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A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE
1D PERIODIC CUBIC NONLINEAR SCHRODINGER EQUATION

BUYANG LI AND YIFEI WU

ABSTRACT. A fully discrete and fully explicit low-regularity integrator is constructed for
the one-dimensional periodic cubic nonlinear Schrodinger equation. The method can be
implemented by using fast Fourier transform with O(N In V) operations at every time level,
and is proved to have an L?-norm error bound of O(r+/In(1/7) + N~') for H' initial data,
without requiring any CFL condition, where 7 and N denote the temporal stepsize and the
degree of freedoms in the spatial discretisation, respectively.

1. Introduction

This article concerns the numerical solution of the cubic nonlinear Schrédinger (NLS)
equation

{i@tu(t,x) + Oppu(t, ) = Nu(t, z)>u(t,z) for z € T and t e (0,77, (L)

u(0,z) = u®(x) for x €T,

on the one-dimensional torus T = (—7, 7) with a nonsmooth initial value u® € H'(T), where
A= —1 and 1 are referred to as the focusing and defocusing cases, respectively. It is known
that problem (L)) is globally well-posed in H*(T) for s > 0; see [2].

The construction of numerical methods for the NLS equation and related dispersive
equations with nonsmooth initial data has attracted much attention recently since the pio-
neering work of Ostermann & Schratz [I7], who introduced a low-regularity exponential-type
integrator that could have first-order convergence in H7(T?) for initial data u® € HY*1(T9)
and v > %l, where d denotes the dimension of space. Before their work, the traditional
regularity assumption for the NLS equation for a time-stepping method to have first-order
convergence in H7(T9) is u® € HY*2(T9) for v > 0 (losing two derivatives). This includes
the Strang splitting methods [6l14], the Lie splitting method [10], and classical exponential
integrators [§] (also see the discussion in [I7), p. 733]). The finite difference methods [19}21]
generally require more regularity of the initial data (one temporal derivative on the solution
generally requires the initial data to have two spatial derivatives to satisfy certain compati-
bility conditions).

The idea of Ostermann & Schratz [I7] is to use twisted variable to reduce the con-
sistency error in an exponential-type integrator, and to use harmonic analysis techniques
to approximate the exponential integral. More recently, Wu & Yao [22] applied different
harmonic analysis techniques to construct a time-stepping method for the one-dimensional
NLS equation with first-order convergence in H(T) for initial data u® € H7(T) and v > 3
(without losing any derivative). Ostermann, Rousset & Schratz furthermore weakened the
regularity assumption of initial data to «® € H(T) in [I5] and u® € H*(T) with s € (0,1]
in [I6] by using estimates in the discrete Bourgain spaces. For u® € H'(T) these methods
were proved to have L2-norm error bounds of O(T%) and 0(7%76), respectively, for the one-
dimensional NLS equation. A general framework of low-regularity integrators for nonlinear
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parabolic, dispersive and hyperbolic equations was introduced in [7], where the condition
for the numerical solution of the NLS equation to have first-order convergence in L?(T) is
w0 e Hi(T).

Besides the NLS equation, the techniques of twisted variable and harmonic analysis
techniques were also used in the construction of low-regularity integrators for other dispersive
equations; see [9[1820,2324] and the references therein.

As far as we know, the analysis of all the low-regularity integrators for the NLS equation
are limited to semidiscretisation in time (the error from spatial discretisation is unknown for
nonsmooth initial data), and the regularity condition for the time-stepping method to have
first-order convergence is u® € HY(T) for v > %. We are only aware of a fully discrete
Lawson-type exponential integrator for the Korteweg—de Vries equation [I8], with first-order
convergence in L%(T) in both time and space under a CFL condition 7 = O(h) for solutions
in C(0,T; H3(T)).

The objective of this article is to construct a fully discrete and fully explicit lower-
regularity integrator that has first-order convergence (up to a logarithmic factor) in both
time and space for H' initial data. The temporal low-regularity integrator is constructed
using twisted variables and with different harmonic analysis techniques in approximating
the low- and high-frequency parts of the functions in the exponential integral. The spatial
discretisation is integrated in the temporal low-regularity integrator by repeatedly using fre-
quency truncation and Fast Fourier transform (FFT) techniques in every nonlinear operation
(i.e., computing the product of two functions). By using a (4N + 1)-point FFT for every
product of two (2N + 1)-term Fourier series in the numerical scheme and then truncating the
obtained (4N + 1)-term product series to (2N + 1)-term again, we avoid generating trigono-
metric interpolation errors from using FFT. As a result, the spatial discretisation error of
our method is purely due to frequency truncation and therefore can be analysed together
with the temporal discretisation error in the frequency domain by using harmonic analysis
techniques.

The rest of this article is organised as follows. The fully discrete low-regularity integrator
and the main theorem on the convergence rates of the method are presented in section [2
Some technical tools of harmonic analysis are presented in section Bl which are used in section
M in the construction of the numerical method and analysis of the consistency error. The
error bound of proposed fully discrete low-regularity integrator is proved in section [ by
utilizing the consistency error bounds obtained in section @ and the stability of the method,
as well as the H'-regularity of fully discrete numerical solution. The latter is proved to be
bounded uniformly with respect to the temporal stepsize and the number of Fourier terms
in the spatial discretisation. Numerical results are presented in section [6 to support the
theoretical analysis in this article.

2. The numerical method and main theoretical result

It is known that the solution of the NLS equation satisfies the following two conservation
laws (see e.g., [4]):
(1) Mass conservation:

1 1
%/T|u(t,:v)|2 dx = %/T|u0(x)|2 dx for t > 0. (2.1)

(2) Momentum conservation:
1
5 [uttaosalt ) de = o /T W00, de for t >0, (2.2)

These two conserved quantities will be approximated based on the initial data and utilized
in the construction of the numerical method.
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We denote by Ily and II.o the zero-mode and nonzero-mode operators, respectively,

defined by

1 -
Hof:%/jrf(x)dx and Tly(f)= > *f (2.3)

kEZ, k40
Then the conserved mass and momentum are denoted by

1 1 — —
M = —/ |u®(z)* dz = Mo(|u’[?) and P = — / u00,u0 dr = o (u’0,u0),  (2.4)
2m T 2w T
respectively.
For any positive integer N, we denote by Ion the (4N + 1)-point trigonometric interpo-
lation operator, which can be obtained through the discrete Fourier transform (see [5L25])

2N 2N

Daf)= 3 e f with fim——— 3 e henf(a,) (2.5)

k=—2N n=—2N

where
2mn

TN+ 1
If the Fourier coefficient f), of the function f satisfies that fj, = 0 for |k| > 2N, then Ion f = f
and therefore fi = fi in the formula (23]). In this case, both

for n=—-2N,--- ,2N.

2N

flan) = > e*nfy, n=-2N,.. 2N, (26)
k=—2N
and
~ 2N .
fo= > e*enf(a,) k=-2N,--- 2N, (2.7)
n=—2N

can be computed with cost O(N In N) by using the fast Fourier transform (FFT); see [5].

Let Sy be the subspace of functions f € L?(T) such that fr = 0 for |k| > N. fw,v € Sy
and their Fourier coefficients wy and 0, k = —2N,--- 2N, are stored in the computer (with
wg = 0 = 0 for N < |k| < 2N), then the values w(z,) and v(z,), n = —2N,...,2N, can
be computed exactly by using (2.6) and FFT. Since (wv), = 0 for |k| > 2N, it follows that
wv = loy (wo). If we denote by Fi[v] the kth Fourier coefficient of the function v, then

2N
Frlwv] = Z e~ ke, )v(x,), k=—2N,...,2N,
n=—2N

which can also be computed exactly by using FFT. Therefore, if we denote by Iy : L?(T) —
L?(T) the projection operator defined by

fk for |k|] < N,

Filllyf] =
I f] {0 for |k| > N,

then the cost of computing the Fourier coefficients of IIx(wv) € Sy from the Fourier coeffi-
cients of w,v € Sy is O(NIn N).

For any positive integer L, let t,, = nT,n=20,1,..., L, be a partition of the time interval
[0, T'] with stepsize 7 = T'/ L. The fully discrete low-regularity integrator for the NLS equation
([T to be constructed in this paper is: For given u? N € Sy compute u’fj\,l € Sy by

ufJ]er:\I’(uZN) for n=0,1...,L -1,

2.8
with u?—,N =TnLyud € Sn, 29
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where
U(f) 1= TN DMNHOD) ¢y (1 — o 2N MV F — A7 TTo [Ty (| £12) /]
A0 Ty (7% f) - 07 My (179 £12)] — M™% 0, My [ f - 05 TIn (| f12)]

A {@ZZHN ((e—iragf) ez‘TagHN(f2)> _ ewaga;zHN <]FHN(f2)>}

_ %eiraga;HN [amf(e—iragnN [(eiraga;1f)z] Iy [(8;11’)2} ﬂ
— AT ™2 Ty (9, f TN (7))
+ 2Nl f &2, My (0, F f) — idr (o )%™ %0 f  for fe Sy,  (2.9)
and
My =o(jul y*) and Py = o (u2 yOrul ) (2.10)

are the approximate mass and momentum, respectively. By using (Z3]) with FFT, the initial
value ug N = Iy Ionu® can be obtained with cost O(NIn N). Then, at every time level, the
method only requires computing several functions in the following forms:

X 1 .
o7 (~2My 2PN +a£)f, ei”a%f and 9, 1f for some given function f € Sy,
e IIx(fg) for some given functions f,g € Sy,

where

-Fk [eir(f2MN72PN8;1+8§)f]

e 2MNT fo for k=0,
{eir(—ZMN—QPN(ik)_I—kQ)Jﬁk for k # 0.
0 for k=0,
(ik) " f for k#0.

Hence, the computational cost is O(N In N) at every time level.
The main theoretical result of this paper is the following theorem.

ﬂwmmzﬁmm,maxv={

Theorem 2.1. If u® € H'(T) then there exist positive constants 79, No and C such that
for 7 < 19 and N > Ny the numerical solution given by (2.8)—(2Z9) has the following error

bound:
max (u(tn, ) = uf yllz2 < C(ry/In(1/7) + N1, (2.11)

where the constants 19, No and C depend only on T and ||u®|| z1.

The rest of this paper is devoted to the construction of the method (2:8))—(29]) and the
proof of Theorem 2.1

Remark 2.2. The analysis in this article can be easily extended to proving higher-order
convergence of the spatial discretisation method when the initial data is smoother. Namely,
for u® € H*(T) with s > 1, the error bound of of the proposed method should become

max lu(tn, ) —ul yllp2 < C(r+ N7%). (2.12)

The proof of this result (with smoother initial data) is easier than the proof of Theorem 21
and therefore omitted. The convergence results in (ZI1]) and (ZI2) are illustrated by the
numerical experiments in section [6] for s = 1 and s = 2, respectively.

3. Notation and technical tools

In this section we introduce the basic notation and technical lemmas to be used in
analysing the error of the numerical method to be constructed.



3.1. Notation

The inner product and norm on L?(T) are denoted by
(19) = [ f@at@de and |fls2 = /5. respectively.
The norm on the Sobolev space H(T), s € R, is denoted by
1% = 27 Do+ RPIfl

kEZ
For a function f : [0,7] x T — C we denote by || f||zr(1,m+) its space-time Sobolev norm,

defined by
. 1
( / IIf(t)Hpsdt>p for p € [1,00),
0

ess sup || f(t)| ms for p = oo.
t€[0,7]

I fll e o, m) =

The Fourier coefficients of a function f on T are denoted by Fj[f] or simply fk, defined
by

~ 1 .
fe = 7 / e~ f(x)dx for k€ Z.
T
The Fourier inversion formula is given by
_ Z ¢k i
keZ
The Fourier coefficients are known to have the following properties:

I1f1I72 = 2 Z {fkf (Plancherel identity);
kEZ

= Z fk_klgkl (Convolution).
ki1€Z

For any function o : Z — C such that |o(k)| < Cy(1 + |k|)™ for some constants C, and
m > 0, we denote by o(i~10,) : HS(']I‘) — H*7™(T) the operator defined by

)
i'0.)f = Z (k) fre’™®”

For abbreviation, we denote
(k) = (1+k%)2 and J* = (i"'9,)",
which imply that
171G = 172 A1 and o f = () i
Moreover, we denote by 9, : H*(T) — H**1(T), s € R, the operator such that

Fulos'f) = {(ik)lfk, when k # 0,

(3.1)
0, when k = 0.

We denote by A < B or B 2 A the statement A < C'B for some constant C' > 0. The
value of C' may depend on T and ||u®||;;1, and may be different at different occurrences, but
is always independent of 7, N and n. The notation A ~ B means that A < B < A.

We denote by O(Y) any quantity X such that X <VY. For any function o : Z™*! — C
and w € H(T) we denote by T,,(0;w) the class of functions f € L?(T) such that

fk‘ S Z ‘U(k7k17"' 7km)’ ’wlﬂ’ ’wkm‘ Vf S (U w) (3'2)
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If FF= f t)dt for some function f(t) € Tp,(o;v(t)), then we simply denote
to
Fe T (o 0(t))dt. (3.3)
t1

3.2. Two technical lemmas

We will use the following version of the Kato—Ponce inequalities, which was originally
proved in [I2] and subsequently improved to cover the endpoint case in [3L[13].

Lemma 3.1 (The Kato-Ponce inequalities).
(i) If s > 3 and f,g € H*(T) then
1 gllms S NSz llgl s
(i) If s > 0,51 > 5, f € H*™(T) and g € H*(T), then
1Fgllms S W fllers+o llgllare-

In addition to Lemma B1] we also need the following results, which are consequences of
the Kato—Ponce inequalities.

Lemma 3.2.
(i) If s> % and f,g € H*(T) then
1T T 9llars < 1 F sz llgllzze-
(ii) If f,g € HY(T) then
1T7H I e < min {1 Fllz2llgllan gl IF 1 e }-
Proof. (i) The desired inequality is equivalent to ||J5~Y(Jf g)llz2 < || fllmsllgllms. By the
duality between L?(T) and itself, it suffices to prove
(SN IF 9),h) S Wl llgla= bl Ve LX(T),
which is equivalent to
SN 0 kD fudiain S 1 e gl ] o
k kit+ko=k
Since the term corresponding to k = 0 satisfies

> (k1) fo oo = Z<k1>%fk1<_kl>%gfhh—0

k1+ko=0 k1
14 1, >
S kD2 fr)kezllizl|((—k1) 2 g—ky ki ezlliz ol

<ULy lgll 3 Al e

1
S Iflmslgllaslhllz2 - when s > 2,

we only need to prove the following result:
SO T el feada b S 1 f e llglas 1R e
k;ﬁo k1+ko=k

To this end, we decompose the left-hand side of the inequality above into two parts, i.e.,

Z Z |k|s Ykt | Gy ok

k#0 k1+ka=

) . . (3.4)
<> Z 1 el Fo o 1l > D> 1R Kl fo |G ]
k#0 k1+ko=k k#0 k1+ko=k

k1| <10]k| k1 |>10| k|
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The first term on the right-hand side of (4] can be estimated by using Plancherel’s
identity and Lemma [B.1] as follows:

D S - L1V (17|14 B S S e V[ (1

k;ﬁo ki1+ko=k k;ﬁo k1+ko=k
[k | < T0]A] [k [<10]K|

S (f3),h)
S Fall gl e S P e gl s 1] 2
where f, § and h are functions with Fourier coefficients | fk|, |gx| and |ka|, respectively. Since
e ~ s Nl ~ Ngllre and [l ~ [Blge,
it follows that
S kTRl e lGno k] S SN es gl 2] e

k#0 k1+ko=k
|k1]<10|k|

In the second term on the right-hand side of (34, we have |ki| ~ |ko| > |k|. For s > 3
we have

> e | = (|2 [k R < 2 2~ (B[ R ea]®

and therefore

DD SR L U /7 112 I SO SO [ Y VP P [ Y

k;ﬁo k1+ko=k k;ﬁo ki1+ko=k
|k1|>10]k| |k1|>10| k]|
SO el F TG k|0 By
k0
< JfJ%G k|~ |h
S max | Fl7°F )1 3 Ik

k0
I F TGl 1% oserez izl (1P Dosrez iz
SIT Fllcell gl el 22
SWF s llgll s IRl e

This completes the proof of (i).
(ii) Similarly as (i), it suffices to prove

SN0 kT Rl fr kb S min((1Fz2llgl g 1 lgllz2) 1Rl 2 Vhe L2(T).
k#0 k1+ko=k

In view of the proof of (i), we can assume fe >0, g > 0 and hy, > 0 without loss of generality
(otherwise we can replace f, g and h by f, g and h, respectively, in the estimates below).

Then
DD IRkl fr Gro
k#0k1+k2=k
_ Ao _ .3 3.5
SO IR e e b + > D kT Rl fr o Pk (3:5)
k;ﬁo k1+ko=k k;ﬁo ki1+ko=k
x| < 10[K] al > ToJK

The first term on the right-hand side of (33]) can be estimated by using Plancherel’s identity
and Lemma BTt

Z Z \k’_lfklffklﬁkzilkﬁz Z FrorGres P

k;ﬁo k1+ko=k k;ﬁo k1+ko=k
[k [ < 10[] [k [ < 10]K|



<> Felfalhu

k0
SIFrlfaosrezlliell (hr)ozrezlie

S| fgll 2Rl

Smin(|[flz2llgllzee | fllzeellgllz2) I Al 2
Smin(||fll 2 gl s 1 f 19l z2) 1Rl 2z

In the second term on the right-hand side of ([B.5]) we have |k1| ~ |k2| > k. On the one hand,
we have

SN kT Rl e Gk D0 kT kol frko G Pk

k#0 k1+ko=k k#0 ko
1| >10[k|
1 1
. 2 2 .
(s C i) (S ala? ) X
ks ka k40
SIAz2llgll e (Al e
On the other hand, we have
ST T e fr b S0 IR | fry G-k P
k;ﬁo k=k1+ko k;ﬁo k1
k1| >10]k|
1 1
. 2 2 .
SOTEIASNET SR I 9
k1 ke k0
S e llgl e 1Rl e
This completes the proof of (ii). O

4. Construction of the method through analysing consistency error

In this section we construct the numerical method based on twisted variables and
Duhamel’s formula through analysing the consistency errors in approximating the expo-
nential integrals using harmonic analysis techniques. For readers’ convenience, we present
the derivation of the numerical method in subsection [.I] and defer the technical estimates
to subsection

4.1. Construction of the numerical method

As mentioned in the introduction section and the beginning of section 2l the NLS equation
(CI) has a unique solution u € C([0, T]; H*(T)) satisfying the Duhamel’s formula:

U(tp1) = eiTagu(tn) - i)\/ eiltnt1—(tn+5))0; lu(t, + s)|u(t, + s)ds, (4.1)
0

as well as the mass and momentum conservations [2I)-(R22). The norm ||ul|c(o,r;m1(T)) 18
bounded by a constant depending on ||u°||1; see [2].

Let v(t) := e #%y(t) be the twisted variable. Then v € C([0,T]; H'(T)) satisfies
vl o,z (1)) = llulleo,m;mr (my) and the following conservation laws simiarly as u, i.e.,

(1) Mass conservation:

1 1
%/Tlv(t,x)I?d:c =5 /T u(t,z)]* de = M for t > 0. (4.2)



(2) Momentum conservation:

v(t,x)0;0(t, z) de = (t,x)@acﬂ(t,x) dx =P for t>0. (4.3)

% o

Applying the operator e~ itn+193 £ the identity (410), we obtain
V(tny1) = v(ty) — i)\/ e~ iltn+s)0; [[ei(t"+5)agv(tn +5))? ei(t”+8)63v(tn + s)] ds. (4.4)
0
The Fourier coefficients of both sides of ([£.4]) should be equal, i.e.,

Op(tns1) = ) — i / e nt9)9 B (tn + 8) 0y (b + 8)0py (b + ) ds,  (4.5)
0 h+b+m

with a phase function
¢ = ok ki ko, ks) = k* + K — k3 — k3.
Replacing 7 and s in (@A) by s and o, respectively, we have

Op(tn +5) = Op(t) — 0N > TGy (tn + 8) 0k, (tn + 0) ik, (tn + 0) do. (4.6)
O kithoths=k

In view of ([f8) and the definition of 7,,(M;v) in ([B.2), we have
v(ty, +5) —ov(ty) € / T3(L;0(ty + 0))do. (4.7)
0
As a result, (A3]) can be written as

Orltnst) = Oeltn) =N 3 By () () (1) / Gt gs L Ry (48)
ko +ko+hs=k 0
with

A~

Rk

- _i)‘/ > I (B (b A+ 8) Dk, (b + 8) 0k (bn + ) — Dky (n) Bty (En) By () s
O kythotha=k

€ /T /8 Ts(L;v(ty + 0))dods,
0 JO

where the last inclusion is based on the definition in (Z3]). If R; denotes the function with
Fourier coefficients R4 j, then the relation above implies that (according to Lemma E.1] (i)
of the next subsection)

IRl < 2||U||Lt><>Hl (4.9)

This term will be dropped in our numerical scheme.

In the following, we approximate the second term on the right-hand side of (L8] by
expressions that can be evaluated efficiently with FFT. To this end, we consider the three
cases k =0, |[k| > N and 0 # |k| < N, separately.

CASE 1: k = 0. In this case, (L8] reduces to

Do(tns1) =00(tn) —iX > By (tn) Oy (tn) Oy () / Qi+ (M —R3K3) gs 4+ Ry g

k1+ko+k3=0 0
(4.10)
:770 (tn) — AT Z eitn(k%_k%_kg) ff)kl (tn)f)lm (tn)ﬁk:’, (tn) + 7%170 + 7%270
k1+k2+k3=0

~ . ; 2 2 2 ~ ~
=0g(tn) — ZATHO(‘eZt"azv(tn)‘ e”"azv(tn)) +Ri0+ Ra0
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=0o(tn) — iAo [T ([ % o(t) )™ % 0 (t,)] + Rio + Rao + Rig,  (4.11)

Rop=—ix D Bk (tn) ks (tn) iy (tn) / (et F KRR — itn (50 g,
k14ko+ka=k 0
Ry = —iAr[(1— Ty (| %0 (t,) )% v(ty) € Te™O%0(t,) To (155 0(t)),
where
0 for |k| <N,

4.12
1 for |k| > N. (412)

(Isn)k = Ligsn = {
Since k1 + ko + k3 = 0, it follows that there holds k:% - k‘% - k‘g = 2koks and therefore
/T (ei(thrs)(k%—k%fkg) _ eitn(kffk%fk§)> ds = 720 (kak3).
0

As aresult, the function Ry (with Fourier coefficients Ry ) satisfies that Ry € 7273(kaks; v(t,))
in view of the definition in [32). According to Lemma 1] (i)—(ii) of the next subsection, Ro
and Rj satisfy the following estimates:

R20l S 70l 700 (4.13)
3 % * ity 02 ity 02 _
R30l S IR3NLt S Tl %o ta)ll= (1 — v )(Je™ % v(ta) Pl 2 S TN 0ll7oo pra- (4.14)

The two terms 7@270 and 7@’2‘70 will be dropped in our numerical scheme.
CASE 2: |k| > N. Let R3 be the function with Fourier coefficients

7@3,k = —Ljg>n A Z Uk, (tn)@kg(tn)@kg(tn)/ oiltn+8)¢ 7o
k1+ka+ks=k 0

Then
Rse1Ts (1>N§ U(tn)) .
Lemma [£1] (i) of the next subsection implies that

[Rs| e S TN o0l foepyy  for s € [0,1]. (4.15)

This term will be dropped in the numerical scheme.
CASE 3: 0 # |k| < N. By using the identity
(k1 + ko) + (k1 + k3) — ks
k

and symmetry between ko and k3, we can decompose the second term on the right-hand side
of [A8) into two parts, i.e.,

- N , A . N Tki+k2 i
Ok (tnt1) = Op(tn) — 26N Z Vkey (b)) Oty (E) Ok (tn)/ LT iltnts)d g (4.16a)

1=

ok
k1+ko+ks=k
~ Tk .
BN YD ()i ()i () [ e ds (4.16D)
k1+ka+ks=k 0
+ Rig (4.16¢)

We furthermore truncate ([£I6al) to the frequency domain |k; 4+ k3| < N, i.e.,

~ . i k + k 7 s A ~ ~ al
EI6E) = on(ta) — 200 > ( / el ds> Oty (tn) ks (b0) Oy () + R,
ki +hoths=k 70
|k1+ks| <N

(4.17)
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with
—2x ) < / @ei“ﬁsw d5> Dy () Oty () Opy () for 0 # |k| < N,
Ry = Fy+hat+hg=k 0
' |k1+ks|>N
0 otherwise.

The corresponding function R4 with Fourier coefficients 7@4711g satisfies that

k1 + ko
RyeTTs ( 10¢k|§N1|k1+k3|>N§v(tn)> :
By Lemma [.T] (iii) in the next subsection and symmetry between ko and ks, and we have
HR4HH$ < TN71+S||U||%§OH; for s € [0, 1]. (4.18)

Since ki + ko + ks = k, it is straightforward to verify that ¢ = 2(ky + k2)(k1 + k3). As a
result, if k1 + k3 # 0 then

T kit ko i(tn+s)d L it i
i(tnt9)6 Jg — itnt10 _ Litn@). 4.19
/0 koo S Tk ) © ) (4.19)
If k1 4+ k3 = 0 then ¢ = 0 and k = ko, and therefore
T k1 + ko i(tnts)d 7o k1

/0 e dS—T( - +1>. (4.20)

Substituting the two relations (£I9)-(@.20) into (£IT), we obtain

~ 1 7 7 S ~ ~
ET6a) = x(tn) =AY m(e 19 — ) By (tn) Ok, (tn) kg (tn)

ki1+ko+ksz=k
0#|k1+k3|<N

. k 2 ~ ~ >
— 2IAT Z <?1 + 1) Uty (t0) 0g (t) Oy (t0) + R -
k1+k3=0

Then we apply the mass and momentum conservations in ([£2)—(Z3]), which imply that

k .
“2ixr Y (?1 + 1) By (b)) 0k (£ Oy () = — 2INTP (i)~ op,(tn) — 2T M Op(tn).

k1+k3=0
Therefore,
R 1 ; 7 ay A~ ~
BT =0u(t) = D ey ) ) 1)
ki1+ko+ks=k ! 3
0#‘k1+k3‘§N

— 2%ATP (ik) "o (tn) — 2ATM Op(tn) + R
_p2iATP (ik) =1 —2i T M B (tn)
1 4 . .
— )\ N ith41¢ __ itnd) 5 tn o tn ~ tn
Z k(k1 + k3) (e e ®) Uk, () Ok, (tn)Oks (tn)

ki1+ko+ks=k
0#|k1+k3|<N

+ Ry + R g, (4.21)

otherwise.

. {(1 — 2ATP(ik) ! — 20T M — e 2ATPER T2 M b 4y for 0 [k < N,

From this expression we see that the function R} with Fourier coefficients 7@2 ;. Satisfies that

Ry € 72Ty (1;v(ty)). (4.22)
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Note that for k1 + ko + k3 = k the following equalities hold:

gb(k‘, k1, ko, k?g) = 2kky + 2koks, (423&)
2kky = k? + k¥ — (ko + k3)?, (4.23b)
Qkoks = (ko + k3)? — k2 — k3. (4.23c)

By using these relations, we have

ei(tn+5)¢ _ eitn¢62isk‘k162isk‘2k‘3 _ eitn¢[62iskk1 + (62i8k2k3 _ 1) + (GQiSk‘kl _ 1)(62i8k2k3 _ 1)],

and therefore (I6h]) can be decomposed into the following three terms:

@EI6D) =ix ) < / feme?wk’ﬂ ds)@kl(tn)ﬁkQ(tn)ﬁkS(tn) (4.24-1)
kitkoths=k 70
|k2+ks| <N

+ix Y ( / %eiw(e%b’%—u ds)@kl(tn)ﬁb(tn)@ks(tn) (4.24-2)
0

k1+ko+ks=k
|ka+ks|<N
+ R+ Ri ks (4.24-3)
where
. Tk . , .
R5,k — i) Z (/ %eztmb(e%sklﬁ _ 1) (6215k2k3 _ 1) d8> Uk, (tn)®k2 (tn)@kg (tn)7
kitkatks=k 0
|ko+ks|<N
(4.25)
~ , Tk . . .
Rip =i\ Y ( / el ds) Dty (bn) Dy (£ ) By () (4.26)
kitkotks=k 0
|ka+ks|>N

for 0 # |k| < N, and 7%5,/& = ﬁgk = 0 for k = 0 and |k| > N. Lemma 2 of the next
subsection implies that

[R5 e S 720l sy for s € (3,1), (4.27a)
[R5l 2 S 7*VInT= o] foo gy (4.27b)

Obviously,
R; € 7'7-3 (O',’U(tn)) Wlth some ‘O’(kﬁ, ]{?1, ]{?2, kg)‘ § ’k‘il‘k1‘10#|k‘§N1|k2+k3|>N'

By Lemma [A.T] (iii) and symmetry, and we have that for any s € [0, 1],

IRzl S PN+ 0l (128
Note that
)\ 3 ; 2 2_ 2 ~ R .
(E24=1]) = Z Weztnqﬁ(ezr(lﬂ +k—(ka+k3)?) _ 1)Uk1 (tn)ka (tn)ka (tn), (4‘29)
k1+ko+ks=k
|ka+k3|<N

, Tk : . ) A
@22 =ix > < / fem(ez’s’”’“ —1) ds> Vg (tn ) Oy (tn ) Ok ()
k1+ko+ks=k 0
ka#0,k3#0
|ko+k3| <N

ki i 2iTkak 2 N N
= A Z Qkakgenn(b(e T — 1)Uk1 (tn) Oy (tn) Oks (tn)
k1+ko+-ks=k

k27#0,k3#0
|ka+ks|<N
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. ki oo X .
— AT Z ?eltn(bvkl (tn)v/m (tn)vlﬁ (t")
k1+ko+kz=k

ka#0,k3#0
|ko+E3|<N

k1 itn i ( (ka+k3)?—k2—k2 IS N N
= A Z le{:gkget ¢<e (( 2tha) : 3) - 1)”]4:1 (tn)vkz(tn)vkg(tn)
ki+ko+-k3=k

k2#0,k3#0
|ka+ks|<N

. k1 i oo~ . .
— T Z ?le OBk, () Ok () Oky ()

k1+ko+ks=k
|[ko+ks|<N

) k1 ~ N .
+ 2T g zle”"qﬁ Uk, () Ory ()00 (t0)
k1+ko=k
k2| <N

— iATE T (L) o () B0 (tn). (4.30)

Substituting ([@29)-(30) into (@24, and then substituting (£2I) and (@24) into
([£186]), we obtain

b1 (tns) e~ 2iATP (ik) "t —2iATM b1 (tn)

1 : it A X
A D i gy O ) B )y () (1)
k1+ko+ks=k ! 3

0#‘k1+k3|SN

1 . . A
N Z —eztn¢>(em—(k2+k‘%*(k2+k3)2) — 1) Uk, (bn) Oy (£ ) Oy ()

2(ik)?
k1+ka+ks=k
|ka+Eks3|<N

ik itnd ( ir(katks)—K3—2) 1\ & (4 \h (1 1

Ak 2 2(ik) (k) (iks) (c ) Uky (tn)Oky (£ )0y ()
1+ko+ks=k
ka7£0,k37£0
|ko+ks| <N

. ki oago A
—idt Y zletn¢vkl(tn)vk2(tn)vk3(tn)

ki+ko+ks=k
|ka+ks|<N

ki - .
T %NT Z ?le”"d’ Vky (tn) Oy ()0 (t0)

ki+ko=k
k2| <N

— iATe"™® By (tn )00 (tn ) Do (tn)
+ Rig+ Rap + ﬁzk + Ry + ﬁ;k for k#0 and |k| < N. (4.31)
Then substituting I0) and {3 into the expression v(t,11) = 3 jeq Ok (tnr1)e™™® yields
U(tnt1) =®"(v(tn); M, P) + Ry + Roo + Ry o + Ry + Ry + Ri + Rs + Ri, (4.32)
where
O"(f; M, P) ::ef%\rpa;lfzz‘ATMf +(1— 672i)\TM)HOf
—iAtlly [HN(‘eit"aif‘Q)eit"agf]
+ )\efitn_Hafc@;lHN [(eitn+lagf) ] a;lnN(|eitn+18£f|2)}

B )\e_“”agax_lﬂjv [(eitnag%f) . 5;1HN(]eitn6§f‘z)]
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N . A .
- 5 |:e—ztn+1aga;2HN<(e—ztn+183f) . err@gHN (eztnagf)2)
— o itnd? 636—2HN (e—itnag Fly (ez‘tnag f)2>]

5 |:e ltnagam IHN((G ltnagaxf) Lot agHN(eztha;am lf) )

_ et g-qTy ((efitnag 0. 7) -Tly (ez‘tnag 81'1f)2):|
— i\re—itn03 8;1HN (e—itnaﬁ 8, [Ty (eitnag f)2>
+ 20Ty (f)e o ! (o700, [ eitndi f)

— iAr(Tlo f) MLy (4005 f). (4.33)
The numerical scheme can be defined by dropping the defect terms R; and R;‘ in (432)

and replacing the numbers M and P by their approximations My and Py defined in (Z10),
respectively. Namely, for given v, € Sy compute v,41 € Sy by

V" = ®"(v"; My, Py), n=0,1...,L—1; with v" =" (4.34)

. g 2 g 2 . . .
Then, replacing v™ and v"*! by e #n%y" and e~ #»+19%:¢" in ([@34]), we obtain the numerical

scheme (2.8)—(29).

4.2. Technical lemmas for analysing the consistency errors

In this subsection, we present two technical lemmas, which are used in estimating the
defect terms R; and R;‘ in the previous subsection.

Lemma 4.1. For any given v € H'(T) and s € [0,1], the following results hold.
(i) Let m > 1,N € Z*. Then, for any f € Tm(1;v) and any g € T(1sy;v),
[ 12 S 0l
9] s S N7 ol

(ii) For any f € T3(kaks;v) there holds
o f] S loll-
(iii) Let N € Z*t, N > 10 and f € T3(o;v). If
o (k, k1, ka, k3)| S || k] Losie i< gy k5w for some j € {1,2,3},
then
1 e S N7 ol

Proof. Without loss of generality, we can assume that 95;,j = 1,--- ,m are positive for any
t € [0,T]. Otherwise we replace Oy, by [0y,| as we did in the proof of Lemma B.2]
(i) By the definition of 7, (o;v) in B2), f € T, (1;v) implies that
Fl S D)0 Ok Bk ~ Tl
kit tkm=k
By Plancherel’s identity and Lemma 1] (i), we obtain that

1l S o™ L S Nl -

For g € Ton(1sn;0), we use the inequality ||g||gs < N71||g| g2 together with the inequality
above, which implies that ||g[|;1 < [|[v])j:. This yields the desired inequality for g, i.e.,

gl S N7 ol



15
(ii) For any f € T3(kaks;v) we have that

MofI < D Ok, (1) kol Oy (1) [aldny ()
k1+ko+k3=0

S Y OFk (V)]

k14K, =0
2
S/Tv(\vlv) dz S [[ollze [[IV[0ll72 < ol

(iii) We only consider the case when j = 1, since the other cases can be treated in the
same way. Since the Fourier coefficients of J°f satisfies

FulJ°f] = (k)* fi < Z Loz < (k)™ 5 () Oy (£) Dy (£) Dy (2)

ki+ko+kas=k
|k1+ka|>N

SN (k)T R R () By (800, () (2)

ki1+ko+ks=k
|k1+k2| >N

SN F [T (v (vdv))],
it follows from Lemma [B.2] (ii) that
17° fllzz SN llwdvllzz ol € N7l oo |0l o]l € N7l

This proves the desired results in Lemma .11

U
Lemma 4.2. Ifv € L>(0,T; H'(T)) then
HR5HL2 S 2 ln7_1||v||ioo(o,T;H1)- (4.35)
Moreover, for any s € (%, 1),
3
HREJHHS §T2HUH%OO(O7T;H1)' (436)
Proof. For ky + ko + k3 = k and |ke| > |ks| we claim that the following inequality holds:
ki o | )
%(e%"kkl — 1) (eshoks 1)‘ < 7k k|| k| |k3|* Vs €[0,7], Ya€[0,1].  (4.37)

In order to prove ({3T), we consider the following two cases: |k| > |ks| and |k| < |ks].
CASE 1: |k| > |ks|. In this case, we use the following inequalities:

‘e%Skkl - 1‘ <2 and ‘e%SkaS - 1‘ < 27|ko|| k3],
it follows that
ﬁ
k
CASE 2: |k| < |ks|. In this case ki + ko + k3 = k and |ka| > |k3| imply
k1| < |ko| + [ks| + [k] < [kol.

(e®oFFr — 1) (isheha 1)‘ < Atk 7 [kl [Ka ks | S 7RI Kyl lks| .

We use the following inequalities:
‘e%“"kkl — 1! < 27|k||k1| and ‘eQiSkaS - 1‘ < 2.
Then we obtain

%(GZiskkl _ 1) (62i8k2k3 _ 1) S 4’7’|]€1|2.
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Since |k1| < |k2|, it follows that
]{: (0%
ol S el 5 Pilll (52)

This proves (£37]).

By using the symmetry between ko and k3 in the expression of |Rs | in (#25]) and
applying (L3T) with o = 1 in the case |k| > |k3| and o = 0 in the case |k| < |k3|, we obtain
for any k # 0,

Resl €7 30 bl albal i, (o)l () 0 1)

k1+ko+ks=k
|k2|>|ksl,| k| > k3|

+rt Y [t [l [0y (£ [0k, (B )| Ors () (4.38)

k1+ko+ks=k
|k2|>|ksl,| k| <|ks|

Without loss of generality, we may assume that vy, (), Ok, (t,) and 9, (t,) are nonnegative.
Otherwise we replace them by their absolute values as we did in the proof of Lemma
By the duality between L?(T) and itself, it is sufficient to prove the following result to

obtain (£.30)):
[(Rs, /)| < 7°VIn(r Dol o,z 1 fll2 ¥ f € L*(T). (4.39)
From the definition below [{26]) we see that R5 9 = 0. As a result, we have
(Re, N SD Rkl 16l S ) IRl Ifel+ D [Roil I fl (4.40)
k#0 |k|>7—1 0#|k|<7T—1
From the expression of R in {2H) we see that for |k| > 7~1 there holds
Ropl <72 > [kalOk, (bn) By (bn) D (1)
k1+ko+ks=k
Hence, by the Cauchy—Schwartz inequality and Plancherel’s identity, we have

ST Rskl 16l 72D >0 [kalory (n) ks (6n) ks () | fol

kj>71 K kythatka=k
=723 "k — ko — K|y —ks (tn) By (£n) ks () | F)
Kok K
SN (Fr)rezlli || Gerte, (tn) )k ez lliz | Bry (tn) ) kaezllin | (B (£) ) ks ezl
STl ez llvliF, (4.41)

where the last inequality uses the following result:
1O, (ta))ksezllin S I(Ck2) ™ maezlliz || (Ch2) Oy (t0) ) msezlliz S 0] e
The second term in ([£40) can be estimated by using ([£38), i.e.,
> IRskl Ifl (4.42)

0F|k|<7—1

Y > (|~ Ve Ko s | Fil Oy (£ Dy () By (1)

0#‘k|§7’71 k1+ko+ks=k
|k2|> k3], k|>|ks]

+70 ) > [ ez 1 fil Oy (t) Oy (£ Oy (£0)

0#|k|<T—1  Eki+kotks=k
|k2| > k3], |k|<|ks]

ST D D KT kR, (Bl — Ry — Rl g (t) K Ok, ()

0|kl <71 ksl <[k k1
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+72 3 ST S Tl () — Ky — ksl 0—y — (£ By (£0)

0|k <r—1 ks> k| k1
S (R, (b )k ez izl (ks (b)) szl D R el D ksl g (tn)

0#|k|<r—1 k3| <|K]
+ 72 (k1 0, () keezlliz | (o, (b kgezllie. D 1fkl D Ok (tn)
0#|k|<T—1 |ks|>|k|
_1, 4 N
ST D> kT2 fulll (ks (tn) Jrsezllie
0% fkl<7—1
+ 2ot 3 Y Felll(Crs) ™) g s lliz | (s Oy (6n)) g a2
04k <r1
1 X
ST D R 2 felll (ks (b)) ks ezlliz
0lk<r1

1

ST I 1 O*1™ 2 )oseipy < li2 I ()<t D2
STt l3p VIn(r =) £|z2- (4.43)
Substituting (Z41)—(@43]) into [@A0]) yields [@39), which implies the desired result in ([Z35]).

It remains to prove ([30). To this end, we use the following inequalities:
o 1] <2 and (e 1] S 52 ka2 [Rs)2,
which imply that
k A A
G T 1)‘ S 73R ki llka|2 ksl Vs € [0,7].

By substituting this into the expression of 7€5,k in ([@25]), and using Plancherel’s identity, we
obtain

HR5HHS 57—%

971 (1917 (19150)%))

L2’

Then using the Sobolev inequality, we get that for any s € (%, 1),

IRsll,p. <73 {1910 (19150)%|
2|91 2 IV120]2 2 S 720l
This completes the proof of Lemma O

5. Proof of Theorem [2.7]

The proof of Theorem [Z1] is divided into two parts. In subsection (.1l we present an
error estimate for the numerical solution in H*(T) with s € (1,1), and then use this result
to prove the boundedness of the numerical solution in H'(T) uniformly with respect to 7
and N. In subsection (.2, we utilize the H'-boundedness of the numerical solution to prove
the desired error estimate in L?(T).

5.1. Boundedness of the numerical solution in H!(T)

Lemma 5.1. Let u® € HY(T), and let uiN, n=20,1,...,L, be the numerical solution given

by Z8)-R9). Then there exist positive constants s and Ns such that for T € (0,7s] and
N > Ny the following error bound holds:

1
R < 5 —14s 1
Orgrlr?g}(LHU(tn’ ) uT,N”H Ns T2 +N Vse (271)7 (51)
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where 75 and Ny depend only on ||ul||1, T and s.
Proof. Let v" = e*itnaguﬁN. Then v"*1 = ®"(v"; My, Py) as shown in (@34). By using
this identity we have
0ltnsn) — 0" =0t 1) — " (0(ta); M, P) + "(u(ta); M, P) — 9"(o"; My, Py)
=i L7 4+ " (u(t,); M, P) — ®"(v"; My, Py), (5.2)
where
L" = v(tns1) — D" (v(ty); M, P) = Ry + Rao + Ry o + Ry + Ra + R + Rs + R,
which is shown in (£32)). From [@9), (£13), (@I5), (£I]), ({27) and [@28) we see that
1£7]] e S 78 + 7N Vs e o,1). (5.3)

Note that the functional ®"(f; M, P) defined in ([@33]) can be rewritten into the following
form:

O"(f; M, P) = f + (¢ WATPO=2ATM _ 1 4 9inr POt 4 2iAT M) f + (1 — e 22TV )T, f

— A7l [HN (‘eit"agf‘z)eit"ag f]

o Y e % /h*khtﬁswds)f fiai

0#|k|<N ki+kot+ks=
|k2+k3|<N

: ik Tk is £opp
s a3 (TR ) £ fuf,
k

0#|k|<N k1+kotks=
|k2+ks3| <N

. . Tk o ; roF
i) Z ezkm Z (/O Eleztmi) (621514:2]63 _ 1) dS) fklkaka'
k

0#|k|<N k1+kotks=
|ka+Eks3|<N

(5.4)

For example, the third line of (5.4)) comes from (@2I]), which can be rewritten back into
(#I7). This is how we obtain the third line in the expression above. The other terms are
obtained similarly.

From (5.4)) we furthermore derive that

O™ (v(t,): M, P) — 0" (v™; My, Py) =v(tn) — o™ + ®F + O + 08 + &1 + &7, (5.5)
where
B = (o7 BATPOT 2Ny 4 9inr PO 4 20 M 4 (1 — e 2ATM ) u(t,,)
— (e ATPNOTAATMN g 4 9inr Pr a4 2iAT My + (1 — e 2N Yo",

SZ—’L')\’THQ<|€%"8’%’U( )|2 ztnaxv(t )_| itn 0% n|2 ztnax,v >

n . ikx Tk1+k2i s S N N AN Amoan
Pz = — 20\ Z ‘ Z (/0 Te (tnt2)¢ d5> (vlﬁ (tn)vlm (tn)vka (tn) — Vg vk2vk3),
k

0#£|k|<N ki+katkz=
|ka+ks|<N

. ki . . R R
of =ix Y ety ( / %eltn%%’f’ﬂ ds> (Dky (b )01y (t) By (£) — O B DR ) 4
k, 0

0#£|k|<N  kitkatks=
|ka+Eks3|<N

, Tk . 4 . R
p=ix Yo ety ( /0 I C Y d5> (O () Oy (£ Oy (£) — O, O3, B ).

0#‘k|<N k1+kot+ks=k
|ko+ks| <N
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Note that P, M, Py and My defined in (Z4]) and ([Z.I0) are all bounded numbers, with
bounds depending on ||u°|| ;1. In particular,

1
M iyl = | [P = 12y o

<

~

1 _ N
p /T [(uo — ud p)u + ud (w0 — ug’N)} dx

S = wd wllzz (el + a2 wl22)

SN W30 (5.6)
and
1 _
|P — Pyn| = Py (0D ud — u%NBxﬂg,N) dx
T
1 _ -
= (6 = € )0 + uf D (w0 =l )] da
1 _ -
=lor |, [(uo — w2 3) Ol — Opud (u — ug,N)] dx

< - UQ,NHL2(||3:::UO||L2 + Hamug,NHH)

S N7 (5.7)
From the expression of ® we see that its Fourier coefficients can be written as

Fi[®7] = F(M, P; k)i (tn) — F(Mn, Py; k)oy,
with
F(M, P; k) := ¢ 2ATPE o =20M _ 1 4 9ix7 PE1 20 + 20A7M + (1 — e 2A™M)1,
By using Taylor’s expansion and mean value theorem, it is straightforward to verify that
|F(M, P;k) — F(My, Pn; k)| S 7(|P — Py| + |M — My|).
As a result, we have
@Y [ ze SI(CK) Fi[ @Y Drezlli

ST(P = Py|+ M — My (k) 0x (tn) Jkezlliz + [1((k)* (O (tn) — 0k ))rezlliz
STUP = Py + M = My|)|v(tn)l[gs + 7llo(tn) = v"[|ms

SN ol o rirrny + 7l () — 0" e, (5.8)

where the last inequality follows from (G.6)—(5.7).
Since @Y is a constant, it is straightforward to show that (similarly as (5.6))

B3] (1" = vltn)llz2 (1 %ot l[Foe + 0" 1)
ST = v(ta)l g2 (o) Frs + ([0 Fs) (this holds for s > )
Sr(llo™ = v(ta) 2 (lo@a)lFrs + 0" = v(ta)l7rs)- (5.9)
Similarly, ®5 can be decomposed into several functions of the following form:

n . ikx Tkitk i s ; f. .
q>3 = — N Z e k Z (/ %e (tnts)é d8> fl,k1f27k2f3,k;3a

0#£|k|<N ki+kot+ks=k 70
|ko+ks3|<N

where fj,k denotes the kth Fourier coefficient of the functions f;, and one of the three
functions f;,7 =1,2,3, is

v™ —v(t,) or its conjugate;



20

the other two of the three functions f;,j = 1,2, 3, are either v™ or v(,) or their conjugates.
We assume that f;, k € Z are nonnegative; otherwise we consider functions with Fourier
coefficients |f; x| as we did in the proof of Lemma 3.2 (ii). Then

{(@)k{ NG Z %ﬁl,klfzkgf&k‘g = Filr T (frd (f2f3)))-
k1+ko+ks=k

As a result, by Plancherel’s identity and Lemma B2l (i), we have
195 ]| 77= ST (f3T (frfo)) e
ST\ fallzs | f1 f2ll s (this requires s > %)
STl s (L all 2z 1 f2ll s
Srllo™ = o(ta) s (0" s + lv(ta) )
Sl = vt [ ([0 = v(ta) s + () l[Fe)- (5.10)
¢} and ®F can be estimated similarly, i.e.,
1@ rrs + 195 1= ST0™ = v(ta)llazs (0" = v(Ea) [ Frs + [0 (Ea)[[Fre)-
Hence, combining with the estimates of ®7, j =1,...,5, we have
[@" (v(tn); M, P) — @"(v"; M, Px)| s
< (140" = v(ty) |l gs + CTl[v™ = v(ty)||3s + CTN L,
which holds for any given s € (%, 1). Substituting this and (5.3]) into (B.2]) yields that

3
[v(tns1) — 0" s <C(72 + TN 7I5) 4 (14 C7)|[0" — v(tn) || s + CT[0" = v(tn) |3y
By using the discrete Gronwall’s inequality with induction assumption on ||[v™ —v(ty,)||ms < 1,

we obtain (for sufficiently small 7)

0 [olta) ~ " S 74 N

This proves the desired result in Lemma 5.1 O

Lemma 5] implies that ||v(t,) — v™||gs < 1. Then, by using the triangle inequality and
boundedness of the exact solution in H', we have

[0" | zs S Jo(tn) — 0" |as + o(tn) [l S 1.
This result can be furthermore improved to the H! norm, as shown in the following lemma.

Lemma 5.2. Let u® € HY(T), and let uiN, n=20,1,...,L, be the numerical solution given
by 28)-@3). Then there exists a constant 79 > 0 such that for 7 € (0,79] the following
estimate holds:

n <
max [fu? vl S 1 (5.11)

Proof. Let v" = e~ itn0; u? . By using the expression of " in (B.4]), we immediately obtain
that
197 (0" M, Pa)|ln < [[0" e + Ol | o + Crlfo™ || [0 [, (5.12)

which holds for any fixed s € (3,1). Since [[v"||gs < 1 is already proved in Lemma 511
substituting this into ([34) yields
"l < A"+ CT 0" |, (5.13)

which implies Jmax, lv" |1 S 1 after iteration in n. The desired result follows from the
<n

~

relation [[v™|| 1 =_||U¢NHH1- =
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5.2. Error estimation in L?(T)
From (49), (413), (£15), @I8), (£27) and ([{28)) we conclude that
£, < C(r*VInT=1 + 7N 7). (5.14)
By choosing s = 0 in (5.8) and choosing a fixed s € (3,1) in (E3), we have
197 22 + 1@l STNT! + 7l[v™ = v(tn)llz2-
Instead of (BI0), we need to use the following estimate for ®%:

12512 SlImd = (f3 (frfe))lle S 7min(| fsll o | i foll oz, sl zell £ foll )

which is a consequence of Lemmal[3.2] (ii). Recall that one of the three functions f;, j = 1,2, 3,
is v™ — wv(t,) or its conjugate, and the other two functions are either v™ or wv(t,) (or their
conjugates). If fi is v —v(t,) or its conjugate, then we choose L? norm on fi; otherwise we
choose L? norm on faf3. In either case we obtain

125122 Sllo™ = v(ta)llzz (o) 7 + 10" 170) S Tllv™ = v(ta)l 2

The two terms @} and ®L can be estimated similarly, i.e.,
[@4 N2 + 1952 S 7llv™ — vltn)l 2.

Substituting the estimates of |[®7| .2, j =1,....5, into (G.5), we have

197 (v(tn); M, P) — @™ (v"; My, Py 2 S TN+ 70" = v(tn)]|2-
Then, substituting this into (5.2)) and using estimate (5.14]), we obtain

vo(tni1) — o™ 2 < C(T2Vln7'_1 + TNfl) + (14 C7)|[v" — v(tn)]| 12 (5.15)

Iterating this inequality yields

max vo(tn) — ™2 < |lo(to) = Oz + 7VInT=t + NP <7vVIn7—1 + N1
<n<

This completes the proof of Theorem 2Ilin view of [[v(t,) — v"[[r2 = [lu(tn) — ul x|z O

6. Numerical experiments

In this section we present numerical experiments to support the theoretical analysis
presented in Theorem ZJ1 We consider the NLS equation (IIl) with A = —1 and initial
value

1 - —a ikx
W) = o5 30 O, (61)

0£kET

which satisfies that u® € H*(T) and u° ¢ H*90L(T).

We solve the problem by the proposed method Z8)—-([Z3) for « = 2 and o = 1, re-
spectively, and present the time discretisation errors [[u,; N — 1, o n|z2 in Tables [H2 for
several sufficiently large N. From the numerical results we can see that the error from
spatial discretisation is negligibly small in observing the temporal convergence rates, i.e.,
almost first-order convergent as 7 — 0. This is consistent with the theoretical result proved
in Theorem 211

We present the spatial discretisation errors |lu;n — uraonl|/z2 for @ = 2 and a = 1
in Tables BH4] for several sufficiently small stepsize 7. From the numerical results we can
see that the error from temporal discretisation is negligibly small in observing the spatial
convergence rates, i.e., ath-order convergence for H® initial data. This is consistent with
the result proved in Theorem 2.1 and the comments in Remark
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TABLE 1. Temporal discretisation error ||u; v — ur/o n| 2 at T =1
with o = 2 in (G1)) (for H? initial data).

N =28 N =29 N =210
T=276 7.662E-06 7.662E-06 7.662E-06
=277 3.829E-06 3.829E-06 3.829E-06
T=278 1.915E-06 1.915E-06 1.915E-06
convergence rate O(7199) O(7199) o(r1:%)

TABLE 2. Temporal discretisation error ||u; v — ur/o n| 2 at T =1
with @ = 1 in (@) (for H! initial data).

N =28 N =2 N =210
T=276 2.144E-05 2.146E-05 2.146E-05
=277 1.023E-05 1.021E-05 1.021E-05
T=278 5.067E-06 5.067E-06 5.066E-06
convergence rate O(r1:92) O(1192) O(r192)

TABLE 3. Spatial discretisation error ||u, y — uron| 2 at T =1
with a = 2 in ([GJ)) (for H? initial data).

=278 =29 =210

N =16 2.430E-04 2.430E-03 2.430E-03

N =32 6.237E-05 6.237E-05 6.237E-05

N =64 1.574E-05 1.574E-05 1.574E-05
convergence rate O(N~199) O(N~199) O(N~199)

TABLE 4. Spatial discretisation error ||u, y — uron| 2 at T =1
with o = 1 in (1)) (for H? initial data).

=28 T=29 =210

N =16 5.056E-03 5.056E-03 5.056E-03

N =32 2.559E-03 2.559E-03 2.559E-03

N =64 1.283E-03 1.283E-03 1.283E-03
convergence rate O(N—1:00) O(N—1:00) O(N—1:00)

7. Conclusion

We have constructed a fast fully discrete low-regularity integrator for solving the NLS
equation with nonsmooth initial data in one dimension. The method can be implemented
by using FFT with O(N In N) operations at every time level, and is proved to have an error
bound of O(7+/In(1/7) + N~!) when the initial data is in H*(T). For initial data in H*(T)
with s > 1, the numerical results show that the proposed method can have an error bound
of O(t + N~%). We expect that the techniques for constructing and analysing the spatial
discretisation method in combination with the temporal low-regularity integrator may also

be extended to other dispersive equations with nonsmooth data.
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