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Abstract

Motivation: Mediation analysis has become a prevalent method to identify causal pathway(s) between
an independent variable and a dependent variable through intermediate variable(s). However, little work
has been done when the intermediate variables (mediators) are high-dimensional and the outcome is a
survival endpoint. In this paper, we introduce a novel method to identify potential mediators in a causal
framework of high-dimensional Cox regression.
Results: We first reduce the data dimension through a mediation-based sure independence screening
(SIS) method. A de-biased Lasso inference procedure is used for Cox’s regression parameters. We
adopt a multiple-testing procedure to accurately control the false discovery rate (FDR) when testing high-
dimensional mediation hypotheses. Simulation studies are conducted to demonstrate the performance of
our method. We apply this approach to explore the mediation mechanisms of 379,330 DNA methylation
markers between smoking and overall survival among lung cancer patients in the TCGA lung cancer coh-
ort. Two methylation sites (cg08108679 and cg26478297) are identified as potential mediating epigenetic
markers.
Availability: Our proposed method is available with the R package HIMA at https://cran.r-
project.org/web/packages/HIMA/.
Contact: lei.liu@wustl.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mediation analysis was first proposed in the field
of social science (Baron and Kenny, 1986). It has
been widely applied in different areas, including
neuroscience (Chén et al., 2017; Zhao et al., 2020),
genomics and epigenomics (Valeri et al., 2017;
Fang et al., 2020), microbiome studies (Zhang et al.,
2018; Sohn and Li, 2019), etc. With the adva-
ncement of data collection techniques, it is now

interesting and desirable to make inference on high-
dimensional mediators. In recent years substantial
research efforts have been devoted to developing
methodology for high dimensional mediation analy-
sis. For example, Zhang et al. (2016) and Gao
et al. (2019) proposed innovative methods on testing
mediation effects in high-dimensional epigenetic
studies. Derkach et al. (2019) considered a model
for high-dimensional mediation analysis with latent
variables. Zhang (2019) introduced two procedures
for mediator selection with high-dimensional expo-
sures and high-dimensional mediators. Djordjilović
et al. (2019) considered the testing for groups of
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potential mediators in high-dimensional mediation
models. Zhang et al. (2019), Zhang et al. (2020) and
Wang et al. (2020) considered the statistical infe-
rence for mediation effects with high-dimensional
and compositional microbiome data. Liu et al.
(2020) developed a powerful Divide-Aggregate
Composite-null Test (DACT) for large-scale medi-
ation hypotheses. Loh et al. (2020) proposed a
non-linear framework for mediation analysis with
high-dimensional mediators. Zhou et al. (2020) pre-
sented new inference procedures for the indirect
effect in high dimensional linear mediation models.
Shi and Li (2020) developed a hypothesis testing
procedure for high-dimensional mediators using the
logic of Boolean matrices. Dai et al. (2021) deve-
loped a multiple-testing procedure that accurately
controls the FDR when testing high-dimensional
mediation hypotheses.

The above-mentioned results are mainly focu-
sed on non-censored outcomes. In low-dimensional
case, some authors have studied the mediation
analysis with survival data. e.g., Lange and Han-
sen (2011), VanderWeele (2011), Tchetgen (2011),
and Fulcher et al. (2017) proposed several cau-
sal mediation analysis frameworks with a single
mediator and a survival outcome. Gelfand et al.
(2016) presented a comparison of semi-parametric
proportional hazards and fully parametric accele-
rated failure time approaches to causal mediation
analysis. Wang and Albert (2016) considered causal
mediation analysis for the Cox model with a smooth
baseline hazard estimator. Liu et al. (2018), Dide-
lez (2019), and Zheng and Liu (2021) considered
the mediation analysis for longitudinal and survival
data. Fasanelli et al. (2019) proposed a method to
estimate the marginal time-dependent causal effects
in mediation analysis with survival data. Huang and
Yang (2017) and Yu et al. (2019) studied mediation
analysis of survival outcomes with multiple media-
tors. Cho and Huang (2019) investigated mediation
analysis with causally ordered mediators using the
Cox model.

However, there is a dearth of suitable models for
high-dimensional mediation analysis on the survival
outcome. To the best of our knowledge, Luo et al.
(2020) was the first work towards high-dimensional
mediator selection for the survival endpoint. In
this paper, we propose a novel mediator identifica-
tion procedure for the high-dimensional Cox model.
Compared with Luo et al. (2020), our method has
the following three advantages. First, we use a
series of marginal mediation effect (αβ) pathw-
ays (exposure → mediator → outcome), which
roughly describe the mediation effect of each indivi-
dual mediator, to screen out potentially significant
mediators. On the other hand, Luo et al. (2020)

only considered the effect β (mediator→ outcome)
as the term of screening criterion. Therefore, our
mediation-based screening could be more accurate
than Luo et al. (2020)’s screening method. Second,
we adopt the de-biased Lasso (Fang et al., 2016) to
estimate the effect β (mediator→ outcome), where
the estimate and its standard error are available.
Therefore, our method can give inference results
for all the de-biased Lasso estimators. In compari-
son, Luo et al. (2020) used the minimax concave
penalty (MCP; Zhang, 2010) technique to estimate
the effect β, which only provides statistical infe-
rence on nonzero MCP-based estimators. Third,
we employ Dai et al. (2021)’s joint significance
test with mixture null distribution, which can more
accurately control the FDR for large-scale multiple
testing. However, Luo et al. (2020) used a naive joint
significance rule with uniform null distribution for
the maximum p-value. Their procedure results in a
valid but overly conservative test with low power
(Huang, 2018; Dai et al., 2021).

The remainder of this paper is organized as fol-
lows. In Section 2, we present the regression model
for mediation analysis with a survival outcome. We
propose a three-step testing procedure for medi-
ation effects in the high-dimensional Cox model.
In Section 3, we evaluate the performance of our
method via numerical simulations. In Section 4, an
application to the TCGA lung cancer cohort is provi-
ded. Some concluding remarks are given in Section
5.

2 Statistical Methods

We use the counterfactual framework as VanderW-
eele and Vansteelandt (2014) and Huang and Yang
(2017) to formally define the mediation effects and
list assumptions for the identification of such effe-
cts. We denote the exposure for the ith individual
as Xi and the baseline adjusted covariates (e.g. age
and gender) as Zi = (Zi1, · · · , Ziq)′. Under stable
unit treatment value assumption (SUTVA) (Imbens
and Rubin, 2015), let m = (m1, · · · ,mp)

′, we
use Ti(x,m) to denote the potential survival time
respectively for individual i when the exposure
is set to x, and the mediators are set to m. We
use Mik(x) to denote the potential value of the
k-th mediator for individual i when the exposure
is set to x. Here we assume that the mediators
are not causally related to each other. Formally,
let m−k = (m1, · · · ,mk−1,mk+1, · · · ,mp)

′ and
use Mik(x,m−k) to denote the potential value of
the k-th mediator value for individual i when the
exposure is set to x and all mediators except the
k-th mediator are set to m−k, then we assume
Mik(x,m−k) = Mik(x) for all k = 1, · · · , K
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and all possible (x,m−k). We would like to point
out that this assumption does not require all medi-
ators to be independent given the exposure X and
the baseline adjusted covariates Z, and it allows
for potential unmeasured common causes (either
induced by the exposure or not) between medi-
ators. In our example where all the mediators
are measured at the same time and a direct cau-
sal relationship between them is less likely, this
assumption is reasonable. Under the consistency
assumption (Imbens and Rubin, 2015), we have
the observed mediators Mi = (Mi1, · · · ,Mip)

′ =
(Mi1(Xi), · · · ,Mip(Xi))

′ and the survival time
Ti = Ti(Xi,Mi1(Xi), · · · ,Mip(Xi)).

As discussed in VanderWeele and Vansteelandt
(2014) and VanderWeele et al. (2014), the following
assumptions regarding potential confoundings, in
addition to the positivity assumption (Imbens and
Rubin, 2015), will allow us to nonparametrically
identify the joint causal mediation effect as well as
path-specific causal effects in the framework above:

(C.1) X ⊥ T (x,m)|Z, ∀x,m, i.e., no unme-
asured confounders between the exposure and the
survival outcome;

(C.2) M(x) ⊥ T (x,m)|X,Z, ∀x,m, i.e., no
unmeasured confounders between the mediators
and the survival outcome;

(C.3) X ⊥ M(x)|Z, ∀x, i.e., no unmea-
sured confounders between the exposure and the
mediators;

(C.4) M(x∗) ⊥ T (x,m)|Z, ∀x, x∗,m, i.e., no
exposure-induced confounding between the media-
tors and the survival outcome.

To separate the effect of each mediator, we con-
sider the following Cox model for the hazard of
the potential survival time Ti(x,m) and multiva-
riate linear model for the distribution of potential
mediators Mi(x):

λxm(t|Z) = λ0(t) exp(γx+ β′m + η′Z), (1)

Mk(x) = αkx+ ζ ′kZ + ek, for k = 1, · · · , p,
(2)

where λ0(t) is an unspecified baseline hazard
function, γ is the direct effect of exposure on survi-
val outcome; β = (β1, · · · , βp)′ is the regression
parameter vector relating the mediators to the survi-
val outcome adjusting for the effect of exposure;
α = (α1, · · · , αp)′ is the parameter relating the
exposure to mediators;η andζk are regression coef-
ficients for the covariates; e = (e1, · · · , ep)′ is a
vector of error terms with Cov(e) = Σe, which
quantifies the correlation between mediators due to
unmeasured common causes.

LetC be the censoring time. The observed failure
time is T̃ = min(T,C), and the censoring indicator
is δ = I(T ≤ C). Under assumptions (C.1), (C.2),
and (C.3), the potential outcome model above can
derive the following high-dimensional mediation-
based Cox model (Luo et al., 2020), for the survival
outcome T .

λ(t|X,M,Z) = λ0(t) exp(γX + β′M + η′Z),
(3)

Mk = αkX + ζ ′kZ + ek, for k = 1, · · · , p,
(4)

Assuming the censoring timeC is non-informative,
we can identify the parameters in these models.

Here we point out that Luo et al. (2020)’s method
adapts Zhang et al. (2016)’s framework to the survi-
val endpoint. In Figure 1, we illustrate a scenario of
high-dimensional mediation-based Cox model with
omitted confounding variables, where the p media-
tors could be correlated with each other. Of note, the
situation with causally ordered mediators described
in Cho and Huang (2019) will not be captured by
our suggested procedure.

We define the causal effect at the difference in
log-hazard scale following the idea of Huang and
Yang (2017) and its extension to high-dimensional
mediators with the Cox model (Luo et al., 2020).
Let λ̃x,x

∗
(t|Z) denote the hazard function of

T (x,M1(x
∗), · · · ,Mp(x

∗)), the population natu-
ral direct effect and natural indirect effect can be
defined as

NDE(x, x∗) = E[log λ̃x
∗x(t|Z)− log λ̃xx(t|Z)]

≈ (x∗ − x)γ,

NIE(x, x∗) = E[log λ̃x
∗x∗(t|Z)− log λ̃x

∗x(t|Z)]

≈ (x∗ − x)(α1β1 + · · ·+ αpβp),

where the approximation holds under the rare event
assumption given

λ̃x,x
∗
(t|Z) = E[λxM(x∗)(t|Z)|T ≥ t, Z]

≈ E[λxM(x∗)(t|Z)|Z]

= λ0(t) exp{γx+

p∑
k=1

βk(αkx
∗ + ζ ′kZ) + η′Z +

1

2
β′Σeβ},

where the last equation holds by the normality
assumption of M(x) and assumptions (C.1)-(C.4).
The total effect, defined as below can be decompo-
sed to the NDE and NIE:

TE(x, x∗) = E[log λ̃x
∗x∗(t|Z)− log λ̃xx(t|Z)]

= NIE(x, x∗) +NDE(x, x∗)

≈ (x∗ − x)(γ + α1β1 + · · ·+ αpβp).
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Similarly, the path-specific causal effect on the log-
hazard difference scale for the mediator Mk (X →
Mk → T ) can be defined as a comparison of log
hazard for T (x,M1(x), · · · ,Mk−1(x),Mk(x

∗),
Mk+1(x), · · · ,Mp(x)) andT (x,M1(x), · · · ,Mp(x)),
which can be approximated as αkβk(x∗ − x). We
would like to point out that even when the rare event
approximation does not hold, testing the null hypo-
thesisαkβk = 0 is still valid for testing the existence
of such path-specific causal effect through Mk.

Our aim is to estimate and test the path-specific
mediation effects αkβk of the kth mediatorMk, for
k = 1, · · · , p. Denote by S0 = {k : αkβk 6= 0}
the index set of those significant mediators. Assume
that we have n i.i.d. samples {(Xi,Mi,Zi, T̃i, δi),
i = 1, · · · , n}. For practical analysis, we first con-
duct a standardization of the mediator variables with
mean zero and variance one. The proposed approach
is as follows:

Step 1: (Mediators screening). Motivated by the
sure independence screening (Fan and Lv, 2008;
Fan et al., 2010) , we consider a series of marginal
models:

λ(t|X,Mk,Z) = λ0(t) exp(γX + βkMk + η′Z),

Mk = αkX + ζ ′kZ + ek.

Select a subsetD = {k : Mk is among the topd =

[n/ log(n)] large effect |α̂kβ̃k|, fork = 1, · · · , p},
where α̂k and β̃k are the ordinary least square (OLS)
and maximum partial likelihood (MPL) estimaors
based on the above marginal models, respectively.

Step 2: (De-biased Lasso estimates). Conditional
on the selected set D, we focus on the following
sub-model,

λ(t|X,MD,Z) = λ0(t) exp(γX + β′DMD + η′Z),

where βD denotes a sub-vector of β with index
belonging to D, and MD has a similar interpre-
tation. To estimate the parameter of interest βD, we
employ the de-biased Lasso method in Fang et al.
(2016). For any k ∈ D, the de-biased Lasso estima-
tor β̂k and its standard error σ̂βk can be obtained by
(3.8) and (4.3) of Fang et al. (2016), respectively.
For k ∈ D, the corresponding p-values are given as

Pβk = 2{1− Φ(|β̂k|/σ̂βk)}, (5)

where Φ(·) is the cumulative distribution function
of N(0, 1). As one reviewer pointed out, Pβk in (5)
could only be regarded as a valid p-value conditional
on the selected set D in Step 1. In view of Fan and
Lv (2008) and Fan et al. (2010), the selected set D
includes the true mediators with probability tending
to one. i.e., P (S0 ⊂ D)→ 1 as n→∞.

Step 3: (Multiple-testing procedure). Conditio-
nal on the selected set D, we focus on the multiple
testing problem:

H0k : αkβk = 0 vs. H1k : αkβk 6= 0, k ∈ D,
(6)

which can be equivalently expressed as the union
of the following three disjoint component null
hypotheses,

H00,k : αk = 0 and βk = 0,

H01,k : αk = 0 and βk 6= 0,

H10,k : αk 6= 0 and βk = 0.

Towards (6), one commonly used approach is the
joint significant test (Zhang et al., 2016; Luo et al.,
2020), which is referred to as the “JS-uniform".
Specifically, the p-value for (6) is defined as

Pmax,k = max(Pαk
, Pβk), (7)

where Pβk is given in (5), Pαk
= 2{1 −

Φ(|α̂k|/σ̂αk
)}, α̂k and σ̂αk

are based on the OLS
estimators. Note that the significance rule using the
uniform null distribution forPmax,k results in a valid
but overly conservative test (Huang, 2018). In fact,
the null distribution of Pmax,k is a 3-component
mixture distribution (Dai et al., 2021). To correct
the conservativeness of the “JS-uniform" procedure,
Dai et al. (2021) proposed a novel multiple-testing
procedure that accurately controls the FDR (refer-
red to as “JS-mixture" procedure). For t ∈ [0, 1], we
define the following empirical processes: V00(t) =
#{Pmax,k ≤ t|H00}, V01(t) = #{Pmax,k ≤
t|H01}, V10(t) = #{Pmax,k ≤ t|H10}, V11(t) =
#{Pmax,k ≤ t|H11}, and R(t) = V00(t) +
V01(t) + V10(t) + V11(t). According to Dai et al.
(2021), an estimated FDR for testing mediation is

F̂DR(t) =
π̂01t+ π̂10t+ π̂00t

2

max{1, R(t)}/d
,

where π̂01, π̂10 and π̂00 are the estimates of the pro-
portions of H01,j , H10,j , and H00,j , respectively.
For more theoretical details on π̂01, π̂10 and π̂00, we
refer to the lines of Storey (2002) and Storey et al.
(2004). For application, the three terms are availa-
ble by the R package HDMT. To control the FDR
at level b, we define the significance threshold for
Pmax,k as

t̂b = sup{t : F̂DR(t) ≤ b}, (8)

which is available from the R package HDMT in
practical application. Of note, a finite sample adju-
stment was provided by (Dai et al., 2021) to improve
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the performance of the proposed procedure. With
probability tending to one, an estimated index set
of significant mediators is given as Ŝ = {k :
Pmax,k ≤ t̂b, k ∈ D}, where Pmax,k and t̂b are
defined in (7) and (8), respectively.

Of note, we have made statistical inference in
Steps 2 and 3 of our proposed method conditio-
nal on the selected set D (Step 1). As mentioned
before, P (S0 ⊂ D) = 1 as n → ∞. Asym-
ptotically, we assume that D = S0 ∪ S⊥0 , where
S⊥0 ⊂ {1, · · · , p} and S0∩S⊥0 = ∅. Basically, the
randomness ofD is actually due toS⊥0 . Because the
key idea of de-biased Lasso is to project the scores
of interested parameters (e.g., βS0) onto the linear
span of the score functions of nuisance parameters
(e.g., βS⊥0 ), the corresponding estimation function
of βS0 is uncorrelated with the score function of
βS⊥0 (Fang et al., 2016). Hence, the randomness of
S⊥0 has very limited impact on the de-biased Lasso
estimator of βS0 asymptotically.

3 Simulation Studies

In this section, we conduct two simulation studies
to assess the performance of our proposed method.
First, we generate failure times T1, · · · , Tn from
Cox Model (3) with λ0(t) = 1. The exposure Xi

follows from N(0, 2), and γ = 0.5; the covariates
Zi = (Zi1, Zi2)

′, where Zi1 and Zi2 are indepen-
dently generated from N(0, 2), η = (0.5, 0.5)′;
β1 = 0.6, β2 = −0.5, β3 = 0.4, β4 = −0.3,
β5 = 0.25, β6 = 0.15, β7 = 0.5, β8 = 0.35,
β9 = 0.15, β10 = 0.12, β11 = 0.5, and βk = 0
otherwise; the mediators are generated from Model
(2), where α1 = 0.6, α2 = −0.5, α3 = 0.4,
α4 = −0.3, α5 = 0.25, α6 = 0.15, α7 = 0.5,
α8 = 0.35, α9 = 0.45, α10 = 0.5, α12 = 0.5,
and αk = 0 otherwise; i.e., the {Mk}10k=1 are active
mediators. ζk = (0.3, 0.3)′, and the error terms
ei = (ei1, · · · , eip)′ are generated from N(0,Σe).
To simulate the dependency structure of mediators
close to real data, we use the first step of our method
(mediators screening) to pick up the top p DNA
methylation markers from the real data in Section
4. Σe is set to the correlation matrix of those pDNA
methylation markers. In Figure S.1, we present the
histogram for the lower triangular of the correlation
matrix Σe, which indicates that some of the media-
tors are highly correlated. For illustration, in Figure
S.2 we show the 10 × 10 upper sub-matrix of Σe

for the active mediators {Mk}10k=1. Moreover, the
censoring times Ci are generated from a uniform
distribution over (0, c0), where c0 = 150 (censo-
ring rate is about 20%) and 5 (censoring rate is about

40%), respectively. All the simulations are based on
200 replications, where p = 10000, n = 300 and
500, respectively.

For fair comparison, we consider Luo et al.
(2020)’s method (denoted as “Luo et al"), where
the number of survived variables in their first step
is the same as our method with d = [n/ log(n)]. In
Table 1, we present the probabilities to be screened
in for those active mediators (Step 1) over 200 repli-
cations. The results indicate that Luo et al. (2020)’s
screening method has a poor performance, while our
mediation-based screening has a higher probability
to include those active mediators {Mk}10k=1.

In Table 2 and Table S.1, we report the estima-
tion results for mediation effects {αkβk}13k=1, which
include the estimated biases (Bias) given by the
sample mean of the estimates minus the true value,
and the mean squared errors (MSE) of the estimates.
Here we omit the results for {αkβk}pk=14, because
their performances are similar to that of α13β13.
For significant mediators, the Bias and MSE of our
method (denoted as “Proposed") are much smal-
ler than those of “Luo et al". Hence, the proposed
approach is more efficient than Luo et al. (2020)’s
method towards the estimation of active mediation
effects. In Table 3, we present the estimated FDR of
mediation effects, where the FDR threshold level is
0.05. The results indicate that both methods can con-
trol the FDR under the threshold level. In Figures
2-5, we illustrate the empirical power for each of
the active mediators separately. The figures indi-
cate that our procedure is much more powerful than
Luo et al. (2020)’s method in selecting significant
mediators. All the above reported results become
much better when the sample size n is increasing.
However, it seems that the increasing of censoring
rate has a negative affect on both methods, which is
common in survival analysis.

As suggested by one reviewer, we conduct the
second simulation to study the performance of our
method when there are no indirect effects for any
mediators. The settings are identical with the first
simulation, except that β1 = 0.5, βk = 0 for other
k; and α2 = 0.5, αk = 0 for other k. The esti-
mation results for {αkβk}pk=4 are similar to those
of α3β3. Hence, we only report the Bias and MSE
for α1β1, α2β2, and α3β3 in Table 4 (other cases
are similar and omitted). From the results we can
see that both methods are unbiased on the estima-
tion of mediation effects. In Table 5, we give the
FDR of multiple-testing in the case when there are
no mediation effects. It seems that both method can
well control the FDR.
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4 An Application to Lung Cancer Data

We apply our proposed method to the The Cancer
Genome Atlas (TCGA) lung cancer cohort study
including lung squamous cell carcinoma and lung
adenocarcinoma, where the data are freely available
at https://xenabrowser.net/datapages/. Our interest
is to identify potential epigenetic markers linking
smoking and survival of lung cancer patients. In the
analysis, we focus on 593 patients with non-missing
clinical and epigenetic information, whose ages ran-
ged from 33 to 90 years. The survival endpoint is
defined as the number of days from initial diagno-
sis to death, which could be censored. The median
survival time is 678 days. Two hundred forty three
patients died during the follow-up, with a censoring
rate of 59%. A total of 379,330 DNA methylation
markers (M) profiled by Infinium HumanMethy-
lation450 BeadChip array are potential mediators.
The exposureX is the number of packs smoked per
years, and the survival time is the outcome variable.
Other covariates (Z) include age at initial diagnosis,
gender (male = 1; female=0), tumor stage (Stage I
= 1; Stage II = 2; Stage III = 3; Stage IV = 4), and
radiotherapy (yes = 1; no = 0).

In Table 5, we report the summary results on the
two selected mediators by our method, where the
FDR threshold level is 0.05. For cg08108679 (in
gene PRKCZ, chromosome 1, Position: 2,003,274),
the estimated pathway effect (α) on X → M is
−0.0092 (0.0024), where the number in parenthesis
is the corresponding standard error (SE); the esti-
mated pathway effect (β) on M → T is −3.4997
(1.0248). For cg26478297 (in gene PRKCG, chro-
mosome 19, position: 54,387,436), the estimated
pathway effects on X → M and M → T are
−0.0256 (0.0068) and −1.3362 (0.4011), respecti-
vely. Hence, the two selected CpGs have positive
log-hazard indirect effect (smoking increases the
mortality). The two CpGs are located in different
chromosomes but belonging to the same gene family
of Protein Kinase C (PKC). PKC family members
are known to be involved in diverse cellular signa-
ling pathways and have been studied extensively
as a group of proteins that involve in cancer deve-
lopment (Dowling et al., 2017). Previous studies
(Wyatt et al., 1999, Guo et al., 2008) have found
that PKC is activated in human epithelial cells when
exposed to cigarette smoke extract, which may in
turn influence the invasion and metastasis of lung
cancer (Gopalakrishna et al., 1994).

For comparison, we also use Luo et al. (2020)’s
method to analyze this dataset. However, their
approach fails to identify any significant media-
tors. In summary, our proposed method works well
for mediation testing with survival outcomes in
practical applications.

5 Concluding Remarks

We have proposed a multiple testing procedure for
high-dimensional mediation effects with the survi-
val outcome. To address the ultra-high dimensional
DNA methylation markers, we used a screening
technique to reduce the dimension of potential
mediators. Moreover, we adopted the de-biased
Lasso method and “JS-mixture" procedure to iden-
tify significant mediators. Simulation results indica-
ted that our method has a satisfactory performance.
An application to the TCGA lung cancer cohort
was provided to illustrate the utility of our proposed
approach.

There are several topics to be studied in the future.
First, we have adopted marginal screening in Step
1 of our method. As pointed out already in the ori-
ginal SIS paper by Fan and Lv (2008), correlations
among the mediators may cause problems. Fan and
Lv (2008) alleviated this by introducing the itera-
tive SIS. Although our approach works well in the
simulated examples, it is interesting to further study
the iterative SIS in our method from both the theory
and application aspects. Second, group testing for
mediation effects is an attractive direction (Krull
and MacKinnon, 2001; Djordjilović et al., 2019;
Derkach et al., 2020), it is interesting to consider
the group mediators in high-dimensional survival
data. Third, we have imposed some traditional
assumptions related to no unmeasured confounding
in our method. However, in the high-dimensional
mediator situation, additional complications occur.
Specifically, the interrelationship among the (poten-
tial) mediators plays a crucial role. As suggested by
one reviewer, it is interesting to consider the situ-
ation with causally ordered mediators described in
Cho and Huang (2019). Fourth, we have usedPβk in
(5) as valid p-values conditional on the selected set
D in Step 1. As one reviewer suggested, it is desira-
ble to consider the randomness ofD for our method
in the non-asymptotic situation. There are two pos-
sible ways to guarantee valid p-values theoretically:
(i) apply the proposed Steps 2 and 3 directly with-
out using the mediator screening step. However, the
computational burden for de-biased Lasso is extre-
mely heavy for ultra-high dimensional mediators,
e.g., there are a total of 379,330 DNA methylation
markers in the real application; (ii) split the samples
into two equal parts, one part for Step 1, and the
other part for Steps 2 and 3. However, this sample-
splitting technique suffers from loss of efficiency,
because only half of the whole samples are used in
the screening (Step 1) and inference (Steps 2 and
3), respectively.
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Figure 1. A scenario of high-dimensional mediation-based Cox model
(confounding variables are omitted).
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Figure 2. A comparison of empirical power for all the active mediators
{Mk}10k=1 with n = 300.
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Figure 3. A comparison of empirical power for all the active mediators
{Mk}10k=1 with n = 500.
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Figure 4. A comparison of empirical power for all the active mediators
{Mk}10k=1 with CR = 20%.
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Figure 5. A comparison of empirical power for all the active mediators
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Table 1. The survival frequency of those active mediators after the
screening step over 200 repetitions.†.

CR=20% CR=40%
Proposed Luo et al Proposed Luo et al

n=300 M1 200 50 200 43
M2 158 0 152 0
M3 200 131 200 115
M4 98 0 116 0
M5 196 8 190 1
M6 90 0 81 0
M7 200 141 200 125
M8 200 24 199 18
M9 200 11 199 18
M10 177 1 179 0

n=500 M1 200 60 200 63
M2 179 0 179 0
M3 200 167 200 159
M4 101 0 126 0
M5 200 6 200 9
M6 132 0 128 0
M7 200 190 200 171
M8 200 35 200 31
M9 200 19 199 26
M10 195 0 182 0

† “Proposed" denotes our method; “Luo et al" denotes Luo et al. (2020)’s
method; “CR" denotes the censoring rate of failure times.

Table 2. Bias and MSE (in the parenthesis) of estimation for mediation
effects in simulation study 1( n = 500)†.

CR=20% CR=40%
αkβk Proposed Luo et al Proposed Luo et al
α1β1 −0.0197 −0.2650 −0.0271 −0.2649

(0.0029) (0.0921) (0.0037) (0.0921)
α2β2 −0.1036 −0.2500 −0.1157 −0.2500

(0.0162) (0.0625) (0.0190) (0.0625)
α3β3 −0.0135 −0.0517 −0.0173 −0.0597

(0.0011) (0.0059) (0.0014) (0.0080)
α4β4 −0.0515 −0.0900 −0.0466 −0.0900

(0.0044) (0.0081) (0.0037) (0.0081)
α5β5 −0.0231 −0.0609 −0.0235 −0.0619

(0.0009) (0.0038) (0.0011) (0.0039)
α6β6 −0.0107 −0.0225 −0.0118 −0.0225

(0.0003) (0.0005) (0.0003) (0.0005)
α7β7 −0.0395 −0.1767 −0.0404 −0.1919

(0.0038) (0.0420) (0.0036) (0.0462)
α8β8 0.0218 −0.1089 0.0222 −0.1131

(0.0015) (0.0132) (0.0022) (0.0139)
α9β9 −0.0035 −0.0609 −0.0007 −0.0621

(0.0009) (0.0044) (0.0010) (0.0046)
α10β10 −0.0168 −0.0600 −0.0151 −0.0600

(0.0016) (0.0036) (0.0016) (0.0036)
α11β11 0.0002 0.0001 −0.0005 −6× 10−5

(1.7× 10−5) (3.3× 10−6) (2× 10−5) (3× 10−6)
α12β12 0.0013 0 0.0082 0

(0.0007) (0) (0.0007) (0)
α13β13 −1.7× 10−5 0 3.5× 10−6 0

(5.6× 10−8) (0) (4× 10−7) (0)

† “Proposed" denotes our method; “Luo et al" denotes Luo et al. (2020)’s
method; “CR" denotes the censoring rate of failure times.
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Table 3. The FDR of mediation effect testing in simulation study 1†.

CR=20% CR=40%
Methods n = 300 n = 500 n = 300 n = 500

Proposed 0.0097 0.0047 0.0092 0.0039
Luo et al 0.0125 0.0063 0.0325 0.0117

† “Proposed" denotes our method; “Luo et al" denotes Luo et al. (2020)’s
method; “CR" denotes the censoring rate of failure times.

Table 4. Bias and MSE (in the parenthesis) of estimation for mediation
effects in simulation study 2†.

CR=20% CR=40%
αkβk Proposed Luo et al Proposed Luo et al

n=300 α1β1 −0.0003 −9× 10−5 0.0009 0.0008
(0.0001) (0.0001) (0.0001) (0.0001)

α2β2 0.0572 0 0.0608 0
(0.0053) (0) (0.0059) (0)

α3β3 0 −3× 10−5 0 0
(0) (1.4× 10−7) (0) (0)

n=500 α1β1 0.0004 0.0006 0.0002 8.3× 10−5

(9× 10−5) (0.0001) (7× 10−5) (8.1× 10−5)
α2β2 0.0446 0 0.0488 0

(3× 10−3) (0) (0.0004) (0)
α3β3 0 0 0 0

(0) (0) (0) (0)

† “Proposed" denotes our method; “Luo et al" denotes Luo et al. (2020)’s
method; “CR" denotes the censoring rate of failure times.

Table 5. The FDR of mediation effect testing in simulation study 2†.

CR=20% CR=40%
Methods n = 300 n = 500 n = 300 n = 500

Proposed 0.040 0.030 0.050 0.045
Luo et al 0.050 0.060 0.030 0.025

† “Proposed" denotes our method; “Luo et al" denotes Luo et al. (2020)’s
method; “CR" denotes the censoring rate of failure times.

Table 6. Summary of selected CpGs with significant mediation effects
(α̂kβ̂k > 0)†.

CpGs Chromosome Gene α̂k β̂k Pmax,k

(SE) (SE)
cg08108679 Chr1: 2003274 PRCKZ −0.0092 −3.4997 0.0006

(0.0024) (1.0248)
cg26478297 Chr19: 54387436 PRCKG −0.0256 −1.3362 0.0009

(0.0068) (0.4011)

† “SE" denotes standard error; “Pmax,k" is given in (7).
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Table S.1.
Bias and MSE (in the parenthesis) of estimation for mediation effects in

simulation study 1 (n = 300)†.

CR=20% CR=40%
αjβj Proposed Luo et al Proposed Luo et al
α1β1 −0.0196 −0.2799 −0.0293 −0.3010

(0.0043) (0.1000) (0.0060) (0.1064)
α2β2 −0.1407 −0.2500 −0.1549 −0.2500

(0.0267) (0.0625) (0.0313) (0.0625)
α3β3 −0.0206 −0.0766 −0.0232 −0.1038

(0.0017) (0.0111) (0.0022) (0.0160)
α4β4 −0.0555 −0.0900 −0.0584 −0.0900

(0.0047) (0.0081) (0.0047) (0.0081)
α5β5 −0.0253 −0.0623 −0.0317 −0.0621

(0.0013) (0.0039) (0.0016) (0.0039)
α6β6 −0.0145 −0.0225 −0.0152 −0.0225

(0.0004) (0.0005) (0.0004) (0.0005)
α7β7 −0.0471 −0.2177 −0.0398 −0.2189

(0.0047) (0.0537) (0.0048) (0.0541)
α8β8 0.0185 −0.1152 0.0208 −0.1151

(0.0022) (0.0143) (0.0028) (0.0143)
α9β9 0.0004 −0.0649 0.0031 −0.0640

(0.0015) (0.0046) (0.0022) (0.0045)
α10β10 −0.0147 −0.0600 −0.0089 −0.0600

(0.0025) (0.0036) (0.0025) (0.0036)
α11β11 −6× 10−5 8.2× 10−5 0.0001 −5.5× 10−5

(1.4× 10−5) (7× 10−6) (7.2× 10−6) (6× 10−7)
α12β12 0.0069 0 0.0143 0

(0.0013) (0) (0.0014) (0)
α13β13 −4× 10−5 0 −3× 10−5 0

(2.8× 10−7) (0) (6.6× 10−7) (0)

† “Proposed” denotes our method; “Luo et al” denotes Luo et al. (2020)’s method; “CR”

denotes the censoring rate of failure times.
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Figure S.1 The histogram for elements in lower triangular matrix of Σe.

2



1

−0.39

0.1

−0.24

−0.24

−0.46

−0.19

−0.3

0.4

−0.39

−0.39

1

−0.04

0.28

0.35

0.5

0.31

0.69

−0.28

0.4

0.1

−0.04

1

0.07

0.03

−0.03

0.07

−0.02

0.29

0.02

−0.24

0.28

0.07

1

0.55

0.35

0.2

0.26

−0.12

0.45

−0.24

0.35

0.03

0.55

1

0.37

0.25

0.3

−0.07

0.56

−0.46

0.5

−0.03

0.35

0.37

1

0.27

0.4

−0.25

0.41

−0.19

0.31

0.07

0.2

0.25

0.27

1

0.23

−0.1

0.25

−0.3

0.69

−0.02

0.26

0.3

0.4

0.23

1

−0.25

0.31

0.4

−0.28

0.29

−0.12

−0.07

−0.25

−0.1

−0.25

1

−0.18

−0.39

0.4

0.02

0.45

0.56

0.41

0.25

0.31

−0.18

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure S.2 The 10×10 upper sub-matrix of Σe towards the active mediators
{Mk}10k=1.

3


	BIOINF-2021-0225-R2-2021-7-18.pdf
	Supplement--BIOINF-2021-0225-R2.pdf

