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LARGE GLOBAL SOLUTIONS FOR NONLINEAR SCHRODINGER
EQUATIONS I, MASS-SUBCRITICAL CASES

MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

ABSTRACT. In this paper, we consider the nonlinear Schrodinger equation,
0o+ Au = plulPu, (t,x) € R

with p = +1,p > 0.
In this work, we consider the mass-subcritical cases, that is, p € (0, %). We prove that

under some restrictions on d,p, any radial initial data in the critical space H®(R%) with
compact support, implies global well-posedness.
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1. INTRODUCTION

We study the Cauchy problem for the following nonlinear Schrédinger equation (NLS)
on R x R%
10 + Au = plulPu,
u(0, ) = ug(x),

with 4 = +1,p > 0. Here u(t,z) : R x R? — C is a complex-valued function. The case
=1 is referred to the defocusing case, and the case © = —1 is the focusing case. The class
of solutions to equation (L)) is invariant under the scaling

(1.1)

u(t,z) — ur(t,x) = )\%u()\Qt, Az) for A >0, (1.2)
which maps the initial data as

u(0) — ux(0) == )\%uo()\x) for A > 0.

Denote
d 2
Se == — —.
C 2 p
Then the scaling leaves H*¢ norm invariant, that is,
[ll groe = Nuall groc

which is called critical reqularity s.. It is also considered as the lowest regularity for which
the problem (L)) is well-posed for general H*(R%)-data. Indeed, it was proved by Christ,
Colliander, Tao [I2] that there exist some initial datum belonging to H*(R?),s < s. such
that the problem (1)) is ill-posed.

The H'-solution of equation (IT)) also enjoys mass, momentum and energy conservation
laws, which read

Mwm:/mesz%%

P(u(t)) == Im/u(t,x)Vu(t,x) dx = P(uyp), (1.3)

E(u(t)) ::/|Vu(t,x)\2d:c—|—Z%/\u(t,x)\p”dx: E(uy).

The well-posedness and scattering theory for Cauchy problem (I]) with initial data in
H*(RY) were extensively studied, which we here briefly review. The local well-posedness
theory follows from a standard fixed point argument, implying that for all uq € H*(R?),
there exists Ty > 0 such that its corresponding solution u € C([0,T}), H*(R%)). In fact, the
above Ty depends on |[ug|| g«(re)y When s > s. and also the profile of ug when s = s.. Some
of the results can be found in Cazenave and Weissler [10].

Such argument can be applied directly to prove the global well-posedness for solutions to
equation (L)) with small initial data in H*(R?) with s > s.. In the mass-subcritical cases,
that is, p < %, if we consider the solution in L?(IR%) space, the local theory above, together
with the mass conservation laws ([3)), yields the global well-posedness for any initial data
ug € L*(R?). In the mass-supercritical, energy-subcritical cases, that is, % <p< d%427
if we consider the solution in energy space H'(RY), the local theory above together with

conservation laws ([IL3J) yields the global well-posedness for all initial data uy, € H*(R?) in
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the defocusing case g = 1, and for any initial data ug € H'(R?) with some restrictions in the
focusing case. Furthermore, the scattering under the same conditions were also obtained by
Ginibre, Velo [27] in the defocusing case and [24] in the focusing case. In the mass-critical and
energy-critical cases, since the conservation laws do not imply directly the global existence
of the solutions, the problem becomes much more complicated. In the energy-critical case,
the global well-posedenss and scattering in the defocusing case was first proved by Bourgain
[3] in the radial data case and then by Colliander, Keel, Takaoka, Staffilani and Tao [I3]
in the non-radial data case in dimension three, the higher dimension cases were solved by
Ryckman and Visan [59] and Visan [65, [66]; the global well-posedenss and scattering in the
focusing case was proved by Kenig and Merle [30] in the radial data case, then by Killip,
Visan [42] in the non-radial case when the dimensions are five and higher, and by Dodson
[21] in four dimensions, see also [43] [61} 62 [65] [66] for some previous works and simplified
proofs. In the mass-critical case, the global well-posedenss and scattering was first proved
by Killip, Tao, Visan [39] in the radial data case in dimension two, and Killip, Visan, Zhang
[45] in dimensions higher than two, then in the non-radial data case, the problem was solved
in a series of papers of Dodson [17, I8, 19, 20].

More complicated situation appears if one considers the general nonlinear Schrédinger
equations in the critical space H s¢(R?). Recently, conditional global and scattering results
with the assumption of u € L°(I, H<(R%)) (here I is the maximal lifespan) were considered
by many authors, which was started from [31], B2], and then developed by [B, 23, 25| 26,
133, 36l 37, 140, 411, 42|, 48], 49, B0, Bl [67] and cited references. That is, if the initial data

uy € H*(R?) and the solution has priori estimate

sup ||u

0<t<Tout (uo)

then T, (ug) = +oo and the solution scatters in H®(R%), here [0, Thu(uo)) is the maximal
interval in positive direction for existence of the solution. Consequently, these results give
the blowup criterion which the lifetime depends only on the critical norm |[u|[ o frse (1 ga)-
However, it seems that no such large data global results are known, if only the initial data
u € H s¢(R%). Furthermore, many authors considered the large global solutions for rough
data from a probabilistic point of view, that is, one may construct a large sets of initial data
of super-critical regularity which leads to global solutions, see [I}, 2, 6] [7, [, [14], 15, 16 22I,

38, 52, 53, 54, 55, 56, 57, 58, 63].

In the first part of our series of works, we consider the global solution for the mass-
subcritical nonlinear Schodinger equation in the critical space H s¢(R%). Due to the mass
conservation law, L2-initial datum lead to the global solutions. It is known from Christ,
Colliander and Tao [12] and Kenig, Ponce, Vega [35] that the problem is ill-posed in some
sense for the non-radial datum in H $(R%),s < 0. However, for the radial data, due to
the better radial Strichartz estimates, one may establish the local well-posedness result in
negative regularity Sobolev spaces. Indeed, it was proved by Guo and Wang [28] that there
exists po(d) < 3, such that for any p € (po(d), 3), if the initial datum are radial and small
in the critical space H*(R?), then the nonlinear solutions of (II)) are global and scatter.
Very recently, Killip, Masaki, Murphy and Visan [36, 37] proved a conditional result; that
in the defocusing case, there exists py(d) < 3, such that for any p € (po(d), 3), if the radial
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solution u € L H% (I x R%), then I = R and the solution scatters, by using concentration-
compactness arguments. This is the first global result for large data theory in the critical
spaces for the mass-subcritical NLS.

In this paper, we prove unconditional global well-posedness. We prove that for radial
initial data with compact support in space, and is in the critical space, there exists solution
global in time.

Theorem 1.1. Let d > 4, and o = £1. Then there exists po(d) € (0,3), such that for any
p € [po(d), %), the following is true. Suppose that ug € H%(RY) is a radial function satisfying
supp ug C {z : |z| < 1}.

Then the solution u to the equation (1) with the initial data ug exists globally in time, and
u € C(RT; H*(R%)) N L>®(RT; H*(R?) + L*(R%)). Moreover, for any t € R,

1) ey S 1+ Il

Remark 1.2. We make several remarks regarding the above statements.

(1) Our conclusions are valid for both of the focusing and the defocusing cases. Further,
by scaling, one can extend the size of the radius 1 to an arbitrary large number. Moreover,
the compact support assumption on initial data are not necessary and can be replaced by
some weighted assumption.

(2) In the present paper, we are not going to give the sharp conditions on py(d) and d.

In the mass-subcritical cases, there is a new difficulty when we consider the global solution
in the negative Sobolev space. It is worth noting that in this case, we can not use the
mass, energy conservation laws, and Morawetz estimates. Moreover, the pseudo-conformal
conservation law has no good sign.

Further, because all of the conservation laws are beyond the critical scaling regularity,
we believe that analogous scattering result in H* (R?) is very hard to pursue in the mass-
subcritical case (it is similar to the energy-supercritical case in which all the conservation
laws are below the critical scaling regularity), even if the initial data is smooth enough.

Sketch of the proof:

First, in step 1, we show an improved (supercritical) Strichartz estimates for the initial
data localized in space under the linear flow. More precisely, we prove that for all N > 1,
there exist ag > 1, By > 0, such that

|tV D 91 (€42 xcr0(Povg) |

< .
L?L;TQ (RxR) HPZNgHHsC(Rd)

(a slight stronger estimate is needed, see Section [ below). From this estimate, we gain the
regularity and time decay for ¢ 2 1.

In step 2, given small constant §; > 0, we break the initial data into two parts, uy =
Vg + W, with

vo = X<10(P>nuo) With |||l greegay < do,  and  wy € L*(RY).
Now, let v be the solution of the following time cut-off equation,
10w 4+ Av = x<1(t)|[v[Pv,
{U(O, x) = vo(z).
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In this step, we prove that the analogous estimates in Step 1 hold true for the nonlinear
solution v. That is,

| #9711V Pago

< llvoll
_2d_ Vo Hsc(R4)»
1912032 ({M>1}xRxRd) (R

which we use later with ¢ > 1.

In step 3, we prove the uniform in time boundedness of ||w(t)| 2 ga). Note that w obeys
the equation of

10w + Aw = |ulPu — x<1(t)|v[Pv.
We find that the nonlinearity obeys

[[ufPu = x<a(@®)[o]v] S (Il + [x<a(B)o]) (lw] + [xz21(£)v]).

Due to the good estimates on x>1(¢)v obtained in Step 2, we can prove the desired estimate
by the almost mass conservation of w.

2. PRELIMINARY

2.1. Notation. We write X <Y or Y 2 X to indicate X < CY for some constant C' > 0.
If C' depends upon some additional parameters, we will indicate this with subscripts; for
example, X <, Y denotes the assertion that X < C(a)Y for some C(a) depending on a.
We use O(Y) to denote any quantity X such that |X| < Y. We use the notation X ~ Y
whenever X <Y < X. Moreover, we use the notation X < Y to indicate X < C~1Y.

The notation |V|* = (—9?)%/2. We denote S(R?) to be the Schwartz Space in R?, and
S'(R?) to be the topological dual of S(R?). Let h € S'(R*™"), we use ||hl|s;z to denote the

1

mixed norm (/ |R(-, )], dt)a, and ||hf[a = [[h]|pa . Sometimes, we use the notation
¢ =15
Throughout this paper, we use y<, for a € R* to be the smooth function
1, |z| < aq,
X<al@) = 0, |x| > Ea
TR0

Moreover, we denote x>q = 1 — X<q and Xa<.<p = X<bp — X<a- We denote x, = X<24 — X<a
for short.

Also, we need some Fourier operators. First, we recall the Fourier transform and its
inverse formula. We denote the Fourier transform by f or .7 f as

(1) o) (€)= [ ¥ fa)do
R
and its inverse transform by f or Z~!f as

(F ' f(x) or ) f(z) = / 2T f(€) de.

Rd
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For each number N > 0, we define the Fourier multipliers P<y, Psn, Py as
PenJ(€) = xan(©) ().
PonF(€) = xon(©)F(©).
Py f(€) = xx(€)(©),

and similarly P.y and P> y. We will usually use these multipliers when N are dyadic numbers
(that is, of the form 2% for some integer k).

Moreover, we also need the notations
1 d
Ve={0, - ,0¢}; 8§ = 811 x ~8éd, for any [ = {I*,--- 1} € RY.
2.2. Some basic lemmas. First, we need the following radial Sobolev embedding, see [62]
for example.

Lemma 2.1. Let o, q,p, s be the parameters which satisfy

d 1 1 1
a>—— —-<-<-+4s5 1<pg<os 0<s<d
q qg P (g
with 1 1
a+s=d(-—-).
p q
Moreover, at most one of the equalities hold:
1 1
]):17 p:OO7 q:l’ q:OO, —:__|_8_
2
Then
21| o ey S V10| ey

The second is the following fractional Leibniz rule, see [34] 4, [46] and the references
therein.

1

Lemma 2.2. Let 0 < s <1, 53 < p < 00, and 1 < py,p2,p3,ps < 00 with % =

% = p%, + p%;’ and let f,g € S(R?), then
IVEGDN L S WVEA L lgllzee + [V Fgl[ o 1 1]z

A simple consequence is the following elementary inequality.

Lemma 2.3. For anya>0,1<p<o00,0<7y< %, and |V|7g € LP(R?),
V1" (x<a9) | oty S N1V 19| o - (2.1)

Here the implicit constant is independent on a. The same estimate holds for x>.9.

1 1
D1 +p2’

Proof. The case v = 0 is trivial. Further, we may assume that 0 < v < 1. Otherwise, we
can use the standard Leibniz rule and the Holder inequality to reduce the derivatives.

From Lemma 2.2] the Holder and Sobolev inequalities, we have

VT Oczag)l oy SNV PX<ll 2 g 19 22 o+ Dl e 19179 o e

SUIVMxsall 2 gy + Ix<all ooy VP9 oy
(R)
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Note that ||x<al ro®e) < 1 and
IV xsall

Hence we obtain (2.1]).
Note that

VH|V|VX<1( )|

st = IVl g oy 1

Ly (Rd) Ly (Rd)

X>ag = 1 = X<a9,
then by (21]), we have

HXZagHHV(Rd) S HgHm(Rd) + ”Xﬁag”Hw(Rd) S HgHHW(Rd)'

Hence, the same estimate holds for x<,g. Thus we finish the proof of the lemma. O

Note that the condition v < % in Lemma can be removed if a = 1. We also need the
following Littlewood-Paley inequality, see for example [64].

Lemma 2.4. Let p € (1,+00) and f € LP(R?). Then

i~ P+ (S 12)°

LP(RY)
Moreover, we need the following mismatch result, which is helpful in commuting the
spatial and the frequency cutoffs.
Lemma 2.5 (Mismatch estimates, see [47]). Let ¢1 and ¢ be smooth functions obeying
[¢jl <1 and  dist(suppey, suppgs) > A,
for some large constant A. Then foro >0, M <1 and 1 <r <q < oo,
- g_did
1641917 Peas (62| o gy + 10191917 Pene(02) | gy S A7 100 lipma (2:2)
|61V P (62| g zay Sm M AT fllLaeay, for any m > 0. (2.3)

Furthermore, we need the following elementary formulas. The first one is

Lemma 2.6. Let the scale function g € S(RY), and the phase function ¢ € (S(RY)) with
inf >0
it [Vo()| > .

then for any integer N,

foesaman= [ 09, (2567) " (Gzgpo) a2

Proof. Note that

. A v
¢ =V, e 4
Vel

‘ R v
ip(y) — i
e g(y) dy—/ Vye 9(y) dy.
L wi U V,0F
By integration-by-parts, we get

1oy o 7 (b
/Rdeq“ ’g(y)dy—/Rdeqbe- (Z|vy¢|29( )) dy.

Then we write
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This obtains the case of N = 1. Denote that

An(g) =V, - (%Vy)]v_l : (iézng(y)),

then we have

Vyo
A -V, - YA )
N+1(g) Vy <2|Vygb|2 N(g))
The identity is then followed from the induction. O

The second one is

Lemma 2.7. Let the vector function f € (S(RY))? and the scale function g € S(RY), then
for any integer N,

Ve (FV)" T (fg) = 3 Cly 0O f - O f 0L g.

I, INnERYIERY;
| <g; [l |+-+[In |+ |=N

Proof. When N = 1, it is directly followed from the Leibniz rule. Denote that
N-1
An(f.9) =Ve (fVe) (f9),

then we have

The identity is then followed from the induction. O

2.3. Linear Schrédinger operator. Let the operator S(t) = €2 be the linear Schrodinger
flow, that is,

The following are some fundamental properties of the operator e®®. The first is the explicit
formula, see for example Cazenave [J].

Lemma 2.8. For all $ € S(RY), t # 0,

S(t)é(x) = —

(47it)2

i|z—y|?
e owa
]Rd

Moreover, for any r > 2,

1

i1
IS0l rray S It i T)”(b”LT/(]Rd)'

The following is the standard Strichartz estimates, see for example [29].

Lemma 2.9. Let I be a compact time interval and let u : I x RY — R be a solution to the
inhomogeneous Schrodinger equation

iuy — Au+ F = 0.
Then for any to € I, any pairs (q;,7;),7 = 1,2 satisfying
2 d d
quzaerQ, and—+—:—’
q; T 2

the following estimates hold,

HUHC(I;LQ(Rd)) + HuHLflLQ(Ide) S Hu(to)‘ L2(R4) + HFHLQIELZE(MW)'
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We also need the special Strichartz estimates for radial data, which was firstly proved

by Shao [60], and then developed in [IT, 2§].

Lemma 2.10 (Radial Strichartz estimates). Let g € L?(R?) be a radial function, then for
any triple (q,r,v) satisfying

2d—1 2d—-1 2 d d
< ,and —+— = -+, (2.5)

2
yeR, ¢g>2, r>2, —+
q T 2 q T 2

we have that ‘
H|V‘7€ZtAgHL§Lg(R><Rd) N HgHLQ(Rd)'

Followed by the standard TT*-method, a direct consequence of the lemma above is

Corollary 2.11 (Inhomogeneous radial Strichartz estimates). Let F € LI L7 (R1) be a
radial function in x, then

t
H / ST (s) ds|
0 LiLE(
where the triples (q,r,7), (¢,7,7) satisfy (Z.5).

The following is a remark regarding Lemma and Corollary 2.111

RI+d) 5 H‘vr&FHLg'Lg’(Rl-q-d)a

Remark 2.12. One may ask about the optimal smoothing effect one can gain from the radial
Strichartz estimates, corresponding to the supremum of v as above. In fact, from Lemma

2. 10, we find that

2 d-—1
U Y
An equivalent inequality is
1 1
v<(d—-1) (5—;)
Hence, % . %— is the most derivatives we can gain from the radial Strichartz estimates
when we fix ¢; while (d — 1)(3 — 1)— is the most derivatives we can gain from the radial

Strichartz estimates when we fix r. In particular, when ¢ = 2, we denote the triples

: Vo (p204-) A1
qo,70,%) = ) 2d — 3 72d_1

Therefore, vy = %— is the most derivatives we can gain from the radial Strichartz es-

timates. While we can gain double derivatives from the inhomogeneous radial Strichartz
estimates by setting 4 =~ in Corollary 22111

Further, we note that from Corollary Z.T1], for any h € L?L;(’ (R x RY),

t
H / eit=9)A |70y (5) ds‘
0

Further, by Sobolev’s inequality, it infers that

t
H/ =98 (s) ds‘
0

where pg satisfies that

# 5 H H 2770 dy’
L2372 (RxRY) LiLy” (RXR?)

(2.6)

S HhH 2770 dy’
L2150 (RxR4) L2L.0 (RxR2)

1 d—2 ~ 1 3d—2
L_d=2 p_1_3d=2
po 2d d 2 d(2d—1)
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Now we need the following specific truncated inhomogeneous radial Strichartz estimates.

Lemma 2.13. Let T' > 2,7 > po, and let the triples (q,7,7) satisfy that for some 6 € [0, 1],

10,0 1:9(ﬂ—%—c—l)-

1 1
q r! g’ 2 r

1
<(1-60)+=6;, =
<(1-0)+30 -

£

Suppose that F is a radial function in x such that |V|7F € LIL7([0,2] x RY), then

< T[fd(%*%)ﬂ}(l*@”%@“\VF/FHL‘?LF(

t
H/ ez(t’s)AXSI(s)F(s) ds‘
0

LYLr([T,2T]xRd) ™ [0,2] xR’
Proof. By Lemma 28]
t t
i(t—s)A < ENECE
| [ e xamra, s [ = Datl| Py e ds
Since t — s ~t when t > 2,5 < %, we further have that
t
i(t—s)A < p—d3-2)

| [ e xa@ras], S PP g
This gives that

t

i(t—s)A < —d(l—%)-i-l
| [emawrea, STy (2

On the other hand, applying the Sobolev embedding and the inequality (26]), we obtain
that for any r > py,

t
H/ =908y 1 (s)F(s) ds
0

t
< i(t—s)A \v4 d(%*%)F d
e S| [ TSR s

LiLy L2L2° (RxR)
< d(i—%)F
S OIS EO] e
Therefore, by the time support, we get that
t
it—s)A <k d(=—1) )
H/o ‘ xsi(8)F(s) ds‘ LIL3(IT,2T) xRY) STE{Ivr FHLgL;o(Mde)- (28)

Then by interpolation between (Z7), (Z8) and Hélder’s inequality in time, we obtain
the desired estimates. t
Remark 2.14. Note that if

—dE - Y yna—e+ie<o (2.9)
2 7 2 ’ '

then by dyadic decomposition in time, we have that

H /Ot =98y _ (s)F(s) ds) (2.10)

L} L7 ([2,400) xRd) 5 H |V|VFHL1?L§([072]XRCI) '
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3. LINEAR FLOW ESTIMATES ON LOCALIZED FUNCTIONS
In this section, we give the

As the first part, we begin with the linear flow estimates

following estimates.
Proposition 3.1. Let 2 < r < oo, then for any t : |t| > 100, and any s satisfying
1
0<s< (d—z)(5 ——) + Se,
5—5c d-1)(1-1
() remsu =0 P ey (B)

<N—(d—2

the following estimate holds
(3.2)

H|V‘ itA (X<10P2Ng))) @)
1
p < (d— 1)(2 .

s(e <
Moreover, let d > 3, (q,7,7) be the triple satisfying 2.3) and
1 1)

2 < g < oo,
Then there ezist s. = s.(q) < 0,m« = n.(q,7,7) > 0, such that for any o« > 1,5 > 0 with
(3.3)

q )
[s4,0), the following estimate holds
S 1Pyl Hse(Rd):

af < n,, and any s.
VAN AE SR A N p )
EITNITE ( xzoPea)) |,

Ik
Remark 3.2. From the proof of Proposition Bl below, it also follows that s.(g) can be chosen
to be a increasing function with s.(+o00) = 0. What we use below is s,(2).
The proof of the proposition is based on the following two lemmas and corollaries. First

(3.4)

of all, we show the estimate in the local domain
Lemma 3.3. Let M > 1, r > 2 and s > 0, then for any t : |t| > 12 any K € Z*
<. kG MK Pysgll e, oar.
Lr(Rd) ~ K lt] 1 Prrgl| g c(Rd)

HW| X< M|t\e 2 (x<10Purg H
(3.5)

Proof. First, we show that for any M > 1, ¢: [t| > 22, s € ZT U{0} and K € Z"
_d
Sklt]™2 M5 Pargll rec ay-

)|V|S<X§%M\t| e (X<10PM9))
To show this, we use the formulas in Lemma and the inverse Fourier transform to obtain

1 ile—y|?
(xewPus)@) = [ T van(o) Puat) dy
(4mt )2
ile— 12 .
: / / FTEy () xar(€)g(€) dyde. (3.6)
4mt 2 JRAJRA
Fix x, &, and define the phase as
_ Ty P

y)x(£)9(§) dyds. (3.7)

then from (B.4]),
e 4t
/ / X<10
R/ Rd

P,
(X<1o Mg) (drit)
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Moreover, we have

and
Oir
8yjyk¢(y> = QLt’
Note that
9 11
tIM > 1 > —M, <11, d < — Mt

from ([B.8) we have

Vo(y)l 2 1€l

Then using the formula (24]) to the right-hand side of (B:ﬂ) we obtain

. C e 4t
Xt aga (@) € (x<10Pug) () = Xt ppy(2) ——— / /
R4JRd

v (ev) T (R <>)dy-xM<5>g<5>ds.

e z|vy¢|2x<1°

We claim that

Vi (%) (Rimen®)| Sl

Indeed, from Lemma 27, we expand the left-hand side of ([B12)) as

v, A /
Y et () (i) Aot

1, Ik ERL I ERY,;
|1 1<g; 1l [+l [V =K

ayjykyh(b(y) = 07 for any j7 ka h e {17 e 7d}

(3.10)

(3.11)

(3.12)

(3.13)

Note that from (39) and (3I0), we have that for any non-negative integer vectors [, I’

(o)l =

and

6’5 (Xgm('))’ S X§1(')-
Hence, using these two estimates, and noting that |t£| = 1, we have that

@) < 3 o W

o e, T e e
L |1<g; |l |+l | H V=K

= > |7 e | bHD Ly ()

Iy, Il €RE I eRY,
1151 <7 |ll|ﬂL i [+ =K

SIE xz(w).
Therefore, we obtain (312)).
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Inserting (B.12)) into (B.I1]), we obtain
i _d _ ~
X<t arg € (x<10Parg) | St /d/d X<t WIE X (©)3(8) dy dé
R/ R
Ao Ko
SIE™2 MR Prrg | e ay-
Note that when the derivatives hit the cut-off functions x L) and X<y, the estimates on
X<ty € (x<10Pag)
become better, hence by choosing K suitable large, we obtain that for any s € Z™,
; _d _ .
‘|V|S<XSI—IOM\t| et (XSlong))‘ N /d/d X<t (WIE xar(€)9(€) dy dé
R4 R

Sl 2 MK Py

Replacing K by K — s. + d, we obtain (3.3]).

Further, using (8.5]), Lemma 2.5 Hélder’s inequality and interpolation when s is not an
integer, we obtain (3.4)). O

Hse(R4):

Then a direct consequence of the previous lemma is the following corollary.

Corollary 3.4. Let (q,r,7v) be the triple satisfying the same conditions as in Proposition

(21, and let o, B be the constants satisfying
1

a>1, >0, d(§ — %) > max{af, —a(s. +7)} + é (3.14)

Then there exists s.1 = $.1(q) < 0 such that for any s. € [s.1,0), the following estimate
holds,

619D 191 (e anee ™ OcoPus)) |, oo S1PuGllie (319)
Proof. We write
H<1to‘|v|>ﬁ|v|scij (Xsl—lojwmeim (XSlOng))‘ L9 Ly (RxRY)
<[P P (v e (o) |, (316a)
+ H(ta|v|>5|v Sc+“/P2|t‘_a (XS%OMWG“A (Xglong)) P — (3.16Db)

For the first term ([BI6al), we may use the Sobolev inequality to replace (v, ) by (v(q),7(q))
which is defined by (see Remark 2.12))

2 d—1 1
—_ . — = - — — ¢ — — 17
7(9) g 2d—1 ' rlqg) 2 q 2d—1 (3.17)
>

Then we set s. > —7(q) such that s. + v(q)
(v(q),7(q)) by (v,7). Then

< Se+y itA
[B.16a) < H\W (X< 1 aruje (XswPMg))’ LIL7(RxRY)

Noting that y(q) < %, then using LemmaR3 and Lemma T, it is controlled by || Parg| e gay-

0. To simplify the notation, we still denote
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For the second term (B.I6D)), noting that y<r = P_x x<p, we have that

B.I6D) < H |t‘aﬁ‘v|sc+ﬁ+vpz|tra (Xgl—loMMeitA (XgloPMg))

S 1191 P P o (<

Mt =10

LILy (RxRY)

L€ (X<10Purg)) ’ L9 (RxE)’

Since o > 1, then due to the compatibility of frequency restriction
P>\t| al< 20‘2‘-}-2M7

we have that |t| 2= 1. Hence, we get that

« Se itA
I % [l oo Pe gy cons (X (czoPra)) [, (338)
For (BI8)), if s. + 6 + v > 0, then applying Lemma [3.3] we obtain that
m S Ht_d(i_i)—mﬁHL‘?({|t\>1})M_K||PMg| Hse(R) ~5 ||PM9| Hsc(R4): (3-19)

Here we have used the condition of d(§ — ;) > af+ %. If s.+ 3+~ < 0, then by Bernstein’s
inequality and Lemma B.3], we get that

BIx) <H‘t| (se+7) “Psjt-a <20“2‘+2M(X< M|t\e (XSIOPMQ))’

L{L ({[t]21} xR4)

<H|t| SC+7)O‘(X< M|t\6 *(x<10Pug))

Sfjt-p-eee

L ({[tIR1}xRY)

-K
gy NP2l see e
§”PM9HHSc(Rd)-

Here we have used the condition of d(3 — ) > —a(s. +7) + %. Hence, no matter in which
cases, (B18) is controlled by || Pyrgl|se(ray- Thus we have that

(B.16R) §”PM9HHSc(Rd)-

Together with the two estimates on ([B.10), we get (B.13]). O

The second lemma shows the estimates of the linear flow in the domain far away from
the origin.
Lemma 3.5. Let M > 1,2 <r < oo and s > 0, then for any t: |t| 2 %,

< M*(d*Q)(%*%)+S|t|f(d*1)(%*%) ||PM9||L§(R‘1)'

H|V|8(X2%M|t\€m (Xélong))

Ly(RY) ™ (3.20)
Proof. From the radial Sobolev embedding in Lemma 2.1l we have
’ X>L Mte (X<10PM9)H <(M|t|) “ 1)(2 v H|V|2 re (X<1OPM9)’
14 = Lr(Rd) ™ LZ(R4)
—(d—l) l—l H 1,1 ’
<(M]¢t 2 ) |V|zr P : 3.21
N( | \) VI X<10 Mg) 12 (Rd) (3.21)
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Using Lemma 2.3 we have
1 1
VI (x<a0Pug)|
H\ | (XSIO Mg) L2 (R)
This last estimate combined with ([B.21]) yields

|

Similarly, we also obtain that for any s > 0, we have ([320). Indeed, if the derivatives
hit the cut-off functions x> 1 (since M|t| Z 1) and x<jo, the analogous estimates become

1 1
S M= HPMQHLg(Rd) :

@A —(@d-2)(3-1) |y —(@-1)(3-1
X &y € (XSloPMg)HL;(Rd) < @D a6 Pyl e . (322)

better. Hence by the same way as (8:22)), we obtain the estimates above. U

A consequence of Lemma is

Corollary 3.6. Let (q,r,7) be the triple satisfying the same conditions as in Proposition
(31, and let o, B be the constants satisfying o > 1,8 > 0 and
1

(d=1)(5 - %) > max{af, —a(s. +7)} + é (3.23)

Then there exists .o = s.2(q) < 0 such that for any s. € [s.2,0), the following estimate
holds,

[ 19121917 (s €™ (a0 Par)|

< ||P oo (Rd) - 3.24
L9 (RxRA) | Prrgll g (R9) ( )

Proof. We decompose it into the following three terms.

H (t*|V])P| v [+ (XE%MM‘Q“A (x<10Pwmg)) ’

LILT (RxRD)
< H(ta|v|>6|v|sc+v Peie (o aiige™ (x<10Parg) P (3.25a)
| DIV P O ™ (zaoPro) |y a e (325D)
IV P (s e 0P|y b 3259

For the term (325al), treating similarly as (BI6al), we use the Sobolev inequality to replace
(v,7) by (7v(q),7(q)) which is defined in (B.I7). Then we set s, > —v(q) such that s.+7(q) >

0. Again, to simplify the notation, we still denote (v(q),7(q)) by (7, 7). Then using Lemma
and Lemma 210, we have

B2 S [[IV1 (s g ane™ (x<i0Pueg))|

For the term (3.25D)), since

< ||P oo (Rd) -
L9 (RxRA) | Prrgll g (R4)

[t|7* > 3M,
we have

(B.250) < H |7 [V [P Py e (XglioMmemA (XSIOPMQ))’

S H |22V Pogy (le_loMm@itA (x<10Pmg))

LILL ({[t<(3M)~ & }xR4)

LILE({]t|<(3M)~ & } xRe)

5 M—5H|v|8c+5+’YP23M (le_loM\ﬂeitA (XSlOPMg))‘ LILT (RxR4)
tlx
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Then using Lemma twice, Lemma and Lemma 210, it is bounded by
M™1|| Pyg]

Hse(R4):
Therefore, we obtain

B250) < M| Pyl
For the term (3.25d), we have

Hse(R4):

apf sc+pB itA
B2 S ||tV Py (X g are (XSIOPMQ))) L1 ({t]> (M)~ xRy (3.26)
If sc+ 5+~ >0, using (B.20), (B.26]) is bounded by
A @D (=D B4y as—a-1)(5 1) Pl
L?(ﬂt\z(aMr%})H w91 crey
Using the condition of (d — 1)(3 — %) > a8 + %, it is dominated by
MGG DE 0 Pyl (3:27)
Now we claim that
1 1 1 1.1 1
—(d—-2)(=— - d—1)(z—-) —— — <0. 3.28
[@=2G - +@=1G-7) 5 S (3.25)

Indeed, using (2.H), the left-hand side of ([B.28) is equal to
2—1 /1 1 1

Coun-y)
@ <q ( ) 2 r

Note that o > 1, and from (3.23)): % < (d— 1)(% - %), the last quantity above is negative.

Hence, [B28) is valid. Using (B.28), we have that (327) and thus (3:26) is bounded by
1Pa19ll frse (ray-

If s+ 4+~ < 0, using the Bernstein inequality, ([8.26]) is bounded by

|

t—a(sc-‘,-'y) itA P
(le—loMme (x<10Par9)) L9LE ({42 (3M)~ & } xR)

x

< MG e[| ot —(@DG-1)

P o (d
L?(ﬂﬂZ(?}M)‘é}) H MgHH (R4)
Then similarly as above, and using the condition of (d —1)(3 — 1) +a(s. +7) > ¢, it is also
bounded by

11y, 1

MG HEDG=) 64| Py g

Hse(R4):

Hence, using ([3:20) again, it is bounded by || Pyg]

frse(ray- Therefore, we obtain that

B25d) < ||PMg||HSC(]Rd)'
Combining the three estimates on (3.25), we get (3.24). O

Together with Lemmas B3l and B3], Corollaries B4 and B.6], we are ready to prove Propo-
sition 3.1l
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Proof of Proposition[31]. Using Littlewood-Paley’s decomposition, we have

H|V|S(€im(X§10PzNg)) S Z H|V|S(€itA(X§1oPMg))
Ly (RY) MoN

Li(R4)

N Z H|V|S(X§1LOM\t|eitA(XSloPMg)) + Z H|V|S(X2T10M|t\€im(XglOPMg))
M>N

= Ly (®Y) Ly(®Y)
Using Lemma 3.3, we get that for any K € Z*,
s ) —d(i_1 _

> (191 Gre e (esoPua)) [, S 1 E DN Pl

M>N v
Using Lemma B.5]

s itA —(d=2)(1—1)+s—sc|,—(d—1)(1-1 .
> 198 G g™ (caPug)) |, < 8B gD E) I Pygl g

M>N
Combining these estimates, we obtain (B.1).

Now we prove ([B3). Firstly, we give a reduction as following. Fix ¢ > 2, and let
€9 = ﬁ' Then to prove ([B.3]), we only need to consider the estimates on the triples (¢, r,~)
when v > gg. Indeed, if v < ¢, then by the Sobolev inequality it follows from the case when
r and v satisfying

11 2 &
P2 dg a T

Using Littlewood-Paley’s decomposition and Lemma 2.4]
H <ta‘v|>6‘v|sc+weim (XglopzNg) ’

LILT (RxRA)

< [ 1wnAvEen (vao S Pug)

M>N

LILT (RxRA)

<[|( S (AT (e Pag)) )

M>N

LILT(RxRA)

Since ¢ > 2,r > 2, it is dominated by

(3 [ wna1or=1e (xanPug)

1
2 ) 3
MoN LfL;(RXRd)

Therefore, we obtain

&R

sty (ez‘m (XglopzNg)) ‘

LIL7 (RxRT)

S (X [ 1w v e (e Pag) |

st LgL;(Rde))

N

Now we check the conditions (3.14]) and (3:23]). Setting
Sy = maX{_EOa Sx,15 S*Q}a
then s. + 7 > 0. Hence, the conditions (B.14) and ([B.23]) reduce to
1

1 1
(d—l)(§—;)>a5+a
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which is valid by choosing o small enough. Then by Corollaries 3.4 and 3.6l we have
| (#1917 1917 (2 (o Pong))|

S (X IPugl?

1
2
2y) S IPongl e
M>N

LILT (RxRA)

This proves the proposition. ([l

4. NONLINEAR FLOW ESTIMATES ON LOCALIZED INITIAL DATA

In this section, we give some nonlinear estimates. Firstly, we give some local time and
small data estimates.

4.1. Local theory. Since uy € H* (R?), we have the following local and small data results,
the proofs are standard. However, we give the details for the sake of the completeness. The
first is essentially proved by Guo, Wang [28].
2(d—1)

2d—1) (p+1
holds. For any fixzing 69 > 0, and any radial function uy € HSC(Rd), there exists ty =
to(ug, 00) > 0, such that the Cauchy problem (LI is well-posed on the time interval [0, o).
Moreover the solution u satisfies

Lemma 4.1. Let sg = mln{zd R } then for any s. > sg, the following result

. . Sc+
e ororn S 1 V0 oy S S0 (4.)
Here the triple (q,r,~) verifies [23) and v € [—s., —So).

Remark 4.2. The result in this lemma improves the index obtained by Guo, Wang [28], who
proved the local well-posedness in H*(R?) when s, > —m for radial datum. In particular,
in this lemma, when d > 4, the restriction is s, > —4=L (s > —0.275,—0.388 when d = 2,3

2d—1
respectively).

Proof of Lemma[4.1. We only show (LI for some ¢, > 0. Then the local well-posedness
with the lifespan [0,ty) is followed by the standard fixed point argument. In the following,
we prove () by two cases: p < 1 and p > 1 separately.

If p <1, we denote the parameter r; as

1 1 1 =
T1 n 2 d d
Then for any s. > —; and v > —s,, by the Duhamel formula and Lemma 210, we have

IVl 2 ooy S VI 7€ 0]l 2021 0 101xmey + [V (ulP)]]

LE ([0,to] xR)?

where (¢, 7) satisfies

Hence, by Lemma 2.2, we get

”‘V|SC+VUHL3L21([O,to]de) SV

Set+y LitA
Ve uo|| L2 111 ([0 0] xR

+ H|V|Sc+yuHL§LQI([07t0]de)HuHifL?([mto]de)’
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where the parameter ry satisfies

ro 2 d d  dp’
Then by the Sobolev inequality, we obtain that

H |V‘80+yuHLngl ([0,to]

Therefore, for any dy > 0, if

pt1

«R%) S H|V‘Sc+y€itAu0”LfL;1([O,to]de) + HW|SC+7“HLngl([o,to]de)'

< o, (4.2)

e+ HitA
H|V|S el uOHLngl([o,to}de) -
then by the continuity argument,

H‘VPCMUHL?L S do- (4-3)

21 ([0,t0] xR) ~>
Note that
171 ]| ey S N0l ey
([A2) is verified when ¢y = to(ug, dp) is small enough, and thus we have ({Z.3).
Similarly,
itA Se
HUHLgoH;C([o,to]de §H€t UOHL‘X’HSC([O to]xRd) T HW| ﬂ(\u\pu)HLg/L;I([OJO]XW)

1
<ol "

L2131 ([0,t0] xRE) "
Then by (4.3), we obtain that

HSC(Rd + H‘V|SC+WUIH

||U||L50H;C([o,to]de) S
Further, for general triple (¢, r,v) verifying () and v € [—s,, &%),
11917, SV ol gy o mey + [ 1V15 ()| g

7 ([0,t0] xRY)
b0+ IV 08 oty

([0,t0] xR%)

Hence, we get

H|V|SC+WUHL3L§([0¢0]XR‘1) 5 50.

If p > 1, we denote the parameter r3 as
1 1 2 vy

2 dp+l) d
Then similarly as above, we obtain that for any s. >

19140 s

_2(d-1)
(2d=1)(p+1)

ity S VIR 0]l ot s 0 101 xmey + [[VIF (JulPu)

and v > —s,,

)

([0,t0] LALYA([0.t0] xRY)

where r, satisfies
d d

noe

Hence, by Lemma and Sobolev’s inequality, we get

IVl ez Vet s

U0||Lf+1L;3([o,to]de) + H VI LPTYLI3([0,60] xRY) "

[O,to]XRd) S ||
Treating similarly as above, by choosing ty = to(ug, dp) small enough, we obtain that

H|V|SC+,YUHLP+I L2 ([0,t0] xR9) S %o,
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and thus obtain (4.1]). O

Now we fix dy € (0,1) to be an absolute small constant which will determined later. For
simplicity, we set to(ug,dp) = 2 by rescaling. Moreover, we set a number N = N(§y) such
that

P> nuo| frse ey < do- (4.4)
To prove Theorem [LLT], we split the initial data ug into three parts as
Up = X<10 (PzNuo) + P<yug + X>10 (PzNUO)-
Accordingly, let
Vo = X<10 (PzNUO)a
and v be the solution of the following equation,
10,0 + Av = t)|vlPv,
: xalt)l s
v(0, ) = vy.
Moreover, let
Wp = X>10 (PzNUo) + P<nuo,
and w = u — v. Then w is the solution of the following equation,
{iatw + Aw = [u’u — x<1(t)[v["v,

w(0, z) = wy. (46)

Then the second result is a global result with small data in H*-level.

Lemma 4.3. For any s. > sg, the following result holds. Let uy € HSC(Rd) be radial, then
there ezist a small constant 6y and a large constant N wverifying ([E4), such that the Cauchy
problem (L) is globally well-posed. In particular, the solution v satisfies

SCMUHL,?L;(RXW) S Hvo”i"FC(lR"l)'

Here the triple (q,r,v) verifies (25) and v € [0, —s0).

”UHL;;OH;C(RXW) + H|V

Proof. We adopt the same notation and argue similarly as in the proof of Lemma [Tl More-
over, we may assume that v > —s., otherwise it follows by the Sobolev inequality. In the

d—1
case of p <1, for any s. > —5-—,
p+1

IV 2 S Vol e ay + [V 10| 2 s ey

(RxR4)

Hence, by the continuity argument and choosing ¢y small enough, we obtain
H|V|SC+VUHL§L;1(RXRd) S HUOHHSC(W)'

Using the estimate above, we have the desired results. In the case of p > 1, for any s. >
2(d—1)
(2d-1)(p+1)°

p+1

N9 sy S Nl + 119100 s ey

Hence, arguing similarly as above, we obtain the desired estimates again. U
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4.2. Nonlinear estimates on v. In this subsection, we give the estimates on v. For con-
venience, we introduce some notation. We denote X (o, 5) be the space with the norm:

1l xas) = [V IV Pa £

l°°L2Ld 2({M21}><]R><Rd).
Then the main result in this subsection is

Proposition 4.4. Let v be the solution of (A1), then there exist ag > 1,59 > 0 and s, < 0,
such that for any s. € [s.,0),

1] x (00,80 S 1v0ll 7sc ay-

Proof. We write
[tV [)® IV [* Pago
l°°L2Ld 2({M>1}><R><]Rd)
= |||V )V | Py (4.7)
l;@LQL ({M>1}><{|t\<M ao}de)
% Payo| : (4.8)

1
l°°L2Ld % ({M>1}x{|t|>M "~ 0 } xRd)

+ ||(te VP v

Estimates on (4.7). Note that

{121V Paro| S IV Pare

1 .
L2Ld 2({\t|<M a0 }xR%) L2Ld 2( xR%)

Then by Lemma .3 (where we choose the triple (¢, 7,7) = (2, d2—_dQ, 0)), it is further controlled
by [[voll grse (gay- Therefore, we have the bound of (A1) as

[t V)PV Pagol| e s S llvol

185 LALE ™2 ({M>1}x{[t|<M~ %0 }xR9)

Hese(R4) (4.9)

Estimates on (48). It is controlled by
Ht0050|v|50+8cPM,UH

_2d_ .
155 2L T ((M21}x{Jt]> M~ 30 }xRd)
We only consider the positive time, that is, £ > 0, the negative time being obtained in the
same way. Now we write

1
P _ itAP 2! i(t—s)A P Py d
MU =€ Mo + e x<1(8) Pu(|v|Pv) ds
0

t
+ / =933 (5) Py ([ufPv) ds,

5t

then we need to consider the following three parts,

#2050 |7 |Botse it Py | o . : (4.10a)

- N bl
19 LALE 2 ({M>1}x{[t|>M ™ 30 }xR9)

_2d_ 1 ; (410b)

1t
2

ta°ﬁ°|5|ﬁo+86/ =08y <1 (s) Pu(Jv]Pv) ds L
0 19 L2LE™2 ({M>1}x{|t|>M ™~ =0 }xRd)

and

24 a3 . (4.10c)
IS L2~ ({M21}x{[t|> M~ 20 }xRY)

t
s [ (5) (o) ds

t

1
2



22 MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

Estimates on (4I0a). Here we choose s, = s.(2),a90 > 1 and Sy > 0 with af <
N4 (2, dZdZ,O) where s, 7, are the parameters obtained in Proposition Bl (we may narrow
s, suitably in the following if necessary). Then by Proposition Bl we obtain that for any
SC Z 8*7

teoBo |7 |PotseitA p g 2d < |vol| .
H | ‘ M OHIX‘;L?L;‘%({le}x{\tle‘%}de) ~ H OHHSC(Rd)

Estimates on (4I00). From Lemma 28|

t

s v [ I ()P (up) ds
0

NI

_2d_ 1
LZL ({[t|>M ™ 20 }xR9)

Jun
~+

2d_ 3‘
L3+2 (Rd)

s [t = s a9 VP o)
0

L2({|t|>M 0 })

2d dS

LIT2 (RY)

2
taoﬁo—l/ H|V|5°+S°PM(|U|”U)
0

L2({t|>M 30 })’

where we have used the relationship |t — s| ~ [t|. We can choose agf small enough, such
that apfy < % Then taking L? first and using Bernstein’s inequality, the inequality above is
bounded by
2
/ (1w =5 Pylofo) | g ds. (4.11)
0 L

Now we consider the following two cases. The first case is s. + 5=~ < 0. Then ([@II) is

dominated by .
[ el g

Using the Holder inequality, it is further controlled by
2

0| 20y ds. (4.12)

Let ¢ verify

o p Ap+1)
Then (¢, ch(zizl)v —s.) verifies () (decreasing the distance between po(d) and 3 to satisfy
the conditions in (23] if necessary).

Note that ¢; > p+1 when s, is close enough to zero (indeed, if s. = 0, then ¢; = 2(p+1)),
and thus (£12]) is bounded by

pt1
Wl 2apen -
L{V Ly “T% (RxRY)
p+1 .
Using Lemma 3] it is bounded again by [|lvol[;.. &Y . Hence, we obtain

24 | S MlvollB: g
1 —_— S
L2032 ({|t|>M ™ 30 }xRd) Hee (R7)

L
2 .
ta050|v‘50+sc/ €Z(t75)AXS1(S)PM(\U|pv) ds
0

The second case is s. + ﬁ > 0. Then (@.I1) is bounded by

[ oo g,

Le d+2 (Rd
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Then using Lemma and the Hoélder inequality, it is further controlled by

2 1
/ IV 00| 2apen |01 papery  ds- (4.13)
0 Ly 972 (R4) —dfz

Ly 2 (RY)

Let g verify

L_d 1 dt2
@ 4 dag Ap+1)
then for suitable large ag and small |s,|, (g2, > éﬂl), —QL) verifies (Z0]). Moreover, we have
1
~+ 2 <
@2 q

(In particular, if s, = 0,9 = 400, then ¢ = ¢ = 2(p + 1), hence the conclusions verify
when we choose |s,| small enough and «aq large enough). Hence, ([AI3)) is bounded by

VPS50l sagen ol g
L2p, 42 (RxR?) LA L, T2 (RxR4)

Using Lemma [

) Hence, we also obtain

Lt
2
¢oPo VBOJFSC/ it=s)A Py(|[v]Pv) ds 2d_ < lwo |t
vy X Puloloyds| L ae Sl
Therefore, we get
1
2 .
tobo |y ﬁ”s“/ elt=9)A s) Py (Jv|Pv dsH 2 < lwol
VI 0 x<1(8)Pa (o) lj'j}L?Lﬁ% ({M21}x{|t\zM‘a_10}de) < ool Hee(®Y)
(4.14)
Estimates on (41I0d). By the Sobolev and the Bernstein inequalities, we have
t
t@0Bo \V4 50+Sc/ ei(t*S)A )P (lvlPo dS‘ o
V| 1 x<1(8)Pu([vffv) LgL;—d?({sz‘%}de)
t
< MPotse / =98y 1 (5)5% Py (|v|Pv) ds‘ 2d_ . (4.15)
1y - L2LI72% (RxRY)
Now we split it into two cases: p < 1 and p > 1.
If p <1, using Lemma 29 and (£1H), (£I0d) is further bounded by
ot @t Py (o) o, 4.16
X Pl e (1.16)
where 75 is the parameter satisfying
I 1 1-p
Ts 2 d
In particular, this parameter verifies the following Holder inequality,
P , P
Now we consider the term
[Par([v]P0)]]

L3 (R)
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We write
p ! p !
HPM(M U)} L7 ) SHPM(|P§MU| PgMU)} 175 (e (4.18)
+ || Par ([P0 — | P<arvP P<pyo) | b (4.19)
We choose s, < 0 suitably close to 0 such that for any s. € (s, 0),
Se + Po > 0.
Then for (4I8), by Bernstein’s inequality, we have
HPM(|PSMU|pPSMU) } L;é (Rd)
5 M_(Sc-l-ﬁo—i—e) H |v|8c+50+5PM (|P§M’U|pP§MU) ‘ L*é &)’

where € is a small positive constant such that s. + 5y + ¢ < p+ 1. Then by Lemma 2.2 we
further obtain

HPM(\P<MU|pP<MU) }
< N~ (setBote)

L5 (R)
‘v|sc+5o+eP MUH

1P<ao][” ao

Pl R )
Now by Littlewood-Paley’s decomposition, we write

H|v|8c+60+5P M'UH d . " < H|V|SC+ﬁO+€P§10HL% + Z M6H|V|sc+ﬁoPM1vH

(R R <M Ld Q(Rd).
Note that by Lemma
sctBote Sc .
H|V| ’ P<1UHLDOLd 2 (RxRY) S H|V| PSlUHLgOLg(Rde) < ol Hee(Rd)
Hence, we obtain that
Bo+sec aofBo P
M X<1(6)t°% Pas (| P<arv] PSMU)‘ LT b
,SMieHXgl taoﬁo(”vo”Hsc R + Z M |V sc+5OPMUH dfd )
1<M; <M L™ (R9)
P
IRl o
SM™voll groe ey 01”4
= L2Lrpp(Rde)
T U D T L R Yo PN B PR (k)
1<My <M (R xR) L2LZ7P (RxR9)

Now by Lemma and the definition of X (ay, 5y), we have
[ < U g Sc 9
Il S ool

and

a0 Bo se+Bo <
Ht |V| P, UH 2Ld 2(R R) HUHX(O‘O’BO)'

Inserting these two estimates into (£20), then (£20) is controlled by

M76|’U0|%ti(ﬂgd) + M Z M HUHX(GO Bo) * HUOHHSC (R)"
1<M <M
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Taking summation, we obtain

MPotse £)t2Po Py (| P<ysv|P P v) o,
x<1(t) M (| P<arv]P P<pyv) L L o)
S HUOHI;i gty T 1000 gy 1911 (0,0 (4.21)

or (AI9), by Bernstein’s inequality, we have
HPM(|U|pU — |P§MU|pP§M’U)

Lrg(Rd)
s HP>MUHL‘1 2 (RY) H HPQdPP(Rd)
P
oy LY P T
< (se+Po) sc+05 p
S DR [ PP o
Hence, we obtain that
N Potse XSl(t)taOBOPM(|U|pU _ |P§Mv|pP§Mv) LﬁLTé(R o

< A fBo+se —(sc+Po) aof Se+8 P
NM v MgMMl X<1 t ’ OH‘V| OPMUH d 4 (RY) H H dep(Rd) ﬁ(R)
< N fBo+se —(se¢+Bo) || pawo 8 Sc+ 5 p
<) MgMMl VI P I

Similar as above, it is further bounded by

+60)
MPoe N M 0] g, 0) 10001
My >M

Taking summation, we obtain that

Mﬁo +sec

X<t (1% Py (o]0 = | Pearol? Pearv)|

2

!
LI L5 (RxRY)

Hse Rd)H,UHX(aOyBO) (422)

Now, together with (4T16]), (£I8)), (£19), ([A2I) and ([A22), we obtain the estimates on
(4I0d) in the case of p <1 as

t
s [ G (5) Py (o) ds
5t
2

S vl

_2d_ 1
L2LI2 ({t]>M 30 }xR)

Mool gy + 101y, g [0 a0 (4.23)

Next, we consider the case when p > 1 (now d = 2, 3), which can be treated similarly as

above. Then using Lemma 2.9 and (@13, (£I0d) is bounded by

s (D% Py (o) (4.24)

LiL2(RxR4)

Arguing similarly as the case of p < 1, and based on the Holder inequality,

P A1 s 12 gcrery < N1

[
L2Ld < (RxR4) L{PLEP (RxR4)’
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we also obtain (£23]) when p > 1.
Now collecting the three estimates on (LI0), we get that

@) S ool ee gy + el gy + 1001, g 0] 00,50

Combining this estimate with (L3, we obtain that

1
10l x (20600 S 0ol srse gy + 100l oy + 10011 ey 1911 x 0,80

Using (£4) and choosing dy suitably small, we give the proof of the proposition. O

As a consequence, we have

Corollary 4.5. There exists s, < 0, such that for any s. € [s.,0), the following result holds.

@l 2, S llvol

120377 ((0,2)x ) Hee(Re):

Proof. For the low frequency part, by Lemma we have

24 < 1P<a[ VI*ol| |, e, S Nvoll grse gay:

P-v
IP<iell, 21,77 ([0.2) xR 21,777 (j0,2)x )

For the high frequency part, from Proposition 4.4 and Sobolev’s inequality, we have that for
any M > 1,

HtalB°|V\6O+SCP UH ) 5 HUOHHSc(Rd)'

Jf (3,21 xR4
This implies that

|Pvo|| s S M g | e .

5 ~Y

LLE7% ([5,2]xRY)
Choosing s, small enough such that Sy +s. > 0, then taking summation on M, we have that

Poqv < vol| frse (may-
IPoaol, gty S Tl

Hence, we obtain the desired estimates. O

Furthermore, we also need the following long time estimate on v.

Proposition 4.6. There exists s, < 0, such that the following properties hold. For any
t>2,s. € [s4,0] and any r such that

I_Tp+;%ls*l<%§1;p+p;1—(p+;)|5*|, (4.25)
then
[0(t)]] g ey S t~EDGET) (4.26)
Moreover,
ol 2 <1 (4.27)

L1L; 7P ([2,00) xR9)
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Proof. First, we consider (4£.20). By the Duhamel formula, we have

¢
oz Sl + [ €021 (6Pl o
From Proposition B.1] and (M), we get that for r > 2,
e 00|, gay S N™E2G7 D72 ~EDG=D) Po g | e oy S Solt] 74T (4.28)

Here we shall choose |s*| suitably small such that —(d — 2)(3 — 1) + [s,| < 0.

Note that when t > 2,5 < i1 we have that |t — s| ~ ¢t. Then from Lemma 2.8, we have

10’

[ e ol

< / e
0
<t [ ats

S5 2 N d d

=S T ) 2

Note that the condition of (M) in the right-hand side assures that ¢ > 2. Moreover, when

r satisfies that 1 > 12 —|— —s.], then (¢, 7(p + 1), —s.) verifies (Z3) and ¢ > p + 1 (see
Remark 2.T2]). Hence, by Holder s inequality and Lemma [4.1], we have

[

Hence, we obtain that
[l ol

This last estimate combined with (L.28]), gives (A.20).
Now we consider (£27). By the Duhamel formula, we have

ds

L7 (R9)

ds

Ly (R)

ds.

Ly P (Re)
Setting ¢ such that

— Se.

p+1 ds HquJrl <1
/
r (P+1)(Rd ~ LgL; (P+1)([072} XRd) ~

ds < |t dz=),

L7 (R4)

ol Slle ol e, 2
LlL1 P ([2,00)xRY) LiLs P ([200)xRY)
t
+H / =92 ()P (lulPu ds’ 2 4.29b
@Rl ds| e (4200)
t
+H / 8y () Poy(lulPu) ds|| 2 : 4.29¢
@ Pl dsl| sy (4299

For the term (Z29a), it follows by (28] that

el sy S Ol

iy ey S 1
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Here we shall choose |s*| suitably small such that (d — 1)p > 2. For the term (£.290), by
Bernstein’s inequality, we have that
2

t
H/ ei(t’s)AX<1(3)P<1(|u|pu)ds‘ 2
0 - - LILETP ([2,00) xRd)
<H/ =2y 1 (s)|ulPu ds
< [1e-see

S [l [ Y [ \uH

L,}Li”” ([2,00) xR9)
ds)

L1L1+p(02 xRd)

L}([2,00)

~ H Hle‘ILg)L’"G ([0,2] xRd)?

Where o, 76, q6 VeriSfy
) 1 1 L1
CLO: |S | ’ [ __ao; — = —(aod—sc)-
d—2 Te 2 de 2

Note that the triple (gg, rs, —S.) verifies (Z3]), then by Lemma Il we have that

H/ 85 1y (5) PeafulPu) |

2 <L
LILEP ([2,00) xRd)

For the term ([E29d), applying ZI0) (noting that in our case, § = ;75— when s, = 0,
thus (Z.9) verifies when [s,| is suitable small) to give that

t
| [ ettt o uru ds
0
Here we choose the parameters 7, ¢, 7 such that

L2k LB se (- Rra) (-3 (- 52

2 SIIVP P (Jufu)

LILIP ([2,00)xRd)

HL?L;([O,Q} xRd)"

~ b - 3 )N

r Te To 5 e 27 2 To 2 + 2
Note that when |s,| is suitably small, then 4 < 7y + s. (indeed, when s. = 0 then 5 =
mjt < 7p). Hence, by Bernstein’s and Holder’s inequalities, and Lemma 2.2

IV Pos(Jul"u)

<H|V|%+sc (Ju|Pw) HLqLT

S[IvPeteu

HL?L;’([O,Q}de [0,2] x R9)

P
’LfL;O([OQ} xRd) H“HLgﬁLgﬁ([o,Q]de)'
Therefore, by Lemma (A1), we get that

[V Por(ful™u) S

HL?L;([og]de) ~
This implies that

2 <l1.
LILE7P ([2,00) xRd)

t
| [ eeomvaopaliupu as
0

Collecting the three estimates on (£.29), we obtain (A.2T). O

5. THE PROOF OF THEOREM [ 1]

In this section, we prove Theorem [L.1]
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5.1. Nonlinear estimates on w. In this subsection, we give some nonlinear estimates of

the solution with the low frequency initial data.
First, for ug € H*(R%), s, < 0 with supp 1o C {z : |z| < 1}, we claim that
wy € LA(RY)  and |wol| 2@ay S N™*

Hse(R)'
Indeed, by the mismatch estimate in Lemma
HXElO (PENuO) HL?(Rd) 5 10Hu0’ Hse(Rd)?

and by the Bernstein estimate,

HPSNUOHL2(RCI) SN Hse(Rd)”

This gives (B.1]).

(5.1)

To clear our argument, in the following we only consider the case of p < 1, which is

assured by d > 4.

The first we need is the following local estimates of w in more regular spaces.

Lemma 5.1. The Cauchy problem (8] is locally well-posed in L*(R?) in the time interval

0,2]. In particular, the solution w satisfies that

]| + HwHLgOLg([o,z}de) S 1A+ [lwollz2ray.-

L%L;Td? ([0,2] xR4)
Proof. By Lemma [2.9] we have
HwH Td([o 2] xR + HwHLgoLg([o,z}de) S llwoll r2ray + H|u|pu —x<1(t)[v

Next, we consider

ulPu — t)|v , )
[ O

Note that
|JulPu — x<1(B)[v[Po] < (Jul” + [X<1(B)v[?) (Jw] + [X=1(E)0]).

1

2 ’ .
FT L5 ([0,2] xRD)

Here we denote the time-dependent functions x<i(t) = x2i'(t) and x>1(¢) = 1 — x<1(¢).

Hence, by (A1), we have that

| [ulPu—x<1(t)[vfPv]| 2 p+1L’"5([02} R7)

Sl ol )
L2L27P ([0,2] xR9) L2L27P ([0,2]xRd)
. ; B
3 O NSO T Y,
From Lemmas [Tl and .3, we have that
Jull Soor vl a < do.
L2L27P ([0,2]xRd) L2L27P ([0,2] xRd)
Moreover, from Corollary 5] we have that
Ix=1()v] S do-

L2Ld 2 ([0,2] xR4)

(5.2)
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Hence, combining these last two estimates above and (5.2)), we obtain

[P —xca®lololl oy SO, )

Therefore, we obtain that

L+ llwollz2e) + Gollwll

]| 2L %([0 2R + HwHLgOLg([o,z}de) ~ gﬁd([o o xm)
Choosing ¢y suitably small, we obtain
HwHLg P A 2 ([0.2]xRY) + HwHL;XJLg([o,Q}de) S 1A+ [lwoll L2 rey.-
This finishes the proof of the lemma. 0

~ Next, we give the global estimates of w. The following is a modified mass estimate for
H*(RY)-datum.

Proposition 5.2. Let ug € H* (R%) and I be the lifespan of the solution u, then there exists
s, < 0, such that for any s. € (s,0), the following estimate holds,

”wH%gOLg(lde) SN

uO ’ HSC Rd)

Proof. For simplicity, we denote I = [0,T) and any t € I,
F(v,w) = Jul"u — x<i(t)[v]"v.

Then from the equation (6], we have
Oulwll2 = QIm/F(v,w)w da.

We may assume t > 2, otherwise, the estimate has been included in Lemma [E.Il Then for
any t € I,t > 2, integrating in time from 2 to ¢, we obtain that

t
@)l = lw@Ifs +2tm [ [ Po,wyodads. (53)

t
QIm// F(v,w)wdxds.
2 JRrd

F(v,w) = |ul/’w + |u|Pv — x<1(t)|v|Pv.

t
QIm// |u|Pww dzds = 0.
2 JRrd

Hence, due to the time support, we have that

t t
ZIm/ / F(v,w)wdzxds = ZIm/ |u|Pv w dxds.
2 JRd 2 JRd

Since |ulP < |w]? + |v|P, this yields that

t T T
)QIm/ / F(v,w)wdxds‘ §/ / |w\p+1|v\d:cd8+/ / |wl|v[PT dxds. (5.4)
2 JRrd 2 Jrd 2 Jrd

Now we consider

To do this, we write

Note that
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For the first term in (5.4]), we have that

1
J e =

Thus by Lemmas [.6] we further get

/ / |w|P | deds < ||w||1’£”;1L2 ([2.7) xR (5.5)

For the second term in (5.4]), we have

[ [ ol azds 5 [ 15 g 06V 05

Note that 2(p + 1) satisfies ([£.25]) and (d — 1)p > 2 when |s,| suitably small, we further get

T p+1 T —(d I)P
wloP" deds S | s [w(s)l|z2 @) ds
2 R4 2

Slwll Lo £z jo,7)xre)- (5.6)
Inserting (55) and (B0) into (B4]), and then (53), we get that for any ¢ € [2,7T),

lw®)1Z2 S lw@l7e + 1wl ez o,y xza) + 10175 12 0.1 ey

This together with the result in Lemma [5.1] implies that

LIL] = ([2,T)xRd)

||w||%§°L%([O,T)><]Rd) S+ Jlwoll 72 + ||7~U||L°°L2 ([0,T)xRe) T ||w||LooL2([o T)xRd)"
Since p < 1, by Cauchy-Schwartz’s inequality, we obtain that
||w||%§°L§([O,T)><Rd) S 1+ (w7

This combining with (B.]) finishes the proof of the proposition. O

5.2. Global existence. Now we prove I = R. We only consider the positive time, the
negative time being obtained in the same way. By the global result of v obtained in Lemma
4.3l we only need to consider the global existence of w. It follows from the standard bootstrap
argument and we only give its sketch. Fixing any 2 < ¢, € [ and 0 < § < 1, and treating
similarly as in the proof of Lemma 5.1l we have that

HwHLng 2 (o 04+ 5] xR HwHLgoLg([to,toJré}de)
Shwtto)llzaa + (Jlol? o o L. )
L2L27P ([to,to+6] xR4) L2L27P ([to,to+0] xRd)

+ vl

S (C 2 )
L2L5™ % ([to,to+6] xR4) L2L5 ™ ([to,to+0] xR4)

By the interpolation and Hoélder inequality in time, we have that

Jwl| SO ||w
L2127 ([to,to+6]xRY)

2d
L2LE72 ([to,to+8] xRY)

[y

(5.7)

H HLOOL2([t0,t0+5]><Rd)

Moreover, by Proposition and Holder inequality in time, we have that
o] +lol <ot

L2LQTP ([to,to+6] xR4) L2Ld 2([t0,t0+5]><Rd) ~
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Therefore, by Cauchy-Schwartz’s inequality, we obtain that

I,

S+ ”w(tO)HLQ(Rd 0% <HwHL°°L2([to to+8]xRe)

1
lwll |, e Ll o, ).
LiLy ™" ([to,to+0] xRY) L2LI72 ([to,to+6]xR4)

Hw HLgOLg([to,tmLé]de)

Choosing 0 = 0(||w(to)| r2raey) > 0 suitably small and the bootstrap, we obtain
lell

From Proposition 5.2} ||w(to)||z2(rey is only dependent on N, not dependent on #,. Hence
d = 0(N). This extends the lifespan to R and thus proves the global well-posedness.

<
fi to,t0+-6] X RY) * HwHLé"’L%([to,towlde) S 14 lw(to)l 2 e (5.8)

Lastly, we prove that u(t) € H(RY) for any t € R. To this end, we first claim that for
any to € R,

[ s Sw L. (5.9)

L2L27P ([to,to+6] xRd)
Since u = v + w, it reduces to show

H H KU Sn L HwH S <y L
L?L; = ([to,to+6] xR4) L2L; 7P ([to,to+0] xR4)

The first one is followed directly by Lemma[L.6l The second one is followed from (5.7)), (5.8))
and the L? uniform boundedness from Proposition This gives (5.9).

Fixing t, € R, suppose that w(ty) € H*(R?), then arguing similarly as the proof of
Lemma [4.1], we obtain that for some constants C7, Cy > 0,

<lu(to)|

‘p+1

Hu(t)HLgOH;C([to,toJré}de Frse(rd) T ClH ‘ 121 *”([to o8] )

<[luto)llrse ray + Co-

Since uy € H*(R%) and § ~y 1, by iteration, we have that for any ¢ > 0,

|u(t)] Sv 1+t

Hse (R4)

The negative direction can be treated similarly. This finishes the proof of Theorem [Tl
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