and S2 is a sparse collection of cubes in Rd2 .

Proof. As in Proposition 3.7 we have by applying Proposition 3.2 to b(x1, ·)− 〈b〉I1,1 that 
I1

∑
S2∈S2

λS2

ˆ
S2

|b(x1, ·)−〈b〉I1,1 − 〈b〉S2,2(x1) + 〈b〉I1×S2 |

.
 
I1

‖b(x1, ·)− 〈b〉I1,1‖L̇rx2 . ‖b‖BMOx1 (L̇rx2 ). �

The space L̇r1L̇r2 . The final condition that comes up in our commutator lower bounds is

C0 := sup
∑
S1∈S1

∑
S2∈S2

λ1,S1λ2,S2 osc1,1(b, S1 × S2),

where ri ∈ (1,∞) and the supremum is taken over all sparse collections Si of cubes
in Rdi and non-negative coefficients λi,Si satisfying

∑
Si∈Si

λ
r′i
i,Si
|Si| ≤ 1. We again only

have the direction that

(3.11) C0 . ‖b‖L̇r1x1 L̇
r2
x2
,

which is primarily of philosophical use. This can be seen by utilising Proposition 3.2 and
its proof.

4. WEAK FACTORIZATION AND COROLLARIES

4.1. Definition (Non-degenerate kernels). Let Ki be a Calderón-Zygmund kernel on Rdi .
We say that Ki is (symmetrically) non-degenerate if there is a constant c0 > 0 such that for
every yi ∈ Rdi and r > 0 there exists xi ∈ B(yi, r)

c so that there holds

|Ki(xi, yi)| ≥
1

c0rdi

(
and |Ki(yi, xi)| ≥

1

c0rdi

)
.

Notice that the xi in the above definition necessarily satisfies |xi − yi| ∼ r. If Ti is a
CZO whose kernel Ki is a non-degenerate Calderón-Zygmund kernel, then we say that
Ti is a non-degenerate CZO. However, in what follows we do not really need CZOs, we
only need the kernels, and T1 and T ∗1 will just be notation for the integrals

T1h(x1) =

ˆ
Rd1

K1(x1, y1)h(y1) dy1, x1 ∈ Rd1 \ spth,

T ∗1 h(x1) =

ˆ
Rd1

K1(y1, x1)h(y1) dy1, x1 ∈ Rd1 \ spth,
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and similarly for T2.

4.2. Definition (The “reflected” cube Ĩi). Let Ki be a fixed non-degenerate Calderón-
Zygmund kernel on Rdi , and fix a large constant A ≥ 3. For each cube Ii ⊂ Rdi with
center cIi and sidelength `(Ii), we define another cube Ĩi ⊂ Rdi of the same size by
choosing a center c

Ĩi
, guaranteed by the non-degenaracy of Ki, so that

|cIi − cĨi | ∼ A`(Ii), |Ki(cĨi , cIi)| ∼ (A`(Ii))
−di .

Notice that dist(Ii, Ĩi) ∼ A`(Ii). If Ki is symmetrically non-degenerate, we require in
addition that |Ki(cIi , cĨi)| ∼ (A`(Ii))

−di . While the choice of Ĩi may not be unique in

general, in the symmetric case we can and will make it in such a way that ˜̃Ii = Ii.

By (the proof of) Proposition 2.2 in [24] we have for all xi ∈ Ĩi and yi ∈ Ii that

(4.3) |Ki(xi, yi)−Ki(cĨi , cIi)| ≤
CA−αi

(A`(Ii))di
.

If K1 and K2 are two (symmetrically) non-degenerate Calderón–Zygmund kernels on
Rd1 and Rd2 , and Ii ⊂ Rdi are cubes, we of course define Ĩi with respect to Ki. For each
rectangle R = I1 × I2 ⊂ Rd = Rd1 × Rd2 , we define R̃ := Ĩ1 × Ĩ2.

For a rectangle R = I1 × I2 ⊂ Rd1+d2 = Rd and p1, p2 ∈ [1,∞] we denote

Lp1x1,0L
p2
x2,0

(R) =
{
f ∈ Lp1x1L

p2
x2(R) :

ˆ
I1

f =

ˆ
I2

f = 0
}
.

We record and prove the following bi-parameter weak factorization theorem. A sim-
pler one-parameter version is Lemma 2.5 of [24]. This will have important corollaries
that we use to deduce the commutator lower bounds.

4.4. Lemma. Let Ki be a non-degenerate kernel on Rdi , i = 1, 2. If R = I1 × I2 ⊂ Rd is a
rectangle and f ∈ L1

x1,0
L1
x2,0

(R), then we can decompose

f = 1
R̃
T1T2h− T2h · T ∗1 1

R̃
− T1h · T ∗2 1

R̃
+ hT ∗1 T

∗
2 1

R̃
+

3∑
j=1

f̃j ,

where each f̃j ∈ L1
x1,0

L1
x2,0

(Rj) for R1 = Ĩ1 × I2, R2 = I1 × Ĩ2 and R3 = R̃, and they satisfy

|f̃1(x)| . A−α11
Ĩ1

(x1)〈|f |〉I1,1(x2), |f̃2(x)| . A−α2〈|f |〉I2,2(x1)1
Ĩ2

(x2)

and
|f̃3(x)| . A−α1A−α21

R̃
(x)〈|f |〉R.

Moreover, h ∈ L1(R) satisfies
|h(x)| . Ad|f(x)|.

In particular, if f ∈ Lu1x1,0L
u2
x2,0

(R), 1 ≤ ui ≤ ∞, then also

‖h‖Lu1x1L
u2
x2
. Ad‖f‖Lu1x1L

u2
x2

and ‖f̃j‖Lu1x1L
u2
x2
. A−min(α1,α2)‖f‖Lu1x1L

u2
x2
,

where the implicit constants depend only on the dimensions and the kernel constants.
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Proof. Denote φ = 1
R̃

= 1
Ĩ1
⊗ 1

Ĩ2
=: φ1 ⊗ φ2. We write

f =
f

T ∗1 T
∗
2 φ
T ∗1 T

∗
2 φ = φT1T2h− T2h · T ∗1 φ− T1h · T ∗2 φ+ hT ∗1 T

∗
2 φ+ f̃ ,

where

h :=
f

T ∗1 T
∗
2 φ

and

f̃ = T1h · T ∗2 φ+ T2h · T ∗1 φ− φT1T2h

= φ1T1

( f

T ∗1 φ1

)
+ φ2T2

( f

T ∗2 φ2

)
− φT1

( 1

T ∗1 φ1
T2

( f

T ∗2 φ2

))
= f̃1 + f̃2 + f̃3.

Everything is well-defined, since in fact we have the estimates T ∗i 1
Ĩi

(xi) & A−di for x ∈ Ii
(remember that f is supported on R). To see this, fix x1 ∈ I1 and write

T ∗1 1
Ĩ1

(x1) =

ˆ
Ĩ1

K1(y1, x1) dy1

= K1(c
Ĩ1
, cI1)|I1|+

ˆ
Ĩ1

(
K1(y1, x1)−K1(c

Ĩ1
, cI1)

)
dy1.

Using (4.3) it is then easy to see that |T ∗1 1
Ĩ1

(x1)| & A−d1 . The other estimate is symmetric.
This also gives that

|h(x)| . Ad|f(x)|.
It is also immediate that

´
I2
f̃1 = 0 and

ˆ
Ĩ1

f̃1 =

ˆ
Rd1

φ1T1

( f

T ∗1 φ1

)
=

ˆ
Rd1

T ∗1 φ1
f

T ∗1 φ1
=

ˆ
I1

f = 0.

Similarly, we can see that
´
I1
f̃2 =

´
Ĩ2
f̃2 =

´
Ĩ1
f̃3 =

´
Ĩ2
f̃3 = 0.

We now prove the poinwise estimates of f̃i. Let g : Rd → C satisfy g(x) = 0 if x1 6∈ I1

and
´
I1
g = 0. For x = (x1, x2) ∈ Ĩ1 × Rd2 we write

T1

( g

T ∗1 φ1

)
(x) = T1

(g(·, x2)

T ∗1 φ1
− g(·, x2)

|I1|K1(c
Ĩ1
, cI1)

)
(x1) +

1

|I1|K1(c
Ĩ1
, cI1)

T1(g(·, x2))(x1).

We have using (4.3) that∣∣∣ 1

|I1|K1(c
Ĩ1
, cI1)

T1(g(·, x2))(x1)
∣∣∣ ∼ Ad1∣∣∣ ˆ

I1

[K1(x1, y1)−K1(c
Ĩ1
, cI1)]g(y1, x2) dy1

∣∣∣
. A−α1

 
I1

|g(·, x2)|.

It is similarly straightforward that∣∣∣T1

(g(·, x2)

T ∗1 φ1
− g(·, x2)

|I1|K1(c
Ĩ1
, cI1)

)
(x1)

∣∣∣ . A−α1

 
I1

|g(·, x2)|.
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It follows that

(4.5)
∣∣∣T1

( g

T ∗1 φ1

)
(x)
∣∣∣ . A−α1

 
I1

|g(·, x2)|, x ∈ Ĩ1 × Rd2 .

Applying this to g = f we get

|f̃1(x)| . A−α11
Ĩ1

(x1)〈|f |〉I1,1(x2).

The estimate
|f̃2(x)| . A−α2〈|f |〉I2,2(x1)1

Ĩ2
(x2)

is symmetric. Lastly, notice that

f̃3 = φ1T1

( 1

T ∗1 φ1
φ2T2

( f

T ∗2 φ2

))
= φ1T1

( f̃2

T ∗1 φ1

)
so that applying (4.5) to g = f̃2 (which is a legitimate choice) and the estimate of f̃2, we
get that for x ∈ Ĩ1 × Ĩ2 there holds

|f̃3(x)| . A−α1

 
I1

|f̃2(y1, x2)|dy1 . A
−α1A−α2

 
R
|f |.

The claimed Lu1Lu2 estimates are clear from the pointwise estimates. �

4.6. Remark. A much weaker modulus of continuity like in [24] for the kernels K1,K2

would also work, but we prefer to use the standard estimates here for simplicity. The
weaker assumption for K1 would be

|K1(x1, y1)−K1(x′1, y1)|+ |K1(y1, x1)−K1(y1, x
′
1)| ≤ 1

|x1 − y1|d1
ω
( |x1 − x′1|
|x1 − y1|

)
whenever |x1 − x′1| ≤ |x1 − y1|/2. In these lower bound arguments it is only needed that
the increasing modulus of continuity ω : [0, 1)→ [0,∞) satisfies ω(t)→ 0 when t→ 0.

The previous lemma will be used to control the oscillations (3.4) via the following basic
observation. The idea is to decompose the dualizing f like above.

4.7. Lemma. For v1, v2 ∈ [1,∞], we have

oscv1,v2(b, R) ∼ sup
{∣∣∣ ˆ

R
bf
∣∣∣ : ‖f‖

L
v′1
x1,0

L
v′2
x2,0

(R)
≤ 1
}
.

Proof. By standard dualities, we have

oscv1,v2(b, R) = sup
{∣∣∣¨

I1×I2
[b− 〈b〉I1,1 − 〈b〉I2,2 + 〈b〉R]g

∣∣∣ : ‖g‖
Lv
′
1Lv
′
2 (R)
≤ 1
}

= sup
{∣∣∣¨

I1×I2
b[g − 〈g〉I1,1 − 〈g〉I2,2 + 〈g〉R]

∣∣∣ : ‖g‖
Lv
′
1Lv
′
2 (R)
≤ 1
}

≤ sup
{∣∣∣¨

I1×I2
bg
∣∣∣ : ‖g‖

L
v′1
0 L

v′2
0 (R)

≤ 4
}

= sup
{∣∣∣¨

I1×I2
[b− 〈b〉I1,1 − 〈b〉I2,2 + 〈b〉R]g

∣∣∣ : ‖g‖
L
v′1
0 L

v′2
0 (R)

≤ 4
}

≤ 4 oscv1,v2(b, R),

so that all these quantities are actually comparable. �
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Motivated by this we define the following truncated oscillation, which is finite even
when b ∈ L1

loc. This is important for technical reasons – the absorption argument below
requires a finite quantity. For b ∈ L1

loc and N ∈ N we define

oscv1,v2N (b, R) := sup
{∣∣∣¨

R
bf
∣∣∣ : ‖f‖

L
v′1
0 L

v′2
0 (R)

≤ 1 and ‖f‖L∞ ≤ N
}
<∞.

4.8. Remark. When v1 = v2 = 1 – which is the case of most interest – we can directly work
with osc1,1(b, R) ∼ osc1,1

N (b, R).

4.9. Lemma. Let Ki be a non-degenerate kernel on Rdi , i = 1, 2. If we fix A ≥ 3 in Definition
4.2 large enough (depending on the dimensions and kernel constants), then for each b ∈ L1

loc,
1 ≤ vi ≤ ∞, N ∈ N and rectangle R = I1 × I2 ⊂ Rd we have

oscv1,v2N (b, R) .|〈[T1, [b, T2]]h0, 1R3〉|+ |〈[T ∗1 , [b, T2]]h1, 1R2〉|
+ |〈[T1, [b, T

∗
2 ]]h2, 1R1〉|+ |〈[T ∗1 , [b, T ∗2 ]]h3, 1R0〉|

for some functions hj with ‖hj‖Lv′1Lv′2 (Rj)
. 1 and ‖hj‖L∞(Rj) . N , where R0 = R, R1 =

Ĩ1 × I2, R2 = I1 × Ĩ2, R3 = R̃.
If K1 is symmetrically non-degenerate, we get

oscv1,v2N (b, R) .|〈[T1, [b, T2]]h0, 1R3〉|+ |〈[T1, [b, T2]]h1, 1R2〉|
+ |〈[T ∗1 , [b, T ∗2 ]]h2, 1R1〉|+ |〈[T ∗1 , [b, T ∗2 ]]h3, 1R0〉|.

A symmetric estimate holds if K2 is symmetrically non-degenerate. If both K1 and K2 are
symmetrically non-degenerate, then

(4.10) oscv1,v2N (b, R) .
3∑
j=0

|〈[T1, [b, T2]]hj , 1R̃j 〉|.

Proof. Let N be fixed. Fix f ∈ L
v′1
0 L

v′2
0 (R) so that ‖f‖

L
v′1
0 L

v′2
0 (R)

≤ 1, ‖f‖L∞ ≤ N and

oscv1,v2N (b, R) . |〈b, f〉|. We expand this f according to Lemma 4.4 to arrive at

〈b, f〉 =
〈
b, 1

R̃
T1T2h0 − T2h0 · T ∗1 1

R̃
− T1h0 · T ∗2 1

R̃
+ h0T

∗
1 T
∗
2 1

R̃

〉
+

3∑
j=1

〈b, f̃j〉

=
〈
bT1T2h0 − T1(bT2h0)− T2(bT1h0) + T1T2(bh0), 1

R̃

〉
+

3∑
j=1

〈b, f̃j〉

= −〈[T1, [b, T2]]h0, 1R̃〉+

3∑
j=1

〈b, f̃j〉.

Hence, we have

oscv1,v2N (b, R) . |〈b, f〉| ≤ |〈[T1, [b, T2]]h0, 1R̃〉|+
3∑
j=1

|〈b, f̃j〉|,

where, by Lemma 4.4,

|〈b, f̃j〉| . oscv1,v2N (b, Rj)A
−min(α1,α2),
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and thus

(4.11) oscv1,v2N (b, R0) . |〈[T1, [b, T2]]h0, 1R3〉|+A−min(α1,α2)
∑

j∈{1,2,3}

oscv1,v2N (b, Rj)

where ‖h0‖Lv′1Lv′2 (R)
. Ad and ‖h0‖L∞(R) . A

dN .

Notice that if Q̃ is a reflected cube of Q with respect to a non-degenerate kernel K,
then Q is a reflected cube of Q̃ with respect to K∗. Therefore, we also get

(4.12) oscv1,v2N (b, R1) . |〈[T ∗1 , [b, T2]]h1, 1R2〉|+A−min(α1,α2)
∑

j∈{0,2,3}

oscv1,v2N (b, Rj),

(4.13) oscv1,v2N (b, R2) . |〈[T1, [b, T
∗
2 ]]h2, 1R1〉|+A−min(α1,α2)

∑
j∈{0,1,3}

oscv1,v2N (b, Rj)

and

(4.14) oscv1,v2N (b, R3) . |〈[T ∗1 , [b, T ∗2 ]]h3, 1R0〉|+A−min(α1,α2)
∑

j∈{0,1,2}

oscv1,v2N (b, Rj).

Combining (4.11), (4.12), (4.13) and (4.14), and fixing A large enough, we obtain by an
absorption argument that

oscv1,v2N (b, R) ≤
3∑
j=0

oscv1,v2N (b, Rj)

. |〈[T1, [b, T2]]h0, 1R3〉|+ |〈[T ∗1 , [b, T2]]h1, 1R2〉|
+ |〈[T1, [b, T

∗
2 ]]h2, 1R1〉|+ |〈[T ∗1 , [b, T ∗2 ]]h3, 1R0〉|,

where ‖hj‖Lv′1Lv′2 (Rj)
. 1 and ‖hj‖L∞(Rj) . N .

Next, if K is symmetrically non-degenerate and Q̃ is a reflected cube of Q with respect
to K, then Q is a reflected cube of Q̃ with respect to K and Q̃ is also a reflected cube of Q
with respect to K∗. Suppose K1 is symmetrically non-degenerate. Then we can replace
(4.12) by

(4.15) oscv1,v2N (b, R1) . |〈[T1, [b, T2]]h1, 1R2〉|+A−min(α1,α2)
∑

j∈{0,2,3}

oscv1,v2N (b, Rj),

and (4.13) by

(4.16) oscv1,v2N (b, R2) . |〈[T ∗1 , [b, T ∗2 ]]h2, 1R1〉|+A−min(α1,α2)
∑

j∈{0,1,3}

oscv1,v2N (b, Rj)

The other symmetry statements are similar. This ends our proof. �

From this point on, given non-degenerate kernelsKi, we always considerA fixed large
enough so that the conclusion of Lemma 4.9 hold.

4.17. Remark. We have that [T1, [b, T2]]∗ = [T ∗1 , [b, T
∗
2 ]], but a partial adjoint like [T ∗1 , [b, T2]]

can more easily be unbounded even if [T1, [b, T2]] is bounded. Thus, it can be useful to be
able to eliminate these partial adjoint terms if at least one of the kernels is symmetrically
non-degenerate.
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4.A. Off-support constants. Notice that if we take a pairing, such as |〈[T1, [b, T2]]h0, 1R̃〉|,
from the conclusion of Lemma 4.9, then h0 is supported on I1×I2 and R̃ = Ĩ1×Ĩ2 satisfies
dist(Ii, Ĩi) ∼ `(Ii). Moreover, the case v1 = v2 = 1 is a bit special, as then ‖hj‖L∞(Rj) . 1.
Otherwise, we only have the estimate ‖hj‖Lv′1Lv′2 (Rj)

. 1 at our disposal.

We fix b ∈ L1
loc and non-degenerate kernels Ki – the off-support constants will depend

on these but this will not be denoted. We first define off-support constants that are useful
in the v1 = v2 = 1 situation – which is a case that is encountered often. For s1, s2, t1, t2 ∈
(1,∞) and B(x, y) = b(x1, x2)− b(x1, y2)− b(y1, x2) + b(y1, y2) define

Off
(t1,t2)
(s1,s2) = sup

1

|J1|1+1/s1−1/t1

1

|J2|1+1/s2−1/t2∣∣∣¨
Rd×Rd

B(x, y)K1(x1, y1)K2(x2, y2)f1(y)f2(x) dy dx
∣∣∣,

where the supremum is taken over rectangles P1 = J1 × J2 and P2 = L1 × L2 with

`(Ji) = `(Li) and dist(Ji, Li) ∼ `(Ji)

and over functions fi ∈ L∞(Pi) with ‖fj‖L∞ ≤ 1. We also denote Off
(t1,t2),i∗
(s1,s2) the constant

where Ki is replaced by K∗i .
If Ti is a non-degenerate CZO with kernel Ki, then

Off
(t1,t2)
(s1,s2) ≤ ‖[T1, [b, T2]]‖

L
s1
x1
L
s2
x2
→Lt1x1L

t2
x2

whenever the commutator exists as a bounded linear mapping. This explains why these
weaker off-support constants make sense.

4.18. Theorem. Let Ki be a non-degenerate kernel on Rdi , i = 1, 2, and let b ∈ L1
loc. Let

p1, p2, q1, q2 ∈ (1,∞). Then we have for all rectangles R = I1 × I2 that

osc1,1(b, R)

|R|
.
(

Off
(q1,q2)
(p1,p2) + Off

(t1,t2),1∗
(s1,s2)

)
|I1|

1
p1
− 1
q1 |I2|

1
p2
− 1
q2

with any si, ti ∈ (1,∞) satisfying 1/pi − 1/qi = 1/si − 1/ti, i = 1, 2.
If, in addition, one of the kernels Ki is symmetrically non-degenerate, then

osc1,1(b, R)

|R|
. Off

(q1,q2)
(p1,p2) |I1|

1
p1
− 1
q1 |I2|

1
p2
− 1
q2 .

Proof. By Lemma 4.9 we have for each rectangle R = I1 × I2 ⊂ Rd that

osc1,1(b, R) .|〈[T1, [b, T2]]h0, 1R3〉|+ |〈[T ∗1 , [b, T2]]h1, 1R2〉|
+ |〈[T1, [b, T

∗
2 ]]h2, 1R1〉|+ |〈[T ∗1 , [b, T ∗2 ]]h3, 1R0〉|

for some functions hj with ‖hj‖L∞(Rj) . 1, where R0 = R, R1 = Ĩ1 × I2, R2 = I1 × Ĩ2,
R3 = R̃. Clearly, we have

|〈[T1, [b, T2]]h0, 1R3〉|+ |〈[T ∗1 , [b, T ∗2 ]]h3, 1R0〉| . Off
(q1,q2)
(p1,p2) |R||I1|

1
p1
− 1
q1 |I2|

1
p2
− 1
q2

and

|〈[T ∗1 , [b, T2]]h1, 1R2〉|+ |〈[T1, [b, T
∗
2 ]]h2, 1R1〉| . Off

(t1,t2),1∗
(s1,s2) |R||I1|

1
p1
− 1
q1 |I2|

1
p2
− 1
q2 .

The symmetry claim follows from the symmetry claims of Lemma 4.9. �
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We now define larger off-support constants that can be used to control oscv1,v2N (b, R),
uniformly on N , for general v1, v2. For s1, s2, t1, t2 ∈ (1,∞) define

Õff
(t1,t2)

(s1,s2) = sup
∣∣∣¨

Rd×Rd
B(x, y)K1(x1, y1)K2(x2, y2)f1(y)f2(x) dy dx

∣∣∣,
where the supremum is taken over rectangles P1 = J1 × J2 and P2 = L1 × L2 with

`(Ji) = `(Li) and dist(Ji, Li) ∼ `(Ji)

and over functions fj ∈ L∞(Pj) with

‖f1‖Ls1x1L
s2
x2
≤ 1 and ‖f2‖

L
t′1
x1
L
t′2
x2

≤ 1.

We also define the dual off-support constants Õff
(t1,t2),1∗
(s1,s2) , Õff

(t1,t2),2∗
(s1,s2) and Õff

(t1,t2),∗
(s1,s2) in

the natural way – simply replace (K1,K2) with (K∗1 ,K2), (K1,K
∗
2 ) and (K∗1 ,K

∗
2 ), respec-

tively. Notice that Off
(t1,t2)
(s1,s2) ≤ Õff

(t1,t2)

(s1,s2), and if Ti is a non-degenerate CZO with kernel

Ki, then Õff
(t1,t2)

(s1,s2) ≤ ‖[T1, [b, T2]]‖
L
s1
x1
L
s2
x2
→Lt1x1L

t2
x2

whenever the commutator exists as a

bounded linear mapping. Notice also that Õff
(t1,t2),∗
(s1,s2) = Õff

(s′1,s
′
2)

(t′1,t
′
2) .

4.19. Theorem. Let Ki be a non-degenerate kernel on Rdi , i = 1, 2, and let b ∈ L1
loc. Let

p1, p2, q1, q2 ∈ (1,∞). Then we have for all rectangles R = I1 × I2 that

oscp
′
1,p
′
2(b, R)

|I1|1/p
′
1 |I2|1/p

′
2
.
(

Õff
(q1,q2)

(p1,p2) + Õff
(q1,q2),1∗
(p1,p2) + Õff

(q1,q2),2∗
(p1,p2) + Õff

(p′1,p
′
2)

(q′1,q
′
2)

)
|I1|

1
p1
− 1
q1 |I2|

1
p2
− 1
q2 .

If one of the kernels Ki is symmetrically non-degenerate, we can drop the terms Õff
(q1,q2),1∗
(p1,p2) and

Õff
(q1,q2),2∗
(p1,p2) , and if both K1 and K2 are symmetrically non-degenerate, then

oscp
′
1,p
′
2(b, R)

|I1|1/p
′
1 |I2|1/p

′
2
. Õff

(q1,q2)

(p1,p2)|I1|
1
p1
− 1
q1 |I2|

1
p2
− 1
q2 .

Proof. Follows directly from Lemma 4.9 similarly to Theorem 4.18. �

Finally, we need one more off-support constant to deal with the calculations arising
from considerations involving the space L̇r. Recall that characterizations of this space,
such as Proposition 3.2, involve bounding a sum of oscillations. To this end, define
B(x, y) = b(x1, x2)− b(x1, y2)− b(y1, x2) + b(y1, y2) and for p1, p2, q1, q2 ∈ (1,∞) set

Off
(q1,q2)
(p1,p2),Σ = sup

∑N
i=1

∣∣∣˜Rd×Rd B(x, y)K1(x1, y1)K2(x2, y2)f1,i(y)f2,i(x) dy dx
∣∣∣∥∥∥∑N

i=1 ‖f1,i‖L∞1P1,i

∥∥∥
L
p1
x1
L
p2
x2

∥∥∥∑N
i=1 ‖f2,i‖L∞1P2,i

∥∥∥
L
q′1
x1
L
q′2
x2

,

where the supremum is taken over rectangles P1,i = J1,i× J2,i and P2,i = L1,i×L2,i with

`(Jk,i) = `(Lk,i) and dist(Jk,i, Lk,i) ∼ `(Jk,i)

and over functions fk,i ∈ L∞(Pk,i), k = 1, 2, i = 1, . . . , N .
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Notice that for linear operators U we have the random sign trick

N∑
i=1

〈Ufi, gi〉 = E
〈
U
( N∑
i=1

εifi

)
,

N∑
j=1

εjgj

〉
.

Thus, for functions fk,i as in the definition of the constant Off
(q1,q2)
(p1,p2),Σ we have for certain

fixed signs σi and random signs εi that

N∑
i=1

∣∣∣¨
Rd×Rd

B(x, y)K1(x1, y1)K2(x2, y2)f1,i(y)f2,i(x) dy dx
∣∣∣

=
N∑
i=1

σi〈[T1, [b, T2]]f1,i, f2,i〉

= E
〈

[T1, [b, T2]]
( N∑
i=1

σiεif1,i

)
,
N∑
j=1

εjf2,j

〉

≤ ‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2
E
∥∥∥ N∑
i=1

σiεif1,i

∥∥∥
L
p1
x1
L
p2
x2

∥∥∥ N∑
i=1

εif2,i

∥∥∥
L
q′1
x1
L
q′2
x2

≤ ‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2

∥∥∥ N∑
i=1

‖f1,i‖L∞1P1,i

∥∥∥
L
p1
x1
L
p2
x2

∥∥∥ N∑
i=1

‖f2,i‖L∞1P2,i

∥∥∥
L
q′1
x1
L
q′2
x2

whenever the commutator exists as a bounded operator. Therefore, we have Off
(q1,q2)
(p1,p2),Σ ≤

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2

whenever the commutator exists and so Off
(q1,q2)
(p1,p2),Σ is a rea-

sonable off-support constant.
We now state various results, where sums of oscillations are controlled by this off-

support norm. Having seen how to deal with general kernels, we prefer to state these
with the simplifying assumption that the underlying kernels are symmetrically non-
degenerate. In all of these statements

1

ri
:=

1

qi
− 1

pi
, if pi > qi.

4.20. Lemma. LetKi be a symmetrically non-degenerate kernel on Rdi , i = 1, 2, and let b ∈ L1
loc.

Let p1, p2, q1, q2 ∈ (1,∞) with p2 > q2. For all sparse collections S2 of cubes in Rd2 , non-
negative coefficients λS2 satisfying

∑
S2∈S2

λ
r′2
S2
|S2| ≤ 1 and cubes I1 ⊂ Rd1 , we have∑

S2∈S2

λS2 osc1,1(b, I1 × S2) . Off
(q1,q2)
(p1,p2),Σ |I1|1+(1/p1−1/q1).

Proof. Using Lemma 4.9 we estimate

∑
S2∈S2

λS2 osc1,1(b, I1 × S2) .
3∑
i=0

∑
S2∈S2

λS2 |〈[T1, [b, T2]]h(I1×S2)i , 1(I1×S2)∼i
〉|
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for some h(I1×S2)i ∈ L∞((I1 × S2)i) with ‖h(I1×S2)i‖L∞ . 1. Using the algebra

r′2
p2

+
r′2
q′2

= r′2

( 1

p2
+ 1− 1

q2

)
= r′2

(
1− 1

r2

)
= 1

we write this in the form
3∑
i=0

∑
S2∈S2

|〈[T1, [b, T2]](λ
r′2/p2
S2

h(I1×S2)i), λ
r′2/q

′
2

S2
1(I1×S2)∼i

〉|.

This can directly be dominated with

Off
(q1,q2)
(p1,p2),Σ

3∑
i=0

∥∥∥ ∑
S2∈S2

λ
r′2/p2
S2

1(I1×S2)i

∥∥∥
L
p1
x1
L
p2
x2

∥∥∥ ∑
S2∈S2

λ
r′2/q

′
2

S2
1(I1×S2)∼i

∥∥∥
L
q′1
x1
L
q′2
x2

.

Here 1(I1×S2)i ≤ 1I∗1×S∗2 , where I∗1 ⊃ I1 ∪ Ĩ1 and S∗2 ⊃ S2 ∪ S̃2 are concentric dilations
of I1 and S2 by a bounded factor. Since the collection {S∗2 : S2 ∈ S2} is still sparse (with
a different sparseness constant), it follows from (3.3) and

∑
S2∈S2

λ
r′2
S2
|S2| ≤ 1 that∥∥∥ ∑

S2∈S2

λ
r′2/p2
S2

1(I1×S2)i

∥∥∥
L
p1
x1
L
p2
x2

≤
∥∥∥ ∑
S2∈S2

λ
r′2/p2
S2

1I∗1×S∗2

∥∥∥
L
p1
x1
L
p2
x2

= ‖1I∗1 ‖Lp1
∥∥∥ ∑
S2∈S2

λ
r′2/p2
S2

1S∗2

∥∥∥
Lp2
. |I1|1/p1

( ∑
S2∈S2

(λ
r′2/p2
S2

)p2 |S2|
)1/p2

≤ |I1|1/p1 .

Similarly, using 1(I1×S2)∼i
≤ 1I∗1×S∗2 , we conclude that∥∥∥ ∑
S2∈S2

λ
r′2/q

′
2

S2
1(I1×S2)∼i

∥∥∥
L
q′1
x1
L
q′2
x2

. |I1|1/q
′
1 ,

and this ends the proof. �

The symmetric version reads as follows.

4.21. Lemma. LetKi be a symmetrically non-degenerate kernel on Rdi , i = 1, 2, and let b ∈ L1
loc.

Let p1, p2, q1, q2 ∈ (1,∞) with p1 > q1. For all sparse collections S1 of cubes in Rd1 , non-
negative coefficients λS1 satisfying

∑
S1∈S1

λ
r′1
S1
|S1| ≤ 1 and cubes I2 ⊂ Rd2 , we have∑

S1∈S1

λS1 osc1,1(b, S1 × I2) . Off
(q1,q2)
(p1,p2),Σ |I2|1+(1/p2−1/q2).

Finally, we control the following double sum.

4.22. Lemma. LetKi be a symmetrically non-degenerate kernel on Rdi , i = 1, 2, and let b ∈ L1
loc.

Let p1, p2, q1, q2 ∈ (1,∞) with p1 > q1 and p2 > q2. For all sparse collections Si of cubes in Rdi

and non-negative coefficients λi,Si satisfying
∑

Si∈Si
λ
r′i
i,Si
|Si| ≤ 1 we have∑

S1∈S1

∑
S2∈S2

λ1,S1λ2,S2 osc1,1(b, S1 × S2) . Off
(q1,q2)
(p1,p2),Σ .
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Proof. Using Lemma 4.9 we estimate∑
S1∈S1

∑
S2∈S2

λ1,S1λ2,S2 osc1,1(b, S1 × S2)

.
3∑
i=0

∑
S1∈S1

∑
S2∈S2

λ1,S1λ2,S2 |〈[T1, [b, T2]]h(S1×S2)i , 1(S1×S2)∼i
〉|

=
3∑
i=0

∑
S1∈S1

∑
S2∈S2

|〈[T1, [b, T2]](λ
r′1/p1
1,S1

λ
r′2/p2
2,S2

h(S1×S2)i), λ
r′1/q

′
1

1,S1
λ
r′2/q

′
2

2,S2
1(S1×S2)∼i

〉|

≤
3∑
i=0

Off
(q1,q2)
(p1,p2),Σ

∥∥∥ ∑
S1∈S1
S2∈S2

λ
r′1/p1
1,S1

λ
r′2/p2
2,S2

1(S1×S2)i

∥∥∥
L
p1
x1
L
p2
x2

×

∥∥∥ ∑
S1∈S1
S2∈S2

λ
r′1/q

′
1

1,S1
λ
r′2/q

′
2

2,S2
1(S1×S2)∼i

∥∥∥
L
q′1
x1
L
q′2
x2

.

Using the notation of the proof of Lemma 4.20 we have∥∥∥ ∑
S1∈S1
S2∈S2

λ
r′1/p1
1,S1

λ
r′2/p2
2,S2

1(S1×S2)i

∥∥∥
L
p1
x1
L
p2
x2

≤
∥∥∥ ∑
S1∈S1
S2∈S2

λ
r′1/p1
1,S1

λ
r′2/p2
2,S2

1S∗1×S∗2

∥∥∥
L
p1
x1
L
p2
x2

=
∥∥∥ ∑
S1∈S1

λ
r′1/p1
1,S1

1S∗1

∥∥∥
L
p1
x1

∥∥∥ ∑
S2∈S2

λ
r′2/p2
2,S2

1S∗2

∥∥∥
L
p2
x2

,

where for both i = 1, 2 we have by the sparseness of the family {S∗i : Si ∈ Si} that∥∥∥ ∑
Si∈Si

λ
r′i/pi
i,Si

1S∗i

∥∥∥
L
pi
xi

.
( ∑
Si∈Si

(λ
r′i/pi
i,Si

)pi |Si|
)1/pi

≤ 1,

and the the estimate for the Lq
′
1
x1L

q′2
x2 norm is completely analogous. �

5. NECESSARY CONDITIONS FOR COMMUTATOR BOUNDEDNESS

We have already done the main work concerning the commutator lower bounds (nec-
essary conditions); oscillatory chararacterizations of function spaces from Section 3 com-
bined with the control of oscillations by off-support constants, Theorem 4.18, Theorem
4.19, Lemma 4.20, Lemma 4.21 and Lemma 4.22 will yield the results.

Many of our necessary conditions are optimal; we will later be able to prove the suffi-
ciency of the obtained necessary condition, see Theorem 1.3. A reason, but not the only
reason, a lower bound might not be optimal is that the techniques used to obtain the
lower bounds cannot distinguish between symmetric cases like

p1 < q1 and p2 = q2

and
p1 = q1 and p2 < q2,
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and yield symmetric lower bounds: in the first case we can bound ‖b‖
Ċ

0,β1
x1

(BMOx2 )
and

in the second case ‖b‖
Ċ

0,β2
x2

(BMOx1 )
by ‖[T1, [b, T2]]‖Lp1x1L

p2
x2
→Lq1x1L

q2
x2

. Somewhat strikingly,

both of these conditions happen to be optimal. However, e.g. in the upper right corner
of the table of Theorem 1.3, where p1 > q1 and p2 < q2, the conditions do not match,
while in the symmetric case p1 < q1 and p2 > q2 (the lower left corner) they do match.

To have clean statements and to avoid repetition, we will state all of the commutator
lower bounds for symmetrically non-degenerate kernels Ki. From the results of Section 4
it is clear that this is not necessary – the general case just requires various dual off-support
constants, and, as we saw, often it is enough that only one of the kernels is symmetrically
non-degenerate to get clean statements.

Sometimes we only obtain a necessary condition in terms of an oscillatory condition
that we cannot relate to a function space norm. These are recorded in this section but are
not visible in the table of Theorem 1.3 (the three cases on the lower right corner).

In what follows we always have p1, p2, q1, q2 ∈ (1,∞), and

βi := di

( 1

pi
− 1

qi

)
, if pi < qi;

1

ri
:=

1

qi
− 1

pi
, if pi > qi.

Moreover, we also let b ∈ L1
loc and Ki be a symmetrically non-degenerate kernel on Rdi ,

i = 1, 2. This data is not repeated in the statements of the results.

5.A. The condition Ċ0,β1(Ċ0,β2).

5.1. Proposition. If p1 < q1 and p2 < q2, then

‖b‖Ċ0,β1 (Ċ0,β2 ) . Off
(q1,q2)
(p1,p2) .

Proof. By Proposition 3.5 we have

‖b‖Ċ0,β1 (Ċ0,β2 ) ∼ sup
{ 1

`(I1)β1`(I2)β2
osc1,1(b, I1 × I2)

|I1||I2|
: Ii ⊂ Rdi is a cube

}
,

where, by Theorem 4.18,

1

`(I1)β1`(I2)β2
osc1,1(b, I1 × I2)

|I1||I2|
.

1

`(I1)β1`(I2)β2
Off

(q1,q2)
(p1,p2) |I1|

1
p1
− 1
q1 |I2|

1
p2
− 1
q2 = Off

(q1,q2)
(p1,p2) .

�

5.B. The condition Ċ0,β(BMO).

5.2. Proposition. If p1 < q1 and p2 = q2, then

‖b‖
Ċ

0,β1
x1

(BMOx2 )
. Off

(q1,p2)
(p1,p2) .

If p1 = q1 and p2 < q2, then

‖b‖
Ċ

0,β2
x2

(BMOx1 )
. Off

(p1,q2)
(p1,p2) .

Proof. Let p1 < q1 and p2 = q2. By Proposition 3.6 we have

‖b‖
Ċ

0,β1
x1

(BMOx2 )
∼ sup

{ 1

`(I1)β1
osc1,1(b, I1 × I2)

|I1||I2|
: Ii ⊂ Rdi is a cube

}
,
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where, by Theorem 4.18,

1

`(I1)β1
osc1,1(b, I1 × I2)

|I1||I2|
.

1

`(I1)β1
Off

(q1,p2)
(p1,p2) |I1|

1
p1
− 1
q1 = Off

(q1,p2)
(p1,p2) .

The proof of the case p1 = q1 and p2 < q2 is symmetric. �

5.C. The condition BMOrect. We record the following lower bound concerning the di-
agonal of Theorem 1.3, even though our real focus is on the off-diagonal cases.

5.3. Proposition. If p1 = q1 and p2 = q2 we have

‖b‖BMOrect(p′1,p
′
2) . Õff

(p1,p2)

(p1,p2).

Proof. By definition and Theorem 4.19 we have

‖b‖BMOrect(p′1,p
′
2) = sup

R=I1×I2

oscp
′
1,p
′
2(b, R)

|I1|1/p
′
1 |I2|1/p

′
2
. Õff

(p1,p2)

(p1,p2).

�

5.D. Conditions related to Ċ0,β(L̇r) and BMO(L̇r).

5.4. Proposition. If p1 < q1 and p2 > q2 then

‖b‖
Ċ

0,β1
x1

(L̇
r2
x2

)
. Off

(q1,q2)
(p1,p2),Σ .

If p1 = q1 and p2 > q2 then

sup
{ 1

|I1|
∑
S2∈S2

λS2 osc1,1(b, I1 × S2) : I1 ⊂ Rd1 ,S2 sparse,
∑
S2∈S2

|S2|λ
r′2
S2
≤ 1
}

. Off
(p1,q2)
(p1,p2),Σ,

where the supremum on the left hand side is also dominated by ‖b‖BMOx1 (L̇
r2
x2

). The symmetric
statements hold if p1 > q1 and p2 < q2 or p1 > q1 and p2 = q2.

Proof. Follows by combining Lemma 4.20 and Lemma 4.21 with Proposition 3.7 and
Lemma 3.10. �

5.E. A condition related to L̇r1(L̇r2).

5.5. Proposition. If p1 > q1 and p2 > q2, we have

sup
∑
S1∈S1

∑
S2∈S2

λ1,S1λ2,S2 osc1,1(b, S1 × S2) . Off
(q1,q2)
(p1,p2),Σ,

where the supremum is over all sparse collections Si of cubes in Rdi and non-negative coefficients
λi,Si satisfying

∑
Si∈Si

λ
r′i
i,Si
|Si| ≤ 1. Moreover, the supremum on the left hand side is also

dominated by ‖b‖L̇r1x1 L̇
r2
x2

.

Proof. This is simply a restatement of Lemma 4.22 combined with the connection to the
norm ‖b‖L̇r1x1 L̇

r2
x2

given by (3.11). �
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5.6. Remark. For p1 = p2 =: p and q1 = q2 =: q, almost the same argument as in Lemma
4.22 gives the following slightly stronger conclusion: Suppose that [T1, [b, T2]] : Lp → Lq,
where p > q (this can be replaced with the off-support constants as usual). Then for
1/r = 1/q − 1/p, any sparse collections R of rectangles R = I1 × I2 in Rd1 × Rd2 and
coefficients

∑
R∈R λr

′
R|R| ≤ 1, we have∑

R∈R

λR osc1,1(b, R) . ‖[T1, [b, T2]]‖Lp→Lq .

The difference is that the coefficients are not of the product form, while above we had
R = S1 ×S2 = {S1 × S2 : S1 ∈ S1, S2 ∈ S2}. The point of the generalisation is that we
can still split the coefficients λR = λ

r′/p
R λ

r′/q′

R and estimate∥∥∥ ∑
R∈R

λ
r′/p
R 1R∗

∥∥∥
Lp
.
( ∑
R∈R

(λ
r′/p
R )p|R|

)1/p
. 1;

in the case of mixed norms, it seems unclear how to perform this splitting of the co-
efficients. But even with the stronger condition, we do not know how to relate it to
b ∈ L̇r(L̇r). This problem is a variant of the question of bi-parameter sparse domination
that has attracted some attention. Recently, [2] showed the failure of the natural sparse
form bound for the strong maximal operator. However, our problem is more like finding
a sparse bound for the identity operator!

6. SUFFICIENT CONDITIONS FOR COMMUTATOR BOUNDEDNESS

In this section we are given Calderón–Zygmund operators Ti on Rdi with standard
kernels Ki, i = 1, 2. We also always assume that b ∈ Lsloc(Rd) for some s > 1. Moreover,
we let p1, p2, q1, q2 ∈ (1,∞) and use the familiar notation

βi := di

( 1

pi
− 1

qi

)
, if pi < qi;

1

ri
:=

1

qi
− 1

pi
, if pi > qi.

This fixed data is not repeated in the statements of the results.
We aim to prove

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2
. ‖b‖Ypi,qi

preferably with a function space Ypi,qi that matches the corresponding necessary condi-
tion obtained in Section 5.

Along the way we will need several kernel representations for 〈[T1, [b, T2]]f, g〉 even if
f and g do not have disjoint supports. To make these rigorous we recall the notion of
maximal truncations of CZOs. For ε > 0 we define for all xi ∈ Rdi and f ∈ Lp(Rdi),
1 ≤ p <∞, that

Ti,εf(xi) =

ˆ
|xi−yi|>ε

Ki(xi, yi)f(yi) dyi.

We define the maximal truncation of Ti via the formula

Ti,∗f(xi) = sup
ε>0
|Ti,εf(xi)|.

For the CZO Ti the following Cotlar’s inequality is true: for 0 < r < 1 we have for all
xi ∈ Rdi that

Ti,∗f(xi) .r MrTif(xi) +Mf(xi).
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Here M is the Hardy–Littlewood maximal function on Rdi and Mrg = (M |g|r)1/s. The
implicit constant in Cotlar’s inequality depends on ‖Ti‖L2→L2 , but this is the type of CZO
data that we will not track. The consequence of Cotlar’s inequality is that also T∗ maps
Lp(Rdi) to Lp(Rdi) for all p ∈ (1,∞). A standard fact also is that

(6.1) Tif = Ti,0f + aif,

where ai is a bounded function on Rdi , Ti,0 is bounded on Lp(Rdi) for all p ∈ (1,∞), and
for some sequence εj → 0 we haveˆ

Ti,0f · g = lim
j→∞

ˆ
Ti,εjf · g

whenever f ∈ Lp(Rdi) and g ∈ Lp′(Rdi) for some p ∈ (1,∞).
For the kernel representations it is convenient to again denote

B(x, y) = b(x1, x2)− b(x1, y2)− b(y1, x2) + b(y1, y2).

6.A. Ċ0,α(X). We begin with our first kernel representation.

6.2. Proposition. If

(x, y) 7→ B(x, y)K1(x1, y1)K2(x2, y2) ∈ L1
loc(R2d),

then for all f, g ∈ L∞c (Rd) we have〈
[T1, [b, T2]]f, g

〉
= −

¨
Rd×Rd

B(x, y)K1(x1, y1)K2(x2, y2)f(y)g(x) dy dx.

Proof. We write Tih = Ti,0h + aih as in (6.1). Notice that [T1, [b, T2]] = [T1,0, [b, T2,0]] and
that we have by definition

[T1,0, [b, T2,0]]f = T1,0(bT2,0f) + T2,0(bT1,0f)− bT1,0T2,0f − T1,0T2,0(bf).

We consider these terms separately. For all t ∈ (1, s) we have for almost every x2 that
x1 7→ b(x1, x2)T2,0(f(x1, ·))(x2) ∈ Lt(Rd1). Therefore, we have

〈T1,0(bT2,0f), g〉Rd1 = lim
j→∞
〈T1,εj (bT2,0f), g〉Rd1 .

Since T1,∗(bT2,0f)g ∈ L1(Rd) we have by dominated convergence theorem and Fubini’s
theorem that

〈T1,0(bT2,0f), g〉 = lim
j→∞
〈T1,εj (bT2,0f), g〉 = lim

j→∞

ˆ
Rd1
〈T2,0f, bT

∗
1,εjg〉Rd2 .

Similarly as above, we further have

〈T1,0(bT2,0f), g〉 = lim
j→∞

ˆ
Rd1

lim
k→∞
〈T2,ρkf, bT

∗
1,εjg〉Rd2 = lim

j→∞
lim
k→∞
〈T1,εj (bT2,ρkf), g〉.

We can similarly write out all the other terms of the commutator 〈[T1,0, [b, T2,0]]f, g〉.
Thus, we have

〈[T1,0, [b,T2,0]]f, g〉 = lim
j→∞

lim
k→∞
〈[T1,εj , [b, T2,ρk ]]f, g〉

= − lim
j→∞

lim
k→∞

ˆ
Rd

ˆ
y1 : |y1−x1|>εj
y2 : |y2−x2|>ρk

B(x, y)K1(x1, y1)K2(x2, y2)f(y)g(x) dy dx.

The proof is finished by a final application of the dominated convergence theorem. �
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We now give the upper bound that matches Proposition 5.1.

6.3. Proposition. If p1 < q1 and p2 < q2, we have

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2
. ‖b‖Ċ0,β1 (Ċ0,β2 ).

Proof. By Proposition 6.2 we have for b ∈ Ċ0,β1(Ċ0,β2) that∣∣〈[T1, [b, T2]]f, g〉
∣∣ ≤ ‖b‖Ċ0,β1 (Ċ0,β2 )〈I1,β1I2,β2 |f |, |g|〉,

where

I1,β1f =

ˆ
Rd1

f(y1)

|x1 − y1|d1−β1
dy1

is the fractional integral hitting on Rd1 and I2,β2 is defined similarly. The proof is com-
pleted by using the well-known boundedness of the fractional integrals:

Ii,βi : L
pi → Lqi .

Indeed, notice that by Minkowski’s integral inequality and the positivity of the operator

‖I1,β1 |h|‖Lq1x1L
q2
x2
≤ ‖I1,β1‖h‖Lq2x2‖L

q1
x1
. ‖‖h‖Lq2x2‖L

p1
x1

= ‖h‖Lp1x1L
q2
x2
,

so that no vector-valued theory is really used. �

We move on to proving the remaining Ċ0,α(X) type upper bounds. Again, a kernel
representation is required.

6.4. Proposition. If b ∈ Ċ0,α
x1 (BMOx2) for some α > 0, then for all f, g ∈ L∞c (Rd) we have〈

[T1, [b, T2]]f, g
〉

= −
¨

Rd1×Rd1
K1(x1, y1)

〈[
b(x1)− b(y1), T2

]
f(y1), g(x1)

〉
Rd2 .

Proof. We write〈
[T1, [b, T2]]f, g

〉
=
〈
[T1,0, [b, T2]]f, g

〉
=
〈
[T1,0, [̃b, T2]]f, g

〉
=
〈
T2 [̃b, T1,0]f, g

〉
−
〈
[̃b, T1,0]T2f, g

〉
,

where b̃ = b− 〈b〉V,2 and V ⊂ Rd2 is a cube with sptRd2 f ∪ sptRd2 g ⊂ V . We can write〈
T2 [̃b, T1,0]f, g

〉
=
〈
T1,0f, b̃T

∗
2 g
〉
−
〈
T1,0(̃bf), T ∗2 g

〉
=

ˆ
Rd2

lim
j→∞

[〈
T1,εjf, b̃T

∗
2 g
〉
Rd1 −

〈
T1,εj (̃bf), T ∗2 g

〉
Rd1
]

= lim
j→∞

ˆ
Rd2

[〈
T1,εjf, b̃T

∗
2 g
〉
Rd1 −

〈
T1,εj (̃bf), T ∗2 g

〉
Rd1
]
,

where in the last step we have used the dominated convergence theorem. Notice that we
can now write the above as

lim
j→∞

ˆ
Rd2

ˆ
Rd1

ˆ
y1:|x1−y1|>εj

K1(x1, y1)(̃b(x1, y2)− b̃(y1, y2))f(y1, y2)T ∗2 g(x1, y2) dy1 dx1 dy2.

Since b ∈ Ċ0,α
x1 (BMOx2), by definition we know that for all p ∈ (1,∞) we have

y2 7→
b̃(x1, y2)− b̃(y1, y2)

|x1 − y1|α
=
b(x1, y2)− b(y1, y2)− 〈b(x1, ·)− b(y1, ·)〉V

|x1 − y1|α
∈ Lp(V )
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uniformly for all x1, y1 with x1 6= y1. Using the above and the boundedness of the frac-
tional integrals we can verify that

(x1, y1, y2) 7→ K1(x1, y1)(̃b(x1, y2)− b̃(y1, y2))f(y1, y2)T ∗2 g(x1, y2) ∈ L1(R2d1+d2).

Therefore, we have〈
T2 [̃b, T1,0]f, g

〉
=

ˆ
R2d1

ˆ
Rd2

K1(x1, y1)T2((̃b(x1, ·)− b̃(y1, ·))f(y1, ·))(y2)g(x1, y2) dy2 dy1 dx1.

We complete the proof by noting that similarly
〈
[̃b, T1,0]T2f, g

〉
equalsˆ

R2d1

ˆ
Rd2

K1(x1, y1)(̃b(x1, y2)− b̃(y1, y2))T2f(y1, y2)g(x1, y2) dy2 dy1 dx1.

�

We obtain the following counterpart of Proposition 5.2.

6.5. Proposition. If p1 < q1 and p2 = q2, then

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

p2
x2
. ‖b‖

Ċ
0,β1
x1

(BMOx2 )
.

If p1 = q1 and p2 < q2, then

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lp1x1L

q2
x2
. ‖b‖

Ċ
0,β2
x2

(BMOx1 )
.

Proof. Let first p1 < q1 and p2 = q2. For f, g ∈ L∞c we have by Proposition 6.4 that∣∣〈[T1, [b, T2]]f, g
〉∣∣

=

∣∣∣∣¨
Rd1×Rd1

|x1 − y1|β1K1(x1, y1)
〈[b(x1)− b(y1)

|x1 − y1|β1
, T2

]
f(y1), g(x1)

〉
Rd2

∣∣∣∣
.
¨

Rd1×Rd1
|x1 − y1|β1−d1

∥∥∥b(x1)− b(y1)

|x1 − y1|β1
∥∥∥

BMOx2

‖f(y1)‖Lp2x2‖g(x1)‖
L
p′2
x2

. ‖b‖
Ċ

0,β1
x1

(BMOx2 )
‖f‖Lp1x1L

p2
x2
‖g‖

L
q′1
x1
L
p′2
x2

,

where we have used the well-known boundedness of one parameter commutators and
the fractional integrals.

Next, let p1 = q1 and p2 < q2. Similarly as in Proposition 6.4, for f, g ∈ L∞c we may
write 〈

[T1, [b, T2]]f, g
〉

= −
¨

Rd2×Rd2
K2(x2, y2)

〈[
b(x2)− b(y2), T1

]
f(y2), g(x2)

〉
Rd1 .

By the sparse domination of commutators – see [34] – we have for all r ∈ (1,∞) that∣∣〈[b(x2)− b(y2), T1

]
f(y2), g(x2)

〉
Rd1
∣∣

. ‖b(·, x2)− b(·, y2)‖BMO(Rd1 )

ˆ
Rd1

M1
r f(·, y2)M1

r g(·, x2).

Choosing 1 < r < min{p1, p2, p
′
1, q
′
2} and using the above we have that

∣∣〈[T1, [b, T2]]f, g
〉∣∣

can be dominated by

‖b‖
Ċ

0,β2
x2

(BMOx1 )

¨
Rd2×Rd2

|K2(x2, y2)||x2 − y2|β2
ˆ
Rd1

M1
r f(x1, y2)M1

r g(x1, x2)
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≤ ‖b‖
Ċ

0,β2
x2

(BMOx1 )
‖f‖Lp1x1L

p2
x2
‖g‖

L
p′1
x1
L
q′2
x2

,

where we have used the boundedness of fractional integrals and mixed norm estimates
of M1

r . This completes the proof. �

We move on to the upper bounds that are related to the Hölder space estimates of
Proposition 5.4.

6.6. Proposition. If p1 < q1 and p2 > q2 then

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2
. ‖b‖

Ċ
0,β1
x1

(L̇
r2
x2

)
.

If p1 > q1 and p2 < q2 then

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2
. ‖b‖

L̇
r1
x1

(Ċ
0,β2
x2

)
.

Proof. Let p1 < q1 and p2 > q2. Similarly as above for f, g ∈ L∞c we may write〈
[T1, [b, T2]]f, g

〉
= −

¨
Rd1×Rd1

K1(x1, y1)
〈[
b(x1)− b(y1), T2

]
f(y1), g(x1)

〉
Rd2 .

This gives that∣∣〈[T1, [b, T2]]f, g
〉∣∣

=

∣∣∣∣¨
Rd1×Rd1

|x1 − y1|β1K1(x1, y1)
〈[b(x1)− b(y1)

|x1 − y1|β1
, T2

]
f(y1), g(x1)

〉
Rd2

∣∣∣∣
.
¨

Rd1×Rd1
|x1 − y1|β1−d1

∥∥∥b(x1)− b(y1)

|x1 − y1|β1
∥∥∥
L̇
r2
x2

‖f(y1)‖Lp2x2‖g(x1)‖
L
q′2
x2

. ‖b‖
Ċ

0,β1
x1

(L̇
r2
x2

)
‖f‖Lp1x1L

p2
x2
‖g‖

L
q′1
x1
L
q′2
x2

,

where we have used the elementary inequality (6.9) and the boundedness of fractional
integrals.

Next, let p1 > q1 and p2 < q2. We simply estimate

‖[T1, [b, T2]]f‖Lq1x1L
q2
x2

= ‖[T1, [b− c2, T2]]f‖Lq1x1L
q2
x2

≤ ‖T1[b− c2, T2]f‖Lq1x1L
q2
x2

+ ‖[b− c2, T2]T1f‖Lq1x1L
q2
x2
,

use the mixed norm estimates of T1, and the estimate

‖[b− c2, T2]f‖Lq1x1L
q2
x2
.
∥∥∥‖b− c2‖Ċ0,β2

x2

‖f‖Lp2x2

∥∥∥
L
q1
x1

≤ ‖b− c2‖Lr1x1 (Ċ
0,β2
x2

)
‖f‖Lp1x1L

p2
x2
.

To end the proof we take the infimum over suitable c2(x) = c2(x2). �

6.B. BMO and L̇r. Proposition 5.4 recorded the oscillatory lower bounds related to the
space BMO(L̇r). Here are the related upper bounds.

6.7. Proposition. If p1 = q1 and p2 > q2, then

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lp1x1L

q2
x2
. ‖b‖BMOx1 (L̇

r2
x2

).

If p1 > q1 and p2 = q2, then

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

p2
x2
. ‖b‖L̇r1x1 (BMOx2 ).
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Proof. The first estimate, where p1 = q1 and p2 > q2, requires some vector-valued theory
of commutators. We notice that

(6.8) ([T1, [b, T2]]f)] .ε ‖b‖BMOx1 (L̇
r2
x2

)

(
M1+ε‖T1f‖Lp2x2 +M1+ε‖f‖Lp2x2

)
,

where M is the maximal function, Msg = (M |g|s)1/s and the sharp maximal function is
defined using the Lq2x2 norm as follows

g](x1) := sup
I1

 
I1

‖g − 〈g〉I1‖Lq2x2 .

Here the supremum is over the cubes I1 ⊂ Rd1 centered at x1. The proof of this is es-
sentially a vector-valued version of a known pointwise bound for the sharp maximal
function of [b, T1], but we need to keep the operator T2 around to exploit the elementary
estimate

(6.9) ‖[b, T2]f‖Lq2x2 . ‖b‖L̇r2x2‖f‖L
p2
x2
.

We give the full details of (6.8) for the convenience of the reader. Below we repeatedly
use the well-known vector-valued boundedness of T1 and (6.9) without explicit mention.

Fix a cube I1 containing the implicit variable. Let f1 = f1I∗1 and f2 = f − f1, where
I∗1 = 5

√
d1I1. Let

c =
〈
T1([b− a, T2]f2)

〉
I1,1

, a = 〈b〉I∗1 ,1.

We can now write

[T1, [b, T2]]f = [T1, [b− a, T2]]f = −[b− a, T2]T1f + T1([b− a, T2]f1) + T1([b− a, T2]f2).

Using this we split 
I1

‖[T1, [b, T2]]f − c‖Lq2x2 ≤
 
I1

‖[b− a, T2]T1f‖Lq2x2 +

 
I1

‖T1([b− a, T2]f1)‖Lq2x2

+

 
I1

‖T1([b− a, T2]f2)− c‖Lq2x2
=: L1 + L2 + L3.

We have

L1 .
( 

I∗1

‖b− a‖(1+ε)′

L̇
r2
x2

) 1
(1+ε)′

( 
I1

‖T1f‖1+ε
L
p2
x2

) 1
1+ε
. ‖b‖BMOx1 (L̇

r2
x2

)M1+ε(‖T1f‖Lp2x2 ),

where in the last inequality we have used John-Nirenberg inequality of BMOx1(L̇r2x2),
which has the same proof as the usual vector-valued John-Nirenberg inequality (the dot
in L̇r2x2 does not matter).

We move to L2. This time we have

L2 . |I1|
− 1

1+ ε2 ‖[b− a, T2]f1‖
L
1+ ε2
x1

(L
q2
x2

)

.
(  

I∗1

‖b− a‖1+ ε
2

L̇
r2
x2

‖f‖1+ ε
2

L
p2
x2

) 1
1+ ε2 . ‖b‖BMOx1 (L̇

r2
x2

)M1+ε‖f‖Lp2x2 .

We used John-Nirenberg again in the last step.
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It remains to estimate L3. Since I1 ∩ spt f2 = ∅, using the kernel representation of T1

and the regularity of the kernel we have

L3 .
∞∑
j=0

2−jα1

 
2j+1I∗1

‖[b− a, T2]f‖Lq2x2 .
∞∑
j=0

2−jα1

 
2j+1I∗1

‖b− a‖L̇r2x2‖f‖L
p2
x2

≤
∞∑
j=0

2−jα1

 
2j+1I∗1

‖b− 〈b〉2j+1I∗1 ,1
‖L̇r2x2‖f‖L

p2
x2

+
∞∑
j=0

2−jα1

 
2j+1I∗1

‖〈b〉I∗1 ,1 − 〈b〉2j+1I∗1 ,1
‖L̇r2

L
p2
x2

‖f‖Lp2x2 .

Using John-Nirenberg again, the first sum can be bounded by ‖b‖BMOx1 (L̇
r2
x2

)M1+ε‖f‖Lp2x2 .
Moreover, since

‖〈b〉I∗1 ,1 − 〈b〉2j+1I∗1 ,1
‖L̇r2x2 ≤

j∑
i=0

‖〈b〉2i+1I∗1 ,1
− 〈b〉2iI∗1 ,1‖L̇r2x2 . j‖b‖BMOx1 (L̇

r2
x2

),

the desired estimate follows for the second term as well. The inequality (6.8) follows.
Next, if ε is so small that p1/(1 + ε) > 1, we have by the standard Fefferman-Stein

inequality that

‖[T1, [b, T2]]f‖p1
L
p1
x1
L
q2
x2

=

ˆ
Rd1
‖[T1, [b, T2]]f‖p1

L
q2
x2

.
ˆ
Rd1

[
([T1, [b, T2]]f)]

]p1
. ‖b‖p1

BMOx1 (L̇
r2
x2

)

(
‖M1+ε‖T1f‖Lp2x2‖

p1
L
p1
x1

+ ‖M1+ε‖f‖Lp2x2‖
p1
L
p1
x1

)
. ‖b‖p1

BMOx1 (L̇
r2
x2

)
‖f‖p1

L
p1
x1
L
p2
x2

.

We are done with the case p1 = q1 and p2 > q2. See Section 7 for more about vector-
valued estimates of commutators.

The case p1 > q1 and p2 = q2 is the following elementary deduction. Estimate

‖[T1, [b, T2]]f‖Lq1x1L
p2
x2

= ‖[T1, [b− c2, T2]]f‖Lq1x1L
p2
x2

≤ ‖T1[b− c2, T2]f‖Lq1x1L
p2
x2

+ ‖[b− c2, T2]T1f‖Lq1x1L
p2
x2
,

use the mixed norm estimates of T1 and

‖[b− c2, T2]f‖Lq1x1L
p2
x2
.
∥∥∥‖b− c2‖BMOx2

‖f‖Lp2x2

∥∥∥
L
q1
x1

≤ ‖b− c2‖Lr1x1 (BMOx2 )‖f‖Lp1x1L
p2
x2
.

To end the proof we take the infimum over suitable c2(x) = c2(x2). �

The oscillatory lower bound related to L̇r1L̇r2 was recorded in Proposition 5.5. The
upper bound is completely elementary and does not utilize any cancellation of the bi-
commutator.

6.10. Proposition. If p1 > q1 and p2 > q2, then

‖[T1, [b, T2]]‖Lp1x1L
p2
x2
→Lq1x1L

q2
x2
. ‖b‖L̇r1x1 (L̇

r2
x2

).

Proof. Simply use Hölder’s inequality and the mixed-norm estimates of T1 and T2. �
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7. VECTOR-VALUED ESTIMATES FOR COMMUTATORS

In the proof of Proposition 6.7 we used some vector-valued theory of commutators.
Although the proof of Proposition 6.7 was completely self-contained, in this section we
more systematically prove, and partly recall, such vector-valued estimates. This topic is
of independent interest.

7.A. Vector-valued estimates for [b, T ]. In the one-parameter setting [b, T ], where T is
a CZO in Rd, the vector-valued estimates are known and quite easy, but perhaps not so
well-known in the community. They are simple as there is a certain pointwise estimate
for the sharp maximal function of [b, T ], which has a straightforward vector-valued ex-
tension. A reference is [48]. This idea was already used in the proof of Proposition 6.7.
We now recall how this can be done in a general situation.

First, a few definitions. For an extensive treatment of Banach space theory see the
books [26, 27] by Hytönen, van Neerven, Veraar and Weis.

Given a Banach space X with norm | · |X we let Lp(Rd;X), p ∈ (0,∞], be the Bochner
space of X-valued functions with

´
Rd |f(x)|pX dx <∞. For f : Rd → X , we also define

f ](x) := sup
Q=Q(x,r),r>0

1

|Q|

ˆ
Q
|f − 〈f〉Q|X ,

where the supremum is over the cubes Q(x, r) centred at x. We have

f ](x) ∼ sup
Q=Q(x,r),r>0

inf
e∈X

1

|Q|

ˆ
Q
|f − e|X .

The UMD property is a necessary and sufficient condition for the boundedness of var-
ious one-parameter singular integrals on Lp(Rd;X) = Lp(X), see [26, Sec. 5.2.c and the
Notes to Sec. 5.2]. We essentially only need to blackbox this fact, but below is the defini-
tion.

7.1. Definition. A Banach space X is said to be a UMD space, where UMD stands for
unconditional martingale differences, if for all p ∈ (1,∞), all X-valued Lp-martingale
difference sequences (dj)

k
j=1 and all choices of signs εj ∈ {−1, 1}we have

(7.2)
∥∥∥ k∑
j=1

εjdj

∥∥∥
Lp(X)

.
∥∥∥ k∑
j=1

dj

∥∥∥
Lp(X)

.

The Lp(X)-norm is with respect to the measure space where the martingale differences
are defined.

A standard property of UMD spaces is that if (7.2) holds for one p0 ∈ (1,∞) it holds
for all p ∈ (1,∞) [26, Theorem 4.2.7]. Moreover, if X is UMD then so is the dual space
X∗ [26, Prop. 4.2.17].

Suppose now that X1 is a Banach space and X2, X3 are UMD spaces such that there
exists a bilinear map X1 ×X2 → X3, which we denote by

(x1, x2)→ x1x2,

so that
|x1x2|X3 ≤ |x1|X1 |x2|X2 .
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Let f take values in X2 and b take values in X1. For a CZO T on Rd a standard estimate
as in the proof of Proposition 6.7 gives that for all ε > 0 we have

(7.3)
(
[b, T ]f

)]
.ε ‖b‖BMO(X1)

(
M1+ε(|Tf |X2) +M1+ε|f |X2

)
,

where M is the maximal function and Msg = (M |g|s)1/s. The sharp maximal func-
tion is defined using the norm of X3. To get this estimate, already the boundedness
T : Lq(X3) → Lq(X3), q ∈ (1,∞), is required – this is true as X3 is UMD. The vector-
valued estimate

(7.4) ‖[b, T ]f‖Lp(X3) . ‖b‖BMO(X1)‖f‖Lp(X2), p ∈ (1,∞),

follows from (7.3) using the Fefferman-Stein inequality as in the proof of Proposition 6.7.
Here the UMD property of X2 is needed via the boundedness T : Lp(X2)→ Lp(X2).

Notice that the proof of Proposition 6.7 was almost just this vector-valued estimate –
we just needed to work a bit more to get the norm ‖b‖BMOx1 (L̇

r2
x2

) instead of ‖b‖BMOx1 (L
r2
x2

).
Alternatively, it is also possible to directly prove a vector-valued version of the sparse

domination of commutators [34]:

|〈[b, T ]f, g〉| .
∑
Q∈S

〈
|b− 〈b〉Q|X1 |f |X2

〉
Q
〈|g|X∗3 〉Q|Q|

+
∑
Q∈S
〈|f |X2〉Q

〈
|b− 〈b〉Q|X1 |g|X∗3

〉
Q
|Q|.

7.B. Vector-valued estimates for bi-commutators. We will prove the bi-parameter ana-
logue of the vector-valued estimate (7.4). There is no equally cheap way for this as in
the above one-parameter case. However, we want to show that it can still be done with
different methods.

We need more definitions and tools.

Dyadic notation. Let D be some fixed dyadic lattice in Rd. For a fixed Q ∈ D and f ∈
L1

loc(X) we define as follows.

• If k ∈ Z, k ≥ 0, then Q(k) denotes the unique cube S ∈ D for which Q ⊂ S and
`(Q) = 2−k`(S).
• The dyadic children of Q are denoted by ch(Q) = {Q′ ∈ D : (Q′)(1) = Q}.
• The average operator is EQf = 〈f〉Q1Q.
• The martingale difference ∆Qf is defined by ∆Qf =

∑
Q′∈ch(Q)EQ′f − EQf .

• For k ∈ Z, k ≥ 0, we define the martingale difference block

∆Q,kf =
∑
S∈D

S(k)=Q

∆Sf.

Haar functions are used to decompose martingale differences ∆Qf in terms of rank-
one operators. For an interval I ⊂ R, we denote by Il and Ir the left and right halves of
the interval I , respectively. We define h0

I = |I|−1/21I and h1
I = |I|−1/2(1Il − 1Ir). Let now

Q = I1 × · · · × Id ∈ D, and define the Haar function hηQ, η = (η1, . . . , ηd) ∈ {0, 1}d, via

hηQ = hη1I1 ⊗ · · · ⊗ h
ηd
Id
.
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If η 6= 0, the Haar function is cancellative:
´
hηQ = 0. We may write ∆Qf =

∑
η 6=0〈f, h

η
Q〉h

η
Q,

where 〈f, hηQ〉 =
´
fhηQ. We exploit notation by suppressing the presence of η, and simply

write hQ for some hηQ, η 6= 0. Similarly, we write ∆Qf = 〈f, hQ〉hQ.
When performing bi-parameter analysis and thinking of Rd as a product space Rd1 ×

Rd2 , we denote a dyadic grid in Rdi by Di and denote the related dyadic rectangles in Rd
by D = D1 × D2. If R = I1 × I2 ∈ D we set hR = hI1 ⊗ hI2 . We also define ∆1

I1
f(x) :=

∆I1(f(·, x2))(x1) and define ∆2
I2
f analogously. Then we set ∆Rf = ∆1

I1
∆2
I2
f = ∆2

I2
∆1
I1
f .

We record that ∆1
I1
f = hI1 ⊗ 〈f, hI1〉1, ∆2

I2
f = 〈f, hI2〉2 ⊗ hI2 and ∆Rf = 〈f, hR〉hR.

Bi-parameter martingale blocks may also be defined in the natural way

∆j1,j2
R f =

∑
J1 : J

(j1)
1 =I1

∑
J2 : J

(j2)
2 =I2

∆J1×J2f.

More about Banach spaces. In addition to UMD we will need the “property (α)”. Bi-
parameter extensions require this – see [27, Sec. 8.3.e]. Suppose that for all N , all scalars
ai,j and all ei,j ∈ X , 1 ≤ i, j ≤ N , there holds(

EE′
∣∣∣ ∑

1≤i,j≤N
εiε
′
jai,jei,j

∣∣∣2
X

)1/2
. max

i,j
|ai,j |

(
EE′

∣∣∣ ∑
1≤i,j≤N

εiε
′
jei,j

∣∣∣2
X

)1/2
.

If this holds, the Banach space X is said to satisfy the property (α) of Pisier. Here {εk}k
is a collection of independent random signs – that is, the following holds. We have εk : M→
{−1, 1}, where (M, ρ) is a probability space, the collection {εk}k is independent and
ρ({εk = 1}) = ρ({εk = −1}) = 1/2.

Instead of dealing with UMD spaces with property (α) we will be working with the
formally stronger (although for concrete examples essentially the same) assumption that
X is a UMD function lattice. For proofs and background on function lattices see [1, 25,
39, 40]. A normed space X is a Banach function lattice if the following four conditions
hold. Let (Ω,A, µ) be a σ-finite measure space.

(1) Every e ∈ X is a measurable function e : Ω→ R (an equivalence class).
(2) If e : Ω→ R is measurable, u ∈ X and |e(ω)| ≤ |u(ω)| for µ-a.e. ω ∈ Ω, then e ∈ X

and |e|X ≤ |u|X .
(3) There is an element e ∈ X so that e > 0 (i.e. e(ω) > 0 for µ-a.e. ω ∈ Ω).
(4) If ei, e are non-negative, ei ∈ X , ei ≤ ei+1, ei(ω) → e(ω) for µ-a.e. ω ∈ Ω and

supi |ei|X <∞, we have e ∈ X and |ei|X → |e|X = supi |ei|X .

Such a space X is automatically a Banach space. For a measurable u : Ω → R with eu ∈
L1(µ) for all e ∈ X , we define

Λu : X → R, eu(e) =

ˆ
Ω
e(ω)u(ω) dµ(ω).

In this case Λu ∈ X∗ (the dual space of X). We set X ′ ⊂ X∗ to consist of those elements
of X∗ that have the form Λu for some u like above and make the obvious identification.
The Banach function lattice X ′ is called the Köthe dual of X .

We mostly work with UMD Banach function lattices, where X ′ = X∗ is automatic. In-
deed, UMD spaces are always reflexive, and in reflexive Banach lattices X ′ = X∗ holds.
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When X ′ = X∗ is not automatic, we prefer to tacitly assume it for clarity. A UMD func-
tion lattice X also automatically satisfies the property (α) of Pisier – this explains why
this assumption is not explicitly needed.

Next, we explain some maximal function estimates by Bourgain [3] and Rubio de Fran-
cia [47] that are valid in UMD function lattices (see also [17]). We also explain some
standard square function estimates, see e.g. the recent paper [25].

Let X be a UMD function lattice, Rd = Rd1 × Rd2 and D = D1 × D2, where Di is a
dyadic grid in Rdi . Given f : Rd → X and g : Rd1 → X we define the dyadic (lattice)
maximal functions

MD1g(x1, ω) := sup
I∈D1

1I(x1)

|I|

ˆ
I
|g(x1, ω)| dx1 and MDf(x, ω) := sup

R∈D

1R(x)

|R|

ˆ
R
|f(x, ω)|dx.

We also set M1
D1f(x1, x2) = MD1(f(·, x2))(x1). The operator M2

D2 is defined similarly.
Similarly, define the square functions

SDf =
( ∑
R∈D
|∆Rf |2

)1/2
, S1
D1f =

( ∑
I∈Dn

|∆1
If |2

)1/2
and S2

D2f =
( ∑
J∈Dm

|∆2
Jf |2

)1/2
.

Notice that |x| ∈ X and |x|2 ∈ X are defined in the natural pointwise sense, as X is a
function lattice. Define also

SD1,MD2
f =

( ∑
I∈D1

1I
|I|
⊗ [MD2〈f, hI〉1]2

)1/2

and define SD2,MD1
f analogously. We are ready to state the following standard estimates

that are at least recorded in [25].

7.5. Lemma. Let D = D1×D2, where Di is a dyadic grid in Rdi , and let X be a UMD function
lattice. Then we have for all p1, p2 ∈ (1,∞) that

‖f‖Lp1x1L
p2
x2

(X) ∼ ‖SDf‖Lp1x1L
p2
x2

(X) ∼ ‖S
1
D1f‖Lp1x1L

p2
x2

(X) ∼ ‖S
2
D2f‖Lp1x1L

p2
x2

(X).

Moreover, for s ∈ (1,∞) we have the Fefferman–Stein inequality∥∥∥(∑
j

|Mfj |s
)1/s∥∥∥

L
p1
x1
L
p2
x2

(X)
.
∥∥∥(∑

j

|fj |s
)1/s∥∥∥

L
p1
x1
L
p2
x2

(X)
.

Here M can e.g. be M1
D1 or MD. Finally, we have

‖SD1,MD2
f‖Lp1x1L

p2
x2

(X) + ‖SD2,MD1
f‖Lp1x1L

p2
x2

(X) . ‖f‖Lp1x1L
p2
x2

(X).

Product BMO and vector-valued H1 − BMO estimates. Let again X be a Banach function
lattice, Rd = Rd1 × Rd2 and D = D1 × D2, where Di is a dyadic grid in Rdi . A locally
integrable function b : Rd → X belongs to the dyadic X-valued product BMO space
BMOD,prod(p,X), 0 < p <∞, if

sup
Ω

1

|Ω|1/p
∥∥∥( ∑

R∈D
R⊂Ω

|〈b, hR〉|2
1R
|R|

)1/2∥∥∥
Lp(X)

<∞,

where the supremum is taken over all open subsets Ω ⊂ Rd of finite measure. We define
BMOD,prod(X) := BMOD,prod(2, X). With this definition we will not require a Banach-
valued bi-parameter John–Nirenberg inequality for which we do not have a convenient
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reference. In the scalar-valued case it is well-known that all these norms are equivalent.
The product BMO is the supremum over all dyadic grids of the dyadic product BMO
norms.

7.6. Remark. The following explanation gives one way to arrive at the definition of prod-
uct BMO in our generality. If X is UMD and p ∈ (1,∞) then(ˆ

Ji

|b− 〈b〉Ji |
p
X

)1/p
=
∥∥∥ ∑
Ii∈Di
Ii⊂Ji

〈b, hIi〉hIi
∥∥∥
Lp(X)

∼ E
∥∥∥ ∑
Ii∈Di
Ii⊂Ji

εIi〈b, hIi〉
1Ii
|Ii|1/2

∥∥∥
Lp(X)

.

If X is a UMD function lattice we further have

E
∥∥∥ ∑
Ii∈Di
Ii⊂Ji

εIi〈b, hIi〉
1Ii
|Ii|1/2

∥∥∥
Lp(X)

∼
∥∥∥( ∑

Ii∈Di
Ii⊂Ji

|〈b, hIi〉|2
1Ii
|Ii|

)1/2∥∥∥
Lp(X)

.

The last similarity can be seen as follows. The Kahane–Khintchine inequality (see [26,
Theorem 6.2.4]) says if X is a Banach space, we have for all x1, . . . , xM ∈ X and p, q ∈
(0,∞) that (

E
∣∣∣ M∑
m=1

εmxm

∣∣∣p
X

)1/p
∼
(
E
∣∣∣ M∑
m=1

εmxm

∣∣∣q
X

)1/q
.

Applying this twice we see that

E
∥∥∥ ∑
Ii∈Di
Ii⊂Ji

εIi〈b, hIi〉
1Ii
|Ii|1/2

∥∥∥
Lp(X)

∼
∥∥∥(E∣∣∣ ∑

Ii∈Di
Ii⊂Ji

εIi〈b, hIi〉
1Ii
|Ii|1/2

∣∣∣2
X

)1/2∥∥∥
Lp
.

It remains to use the equivalence(
E
∣∣∣∑

j

εjej

∣∣∣2
X

)1/2
∼
∣∣∣(∑

j

|ej |2
)1/2∣∣∣

X

for all ej ∈ X . This theorem of Khintchine–Maurey holds in all Banach lattices with finite
cotype – in particular, in UMD function lattices. For a proof see Theorem 7.2.13 in [27].

This explains that in one-parameter the dyadic BMO(X) norm (if X is UMD) also has
the equivalent form

sup
Ji∈Di

∥∥∥( ∑
Ii∈Di
Ii⊂Ji

|〈b, hIi〉|2
1Ii
|Ii|

)1/2∥∥∥
Lp(X)

.

The product BMO is simply the bi-parameter analogue of this form, where the supre-
mum is taken over all open sets. The rectangular BMO is the analogue of this, where the
supremum is over dyadic rectangles. This is because∑

P∈D
P⊂R=I1×I2

〈b, hP 〉hP = (b− 〈b〉I1,1 − 〈b〉I2,2 + 〈b〉R)1R.

Let b : Rd → X and f : Rd → X ′, where X is a Banach function lattice and X ′ is the
Köthe dual of X . Denote 〈b, f〉 =

´
Rd{b(x), f(x)}X dx, where {·, ·}X denotes the duality

pairing between X and X ′, in other words, we have {e, e′}X =
´

Ω e(ω)e′(ω) dµ(ω) for
e ∈ X and e′ ∈ X ′.
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The following H1-BMO duality in the lattice case is convenient. The proof is similar
to the scalar-valued case.

7.7. Lemma. Let X be a Banach function lattice. Then we have

|〈b, f〉| . ‖b‖BMOD,prod(X)‖SDf‖L1(X′).

Proof. We may assume ‖SDf‖L1(X′) <∞. Estimate

|〈b, f〉| ≤
∑
R∈D

{
|〈b, hR〉|, |〈f, hR〉|

}
X
.

Given k ∈ Z we define

Uk =
{
x :
∣∣SDf(x)

∣∣
X′
> 2−k

}
,

and R̂k = {R ∈ D : |R ∩ Uk| > |R|/2}. If R ∈ R̂k, then R ⊂ Ũk := {x : MD1Uk > 1/2},
and, of course, |Ũk| . |Uk|.

For all R0 ∈ D and x ∈ R0 we have∣∣SDf(x)
∣∣
X′
≥ |〈f, hR0〉|X′

|R0|1/2
.

If |〈f, hR0〉|X′ > 0, then this implies R0 ∈ R̂k for all large enough k. As |Uk| → 0 when
k → −∞ we also have that R0 6∈ R̂k for all small enough k. Let Rk = R̂k \ R̂k−1, k ∈ Z,
and notice that by above∑

R∈D

{
|〈b, hR〉|, |〈f, hR〉|

}
X

≤ 2
∑
k∈Z

∑
R∈Rk

〈
|〈b, hR〉|

1R

|R|1/2
, |〈f, hR〉|

1R

|R|1/2
1Ũk1Uck−1

〉
.
∑
k∈Z

∥∥∥( ∑
R∈D
R⊂Ũk

|〈b, hR〉|2
1R
|R|

)1/2∥∥∥
L2(X)

∥∥∥( ∑
R∈D
|〈f, hR〉|2

1R
|R|

)1/2
1Ũk1Uck−1

∥∥∥
L2(X′)

≤
∑
k∈Z
‖b‖BMOD,prod(X)|Ũk|1/2 × ‖2−(k−1)1Ũk‖L2

.
∑
k∈Z
‖b‖BMOD,prod(X)2

−k|Uk| ∼ ‖b‖BMOD,prod(X)‖SDf‖L1(X′). �

Paraproducts. When we represent a singular integral using dyadic model operators [22,
23], one type of model operator that appears is a paraproduct. However, this will not be
the only source of paraproducts in our arguments. In fact, the main source comes from
the desire to expand products of functions bf – that appear naturally in commutators –
using paraproducts. In this section we explain how this is done.

For i ∈ {1, 2}we define the one-parameter paraproducts

Ai1(b, f) =
∑
Ii∈Di

∆i
Iib∆

i
Iif, A

i
2(b, f) =

∑
Ii∈Di

∆i
IibE

i
Iif and Ai3(b, f) =

∑
Ii∈Di

EiIib∆
i
Iif.
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By writing b =
∑

Ii
∆i
Ii
b and f =

∑
Ji

∆i
Ji
f , and collapsing sums such as

∑
Ji : Ii(Ji ∆i

Ji
f =

EiIif , we formally have

bf =
∑
Ii

∆i
Iib∆

i
Iif +

∑
Ii(Ji

∆i
Iib∆

i
Jif +

∑
Ji(Ii

∆i
Iib∆

i
Jif =

3∑
j=1

Aij(b, f).

Sometimes, when we pair bf with a tensor product of Haar functions, only one of the
appearing Haar functions is cancellative. In this type of a situation we expand using
these one-parameter paraproducts, like above, in the parameter i ∈ {1, 2} where the
cancellative Haar function appears.

A feature of such decompositions is that the paraproduct Ai3(b, f) appears (e.g. such
paraproducts do not appear in the dyadic representation of singular integrals). Indeed,
there is an average on b, and so no BMO type philosophy on that parameter can char-
acterize its boundedness. However, these will appear in commutator decompositions
and the cancellation present in the commutator is key to handling such terms. In fact,
none of the one-parameter paraproducts are bounded by themselves with the assump-
tion b ∈ BMOprod.

We continue to define bi-parameter paraproducts, which can be obtained by chaining
two one-parameter paraproducts. For j1, j2 ∈ {1, 2, 3} define formally

Aj1,j2(b, f) = A1
j1A

2
j2(b, f)

so that e.g.

A1,2(b, f) =
∑
I2∈D2

A1
1(∆2

I2b, E
2
I2f) =

∑
R=I1×I2∈D

∆Rb∆
1
I1E

2
I2f.

We can again expand the product bf as follows

bf =
∑

j1,j2∈{1,2,3}

Aj1,j2(b, f).

Now, those bi-parameter paraproducts where j1, j2 ∈ {1, 2}, will be automatically bounded
if b is in product BMO. The rest will have to be handled by exploiting the cancellation of
the commutator.

We now formulate the vector-valued setting, where we can prove the boundedness of
our paraproducts.

7.8. Definition. We say that (X1, X2, X3) is a compatible triple of function lattices, if each
Xi is a Banach lattice defined using the same underlying measure space (Ω, µ), the spaces
X2 and X3 are UMD, and we have

|x1x2|X3 ≤ |x1|X1 |x2|X2 .

7.9. Proposition. Let p1, p2 ∈ (1,∞) and (X1, X2, X3) be a compatible triple of function lattices
in the sense of Definition 7.8. For j1, j2 ∈ {1, 2} we have the paraproduct estimate

‖Aj1,j2(b, f)‖Lp1x1L
p2
x2

(X3) . ‖b‖BMOD,prod(X1)‖f‖Lp1x1L
p2
x2

(X2).

Proof. We will show the estimate for A1,2(b, f) – the other cases are very similar and
follow by dominating the pairings below by different combinations of square functions
and maximal functions.
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Let g ∈ Lp
′
1
x1L

p′2
x2(X ′3) and estimate

|〈A1,2(b, f), g〉| ≤
∑

R=I1×I2

{
|〈b, hR〉|,

∣∣∣〈f, hI1 ⊗ 1I2
|I2|

〉∣∣∣|〈g, hI1hI1 ⊗ hI2〉|}
. ‖b‖BMOD,prod(X1)

∥∥∥( ∑
R=I1×I2

∣∣∣〈f, hI1 ⊗ 1I2
|I2|

〉∣∣∣2|〈g, hI1hI1 ⊗ hI2〉|2 1R
|R|

)1/2∥∥∥
L1(X′1)

.

Here we used Lemma 7.7. We can now further dominate this by

‖SD1,MD2
f‖Lp1x1L

p2
x2

(X2)‖SD2,MD1
g‖
L
p′1
x1
L
p′2
x2

(X′3)
,

and the proof is finished using Lemma 7.5. �

7.10. Remark. In the one-parameter case, paraproduct estimates are known to hold in all
UMD spaces (i.e., without imposing any additional function lattice structure), but the
proofs become slightly more demanding under such minimal assumptions. For back-
ground and a modern proof of such estimates see e.g. [28].

We are now ready to give the proof of the bi-parameter analogue of (7.4). The proof
follows the modern paradigm of dyadic representation theorems of singular integrals
combined with the paraproduct decompositions of commutators.

7.11. Remark. A vector-valued estimate for [b, T ], where T is a bi-parameter CZO [41],
could extremely likely also be proved with an adaptation of the strategy below.

7.12. Theorem. Let p1, p2 ∈ (1,∞) and (X1, X2, X3) be a compatible triple of function lattices
in the sense of Definition 7.8. Let Ti be a CZO in Rdi , i = 1, 2. Then we have

‖[T1, [b, T2]]f‖Lp1x1L
p2
x2

(X3) . ‖b‖BMOprod(X1)‖f‖Lp1x1L
p2
x2

(X2).

Proof. The proof is a vector-valued adaptation of the recent commutator decompositions
[36, 37, 38]. In particular, see [37] for a two-weight version of this bound in the scalar-
valued setting. To begin the proof, we recall that it is enough to fix lattices Di and to
estimate [U1, [b, U2]]f , where U1 and U2 are DMOs – dyadic model operators – appearing
in the representation theorem [22, 23]. That is, we have that Ui ∈ {Si, πi}, where Si is
a so-called dyadic shift in Rdi and πi is a dyadic paraproduct in Rdi . We will recall the
definitions during the proof. It is enough to obtain a polynomial dependence on the
complexity of the shift.

We will only explicitly show the case [S1, [b, π2]]f (see [37] for the decompositions used
in the other cases). The dyadic shift S1 has the form

S1f =
∑

K1∈D1

I
(i1)
1 =J

(j1)
1 =K1

aK1,I1,J1hJ1 ⊗ 〈f, hI1〉1,

where i1, j1 ≥ 0 and |aK1,I1,J1 | ≤ |I1|1/2|J1|1/2|K1|−1. The paraproduct π2 has the form

π2f =
∑

K2∈D2

aK2〈f〉K2,2 ⊗ hK2 ,

where ‖(aK2)‖BMO(D2) = supP2∈D2

(
1
|P2|
∑

K2⊂P2
|aK2 |2

)1/2
≤ 1. We now write out

[S1, [b, π2]]f = S1(bπ2f)− bπ2S1f − S1π2(bf) + π2(bS1f).
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We identify the products
bπ2f, bπ2S1f, bf, bS1f

that we want to expand using paraproducts. Of course, it is possible to expand these
in the one-parameter sense (in either parameter) or in the bi-parameter sense. What is
actually useful is determined by the form of the operators S1 and π2, and looking at
where the cancellative Haar functions appear. This leads us to e.g. expand

bπ2f =
∑

k1,k2∈{1,2,3}

Ak1,k2(b, π2f)

=
∑

k1,k2∈{1,2}

Ak1,k2(b, π2f) +
∑

(k1,k2)6=(3,3)
3∈{k1,k2}

Ak1,k2(b, π2f) +A3,3(b, π2f),

where the idea of the latter grouping is that in the case k1, k2 ∈ {1, 2} we can directly
use Proposition 7.9, while the remaining terms cannot be handled alone. They need to
be grouped with terms coming from the other product expansions, which are as follows:

bπ2S1f =
∑

k1,k2∈{1,2}

Ak1,k2(b, π2S1f) +
∑

(k1,k2)6=(3,3)
3∈{k1,k2}

Ak1,k2(b, π2S1f) +A3,3(b, π2S1f),

bf =

2∑
k1=1

A1
k1(b, f) +A1

3(b, f)

and

bS1f =
2∑

k1=1

A1
k1(b, S1f) +A1

3(b, S1f).

None of the one-parameter paraproducts are bounded as they are. However, when k1 6=
3, they will be paired with one other term coming from the other product expansions.
In this sense, they are similar to the terms of the form Ak1,k2(b, F ), (k1, k2) 6= (3, 3), 3 ∈
{k1, k2}. Finally, all the four terms A3,3(b, π2f), A3,3(b, π2S1f), A1

3(b, f) and A1
3(b, S1f)

will be grouped together.
The above explanation leads us to the long expansion

[S1, [b, π2]]f =
∑

k1,k2∈{1,2}

S1(Ak1,k2(b, π2f))−
∑

k1,k2∈{1,2}

Ak1,k2(b, π2S1f)

+
{ ∑

(k1,k2)6=(3,3)
3∈{k1,k2}

S1(Ak1,k2(b, π2f)) +

2∑
k1=1

π2(A1
k1(b, S1f))

−
∑

(k1,k2)6=(3,3)
3∈{k1,k2}

Ak1,k2(b, π2S1f)−
2∑

k1=1

S1π2(A1
k1(b, f))

}

+
{

[S1(A3,3(b, π2f))− S1π2(A1
3(b, f))] + [π2(A1

3(b, S1f))−A3,3(b, π2S1f)]
}
.

Using Proposition 7.9 and the fact (see [28]) that S1 and π2 are bounded in Ls1x1L
s2
x2(X) for

all s1, s2 ∈ (1,∞) and for all UMD function lattices X , we have that the first two terms
in the expansion above automatically satisfy the desired estimate. The big group in the
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middle consists of the various terms, where exactly one of the paraproduct indices is 3 or
we have a one-parameter paraproduct with an indice k1 6= 3. They will not all be handled
together, but rather by always pairing two suitable ones together (notice that there are 6
terms with a plus sign and 6 terms with a minus sign). It is not straightforward to explain
which terms should be paired together – it can be seen by analysing their forms. We get
to them later.

We start our work with the last term, which is the combination of the four terms, where
all the paraproduct indices are 3. First, we have by the definition of A3,3 and π2 that

A3,3(b, π2f) =
∑
L1,L2

〈b〉L1×L2〈π2f, hL1 ⊗ hL2〉hL1 ⊗ hL2

=
∑
L1,L2

〈b〉L1×L2

〈∑
K2

aK2〈f〉K2,2 ⊗ hK2 , hL1 ⊗ hL2

〉
hL1 ⊗ hL2

=
∑
L1,K2

aK2〈b〉L1×K2

〈
f, hL1 ⊗

1K2

|K2|

〉
hL1 ⊗ hK2 .

Now, using the definition of S1 we calculate

S1(A3,3(b, π2f)) =
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

aK1,I1,J1hJ1 ⊗ 〈A3,3(b, π2f), hI1〉1

=
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

aK1,I1,J1hJ1 ⊗
〈 ∑
L1,K2

aK2〈b〉L1×K2

〈
f, hL1 ⊗

1K2

|K2|

〉
hL1 ⊗ hK2 , hI1

〉
1

=
∑
K2

aK2

∑
K1

I
(i1)
1 =J

(j1)
1 =K1

aK1,I1,J1〈b〉I1×K2

〈
f, hI1 ⊗

1K2

|K2|

〉
hJ1 ⊗ hK2 .

The next task is to perform a completely analogous calculation to get that

S1π2(A1
3(b, f)) =

∑
K2

aK2

∑
K1

I
(i1)
1 =J

(j1)
1 =K1

aK1,I1,J1

〈
〈b〉I1,1〈f, hI1〉1

〉
K2
hJ1 ⊗ hK2 .

We can now write

S1(A3,3(b, π2f))− S1π2(A1
3(b, f))

=
∑
K2

aK2

∑
K1

I
(i1)
1 =J

(j1)
1 =K1

aK1,I1,J1

〈[
〈b〉I1×K2 − 〈b〉I1,1

]
〈f, hI1〉1

〉
K2

hJ1 ⊗ hK2 .(7.13)

Here the term
〈[
〈b〉I1×K2 − 〈b〉I1,1

]
〈f, hI1〉1

〉
K2

appears, which we further expand by ap-
plying the martingale difference expansion g1K2 =

∑
I2⊂K2

〈g, hI2〉hI2 + 〈g〉K21K2 to the
function 〈b〉I1,1. This gives that〈[

〈b〉I1×K2 − 〈b〉I1,1
]
〈f, hI1〉1

〉
K2

= −
〈[ ∑

I2⊂K2

〈〈b, hI2〉2〉I1hI2
]
〈f, hI1〉1

〉
K2
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= − 1

|K2|
∑
I2⊂K2

〈〈b, hI2〉2〉I1〈f, hI1 ⊗ hI2〉.

Plugging this into (7.13) gives the final formula

S1(A3,3(b, π2f))− S1π2(A1
3(b, f))

= −
∑
K2

aK2

|K2|
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
I2⊂K2

aK1,I1,J1〈〈b, hI2〉2〉I1〈f, hI1 ⊗ hI2〉hJ1 ⊗ hK2 .

This is clear progress as there is now one cancellative Haar function paired with b. On
the other hand, this is simply not enough, since we need two cancellative Haar functions
to exploit the product BMO assumption. However, with very similar calculation as above
we see that

π2(A1
3(b, S1f))−A3,3(b, π2S1f)

=
∑
K2

aK2

|K2|
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
I2⊂K2

aK1,I1,J1〈〈b, hI2〉2〉J1〈f, hI1 ⊗ hI2〉hJ1 ⊗ hK2 .

The only difference is that we have a plus sign in front and that 〈〈b, hI2〉2〉I1 is replaced
by 〈〈b, hI2〉2〉J1 . We have arrived at the combined formula

[S1(A3,3(b, π2f))− S1π2(A1
3(b, f))] + [π2(A1

3(b, S1f))−A3,3(b, π2S1f)]

=
∑
K2

aK2

|K2|
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
I2⊂K2

aK1,I1,J1 [〈〈b, hI2〉2〉J1 − 〈〈b, hI2〉2〉I1 ]

× 〈f, hI1 ⊗ hI2〉hJ1 ⊗ hK2 .

Next, we add and subtract 〈〈b, hI2〉2〉K1 and e.g. write

〈〈b, hI2〉2〉J1 − 〈〈b, hI2〉2〉K1 =

j1∑
l1=1

〈b, h
J
(l1)
1

⊗ hI2〉〈hJ(l1)
1

〉J1 .

It is now enough to fix l1 ∈ {1, . . . , j1} and consider, for g ∈ Lp
′
1
x1L

p′2
x2(X ′3), the following

dualized term∑
K1

∑
L
(j1−l1)
1 =K1

∑
I2

{
|〈b, hL1 ⊗ hI2〉|,

∑
I
(i1)
1 =K1

J
(l1)
1 =L1

|L1|−1/2|aK1,I1,J1 ||〈f, hI1 ⊗ hI2〉|
∑
K2⊃I2

|aK2 |
|K2|

|〈g, hJ1 ⊗ hK2〉|
}
.

Notice that we can estimate∑
K2⊃I2

|aK2 |
|K2|

|〈g, hJ1 ⊗ hK2〉| =
〈 ∑
K2⊃I2

|aK2 ||〈g, hJ1 ⊗ hK2〉|
1K2

|K2|

〉
I2

≤ |J1|1/2
〈∑
K2

|aK2 |
〈
|〈g, hK2〉2|

〉
J1

1K2

|K2|

〉
I2
,
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and use the normalisation of |aK1,I1,J1 | to estimate

|L1|−1/2|aK1,I1,J1 ||〈f, hI1 ⊗ hI2〉| ≤ |L1|−1/2 |I1|1/2|J1|1/2

|K1|
|
〈
〈∆K1,i1f, hI2〉2, hI1

〉
|

≤ |L1|−1/2 |J1|1/2

|K1|

ˆ
I1

|〈∆K1,i1f, hI2〉2|.

Now, by summing over I1, J1 we have reduced to bounding∑
K1

∑
L
(j1−l1)
1 =K1

∑
I2

{
|〈b, hL1 ⊗ hI2〉|,

|L1|1/2
〈
|〈∆K1,i1f, hI2〉2|

〉
K1

〈∑
K2

|aK2 |
〈
|〈g, hK2〉2|

〉
L1

1K2

|K2|

〉
I2

}
.

We use Lemma 7.7 to dominate this by ‖b‖BMOD,prod(X1) ≤ ‖b‖BMOprod(X1) multiplied with∥∥∥(∑
K1

∑
I2

[
MD1〈∆K1,i1f, hI2〉2

]2 ⊗ 1I2
|I2|

)1/2
MD

(∑
K2

|aK2 ||〈g, hK2〉2| ⊗
1K2

|K2|

)∥∥∥
L1(X′1)

.

After using the estimate |e2e
′
3|X′1 ≤ |e2|X2 |e′3|X′3 this term decouples naturally by Hölder’s

inequality. After this the proof can be ended using Lemma 7.5 and the L
p′1
x1L

p′2
x2(X ′3)

boundedness of the paraproduct

g 7→
∑
K2

|aK2 ||〈g, hK2〉2| ⊗
1K2

|K2|
.

It only remains to estimate the terms in the big block, i.e., the terms

∑
(k1,k2)6=(3,3)

3∈{k1,k2}

S1(Ak1,k2(b, π2f)) +
2∑

k1=1

π2(A1
k1(b, S1f))

−
∑

(k1,k2)6=(3,3)
3∈{k1,k2}

Ak1,k2(b, π2S1f)−
2∑

k1=1

S1π2(A1
k1(b, f)).

Here we always have to pair two terms together, one with a plus and one with a minus
sign, to induce cancellation to b. For example, we will consider

S1(A3,1(b, π2f))−A3,1(b, π2S1f).

Using that π2S1 = S1π2 and the boundedness of π2, it is enough to consider

S1(A3,1(b, f))−A3,1(b, S1f)

=
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2

aK1,I1,J1

(〈
〈b, hK2〉2

〉
I1
−
〈
〈b, hK2〉2

〉
J1

)
〈f, hI1 ⊗ hK2〉hJ1 ⊗ hK2hK2 .

This can be bounded like the previous term, except it is simpler. This ends our proof. �
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We note that the upper bound related to the lower bound of Proposition 5.3 – that is,
the upper bound related to the diagonal p1 = q1 and p2 = q2 of Theorem 1.3 – is just
the scalar-valued version of the above result. However, this scalar-valued result is very
well-known. For general CZOs like here, the non-mixed norm version appears in [9]. The
scalar-valued mixed-norm version could also directly be proved e.g. by extrapolating the
estimate in [37], which is a two-weight version of [9].

Lastly, even if the bi-commutators [T1, [b, T2]] are the main topic of this paper, we
record how the vector-valued estimate for the bi-commutator implies an estimate for
a commutator with three CZOs. Establishing a dotted version of the space Lr3x3 would
require some modifications as in the bi-commutator case.

7.14. Proposition. Let p1, p2, p3, q3 ∈ (1,∞), p3 > q3 and define r3 ∈ (1,∞) via

1

r3
=

1

p3
− 1

p3
.

Let Ti be a CZO in Rdi , i = 1, 2, 3. Then we have

‖[T1, [T2, [b, T3]]]f‖Lp1x1L
p2
x2
L
q3
x3
. ‖b‖BMOprod,x1,x2 (L

r3
x3

)‖f‖Lp1x1L
p2
x2
L
p3
x3
.

It is an interesting, but very complicated, problem to extend all of our results to tri-
commutators, or even higher order commutators.

APPENDIX A. A COUNTEREXAMPLE

The Ferguson–Lacey theorem [15] claims that

‖[H1, [b,H2]]‖L2
x1
L2
x2
∼ ‖b‖BMO(R×R),

where the right-hand side is the product-BMO norm of Chang–Fefferman, and Hi is the
Hilbert transform in the ith coordinate. This result has been extended to higher order
iterated commutators and more general operators in place of Hi in several subsequent
papers.

However, all these results suffer from a gap that was first observed by A. Volberg and
recently presented in [21, Section 10]. Namely, they all rely on a claim of the form

(A.1) ‖Pφ‖2 & ‖φ‖2,

where P is a projection given by a Fourier multiplier whose symbol is the indicator of
a product of half-spaces (in [15], simply R+ × R+ ⊂ R2) and the Fourier transform of φ
is “symmetric”. In practice, φ takes the form φ = |γ|2 for some function γ, so that φ is
non-negative and in particular real-valued. On the other hand, in each case, the function
γ is relatively arbitrary, so that little more than the non-negativity of φ can be asserted
without further justification. This, on the other hand, is not enough to guarantee the
estimate (A.1), as a simple example given in [21, Section 10] shows. We will give another
example here with some additional properties.

We define the Fourier transform of f ∈ L1(Rd) by

f̂(ξ) :=

ˆ
Rd
f(x)e−i2πx·ξ dx.

With this normalization, the Gaussian ϕ(x) = e−π|x|
2

satisfies ϕ̂ = ϕ.
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If Q ∈ L(Rd) is an invertible matrix, a standard change-of-variables shows that

[f(Q·)]∧(ξ) = f̂(Q−>ξ)|detQ|−1.

In particular, we have

[f(Q·)]∧(ξ) = f̂(Q−1ξ), if Q> = Q and detQ = 1.

Let then d = 2 and

QN :=
1

2
√
N

(
1 +N 1−N
1−N 1 +N

)
.

Then Q>N = QN , detQN = 1, and

Q−1
N :=

1

2
√
N

(
N + 1 N − 1
N − 1 N + 1

)
.

We consider the functions fN (x) := ϕ(QNx). These satisfy

f̂N (ξ) = ϕ(Q−1
N ξ) = exp(−π|Q−1

N ξ|2),

where

|Q−1
N ξ|2 =

∣∣∣ 1

2
√
N

(
(N + 1)ξ1 + (N − 1)ξ2

(N − 1)ξ1 + (N + 1)ξ2

) ∣∣∣2 =
1

2N

(
N2(ξ1 + ξ2)2 + (ξ1 − ξ2)2

)
.

Now consider ξ1, ξ2 ≥ 0. Then (ξ1 + ξ2)2 ≥ ξ2
1 + ξ2

2 = |ξ|2, and thus

|Q−1
N ξ|2 ≥ N

2
|ξ|2 =

∣∣∣√N

2
ξ
∣∣∣2, ∀ ξ1, ξ2 ≥ 0.

This in turn implies that
¨
ξ1,ξ2≥0

|f̂N (ξ)|2 dξ =

¨
ξ1,ξ2≥0

|ϕ(Q−1
N ξ)|2 dξ ≤

¨
ξ1,ξ2≥0

∣∣∣ϕ(

√
N

2
ξ)
∣∣∣2 dξ

=
2

N

¨
ξ1,ξ2≥0

|ϕ(ξ)|2 dξ =
1

2N

¨
R2

|ϕ(ξ)|2 dξ,

whereas ¨
R2

|f̂N (ξ)|2 dξ =

¨
R2

|ϕ(Q−1
N ξ)|2 dξ =

¨
R2

|ϕ(ξ)|2 dξ.

If P is the Fourier multiplier whose symbol is the indicator of R+ × R+, then the non-
negative function fN satisfies

‖PfN‖2 = ‖P̂ fN‖2 = ‖f̂N‖L2(R+×R+) ≤
1√
2N
‖ϕ‖2 =

1√
2N
‖f̂N‖2 =

1√
2N
‖fN‖2

showing the impossibility of (A.1).
Let us also observe that

‖fN‖pp =

ˆ
R2

|ϕ(QNx)|p dx

=

ˆ
R2

|ϕ(x)|p dx
(

detQN = 1
)

=

ˆ
R2

e−π|x|
2p dx =

ˆ
R2

e−π|x|
2 dx

p
=

1

p
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for all p ∈ (0,∞), independent of N . That is, we have

‖fN‖p ∼p 1 ∀p ∈ (0,∞),

another feature of the functions for which (A.1) is applied in [15], yet this additional
property is still not enough to guarantee (A.1).
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