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Abstract

In this paper, a type of full multigrid method is proposed to solve non-selfadjoint Steklov
eigenvalue problems. Multigrid iterations for corresponding selfadjoint and positive definite
boundary value problems generate proper iterate solutions that are subsequently added to
the coarsest finite element space in order to improve approximate eigenpairs on the current
mesh. Based on this full multigrid, we propose a new type of adaptive finite element method
for non-selfadjoint Steklov eigenvalue problems. We prove that the computational work of
these new schemes are almost optimal, the same as solving the corresponding positive definite
selfadjoint boundary value problems. In this case, these type of iteration schemes certainly
improve the overfull efficiency of solving the non-selfadjoint Steklov eigenvalue problem. Some
numerical examples are provided to validate the theoretical results and the efficiency of this
proposed scheme.
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1 Introduction

Inverse scattering problems for inhomogeneous media have many applications, such as medical
imaging and nondestructive testing and so on. Recently, non-selfadjoint Steklov eigenvalues have
been widely applied in the inverse scattering problem. Particularly, it can be used to reconstruct
the shape of the obstacle and estimate the index of refraction of the inhomogeneous medium [9].
Compared with the transmission eigenvalue problem, non-selfadjoint Steklov eigenvalues associated
with the scattering problem have many advantages [30], and the potential to work for a wider class
of problems, such as the surface waves, mechanical oscillators immersed in a viscous fluid and the
vibration modes of a structure in contact with an incompressible fluid [10, 11, 27, 31].

As we know, there are many efficient methods for solving selfadjoint Steklov eigenvalue problems
[1, 4, 21, 34, 37, 49]. However, the non-selfadjoint Steklov eigenvalue problem for inverse scattering
will lead to a non-Hermitian matrices, the multiplicities are not known, and the computation of
complex eigenvalues and eigenvectors of such non-Hermitian matrices are quite challenging. The
differential operator corresponding to this problem is non-selfadjoint and the associated weak for-
mulation does not satisfy H1-elliptic condition, which are the main differences from those studied
before. Hence, extensions of the methods for selfadjoint eigenvalue problems to the non-selfadjoint
ones are not trivial [48]. [9] studies the mathematical properties of non-selfadjoint Steklov eigen-
value problems and its conforming finite element approximation, later [31] an explicit convergence
estimate for approximate eigenvalues. A two-grid method for this problem have been proposed in
[5]. In [46], the authors use the complementary technique [40, 41] to give a new type of adaptive
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method. [32] gives a discontinuous Galerkin methods for non-selfadjoint Steklov eigenvalue prob-
lem. In this paper, we aim to construct a type of full multigrid method for non-selfadjoint Steklov
eigenvalue problems.

In recent ten years, the multilevel correction method for eigenvalue problems has been proposed
in [29, 36] and applied in many useful eigenvalue problems, such as nonlinear eigenvalue problems
[25, 26], biharmonic eigenvalue problem [50], nonsymmetric eigenvalue problem [42, 48], Fred-
holm integral eigenvalue problems [43], Bose-Einstein Condensates [39], Kohn-Sham equation [24],
interior transmission eigenvalue problem [38] and so on. Recently, [44] propose a parallel multi-
level correction method for linear selfadjoint eigenvalue problems. Especially, multilevel correction
method has been applied to non-selfadjoint Steklov eigenvalue problems in [51]. As we know, the
multigrid method [3, 7, 8, 20] as an efficient preconditioners provide an optimal order algorithm for
solving boundary value problems. Hence, the aim of this paper is to present a full multigrid method
[15, 26, 44] (sometimes also referred to as nested finite element method) for solving non-selfadjoint
Steklov eigenvalue problems based on the combination of the multilevel correction method and the
multigrid iteration for boundary value problems. Comparing with the method in [29, 36, 37, 51],
we do not need to solve the linear boundary value problem exactly in each correction step in this
paper. Some multigrid iteration steps are used to get an approximate solution. In this new version
of multigrid method, solving non-selfadjoint Steklov eigenvalue problems will not be much more
difficult than the multigrid scheme for the corresponding positive definite selfadjoint boundary
value problems.

The adaptive finite element method (AFEM) has been widely used to solve singular partial
differential equations, which can generate a sequence of optimal triangulations by refining those
elements where the errors, as the local error estimators indicate, are relatively large. The AFEM is
really an effective way to make efficient use of given computational resources. In addition to being
widely used in boundary value problems [13, 14, 33, 35], AFEM is also a very useful and efficient
way for solving large-scale eigenvalue problems [12, 18, 19, 22]. It should be noted that the optimal
complexity of AFEM means the discretization scale is optimal but not that the computational work
is optimal, which is the motivation of this paper. Recently, [23, 24] propose an efficient AFEM
based on multilevel correction method. From this idea, we give a new type of AFEM based on
full multigrid. In this method, solving non-selfadjoint Steklov eigenvalue problem only includes
solving the associated positive definite selfadjoint boundary value problems on a series of adaptively
refined partitions by multigrid method and the non-selfadjoint Steklov eigenvalue problem with
a coarse mesh. Comparing with the standard multigrid method, we only need to do smoothing
steps on the newly refined elements and their neighbors. The dimension of the coarse mesh for
determining approximate eigenpairs will remain unchanged during the adaptive process, thus this
computational time can be ignored as the size of mesh becomes smaller after some refinement
steps. Hence, the main computation will be spent on the positive definite selfadjoint boundary
value problems on adaptive spaces, and the cost of this new AFEM can be improved to be almost
optimal.

An outline of the paper goes as follows. In Section 2, we introduce the finite element method
for non-selfadjoint Steklov eigenvalue problems. A type of full multigrid method based on the
multilevel correction scheme is presented and analyzed in Section 3. Section 4 is devoted to giving
a new type of AFEM based on full multigrid proposed in Section 3. In Section 5, three numerical
examples are presented to validate the efficiency of the proposed method. Finally, some concluding
remarks are given in the last section.

2 Discretization by finite element method

In this section, we introduce the concerned nonsymmetric eigenvalue problem and its corresponding
finite element method. The standard notation for the Sobolev spaces W s,p(Ω) and their associated
norms ‖ · ‖s,p,Ω and seminorms | · |s,p,Ω will be used (see, e.g. [16, 8]). For p = 2, we denote
Hs(Ω) = W s,2(Ω), ‖ · ‖s,Ω = ‖ · ‖s,2,Ω for simplicity. In this paper, ‖ · ‖s,Ω are abbreviated to ‖ · ‖s,
and the letter C (with or without subscripts) denotes a generic positive constant which may be
different at its different occurrences through the paper. For convenience, the symbols ., & and ≈
will be used in this paper. These x1 . y1, x2 & y2 and x3 ≈ y3, mean that x1 ≤ C̃1y1, x2 ≥ c̃2y2
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and c̃3x3 ≤ y3 ≤ C̃3x3 for some constants C̃1, c̃2, c̃3 and C̃3 that are independent of mesh size.

2.1 Non-selfadjoint Steklov eigenvalue problems

In this paper, we consider the following non-selfadjoint Steklov eigenvalue problem to find λ ∈ C
and u ∈ H1(Ω) such that {

∇ · (A∇u) + κ2n(x)u = 0, in Ω,
∂u
∂ν + λu = 0, on ∂Ω,

(2.1)

where Ω ⊂ R2 is a bounded polygonal domain with Lipshitz boundary ∂Ω and ν be the unit
outward normal to ∂Ω, A is a uniformly bounded symmetric positive definite matrix function
defined on Ω, κ is the wavenumber and n(x) is the index of refraction. Assume that n = n(x) is a
bounded complex valued function given by

n(x) = n1(x) + i
n2(x)

κ
,

where i =
√
−1, n1(x) > 0 and n2(x) ≥ 0 are bounded smooth functions. Set V = H1(Ω).

For the aim of finite element discretization, we define the corresponding weak form of (2.1) as
follows: Find (λ, u) ∈ C× V , u 6= 0, such that

a(u, v) = −λb(u, v), ∀v ∈ V, (2.2)

where

a(u, v) = (A∇u,∇v)− κ2(nu, v),

b(u, v) =

∫
∂Ω

uvds,

being two continuous sesquilinear forms, with

(φ, ψ) =

∫
Ω

φψdx,

and overline denoting the complex conjugate of a function.

For any g ∈ H1(Ω), b(f, g) has a continuous extension to f ∈ H−1/2(∂Ω) so that b(f, g) is
continuous on H−1/2(∂Ω) × H1/2(∂Ω). For convenience, we define a H1(Ω) inner product as
follows

as(w, v) := (A∇w,∇v) + (w, v), ∀w, v ∈ V,

and the following ellipticity holds

1

C2
a

‖v‖21 ≤ as(v, v), ∀v ∈ V. (2.3)

For the non-selfadjoint Steklov eigenvalue problem (2.2), there exists the corresponding adjoint
eigenvalue problem (cf. [31]): Find (λ∗, u∗) ∈ C× V such that

a(v, u∗) = −b(v, λ∗u∗) = −λ∗b(v, u∗), ∀v ∈ V. (2.4)

Note that the (2.2) and (2.4) are also connected via λ = λ∗.

For simplicity, we only consider the nondefective eigenvalues (the ascent equals to 1) of the
non-adjoint Steklov eigenvalue problem. Thus, the algebraic multiplicity equals to the geometric
multiplicity and the generalized eigenspace is the same as the eigenspace. More details about the
nonsymmetric eigenvalue problems, please refer to [2, 41, 42, 46, 48].
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2.2 Finite element method

Now, we introduce the finite element method (cf. [2]) for the non-selfadjoint Steklov eigenvalue
problem (2.2) and its corresponding adjoint problem (2.4).

First, we decompose the computing domain Ω ⊂ Rd (d = 2, 3) into shape-regular triangles or
rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3) and the diameter of a cell K ∈ Th
is denoted by hK . The mesh diameter h describes the maximum diameter of all cells K ∈ Th.
Based on the mesh Th, we construct the conforming finite element space denoted by Vh ⊂ V . For
simplicity, we only consider the linear Lagrange conforming finite element space which is defined
as follows

Vh =
{
vh ∈ C(Ω)

∣∣ vh|K ∈ P1(K), ∀K ∈ Th
}
, (2.5)

where P1(K) denotes the space of polynomials of degree ≤ 1. The standard finite element method

for (2.2) is to solve the following eigenvalue problem: Find (λ̂h, ûh) ∈ C× Vh such that

a(ûh, vh) = −λ̂hb(ûh, vh), ∀vh ∈ Vh. (2.6)

We give the discretization of the adjoint problem (2.4) in the same finite element space: Find

(λ̂∗h, û
∗
h) ∈ C× Vh such that

a(vh, û
∗
h) = −λ̂∗hb(vh, û

∗
h), ∀vh ∈ Vh, (2.7)

also we have the relation λ̂h = λ̂∗h. Hereafter, we use the triple (λ̂h, ûh, û
∗
h) to denote the finite

element method approximate eigenpair of the non-selfadjoint Steklov eigenvalue problems (2.2)
and (2.4).

Define ηa(Vh) and η∗a(Vh) as

ηa(Vh) := sup
f∈H1/2(∂Ω)
‖f‖1/2,∂Ω=1

inf
vh∈Vh

‖Tf − vh‖1,

η∗a(Vh) := sup
f∈H1/2(∂Ω)
‖f‖1/2,∂Ω=1

inf
vh∈Vh

‖T∗f − vh‖1,

where the operators T and T∗ : H−1/2(∂Ω)→ V are defined by

a(Tf, v) = b(f, v), ∀f ∈ H−1/2(∂Ω) and ∀v ∈ V, (2.8)

a(v, T∗f) = b(f, v), ∀f ∈ H−1/2(∂Ω) and ∀v ∈ V . (2.9)

Introduce the following Neumann eigenvalue problem:{
∇ · (A∇u) + κ2n(x)u = 0, in Ω,

∂u
∂ν = 0, on ∂Ω.

When κ2 is not a Neumann eigenvalue of the above eigenvalue problem, we have that for any
f ∈ H−1/2(∂Ω), there exist unique solution for (2.8) and (2.9).

In order to give the convergence order of eigenpair approximations by the finite element method,
we need the following regularity result for the boundary value problem (2.8).

Lemma 2.1 ([5, 6]). For the Steklov-type boundary value problem (2.8), if f ∈ L2(∂Ω), then
Tf ∈ H1+σ/2(Ω) and

‖Tf‖1+σ/2 ≤ C‖f‖0,∂Ω. (2.10)

Furthermore, if f ∈ H1/2(∂Ω), we have Tf ∈ H1+σ(Ω) and

‖Tf‖1+σ ≤ C‖f‖1/2,∂Ω. (2.11)

Here σ = 1 if Ω is convex and σ < π/ω (with ω being the largest inner angle of ∂Ω) (see, e.g.,
Grisvard, 1986).
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Let M(λ) and M∗(λ) denote two eigenspaces corresponding to the eigenvalue λ of (2.2) and
(2.4), respectively,

M(λ) =
{
u ∈ V : u is an eigenfunction of (2.2) corresponding to λ

}
,

M∗(λ) =
{
u∗ ∈ V : u∗ is an eigenfunction of (2.4) corresponding to λ

}
.

Then, we introduce the following notation for error estimation

δ(u, Vh) := sup
u∈M(λ),‖u‖0=1

inf
vh∈Vh

‖u− vh‖1,

δ(u∗, Vh) := sup
u∗∈M∗(λ),‖u∗‖0=1

inf
vh∈Vh

‖u∗ − vh‖1.

Since the ascent of the non-selfadjoint Steklov eigenvalue problem equals to 1, we have the
following error estimates.

Lemma 2.2 ([5, 31]).

(i) For any eigenfunction approximations ûh and û∗h of (2.6) and (2.7), respectively, there exist
eigenfunctions u and u∗ of (2.2) and (2.4), such that

‖u− ûh‖1 ≤
(
1 + Cλ(ηa(Vh) + δ(u∗, Vh))

)
δ(u, Vh), (2.12)

‖u∗ − û∗h‖1 ≤
(
1 + Cλ(η∗a(Vh) + δ(u, Vh))

)
δ(u∗, Vh), (2.13)

Furthermore,

‖u− ûh‖0 ≤ Cληa(Vh)δ(u, Vh), (2.14)

‖u∗ − û∗h‖0 ≤ Cλη
∗
a(Vh)δ(u∗, Vh), (2.15)

and

‖u− ûh‖−1/2,∂Ω ≤ Cληa(Vh)δ(u, Vh), (2.16)

‖u∗ − û∗h‖−1/2,∂Ω ≤ Cλη
∗
a(Vh)δ(u∗, Vh). (2.17)

(ii) For each eigenvalue, we have

|λ− λ̂h| ≤ Cλδ(u, Vh)δ(u∗, Vh). (2.18)

Here and hereafter Cλ is some constant depending on eigenvalue λ but independent of the mesh
size h.

Corollary 2.1. Based on the regularity (2.10), if Vh is the linear finite element space, then we
have the following estimates for ηa(Vh), η∗a(Vh), δ(u, Vh) and δ(u∗, Vh):

ηa(Vh) ≤ Cσh
σ,

η∗a(Vh) ≤ Cσh
σ,

δ(u, Vh) ≤ Cσh
σ,

δ(u∗, Vh) ≤ Cσh
σ,

Cσ is some constant depending on (λ, u, u∗) but independent of the mesh size h.

Lemma 2.3 ([47] Lemma 4.1). Suppose that (λ̂h, ûh) ∈ C× V is an eigenpair of (2.6). Let u⊥h be
the orthogonal projection of ûh to M∗h(λ) in the sense of inner product b(·, ·), and let

û∗h =
u⊥h

‖u⊥h ‖0,∂Ω
,

and λ̂∗h = λ̂h. Then when h is small enough |b(ûh, û∗h)| ≥ C0/|λ̂h|.
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Remark 2.1. We can use the algorithm in Remark 4.1 in [47] to compute u⊥h and then obtain û∗h.

Lemma 2.4 ([46, 51]). Assume (λ, u) ∈ C × V and (λ, u∗) ∈ C × V satisfy (2.2) and (2.4),
respectively, and suppose w, w∗ ∈ V such that b(w,w∗) 6= 0. Let us define

λ =
a(w,w∗)

b(w,w∗)
.

Then we have following expansion

λ− λ =
−a(w − u,w∗ − u∗)− λb(w − u,w∗ − u∗)

b(w,w∗)
.

3 Full multigrid algorithm for non-selfadjoint Steklov eigen-
value problem

In this section, a type of full multigrid method is presented. In order to describe the full multigrid
method, we first introduce the sequence of finite element spaces. We generate a coarse mesh TH
with the mesh size H and the coarse linear finite element space VH is defined on the mesh TH .
Then a sequence of triangulations Thk of Ω ⊂ Rd is determined as follows. Suppose Th1

(produced
from TH by regular refinements) is given and let Thk be obtained from Thk−1

via ζ times regular
refinements (produce (βd)ζ subelements) such that

hk =

(
1

β

)ζ
hk−1, k = 2, · · · , n, (3.1)

where the positive number β denotes the refinement index and larger than 1 (usually for classical
bisection refinement β = 2 and ζ = 1). Based on this sequence of meshes, the corresponding nested
linear finite element spaces can be built such that

VH ⊆ Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhn . (3.2)

The sequence of finite element spaces Vh1
⊂ Vh2

⊂ · · · ⊂ Vhn and the finite element space VH have
the following relations of approximation accuracy (cf. [16, 8]): for k = 2, · · · , n

1

Cδ

(
1

β

)ζ
δ(u, Vhk−1

) ≤ δ(u, Vhk) ≤ C̃δ
(

1

β

)ζ
δ(u, Vhk−1

), (3.3)

1

C∗δ

(
1

β

)ζ
δ(u∗, Vhk−1

) ≤ δ(u∗, Vhk) ≤ C̃∗δ
(

1

β

)ζ
δ(u∗, Vhk−1

). (3.4)

3.1 One correction step

First, we present the one correction step to improve the accuracy of the given eigenvalue and eigen-
function approximation. This correction contains solving an auxiliary boundary value problem
inexactly on the current finite element space and an eigenvalue problem on a slight extension of
the coarsest finite element space. In this paper, we use (λ̂h, ûh, û

∗
h) to denote the solution of direct

finite element method, see Lemma 2.2.

Assume that we have obtained the algebraic eigenpair approximations

(λ
(`)
hk
, u

(`)
hk
, u
∗(`)
hk

) ∈ C× Vhk × Vhk

where (`) denotes the `-th iteration step in the k-th level finite element space Vhk . In this sub-
section, a type of correction step to improve the accuracy of the current eigenpair approximation

(λ
(`)
hk
, u

(`)
hk
, u
∗(`)
hk

) will be given as follows.
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Algorithm 3.1. One Correction Step

1. Define the following auxiliary boundary value problems:

Find ǔ
(`+1)
hk

∈ Vhk such that

as(ǔ
(`+1)
hk

, vhk) = −λ(`)
hk
b(u

(`)
hk
, vhk) + ((1 + κ2n(x))u

(`)
hk
, vhk), ∀vhk ∈ Vhk . (3.5)

Find ǔ
∗(`+1)
hk

∈ Vhk such that

as(vhk , ǔ
∗(`+1)
hk

) = −λ(`)
hk
b(vhk , u

∗(`)
hk

) + (vhk , (1 + κ2n(x))u
∗(`)
hk

), ∀vhk ∈ Vhk .(3.6)

Solve (3.5) and (3.6) by performing m multigrid iteration steps with the initial guess value

u
(`)
hk

and u
∗(`)
hk

to obtain two new approximate solutions ũ
(`+1)
hk

and ũ
∗(`+1)
hk

, respectively.

2. Define VH,hk = VH + span{ũ(`+1)
hk

} and V ∗H,hk = VH + span{ũ∗(`+1)
hk

}, and solve the
following eigenvalue problem:

Find (λ
(`+1)
hk

, u
(`+1)
hk

) ∈ C× VH,hk such that

a(u
(`+1)
hk

, vH,hk) = −λ(`+1)
hk

b(u
(`+1)
hk

, vH,hk), ∀vH,hk ∈ VH,hk . (3.7)

Find u
∗(`+1)
hk

∈ V ∗H,hk according to Lemma 2.3 and Remark 2.1.

In order to simplify the notation and summarize the above two steps, we define

(λ
(`+1)
hk

, u
(`+1)
hk

, u
∗(`+1)
hk

) = EigenMG(VH , λ
(`)
hk
, u

(`)
hk
, u
∗(`)
hk

, Vhk ,m).

Remark 3.1. Here we first use finite element method to discretize (3.7) and then use implicitly
restarted Arnoldi methods (e.g., ARPACK or “eigs/sptarn” function in MATLAB) to solve the
algebraic eigenvalue problem.

Lemma 3.1 ([3, 7, 8, 20]). Performing m multigrid iteration to solve linear equations (3.5) and

(3.6) with the initial guess value u
(`)
hk

and u
∗(`)
hk

, we obtain two new approximate solutions ũ
(`+1)
hk

and ũ
∗(`+1)
hk

which have the following uniform contraction rate:

‖ǔ(`+1)
hk

− ũ(`+1)
hk

‖1 ≤ θ‖ǔ(`+1)
hk

− u(`)
hk
‖1, (3.8)

‖ǔ∗(`+1)
hk

− ũ∗(`+1)
hk

‖1 ≤ θ‖ǔ∗(`+1)
hk

− u∗(`)hk
‖1, (3.9)

where θ < 1 is a fixed constant independent of the mesh size hk and iteration step `.

Now, we turn to give the error estimates of Algorithm 3.1, which indicates that the accuracy of
numerical eigenpair can be improved after one correction step.

Theorem 3.1. Assume the the given eigenpair approximation (λ
(`)
hk
, u

(`)
hk
, u
∗(`)
hk

) has following esti-
mates

‖ûhk − u
(`)
hk
‖0 ≤ Čηa(VH)‖ûhk − u

(`)
hk
‖1, (3.10)

‖û∗hk − u
∗(`)
hk
‖0 ≤ Čη∗a(VH)‖û∗hk − u

∗(`)
hk
‖1, (3.11)

‖ûhk − u
(`)
hk
‖−1/2,∂Ω ≤ Čηa(VH)‖ûhk − u

(`)
hk
‖1, (3.12)

‖û∗hk − u
∗(`)
hk
‖−1/2,∂Ω ≤ Čη∗a(VH)‖û∗hk − u

∗(`)
hk
‖1, (3.13)

|λ̂hk − λ
(`)
hk
| ≤ Č‖ûhk − u

(`)
hk
‖1‖û∗hk − u

∗(`)
hk
‖1. (3.14)
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After the One Correction Step defined in Algorithm 3.1, the resultant approximate eigenpair

(λ
(`+1)
hk

, u
(`+1)
hk

, u
∗(`+1)
hk

) has the following error estimates

‖ûhk − u
(`+1)
hk

‖1 ≤ γ‖ûhk − u
(`)
hk
‖1, (3.15)

‖û∗hk − u
∗(`+1)
hk

‖1 ≤ γ∗‖û∗hk − u
∗(`)
hk
‖1, (3.16)

‖ûhk − u
(`+1)
hk

‖0 ≤ Cληa(VH)‖ûhk − u
(`+1)
hk

‖1, (3.17)

‖û∗hk − u
∗(`+1)
hk

‖0 ≤ Cλη
∗
a(VH)‖û∗hk − u

∗(`+1)
hk

‖1, (3.18)

‖ûhk − u
(`+1)
hk

‖−1/2,∂Ω ≤ Cληa(VH)‖ûhk − u
(`+1)
hk

‖1, (3.19)

‖û∗hk − u
∗(`+1)
hk

‖−1/2,∂Ω ≤ Cλη
∗
a(VH)‖û∗hk − u

∗(`+1)
hk

‖1, (3.20)

|λ̂hk − λ
(`+1)
hk

| ≤ Cλ‖ûhk − u
(`+1)
hk

‖1‖û∗hk − u
∗(`+1)
hk

‖1, (3.21)

where

γ = θ +
(
θCλ + (1 + θ)C̃ + (1 + θ)C̃Cλ

(
ηa(VH) + δ(u∗, VH)

))(
ηa(VH) + δ(u∗, VH)

)
(3.22)

γ∗ = θ +
(
θCλ + (1 + θ)C̃∗ + (1 + θ)C̃∗Cλ

(
η∗a(VH) + δ(u, VH)

))(
η∗a(VH) + δ(u, VH)

)
(3.23)

and

C̃ = C2
aČ
(
Ctr
(
|λ̂hk |+ ‖u

(`)
hk
‖−1/2,∂Ω

)
+ ‖1 + κ2n(x)‖∞

)
,

C̃∗ = C2
aČ
(
Ctr
(
|λ̂hk |+ ‖u

∗(`)
hk
‖−1/2,∂Ω

)
+ ‖1 + κ2n(x)‖∞

)
.

Proof. From (2.6), (3.5) and trace theorem, setting whk = ûhk − ǔ
(`+1)
hk

∈ Vhk , we have

as(ûhk − ǔ
(`+1)
hk

, whk) = −b(λ̂hk ûhk − λ
(`)
hk
u

(`)
hk
, whk) +

(
(1 + κ2n(x))(ûhk − u

(`)
hk

), whk
)

≤
(
|λ̂hk |‖ûhk − u

(`)
hk
‖−1/2,∂Ω + |λ̂hk − λ

(`)
hk
|‖u(`)

hk
‖−1/2,∂Ω

)
‖whk‖1/2,∂Ω

+‖1 + κ2n(x)‖∞‖ûhk − u
(`)
hk
‖0‖whk‖0

≤
(
|λ̂hk |‖ûhk − u

(`)
hk
‖−1/2,∂Ω + |λ̂hk − λ

(`)
hk
|‖u(`)

hk
‖−1/2,∂Ω

)
Ctr‖whk‖1

+‖1 + κ2n(x)‖∞‖ûhk − u
(`)
hk
‖0‖whk‖1,

where Ctr is the constant in trace theorem. It leads to the following estimates by using (2.3),
(3.10), (3.12) and (3.14)

‖ûhk − ǔ
(`+1)
hk

‖1 ≤ C̃
(
ηa(VH) + δ(u∗, VH)

)
‖ûhk − u

(`)
hk
‖1 (3.24)

where C̃ = C2
aČ
(
Ctr
(
|λ̂hk |+ ‖u

(`)
hk
‖−1/2,∂Ω

)
+ ‖1 + κ2n(x)‖∞

)
.

Combining (3.8) and (3.24) leads to the following error estimate for ũ
(`+1)
hk

‖ǔ(`+1)
hk

− ũ(`+1)
hk

‖1 ≤ θ‖ǔ(`+1)
hk

− u(`)
hk
‖1

≤ θ
(
‖ǔ(`+1)

hk
− ûhk‖1 + ‖ûhk − u

(`)
hk
‖1
)

≤ θ
(

1 + C̃
(
ηa(VH) + δ(u∗, VH)

))
‖ûhk − u

(`)
hk
‖1. (3.25)

Then from (3.24) and (3.25), we have the following inequalities

‖ûhk − ũ
(`+1)
hk

‖1 ≤ ‖ûhk − ǔ
(`+1)
hk

‖1 + ‖ǔ(`+1)
hk

− ũ(`+1)
hk

‖1

≤
(
θ + (1 + θ)C̃

(
ηa(VH) + δ(u∗, VH)

))
‖ûhk − u

(`)
hk
‖1. (3.26)
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Since VH,hk ⊂ Vhk , the eigenvalue problem (3.7) can be regarded as a finite dimensional subspace
approximation of the eigenvalue problem (2.6). Combining VH ⊂ VH,hk and (2.12) the following
estimates hold

‖ûhk − u
(`+1)
hk

‖1 ≤
(

1 + Cλ
(
ηa(VH,hk) + δ(u∗, VH,hk)

))
inf

vH,hk∈VH,hk
‖ûhk − vH,hk‖1

≤
(

1 + Cλ
(
ηa(VH) + δ(u∗, VH)

))
‖ûhk − ũ

(`+1)
hk

‖1

≤ γ‖ûhk − u
(`)
hk
‖1, (3.27)

here γ = θ +
(
θCλ + (1 + θ)C̃ + (1 + θ)C̃Cλ

(
ηa(VH) + δ(u∗, VH)

))(
ηa(VH) + δ(u∗, VH)

)
. That is

the desired result (3.15).

Using (2.14), we have the following estimates

‖ûhk − u
(`+1)
hk

‖0 ≤ Cληa(VH,hk) inf
vH,hk∈VH,hk

‖ûhk − vH,hk‖1

≤ Cληa(VH)‖ûhk − u
(`+1)
hk

‖1. (3.28)

Similarly, using (2.16), we have

‖ûhk − u
(`+1)
hk

‖−1/2,∂Ω ≤ Cληa(VH,hk) inf
vH,hk∈VH,hk

‖ûhk − vH,hk‖1

≤ Cληa(VH)‖ûhk − u
(`+1)
hk

‖1. (3.29)

The estimates (3.16), (3.18) and (3.20) for the adjoint problem can be proved in the similar way.
Then the desired (3.21) is the direct result of Lemma 2.2 and Lemma 2.4.

Remark 3.2. Definitions (3.22)-(3.23), Lemma 2.2, Corollary 2.1 together with Lemma 3.1 imply
that γ < 1 and γ∗ < 1 when H is small enough. If the considering eigenvalue λ is large or
the spectral gap is small, then we need to choose a smaller H. Furthermore, we can increase the
multigrid steps for boundary value problem to reduce θ, and then makes γ and γ∗ smaller. However,
the practical application is not limited by these requirements. Actually, H and the coarsest space
only need to match the number of eigenpairs to be computed. In numerical implementations, H

does not need to be very small (e.g. H =
√

2
8 in Subsection 5.1).

3.2 Full multigrid method for non-selfadjoint Steklov eigenvalue prob-
lem

Based on the one correction step defined in Algorithm 3.1, a type of full multigrid scheme will be
introduced in this subsection. The optimal error estimate with the optimal computational work
will be deduced for this type of full multigrid method.

Since the multigrid method for the boundary value problem has the uniform error reduction
rate (cf. [20]), we can choose suitable m such that θ < 1 in (3.8) and (3.9). From the definition
(3.22) for γ, it is obvious that γ < 1 if the mesh size H of TH is small enough. Based on these
property, we can design a full multigrid method for non-selfadjoint Steklov eigenvalue problem as
follows.

Algorithm 3.2. Full Multigrid Scheme

1. Solve the following non-selfadjoint Steklov eigenvalue problem in Vh1
:

Find (λh1
, uh1

) ∈ C× Vh1
× Vh1

such that

a(uh1
, vh1

) = −λh1
b(uh1

, vh1
), ∀vh1

∈ Vh1
.

and find u∗h1
∈ Vh1 according to Lemma 2.3 and Remark 2.1.

Hence we get the desired eigenpair approximation (λh1
, uh1

, u∗h1
) ∈ C× Vh1

× Vh1
.
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2. For k = 2, · · · , n− 1, do the following iterations

• Set λ
(0)
hk

= λhk−1
, u

(0)
hk

= uhk−1
and u

∗(0)
hk

= u∗hk−1
.

• Perform the correction steps

(λ
(`+1)
hk

, u
(`+1)
hk

, u
∗(`+1)
hk

) = EigenMG(VH , λ
(`)
hk
, u

(`)
hk
, u
∗(`)
hk

, Vhk ,m), for ` = 0, · · · , p− 1.

• Set λhk = λ
(p)
hk

, uhk = u
(p)
hk

and u∗hk = u
∗(p)
hk

.

End Do

3. Do the following iterations on the finest level space Vhn

• Set λ
(0)
hn

= λhn−1
, u

(0)
hn

= uhn−1
and u

∗(0)
hn

= u∗hn−1
.

• Perform the correction steps

(λ
(`+1)
hn

, u
(`+1)
hn

, u
∗(`+1)
hn

) = EigenMG(VH , λ
(`)
hn
, u

(`)
hn
, u
∗(`)
hn

, Vhn ,m), for ` = 0, · · · , p− 1.

• Set uhn = u
(p)
hn

and u∗hn = u
∗(p)
hn

.

• Compute the generalized Rayleigh quotient

λhn =
a(uhn , u

∗
hn

)

b(uhn , u
∗
hn

)
. (3.30)

Finally, we obtain an eigenpair approximation (λhn , uhn , u
∗
hn

) ∈ C × Vhn × Vhn in the finest
space.

Remark 3.3. Actually, if we know the distribution of eigenvalues in advance, our algorithm (Al-
gorithm 3.2, 3.4 and 4.2) can solve any eigenvalue we want. But, the distribution of eigenvalues is
an open problem. So we just show the convergence of several eigenvalues with smallest magnitude
in our numerical tests.

Theorem 3.2. Assume (3.3) and the conditions of Theorem 3.1 hold. After implementing Algo-
rithm 3.2, the resultant eigenpair approximation (λhn , uhn , u

∗
hn

) has the following error estimate

‖ûhn − uhn‖1 ≤ 2Cλ
Cδβ

ζγp

1− Cδβζγp
δ(u, Vhn), (3.31)

‖û∗hn − u
∗
hn‖1 ≤ 2Cλ

C∗δβ
ζ(γ∗)p

1− C∗δβζ(γ∗)p
δ(u∗, Vhn), (3.32)

‖ûhn − uhn‖−1/2,∂Ω ≤ 2Cλ
Cδβ

ζγp

1− Cδβζγp
ηa(VH)δ(u, Vhn), (3.33)

‖û∗hn − u
∗
hn‖−1/2,∂Ω ≤ 2Cλ

C∗δβ
ζ(γ∗)p

1− C∗δβζ(γ∗)p
η∗a(VH)δ(u∗, Vhn), (3.34)

|λ̂hn − λhn | ≤ 4C2
λ

CδC
∗
δβ

2ζ(γγ∗)p

(1− Cδβζγp)(1− C∗δβζ(γ∗)p)
δ(u, Vhn)δ(u∗, Vhn), (3.35)

under the conditions Cδβ
ζγp < 1 and C∗δβ

ζ(γ∗)p < 1.

Proof. Define ek := ûhk − uhk . Then from Step 1 in Algorithm 3.2, we have e1 = 0. Then the
assumption (3.10)-(3.14) in Theorem 3.1 are satisfied for k = 1. From Algorithms 3.1 and 3.2,
Theorem 3.1, and recursive argument, the assumption (3.10)-(3.14) hold for each level of space
Vhk (k = 1, · · · , n). Then the convergence rate (3.15) and (3.16) are valid for all k = 1, · · · , n and
` = 0, · · · , p− 1.
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For k = 2, · · · , n, from Lemma 2.2 and 3.1, and recursive argument, we have

‖ek‖1 ≤ γp‖ûhk − uhk−1
‖1

≤ γp
(
‖ûhk − ûhk−1

‖1 + ‖ûhk−1
− uhk−1

‖1
)

≤ γp
(
‖ûhk − u‖1 + ‖u− ûhk−1

‖1 + ‖ûhk−1
− uhk−1

‖1
)

≤ γp
(
Cλδ(u, Vhk) + Cλδ(u, Vhk−1

) + ‖ek−1‖1
)

≤ γp
(
2Cλδ(u, Vhk−1

) + ‖ek−1‖1
)
. (3.36)

From (3.3), we have the following relationship

δ(u, Vhk) ≤
(
Cδβ

ζ
)n−k

δ(u, Vhn). (3.37)

Then, by iterating inequality (3.36) and the condition Cδβ
ζγp < 1, the following inequalities hold

‖en‖1 ≤ 2Cλγ
pδ(u, Vhn−1

) + 2Cλγ
2pδ(u, Vhn−2

) + · · ·+ 2Cλγ
(n−1)pδ(u, Vh1

)

≤ 2Cλ

n−1∑
k=1

γ(n−k)pδ(u, Vhk) = 2Cλ

(
n−1∑
k=1

(
Cδβ

ζγp
)n−k)

δ(u, Vhn)

≤ 2Cλ
Cδβ

ζγp

1− Cδβζγp
δ(u, Vhn). (3.38)

For such choice of p, we arrive the desired result (3.31). (3.33) is obtained by (3.19) and (3.31).
(3.32) and (3.34) can be proved in the similar way. Furthermore, (3.35) can be obtained similar to
(3.21) from Lemma 2.4.

Now, we turn to the following final error estimates for our full multigrid method.

Theorem 3.3. Assume the conditions of Lemma 2.2, Corollary 2.1 and Theorem 3.2 hold. After
implementing Algorithm 3.2, the resultant eigenpair approximation (λhn , uhn , u

∗
hn

) has the follow-
ing error estimates

‖u− uhn‖1 ≤ C1h
σ
n, (3.39)

‖u∗ − u∗hn‖1 ≤ C2h
σ
n, , (3.40)

‖u− uhn‖−1/2,∂Ω ≤ C3H
σhσn, (3.41)

‖u∗ − u∗hn‖−1/2,∂Ω ≤ C4H
σhσn, (3.42)

|λ− λhn | ≤ C5h
2σ
n , (3.43)

where C1 =
(

1 + 2CλCσh
σ
n + 2Cλ

Cδβ
ζγp

1−Cδβζγp

)
Cσ, C2 =

(
1 + 2CλCσh

σ
n + 2Cλ

C∗
δ β

ζ(γ∗)p

1−C∗
δ β

ζ(γ∗)p

)
Cσ, C3 =(

CλCσ + 2CλCσ
Cδβ

ζγp

1−Cδβζγp

)
Cσ, C4 =

(
CλCσ + 2CλCσ

C∗
δ β

ζ(γ∗)p

1−C∗
δ β

ζ(γ∗)p

)
Cσ and C5 = C1C2

|λhn |
C0

(
C2
a +

‖1 + κ2n(x)‖∞ + |λ|C2
tr

)
.

Proof. Based on (2.12), (3.31), Corollary 2.1 and triangular inequality, we have

‖u− uhn‖1 ≤ ‖u− ûhn‖1 + ‖ûhn − uhn‖1

≤
(
1 + Cλ(ηa(Vhn) + δ(u∗, Vhn))

)
δ(u, Vhn) + 2Cλ

Cδβ
ζγp

1− Cδβζγp
δ(u, Vhn)

≤
(

1 + Cλ(ηa(Vhn) + δ(u∗, Vhn)) + 2Cλ
Cδβ

ζγp

1− Cδβζγp

)
δ(u, Vhn)

≤
(

1 + 2CλCσh
σ
n + 2Cλ

Cδβ
ζγp

1− Cδβζγp

)
Cσh

σ
n.

This is the desired result (3.39).

From (2.16), (3.33), Corollary 2.1 and triangular inequality, the following estimates hold:

‖u− uhn‖−1/2,∂Ω ≤ ‖u− ûhn‖−1/2,∂Ω + ‖ûhn − uhn‖−1/2,∂Ω
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≤ Cληa(Vhn)δ(u, Vhn) + 2Cλ
Cδβ

ζγp

1− Cδβζγp
ηa(VH)δ(u, Vhn)

≤
(
Cληa(Vhn) + 2Cλ

Cδβ
ζγp

1− Cδβζγp
ηa(VH)

)
δ(u, Vhn)

≤
(
CλCσh

σ
n + 2CλCσ

Cδβ
ζγp

1− Cδβζγp
Hσ

)
Cσh

σ
n

≤
(
CλCσ + 2CλCσ

Cδβ
ζγp

1− Cδβζγp

)
CσH

σhσn.

This is the desired result (3.41).

The estimates (3.40) and (3.42) for the adjoint problem can be proved in the similar way.

Combining Lemma 2.3, Lemma 2.4, (2.3), (3.30) and trace theorem, we obtain

|λhn − λ| =

∣∣∣∣∣−a(uhn − u, u∗hn − u
∗)− λb(uhn − u, u∗hn − u

∗)

b(uhn , u
∗
hn

)

∣∣∣∣∣
≤
|as(uhn − u, u∗hn − u

∗)|+ |
(
(1 + κ2n(x))(uhn − u), u∗hn − u

∗)|+ |λ||b(uhn − u, u∗hn − u∗)|
|b(uhn , u∗hn)|

≤ |λhn |
C0

(
C2
a‖uhn − u‖1‖u∗hn − u

∗‖1 + ‖1 + κ2n(x)‖∞‖uhn − u)‖1‖u∗hn − u
∗‖1

+|λ|C2
tr‖uhn − u‖1‖u∗hn − u

∗‖1
)

≤ |λhn |
C0

(
C2
a + ‖1 + κ2n(x)‖∞ + |λ|C2

tr

)
‖uhn − u‖1‖u∗hn − u

∗‖1. (3.44)

From (3.44), (3.39) and (3.40), we can get the desired result (3.43).

3.3 Estimate of the computational work

In this subsection, we turn our attention to the estimate of computational work for the full multigrid
method defined in Algorithm 3.2. It will be shown that the full multigrid method makes solving the
non-selfadjoint Steklov eigenvalue problem need almost the same work as solving the corresponding
linear boundary value problems. Besides, we turn our attention to the estimate of computational
work for the full multigrid method defined in Algorithm 3.2.

First, we define the dimension of each level finite element space as Nk := dimVhk . Then we have

Nk ≈
( 1

β

)d(n−k)ζ

Nn, k = 1, 2, · · · , n. (3.45)

Theorem 3.4. Assume the eigenvalue solving in the coarse spaces VH,hk (k = 1, · · · , n) and Vh1

need work MH and Mh1
, respectively, and the work of the multigrid solver in each level space Vhk

is O(Nk) for k = 2, 3, · · · , n. Then the total computational work of Algorithm 3.2 can be bounded
by O(Nn +MH logNn +Mh1

), and furthermore O(Nn) provided MH � Nn and Mh1
≤ Nn.

Proof. We use Wk to denote the work involved in each correction step on the k-th finite element
space Vhk .

Based on Algorithms 3.1 and 3.2,

W1 = 2Mh1
, Wk . 2MH + 2mNk, k = 2, · · · , n. (3.46)

Based on the property (3.45), iterating (3.46) leads to

Total work = W1 +

n∑
k=2

(pWk) . 2Mh1
+

n∑
k=2

(2pMH + 2mpNk)

. Mh1 + nMH +

n∑
k=2

Nk

12



. Mh1
+MH logNn +

n∑
k=2

(
1

β

)d(n−k)ζ

Nn

. Nn +MH logNn +Mh1 .

This is the desired result and we complete the proof.

Remark 3.4. The high efficiency of the multigrid method for boundary value problems leads to that
one does not need to choose large m and p, please see Section 5 and [20, 26]. The computational
works O(MH) and O(Mh1

) for the non-selfadjoint Steklov eigenvalue problem and its adjoint prob-
lem depend on the eigenvalue solver. Fortunately, they are very small since the eigenvalue problems
which are required to solve are defined on very low dimensional spaces VH,hk (k = 2, · · · , n) and
Vh1 . Thus, Algorithm 3.2 has the qusi-optimal complexity.

3.4 Full multigrid method for computing multiple eigenpairs

Based on full mutigrid method, we can extend Algorithm 3.2 to compute multiple eigenpairs.
Firstly, we should introduce the one correction step for computing multiple eigenpairs of non-
selfadjoint Steklov problem.

Assume that we have obtained the q eigenpair approximations (λ
(`)
j,hk

, u
(`)
j,hk

, u
∗(`)
j,hk

) ∈ C×Vhk×Vhk
for j = i, · · · , i+ q − 1. Now we introduce a type of iteration step to improve the accuracy of the

current eigenpair approximation {λ(`)
j,hk

, u
(`)
j,hk

, u
∗(`)
j,hk
}i+q−1
j=i .

Algorithm 3.3. One Correction Step for Computing Multiple Eigenpairs

1. For j = i, · · · , i+ q − 1, do:
Define the following auxiliary boundary value problems:

Find ǔ
(`+1)
j,hk

∈ Vhk such that

as(ǔ
(`+1)
j,hk

, vhk) = −λ(`)
j,hk

b(u
(`)
j,hk

, vhk) + ((1 + κ2n(x))u
(`)
j,hk

, vhk), ∀vhk ∈ Vhk . (3.47)

Find ǔ
∗(`+1)
j,hk

∈ Vhk such that

as(vhk , ǔ
∗(`+1)
j,hk

) = −λ(`)
j,hk

b(vhk , u
∗(`)
j,hk

) + (vhk , (1 + κ2n(x))u
∗(`)
j,hk

), ∀vhk ∈ Vhk . (3.48)

Solve (3.47) and (3.48) by performing m multigrid iteration steps with the initial guess

value u
(`)
j,hk

and u
∗(`)
j,hk

to obtain two new approximate solutions ũ
(`+1)
j,hk

and ũ
∗(`+1)
j,hk

, respec-
tively.

2. Define

ṼH,hk = VH + span{ũ(`+1)
i,hk

, · · · , ũ(`+1)
i+q−1,hk

}, Ṽ ∗H,hk = VH + span{ũ∗(`+1)
i,hk

, · · · , ũ∗(`+1)
i+q−1,hk

},

and solve the following eigenvalue problems for j = i, · · · , i+ q − 1:

Find (λ
(`+1)
j,hk

, u
(`+1)
j,hk

) ∈ C× ṼH,hk such that

a(u
(`+1)
j,hk

, vH,hk) = −λ(`+1)
j,hk

b(u
(`+1)
j,hk

, vH,hk), ∀vH,hk ∈ ṼH,hk .

Find u
∗(`+1)
j,hk

∈ Ṽ ∗H,hk according to Lemma 2.3 and Remark 2.1.

In order to simplify the notation and summarize the above two steps, we define

{λ(`+1)
j,hk

, u
(`+1)
j,hk

, u
∗(`+1)
j,hk

}i+q−1
j=i = EigenMG Multi(VH , {λ(`)

j,hk
, u

(`)
j,hk

, u
∗(`)
j,hk
}i+q−1
j=i , Vhk ,m).
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Since using the multigrid method for solving the boundary value problems in Step 1 of Algorithm
3.3, we have the same uniform contraction rate as Lemma 3.1:

‖ǔ(`+1)
j,hk

− ũ(`+1)
j,hk

‖1 ≤ θ‖ǔ(`+1)
j,hk

− u(`)
j,hk
‖1,

‖ǔ∗(`+1)
j,hk

− ũ∗(`+1)
j,hk

‖1 ≤ θ‖ǔ∗(`+1)
j,hk

− u∗(`)j,hk
‖1.

Here we can choose suitable m such that θ < 1 in the first step in Algorithm 3.3. Similar to
Algorithm 3.2, we can build the following full multigrid method for several eigenvalue problems.

Algorithm 3.4. Full Multigrid Scheme for Computing Multiple Eigenpairs

1. Solve the following non-selfadjoint Steklov eigenvalue problems in Vh1
:

Find {λj,h1
, uj,h1

}i+q−1
j=i ∈ C× Vh1

such that

a(uj,h1
, vh1

) = −λj,h1
b(uj,h1

, vh1
), ∀vh1

∈ Vh1
.

Find {u∗j,h1
}i+q−1
j=i ∈ Vh1

according to Lemma 2.3 and Remark 2.1.

Obtain the desired eigenpair approximation {λj,h1
, uj,h1

, u∗j,h1
}i+q−1
j=i ∈ C× Vh1

× Vh1
.

2. For k = 2, · · · , n, do the following iterations

• Set {λ(0)
j,hk

, u
(0)
j,hk

, u
∗(0)
j,hk
}i+q−1
j=i = {λj,hk−1

, uj,hk−1
, u∗j,hk−1

}i+q−1
j=i .

• Do the following one correction step by multigrid for ` = 0, · · · , p− 1:

{λ(`+1)
j,hk

, u
(`+1)
j,hk

, u
∗(`+1)
j,hk

}i+q−1
j=i = EigenMG Multi(VH , {λ(`)

j,hk
, u

(`)
j,hk

, u
∗(`)
j,hk
}i+q−1
j=i , Vhk ,m).

• Set {λj,hk , uj,hk , u∗j,hk}
i+q−1
j=i = {λ(p)

j,hk
, u

(p)
j,hk

, u
∗(p)
j,hk
}i+q−1
j=i .

End Do

3. Do the following iterations on the finest level space Vhn

• Set {λ(0)
j,hk

, u
(0)
j,hk

, u
∗(0)
j,hk
}i+q−1
j=i = {λj,hk−1

, uj,hk−1
, u∗j,hk−1

}i+q−1
j=i .

• Do the following one correction step by multigrid for ` = 0, · · · , p− 1:

{λ(`+1)
j,hk

, u
(`+1)
j,hk

, u
∗(`+1)
j,hk

}i+q−1
j=i = EigenMG Multi(VH , {λ(`)

j,hk
, u

(`)
j,hk

, u
∗(`)
j,hk
}i+q−1
j=i , Vhk ,m).

• Set {uj,hk , u∗j,hk}
i+q−1
j=i = {u(p)

j,hk
, u
∗(p)
j,hk
}i+q−1
j=i .

• Compute the generalized Rayleigh quotient

λj,hn =
a(uj,hn , u

∗
j,hn

)

b(uj,hn , u
∗
j,hn

)
(j = i, · · · , i+ q − 1).

Finally, we obtain an eigenpair approximation {λj,hn , uj,hn , u∗j,hn}
i+q−1
j=i ∈ C × Vhn × Vhn in

the finest space.

Remark 3.5. We can also obtain the optimal convergence order and almost optimal estimation
of computation work of Algorithm 3.4 similar to Theorem 3.2 and Theorem 3.4. For more detail,
please refer to [15].
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4 Adaptive full multigrid for multiple non-selfadjoint Steklov
eigenvalue problems

In this section, based on the a posteriori error estimators we will establish an adaptive full multigrid
for the non-selfadjoint Steklov eigenvalue problem. Here, we only describe the scheme without
analysis.

In the above full multigrid method, we refine the mesh uniformly. However, this is not practical
since the amount of required memory will increase very rapidly as we refine the mesh. Hence, an
efficient refinement strategy is desired. On the one hand, the solution should be resolved well with
the refined mesh. On the other hand, the total amount of the mesh elements should be controlled
well to make the simulation efficient. Based on the above discussion, adaptive mesh method is a
competitive candidate for the refinement strategy.

A standard adaptive mesh process can be described by the following one

· · ·Solve→ Estimate→Mark→ Refine · · ·.

More precisely, to get Thk+1
from Thk , we first solve the discrete equation on Thk to get the

approximate solution and then calculate the a posteriori error estimator on each mesh element.
Next, we mark the elements with big errors and these elements are refined in such a way that the
triangulation is still shape regular and conforming. Here, we choose the ZZ recovery-based error
estimator [45, 53] for (2.1). Based on the recovery operator Gh (c.f. [45, 53]), for each element
K ∈ Th, we define the local error indicator ηh(uh,K) and η∗h(u∗h,K) by

ηh(uh,K) := ‖Ghuh −∇uh‖0,K and η∗h(u∗h,K) := ‖Ghu∗h −∇u∗h‖0,K , (4.1)

and the error indicator for a subdomain ω ⊂ Ω by

ηh(uh, ω) :=
( ∑
K∈Th,K⊂ω

η2
h(uh,K)

)1/2

and η∗h(u∗h, ω) :=
( ∑
K∈Th,K⊂ω

η∗2h (u∗h,K)
)1/2

,

and the main error indicator for a subdomain ω ⊂ Ω by

η̂h(uh, u
∗
h, ω) :=

(
η2
h(uh, ω) + η∗2h (u∗h, ω)

)1/2

. (4.2)

Based on the error indicator (4.2), we choose the Dörfler’s marking strategy for q approximations
{λj,h, uj,h, u∗j,h}

i+q−1
j=i to construct subset Mh for local refinement.

Algorithm 4.1. Dörfler’s Marking Strategy.

1. Given a parameter θ̂ ∈ (0, 1).

2. Construct a minimal subset Mh from Th by selecting some elements in Th such that

i+q−1∑
j=i

η̂h(uj,h, u
∗
j,h,Mh) ≥ θ̂

i+q−1∑
j=i

η̂h(uj,h, u
∗
j,h, Th).

3. Mark all the elements in Mh.

Now we state the multigrid iteration scheme with adaptive method for non-selfadjoint Steklov
eigenvalue problem. Based on the adaptive refinement method described above, and one correction
step for multiple eigenvalues defined by Algorithm 3.3 , the full multigrid method is given in the
following algorithm.
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Algorithm 4.2. Full multigrid AFEM for multiple non-selfadjoint Steklov eigenvalue problems

1. Generate a coarse triangulation TH on the computing domain Ω, pick up an initial mesh
T1 which is produced by refining TH by the regular way, and choose a mark parameter
θ̂ ∈ (0, 1).

2. Build the initial finite element space Vh1 on the triangulation Th1 , and solve the non-
selfadjoint Steklov eigenvalue problem and its adjoint problem on the initial finite element
space Vh1

:
Find (λh1

, uh1
) ∈ C× Vh1

such that

a(uh1
, vh1

) = −λh1
b(uh1

, vh1
), ∀vh1

∈ Vh1
.

Find u∗h1
∈ Vh1

according to Lemma 2.3 and Remark 2.1.

Hence we obtain the desired eigenpair approximations {λj,h1
, uj,h1

, u∗j,h1
}i+q−1
j=i ∈ C ×

Vh1 × Vh1 , and set k = 1.

3. Compute the local error indicators ηh(uj,hk ,K) and η∗h(u∗j,hk ,K) (j = i, · · · , i + q − 1)
on each element K ∈ Thk according to (4.1).

4. Construct Mhk ⊂ Thk by Algorithm 4.1. Then refine Mhk to get a new conforming
mesh Thk+1

and construct finite element space Vhk+1
.

5. If k < n, do:
Obtain new eigenpair approximations {λj,hk+1

, uj,hk+1
, u∗j,hk+1

}i+q−1
i=1 ∈ C×Vhk+1

×Vhk+1

by Algorithm 3.3 on Thk+1
:

• Set {λ(0)
j,hk

, u
(0)
j,hk

, u
∗(0)
j,hk
}i+q−1
j=i = {λj,hk−1

, uj,hk−1
, u∗j,hk−1

}i+q−1
j=i .

• Perform the following multigrid iterations for ` = 0, · · · , p− 1

{λ(`+1)
j,hk

, u
(`+1)
j,hk

, u
∗(`+1)
j,hk

}i+q−1
j=i = EigenMG Multi(VH , {λ(`)

j,hk
, u

(`)
j,hk

, u
∗(`)
j,hk
}i+q−1
j=i , Vhk ,m).

• Set {λj,hk , uj,hk , u∗j,hk}
i+q−1
j=i = {λ(p)

j,hk
, u

(p)
j,hk

, u
∗(p)
j,hk
}i+q−1
j=i .

• Let k = k + 1 and go to step 3.

Else, do:

Obtain new eigenpair approximations {λ(p)
j,hn

, u
(p)
j,hn

, u
∗(p)
j,hn
}i+q−1
i=1 ∈ C × Vhk+1

× Vhk+1
by

Algorithm 3.3 on Thk+1
:

• Set {λ(0)
j,hk

, u
(0)
j,hk

, u
∗(0)
j,hk
}i+q−1
j=i = {λj,hk−1

, uj,hk−1
, u∗j,hk−1

}i+q−1
j=i .

• Perform the following multigrid iterations for ` = 0, · · · , p− 1

{λ(`+1)
j,hk

, u
(`+1)
j,hk

, u
∗(`+1)
j,hk

}i+q−1
j=i = EigenMG Multi(VH , {λ(`)

j,hk
, u

(`)
j,hk

, u
∗(`)
j,hk
}i+q−1
j=i , Vhk ,m).

• Set {uj,hk , u∗j,hk}
i+q−1
j=i = {u(p)

j,hk
, u
∗(p)
j,hk
}i+q−1
j=i .

• Compute the generalized Rayleigh quotient

λj,hn =
a(uj,hn , u

∗
j,hn

)

b(uj,hn , u
∗
j,hn

)
(j = i, · · · , i+ q − 1).

• Stop.
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Finally, we get the eigenpair approximation

{λj,hn , uj,hn , u∗j,hn}
i+q−1
j=i ∈ C× Vhn × Vhn .

Remark 4.1. For the Algorithm 4.2, we can also obtain the related error reduction property and
the optimal complexity analysis base on the asymptotic exactness of error estimators (c.f. [45,
Theorem 5.1 and 5.2]). Due to the simplicity of this paper, we omit these parts. More details,
please refer to [23].

Corollary 4.1. Assume the conditions of Theorem 3.4 hold, then the work involved in Algorithm
4.2 has the following estimate

Total work ≤ O (Nn +MH logNn +Mh1) . (4.3)

Futhermore, the complexity will be O(Nn) provided O(MH)� O(Nn) and O(Mh1
) ≤ O(Nn).

5 Numerical results

In this section, some numerical examples are presented to illustrate the efficiency of the full multi-
grid method proposed in Algorithm 3.2 and AFEM based on full multigrid adaptive finite element
method 4.2 for non-selfadjoint Steklov eigenvalue problems, respectively. When n(x) is a real
function, (2.2) is a selfadjoint eigenvalue problem. And, we choose n(x) = 4 + 4i in the following
examples. In each level of the full multigrid scheme defined in Algorithm 3.2, 3.4 and 4.2, the
parameters are set to be m = 3 and p = 1, respectively. In addition, we take 3 conjugate gradient
smooth steps for the presmoothing and postsmoothing iteration step in the multigrid iteration in
Step 1 of Algorithm 3.1 and 3.3.

5.1 Non-selfadjoint Steklov eigenvalue problem on square domain

We first consider non-selfadjoint Steklov eigenvalue problem (2.1) with A(x) = 1 and n(x) = 4+4i

defined on square domain Ω = (−
√

2
2 ,
√

2
2 )2. Hence σ = 1. The sequence of linear finite element

spaces are constructed on the series of meshes which are produced by the regular refinement with
β = 2 (producing β2 subelements). In this example, we choose a mesh which is generated
by uniform refinement as the initial mesh Th1

and the coarsest mesh TH to produce a sequence
of finite element spaces for investigating the convergence behaviors. Figure 1 shows this initial
meshes (h1 = H =

√
2/8)

Figure 1: The initial/coarsest mesh for Example 1

Since the exact eigenvalue is unknown, we use the accurate enough approximation [0.686553 +
2.495294i,−0.343047 + 0.850747i,−0.343047 + 0.850747i,−0.950110 + 0.540097i] given by the ex-
trapolation method (see, e.g. [28]) as the first four exact eigenvalues (sorted by real part) to
investigate the errors. Algorithm 3.2 is applied to solve (2.1).

Figure 2 gives the corresponding numerical results for the first eigenvalue λ1 = 0.686553 +
2.495294i. From Figure 2, we find that the full multigrid can obtain the optimal error estimates
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as the expected one for the direct finite element method, which confirms with the convergence
Theorem 3.2 for Algorithm 3.2.
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Figure 2: The errors of the full multigrid method for the first eigenvalue λ1 (left) and first four eigenvalues
λ1, · · · , λ4 (right) on the square domain for the initial mesh in Figure 1.

We also check the convergence behavior for multiple eigenvalue approximations with Algorithm
3.4. Here the first four eigenvalues are investigated. Similarly, we use the same initial mesh shown
in Figure 1. The corresponding numerical results are given in Figure 2, which also exhibits the
optimal convergence rate of the full multigrid scheme Algorithm 3.4.

5.2 Non-selfadjoint Steklov eigenvalue problem on dumbbell shaped do-
main

In order to show our full multigrid method can work well with adaptive mesh (Algorithm 4.2), we
discuss the non-selfadjoint Steklov eigenvalue problem with A(x) = 1 and n(x) = 4 + 4i defined on
a dumbbell shaped domain Ω = (0, π)2∪ [π, 5

4π]× ( 3
8π,

5
8π)∪ ( 5

4π,
9
4π)× (0, π). The initial/coarsest

mesh for this dumbbell shaped domain is given in Figure 3 which is generated by Delaunay method
to produce a sequence of finite element spaces for investigating the convergence behaviors.

Figure 3: The initial/coarsest mesh for Example 2

It is easy to know that reentrant corners of the dumbbell domain result in the singularities of
the eigenfunctions. The convergence order for eigenfunction approximations is less than 1 by the
linear finite element method, which is the order predicted by the theory for regular eigenfunctions
(σ < 1). We consider to use the adaptive Algorithm 4.2 to solve this problem. Figure 6 shows the
mesh after 15 adaptive refinements.

Since the exact solution is unknown, we use the accurate enough approximation [−0.245575 −
1.723065i,−0.246998−1.720376i,−0.492629−1.284891i,−0.570899−1.344935i,−0.623435−1.198207i]
given by the extrapolation method (see, e.g. [28]) as the first five exact eigenvalues to investigate
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Figure 4: The mesh after 15 adaptive refinements

the errors. First, we investigate the convergent rate of the adaptive posterior error estimator
η̂h(uh, u

∗
h, ω) (ω ⊂ Th) defined in (4.2). Figure 5 presents the corresponding numerical results for

the first five eigenfunction approximations. Here, we use η̂j,h to denote the j-th error estimator
η̂h(uj,h, u

∗
j,h, Th). The error estimate of eigenvalues are given in Figure 5, which shows that our

multilevel iteration method combines well with the adaptive finite element method naturally and
Algorithm 4.2 has the optimal convergence rate.
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Figure 5: The errors of the adaptive full multigrid algorithm for the first five eigenfunction approximations
(left) and eigenvalue approximations (right) where η̂j,h (j = 1, · · · , 5) denote the j-th posterior error
estimator η̂h(uj,h, u

∗
j,h, Th) and λj,h (j = 1, · · · , 5) denote the current approximation of the j-th eigenvalue

λj

5.3 Non-selfadjoint Steklov eigenvalue problem with discontinuous co-
efficient

In this example, we consider the non-selfadjoint Steklov eigenvalue problem with with discontinuous

coefficient. Define computational domain Ω = (−
√

2
2 ,
√

2
2 )2, discontinuous coefficient

A(x) =

{
100, in the 1st and 3rd quadrants,
1, in the 2nd and 4th quadrants,

and n(x) = 4 + 4i. The initial/coarsest mesh for this square domain is the same as the one in
Example 5.1.

It is easy to know that the singularities is on the interface. The convergence order for eigenfunc-
tion approximations is less than 1 (σ < 1) by the linear finite element method, which is the order
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predicted by the theory for regular eigenfunctions. We also consider to use the adaptive Algorithm
4.2 to solve this problem. Figure 6 shows the mesh after 17 adaptive refinements.

Figure 6: The mesh after 17 adaptive refinements

Since the exact solution is unknown, we use the accurate enough approximation [1.451305 −
1.741234i,−0.942417− 0.542984i,−1.563818− 0.563167i] given by the extrapolation method (see,
e.g. [28]) as the first three exact eigenvalues to investigate the errors.
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Figure 7: The errors of the adaptive full multigrid algorithm for the first three eigenfunction approxima-
tions (left) and eigenvalue approximations (right) where η̂j,h (j = 1, · · · , 3) denote the j-th posterior error
estimator η̂h(uj,h, u

∗
j,h, Th) and λj,h (j = 1, · · · , 3) denote the current approximation of the j-th eigenvalue

λj

Figure 7 shows the corresponding numerical results by Algorithm 4.2. From Figure 7, we can
find that Algorithm 4.2 is able to obtain the optimal error estimate. It shows that Algorithm 4.2
is efficient for solving non-selfadjoint Steklov eigenvalue problems with discontinuous coefficient.

6 Concluding remarks

In this paper, a type of full multigrid method is designed to solve non-selfadjoint eigenvalue prob-
lems based on the multigrid for boundary value problems and the multilevel correction scheme for
eigenvalue problems. Furthermore, when the number of smoothing steps is chosen appropriately,
our method can reach the optimal convergence rate with the almost optimal computing complexity.
At last, we propose a new type of AFEM for multiple eigenvalues based on full multigrid with the
almost optimal computing complexity. Three numerical experiments validate the optimality and
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show that the proposed algorithms can also compute multiple eigenvalues and solve the eigenvalue
problems with complex vector.
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