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Abstract
We study the noncommutative Poincaré duality between the Poisson homology and

cohomology of unimodular Poisson algebras, and show that Kontsevich’s deformation
quantization as well as Koszul duality preserve the corresponding Poincaré duality. As a
corollary, the Batalin-Vilkovisky algebra structures that naturally arise in these cases are
all isomorphic.
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1 Introduction

In this paper we study the noncommutative Poincaré duality between the Poisson homology
and cohomology of unimodular Poisson algebras, and show that Kontsevich’s deformation
quantization as well as Koszul duality preserve the corresponding Poincaré duality.

Let A = R[x1, · · · , xn] be the real polynomial algebra in n variables. A Poisson bivector
on A, say π, is called quadratic if it is in the form

π =
∑

ii,i2,j1,j2

cj1j2i1i2
xi1xi2

∂

∂xj1
∧ ∂

∂xj2
, cj1j2i1i2

∈ R. (1.1)

Several years ago, Shoikhet [28] observed that if π is quadratic, then the Koszul dual algebra
A! of A, namely, the graded symmetric algebra Λ(ξ1, · · · , ξn) generated by n elements of
degree −1, has a Poisson structure (let us call it the Koszul dual of π), given by

π! =
∑

i1,i2,j1,j2

cj1j2i1i2
ξj1ξj2

∂

∂ξi1
∧ ∂

∂ξi2
, (1.2)

and proved that Kontsevich’s deformation quantization preserves this type of Koszul duality.
Shoikhet’s result motivates us to study some other properties of a Poisson algebra under
Koszul duality.

First, the following theorem is clear from Shoikhet’s article, once we explicitly write down
the corresponding complexes.
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Theorem 1.1. Let A = R[x1, · · · , xn] be a quadratic Poisson algebra. Denote by A! the
Koszul dual Poisson algebra of A. Then there are isomorphisms

HP•(A) ∼= HP−•(A!;A¡) and HP•(A) ∼= HP•(A!), (1.3)

where A¡ := HomR(A
!,R) is the linear dual of A!.

In the above theorem, HP•(−) is the Poisson homology, HP•(−) is the Poisson cohomol-
ogy, and HP•(A!;A¡) is the Poisson cohomology of A! with values in its dual space.

Historically, the Poisson homology and cohomology were introduced by Koszul [19] and
Lichnerowicz [23] respectively. In 1997 Weinstein [35] introduced the notion of unimodular
Poisson manifolds, and two years later Xu [38] proved that in this case, there is a Poincaré
duality between the Poisson cohomology and homology of M . A purely algebraic version of
Weinstein’s notion was later formulated by Dolgushev in [8] (see also [21, 25]), and in this
case we also have

HP•(A) ∼= HPn−•(A), (1.4)

for some n depending on A.
For a finite dimensional algebra such as A! above, Zhu, Van Oystaeyen and Zhang intro-

duced in [39] the notion of Frobenius Poisson algebras (in the rest of the paper, we shall use
the word symmetric instead of Frobenius, just to be consistent with other references), and
proved that if they are unimodular in some sense (to be recalled below), then there also exists
a version of Poincaré duality:

HP•(A!) ∼= HP•−n(A!;A¡). (1.5)

Combining the above two versions of Poincaré duality (1.4) and (1.5) as well as Theorem
1.1, we have the following:

Theorem 1.2. Let A = R[x1, · · · , xn] be a quadratic Poisson algebra. Then (A, π) is uni-
modular if and only if its Koszul dual (A!, π!) is unimodular symmetric. In this case, we have
the following commutative diagram:

HP•(A)
∼= //

∼=
��

HPn−•(A)

∼=
��

HP•(A!)
∼= // HP•−n(A!;A¡).

The main technique to prove the above theorem is the so-called “differential calculus”, a
notion introduced by Tamarkin and Tsygan in [29]. Later, Lambre [20] used the terminology
“differential calculus with duality” to study the “noncommutative Poincaré duality” in these
cases.

In the above-mentioned two references [38, 39], the authors also proved that the Poisson
cohomology of a unimodular Poisson algebra (in both cases) has a Batalin-Vilkovisky algebra
structure. The Batalin-Vilkovisky structure is a very important algebraic structure that has
appeared in, for example, mathematical physics, Calabi-Yau geometry and string topology.
For unimodular quadratic Poisson algebras, we have the following:
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Theorem 1.3. Suppose A = R[x1, · · · , xn] is a unimodular quadratic Poisson algebra. Denote
by A! its Koszul dual. Then

HP•(A) ∼= HP•(A!)

is an isomorphism of Batalin-Vilkovisky algebras.

The above three theorems have some analogy to the case of Calabi-Yau algebras, which
were introduced by Ginzburg [14] in 2006. Suppose a Calabi-Yau algebra, say A, is Koszul,
then its Koszul dual is a symmetric algebra. In [14, §5.4] Ginzburg stated a conjecture,
which he attributed to R. Rouquier, saying that for a Koszul Calabi-Yau algebra, say A, its
Hochschild cohomology is isomorphic to the Hochschild cohomology of its Koszul dual A!

HH•(A) ∼= HH•(A!) (1.6)

as Batalin-Vilkovisky algebras. This conjecture is recently proved by two authors of the
current paper together with G. Zhou in [5]. In fact, Theorem 1.3 may be viewed as a
generalization of Rouquier’s conjecture in Poisson geometry, which has been a folklore for
several years.

More than just being an analogy, in [8, Theorem 3], Dolgushev proved that for the coordi-
nate ring A of an affine Calabi-Yau Poisson variety, its deformation quantization in the sense
of Kontsevich, say Aℏ, is Calabi-Yau if and only if A is unimodular. Similarly Felder and
Shoikhet ([11]) and later Willwacher-Calaque ([37]) proved that, for a symmetric Poisson al-
gebra, its deformation quantization is again symmetric if and only if it is unimodular. Based
on these results, Dolgushev asked two questions in [8, §7] (see also [9]). The first question is
whether there exists a relationship between the Poincaré duality of the Poisson (co)homology
of A and the Poincaré duality of the Hochschild (co)homology of Aℏ. The following theorem
answers this question in the case of polynomials:

Theorem 1.4. (1) Suppose A = R[x1, · · · , xn] is a unimodular Poisson algebra. Let Aℏ be
its deformation quantization. Then the following diagram

HP•(A[[ℏ]])
∼= //

∼=
��

HPn−•(A[[ℏ]])
∼=
��

HH•(Aℏ)
∼= // HHn−•(Aℏ)

commutes.
(2) Similarly, suppose A! = Λ(ξ1, · · · , ξn) is a unimodular symmetric Poisson algebra,

and let A!
ℏ be its deformation quantization. Then the following diagram

HP•(A![[ℏ]])
∼= //

∼=
��

HP•−n(A![[ℏ]];A¡[[ℏ]])

∼=
��

HH•(A!
ℏ)

∼= // HH•−n(A!
ℏ;A

¡
ℏ)

commutes.

In other words, the two versions of Poincaré duality, one between the Poisson cohomology
and homology, and the other between the Hochschild cohomology and homology, are preserved
under Kontsevich’s deformation quantization.
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The second question is whether there is any relationship between the roles that the uni-
modularity plays in the above two types of deformation quantizations. The following theorem
partially answers this question, although both cases that Dolgushev and Felder-Shoikhet con-
sidered are more general (i.e., not necessarily Koszul):

Theorem 1.5. Suppose A = R[x1, · · · , xn] is a quadratic Poisson algebra. Denote by A! the
Koszul dual algebra of A, and by Aℏ and A!

ℏ the Kontsevich deformation quantization of A
and A! respectively. If A is unimodular (and by Theorem 1.2 A! is unimodular symmetric),
then Aℏ is Calabi-Yau and A!

ℏ is symmetric, and the following diagram

HP•(A[[ℏ]])
∼= //

∼=
��

HP•(A![[ℏ]])

∼=
� �

HH•(Aℏ)
∼= // HH•(A!

ℏ).

(1.7)

is commutative as Batalin-Vilkovisky algebra isomorphisms, where A[[ℏ]] and A![[ℏ]] are equipped
with the Poisson bivectors ℏπ and ℏπ! respectively.

In other words, the theorem says that, the unimodularity that appears in the deformation
quantization of Poisson Calabi-Yau algebras and Poisson symmetric algebras are related by
Koszul duality. Note that in the theorem, Aℏ and A!

ℏ are Koszul dual to each other by
Shoikhet [28].

Thus as a corollary, one obtains that if A = R[x1, · · · , xn] is a unimodular quadratic
Poisson algebra, then the homology and cohomology groups (Poisson and Hochschild) in
Theorems 1.4 and 1.5 are all isomorphic. That is, we have the following commutative
diagram of isomorphisms:

HP•(A![[ℏ]]) //

��

HP•−n(A![[ℏ]];A¡[[ℏ]])

��

HP•(A[[ℏ]]) //

��

77ooooooooooo
HPn−•(A[[ℏ]])

��

55kkkkkkkkkkkkkk

HH•(A!
ℏ)

// HH•−n(A!
ℏ;A

¡
ℏ)

HH•(Aℏ) //

77

HHn−•(Aℏ)

55kkkkkkkkkkkkkk

where the horizontal arrows are the Poincaré duality, the vertical arrows are given by defor-
mation quantization, and the slanted arrows are given by Koszul duality.

The rest of the paper is devoted to the proof of the above theorems. It is organized as
follows: in §2 we collect several facts on Koszul algebras, and their application to quadratic
Poisson polynomials; in §3 we first recall the definition of Poisson homology and cohomology,
and then prove Theorem 1.1; in §4 we study unimodular quadratic Poisson algebras and
their Koszul dual, and prove Theorem 1.2; in §5 we prove Theorem 1.3 by means of the so-
called “differential calculus with duality”; in §6 we discuss Calabi-Yau algebras, their Koszul
duality and the Batalin-Vilkovisky algebras associated to them; and at last, in §7 we discuss
the deformation quantization of Poisson algebras and prove Theorems 1.4 and 1.5.
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Convention. Throughout the paper, k is a field of characteristic zero, which we may assume
to be R as in §1. All tensors and morphisms are graded over k unless otherwise specified. For
a chain complex, its homology is denoted by H•(−), and its cohomology is H•(−) := H−•(−).

2 Preliminaries on Koszul algebras

In this section, we collect some necessary facts about Koszul algebras. The interested reader
may refer to Loday-Vallette [24, Chapter 3] for some more details.

Let V be a finite-dimensional vector space over k. Denote by TV the free (tensor) algebra
generated by V over k. Suppose R is a subspace of V ⊗V , and let (R) be the two-sided ideal
generated by R in TV , then the quotient algebra A := TV/(R) is called a quadratic algebra.

Consider the subspace

U =
∞⊕
n=0

Un :=
∞⊕
n=0

∩
i+j+2=n

V ⊗i ⊗R⊗ V ⊗j

of TV , then U is a coalgebra whose coproduct is induced from the de-concatenation of the
tensor products. The Koszul dual coalgebra of A, denoted by A¡, is

A¡ =
∞⊕
n=0

Σ⊗n(Un),

where Σ is the degree shifting-up (suspension) functor. A¡ has a graded coalgebra structure
induced from that of U with

(A¡)0 = k, (A¡)1 = ΣV, (A¡)2 = (Σ⊗ Σ)(R), · · · · · ·

The Koszul dual algebra of A, denoted by A!, is just the linear dual space of A¡, which is
then a graded algebra. More precisely, Let V ∗ = Hom(V, k) be the linear dual space of V ,
and let R⊥ denote the space of annihilators of R in V ∗ ⊗ V ∗. Shift the grading of V ∗ down
by one, denoted by Σ−1V ∗, then

A! = T (Σ−1V ∗)/(Σ−1 ⊗ Σ−1 ◦R⊥).1

Choose a set of basis {ei} for V , and let {e∗i } be their duals in V ∗. There is a chain
complex associated to A, called the Koszul complex:

· · · δ // A⊗A
¡
i+1

δ // A⊗A
¡
i

δ // · · · // A⊗A
¡
0

δ // k, (2.1)

where for any r ⊗ f ∈ A⊗A¡, δ(r ⊗ f) =
∑
i

eir ⊗ Σ−1e∗i f .

1 In the literature such as [24], A! is defined to be T (V ∗)/R⊥, or equivalently, (A!)i ∼= ΣiHom((A¡)i, k) but
not Hom((A¡)i, k). This will cause some issues in our later calculations, so in this paper, we take A! as given
above, or equivalently A! = Hom(A¡, k).
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Definition 2.1 (Koszul algebra). A quadratic algebra A = TV/(R) is called Koszul if the
Koszul chain complex (2.1) is acyclic.

Example 2.2 (Polynomials). Let A = k[x1, x2, · · · , xn] be the space of polynomials (the
symmetric tensor algebra) with n generators. Then A is a Koszul algebra, and its Koszul
dual algebra A! is the graded symmetric algebra Λ(ξ1, ξ2, · · · , ξn), with grading |ξi| = −1.

Lemma 2.3 (Shoikhet [28]). Let A = k[x1, · · · , xn] with a bivector π in the form (1.1). Then
(A, π) is quadratic Poisson if and only if (A!, π!) is quadratic Poisson, where π! is given by
(1.2).

So far, we have assumed that V is a k-linear space. In §7, we will study the deformed
algebras, which are algebras over k[[ℏ]]. In [28], Shoikhet proved that the definitions and
results in above subsections remain to hold for algebras over a discrete evaluation ring, such
as k[[ℏ]]. For example, k[x1, · · · , xn][[ℏ]] is Koszul dual to Λ(ξ1, · · · , ξn)[[ℏ]] as graded algebras
over k[[ℏ]] (see [28, Theorem 0.3]).

3 Poisson homology and cohomology

The notions of Poisson homology and cohomology were introduced by Koszul [19] and Lich-
nerowicz [23] respectively. Later Huebschmann [15] studied both of them from purely alge-
braic perspective.

For an commutative algebra A, in the following we denote by Ωp(A) the set of p-th Kähler
differential forms of A, and by X−p

A (M) (or simply X−p(M) if A is clear from the context) the
space of skew-symmetric multilinear maps A⊗p →M that are derivations in each argument.
Note that from the universal property of Kähler differentials, there is an identity of left
A-modules

X−p
A (M) = HomA(Ω

p(A),M). (3.1)

Definition 3.1 (Koszul [19]). Suppose (A, π) is a Poisson algebra. Then the Poisson chain
complex of A, denoted by CP•(A), is

· · · // Ωp+1(A)
∂ // Ωp(A)

∂ // Ωp−1(A)
∂ // · · · // Ω0(A) = A, (3.2)

where ∂ is given by

∂(f0df1 ∧ · · · ∧ dfp) =

p∑
i=1

(−1)i−1{f0, fi}df1 ∧ · · · d̂fi · · · ∧ dfp

+
∑

1≤i<j≤p

(−1)j−if0d{fi, fj} ∧ df1 ∧ · · · d̂fi · · · d̂fj · · · ∧ dfp.

The associated homology is called the Poisson homology of A, and is denoted by HP•(A).

Definition 3.2 (Lichnerowicz [23]). Suppose (A, π) is a Poisson algebra and M is a left Pois-
son A-module. The Poisson cochain complex of A with values in M , denoted by CP•(A;M),
is the cochain complex

M = X0
A(M)

δ // · · · // X−p+1
A (M)

δ // X−p
A (M)

δ // X−p−1
A (M)

δ // · · ·
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where δ is given by

δ(P )(f0, f1, · · · , fp) :=
∑

0≤i≤p

(−1)i{fi, P (f0, · · · , f̂i, · · · , fp)}

+
∑

0≤i<j≤p

(−1)i+jP ({fi, fj}, f1, · · · , f̂i, · · · , f̂j , · · · , fp).

The associated cohomology is called the Poisson cohomology of A with values in M , and
is denoted by HP•(A;M). In particular, if M = A, then the cohomology is just called the
Poisson cohomology of A, and is simply denoted by HP•(A).

Note that in the above definition, the Poisson cochain complex, viewed as a chain complex,
is negatively graded, and the coboundary δ has degree −1. However, by our convention, the
Poisson cohomology are positively graded.

Remark 3.3 (The graded case). The Poisson homology and cohomology can be defined for
graded Poisson algebras as well. In this case,

Ωp(A) =
⊕
n∈Z

{
f0df1 ∧ · · · ∧ dfn

∣∣∣fi ∈ A, |f0|+ |f1|+ · · ·+ |fn|+ n = p
}

and X−p
A (M) is again given by HomA(Ω

p(A),M). The boundary maps are completely analo-
gous to those of Poisson chain and cochain complexes (with Koszul’s sign convention counted).

Proof of Theorem 1.1. (1) We first show the first isomorphism in (1.3). SinceA = k[x1, · · · , xn],
we have an explicit expression for Ω•(A), which is

Ω•(A) = Λ(x1, · · · , xn, dx1, · · · , dxn), (3.3)

where Λ means the graded symmetric tensor product, and |xi| = 0 and |dxi| = 1, for
i = 1, · · · , n. Similarly,

Ω•(A!) = Λ(ξ1, · · · , ξn, dξ1, · · · , dξn),

where |ξi| = −1 and |dξi| = 0 for i = 1, · · · , n, and therefore

X•
A!(A

¡) = HomA!(Ω•(A!), A¡)

= HomΛ(ξ1,··· ,ξn)(Λ(ξ1, · · · , ξn, dξ1, · · · , dξn),Hom(Λ(ξ1, · · · , ξn), k))
= HomΛ(ξ1,··· ,ξn)(Λ(ξ1, · · · , ξn)⊗Λ(dξ1, · · · , dξn),Hom(Λ(ξ1, · · · , ξn), k))
= Hom(Λ(dξ1, · · · , dξn),Hom(Λ(ξ1, · · · , ξn), k))
= Hom(Λ(dξ1, · · · , dξn)⊗Λ(ξ1, · · · , ξn), k)
= Hom(Λ(dξ1, · · · , dξn, ξ1, · · · , ξn), k)

= Λ
( ∂

∂ξ1
, · · · , ∂

∂ξn
, ξ∗1 , · · · , ξ∗n

)
. (3.4)

Thus from (3.3) and (3.4) there is a canonical grading preserving isomorphism of vector
spaces:

Φ : Ω•(A) −→ X•
A!(A

¡)

xi 7−→ ∂
∂ξi

dxi 7−→ ξ∗i , i = 1, · · · , n.
(3.5)
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It is a direct check that Φ is a chain map, and thus we obtain an isomorphism of Poisson
complexes

Φ : CP•(A) ∼= CP−•(A!;A¡), (3.6)
which then induces an isomorphism on the homology.

(2) We now show the second isomorphism in (1.3). Similarly to the above argument, we
have

CP•(A) = HomA(Ω
•(A), A)

= HomΛ(x1,··· ,xn)(Λ(x1, · · · , xn, dx1, · · · , dxn),Λ(x1, · · · , xn))
= HomΛ(x1,··· ,xn)(Λ(x1, · · · , xn)⊗Λ(dx1, · · · , dxn),Λ(x1, · · · , xn))
= Hom(Λ(dx1, · · · , dxn),Λ(x1, · · · , xn))

= Λ
( ∂

∂x1
, · · · , ∂

∂xn

)
⊗Λ(x1, · · · , xn) (3.7)

and

CP•(A!) = HomA!(Ω•(A!), A!)

= HomΛ(ξ1,··· ,ξn)(Λ(ξ1, · · · , ξn, dξ1, · · · , dξn),Λ(ξ1, · · · , ξn))
= HomΛ(ξ1,··· ,ξn)(Λ(ξ1, · · · , ξn)⊗Λ(dξ1, · · · , dξn),Λ(ξ1, · · · , ξn))
= Hom(Λ(dξ1, · · · , dξn),Λ(ξ1, · · · , ξn))

= Λ
( ∂

∂ξ1
, · · · , ∂

∂ξn

)
⊗Λ(ξ1, · · · , ξn). (3.8)

Under the identity
xi 7→

∂

∂ξi
,

∂

∂xi
7→ ξi (3.9)

we again obtain an isomorphism of chain complexes

Ψ : CP•(A) ∼= CP•(A!).

This completes the proof.

4 Unimodular Poisson algebras and Koszul duality

In this section, we study unimodular Poisson algebras. We are particularly interested in the
algebraic structures on their Poisson cohomology and homology groups, which are summa-
rized by differential calculus, a notion introduced by Tamarkin and Tsygan in [29].

Definition 4.1 (Differential calculus; Tamarkin-Tsygan [29]). Let H• and H• be graded
vector spaces. A differential calculus is the sextuple

(H•,H•,∪, ι, [−,−], d)

satisfying the following conditions:

(1) (H•,∪, [−,−]) is a Gerstenhaber algebra; that is, (H•,∪) is a graded commutative
algebra, (H•, [−,−]) is a degree 1 or −1 graded Lie algebra, and the product and Lie
bracket are compatible in the following sense

[P ∪Q,R] = P ∪ [Q,R] + (−1)pqQ ∪ [P,R],

for homogeneous P,Q,R ∈ V of degree p, q, r, respectively;
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(2) H• is a graded (left) module over (H•,∪) via the map

ι : Hn ⊗Hm → Hm−n, f ⊗ α 7→ ιfα,

for any f ∈ Hn and α ∈ Hm;

(3) There is a map d : H• → H•+1 satisfying d2 = 0, and

(−1)|f |+1ι[f,g] = [Lf , ιg] := Lf ιg − (−1)|g|(|f |+1)ιgLf ,

where Lf := [d, ιf ] = dιf − (−1)|f |ιfd.

In the following, if ∪, ι, [−,−] and d are clear from the context, we will simply write a
differential calculus by (H•,H•) for short.

4.1 Differential calculus on Poisson (co)homology

Suppose A is a commutative algebra. We have the following operations on X•(A) and Ω•(A):

(1) Wedge (cup) product: suppose P ∈ X−p(A) and Q ∈ X−q(A), then the wedge product
of P and Q, denoted by P ∪Q, is a polyvector in X−p−q(A) defined by

(P ∪Q)(f1, f2, · · · , fp+q) :=
∑

σ∈Sp,q

sgn(σ)P (fσ(1), · · · , fσ(p)) ·Q(fσ(p+1), · · · , fσ(p+q)),

where σ runs over all (p, q)-shuffles of (1, 2, · · · , p+ q).

(2) Schouten bracket: suppose P ∈ X−p(A) and Q ∈ X−q(A), then their Schouten bracket,
denoted by [P,Q], is an element in X−p−q+1(A) given by

[P,Q](f1, f2, · · · , fp+q−1) :=
∑

σ∈Sq,p−1

sgn(σ)P
(
Q(fσ(1), · · · , fσ(q)), fσ(q+1), · · · , fσ(q+p−1)

)
− (−1)(p−1)(q−1)

∑
σ∈Sp,q−1

sgn(σ)Q
(
P (fσ(1), · · · , fσ(p)), fσ(p+1), · · · , fσ(p+q−1)

)
.

(3) Contraction (inner product): suppose P ∈ X−p(A) and ω = df1 ∧ · · · ∧ dfn ∈ Ωn(A),
then the contraction of P with ω, denoted by ιP (ω), is an A-linear map with values in
Ωn−p(A) given by

ιP (ω) =


∑

σ∈Sp,n−p

sgn(σ)P (fσ(1), · · · , fσ(p))dfσ(p+1) ∧ · · · ∧ dfσ(n), if n ≥ p,

0, otherwise.

(4) Lie derivative: the Lie derivative is given by the Cartan formula, namely for P ∈ X−p(A)

and ω ∈ Ωn(A), the Lie derivative of ω with respect to P is given by

LPω := [ιP , d] = ιP (dω)− (−1)pd(ιPω),

where d is the de Rham differential.

Theorem 4.2. Suppose A is a Poisson algebra. Then(
HP•(A),HP•(A),∪, ι, [−,−], d

)
,

where d is the de Rham differential, is a differential calculus.
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Proof. We only have to show the operations listed above respect the Poisson boundary and
coboundary. It is a direct check and can be found in [22, Chapter 3].

In the following, we will give another differential calculus structure for a Poisson algebra,
which will be used later:

(1) For any P ∈ X−p(A) and ϕ ∈ X−q(A∗), let ι∗P (ϕ) ∈ X−p−q(A∗) be given by

(ι∗Pϕ)(f1, · · · , fp+q) :=
∑

σ∈Sp,q

sgn(σ)P (fσ(1), · · · , fσ(p)) · ϕ(fσ(p+1), · · · , fσ(p+q)). (4.1)

It is clear that ι∗ is associative, i.e., ι∗Q ◦ ι∗P = ι∗P∪Q. Also, ι∗ respects the Poisson coboundary
maps, which is completely analogous to the proof of that ∪ commutes with the Poisson
coboundary map (cf. [22, §4.3]).

(2) Observe that

X•(A∗) = HomA(Ω
•(A), A∗)

= HomA

(
Ω•(A),Hom(A, k)

)
= HomA(Ω

•(A)⊗A, k)

= Hom(Ω•(A), k).

By dualizing the de Rham differential d on Ω•(A), we obtain a differential d∗ on Hom(Ω•(A), k),
i.e., on X•(A∗). It is proved in [39, Theorem 4.10] that d∗ commutes with the Poisson bound-
ary.

(3) For any P ∈ X•(A) and ω ∈ X•(A∗), let LPω := [ι∗P , d
∗](ω); it is a direct check that

[LP , ι
∗
Q] = ι∗[P,Q].

By (1)-(3) listed above, we obtain the following.

Theorem 4.3. Suppose A is a Poisson algebra, and denote A∗ be its dual space. Then(
HP•(A),HP•(A;A∗),∪, ι∗, [−,−], d∗

)
is a differential calculus.

4.2 Unimodular Poisson algebras

Suppose A is a commutative algebra, and η ∈ Ωn(A). We say η is a volume form if X•(A)
ι(−)η−→

Ωn+•(A) is an isomorphism of vector spaces. Now suppose A is Poisson, then we have the
following diagram

X•(A)
ι(−)η // Ωn+•(A)

X•+1(A)
ι(−)η //

δ

OO

Ωn+•+1(A),

∂

OO
(4.2)

which may not be commutative, i.e., η may not be a Poisson cycle. We say A is unimodular
if there exists a volume form η such that (4.2) commutes. The following is now immediate.

Theorem 4.4 (Xu). Suppose A is a unimodular Poisson algebra with the volume form of
degree n. Then there exists an isomorphism (the Poincaré duality)

HP•(A) ∼= HPn−•(A).
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4.3 Unimodular symmetric Poisson algebras

Now, we go to unimodular symmetric Poisson algebras, a notion introduced by Zhu, Van
Oystaeyen and Zhang in [39].

Suppose A! is a finite dimensional graded not-necessarily commutative algebra. A! is
called symmetric2 if it is equipped with a bilinear, non-degenerate symmetric pairing

⟨−,−⟩ : A! ⊗A! → k

of degree n which is cyclically invariant, that is, ⟨a, b ·c⟩ = (−1)(|a|+|b|)|c|⟨c, a ·b⟩, for all homo-
geneous a, b, c ∈ A!. This is equivalent to saying that there is an A!-bimodule isomorphism

η! : (A!)• −→ (A¡)n+•, for some n ∈ N,

where A¡ = (A!)∗. In this case, we may view η! as an element in HomA!(A!, A¡) ⊂ X•
A!(A

¡).
Now assume A! is Poisson, then we have a diagram

X•
A!(A

!)
ι∗
(−)

η!

// Xn+•
A! (A¡)

X•+1
A! (A!)

ι∗
(−)

η!

//

δ

OO

Xn+•+1
A! (A¡).

δ

OO
(4.3)

According to Zhu-Van Oystaeyen-Zhang [39], if there exists η! ∈ X•
A!(A

¡) such that ι∗(−)η
!

is an isomorphism, then η! is called a volume form, and if furthermore, the digram (4.3)
commutes, then A! is called a unimodular symmetric Poisson algebra of degree n (in [39] the
authors call it unimodular Fronbenius Poisson). From the definition, we immediately have:

Theorem 4.5 (Zhu-Van Oystaeyen-Zhang [39]). Suppose A! is a unimodular symmetric
Poisson algebra with the volume form of degree n. Then there exists an isomorphism

HP•(A!) ∼= HP•−n(A!;A¡).

In this paper, since we are interested in A = k[x1, · · · , xn] or A! = Λ(ξ1, · · · , ξn), we
always assume the volume form is constant.

Proof of Theorem 1.2. First, we show that a quadratic Poisson algebra (A = k[x1, · · · , xn], π)
is unimodular if and only if (A!, π!) is unimodular symmetric. In fact, recall that for A =

k[x1, · · · , xn],

X•
A(A) = Λ

(
x1, · · · , xn,

∂

∂x1
, · · · , ∂

∂xn

)
, Ω•(A) = Λ(x1, · · · , xn, dx1, · · · , dxn),

X•
A!(A

!) = Λ
(
ξ1, · · · , ξn,

∂

∂ξ1
, · · · , ∂

∂ξn

)
, X•

A!(A
¡) = Λ

(
ξ∗1 , · · · , ξ∗n,

∂

∂ξ1
, · · · , ∂

∂ξn

)
.

Let
η = dx1dx2 · · · dxn and η! = ξ∗1ξ

∗
2 · · · ξ∗n,

2In the literature some authors also use “symmetric Frobenius”. For commutative algebras, there is no
difference between being Frobenius and being symmetric Frobenius; in this paper we use “symmetric” just in
order to be consistent with later discussions on associative algebras.
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where η! is understood as contraction, namely,

η!(ξi1 · · · ξip) :=
∑

σ∈Sp,n−p

⟨ξi1 · · · ξip , ξ∗σ(1) · · · ξ
∗
σ(p)⟩ · ξ

∗
σ(p+1) · · · ξ

∗
σ(n),

then under the identification

xi 7→
∂

∂ξi
, dxi 7→ ξ∗i ,

∂

∂xi
7→ ξi

the diagram

X•
A(A) = Λ

(
x1, · · · , xn, ∂

∂x1
, · · · , ∂

∂xn

) ι(−)η //

∼=
��

Ω•(A) = Λ (x1, · · · , xn, dx1, · · · , dxn)

∼=
��

X•
A!(A

!) = Λ
(
ξ1, · · · , ξn, ∂

∂ξ1
, · · · , ∂

∂ξn

) ι∗
(−)

η!

// X•
A!(A

¡) = Λ
(
ξ∗1 , · · · , ξ∗n, ∂

∂ξ1
, · · · , ∂

∂ξn

)
(4.4)

commutes. This means η is a Poisson cycle for A if and only if η! is a Poisson cocycle for A!,
which proves the claim.

Second, for A as above, we show the following diagram

HP•(A)
∼= //

∼=
��

HPn−•(A)

∼=
��

HP•(A!)
∼= // HP•−n(A!;A¡).

(4.5)

commutes. In fact, the two vertical isomorphisms are given by Theorem 1.1, and the two
horizontal isomorphisms are given by Theorems 4.4 and 4.5 respectively. The commutativity
of the diagram (4.5) follows from the chain level commutative diagram (4.4).

5 Poisson cohomology and the Batalin-Vilkovisky algebra

The purpose of this section is to show that for unimodular quadratic Poisson polynomial
algebras, the horizontal isomorphisms in (4.5) naturally induce on HP•(A) and HP•(A!) a
Batalin-Vilkovisky algebra structure, and the vertical isomorphisms in (4.5) are isomorphisms
of Batalin-Vilkovisky algebras. We start with the notion of differential calculus with duality.

Definition 5.1 (Lambre [20]). A differential calculus (H•,H•,∪, ι, [−,−], d) is called a dif-
ferential calculus with duality if there exists an integer n and an element η ∈ Hn such that

(a) ι1η = η, where 1 ∈ H0 is the unit, d(η) = 0, and

(b) for any i ∈ Z,
PD(−) := ι(−)η : Hi → Hn−i (5.1)

is an isomorphism.

Such isomorphism PD is called the Van den Bergh duality (also called the noncommutative
Poincaré duality), and η is called the volume form.
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Definition 5.2 (Batalin-Vilkovisky algebra). Suppose (V, •) is an graded commutative al-
gebra. A Batalin-Vilkovisky algebra structure on V is the triple (V, •,∆) such that

(1) ∆ : V i → V i−1 is a differential, that is, ∆2 = 0; and

(2) ∆ is second order operator, that is,

∆(a • b • c) = ∆(a • b) • c+ (−1)|a|a •∆(b • c) + (−1)(|a|−1)|b|b •∆(a • c)
−(∆a) • b • c− (−1)|a|a • (∆b) • c− (−1)|a|+|b|a • b • (∆c).

Equivalently, if we define the bracket

[a, b] := (−1)|a|+1(∆(a • b)−∆(a) • b− (−1)|a|a •∆(b)),

then [−,−] is a derivation with respect to • for each component. In other words, a Batalin-
Vilkovisky algebra is a Gerstenhaber algebra (V, •, [−,−]) with a differential ∆ : V i → V i−1

such that
[a, b] = (−1)|a|+1(∆(a • b)−∆(a) • b− (−1)|a|a •∆(b)), (5.2)

for any a, b ∈ V (cf. [13, Proposition 1.2]). ∆ is also called the Batalin-Vilkovisky operator,
or the generator (of the Gerstenhaber bracket).

Now suppose (H•,H•,∪, ι, [−,−], d, η) is a differential calculus with duality. Let ∆ : H• →
H•−1 be the linear operator such that

H• ∆ //

PD
��

H•−1

PD
��

Hn−•
d // Hn−•+1

(5.3)

commutes. Then we have the following theorem:

Theorem 5.3 (Lambre [20]). Let (H•,H•,∪, ι, [−,−], d, η) be a differential calculus with
duality. Then the triple (H•,∪,∆) is a Batalin-Vilkovisky algebra.

The proof can be found in Lambre ([20, Théorème 1.6]); however, since some details in
loc. cit. are omitted, we give a proof here for completeness.

Proof. Since (H•,∪, [−,−]) is a Gerstenhaber algebra, we only need to show that the Ger-
stenhaber bracket is compatible with the operator ∆ in (5.3); that is, equation (5.2) holds.
For any homogeneous elements f, g ∈ H•, by the definition of Poincaré duality PD (5.1) and
the Cartan formulae (Lemma 6.3), we have

(−1)|f |+1PD([f, g])

= (−1)|f |+1ι[f,g](η) = [Lf , ιg](η) = Lf ιg(η)− (−1)|g|(|f |+1)ιgLf (η)

= dιf ιg(η)− (−1)|f |ιfdιg(η)− (−1)|g|(|f |+1)ιgdιf (η) + (−1)|g|(|f |+1)+|f |ιgιfd(η)

= d ◦ PD(f ∪ g)− (−1)|g|(|f |+1)ιgd ◦ PD(f)− (−1)|f |ιfd ◦ PD(g)

= PD(∆(f ∪ g))− (−1)|g|(|f |+1)ιgPD(∆(f))− (−1)|f |ιfPD(∆(g))

= ι∆(f∪g)(η)− (−1)|g|(|f |+1)ιgι∆(f)(η)− (−1)|f |ιf ι∆(g)(η))

= (ι∆(f∪g) − (−1)|g|(|f |+1)ιg∪∆(f) − (−1)|f |ιf∪∆(g))(η)
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= PD(∆(f ∪ g)−∆(f) ∪ g − (−1)|f |f ∪∆(g)).

Since PD is an isomorphism, we thus have

[f, g] = (−1)|f |+1(∆(f ∪ g)−∆(f) ∪ g − (−1)|f |f ∪∆(g)).

Corollary 5.4 (see also Xu [38] and Zhu-Van Oystaeyen-Zhang [39]). Suppose A is a uni-
modular Poisson or unimodular symmetric Poisson algebra. Then HP•(A) admits a Batalin-
Vilkovisky algebra structure.

Proof. IfA is unimodular Poisson, then Theorems 4.2 and 4.4 imply the pair (HP•(A),HP•(A))

is in fact a differential calculus with duality; similarly, if A is unimodular symmetric Pois-
son, Theorem 4.3 and 4.5 (HP•(A),HP•(A;A∗)) is a differential calculus with duality. The
theorem then follows from Theorem 5.3.

Proof of Theorem 1.3. Note that in Theorem 1.2, the right vertical isomorphism preserves
the Kähler differential as well as the volume form, that is, the two differential calculus with
duality (

HP•(A),HP•(A)
)

and
(
HP•(A!),HP•(A!;A¡)

)
are isomorphic. Combining with Corollary 5.4, the theorem follows.

Remark 5.5. Not all quadratic Poisson algebras are unimodular. For example, for A =

R[x1, x2, x3], Etingof-Ginzburg [10, Lemma 4.2.3 and Corollary 4.3.2] showed that any uni-
modular Poisson structure is of the form

{x, y} =
∂ϕ

∂z
, {y, z} =

∂ϕ

∂x
, {z, x} =

∂ϕ

∂y
,

for some ϕ ∈ A (taking ϕ to be cubic then the Poisson structure is quadratic); for A =

C[x1, x2, x3, x4], Pym [26, §3] showed that any unimodular quadratic Poisson bracket on A

may be written uniquely in the following form

{f, g} :=
df ∧ dg ∧ dα

dx1 ∧ dx2 ∧ dx3 ∧ dx4
, f, g ∈ A,

where α =
∑4

i=1 αidxi ∈ Ω1(A) such that α ∧ dα = 0, and αi’s are homogeneous cubic
polynomials satisfying

∑4
i=1 xiαi = 0.

6 Calabi-Yau algebras

At the end of §1 we sketched some analogy between unimodular Poisson algebras and Calabi-
Yau algebras. In the following two sections, we study their relationships in more detail.

6.1 Calabi-Yau algebras and the Batalin-Vilkovisky algebra structure

Definition 6.1 (Calabi-Yau algebra; Ginzburg [14]). Let A be an associative algebra over
k. A is called a Calabi-Yau algebra of dimension n if

(1) A is homologically smooth, that is, A, viewed as an Ae-module, has a bounded resolution
of finitely generated projective Ae-modules, and
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(2) there is an isomorphism
RHomAe(A,A⊗A) ∼= Σ−nA (6.1)

in the derived category D(Ae) of Ae-modules.

In the above definition, Ae is the enveloping algebra of A, namely Ae := A⊗Aop. There
are a lot of examples of Calabi-Yau algebras, such as the universal enveloping algebra of
semi-simple Lie algebras, the skew-product of complex polynomials with a finite subgroup of
SL(n,R), the Yang-Mills algebras, etc.

We next study Van den Bergh’s noncommutative Poincaré duality for Calabi-Yau algebras
([34]). To this end, we first recall the differential calculus structure for associative algebras.

For an associative algebra A, denote by (C̄•(A;A), δ) and (C̄•(A;A), b) the reduced
Hochschild cochain and chain complexes of A. Recall that the Gerstenhaber cup product
and the Gerstenhaber bracket on C̄•(A;A) are given as follows: for any f ∈ C̄n(A;A) and
g ∈ C̄m(A;A),

f ∪ g(ā1, . . . , ān+m) := (−1)nmf(ā1, . . . , ān)g(ān+1, . . . , ān+m),

and
{f, g} := f ◦ g − (−1)(|f |+1)(|g|+1)g ◦ f,

where

f◦g(ā1, . . . , ān+m−1) :=

n−1∑
i=0

(−1)(|g|+1)if(ā1, . . . , āi, g(āi+1, . . . , āi+m), āi+m+1, . . . , ān+m−1).

Gerstenhaber proved in [12, Theorems 3-5] ∪ and {−,−} are well-defined on the cohomol-
ogy level, and moreover, ∪ is graded commutative. Therefore we obtain on the Hochschild
cohomology HH•(A) a Gerstenhaber algebra structure.

Next, we consider the action of the Hochschild cochain complex on the Hochschild chain
complex. Given any homogeneous elements f ∈ C̄n(A;A) and α = (a0, ā1, . . . , ām) ∈
C̄m(A;A),

(1) the cap product ∩ : C̄n(A;A)× C̄m(A;A) → C̄m−n(A;A) is given by

f ∩ α :=

{
(a0f(ā1, . . . , ān), ān+1, . . . , ām), if m ≥ n

0, otherwise. (6.2)

If we denote by ιf (−) := f ∩ − the contraction operator, then ιf ιg = (−1)|f ||g|ιg∪f =

ιf∪g;

(2) the Lie derivative L : C̄n(A;A)× C̄m(A;A) → C̄m−n(A;A) is given as follows: for any
α = (a0, ā1, . . . , ām) ∈ C̄m(A,A), if n ≤ m+ 1, then

Lf (α) :=

m−n∑
i=0

(−1)(n+1)i(a0, ā1 · · · , āi, f(āi+1, · · · , āi+n), · · · , ām)

+

m∑
i=m−n+1

(−1)m(i+1)+n+1(f(āi+1, · · · , ām, ā0, . . . , ān−m+i−1), ān−m+i, . . . , āi),

where the second sum is taken over all cyclic permutations such that a0 is inside of f ,
and otherwise if n > m+ 1, Lf (α) = 0;
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(3) the Connes operator B : C̄•(A;A) → C̄•+1(A;A) is given by

B(α) :=

m∑
i=0

(−1)mi(1, āi, · · · , ām, ā0, · · · , āi−1).

The following two lemmas first appeared in Daletskii-Gelfand-Tsygan [6], which we learned
from Tamarkin-Tsygan in [29].

Lemma 6.2. Keep the notations as in the above definition. Then

(1) (C̄•(A;A), b,∩) is a DG module over (C̄•(A;A), δ,∪), that is,

ιδf = (−1)|f |+1[b, ιf ], ιf ιg = ιf∪g,

for any homogeneous elements f, g ∈ C̄•(A;A);

(2) for any homogeneous elements f, g ∈ C̄•(A;A),

[Lf , Lg] = L{f,g},

and in particular (−1)|f |+1[b, Lf ] + Lδf = 0.

Lemma 6.3 (Homotopy Cartan formulae). Suppose ι, L,B are given as above and f, g ∈
C̄•(A;A) are any homogeneous elements.

(1) Define an operation (cf. [29, Equ. (3.5)])

Sf (α) :=

m−n∑
i=0

m∑
j=i+n

(−1)ηij (1, āj+1, · · · , ām, ā0, · · · , āi, f(āi+1, · · · , āi+n), āi+n+1, · · · , āj)

for any α = (a0, ā1, · · · , ām) ∈ C̄m(A;A) (the sum is taken over all cyclic permutations
and a0 always appears on the left of f), where ηij := (n+1)m+(m−j)m+(n+1)(j−i).
Then we have

Lf = [B, ιf ] + [b, Sf ]− Sδf . (6.3)

(2) Define

T (f, g)(α) :=
l∑

i=l−n+2

n+i−l−2∑
j=0

(−1)θij

(f(āi+1, · · · , āl, ā0, · · · , āj , g(āj+1, · · · , āj+m), · · · , ān+m+i−l−2), · · · , āi)

for any α = (a0, ā1, · · · , āl) ∈ C̄l(A;A), where θij = (m+ 1)(i+ j + l) + l(i+ 1). Then
we have

[Lf , ιg]− (−1)|f |+1ι{f,g} = [b, T (f, g)]− T (δf, g)− T (f, δg). (6.4)

The above two lemmas say that Definition 4.1 (2) (3) hold up homotopy on the chain
level. Together with Gerstenhaber’s theorem, we have the following.

Theorem 6.4 (Daletskii-Gelfand-Tsygan [6]). Let A be an associative algebra. Then the
following sextuple (

HH•(A),HH•(A),∪, ι, {−,−}, B
)

is a differential calculus.
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In [7, Proposition 5.5], de Thanhoffer de Völcsey and Van den Bergh proved that, for
a Calabi-Yau algebra A of dimension n, there exists a class η ∈ HHn(A) such that the
contraction

HH•(A)
−∩η // HHn−•(A) (6.5)

is an isomorphism. This immediately implies the following:

Theorem 6.5 ([14, 20]). Suppose A is a Calabi-Yau algebra A of dimension n. Then

(HH•(A),HH•(A),∪, ι, {−,−}, B)

is a differential calculus with duality, and in particular, (HH•(A),∪,∆) is a Batalin-Vilkovisky
algebra.

6.2 Symmetric algebras and the Batalin-Vilkovisky algebra structure

We now recall a differential calculus structure on the Hochschild complexes of symmetric
algebras.

First, for an associative algebra A, denote A∗ := Hom(A, k), which is an A-bimodule.
Denote by C̄•(A;A∗) the reduced Hochschild cochain complex of A with values in A∗. Then
under the identity

C̄•(A;A∗) =
⊕
n≥0

Hom(Ā⊗n, A∗) =
⊕
n≥0

Hom(A⊗ Ā⊗n, k),

one may equip on C̄•(A;A∗) the dual Connes differential, which is denoted by B∗, i.e.,
B∗(g) := (−1)|g|g ◦ B for homogeneous g ∈ C̄•(A;A∗). B∗ commutes with the Hochschild
coboundary map δ, and thus is well-defined on the homology level.

Second, let

C̄•(A;A)× C̄•(A;A∗)
∩∗
−→ C̄•(A;A∗)

(f, α) 7−→ ι∗f (α) := (−1)|f ||α|α ◦ ιf ,
(6.6)

for any homogeneouss f ∈ C̄•(A;A) and α ∈ C̄•(A;A∗). We have the following.

Theorem 6.6. Let A be an associative algebra. Then

(HH•(A),HH•(A;A∗),∪, ι∗, {−,−}, B∗)

is a differential calculus.

Proof. By the definition of differential calculus, we only need to show the last two equalities
given in Definition 4.1.

(1) By the definition of ι∗ and Lemma 6.2 (1), one has

ι∗f ι
∗
g(α) = (−1)|g||α|ι∗f (α ◦ ιg) = (−1)|g||α|+|f |(|α|+|g|)(α ◦ ιg) ◦ ιf

= (−1)|g||α|+|f |(|α|+|g|)α ◦ (ιg∪f ) = (−1)|f ||g|ι∗g∪fα = ι∗f∪g(α),

for any homogenous elements f, g ∈ HH•(A) and α ∈ HH•(A;A∗). This means that the cap
product is a left module action.
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(2) Given any homogenous elements f ∈ HH•(A) and α ∈ HH•(A;A∗), define

L∗
f (α) := (−1)|f ||α|+|α|+1α ◦ Lf (= [B∗, ι∗f ](α)), (6.7)

and by Lemma 6.3 one has

[L∗
f , ι

∗
g](α) = (L∗

f ι
∗
g − (−1)(|f |+1)|g|ι∗gL

∗
f )(α)

= (−1)(|f |+1)(|α|+|g|)+|g||α|+1α ◦ (ιgLf )− (−1)(|f |+|g|+1)|α|+1α ◦ (Lf ιg)

= (−1)(|f |+|g|+1)|α|α ◦ ([Lf , ιg])

= (−1)(|f |+|g|+1)|α|α ◦ ((−1)|f |+1ι{f,g})

= (−1)|f |+1ι∗{f,g}(α).

This completes the proof.

Now suppose A! is symmetric. Recall that the existence of the degree n cyclic pairing is
equivalent to an isomorphism

η : A! ∼= Σ−nA¡

as A!-bimodules. Such η may be viewed as an element in C̄−n(A!;A¡), which is a cocycle,
and hence represents a cohomology class. By abuse of notation, this class is also denoted by
η. The following map

− ∩∗η : C̄•(A!;A!) =
⊕
q≥0

Hom((Ā!)⊗q, A!)

η◦−−→
⊕
q≥0

Hom((Ā!)⊗q,Σ−nA¡) = C̄•−n(A!;A¡), (6.8)

where η◦− means composing with η, gives an isomorphism on the cohomology (due to Tradler
[31]). Thus we have the following.

Theorem 6.7 ([20, 31]). Suppose A! is a symmetric algebra of degree n.

(HH•(A),HH•(A;A∗),∪, ι∗, {−,−}, B∗)

is a differential calculus with duality, and in particular, HH•(A!) is a Batalin-Vilkovisky
algebra.

6.3 Koszul Calabi-Yau algebras and Rouquier’s conjecture

Analogously to the quadratic Poisson algebra case, the Koszul dual of a Koszul Calabi-Yau
algebra is symmetric (chronologically the latter is discovered first), and we have the following
theorem due to Van den Bergh (see [33, Theorem 9.2] or [5, Proposition 28] for a proof):
Suppose A is a Koszul algebra and let A! be its Koszul dual algebra. Then A is Calabi-Yau
of dimension n if and only if A! is symmetric of degree n.

It has been well-known that for a Koszul algebra, say A,

HH•(A) ∼= HH•(A!),

as Gerstenhaber algebras, and Rouquier conjectured (it is stated in Ginzburg [14]) that, for
a Koszul Calabi-Yau algebra, the above two Batalin-Vilkovisky are isomorphic, which turns
out to be true (see [5, Theorem A] for a proof):
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Theorem 6.8 (Rouquier’s conjecture). Suppose A is a Koszul Calabi-Yau algebra. Denote
by A! and by A¡ the Koszul dual algebra and coalgebra of A respectively. Then(

HH•(A),HH•(A)
)

and
(
HH•(A!),HH•(A!;A¡)

)
are isomorphic as differential calculus with duality. In particular, HH•(A) and HH•(A!) are
isomorphic as Batalin-Vilkovisky algebras.

The key point of the proof is that, with the differentials properly assigned on A⊗A! and
A⊗A¡ respectively, then

C̄•(A;A) ≃ A⊗A! ≃ C̄•(A!;A!) and C̄•(A;A) ≃ A⊗A¡ ≃ C̄•(A!;A¡),

and via these quasi-isomorphisms, the volume forms as well as the contractions given by (6.2)
and (6.6) are identical on the above middle terms (compare with the proof of Theorem 1.2).

Example 6.9 (The polynomial case). Let A = R[x1, x2, · · · , xn], which is n-Calabi-Yau.
Its Koszul dual algebra A! = Λ(ξ1, ξ2, · · · , ξn) is symmetric. As in the Poisson case, the
volume forms on HH•(A) and HH•(A!;A¡) are, via the above quasiisomorphisms, represented
by 1⊗ ξ∗1 · · · ξ∗n in A⊗A¡.

7 Deformation quantization

In this section, we take k to be a field containing R. Dolgushev [8, Theorem 3] proved that
for a Calabi-Yau algebra, if it is unimodular Poisson, then its deformation quantization is
again Calabi-Yau. Analogously, Felder-Shoikhet [11, Corollary 1] and Willwacher-Calaque
[37, Theorem 37] proved that for a symmetric algebra, if it is unimodular symmetric Poisson,
then its deformation quantization is again symmetric. We use their results to prove Theorems
1.4 and 1.5.

7.1 The Maurer-Cartan formalism

In this subsection, we give an alternate description of the unimodular Poisson and Calabi-Yau
algebras in terms of the negative cyclic homology, which we learned from de Thanhoffer de
Völcsey and Van den Bergh [7].

Let us start with the notion of negative cyclic homology.

Definition 7.1 (Cyclic homology; cf. Jones [16] and Kassel [17]). Suppose (C•, b, B) is a
mixed complex, with |d| = −1 and |B| = 1. Let u be a free variable of degree −2 which
commutes with b and B. The negative cyclic chain complex of C• is the following complex

(C•[[u]], b+ uB),

and is denoted by CC−
• (C•). The associated homology is called the negative cyclic homology

of C•, and is denoted by HC−
• (C•).

Remark 7.2 (Cyclic cohomology). Suppose (C•, b, B) is a mixed cochain complex, namely
|b| = 1 and |B| = −1. By negating the degrees of C•, we obtain a mixed chain complex,
denoted by (C•, b, B) with |b| = −1 and |B| = 1. By our convention, the cyclic cohomology of
(C•, b, B), denoted by HC•(C•), is the cohomology of the negative cyclic complex of (C•, b, B).
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Example 7.3. (1) Suppose (A, π) is a Poisson algebra; then (Ω•(A), ∂, d), where ∂ and d

are the Poisson boundary and de Rham differential respectively, is a mixed chain complex.
Similarly, if (A!, π!) is symmetric Poisson, then (Ω•(A!, A¡), δ, d∗), where δ and d∗ are the
Poisson coboundary and dual de Rham differential respectively, is a mixed cochain complex.

(2) For an associative algebra A, (CH•(A), b, B) is a mixed chain complex. Similarly, for
a symmetric algebra A!, (CH•(A!, A¡), δ, B∗) is a mixed cochain complex.

Equip X•(A) with trivial differential, and Ω•(A) with mixed differential (0, d), where d is
the de Rham differential. Since Ω•(A) is a Lie module over X•(A) whose action commutes
with d, the negative cyclic complex (Ω•(A)[[u]], ud) is a DG module over X•(A). Consider the
semi-direct product

P(A)# := X•(A)⋉ ΣdΩ•(A)[[u]], (7.1)

which is a DG Lie algebra with differential (0, ud).
Recall that for a DG Lie algebra (L, d), any solution, say a, to its Maurer-Cartan equation

d(a) +
1

2
[a, a] = 0

gives a new DG Lie algebra structure on L with differential d̃ = d + 1
2 [a,−]. Denote this

DG Lie algebra by La. Going back to the Poisson case, observe that the volume form η is a
solution to the Maurer-Cartan equation P(A)#, and therefore we get a new DG Lie algebra

P(A, η) := P(A)#η .

Proposition 7.4. Let A = k[x1, · · · , xn] and ℏ be a formal variable. For the algebra A[[ℏ]]
over k[[ℏ]], a bivector

ℏπ := ℏ · π0 + ℏ2 · π1 + · · · ∈ ℏ · X2(A[[ℏ]])

and a volume form
ℏη := ℏ · η1 + ℏ1 · η2 + · · · ∈ ℏΩn(A[[ℏ]])

such that (ℏπ, η+ℏη) gives on A[[ℏ]] a unimodular Poisson structure if and only if (ℏπ,Σnℏη)
is a solution to the Maurer-Cartan equation of the DG Lie algebra P(A[[ℏ]], η).

Proof. Direct check.

For a Maurer-Cartan element (ℏπ, η + ℏη) in the above theorem, the linear term with
respect to the powers of ℏ also implies that A with (π, η) is unimodular.

Completely analogously to Proposition 7.4, we have that:

Proposition 7.5. Suppose A! is a symmetric algebra with volume form η!. Then for a
bivector ℏπ! ∈ ℏ · X2(A!) and an n-form ℏη ∈ ℏ · Xn(A¡)[[u]], the pair (ℏπ!, η + ℏη!) gives a
unimodular Poisson structure on A![[ℏ]] if and only if (ℏπ!, ℏη!) is a Maurer-Cartan element
of the DG Lie algebra

P(A!, η!) := (X•(A![[ℏ]])⋉ Σ−n−1X•(A¡[[ℏ]])[[u]])η! .

For Calabi-Yau algebras and symmetric algebras, we have similar results, due to de
Thanhoffer de Völcsey-Van den Bergh [7] and Terilla-Tradler [30] respectively (the interested
reader may refer to these two works for proofs):
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Proposition 7.6 ([7] Theorem 8.1). Suppose A is an n-Calabi-Yau algebra with volume
form η. Then an element ℏµ ∈ ℏ · CH2(A[[ℏ]]) and an n-form ℏη ∈ ℏ · CCn(A[[ℏ]]) such that
(µ+ℏµ, η+ℏη) gives a Calabi-Yau structure on A[[ℏ]] if and only if (ℏµ, ℏη) is a Maurer-Cartan
element of the DG Lie algebra

D(A[[ℏ]], η) := (CH•(A[[ℏ]])⋉ CC•(A[[ℏ]]))η.

For a symmetric algebra, say A!, the volume form lies in the Connes’ cyclic cochain
complex CC•

λ(A
!). The relationship between the Connes’ cyclic cochain complex and the

cyclic cochain complex given in Remark 7.2, viewed as DG Lie modules over C̄•(A!) is as
follows:

Lemma 7.7. For any symmetric algebra A!, the classical quasiisomorphism of cochain com-
plexes

CC•
λ(A

!)
≃ // CC•(A!) (7.2)

is an quasiisomorphism of Lie modules over CH•(A!).

Proof. We need to show that (7.2) respects the Lie derivative from the Hochschild cochain
complex. This is true since CC•

λ(A
!) embeds into CC

•
(A!) and the Lie action of CH•(A!) on

the former is the restriction of the Lie action on the latter, given by (6.7).

The following is the main result of Terilla-Tradler [30]:

Proposition 7.8 ([30] Theorem 3.7). Suppose A! is an n-symmetric algebra with volume
form η!. Then an element ℏµ ∈ ℏ · CH2(A![[ℏ]]) and an n-form ℏη ∈ ℏ · CCn

(A![[ℏ]]) such
that (µ + ℏµ, η + ℏη) gives a symmetric algebra structure on A![[ℏ]] if and only if (ℏµ, ℏη) is
a Maurer-Cartan element of the DG Lie algebra

D(A![[ℏ]], η!) := (CH•(A![[ℏ]])⋉ CC•
λ(A

![[ℏ]]))η! .

Remark 7.9. (1) In Propositions 7.4 and 7.5, if A and A! are Koszul dual to each other
(recall in this case the Poisson structure is quadratic), then under the correspondence (3.5)
and (3.9), the two DG Lie algebras are isomorphic. Therefore the sets of Maurer-Cartan
elements to these DG Lie algebras are isomorphic, too.

(2) Similarly, in Propositions 7.6 and 7.8 ifA andA! are Koszul dual to each other, then the
two DG Lie algebras are also quasi-isomorphic. This means the deformation theory of Koszul
Calabi-Yau algebras is equivalent to the deformation theory of their Koszul dual algebras.
However, in this case, it is a little complicated to show directly the quasi-isomorphism, and
we plan to discuss it somewhere else.

Remark 7.10. It is proved by de Thanhoffer de Völcsey-Van den Bergh in [7] and Terilla-
Tradler in [30] that the homology of the two DG Lie algebras in Propositions 7.6 and 7.8 are
isomorphic to the negative cyclic homology and the cyclic cohomology respectively.

7.2 Deformation quantization of Calabi-Yau Poisson algebras

In this subsection we prove Theorem 1.4 (1).
Recall that for a Poisson algebra A with bracket {−,−}, its deformation quantization,

denoted by Aℏ, is a k[[ℏ]]-linear associative product (called the star-product) on A[[ℏ]]

a ∗ b = a · b+ µ1(a, b)ℏ+ µ2(a, b)ℏ2 + · · · ,
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where ℏ is the formal parameter and µi are bilinear operators, satisfying

lim
ℏ→0

1

ℏ
(a ∗ b− b ∗ a) = {a, b}, for all a, b ∈ A.

In [18], Kontsevich constructed, for A being the algebra of smooth functions on a Poisson man-
ifold, an explicit L∞-quasiisomorphism from the space of polyvector fields to the Hochschild
cochain complex of A, and therefore there is a one-to-one correspondence between the equiv-
alence classes of star-products and the equivalence classes of Poisson algebra structures on
A[[ℏ]]. Thus via Kontsevich’s map, the Poisson bivector ℏπ on A[[ℏ]] gives a star-product on
A[[ℏ]], which is called Kontsevich’s deformation quantization.

Note that Ω•(A) and C̄•(A;A) are modules over X•(A) and over C̄•(A;A) respectively, and
in [32, Conjecture 5.3.2], Tsygan conjectured that Kontsevich’s deformation quantization also
gives an L∞-quasiisomorphism of L∞-modules between C̄•(A;A) and Ω•(A). This is known
as Tsygan’s Formality Conjecture for chains, and is proved by Shoikhet in [27, Theorem
1.3.1]. Shoikhet also conjectured that such L∞-morphism is also compatible with the cup
product, which was later proved by Calaque and Rossi in [3, Theorem A].

Recall that on Ω•(A) and C̄•(A;A), we have the de Rham differential operator and the
Connes boundary operator respectively. One naturally expects the L∞-quasiisomorphism
constructed above respects these two operators. This is known as the Cyclic Formality
Conjecture for chains, and is proved by Willwacher in [36, Theorem 1.3 and Corollary 1.4].

Proof of Theorem 1.4 (1). The works above, especially those of Kontsevich and Willwacher
are equivalent to saying that there exists a roof of L∞-quasiisomorphisms

X•(A[[ℏ]])⋉ Σ−dCC
−
• (A[[ℏ]])

ttiiii
iiii

iiii
iiii

ii

**UUU
UUUU

UUUU
UUUU

U

X•(A[[ℏ]])⋉ Σ−dΩ•(A[[ℏ]])[[u]] C
•
(A[[ℏ]])⋉ Σ−dCC

−
• (A[[ℏ]])

of DG Lie algebras (see [7, §11.3] for a proof).
Twisting with the corresponding volume forms in the above roof we get a new roof of

L∞-quasiisomorphisms (we have to show that the volume form in the three DG Lie modules
are the same on the homology level, but this is the case by Example 6.9). This then implies
that we have an L∞-quasiisomorphism of DG Lie algebras

P(A[[ℏ]], η) ≃ // D(A[[ℏ]], η)

given in Propositions 7.4 and 7.6, where the dotted arrow means the quasiisomorphism is
given by a sequence of (roofs of) L∞-morphisms.

As a corollary, the Maurer-Cartan elements of P(A[[ℏ]], η) (up to gauge equivalence) are
in one-to-one correspondence, via the above L∞-quasiisomorphisms, with the Maurer-Cartan
elements of D(A[[ℏ]], η). In particular, if A is unimodular Poisson, then Aℏ is Calabi-Yau, and
vice versa (c.f. Dolgushev’s result [8, Theorem 3]).

Thus by Theorem 4.4 and the noncommutative Poincaré duality (6.5), we have a commu-
tative diagram

HP•(A[[ℏ]])
∼= //

∼=
��

HPn−•(A[[ℏ]])
∼=
��

HH•(Aℏ)
∼= // HHn−•(Aℏ)
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for A being unimodular.

7.3 Deformation quantization of symmetric Poisson algebras

We first rephrase Kontsevich’s Cyclic Formality Conjecture for cochains, published in Felder-
Shoihket [11, §1], in the case k0|n. Note that in this case, A! = O(k0|n), the space of functions
on k0|n. Kontsevich’s L∞-quasiisomorphism holds for the supermanifold case, as has been
shown in Cattaneo and Felder [4, Appendix].

Fix a constant volume form Ω on k0|n (where in previous sections we use the notation
η! = ξ∗1 · · · ξ∗n), then via the pairing

⟨f, g⟩ := Ω(f · g)

one can identify C̄•(A!;A!) with C̄•(A!;A¡), which is the same as capping with the “vol-
ume form” as given in (6.8). Denote by Dpoly(k

0|n) the polydifferential Hochschild cochain
subspace of C̄•(A!;A!), and denote the image of ψ ∈ Dpoly(k

0|n) in C̄•(A!;A¡) by ψ̃. Let

C̃C
•
(A!) :=

{
ψ ∈ Dpoly(k

0|n)
∣∣∣ ψ̃(f1, · · · , fn+1)

= (−1)|fn+1|(|f1|+···+|fn|)+nψ̃(fn+1, f1, · · · , fn)

}
,

which is a subspace of the Connes cyclically invariant subspace of C̄•(A!;A¡).
Given Kontsevich’s L∞-quasiisomorphism U : T •

poly(k
0|n) → Dpoly(k

0|n), the Cyclic For-
mality Conjecture for cochains can be rephrased as the existence of an L∞-quasiisomorphism
of Lie modules (

X•(A¡)[[u]], u · d∗
) ≃ //

(
C̃C

•
(A!), δ

)
. (7.3)

This conjecture is proved by Willwacher and Calaque in [37, Theorem 2] (see also Felder-
Shoikhet [11] for some partial results). To relate these two DG Lie algebras with P(A!, η!)

and D(A!, η!) given in §7.1, let us first notice the following.

Lemma 7.11. For A! as above, we have quasi-isomorphisms of DG Lie algebras

X•(A!)⋉ X•(A¡)[[u]]
≃ // X•(A¡)[[u]] (7.4)

and
CH•(A!)⋉ CC•

λ(A
!)

≃ // [D̃poly(R0|n)]cycl. (7.5)

Proof.

Thus combining the above lemma with (7.3), we have an L∞-quasiisomorphism of DG
Lie algebras:

X•(A!)⋉ X•(A¡)[[u]]
≃ // CH•(A!)⋉ CC•

λ(A
!). (7.6)

The following theorem is parallel to the result of Dolgushev for Calabi-Yau algebras, which
is proved by Willwacher and Calaque in [37, Theorem 37]:

Theorem 7.12. For A! = Λ(ξ1, · · · , ξn), Kontsevich’s deformation quantization of A!, say
A!

ℏ, is symmetric if and only if A! is unimodular symmetric Poisson.

23



Proof. By (7.6) and (7.2) we have an L∞-quasiisomorphism of DG Lie algebras

P•(A![[ℏ]], η!) ≃ // D•(A![[ℏ]], η!).

The rest of the proof is completely analogous to the Calabi-Yau algebra case. Namely,
applying the same argument as in the proof of Theorem 1.4 (1), we get the desired result by
replacing Propositions 7.4 and 7.6 therein with Propositions 7.5 and 7.8.

Proof of Theorem 1.4 (2). Combining the above theorem with Theorem 4.5 as well as the
noncommutative Poincaré duality (6.8), we get the commutative diagram.

Proof of Theorem 1.5. By Shoikhet [28, Theorem 0.3] (see also [2, Theorem 8.6]), Aℏ and A!
ℏ

are Koszul dual algebras over k[[ℏ]], and hence the theorem follows from a combination of
Theorems 1.3, 1.4, and Rouquier’s conjecture (Theorem 6.8).

7.4 Twisted Poincaré duality for Poisson algebras

For a general associative algebra, say A, it may not be Calabi-Yau, and therefore there may
not exist any Poincaré duality between HH•(A) and HH•(A). In [1], Brown and Zhang
introduced the so-called “twisted Poincaré duality” for associative algebras. That is, for
such A, keeping its left A-module structure (the multiplication) as usual, the right A-module
structure of A is the multiplication composed with an automorphism σ : A → A. Denote
such A-bimodule by Aσ, then Brown and Zhang showed that for a lot of algebras, there exists
a twisted Poincaré duality HH•(A) ∼= HHn−•(A;Aσ) for some n ∈ N (cf. [1, Corollary 5.2]).
In this case A is called a twisted Calabi-Yau algebra of dimension n.

Such phenomenon also occurs for Poisson algebras. Namely, not all Poisson algebras are
unimodular, and hence there may not exist an isomorphism between HP•(A) and HP•(A).
In [21, 25, 39, 40], the authors studied the so-called twisted Poincaré duality for Poisson
algebras, similarly to that of associative algebras. They also studied some comparisons with
twisted Calabi-Yau algebras. However, it would be very interesting to study the relationships
between the deformation quantization of twisted unimodular Poisson algebras and twisted
Calabi-Yau algebras, and obtain a theorem similar to Theorem 1.5 in this twisted case.
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