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Abstract. We concern with fast domain decomposition methods for solving the to-
tal variation minimization problems in image processing. By decomposing the image
domain into non-overlapping subdomains and interfaces, we consider the primal-dual
problem on the interfaces such that the subdomain problems become independent prob-
lems and can be solved in parallel. Suppose both the interfaces and subdomain prob-
lems are uniformly convex, we can apply the acceleration method to achieve an O(1/n2)
convergent domain decomposition algorithm. The convergence analysis is provided as
well. Numerical results on image denoising, inpainting, deblurring, and segmentation
are provided and comparison results with existing methods are discussed, which not
only demonstrate the advantages of our method but also support the theoretical con-
vergence rate.
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1. Introduction

Minimizing the total variation (TV) was first proposed by Rudin, Osher and Fatemi
in [29] for image denoising problem, and has captured wide attention due to its ability
in preserving sharp edges and discontinuities when removes noises. Let Ω be an open
bounded subset of Rn with Lipschitz continuous boundaries, f : Ω→ R be a given image
defined on the domain Ω, and u : Ω → R be the latent clean image. The generalized TV
minimization model can be formulated to minimize the following energy functional

min
u∈BV(Ω)

n

F(u) := TV(u) +
λ

2

∫

Ω
(Au− f )2d x

o

, (1.1)

where λ ≡ const > 0 is a weight parameter used to tradeoff between the data fidelity
term and the regularization term, A is a linear and bounded operator varying with image
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processing tasks, BV(Ω) is the space of functions of bounded variation on Ω, and TV(u)
stands for the total variation defined by

TV(u) = sup
�
∫

Ω
udivpd x : p= (p1, p2) ∈ C1

0 (Ω;R2),‖p‖∞ ≤ 1
�

with C1
0 (Ω,R2) being the space of continuously differentiable vector valued functions with

compact support on Ω and ‖p‖∞ = sup
x

p
∑

i p2
i (x).

Various numerical algorithms have been studied for solving the TV minimization prob-
lem, especially for the Rudin-Osher-Fatemi model, including the direct primal approaches
such as the gradient descent method [29], fixed-point method [33], split Bregman iter-
ation [18], and augmented Lagrangian method [34]. Chambolle [3] reformulated (1.1)
by the Fenchel-Rockafellar dual and solved the dual problem by the semi-implicit gradient
descent algorithm. Chambolle and Pock [4] considered the min-max optimization problem
for solving the general problems in image processing, where the first-order primal-dual al-
gorithm was developed for the nonlinear convex problem with an O(1/n) convergent rate
of convergence. What’s more, as long as the minimization problem is uniformly convex,
e.g., the Rudin-Osher-Fatemi model, it is shown that the O(1/n2) convergence rate can
be achieved by updating the step sizes dynamically. Other methods for solving the model
(1.1) include the fast non-iterative algorithm in [11], the primal-dual fixed-point algorithm
in [9], the proximity algorithm in [27], and general Douglas-Rachford algorithms in [12],
etc.

The aforementioned methods work well on small- and medium-scale image problems,
but fail to address extremely large problems in realistic CPU-time such as traffic problem-
s [32]. Domain decomposition methods (DDMs) [31, 35] can make use of distributed
memory computers by breaking down the problem into a sequence of smaller scale sub-
problems and solve them in parallel. Over the past two decades, both overlapping and
non-overlapping DDMs have been well studied for the variational model in image process-
ing problems. Fornasier and Schönlieb [17] proposed a non-overlapping DDM algorith-
m for total variation minimization, the convergence of which was theoretically guaran-
teed. The idea was further studied for the case of overlapping DDM in [16]. Xu, Tai, and
Wang [36] proposed a two-level overlapping DDM for the Rudin-Osher-Fatemi model by
directly solving the nonlinear partial differential equation. Duan and Tai [15] developed
an overlapping DDM for the Rudin-Osher-Fatemi model, where graph cuts were used to
solve the subdomain minimization problem. To avoid the difficulties in minimizing the
nonsmooth and nonadditive total variation term, the dual problem is considered to de-
velop convergent DDM-based algorithms. Langer, Osher, and Schönlieb [21] developed
a non-overlapping DDM by enforcing the restriction onto the respective subdomain by
a Bregman iteration, which was subsequently solved by a split Bregman strategy. Hin-
termüller and Langer [19] considered the discrete dual Rudin-Osher-Fatemi model with
a non-overlapping domain decomposition, where subproblems were solved by a semi-
smooth Newton method. Chang et al. [8] analyzed the convergent rate of overlapping
DDM for the dual Rudin-Osher-Fatemi model, where the subproblems were solved by the
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semi-implicit gradient descent. Lee and Nam [22] developed a non-overlapping domain
decomposition method for the total variation minimization problem based on dual decom-
position. Langer and Gaspoz [20] presented sequential and parallel overlapping domain
decomposition methods for the primal problem with a theoretical guarantee to converge
to the minimizer of the global problem. Recently, Lee and Park [24] proposed the non-
overlapping relaxed block Jacobi method for a dual formulation of the Rudin-Osher-Fatemi
model and obtained an accelerated version with O(1/n2) convergent rate, which is the on-
ly O(1/n2) convergent DDM using the finite-difference discretization to our knowledge.
Besides, convergent non-overlapping DDMs have been studied based on the primal-dual
formulation of the total variation minimization problem. Duan, Chang, and Tai [14] pro-
posed a non-overlapping DDM by formulating the constrained total variation model as a
saddle-point problem, which was then solved by the primal-dual algorithm. Lee, Nam, and
Park [23] transformed the total variation minimization with L1 fidelity term into an equiva-
lent saddle-point problem. By the dual conversion of total variation term on the subdomain
interfaces, an equivalent saddle-point problem was obtained with parallel structures. We
refer readers to [13, 25] for a thorough survey of the DDM algorithms for total variation
minimization.

In this paper, we propose an accelerated non-overlapping DDM for the total variation
minimization problems. Let the image domain be decomposed into non-overlapping sub-
domains and interfaces. We construct a parallel algorithm by solving the sub-minimization
problems on subdomains and interfaces alternatively. The efficient Chambolle-Pock primal-
dual algorithm is used to solve the sub-minimization problems on both subdomain and
interface. We also discuss the convergence of the proposed DDMs theoretically. Inferred
from the numerical experiments, our proposal is shown efficient and stable concerning im-
age scales, subdomain numbers, and other model parameters. The main contributions of
our work are summarized below

◦ We present an accelerated non-overlapping DDM for the Rudin-Osher-Fatemi model.
Because both subdomain and interface minimization problems are uniformly convex,
we can achieve a theoretical O(1/n2) convergent parallel algorithm;

◦ We develop an efficient non-overlapping DDM for the convex Chan-Vese model,
where the sub-minimization problems on both subdomains and interfaces are solved
by the Chambolle-Pock splitting method;

◦ We conduct numerous experiments to demonstrate the convergence and efficiency
of our proposal. By compared with state-of-the-art non-overlapping DDMs, the pro-
posed one presents significantly better convergence speed. Such a comparison study
is important but neglected in the previous works.

This paper is organized as follows. In Sect. 2, we present the notations and revisit
two non-overlapping DDMs developed based on the primal-dual formulation of the total
variation minimization. Sect. 3 is dedicated to develop an accelerated non-overlapping
DDM for the Rudin-Osher-Fatemi model, in which an O(1/n2) convergence rate is achieved
theoretically. We design an efficient non-overlapping DDM for the convex Chan-Vese model
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in Sect. 4. Intensive numerical experiments on image denoising, inpainting, deblurring,
and segmentation are provided to verify the advantages of the proposed DDM in Sect. 5.
We conclude the paper with some remarks in Sect. 6.

2. Preliminaries

In this section, we introduce some basic notations in the discrete setting and review
two related non-overlapping DDMs for the total variation minimization problems.

2.1. Notations

Without loss of generality, we define the domain Ω for the images of the resolution
M × N as follows

Ω = [1,2, . . . , M]× [1, 2, . . . , N].

We denote V and V ∗ as spaces of functions from Ω into R and R2, respectively. Then for
a given pixel point (i, j) ∈ Ω, we denote u(i, j) ∈ R and p(i, j) = (p1(i, j), p2(i, j)) ∈ R2

for u ∈ V and p ∈ V ∗, respectively. We equip V and V ∗ with the standard Euclidean inner
products

〈u, v〉V =
∑

i, j

u(i, j)v(i, j) and 〈p,q〉V ∗ = 〈p1, q1〉V + 〈p2, q2〉V ,

and the induced norms

‖u‖V =
p

〈u, u〉V and ‖p‖V ∗ =
p

〈p,p〉V ∗ .

Without ambiguity, we omit the subscripts V and V ∗ below. The discrete forward and
backward differential operators for u ∈ V are defined with the homogeneous Neumann
boundary condition as follows

∂ +x u(i, j) =

(

u(i+ 1, j)− u(i, j), 1≤ i < M ,

0, i = M ,

∂ +y u(i, j) =

(

u(i, j+ 1)− u(i, j), 1≤ j < N ,

0, j = N ,

∂ −x u(i, j) =







u(i, j), i = 1,

u(i, j)− u(i− 1, j), 1< i < M ,

−u(i− 1, j), i = M ,

∂ −y u(i, j) =







u(i, j), j = 1,

u(i, j)− u(i, j− 1), 1< j < N ,

−u(i, j− 1), j = N .
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(a) Type I (b) Type II (c) Type III

Figure 2.1: Three non-overlapping domain decomposition methods using the stripe-type
decomposition.

The discrete gradient operator ∇ : V → V ∗ is defined for u ∈ V as

∇u(i, j) = (∂ +x u(i, j),∂ +y u(i, j)),

and the discrete total variation is defined as the 1-norm of ∇u for u ∈ V

‖∇u‖1 =
∑

i, j

|∇u(i, j)|,

where |∇u(i, j)|=
Æ

(∂ +x u(i, j))2+ (∂ +y u(i, j))2. Besides, the discrete divergence is defined
by the duality relationship between the divergence and the gradient, i.e., div = −∇∗. For
p ∈ V ∗, there is

divp(i, j) = ∂ −x p1(i, j) + ∂ −y p2(i, j).

We also define the local notations for the domain decomposition methods. Supposing
that S is a subset of Ω, i.e., S ⊂ Ω, we denote u|S(i, j) = u(i, j) for (i, j) ∈ S and u|S(i, j) =
0 otherwise. Note that u|S is different from uS , where the latter one is a new variable
independent of u. Similarly, we define the local gradient operator on S as ∇Su(i, j) =
∇u(i, j) for (i, j) ∈ S, and ∇Su(i, j) = 0 otherwise. It is easy to induce the local divergence
−∇∗S by the duality relationship. More generally, for a linear operator K defined on Ω, we
define KS by KSu = (Ku)|S . Hereafter, we save the trouble of defining the same operators
with different subscripts whenever there is no ambiguity.

2.2. Non-overlapping DDMs based on the primal-dual formulation

We use a simple example with two subdomains to illustrate different ways to define
the non-overlapping domain decomposition; see Figure 2.1. As shown, image domain Ω
is decomposed into two subsets Ω1, Ω2 and the interface Γ. More specifically, we use the
column marked with "×" to denote the interface Γ, and yellow and green color to denote
the subdomain Ω1 and Ω2, respectively. The red region indicates the boundary between
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the interface and subdomain, where Γ ⊂ Ω1 and Γ ⊂ Ω2 for type I, Γ ⊂ Ω1 and Γ 6⊂ Ω2 for
type II, and Γ 6⊂ Ω1 and Γ 6⊂ Ω2 for type III.

2.2.1. Duan-Chang-Tai method

Duan et al. [14] developed a non-overlapping domain decomposition method for the con-
vex Chan-Vese model

min
0≤u∈V≤1

F(u) := 〈u, h〉+λ‖∇u‖1, (2.1)

where h= ( f − c0)2− ( f − c1)2 is defined by the input image f and the mean values of the
foreground c0 and background c1. Referring to Figure 2.1 (a), the decomposition satisfies
Γ = Ω1 ∩Ω2, and Ω = Ω1 ∪Ω2. By introducing an equivalent constraint on the interface,
the original minimization problem (2.1) is reformulated into the following saddle-point
problem

min
0≤ui∈Vi≤1

F1(u1) + F2(u2)

s.t., u1 = u2 on Γ,
(2.2)

where

F1(u1) = λ‖∇Ω1\Γu1‖1+ 〈u, h|Ω1\Γ〉 and F2(u2) = λ‖∇Ω2
u2‖1+ 〈u, h|Ω2

〉,

with Vi =
�

u ∈ V | supp(u) ⊂ Ωi
	

for i = 1, 2. By introducing a Lagrangian multiplier
g ∈ VΓ :=

�

g ∈ V | supp(g)⊂ Γ
	

, the following saddle-point problem is built up

min
0≤ui∈Vi≤1

max
g∈VΓ

2
∑

i=1

Fi(ui) + 〈u1− u2, g〉, (2.3)

which is solved by the Chambolle-Pock primal-dual algorithm [4]. The specific non-
overlapping DDM algorithm is described as Algorithm Duan16.

Algorithm Duan16 in [14]

1. Initialization:choose g0 = 0, u0
i = ū0

i = 0, and select parameters τ, σ and θ ∈ [0,1];

2. Iterations to update un+1
i , gn+1, ūn+1

i for n= 0,1, 2, · · ·

gn+1 = gn+σ(ūn
1 − ūn

2)|Γ;

(ũn
1, ũn

2) = (u
n
1, un

2)−τ(g
n+1,−gn+1);

(un+1
1 , un+1

2 ) = arg min
0≤ui∈Vi≤1

2
∑

i=1

�

Fi(ui) +
1

2τ
‖ui − ũn

i ‖
2
�

;

ūn+1
i = (1+ θ)un+1

i − θun
i ;

3. End till some stopping criterion is met.
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2.2.2. Lee-Nam-Park method

In [23], Lee, Nam and Park proposed a domain decomposition method using the dual con-
version locally for total variation minimization with the L1 data fidelity term for impulsive
noise removal. As shown in Figure 2.1 (b), the two subdomains satisfy that Ω1 ∩Ω2 = ;,
and the interface satisfies Γ ⊂ Ω1 and Γ 6⊂ Ω2. To be specific, the following saddle-point
problem is concerned with

min
u∈V

max
pΓ∈V ∗

〈∇Γu,pΓ〉 − Iχ(pΓ) +λ‖u− f ‖1+ ‖∇Ω1\Γu‖1+ ‖∇Ω2
u‖1, (2.4)

where Iχ(·) denotes the characteristic function of the set χ = {p | |p(i, j)| ≤ 1, ∀ (i, j) ∈ Ω}.
By the dual conversion on the interfaces, the saddle-point problem has a parallel structure.
The resulting non-overlapping DDM is referred to as Algorithm Lee19 hereafter, where
Vi =

�

u ∈ V | supp(u)⊂ Ωi
	

for i = 1, 2.

Algorithm Lee19 in [23]

1. Initialization: choose τ, σ > 0 with τσ < 1/||∇Γ||2, θ ∈ [0, 1], and ū0 = u0 =
0, p0

Γ = 0;

2. Iterations to update the variables pn+1 and un+1 for n= 0, 1,2, · · ·

p̃n+1
Γ = pn

Γ+σ∇Γū
n;

pn+1
Γ =

p̃n+1
Γ

max{1, |p̃n+1
Γ |}

;

ũn+1 = un−τ∇∗Γp
n+1
Γ ;

un+1
1 = arg min

u1∈V1

‖∇Ω1\Γu1‖1+λ‖u1− f |Ω1
‖1+

1

2τ
‖u1− ũn+1|Ω1

‖2;

un+1
2 = arg min

u2∈V2

‖∇Ω2
u2‖1+λ‖u2− f |Ω2

‖1+
1

2τ
‖u2− ũn+1|Ω2

‖2;

un+1 = un+1
1 + un+1

2 ;

ūn+1 = (1+ θ)un+1− θun;

3. End till some stopping criterion is met.

3. The accelerated non-overlapping DDM for the Rudin-Osher-Fatemi model

In this section, we propose an accelerated non-overlapping DDM for the Rudin-Osher-
Fatemi denoising model, in which A is an identity operator. The image domain is decom-
posed as Figure 2.1 (c), where Ω1 ∩Ω2 = ;, Γ 6⊂ Ω1 and Γ 6⊂ Ω2. The interface Γ is defined
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as follows
Γ = [1,2, · · · , M]× [N1],

and the resulting two non-overlapping subdomains are given as

Ω1 = [1,2, · · · , M]× [1, 2, · · · , N1− 1],

Ω2 = [1, · · · , M]× [N1+ 1, · · · , N].

Furthermore, we define

Ω̄1 = [1, 2, · · · , M]× [1,2, · · · , N1], Ω̄2 = Ω2, Γ̄ = [1,2, · · · , M]× [N1, N1+ 1].

The corresponding local function spaces for the subdomains are given as follows

V1 = {u ∈ V | supp(u)⊂ Ω̄1}, V ∗1 = {p ∈ V ∗ | supp(p)⊂ Ω1},
VΓ = {u ∈ V | supp(u)⊂ Γ̄}, V ∗Γ = {p ∈ V ∗ | supp(p)⊂ Γ},
V2 = {u ∈ V | supp(u)⊂ Ω̄2}, V ∗2 = {p ∈ V ∗ | supp(p)⊂ Ω2}.

Thus, there is V = V1 + VΓ + V2 and V ∗ = V ∗1 ⊕ V ∗Γ ⊕ V ∗2 . Now, we propose the new
non-overlapping DDM algorithm by rewriting the minimization problem (1.1) as follows

min
u∈V
‖∇Γu‖1+ ‖∇Ω1

u‖1+ ‖∇Ω2
u‖1+

λ

2
‖u− f ‖2. (3.1)

By pursuing the primal-dual formulation on Γ, we consider the following saddle-point
problem

min
u∈V

max
pΓ∈V ∗Γ

L (u,pΓ) = 〈∇Γu,pΓ〉 − Iχ(pΓ)
︸ ︷︷ ︸

H∗(p)

+
λ

2
‖u− f ‖2

︸ ︷︷ ︸

G(u)

+
2
∑

i=1

‖∇Ωi
u‖1

︸ ︷︷ ︸

J(u)

. (3.2)

Then we can define the sub-minimization problems on Ωi as follows

Fi(ui) :=
λ

2
‖ui − f |Ωi

‖2
︸ ︷︷ ︸

Gi(ui)

+‖∇Ωi
ui‖1

︸ ︷︷ ︸

Ji(ui)

, for i = 1,2,

which are separable and can be solved in parallel. Here the main difference between
our splitting and the one in [23] is the treatment on the fidelity term. Specifically, we
solve a complete Rudin-Osher-Fatemi model (1.1) on Γ, while only total variation term is
minimized on Γ in [23]. The merit of bundling the fidelity term and total variation together
is to achieve a better convergence rate on the interface. Because the L2 fidelity term is
strongly convex, we can apply the acceleration technique to the saddle-point problem on
Γ and achieve an O(1/n2) convergence rate [1,28]. The detailed non-overlapping DDM is
stated as Algorithm 1, where PDτn,σn

(un,pn
Γ, ūn) denotes the saddle-point problem on the

interface.
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Algorithm 1 Accelerated non-overlapping DDM for image denoising

1. Initialization: choose τ0,σ0 > 0 such that τ0σ0 < 1/‖∇Γ‖2, and θ0 = 0, ū0 = u0 =
0, p0

Γ = 0;

2. Iterations to update the variables un+1 and pn+1
Γ for n= 0, 1,2, · · ·

(ũn+1,pn+1
Γ ) = PDτn,σn

(un,pn
Γ, ūn);

(un+1
1 , un+1

2 ) = arg min
ui∈Vi

2
∑

i=1

�

Fi(ui) +
1

2τn
‖ui − ũn+1|Ω̄i

‖2
�

;

un+1 = un+1
1 + ũn+1|Γ+ un+1

2 ;

ūn+1 = un+1+ θn(u
n+1− un);

θn+1 = 1/
p

1+µτn, τn+1 = θn+1τn, σn+1 = σn/θn+1;

3. End till some stopping criterion is met.

Now we discuss how to solve the local minimization problems on the interface and
subdomains, respectively.

3.1. Local minimization problems on interfaces

The minimization problem on the interface is solved by the following primal-dual al-
gorithm, where only values of un on Γ̄ are updated and stored in ũn+1.

Interface Algorithm: (ũn+1,pn+1
Γ ) = PDτn,σn

(un,pn
Γ, ūn)

1. Compute the dual variable pn+1
Γ by

pn+1
Γ = Iχ(p

n
Γ+σn∇Γūn); (3.3)

2. Update the primal variable ũn+1 on Γ̄ from

ũn+1 =
un|Γ̄−τn∇∗Γp

n+1
Γ +τnλ f |Γ

1+τnλ
+ un|Ω\Γ̄. (3.4)
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3.2. Local minimization problem on subdomains

By introducing the dual variable of the local total variation, we can reformulate the
minimization problem on subdomains into the following min-max problem

(un+1
i ,pn+1

i ) = arg min
ui∈Vi

max
pi∈V ∗i

〈∇Ωi
ui ,pi〉 − Iχ(pi) + Gi(ui) +

1

2τn
‖ui − ũn+1|Ω̄i

‖2. (3.5)

Note that the subdomain problems are solver-independent such that any existing total
variation minimization algorithm can be applied with little modification. Because Gi(ui) is
strongly convex for the denoising problem, the saddle-point problem (3.5) can be solved
by the accelerated algorithms with the O(1/n2) convergence rate, such as fast iterative
shrinkage-thresholding algorithm [1], accelerated linearized primal-dual algorithm [10],
and accelerated primal-dual algorithm in [5]. In our paper, we follow [5] to solve the
sub-minimization problems by the primal-dual algorithm as provided below.

Algorithm 2 Primal-dual algorithm on subdomains

1. Initialization: choose γ0 = τn, κ0γ0 = 1/L2, and θ0 = 0;

2. Iterations to update the variables uk+1
i and pk+1

i for k = 0,1, 2, · · · , kmax

pk+1
i = Iχ(p

k
i +κk∇Ωi

ūk
i );

uk+1
i =

τnuk
i −τnγk∇∗Ωi

pk+1
i +τnγkλ f |Ωi

+ γkũn+1|Ω̄i

τn+ γk +τnγkλ
;

ūk+1
i = uk

i + θk(u
k+1
i − uk

i );

θk+1 = 1/
p

1+µγk; γk+1 = θk+1γk; κk+1 = κk/θk+1;

3. Return: un+1
i = ukmax

i |Ωi
and pn+1

i = p
kmax
i .

There are two remarks for the implementation of Algorithm 2. Firstly, for saving the
computational costs of local problems, ui and pi , i=1, 2, are initialized using the values
from the latest outer iteration. Secondly, the initialization for κ0 and γ0 can be chosen
according to the discussion in [5], such that

γ0 = 1/LG = τn, κ0 = LG/L2,

with L = ‖∇‖ ≤
p

8 and LG being the Lipschitz constant of Gi(ui).

3.3. Convergence

Both our algorithms for the interface problems and subdomain problems are the convex-
concave saddle-point problems discussed by Chambolle and Pock, the convergence of
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which has been provided as Theorem 4 in [5]. Similar to [23], we directly offer the follow-
ing theorems to demonstrate the convergence of the proposed Algorithm 1 and subdomain
Algorithm 2.

Theorem 3.1. Let {(un,pn
Γ)} be the sequence generated by Algorithm 1. For τ0 > 0, τ0σ0 ≤

1/||∇Γ||2, there exists a saddle-point (u∗,p∗Γ) such that (un,pn
Γ)→ (u

∗,p∗Γ) as n→∞. Fur-
thermore, the primal-dual gap

max
pΓ∈V ∗Γ

L (un,pΓ)−min
u∈V
L (u,pΓ,n)

tends to 0 in the rate of O(1/n2), where un =
1
n

∑n
i=1 ui and pΓ,n =

1
n

∑n
i=1 p

i
Γ.

Proof. It is easy to prove that ∇Γ is a bounded linear operator in the finite dimension
space, and ‖∇Γ‖2 ≤ ‖∇‖2 ≤ 8 refereed to [3]. Because G is strongly convex function
and H∗ and J are proper, lower semi-continuous, convex functions, one readily proves the
theorem according to Theorem 4 in [5]. �

Theorem 3.2. The Algorithm 2 for solving the subdomain problems converges if γ0κ0 ≤ 1/8.

Proof. The proof is the same as Theorem 3.1. �

4. The efficient non-overlapping DDM for the convex Chan-Vese model

We further consider the implementation of the non-overlapping DDM on the convex
Chan-Vese model [6,7] defined as

min
0≤u∈V≤1

λ‖∇u‖1+ 〈1− u, Cs〉+ 〈u, Ct〉, (4.1)

where Cs = ( f − c0)2 and Ct = ( f − c1)2. Many efficient algorithms have been devel-
oped for solving the Chan-Vese model (4.1) such as the dual method [2], the Douglas-
Rachford primal-dual [26], the continuous max-flow [37], and the Chambolle-Pock primal-
dual [14], etc. Here, we follow the formulation of continuous max-flow model by consid-
ering the following saddle-point problem

min
u∈V

max
ps ,pt∈V,p∈V ∗

〈u, divp− ps + pt〉+ 〈1, ps〉 − ICs
(ps)− ICt

(pt)− Iζ(p), (4.2)

where ζ = {p | |p(i, j)| ≤ λ, ∀ (i, j) ∈ Ω}, and the projections ICs
(·) and ICt

(·) mean
min{·, Cs} and min{·, Ct}, respectively. In order to establish the convergence result, we
group the dual variables together as y = (p, pt , ps)T , and define the linear operator K as
K = (−∇, I ,−I)T . The above min-max problem (4.2) can be rewritten as follows

min
0≤u∈V≤1

max
y∈V ∗×V×V

〈Ku, y〉 −H∗(y), (4.3)
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with
H∗(y) =−〈1, ps〉+ ICt

(pt) + ICs
(ps) + Iζ(p).

By considering the primal-dual formulation on Γ, we can obtain an equivalent saddle-point
problem with the parallel structure as follows

min
u∈V

max
yΓ∈V ∗Γ×VΓ×VΓ

L (u, yΓ) = 〈KΓu, yΓ〉 −H∗(yΓ) +
2
∑

i=1

�

〈1− u, Cs|Ωi
〉+ 〈u, Ct |Ωi

〉
�

︸ ︷︷ ︸

G(u)

+
2
∑

i=1

λ‖∇Ωi
u‖1

︸ ︷︷ ︸

J(u)

,

where yΓ =
�

pΓ, ptΓ, psΓ
�T

and the sub-minimization problem can be defined as

Fi(ui) := 〈1− ui , Cs|Ωi
〉+ 〈ui , Ct |Ωi

〉
︸ ︷︷ ︸

Gi(ui)

+‖∇Ωi
ui‖1

︸ ︷︷ ︸

Ji(ui)

, for i = 1, 2.

Then the corresponding non-overlapping DDM for the Chan-Vese model can be sketched
as Algorithm 3.

Algorithm 3 Non-overlapping DDM for the Chan-Vese model

1. Initialization: choose τ, σ > 0 such that τσ < 1/‖KΓ‖2, θ = 1, and ū0 = u0 =
0, y0

Γ = 0;

2. Iterations to update the variables un and yn
Γ for n= 0,1, 2, · · ·

(ũn+1, yn+1
Γ ) = PDτ,σ(u

n, yn
Γ , ūn);

(un+1
1 , un+1

2 ) = arg min
ui∈Vi

2
∑

i=1

�

Fi(ui) +
1

2τ





ui − ũn+1|Ω̄i







2
�

;

un+1 = un+1
1 + ũn+1|Γ+ un+1

2 ;

ūn+1 = un+1+ θ(un+1− un);

3. End till some stopping criterion is met.

4.1. Local minimization on interfaces

It is easy to verify that all the variables can be solved by closed-form solutions with low
costs. In particular, the corresponding Chambolle-Pock algorithm for the sub-minimization
problem on interfaces is presented as follows.
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Interface Algorithm: (ũn+1, yn+1
Γ ) = PDτ,σ(un, yn

Γ , ūn)

1. Estimate yn+1
Γ by

pn+1
Γ = Iζ(p

n
Γ+σ∇Γū

n);

pn+1
sΓ = ICs

(pn
sΓ+σ(1− ūn

Γ));

pn+1
tΓ = ICt

(pn
tΓ+σūn

Γ);

2. Update ũn+1 on Γ̄ from
ũn+1 = un−τK∗Γ yn+1

Γ .

4.2. Local minimization on subdomains

The solution of local problems on subdomains are formally in accord with the one on
Γ, which solves the following saddle-point problem

(un+1
i , yn+1

i ) = arg min
ui∈Vi

max
yi∈V ∗Γ×VΓ×VΓ

〈Kui , yi〉 −H∗(yi) +
1

2τn





ui − ũn+1|Ω̄i







2
,

where the sub-minimization problems of the dual variable yi =
�

pi , pt i , psi

�T
are the same

as the one on the interfaces, and the sub-minimization problem of the primal variable
contains another proximal term defined on Ω̄i . Thus, the Chambolle-Pock algorithm for
solving the local minimization on subdomains can be easily deduced as Algorithm 4.

Algorithm 4 Primal-dual algorithm on subdomains

1. Initialization: choose κ, γ > 0 such that κγ < 1/‖K‖2, and θ = 1;

2. Iterations to update uk+1
i and yk+1

i for k = 0,1, 2, · · · , kmax

pk+1
i = Iζ(p

k
i +κ∇Ωi

ūk
i );

pk+1
si = ICs

�

pk
si +κ(1− ūk

i )
�

;

pk+1
t i = ICt

(pk
ti +κūk

i );

uk+1
i =

γũn+1|Ω̄i
+τuk

i − γτ(−∇
∗
Ωi
pk+1

i + pk+1
t i − pk+1

si )

γ+τ
;

ūk+1
i = uk+1

i + θ(uk+1
i − uk

i );

4. Return: un+1
i = ukmax

i |Ωi
and yn+1

i = ykmax
i .
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4.3. Convergence

Similarly to [23], we can present the following theorems for the convergence of Algo-
rithm 3 and Algorithm 4.

Theorem 4.1. Let {(un, yn
Γ)} be the sequence generated by Algorithm 3. For θ = 1, τ > 0,

and τσ ≤ 1/||KΓ||2, there exists a saddle-point (u∗, y∗Γ) such that (un, yn
Γ) → (u

∗, y∗Γ) as
n→∞. Furthermore, the primal-dual gap

max
yΓ∈V ∗Γ

L (un, yΓ)−min
u∈V
L (u, yΓ,n)

tends to 0 in the rate of O(1/n), where un =
1
n

∑n
i=1 ui and yΓ,n =

1
n

∑n
i=1 y i

Γ.

Proof. Since K =
�

−∇, I ,−I
�T

, we have ‖KΓ‖2 ≤ ‖K‖2 ≤ (‖∇‖2+2)≤ 10. Since G is a
proper, continuous and convex function, and H∗ and J are proper, lower semi-continuous
convex functions, we can achieve the convergence with the rate O(1/n) according to The-
orem 1 in [5]. �

Theorem 4.2. The Algorithm 4 for solving the subdomain problems converges if γ0κ0 ≤ 1/10.

5. Numerical Experiments

In this section, we exhibit the numerical performances of our algorithm by applying
it to various image processing tasks and comparing the performance with state-of-the-art
non-overlapping DDMs.

5.1. Image reconstruction

In this subsection, we apply Algorithm 1 to denoising, inpainting, and deblurring prob-
lems, where A is an identity matrix, diagonal matrix with either 0 or 1, and convolution
matrix with a size of 3× 3 blurring kernel, respectively.

We start with denoising problems to evaluate the influences of the step sizes, the nu-
merical convergence, and the efficiency of the proposed Algorithm 1. Two images "Boat"
(512×512) and "Building" (1024× 1024) are used in our numerical experiments for the
denoising problem; see Figure 5.1, where the two images are degenerated by Gaussian
white noise with mean 0 and variance 0.005 and variance 0.02, respectively. We use the
stripe-shaped decomposition and the Peak Signal-to-Noise Ratio (PSNR) to measure the de-
noising performance. The absolute error of energy (En) and relative error (en) are adopted
to terminate the external loops and internal loops, which are defined as

En =
|F(un)− F(u∗)|

F(u∗)
, and en =

‖un+1− un‖2

‖un+1‖2
,

respectively, with u∗ being the solution of the full size problem obtained by Algorithm 2
in [4] for 106 iterations. Here, F(u∗) and F(un) denote the numerical energy of u∗ and un,
respectively.
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(a) Boat, var= 0.005 (b) Nsub = 2 (c) Nsub = 8 (d) Nsub = 16

(e) Building, var= 0.02 (f) Nsub = 2 (g) Nsub = 14 (h) Nsub = 24

Figure 5.1: Testing images for denoising and the corresponding denoising results using
proposed non-overlapping DDM, where the red lines indicate the positions of interfaces
Γ.

Firstly, we explore the influences of the initial step size τ0 on the performance of Algo-
rithm 1 with the fixed λ. We set the number of subdomains as Nsub = 12 and Nsub = 16
for image "Boat" and "Building", respectively, and we always keep the product of the two
step sizes of the dual and primal variables as 1/8 for both the external loops or the inner
loops. Note that the same values are taken in the following tests unless otherwise specified.
The number of inner iterations for the subdomain problems is fixed as 100. We find that
increasing the number of iterations on Γ can effectively reduce the number of iterations
on the outer loop, where the iteration for the dual variable on the interface problem is
fixed as 20 iterations. As shown in Figure 5.2, the number of iterations required to reach
the second-order convergence rate gradually decreases as τ0 increases from 0.001 to 0.1.
However, it does not mean the larger the τ0 is, the better the convergence is. We observe
that the convergence rate with τ0 = 0.1 is no more faster than the one with τ0 = 0.01
after the first few hundreds of iterations. Therefore, we take τ0 = 0.05 as the default value
in the following experiments.

In practical applications, it is unreasonable to fix the number of inner iterations to
be a large value, because the inner iterations converge faster and faster as the external
loops proceed. Meanwhile, from the perspective of parallelism, it is also unwise to set
the number of inner loops too small or solely use relative error to break off, because the
fewer inner iterations usually lead to more external iterations and result in the rise of
communication cost. In the case of parallel computing, the wall-clock time consumed
is mainly composed of two parts, one is the communication time between the various
subsystems, and the other is the time consumed to solve the sub-problems. It is worth
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(b) Building with λ= 10

Figure 5.2: Performance comparison of Algorithm 1 on image "Boat" and "Building" with
different values of τ0.

Table 5.1: The results of image "Boat" and "Building" with different numbers of inner
iterations.

nIn Boat,τ0 = 0.05,λ= 20 Building,τ0 = 0.05,λ= 10
Energy Max_diff Time Iter Energy Max_diff Time Iter

1 18146.3103 0.0003 2.73 2497 107052.9514 0.0012 9.07 4095
5 18146.3102 0.0016 1.00 172 107052.9518 0.0024 2.37 224
10 18146.3102 0.0017 1.58 160 107052.9518 0.0028 3.92 188
20 18146.3103 0.0018 2.78 156 107052.9518 0.0030 6.85 174
50 18146.3103 0.0018 6.84 155 107052.9519 0.0031 15.87 168

100 18146.3102 0.0018 13.55 155 107052.9521 0.0032 31.60 167

noting that, although the algorithm we designed is communication-saving, the solving
speed of the sub-problems is not guaranteed to be consistent. Therefore, the first part of
the time is mainly the idle time, that is, the time difference between the fastest completed
sub-problem and the slowest completed sub-problem. To minimize the idle time, we need
to ensure the efficiency and speed consistency of each sub-problem solution at the same
time. To that end, we exhibit the results of two testing images in Table 5.1, with respect
to different numbers of inner iterations (nIn). The external loops of image "Boat" and
"Building" are terminated by En ≤ 10−6 and En ≤ 5× 10−7, respectively. The "Time" in
the tables refers to virtual wall-clock time, which is measured with the assumption that
the algorithm is parallelized, i.e., we take the maximum value among wall-clock times
consumed in all subdomains of each external iteration. The "Max_diff" is the maximum
residual error defined as max |u�−u∗|, where u� is the solution obtained by our algorithm.
The "Energy" in the tables refers to the value of the object energy functional when the
algorithm converges, i.e., F(u�). It is obviously shown that the number of external iteration
decreases as we increase nIn from 1 to 10, but the downward trend becomes insignificant
as nIn keeps increasing. We also observe that both PSNR and numerical energy remain
the same as the number of inner iterations increases. We then simply let nIn = 10 for
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(b) Building with en ≤ 10−6

Figure 5.3: Energy decay En =
F(un)−F(u∗)

F(u∗) of state-of-the-art non-overlapping DDM algo-
rithms on image "Building".

denoising problems to balance the number of external iterations and time consumed on
subdomains.

0 1717 2500 5000 7500 10000
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Li_Acc

Lee19

Lee17

Duan16

(a) Building with nIn= 10
0 548 2000 4000 6000 8000 10000

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Li_Acc

Lee19

Lee17

Duan16

(b) Building with en ≤ 10−6

Figure 5.4: The Max_diff decay of the different algorithms w.r.t. image "Building".

Now we compare the proposed Algorithm 1 (denoted as Li_Acc) with the other three
non-overlapping DDMs Duan16 [14], Lee19 [23], and the relaxed block Jacobi algorithm
(denoted as Lee17) [22]. We initialize the step sizes of algorithm Duan16 and Lee19 with
τ= γ0 = 0.05 for a fair comparison. For algorithm Lee17, only local problems contain the
step size parameter, which is set as γ0 = 0.05. The local problems defined on subdomains
of all comparison algorithms are solved by Algorithm 2 in [4], where µ= 0.7λ is chosen for
all algorithms. Two terminating conditions of the inner loops are tested for the algorithms,
i.e., nIn = 10 and en ≤ 10−6, illustrated in Figure 5.3(a) and Figure 5.3(b), respectively.
Similar to the previous comparison, we plot the absolute errors of the numerical energy
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Figure 5.5: Residual error of "Boat" with various numbers of sundomains.

obtained by the DDMs together with the theoretical O(1/n2) rate in Figure 5.3. As can be
seen, the algorithm Duan16, Lee17, and Lee19 converge faster than our algorithm Li_Acc
at the early stage, but the advantage of our method becomes significant as the number
of iteration keeps increasing. It is effortless to notice that our non-overlapping DDM can
achieve the second-order convergence rate under both termination conditions. In particu-
lar, our algorithm can achieve the desired convergence rate within one hundred iterations
in Figure 5.3(a), which obviously outperforms the others in numerical convergence.

Table 5.2: Comparison results on image "Boat" with different numbers of subdomains.

Nsub PSNR
Li_Acc,τ0 = 0.05,λ= 10 Lee19, τ= 0.05,λ= 20

Energy Max_diff Time Iter Energy Max_diff Time Iter
2 30.01 18146.3102 0.0024 5.99 85 18146.3103 0.0006 26.19 327
4 30.01 18146.3100 0.0026 1.28 104 18146.3103 0.0008 9.65 397
6 30.01 18146.3102 0.0022 1.05 116 18146.3103 0.0010 8.42 563
8 30.01 18146.3102 0.0020 0.99 133 18146.3103 0.0008 7.34 638

10 30.01 18146.3102 0.0019 0.98 148 18146.3103 0.0005 6.75 691
12 30.01 18146.3102 0.0017 0.97 160 18146.3103 0.0008 7.25 828
14 30.01 18146.3103 0.0016 0.94 167 18146.3103 0.0005 7.04 885
16 30.01 18146.3103 0.0015 0.92 181 18146.3103 0.0007 7.55 962

We also evaluate the performance of our method and Lee19 with respect to different
numbers of subdomains. The results are displayed in Table 5.2 and Table 5.3, where the
termination conditions are determined as En ≤ 10−6 and En ≤ 5× 10−7 for image "Boat"
and "Building", respectively. From both tables, one readily knows that both algorithms
demand more iterations to reach the same error tolerance as the number of subdomains
increases. Obviously, our DDM always requires fewer iterations and is more stable con-
cerning with the number of subdomains. We note that Algorithm Lee19 outperforms our
proposal in terms of Max_diff. In order to investigate the reason, we plot the Max_diff
decay curves of image "Building" in Figure 5.4, where the subdomain problems are termi-
nated by either iteration number in Figure 5.4(a) or relative error in Figure 5.4(b). As can
be seen, when both the step sizes and the number of subdomains are fixed, the Max_diff
monotonically decreases as the number of iterations increases for all DDMs, and our al-
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Table 5.3: Comparison results on image "Building" with different numbers of subdomains.

Nsub PSNR
Li_Acc, τ0 = 0.05, λ= 10 Lee19, τ= 0.05, λ= 10

Energy Max_diff Time Iter Energy Max_diff Time Iter
2 27.91 107052.9517 0.0033 40.50 134 107052.9522 0.0004 205.45 643
4 27.91 107052.9514 0.0039 21.17 142 107052.9522 0.0008 112.05 732
6 27.91 107052.9513 0.0033 14.75 148 107052.9522 0.0006 81.75 826
8 27.91 107052.9515 0.0031 11.64 154 107052.9522 0.0009 65.63 899

10 27.91 107052.9519 0.0036 3.67 162 107052.9522 0.0007 34.67 982
12 27.91 107052.9518 0.0032 3.16 172 107052.9522 0.0008 29.66 995
14 27.91 107052.9522 0.0028 2.76 175 107052.9522 0.0007 32.25 1116
16 27.91 107052.9518 0.0028 2.51 188 107052.9522 0.0006 26.25 1141
18 27.91 107052.9521 0.0032 2.39 192 107052.9522 0.0007 19.88 1205
20 27.91 107052.9518 0.0030 2.41 204 107052.9522 0.0007 19.41 1263
22 27.91 107052.9522 0.0026 2.35 213 107052.9522 0.0005 17.86 1322
24 27.91 107052.9522 0.0026 2.24 216 107052.9522 0.0006 17.93 1341

gorithm can achieve the smallest Max_diff after certain number of iterations. Because the
image qualities are almost unaffected by several pixels with relatively large errors, we ter-
minate the DDMs by the absolute error of the numerical energy to save the computational
costs. Besides, we observe that both PSNR and numerical energies converge to almost the
same values, which means both DDMs converge to the same solution no matter how many
subdomains are used. Visualized results in Figure 5.1 and Figure 5.5 further confirm our
conclusion, in which one can not find any visual differences among the results with differ-
ent numbers of subdomains with extremely small differences occurred on the interfaces.

Table 5.4: Inpainting results of image "Boat" and "Building".

Boat,τ0 = 2.5,λ= 35 Building,τ0 = 2.5,λ= 20
Nsub Energy PSNR Time Iter Nsub Energy PSNR Time Iter

2 7541.6319 33.20 18.45 544 2 19204.5282 33.97 66.35 405
6 7541.5922 33.20 4.84 592 8 19204.8664 33.98 17.43 496
10 7541.7190 33.21 3.82 614 14 19205.2722 33.98 6.80 499
12 7541.7599 33.22 3.50 626 20 19205.5932 33.98 5.21 526
16 7541.8194 33.22 3.00 664 24 19205.7250 33.97 4.98 554

In the following, we apply our non-overlapping DDM to inpainting and deblurring
problems, where the same test images are used with missing domains as shown in Fig-
ure 5.6. For inpainting examples, the stopping conditions are provided as en ≤ 5× 10−6

and en ≤ 1× 10−6 for image "Boat" and "Building", respectively. Simultaneously, the in-
ner loops of subdomains for both images are set as en ≤ 10−6 or nIn ≥ 100. As can be
seen from Table 5.4, the performance of our algorithm on inpainting problems is consis-
tent with denoising, where the virtual wall clock decreases as the number of subdomains
keeps increasing. For deblurring problems, we degrade both image "Boat" and "Building"
by a Gaussian blur kernel of size 3× 3. The external loops are terminated by the relative
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(a) Boat 512×512 (b) Nsub = 2 (c) Nsub = 8 (d) Nsub = 16

(e) Building1024× 1024 (f) Nsub = 2 (g) Nsub = 14 (h) Nsub = 24

Figure 5.6: Inpainting images and results, where the red lines indicate the positions of
interfaces Γ.

error en ≤ 10−6, while the stopping conditions are set as the same as inpainting for the
inner loops. Though the values of PSNR and numerical energies in Table 5.5 are not as
stable as the former experiments, which can be attributed to the differences of terminating
conditions of external loops, the proficiency improvements brought by DDM are extraordi-
nary. Furthermore, we provide the residual error of "Building" in Figure 5.7 with different
numbers of subdomains. Although the residual error in the missing area is not as small
as the denoising case, the distribution of error is obviously independent of the number of
subdomains.
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Figure 5.7: Residual errors of image "Building" on image inpainting application with
different numbers of sundomains.



Accelerated Non-overlapping Domain Decomposition Method for Total Variation Minimization 21

Table 5.5: Deblurring results of image "Boat" and "Building".

Boat,τ0 = 0.05,λ= 20 Building,τ0 = 0.05,λ= 20
Nsub Energy PSNR Time Iter Nsub Energy PSNR Time Iter

2 17397.1502 27.93 21.45 499 2 202856.2680 27.14 100.37 623
6 17400.1234 27.92 5.69 510 8 202884.6530 27.14 27.80 672

10 17402.3245 27.91 4.40 548 14 202909.6712 27.14 11.53 721
12 17404.2672 27.90 4.13 566 20 202938.0442 27.14 8.75 744
16 17408.4268 27.90 3.25 590 24 202951.8130 27.14 7.95 750

(a) Lung 1024×1024 (b) Nsub = 2 (c) Nsub = 10 (d) Nsub = 18

(e) Leaf 2048×2048 (f) Nsub = 2 (g) Nsub = 14 (h) Nsub = 26

Figure 5.8: Testing images for segmentation and the corresponding segmentation results
obtained by the proposed non-overlapping DDM with different numbers of sundomains.

5.2. Image segmentation

Although the segmentation problem does not have a uniformly convex data fidelity
term, which disables most acceleration algorithms, our algorithm is still applicable with
fixed step sizes. Two test images "Lung" and "Leaf" in Figure 5.8 are chosen to evaluate the
performance of our DDM. For segmentation, the inner loop is stopped using the maximal
iteration number of 10, and the external loops are terminated by En ≤ 10−6 and En ≤ 5×
10−7 for image "Lung" and "Leaf", respectively. We compare our algorithm with Algorithm
Duan16 for different combinations of images and numbers of subdomains. As shown in
Table 5.6 and Table 5.7, our algorithm outperforms Algorithm Duan16 by reducing the
outer iterations significantly. Pay attention that the values of Max_diff concerning image
"Leaf" are much larger than denoising due to the lack of uniform convexity, while the
residual error between the segmentation results obtained by our DDM and the ground
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Figure 5.9: Residual errors of image "Lung" on image segmentation application with
different numbers of sundomains.

Table 5.6: Comparison results of Algorithm 3 and Algorithm Duan16 for Figure 5.8 (a).

Nsub Li_Acc τ= γ= 0.5 Duan16 τ= γ= 0.5
Energy Max_diff Time Iter Energy Max_diff Time Iter

2 22046.2572 0.0044 279.91 533 22046.1692 0.0015 212.25 782
6 22046.2574 0.0042 86.28 553 22046.1692 0.0014 67.51 796

10 22046.2572 0.0049 35.84 572 22046.1691 0.0022 34.18 814
14 22046.2570 0.0072 22.98 592 22046.1691 0.0020 19.50 814
18 22046.2573 0.0062 17.24 600 22046.1692 0.0016 12.65 840
22 22046.2572 0.0051 12.96 615 22046.1692 0.0016 11.15 868

truth u∗ is acceptable for the image "Lung", as shown by Table 5.6 and Figure 5.9. As there
is no visual difference between the results obtained by DDM and ground truth, we save the
trouble of displaying the ground truth.

6. Conclusion

In this paper, we proposed the accelerated non-overlapping DDM for the total variation
minimization models. Local problems on both interfaces and subdomains are small-size
original minimization problems. Therefore, the acceleration technique can be applied to
achieve an O(1/n2) convergence rate for image reconstruction problems, for which the
data fidelity is uniformly convex. Besides, we developed a new convergent non-overlapping
DDM for the convex Chan-Vese model. By comparing with state-of-art non-overlapping
DDMs, we demonstrated the new one outperformed others by providing a fast convergence
with the same step sizes and termination conditions, which coincides with the theoretical
results. Possible further work includes design accelerated non-overlapping DDM for the
Chan-Vese model based on more efficient local solvers such as the preconditioned and
over-relaxed Douglas-Rachford splitting methods in [30].
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Table 5.7: Comparison results of Algorithm 3 and Algorithm Duan16 for Figure 5.8 (e).

Nsub Li_Acc τ= γ= 1.5 Duan16 τ= γ= 1.5
Energy Max_diff Time Iter Energy Max_diff Time Iter

2 27442.7466 0.5340 684.67 290 27442.8698 0.7846 402.86 338
6 27442.7466 0.5340 205.51 290 27442.8698 0.7847 125.71 338
10 27442.7467 0.5340 114.56 290 27442.8699 0.7847 72.54 338
14 27442.7466 0.5343 75.33 289 27442.8701 0.7837 50.74 339
18 27442.7467 0.5360 55.82 289 27442.8701 0.7671 40.35 355
22 27442.7466 0.5338 36.88 290 27442.8697 0.7839 31.82 339
26 27442.7466 0.5362 30.85 289 27442.8696 0.7838 27.67 339
30 27442.7467 0.5358 22.71 289 27442.8702 0.7849 23.38 338
34 27442.7467 0.5340 14.58 290 27442.8701 0.7694 16.70 353
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