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Identifying the discontinuous diffusion coefficient in an elliptic equation with observation data of the gra-
dient of the solution is an important nonlinear and ill-posed inverse problem. Models with total variational
(TV) regularization have been widely studied for this problem, while the theoretically required nonsmoothness
property of the TV regularization and the hidden convexity of the models are usually sacrificed when numerical
schemes are considered in the literature. In this paper, we show that the favorable nonsmoothness and convexity
properties can be entirely kept if the well-known alternating direction method of multipliers (ADMM) is applied
to the TV-regularized models, hence it is meaningful to consider designing numerical schemes based on the
ADMM. Moreover, we show that one of the ADMM subproblems can be well solved by the active-set Newton
method along with the Schur complement reduction method, and the other one can be efficiently solved by the
deep convolutional neural network (CNN). The resulting ADMM-Newton-CNN approach is demonstrated to be
easily implementable and very efficient even for higher-dimensional spaces with fine mesh discretization.

Keywords: Diffusion coefficient identification; elliptic equation; total variation; alternating direction method of
multipliers; active-set Newton method; Schur complement reduction; convolutional neural network.

1 Introduction

Consider the canonical elliptic equation

{ —V  (q(x)Vu(z)) = f(z), z€Q, (1.1)
u(x) — 07 T € F,

where € is a bounded polyhedral domain in R? (d = 1,2, 3) with a piecewise smooth boundary T' := 9%; u :
QUT — Rwithu € H}(Q); ¢ : @ — Rwithg € L®(Q); and f : Q — R with f € H1(Q) is given.
The elliptic equation (1.1) describes various physical phenomena such as the flow of a fluid through some medium
with the permeability ¢(z) and the concentration u(x), and the heat transfer in a material with the conductivity
q(x) and the temperature u(z). For the diffusion coefficient g(x), it is often impractical to measure it directly
(e.g., when it is the conductivity of a medium), but it is easier to observe the solution w of (1.1) or its gradient
[11, 17]. Hence, it is interesting to consider the inverse problem of identifying the diffusion coefficient g(x)
with observation data of the solution u of the elliptic equation (1.1) or its gradient. This inverse problem finds
applications in various industrial areas such as reservoir simulations, underground water investigations, geophysics
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and electrical impedance tomography. We refer to the monographs [3, 14] for more introductions. Note that the
elliptic equation (1.1) is linear if ¢(x) is known, but the inverse problem of identifying ¢(x) is nonlinear. Also, as
mentioned in [14, 37], ¢(z) cannot be uniquely determined by wu(z) since ¢(x) can be arbitrary when u is constant
on some open subset of (2. Thus, identifying the diffusion coefficient ¢(x) of (1.1) is an ill-posed inverse problem.

1.1 TV model

Let us consider the case where observation data of the gradient of the solution v of (1.1) are available subject to
some noise with the noisy level § > 0 it is denoted by Vus € (L?(£2))?. Note that the gradient type data Vus
can be constructed via a mollification procedure by the Clément interpolation [12] if only the observation data of
u is available, see, e.g. [20, 31, 43]. In some literatures such as [11, 19, 51], it has been proposed to recover the
discontinuous coefficient g(x) in (1.1) with Vus € (L?(Q))? via the model

1
min { — Vu — Vu 2dx+oz/ Vyq| ¢,
{Q/Qq Ny [ 1val} i
s.t. —V-(¢Vu) = f, (%U)EKXH&(Q)?

in which % JoalVu — Vus|?dx is a data-fidelity term and Jo Vg is the total variation (TV) regularization term
defined in [2]. That is, we have

[ vali=sup{ [ qdivedo s e CHRRY, ol < 1} (13)
Q Q

with ||¢|lec = supweﬂ(zgi:l s (z)|?)'/2, “div” denotes the divergence operator, and C'!(€; RY) is the set of once
continuously differentiable R%-valued functions with compact support in €2, see, e.g., [2, 50] for more details.
Moreover, the admissible set K is

K:={qeL*NBV(Q):0<ap<q(z) <ai, ae.inQ}, (1.4)

and the BV (Q) space endowed with the norm ||| By := [|ql| 1) + [, [Vq] is a Banach space; see, e.g., [2, 50]
for more details. Also, in (1.2), > 0 is a parameter determining the relative weights of the data-fidelity and TV
regularization terms in the objective functional.

Note that the elliptic equation (1.1) is the Euler-Lagrange equation of the energy functional

1

Q/Q(q]Vu\Q — 2fu)dz,

and the following identity holds (see, e.g., [34]):

1 1 1
! / oV — VuPdz = / (¢ Vus|® — 2fus)de — / (¢|Vul’ - 2fu)de,
2 Jo 2 Jo 2 Jo

where us denotes the approximation to the solution u subject to the noise level 6 > 0. Hence, the data-fidelity
term in (1.2) measures the difference of the energy functional of the elliptic equation (1.1) at us and u, and it has
been widely used in the literature, see, e.g., [11, 18, 19, 25, 34, 35, 36, 37]. For the TV regularization term, it is
capable of reserving the piecewise-constant property and it has found various applications such as image denoising
or reconstruction. The TV regularization has also been considered for identifying the diffusion coefficient ¢(x) of
(1.1) because it is generally discontinuous and also owns the piecewise-constant property for many applications
such as reservoir simulations and electrical impedance tomography. We refer to, e.g., [8, 9, 11, 19], for more
discussions. One interesting fact is that, as proved in [ 18], although the data-fidelity functional in (1.2) is nonconvex
with respect to g and u jointly, it is convex with respect to q if u is represented as a function of q.



1.2 ALM for the smoothing 7'V, model

The TV term fQ |Vq| in (1.2) is not differentiable and it could be difficult to tackle the nonsmoothness property
for algorithmic design. In earlier literatures, it is popular to consider smoothing the TV term and then use the
smoothing surrogate to replace the original TV term. For instance, in [1, 8, 9, 11, 32, 46], it is suggested to replace
the TV term |, |Vq| with the surrogate

TW@=A¢WW+ma

where € > 0 is a smoothing parameter such that TV.(q) — |, |Vq| as € — 0. In other words, instead of con-
sidering the TV model (1.2), the following approximated model with a smoothing regularization term is popularly
considered:

q,u
st. —V-(qVu) = £, (q,u) € K x H}(Q).

To solve (1.5) numerically, we choose the following piecewise linear finite element space V}, to discretize the
functions g and u:

1
min < — Vu — Vug|?dz + TV, ,
5[ i @} s

Vi, = {vh € C(Q) : vp|r € Py foreach 7 € 771}7 (1.6)

where P is the space consisting of polynomials of degrees less than or equal to one, 7, denotes a regular partition

of  into d-simplexes, and h = max diam(7) is the maximal diameter. Then, we obtain a discretized version of
TE TH

(1.5) with finite element approximation as

1
min {2/ qn|Vup — VU5!2d$+OéT‘/E(Qh)}7
0

qh, Uh

st. (@aVun, Vén) = (f,én), ¥V on € Vi (qnun) € K x Vi,

1.7

where K}, := V, N K, Vj, :== V;, N H}(Q) and (-, -) is the regular inner-product in L*(Q2). For solving the model
(1.7), a particularly useful approach is the augmented Lagrangian technique developed in [27] and then widely used
in other literatures such as [8, 9, 11, 26, 28, 32, 46]. More precisely, the augmented Lagrangian functional of (1.7)
is

1
Loy (an,unipn) 1= /Q Gn|Vu, — Vus*dz + aTVe(qn) + (Ve(gn, un), Vi) + %IIVe(qm un)|72(0):

2
(1.8)
with v > 0 the penalty parameter and pj, € V}, the Lagrange multiplier. The constraint in (1.7) is augmented by

(Velqn, un), Vo) == (qnVun, Vo) — (f,dn), V (qn, un) € Kp x Vi, ¥V ¢pp € Vi, (1.9)

where e(q,u) = (=A)"H(V - (¢Vu) + f) and e(, ) can be viewed as an operator from K x H{(Q) to Hj ().
In [11], it is proved that the discretized augmented Lagrangian functional (1.8) exists at least one saddle-point, and
the finite element solution (up,, py) converges to the solution of (1.2). In [11, 27], it is suggested to apply the classic
augmented Lagrangian method (ALM) originally proposed in [23, 42] to (1.7), and the iterative scheme reads as

(gL, ubtl) =

qn > Up, arg min L’Yk (qhv Up; :u'l;“i)a

(qnun)EKR X Vi (1.10)
it = g+ e(ay up .
Note that the (g, up)-subproblem in (1.10) is a smooth optimization problem with a box constraint K} on the
variable ¢p. In [11], global convergence of (1.10) is proved under the condition that the exact solution of the
(g, up,)-subproblem of (1.10) can be obtained at each iteration.



1.3 Motivations and goals

Smoothing the TV term loses the originally favorable nonsmoothness property, but enables the eligibility of ap-
plying the well known ALM (1.10). Meanwhile, the ALM (1.10) is mainly of conceptual sense because it is very
challenging to implement it numerically. As remarked in [33], the smoothing surrogate 7'V, (q) leads to a nearly
singular and indefinite nonlinear minimization system and solving this system is “a big difficulty to the numerical
resolution process”. Indeed, augmenting the constraint e(qp,, up) = 0 makes the augmented Lagrangian functional
L (qn,un; ,u’,i) nonconvex, and hence the hidden convexity with respect to ¢ in (1.2) is also lost in the ALM (1.10).
The nonconvex (gp,, up)-subproblem in the ALM (1.10) is numerically difficult also because of the high dimension-
ality of its variables, the coupling of different variables, as well as its nonlinear structure and ill-conditionedness.
In literatures such as [11, 33], it is suggested to solve the (g, up)-subproblem inexactly by splitting the variables
qn, and uy, and then solving them alternatively. As analyzed in [33], the resulting uj-subproblem is a linear yet
ill-conditioned saddle-point system and the gp-subproblem is a nearly singular nonlinear minimization problem
— both are still very difficult. It is suggested in [11] to apply some first-order algorithm with an Armijo line
search to solve the decomposed ¢p,-subproblem, each iteration of which also requires solving an ill-conditioned
linear system. All these strategies are targeted for approximating the solution of the (g, u,)-subproblem in (1.10)
heuristically, without any guarantee to the theoretically rigorous convergence. All these difficulties become much
severer if a higher-dimensional space with d > 2 is considered and fine mesh discretization is used. Indeed, the
dimension and condition numbers of the involved linear systems are both of order O(h~%). Hence, it is easy to
understand the lack of numerical study in the literatures for higher-dimensional spaces of d > 2 in (1.2) with fine
mesh discretization. To the best of our knowledge, only some limited numerical studies for the case where d = 1
in (1.5) and coarse mesh discretization (e.g., h = 1/80) are available in [11, 51]. To summarize, it is extremely
challenging to find the exact solution, or even an approximate solution with good accuracy, of the nonconvex, non-
linear, ill-conditioned and large-scaled (gp,, up, )-subproblem in (1.10). This challenge posts substantial difficulties
to validate the condition in [11] to guarantee the convergence of the ALM (1.10).

Because of the mentioned difficulties in the smoothing surrogate 7'V, (q) and the ALM (1.10), we are motivated
to turn to consider solving the original model (1.2) directly. Our goals are: (1) to tackle the original TV model (1.2)
so that the nonsmoothness properties of the diffusion coefficient of (1.1) can be inherited throughout; (2) to keep
the convexity of the data-fidelity functional in (1.2) with respect to g throughout; (3) to design an implementable
algorithm without any difficult subproblem such as the (gp,, up)-subproblem in (1.10) while it is efficient even for
higher-dimensional space of (1.2) with d = 2 and fine mesh discretization. We will show that the first two goals
can be fully achieved by applying the well-known alternating direction method of multipliers (ADMM) which was
proposed originally in [16]. For the third goal, we should meticulously investigate the resulting subproblems, and
propose some structure-exploiting strategies to tackle these subproblems more effectively. It is mentionable that
the curse of dimensionality really matters from the numerical point of view. For example, for the case where the
uniform mesh size h = 1/1024, the order of dimensionality of the resulting linear systems increases from 10 to
100 if the domain is changed from the unit interval 2 C R to the unit square 2 C R?, while if the domain is fixed
as the unit square @ C R?, then the order of dimensionality of the resulting linear systems increases from 10* to
10% if the mesh size is refined from 1/128 to 1/1024.

1.4 Conceptual application of ADMM to the original TV model

As mentioned in [19], the elliptic equation (1.1) has a unique weak solution u in H}(£2) for each ¢ € K and u is
nonlinearly dependent on ¢. Then, the nonlinear coefficient-to-solution mapping U : K — H}(f2), which maps
each ¢ € K to the unique solution u = U(q) € H}(2) of (1.1), is well defined. Instead of augmenting the elliptic
equation (1.1) as a constraint by introducing e(q, u) in (1.9), we temporarily take the liberty to represent u as a



function of ¢ via the equation (1.1), denote by

1
Ia) =5 [ aVUe) - Vusde
and then reformulate the model (1.2) as a minimization problem only depending on g. Then the finite element
discretized version of the nonsmooth problem (1.2) can be written as

min {J(@) + ol Vanllp o | (1.11)
min {J(g0) + o[ Vanll o

To implement the ADMM to solve (1.11), there are multiple ways. For instance, it is easy to consider introduc-
ing an auxiliary variable p;, := V¢, so as to replace V¢, with py, in the objective functional of (1.11). That is, the
model (1.11) can be reformulated as

min {J(qh) + OszhHLl(Q)}a

4h>Ph

st. Vg, —pn =0, (qn,pn) € K x W,

where Wy, := {py, € L' (% R?) : py|, is constant for each 7 € T }. Inspired by [5], we can employ the weighted
L?-inner product (-, -);, = h%(-,-) and the corresponding norm || - ||;, = h%/?|| - || 12(q) With d the space dimension,
to penalize the constraint. Then, the augmented Lagrangian functional is

~

Ls(qn, pri An) == J(qn) + allprl i) + (Van — prs An)n + gHth — pull7» (1.12)

where 3 > 0 is a penalty parameter. The corresponding ADMM iterative scheme reads as

qZ+1 = arg min .i/ﬁ(qfupZ’ )‘Z)a
an €Ky
PhEWS

AL = AF + B(Vgp Tt = pfth).

In (1.12), we do not use the regular L?-inner product (-, -) and its induced L?-norm penalty term g IV an—pnll32 @
Indeed, as analyzed in [5], the L2-inner product may lead to numerical instability because || V|| £2() 1s unbound-
ed. It is further noticed in [5] that an inverse estimate shows that V¢, is bounded with respect to || - ||, and the
corresponding scheme tends to be more numerically stable.

Note that the gradient operator V is involved in the penalty term in (1.12), and as analyzed in [40], the condition
number of the corresponding stiffness matrix (whose entries are (ngj , V¢2) with gb}'l the finite element basis
functions of V) is of order h~?. Hence, the condition number of the stiffness matrix may be extremely high for
fine mesh. Accordingly, numerical performance of (1.13) may be more severely affected by the penalty parameter
B if fine mesh is used for discretization, which can be easily verified by numerical experiments. Because of this
concern, we prefer to penalize some term irrelevant to the gradient operator V. Note that the condition number
of the mass matrix is bounded and independent of the mesh size h; see, e.g., [40]. Therefore, we introduce the
auxiliary variable p;, and replace g, in the TV term. That is, we reformulate the TV model (1.11) as

min {J(qh) + OCHVPhHLl(Q)}v

qh,Ph (114)
st qn —pn =0, (qn,pn) € Kp X Vp.
The corresponding augmented Lagrangian functional of (1.14) is
s
Ls(qn, pn; An) = J(qn) + al|Vonll 1) + (@h — pry An) + 5“% — phll22(0); (1.15)

5



and the corresponding ADMM scheme reads as:

qﬁ“ = arg min Eg(qh,pfl; )\Z), (1.16a)
grh€Kp

pZH = arg min Eg(q,’fﬂ,ph; )\Z), (1.16b)
PhEVR

AL = \F 4 BT — piT. (1.16¢)

It is arguably trivial to derive the ADMM (1.16) conceptually. But it is clear that both the subproblems in (1.16)
are convex and the scheme is for solving the discretized version of the original TV model (1.2). Hence, the ADMM
(1.16) essentially differs from the ALM (1.10) in the sense that the original TV term as well as the convexity with
respect to the variable g, are both kept. On the other hand, as we shall show in Section 3, despite its convexity, it
is highly nontrivial to solve the resulting subproblems, especially the g;-subproblem (1.16a). Hence, the ADMM
(1.16) is numerically meaningful only if both the g;- and pj-subproblems can be solved efficiently, especially for
the case where d > 2 and h is small.

1.5 Organization

The rest of this paper is organized as follows. In Section 2, some preliminaries are summarized for further anal-
ysis. Then, we focus on the subproblems (1.16a) and (1.16b) in Sections 3 and 4, respectively. The flowchart of
implementation of the proposed numerical approach is presented in Section 5. Some preliminary numerical results
are reported in Section 6 to verify the efficiency of the proposed numerical approach. Finally, some conclusions
are drawn in Section 7.

2 Preliminaries

In this section, we summarize some preliminaries which will be used for further analysis. We say that u € H & (Q)
is a weak solution of the elliptic equation (1.1) if it satisfies the following variational form:

a(u, ¢) :—/Qun.v¢dx—/Qf¢dx, Voe HQ).

The bilinear form a(-, -) satisfies the coercivity condition a(u,u) > CQHUH?LI&(Q) for any u € H}(Q) and q € K,
where C, is a positive constant depending on €2 and the low bound ag of ¢g. By the Lax-Milgram theorem [15],
there exists a unique weak solution u of (1.1) in H&(Q) for each ¢ € K, and u is nonlinearly dependent on gq.
Then, we can define the nonlinear coefficient-to-solution mapping U : K — H}({2), which maps each ¢ € K to
the unique solution u = U(q) € H}(2) of (1.1); see [19] for more details.

For discretization, because of the low regularity of the functions in the space BV (£2), only some low order
polynomials will be chosen for the finite element space. As mentioned in [4], the piecewise affine globally contin-
uous finite element spaces are dense in BV (£2) with respect to weak™* convergence in BV (£2), while in general the
piecewise constant finite element approximation for v cannot be expected to converge to an exact solution. Thus,
we discretize the model (1.2) in the finite element space V}, (see (1.6)) and obtain the following discrete problem:

in {J v 3 2.1
min {J(an) + 0 Vanl 120 @1
where K, = V;,,N K, and V}, and K are given by (1.6) and (1.4), respectively. The energy functional J(gy,) of (2.1)
is

1
J(qn) = 5 /Q an|VU (qp) — Vu(g]zdx, 2.2)



where U (gp,) is the solution of the following variational form:

an(qn, U(qn); on) = (f, n), ¥ én € Vi,
with Vj, := V,, N HE(Q) and
an(qn, Ulaqn); on) := /Q%VU(%) - Vpda. (2.3)

According to [18, Lemma 2.3], the functional J(-) in (2.2) is convex on the convex set K. Forany ¢ € K,{,n €
L*>°(9Q), the first derivative of J(-) is given by

1 1
@ =5 [ evU@Pdr+ 5 [ (vusPaa, @4

and the second derivative of J(-) is given by

J"(g)(€,m) = — /Q EVU(q) - VU (q)nde, 2.5)

where U’(q)n satisfies

/ qVU'(q)n - Vodx = —/ nVU(q) - Vudz, Vv € H} (Q). (2.6)
Q Q

In the next two sections, we will elaborate on how to solve the resulting subproblems for the ADMM (1.16). For
notational convenience, we denote by q := (qy, .. ., qN)T € RY the coefficients of g;,. That is, g, = Zf\; 1 qiot,
where {qﬁ}z f\i1 are the finite element basis functions in V}. The same setting is also applied to py, An, up ,7h,
with the coefficients p, A, u, r € R, respectively. Then, we define the function .J(q) := J(qp).

3 Active-set Newton method for the g,-subproblem

In this section, we focus on the gj-subproblem (1.16a). How to solve this subproblem is crucial to ensure the
performance of the ADMM (1.16), and this is the most technical part of the paper.

3.1 Optimality conditions

For the gj-subproblem (1.16a), it can be written as the following smooth and nonlinear optimization problem:

. B Ay
g™ = argmin {J(@) + Sllar — vk + ey }- G.1)
an €Ky B

We further reformulate the problem (3.1) in Euclidean space and derive its first-order optimality conditions. Recall
the definitions of q, p, A and J(q) in Section 2. The optimization problem (3.1) can be rewritten as

. Bk Ao
q@ﬁr}v{J(Q)‘FQHQ P+ 3 ||M}> (3.2)

s.t. ap <q<ay,

where M denotes the mass matrix as M; ; = ( fl, qbﬁl), ag = apl, and a; = a;1. Here, 1 € RY denotes the vector
with constant entries 1. The Lagrangian function of (3.2) is

B ¥
I(q,n0,m) = J(q) + §Hq —p"+ FH?M +"70T(q —ap) +771T(q —ay),

7



with 19,1 € R¥ the Lagrange multipliers. Then the corresponding KKT conditions are

k
J'(q) + BM(q - p* + Z) + (1o +m1) =0,

77120’ qgala n]—(q_al):(),
no <0, q > ag, N (q— ao) =0.

Furthermore, denoting 17 := 19 + 171 and
C(g,n) :==n —max{0,n + c(g — a1)} — min{0, 1 + c¢(q — ao)}, ¢ >0,

we can represent the KKT conditions as the equation

/ _ AR
F(g,m) = (‘] (q)+5MC(’1(’q :)]”r ﬁ)+’7> —0. (3.3)

3.2 Computation of the first-order derivative

To solve the gp-subproblem (3.1), it is natural to consider the first-order derivative of J(qy) and probe its computa-
tional complexity. It follows from (2.4) that the first-order derivative of J(qy,) satisfies

1 1
(&n, ' (an)) = (&ns _§|VU(Qh)|2 + §|Vu5|2), V& € Vi,
where U (qp,) is the solution to

an(an U(qn); dn) = (f,én), ¥ én € Vi = Vi, N H(Q). (3.4)

Let k,,, with m > 0 be iteration counter for the inner loop for solving the ¢;,-subproblem at the k-th iteration; kg be
the initial iterate for the inner loop. Then, how to compute .J’(g*™) can be summarized in the following Subroutine
1.

Subroutine 1 Computation of .J'(g*m).

. function GRADIENT(g"™)

Ju—

2: Obtain @™ via solving
Ay, um = f, (3.5)
where (Ag,,)ij = (quV¢j , VQS’;L) and f defined as f; = (f, qb}l)
3: Substitute U (qim) = Zjvzl ﬁ?m ¢, into the following equation to compute .J'(g"™ )
: | 1 .
(J'(g"))i = (S}, T (a5™)) = (&}, *§!VU((1]Z’")|2 + 5 Vusl?), i =1, N.
4. return J'(g"m).
5: end function

It is easy to see that the computation of .J'(gy,) requires values of U gy, ), which should be obtained by computing
Ay, and solving the linear system (3.5) iteratively. Note that the linear system (3.5) is a discretized formulation of
the elliptic equation (1.1). As analyzed in [40], its dimension and the condition number of the coefficient matrix
Ay, are both of order O(h~¢). Thus the linear system (3.5) is large-scaled and ill-conditioned for discretization
with fine mesh, and computing J'(g;) may be expensive. Note that computing the objective function value in (3.1)
requires values of U(qy,) as well. Hence, these difficulties essentially imply that it is computationally demanding



even if some first-order algorithm is applied to seek a medium- or low-accuracy numerical solution of the problem
(3.1). Indeed, implementing a first-order algorithm usually requires certain line-search techniques with multiple
computations of the objective function values, to discern appropriate step sizes. Our numerical experiments actually
validate the failure of a number of popular first-order algorithms (such as the gradient projection method and the
conjugate gradient projection method with backtracking line-search) firmly for solving the subproblem (3.1).

3.3 Active-set Newton method for the problem (3.1)

As analyzed, though the ADMM (1.16) per se can be easily derived, it is keen to solve the gp-subproblem (1.16a),
i.e., the problem (3.1). Because demanding computation is required yet only a medium- or low-accuracy solution
can be targeted, it is not attractive to consider first-order algorithms for this subproblem. It is thus interesting to
investigate how much more complicated if a second-order algorithm is applied to the problem (3.1). In this and
the next subsections, we will show that, counter-intuitively, the Newtonian system of (3.3) can be appropriately
reformulated and relaxed so that its computation reduces to solving a simple positive definite linear system, and
then the benchmark active-set Newton method in, e.g., [24, 39], can be applied very efficiently. Computation of the
Newton step is comparable with, and usually less than, that of a single iteration of the gradient projection method
with some backtracking line-search strategy, while the accuracy is much higher. This is a convincing example of
deriving model-tailored efficient algorithms by taking full advantage of the structure of the model under discussion.
To elaborate on the active-set Newton method for (3.3), let us define

‘Akm = A]jm U A];m and Ikm = {1’ te ’N} \Akrn

as the sets of the active and inactive indices at (g*m,n*"), respectively, where Agm and A, are the sets given
respectively by

A = {ilnfm + e —a1); >0} and Ay = {i | + e(g" — ao)i < 0}.

For the mapping F'(g*, n"") defined in (3.3), let 9F (g*™, n*m) be the generalized Jacobian of (3.3) in sense of
Clarke (see [13]). Then, as analyzed in [39], we have

JNgm)+ M T

F'(gkm nkm) .= < > € OF (¢",n*m), (3.6)
(g"m,m"™) el My, (g"™,n"™)
where 114, ~and Il7, ~denote the diagonal binary matrices with nonzero entries in Ay, and Zj, , respectively.

With (3.6), it is easy to see that the k,,,-th iteration of the active-set Newton method for (3.3) is solving

J'(q" )+ BM T\ (gF =gt J'(g") + BM(q" — p* + 37)
( —clly,, szm) (n’“"“ - n’“"l) C A\t T (P (@t —an)) — T (' +egh — ao))
(3.7)
Since the second equation of (3.7) implies that

(" )z, = (" =)z, + @0z, =0,

k m

we can remove those rows that belong to the indices in Zj,, from the second equation of (3.7), and simplify (3.7)
as

(ﬁJ”(qk’") + BM P:l‘l—km> <qkm+1 _ qkm> _ (_J/(qk‘m) — /BM(qkm _ pk? + A;)) ‘ 3.8)

In (3.8), P¢ denotes the matrix consisting of those rows of Il¢ that belong to the indices in a given set C. Obviously,
it holds that ITo = PCT Pe.

Though it is trivial to analytically derive the system (3.8) for the k,,-th iteration of the active-set Newton method
for (3.3), how to solve (3.8) numerically deserves meticulous analysis mainly because computing the second-order



derivative J”(g") is very expensive. Indeed, it follows from (2.5) that computing the second-order derivative
J"(g*m) directly at each iteration requires computing {U’ (q,";m)%}f\;l from (2.6) for each finite element basis
function qﬁ};. This means a sequence of discretized elliptic equations in form of (3.5) are needed to be solved, and
recall that each of them is large-scaled and ill-conditioned for fine mesh discretization.

To avoid computing J”(g*), we take an alternative approach to compute g°¥=+! — g*». The key idea is
substituting the discrete equations of (2.5) and (2.6) into (3.8) to eliminate .J” (q’“m). To see the details, it follows
from (2.5) that

km

(@) (En, gt = gfm) = — (VU (), VU (gF™) (g — gF)).

Then, we have
T" (@) ("t — gFm) = =Ny, 7,

where N
1 3 km m km m km )
(Ni,)ig = (G,VU (@), Vh), ™t =U(gy) g™ —aym) = Y™ d,
i=1
and
phmt1 — (rlf’"“, . ,ri}"“)T.

It also follows from (2.6) that
km k’m m m [/
an(gym, " s on) = = (g™ = qm)VU(g5™), Von), Y oy, € Vi,

which implies that
Akmrkm+1 — _N];r (qkm+1 _ qkm)

Thus we have

J//<qkm)(qkm+1 _ qkm) _ _Nkmrk7n+l with Akm"’km+1 — _N];En (qkm+l _ qkm)‘

Next, substituting
J//(qlcm>(qk:m+1 o qk;m) _ _Nkmrkm+1

into the Newtonian system (3.8), we obtain the under-determined linear system

(_BNkmrkm+1) N ( IBM ,P-/Ikm> (qkm+1 _ qkm> _ <—J/(qkm) - ﬂM(qkm _pk + :[fi)) (3.9)

0 PAkm 0 (nkm+1 )-Akm ,PA:mal + ,P‘A;m ag — P-Akm q
with respect to (rFm+1, ghm+1 — ghm (phm+1) Ay, )- Then, combining (3.9) with
Ap, it = =N (g™ — g,

we obtain the following expanded linear system:

Akm N,:m 0 phm+1 0 .
_Nkm BM ,P:l‘\—km qkm+1 _ qkm _ —J’(qkm) _ BM(qk’" _ pk + )\7) ’ (3.10)
0  Pg, O (n*m+1) Ay, Par a1+ Py ao—Pa, ¢

which is equivalent to the Newtonian system (3.8). Note that there is no need to compute the usually expensive
J"(g"™) in (3.10), and all the matrices Ak Nk, M, P 4+ and P 4 are easy to compute. For convenience, we
km km

denote
A, N0 d; 0 .
Fheo= | =Ny, BM Pl | and |dy | = [ —J'(a") — BM(q" —p* + %) | . (3.11)
0 P4, O ds Par a1+ Py ao—Pa,, q*n
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3.4 Schur complement reduction

Recall that the Newtonian system (3.10) is an expanded system of the linear saddle-point problem (3.8), and it is
clear that (3.10) is indefinite. Moreover, because of the stiffness matrix Ay, in its coefficient matrix FFm  the
system (3.10) is also ill-conditioned. Hence, it is not easy to solve the Newtonian system (3.10). As analyzed in
[6], there are two types of algorithms that can be used to solve (3.10): the segregated and coupled (also known as
“all at once") methods.

Note that the right-bottom 2 x 2 block of the matrix F*m in (3.11)

.
FM P, (3.12)
P A, 0

is well-conditioned and hence the variables (g*m+! — g*) and (n*m+1) Ay, can be computed easily once phm+1
is obtained. We are thus inspired to choose the Schur complement reduction in [6], which is a major segregated
approach, to convert the Newtonian system (3.10) to a linear system with only respect to the variable r*m+1, by
using the block factorization of the coefficient matrix F¥m in (3.11). For the matrix F*_ it can be factorized as

I AINI MY R\ (S, O 0 ! ; )
ka _ 0 T 0 0 5M 0 _%M_lNkm I %M_llp.Akm )

0 %p«‘\km Mil I 0 0 _%(/PAIC"L Mﬁlpjkm) _Rgm 0 4

(3.13)
where
R, = NL ML, (Pag, M7PL, )
and 1 1
Sp = A + BN]ngMilNkm _ BNl;rmelpjkm (Pa,, Mflpzkm)*lpftkm M™IN,

is the Schur complement of (3.12).

It is just seen that the Schur complement Sy, requires computing (P4, M _lpjkm )~L. Note that the dimen-
sion of M~ is of order O(h~?). Therefore, it is extremely expensive for fine mesh cases to compute M ~" and
hence the Schur complement Sy, . To tackle this issue, we consider the lumped mass matrix (see [40]) to approx-
imate the mass matrix M, which is a diagonal matrix with the row sums of the mass matrix M on the diagonal.
That is, we have

N N
Wii=3 Mj=Y (¢,¢}), i=12--,N, (3.14)
j=1 j=1
with qﬁ}'z being the finite element basis functions in V}. Then the inverse of the diagonal matrix W is easy to
compute. Accordingly, the block matrix

Ay, N0
Froi= | =Ny, AW PR
0 Pa,,, 0

is an approximation of F’*» and its block diagonal decomposition is

I N, W= Gy,\ (Hy, 0 0 I 0 0
Frmo= |0 I 0 0 AW 0 —gWINg, I WPy, |,
0 1Py, W I 0 0 —5(Pa, W'PL ) -Gy, 0 I

Lk, Chm Ry,

11



where Gy, = N W_lpjk (Pay,, W_lPL )~!and
1 1
B B

Also, itis easy to verify that the matrix P 4, W‘lplk is diagonal. Thus, it is easy to compute (P4, W‘lpjk )t
and it holds that

Hy,, = Ap, + =N WINy, — =Ng WPL (Pay, W'PL )" Pay, W' N,

W —WPL (Pa, WP, ) ' Pa, W =TIz, W g, .

Therefore, computational cost for the explicit formulation of the matrix G, , is negligible and the matrix Hy, can
be simplified as .
B
Thus, computing M~ is not required for the Schur complement Hy, in (3.16) and it becomes easy to compute
the block factorization (3.15) of F*=_ These features suggest us to relax the Newtonian system (3.10) to a linear
system with the coefficient matrix Fkm,

Note that the Newtonian system (3.10) can be rewritten as

Hy,, = Ap,, + =N, Tz, W'z, Ny, (3.16)

phm+1 d; 0
Fhe | ghmit —gbn | = (dy | + | BW — M)(g"+t = gm) | (3.17)
(nkm+l>./4km d3 0

The equation (3.17) is implicit because g*=+1 appears in both sides. We consider a semi-implicit scheme for the
Newtonian system (3.17) by replacing g*+! in the right-hand side with the known last outer iterate g*, and obtain

Fhm [ ghmir —ghm | = | dy |, where | dy | == [do | + | BOW — M) (" — ") | . (3.18)
(n*m+1) 4, d3 d3 ds 0

That is, for numerical implementation purpose, we relax the Newtonian system (3.10) as the much easier linear
system (3.18). Indeed, it follows from (3.15) that

rr-k7n+1 Cil

. ko | _ 1171 3
q k“ -—q =R, C. L C{Q
(77 m+1).Akm ds

Hence, the procedure of solving the linear system (3.18) via its Schur complement reduction can be summarized in
Subroutine 2.

Subroutine 2 Solver for the Newtonian system (3.18).

1: function NEWTON-SOLVER(d, d, d3)

2 (Cil,(ig,cig)T — L,;Ti(czl,dg,dg)T.

3 (Tkm+1,dg,d3)T — Cgﬂi(dl,dg,cig)—r.

4 (rhm ghme — ghm (mheen) g T o RN (pRntt dy, ds) T
5 return (gFm+1 — gkm  (pFm+) A, )-

6: end function

In Subroutine 2, the inverses of Ly, and Ry, ,
The computation of C’k_i (d1,ds, d3)" requires solving the linear system

are easy to compute as their permutation matrices are triangular.

Hy, r=di, (3.19)
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as well as computing Wd, and (Pay,, W_lpl—km)_lcig. Since both W and Py, W_lpzkm are diagonal
matrices, the computational load of Subroutine 2 is dominated by solving (3.19). Note that (3.19) is easy because
its coefficient matrix Hy,  is positive definite and its dimension is the same as that of (3.5), which is much less
than that of (3.10). Thus, via Subroutine 2, the indefinite linear system (3.10) in higher dimension is significantly
alleviated.

3.5 Optimization insights

As just shown, the indefinite linear system (3.10) is relaxed to (3.18) by its Schur complement reduction. Then
it is interesting to analyze the corresponding relaxation of the underlying optimization problem and discern its
difference from the desired one (3.2). Indeed, the linear system (3.18) is equivalent to:

rkm"rl 0 dl
ka qk7n+1 _ qkm + /B(W — M)(qk’m+1 — qk) = d2 s (320)
(nkm+1)Akm 0 ds

which differs from the Newtonian system (3.10) in the extra term (W — M)(q*m+1 — g*). Then, following the
steps reversely in subsection 3.3, it is easy to see that (3.20) is exactly the corresponding Newtonian system if the
active-set Newton method is applied to the following optimization problem:

i {J(q) g e 22, 4+ B - q'fH%V_M},
geRN 2 B 2 (3.21)

s.t. ag<qg<a.

Since each entry of the mass matrix M is positive [40], together with the definition of W in (3.14), it is easy to verify
that W — M is positive semidefinite. Then, the problem (3.21) is still convex and the solution of (3.18) converges
to the solution of the problem (3.21). Note that we slightly abuse the notation and define §||q —q"% =
(q—q*)T(W — M)(q — ¢*) in (3.21), despite that W — M is positive semidefinite. Furthermore, because of the
equivalence between the Euclidean space and the space V4, (3.21) can be rewritten as

i {6+ Sl ok + Aﬂ%(m + Sl — a1} (3:22)
In (3.22), the semi-norm
lanll7 = EET Qrn(ar) = (an an) With Qr(9) = 7 jE 1g(ﬂff})
TET =

and {x;}fﬁ are the vertices of the d-simplex 7 € Tj, and 7}, is a regular partition of 2. Hence, our numerical
technique for tackling the difficult g;,-subproblem via solving (3.18) can be represented as replacing the problem
(3.1) with (3.22), in which the objective function is regularized by a semi-proximal regularization term. In other
words, applying the active-set Newton method along with the Schur complement reduction can be explained as
replacing the optimization problem (3.1) by the proximally regularized one (3.21). Replacing the ¢;,-subproblem
(1.16a) with (3.22) in the ADMM (1.16) hence results in the so-called proximal ADMM, which has been well
studied in the optimization area. We refer to, e.g., [21, 22], for convergence of various proximal versions of the
ADMM.

Remark 1. For the implicit equation (3.17), we can alternatively consider replacing the unknown g*=+' in the
right-hand of (3.17) with the last inner iterate q*™, instead of the last outer iterate q*. The resulting semi-implicit
equation remains the coefficient matrix F'*" and the right-hand side in (3.10). In our numerical experiments, we
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ko .= qF, and as to be shown in numerical

use the warm start technique, meaning the initial iterate is set as q
results, usually each inner loop only requires executing the active-set Newton method by one iteration. Hence,
using g or q* makes very little difference numerically. On the other hand, an advantage of using q* in (3.17)
is that the resulting scheme can be theoretically explained as a proximal version of the ADMM with well known

theoretical results as studied in the optimization area.

3.6 Implementation of the active-set Newton method for the ¢;-subproblem (3.18)

Now, we present the active-set Newton method for solving the ¢;,-subproblem (3.18) in Subroutine 3.

Subroutine 3 An active-set Newton method for the gj-subproblem.
1: function ASNEWTON(g", p*, \F)
2 Set initial values: 0 < m, ("™, J'(g"™)) + (g%, J'(g")); € > 0; “Tol” > 0.
3: while m < MaxIter do
4 Compute the active and inactive indices: A;rm A Aty Ly, -

dy 0

5. dy | « | —J'(g") = BW(g" — ¢*) — BM(q" — p* + 2)
CZ3 PAim ai + PA;m ag — P-Akm qkm

6 (nkm+1)zkm +— 0.

7: (gFm+1 — gFm, (nkm“)Akm) + NEWTON-SOLVER(d1, d2, d3), (See Subroutine 2).

8 g+t = max(e, gFm+1).

9: m<+—m+ 1.

10: J'(g*™) +GRADIENT(g"™), (See Subroutine 1).

11: if || F(g*™, m*)|| < Tol then

12: return ¢t « g*, break.

13: end if

14: end while
15: end function

For each step of Subroutine 3, we need to solve two linear systems: (3.5) in Subroutine 1 and (3.19) in Subrou-
tine 2. Since both of these linear systems are positive definite, we can use the preconditioned conjugate gradient
(PCG) method to solve them. As (3.5) is a discretized formulation of the elliptic equation (1.1), a popular way to
construct the preconditioner flkm is using the multigrid (MG) method (see, e.g. [7]), which uses the MG V-cycles
associated with its coefficient matrix Ay, to approximate A,;}L For (3.19) in Subroutine 2, we still use the pre-
conditioner flkm of (3.5) for solving (3.19), though the MG V-cycles associated with H;, —may be closer to I ,;j.
Note that we do not use the MG V-cycles associated with I} because it is expensive to compute the explicit
formulation of Hj, , and MG V-cycles require more computation if the explicit formulation of Hy,  is unknown.

Remark 2. The update of g*m+' in Line 8 of Subroutine 3 is to ensure that q is positive. The norm |[F(q,n)|| is
defined as
max(||error, ||y -1, ||errora||)

with
k

error, := —J'(q) — BW(q — ¢*) — BM(q" — p* + %) +n,

errory :==n — max{0,m + ¢(q — a1)} — min{0,n + ¢(q — ag)}.

Remark 3. Since the convexity of the functional J(-) is kept, the active-set Newton method summarized as Subrou-
tine 3 is guaranteed to be convergent to a solution of (3.2). We refer to, e.g., [24], for rigorous analysis. Also, as
analyzed in [24], Subroutine 3 is superlinearly convergent.
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Remark 4. It is clear that the computational cost of Subroutine 3 is dominated by computing the gradient J ’(qkm)
(Subroutine 1) and the Newton step (Subroutine 2). To compute the gradient J'(q"™), its main computation is
computing the discrete matrix Ay, and then solving the discretized elliptic equation (3.5). For the Newton step, its
main computation is calculating the discrete matrix Ny, and then solving the linear system (3.19). As just analyzed,
the linear system (3.19) is positive definite and its dimension is the same as that of (3.5). Hence, the Newton step
does not require too much additional computation, compared with the computation of the gradient J'(q"™). Recall
that implementing a first-order algorithm usually requires discerning an appropriate step size (e.g., via line-search
techniques) for the sake of ensuring the convergence, hence multiple objective function values are usually required.
As mentioned, computing these functional values is equally expensive as that of computing the gradient. Therefore,
it is encouraging to consider the active-set Newton method in Subroutine 3 whose computation is not much more
than that of implementing a first-order algorithm, yet its convergence is guaranteed to be superlinear.

4 Deep CNN for the p;-subproblem
In this section, we discuss how to solve the py,-subproblem (1.16b). This subproblem can be specified as

k
pZH = arg min {a||Vph||L1(Q) + quZ—H — Dh + ﬁ”%z(g)}. 4.1)
PhEVR p
Note that the original TV term is kept and hence the objective functional in (4.1) is nonsmooth. Obviously, (4.1)
has no closed-form solution and it should be solved iteratively by a certain algorithm. Also, the dimension of py, is
the same as that of ¢y, and it may be high for a higher-dimensional space and fine mesh discretization. For instance,
it is of order 100 if the mesh size h = 1/1024 for the unit square 2 C R2. Hence, it is also necessary to consider
how to solve the pp-subproblem (1.16b) efficiently for implementing the ADMM (1.16). We reiterate that it is
always more preferable to choose some model-tailored algorithms in accordance with the structure of the problem
under consideration. For the py,-subproblem (4.1), certainly it can be treated as a generic optimization problem and
then some generic-purpose or less structure-exploiting algorithms can be applied. But it turns out that the deep
convolutional neural network (CNN), which has been significantly enhanced in recent literatures (e.g., [38, 45]), is
a much better choice for the pj-subproblem (4.1). Below is the detail.
Let R(x) := ||Vpal|L1(q) and & > 0 be constant. The proximal operator of R(x) is given by

. 1
Proxgp(z)(2) = arg min {HR(JU) + §Hx - z||%2(m}. 4.2)
Then, the solution of the pj-subproblem (4.1) can be presented by

)\k:
pl;L+1 = PrOX%R(I)(qﬁ—i—l + Fh)

Following the standard Rudin-Osher—Fatemi model in [44], the operator Prox% R(z) can be interpreted as the de-
noising operator for the standard image denoising model. In the last few years, the literature of algorithms for
various image denoising models has been phenomenally upgraded by contemporary deep neural networks, see,
e.g., [41, 47, 48, 49]. An advantage of applying a deep neural network to denoising models is that it avoids it-
erations in its testing phase, and hence computation can be largely saved. We are thus inspired to consider some
pre-trained deep neural network, rather than some iterative scheme, for the py-subproblem (4.1).

To see why the deep CNN is chosen for the case where 2 C R? is a rectangular domain and it is triangulated
into the uniform mesh, there exists a one-to-one mapping between p;, € V}, and an m X n raster image (m xn = N)
where the gray value at pixel (i, j) of the image I corresponds to the value of the function py, at node (i, j). Thus,
there is a mapping between a discrete two-dimensional function and a gray-scale raster image. Then, the pre-trained
deep CNN which has been widely used for various image denoising problems can be applied.

15



Among various networks in the literatures such as [41, 47, 48, 49], we choose the deep CNN in [49]. Given
the depth D, the architecture of the deep CNN network for a gray image in [49] is shown in Figure 1. There are
three types of layers: (i) Conv+ReLU: in the first layer, convolutions (Conv) with 64 filters of size 3 x 3 are used
to generate 64 feature maps, and rectified linear units (ReLU, max(0, -)) are then utilized for nonlinearity. (ii)
Conv+BN+ReLU: in layers 2 to D — 1, convolutions with 64 filters of size 3 x 3 are used, and batch normalization
(BN) [29] is added between convolution and ReLU. (iii) Conv: in the last layer, convolutions with filters of size
3 X 3 x 64 are used to reconstruct the output. Note that the output of the network is the residual image. The
denoised image should be "Noisy Image" minus "Residual Image".

Conv Conv Conv
+ + +
BN BN BN Residual
gl T gl T v _)
Re- Re- Re-
LU LU J LU J

Figure 1: The architecture of the deep CNN network in [49].

Let M denote the mapping from p to a raster image, and C,, the pre-trained deep CNN with ¢ the variance of
the noise used for training CNN. Solving the py,-subproblem (4.1) by a pre-trained deep CNN can be summarized
in Subroutine 4.

Subroutine 4 A deep CNN based method for the p,-subproblem.

1: function DENOISER(gF!, \F)

2 IED = Mg+ .

35 Iguiput = Lipur — Co(Linbun):
4 phl = M_l(l(]fzj;;ut)'

5: end function

Remark 5. Our primary interest is the case where Q C R? is a rectangular domain and it is partitioned by the
uniform triangulation mesh. For other cases such as €2 is not rectangular, the mesh is not uniform, or the deep
CNN is not trained based on raster images, the mapping M should be redefined. For the case where Q C R3, one
may employ a deep 3D CNN (see, e.g., [30]). These much more complicated situations should be discussed case
by case with significantly more techniques, and they are beyond the scope of this paper.

5 The ADMM-Newton-CNN numerical approach

With the discussions in Sections 3 and 4, we are ready to present the complete version of the ADMM-Newton-CNN
numerical approach to the TV model (1.2). We show the flowchart of its implementation in Figure 2.

16



Input Vus, f, ag, a1; compute: M, W set
initials g%, u®, n°, p°, A% set k = 0, m = 0.

-> Compute Ay, '—* Compute uFm Subroutine 1 Subroutine 3
1
Newton step: call Subroutine 2 to get Compute J’
(g, (™) 4, )i set (pPm+t)g, = 0.

i

’ Compute the active sets and Vi, No Whether Newton r@
Yes
A

Ty

1
‘Ak—&-l —_ }\k 4 B(qk+1 _pk+1) ‘
()
Call Subroutine 4 to get p*+1 Ay Whether a satisfactory q is obtained?

Yes
Output gF*!

Figure 2: Flowchart of implementation of the proposed ADMM-Newton-CNN approach.

6 Numerical results

In this section, we show efficiency of the proposed ADMM-Newton-CNN numerical approach by preliminary
numerical results. All codes were written in MATLAB R2020b and numerical experiments were conducted on a
desktop with Windows 10, Intel(R) Core(TM) 19-9900KF CPU (3.60 GHz), and 128 GB RAM. We notice that there
are some limited numerical studies in the literature [11, 51], which are focused on the smoothing 7'V, model (1.5)
with d = 1 and coarse mesh discretization. But the proposed ADMM-Newton-CNN approach is for the original
TV model (1.2) with the focus on the higher-dimensional space of d = 2 as well as fine mesh discretization. Hence,
it seems difficult to make any numerical comparison with the mentioned existing works, because of the essentially
different natures in both modeling and philosophy of algorithmic design.

6.1 Experiment setups

We fix Qas (0,1) x (0,1) and f = 10 in Q2. The domain 2 is partitioned by the uniform triangulation mesh in the
iFEM package [10]. The lower and upper bounds ag and a; in the constrained set K in (1.4) are taken as 0.1 and
5.0, respectively. We follow [11, 33] and construct examples for the test in the following way.

(1.) Choose a discontinuous diffusion coefficient ¢(x) € L(Q).
(2.) Compute the finite element solution uy of (1.1).

(3.) Take the noisy observation data as Vus(x) = Vuy + J||Vuy|prand(z), where rand(x) is a uniformly
distributed random vector-valued function in [—1, 1] with § > 0 the noise level.

Recall that, for the gj-subproblem (1.16a), we use the warm start technique for the PCG executions, and the
implementation of MG V-circles is based on the iFEM package developed in [10] with Jacobi splitting. Moreover,
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for the pj,-subproblem (1.16b), we use the same network architecture, the same training dataset, and the original
code as [49] (see https://github.com/cszn/DnCNN) to train totally 25 CNN networks for the cases where
o = 1,2,---,25. Hence, C, in Subroutine 4 is chosen as one of these pre-trained 25 CNN networks with a
specified value of o. The mapping M in Subroutine 4 is specified as M(p) = (p — ag)/(a1 — ag) x 256, where
p is the coefficient of pj, and I is a raster image. The initial guess of the Lagrange multiplier A° is always set to be
0; the initial guess of g, u® and p° are set to be 1, 1 and 0, respectively. For the stopping criterion to solve the
linear systems (3.5) and (3.19), relative errors are controlled with the tolerances of 10719 and 1075, respectively.
In addition, the value of “Tol” in Subroutine 3 is 10~5.

6.2 Experimental results

Example 1. We rake the discontinuous coefficient q(x,y) in (0,1) x (0,1) as

(.5) 1, y€10,0.5],
x,y) =
N-Y 2, y e (0.5,1],

whose discontinuous points form a straight line.

For the penalty parameter S and denoising parameter o, generally they should be tuned according to the noise
level 6. According to the Morozov’s discrepancy principle [14], the value of « in (1.2) is positively correlated
with the noise level 4, and the parameters ¢ in C, and § = % in (4.2) play the same role of controlling the rate of
denoising. Hence, o should be proportional to § = % and o should be positively correlated with the noise level 6.
In our numerical experiments, we tune the parameters ¢ and /3 such that So is proportional to the noise level of the
observation, i.e., So ~ §. In Table 1, we list the tuned values of 8 and o for the cases where the noise levels are
6 = 0.01, 0.05 and 0.1, respectively. These parameters are kept as constants for different finite element meshes.

Table 1: Parameters ¢, 5 and o for Example 1.

5 3 o (80)/5
0.01 0.1 9 90
0.05 0.5 9 90
0.1 0.6 15 90

As discussed in subsection 3.5 and Remark 3, the proposed ADMM-Newton-CNN approach is guaranteed to be
convergent and our main interest is to show how numerically efficient this scheme could be. We have observed that
the iterative sequence tends to be convergent after about 30 iterations. Hence, we record the numerical performance
in Table 2 for the first 50 iterations. For succinctness, only several choices of the noise levels and the meshes are
listed. It is encouraging to see that total numbers of Newton steps, and PCG numbers for solving the linear systems
(3.5) and (3.19), as well as the relative error to the true solution ||gf — qllz2(0)/ lall2(q), are all very robust to
the mesh. Since the dimension of the resulting subproblems is increased when the mesh is refined, this feature is
particularly favorable for fine mesh discretization.

To take a closer look into computing time of individual subtasks, we focus on the case of h = 1/256 and report
the respective computing times of various subtasks of the first 50 iterations in Table 3. According to this table,
we see that computing time for the linear system (3.19) accounts for about 20-40% of the entire time. Especially,
for the cases where § = 0.01 and 0.05, computing time for (3.19) is less than that of the CNN implementation.
This fact well explains that the preconditioner flkm is a good choice for the linear system (3.19). The Newton
step is hence computationally cheap because the linear system (3.19) can be well solved with the preconditioner
flkm. Recall that the computation of both .J'(g*) and the objective function value mainly consists of computing
Ay, and solving the linear system (3.5). Also, the Newton step needs to compute N, and solve the linear system
(3.19). Based on Table 3, it is easy to estimate that the computation time of the Newton step is only about three
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Table 2: Numerical results for Example 1 after the first 50 iterations.

) h | Total Newton No. | Total PCG No. for (3.5)/(3.19) | CPU Time (s) | [l¢;° — qllz2)/llall 20

1/64 57 661 /2238 2.425 0.0068

1/128 58 705 /2722 9.327 0.0055

0.01 | 1/256 60 764 /3239 45.847 0.0053
1/512 62 814 /3635 199.392 0.0044

1/1024 63 855/ 3825 881.665 0.0052

1/64 55 636/ 1211 2.093 0.0106

1/128 55 660 / 1388 7.550 0.0122

0.05 | 1/256 55 679 /1533 35.839 0.0139
1/512 55 705 /1659 148.891 0.0273

1/1024 55 724/ 1705 649.436 0.0486

1/64 55 638 /1075 2.063 0.0405

1/128 55 666 / 1232 7.363 0.0374

0.1 | 1/256 55 683 /1348 34.702 0.0369
1/512 55 716/ 1448 144.838 0.0478

1/1024 55 741 /1500 631.207 0.0706

Table 3: Computing time of various subtasks for Example 1 with h = 1/256 after the first 50 iterations.

6=0.01 6=0.05 6=0.1
Subtasks No. | Total time (s) | %Time | | No. | Total time (s) | % Time | | No. | Total time (s) | %Time
Linear system (3.19) | 60 16.901 36.9% | | 55 8.300 23.2% | | 55 7.178 20.7%
Implementation of CNN | 50 9.256 20.8% | | 50 9.810 27.4% | | 50 9.556 27.5%

Ny, 60 4.578 10.0% | | 55 4.099 11.4% | | 55 4.179 12.0%
Ak, 60 3.789 8.3% 55 3.440 9.6% 55 3.478 10.0%
Linear system (3.5) | 60 3.196 7.0% || 55 2.842 7.9% || 55 2.897 8.3%
Others 7.857 17.0% 7.347 20.5% 7.414 21.5%
Total 45.847 100% 35.839 100% 34.702 100%

times of that of computing .J’(¢*). Hence, choosing the active-set Newton method in Subroutine 3 for (3.2),
instead of some first-order algorithm which generally requires computing the objective function values repeatedly
to find an appropriate step size, is verified.

In Figure 3, we plot the curves of || Vuf — Vuy||, and ||gf — qllz2(0)/ lla|l 2(q) for Example 1 with h = 1/256.
Also, differences between the ground-truth solution ¢ and the numerical solutions q,"i at the 30-th iteration are
plotted in Figure 4. These curves further display the efficiency of the proposed ADMM-Newton-CNN approach
for Example 1. In this figure, “expectation” means E[||Vul — Vuy||5].

Example 2. The discontinuous coefficient q(x,y) is taken as
q(xz,y) =1+ 0.51q, + Iq,,
Q1 = {(z,9)|(z — 0.5)* + (y — 0.5)*> < 1/8},
Qo = {(2,9)|1/3 <2 <2/3,1/3 <y <2/3},

where Iq, denotes the characteristic function over Y, k = 1,2. Its discontinuous points form a circle and a
square. This example has right-angled and curved discontinuous points, and it is more complicated.

Values of the parameters S and o for various noise levels § are listed in Table 4. Again, values of ¢ are set such
that So is proportional to the noise level of the observation, i.e., S0 ~ ¢, and these parameters are kept as constants
for different finite element meshes.
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Figure 3: Plots of ||Vu} — Vuy||, and ||gF — llz2()/ gl L2 () for Example 1 with h = 1/256.

Table 4: Parameters ¢, § and o for Example 2.

5 3 - B/
0.01 0.06 12 84
0.05 0.3 12 84
0.1 0.3 24 84

Numerical results are reported in Table 5, for the first 50 iterations when the proposed ADMM-Newton-CNN
approach is applied to Example 2. We list computing time of various subtasks individually in Table 6, for the first
50 iterations and h = 1/256. Moreover, in Figure 5, || Vu}: — Vuy ||, and ||gf —q|| 12(q)/|lall £2(q) are plotted for the
first 50 iterations when h = 1/256. In this figure, “expectation” means E[||Vuf — Vuy,|,]. In Figure 6, difference
between the ground-truth solution g and q,’j at the 30-th iteration are plotted for the case where h = 1/256. Similar
conclusions as those for Example 1 can be drawn, and efficiency of the proposed ADMM-Newton-CNN approach
is further verified for Example 2.

7 Conclusions

We focus on a well-known model with the total variational (TV) regularization for identifying the diffusion co-
efficient in an elliptic equation with observation data of the gradient of the solution. We consider the original
TV-regularized model without any relaxation so that the favorable nonsmoothness and convexity properties can be
both kept. We propose to solve this model by the alternating direction method of multipliers (ADMM), and show
that the resulting subproblems can be solved effectively by the active-set Newton method and the convolutional
neural network (CNN), respectively. The proposed ADMM-Newton-CNN approach is validated to be very effi-
cient for the 2-dimensional space case with fine mesh discretization. This work enhances the current literatures
in which only the 1-dimensional space case with coarse mesh discretization can be numerically tackled for some
smoothing and thus inaccurate surrogate models. As [49], we use the training datasets which consist of 400 piece-
wise constant images in size of 180x 180 for training the CNNs in our experiments. The generalization property
of the trained CNNs seems to still guarantee its efficiency for identifying the discontinuous diffusion coefficients
under discussion, although these datasets are generic-purpose. If some specific datasets for the discontinuous diffu-
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Figure 4: Numerical solutions q’;; at the 30-th iteration for Example 1 with A = 1/256. Column 1: the true
coefficient ¢; Column 2: § = 0.01 and the relative error |gF — dllr2@)/llallL2(@) = 0.0051; Column 3: § =
0.05 and the relative error ||gf — qllr2(q)/|lqll12() = 0.0138; Column 4: § = 0.1 and the relative error g} —
allz2(0)/llall L2 (@) = 0.0368; Bottom: the projection of g or g¥ onto the domain 2.

sion coefficient problem are available, then it is much preferred to fine-tune existing networks on smaller but more
specific datasets.

A relevant yet much more challenging problem is to solve TV-regularized models for identifying the diffusion
coefficient in an elliptic equation with observation data of function values of the solution, as studied in [9, 11]. This
problem is nonconvex and thus intrinsically different from the convex model (1.2). To extend the proposed ADMM-
Newton-CNN approach to this nonconvex problem, it is keen to consider how to handle the nonconvex subproblems
both theoretically and numerically. It is also interesting to extend the philosophy of algorithmic design, as well as
the numerical techniques initiated in this paper, to other parameter identification problems for diffusion coefficients
and advection coefficients arising in some elliptic systems with other types of objective functionals, or in some
complicated PDE systems.
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