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Abstract. We prove that for certain positive operators T , such as the Hardy-Littlewood maximal function
and fractional integrals, there is a constant D > 1, depending only on the dimension n, such that the two

weight norm inequality ∫
Rn

T (fσ)2 dω ≤ C
∫
Rn

f2dσ

holds for all f ≥ 0 if and only if the (fractional) A2 condition holds, and the restricted testing condition∫
Q
T
(
1Qσ

)2
dω ≤ C |Q|σ

holds for all cubes Q satisfying |2Q|σ ≤ D |Q|σ . If T is linear, we require as well that the dual restricted

testing condition ∫
Q
T ∗ (1Qω)2 dσ ≤ C |Q|ω

holds for all cubes Q satisfying |2Q|ω ≤ D |Q|ω .

1. Introduction

One of the earliest uses of testing conditions to characterize a weighted norm inequality occurs in 1982 in
[20], where it was shown that for the Hardy-Littlewood maximal function M ,

(1.1)

∫
Rn
Mf (x)

2
w (x) dx ≤ C

∫
Rn
f (x)

2
v (x) dx, for all f (x) ≥ 0,

if and only if the following testing condition holds:∫
Q

M
(
1Qv

−1
)

(x)
2
w (x) dx ≤ C

∫
Q

v (x)
−1
dx, for all cubes Q in Rn.

Thus it suffices to test the weighted norm inequality over the simpler collection of test functions f = 1Qv
−1

for cubes Q.
Two years later, David and Journé showed in their T1 theorem [3], that the unweighted inequality∫

Rn
Tf (x)

2
dx ≤ C

∫
Rn
f (x)

2
dx, for all f ∈ L2 (Rn) ,

holds if and only if the following pair of dual testing conditions hold:∫
Q

T (1Q) (x)
2
dx ≤ C

∫
Q

dx and

∫
Q

T ∗ (1Q) (x)
2
dx ≤ C

∫
Q

dx, for all cubes Q in Rn.

Here T is a general Calderón-Zygmund singular integral on Rn and the testing functions are simply the
indicators 1Q for cubes Q1. The following year David, Journé and Semmes extended the T1 theorem to a
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Tb theorem [4] in which the testing conditions become b1Q and b∗1Q for appropriately accretive functions b
and b∗ on Rn.

A couple of decades later, and motivated by the Painlevé problem of characterizing removable singularities
for bounded analytic functions, Nazarov, Treil and Volberg solved in 2003 a particular one-weight formulation
of the norm inequality for Riesz transforms R, including the Cauchy transform Cg (z) ≡

∫
C

1
w−z g (w) dw [18],∫

Rn
|R (fµ) (x)|2 dµ (x) ≤ C

∫
Rn
f (x)

2
dµ (x) , for all f ∈ L2 (Rn;µ) ,

if and only if the following testing condition held:∫
Q

|R (1Qµ) (x)|2 dµ (x) ≤ C
∫
Q

dµ (x) , for all cubes Q in Rn.

Here the testing functions are f = 1Q. The Painlevé problem was solved in the same year by Tolsa [27], a
culmination of an impressive body of work by many mathematicians.

Finally, building on the work of Nazarov, Treil and Volberg in their 2004 paper [19] on the Hilbert
transform, that in turn used the random dyadic grids of [18]2, and the weighted Haar wavelets of [18]3, the
two weight norm inequality for the Hilbert transform was characterized in 2014 in Lacey, Sawyer, Shen and
Uriarte-Tuero [12], Lacey [9] and Hytönen [7] as follows:

(1.2)

∫
R
H (fσ) (x)

2
dω (x) ≤ C

∫
R
f (x)

2
dσ (x) , for all f ∈ L2 (σ) ,

if and only if both the strong Muckenhoupt A2 condition

A2 (σ, ω) ≡ sup
I: intervals in R

∫
R

` (I)

(` (I) + |x− cI |)2 dω (x) ·
∫
R

` (I)

(` (I) + |x− cI |)2 dσ (x) <∞,

and the following dual testing conditions hold:∫
I

H (1Iσ) (x)
2
dω (x) ≤ A

∫
I

dσ and

∫
I

H (1Iω) (x)
2
dσ (x) ≤ B

∫
I

dω, for all intervals I.

This is also referred as the two weight T1 theorem. Notice that here the two weight inequality (1.2) is
written differently than (1.1), so that in the testing condition, one can avoid requesting the existence of the
density of the measure. On the other hand, the main difference between the two weight T1 theorem and
the unweighted T1 theorem is that, in the unweighted case, if one has L2 boundedness for singular integral
operators, one also get Lp boundedness for all 1 < p <∞, which is not the case in the two weight setting.

The two-weight inequality for the g function was then characterized by testing conditions in Lacey and
Li [10], and a further extension to a local Tb theorem for the Hilbert transform is in [26].

Point of departure: The point of departure for the present paper begins with the observation that
in the one-weight formulation above of the norm inequality for Riesz transforms by Nazarov, Treil
and Volberg, their testing condition is∫

Q

|R (1Qµ) (x)|2 dµ (x) ≤ C
∫

2Q

dµ (x) , for all cubes Q in Rn,

where the double 2Q of the cube Q appears on the right hand side. Moreover, one may restrict the
testing functions to those functions f = 1Q for which Q is a µ-doubling cube for some appropriate
positive constant D4: ∫

2Q

dµ ≤ D
∫
Q

dµ.

This then motivates the following problem.

Problem 1. To what extent one can similarly restrict testing functions to doubling cubes for classical
operators in the two-weight situations, including those discussed above?

2that in turn followed on those of Fefferman and Stein [5], Garnett and Jones [6], and Sawyer [20]
3that in turn followed on those of Coifman, Jones and Semmes [2]
4This philosophy was successfully carried out in the context of the one-weight Tb theorem for nonhomogeneous square

functions by Martikainen, Mourgoglou and Vuorinen in [16].
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Motivation: Besides the intrinsic interest in minimizing the functions over which an inequality must
be tested in order to verify its validity, even a partial resolution of the question of restricted testing
for singular integrals has the potential to characterize two weight norm inequalities for such operators
- including Riesz transforms in higher dimensions, currently a very difficult open problem, see e.g.
[24], [11] and [13]. Indeed, the nondoubling cubes have traditionally been viewed as the enemy in two
weight inequalities for singular integrals, and (the techniques used in) the restriction of the testing
conditions to just doubling cubes could help circumvent the difficulty that energy conditions fail to
be necessary for two weight inequalities in higher dimensions [20] - the point being that a similar
restricted energy condition could suffice. In the current paper, we only work on positive operators,
such as the Hardy-Littlewood maximal function and fractional integrals, leaving square functions
and the Hilbert transform for future work.

Let Pn be the collection of cubes in Rn with sides parallel to the coordinate axes, and with side lengths
2` for some ` ∈ Z. For Q ∈ Pn and Γ ≥ 1, let ΓQ denote the cube concentric with Q with ` (ΓQ) = Γ` (Q).
For a locally signed measure µ on Rn (meaning the total variation |µ| of µ is locally finite), we define M(µ)
and Iα(µ) at x ∈ Rn by5

M(µ) (x) ≡ sup
Q∈Pn: x∈Q

1

|Q|

∫
Q

d |µ| , Iα(µ)(x) :=

∫
Rn

1

|x− y|n−α
dµ(y).

Given a pair (σ, ω) of weights (i.e. positive Borel measures) in Rn and Γ > 1, we say that (σ, ω) satisfies the
Γ-testing condition for the maximal function M if there is a constant TM (Γ) (σ, ω) such that

(1.3)

∫
Q

|M (1Qσ)|2 dω ≤ TM (Γ) (σ, ω)
2 |ΓQ|σ , for all Q ∈ Pn ,

and we take TM (Γ) (σ, ω) to be the least such constant. We define TIα (Γ) (σ, ω) anagolously.
There is also the following weaker testing condition, in which one need only test the inequality over cubes

that are ‘doubling’. Given a pair (σ, ω) of weights in Rn and D,Γ > 1, we say that (σ, ω) satisfies the
D-Γ-testing condition for the maximal function M if there is a constant TDM (Γ) (σ, ω) such that

(1.4)

∫
Q

|M1Qσ|2 dω ≤ TDM (Γ) (σ, ω)
2 |Q|σ , for all Q ∈ Pn with |ΓQ|σ ≤ D |Q|σ ,

and again we take TDM (Γ) (σ, ω) to be the least such constant, and define TDIα (Γ) (σ, ω) similarly. Note that
the Γ-testing condition implies the D-Γ-testing condition for all D > 1.

Unlike the cases of the classical two weight theorem for the maximal function and fractional integrals in
[20, 22], where the testing condition is already sufficient for the boundedness of the maximal function and
fractional integrals, these restricted testing conditions are not by themselves sufficient for the norm inequality
- the classical Muckenhoupt condition is needed as well:

A2 (σ, ω) := sup
Q∈Pn

σ(Q)

|Q|
ω(Q)

|Q|
<∞, Aα2 (σ, ω) := sup

Q∈Pn

σ(Q)

|Q|1−
α
n

ω(Q)

|Q|1−
α
n
<∞

see the counterexamples in Section 6. Finally we let NM (σ, ω) be the best constant (i.e., the L2 (σ)→ L2 (ω)
norm of M) in the inequality

(1.5)

∫
Rn
|M (fσ)|2 dω ≤ NM (σ, ω)

2
∫
Rn
|f |2 dσ, for all f ∈ L2 (σ) .

Again we define NIα (σ, ω) analogously. Our main result for the maximal function is formulated as the
following, which is the only improvement of the testing characterization of (1.5) by the third named author
in 1982 (see [20]).

Theorem 1. Let Γ > 1. Then there is D > 1 depending only on Γ and the dimension n such that

NM (σ, ω) ≈ TDM (Γ) (σ, ω) +
√
A2 (σ, ω),

for all locally finite positive Borel measures σ and ω on Rn.

5The supremum over Q ∈ Pn used here is pointwise equivalent to the usual supremum over all cubes Q with sides parallel

to the coordinate axes.
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Remark 1. With probability one, a dyadic grid Dβ in (2.1) below has the property that every Q ∈ Dβ has
null boundary, i.e. |∂Q|σ+ω = 0. Thus the supremum over cubes Q in the testing constant TDM (Γ) (σ, ω) in
Theorem 1 may be further restricted to cubes Q having null boundary ( cf. the one-weight theorem in [16]
where this type of reduction first appears).

See also [14], [15] and [1] for earlier related work. For example, the following weaker ‘parental’ testing
result for the maximal function was proved in [14], and subsequently given a particularly simple proof by
Chen and Lacey in [1]: The two weight norm inequality for the maximal function M holds if and only if the
following D-parental testing condition holds for some D > 1,∫

Q

|M1Qσ|2 dω ≤ PD
T (σ, ω)

2 |Q|σ , for all Q ∈ Pn with min
P is a dyadic parent of Q

|P |σ ≤ D |Q|σ .

Let us say that a cube Q is D-Γ-doubling if it satisfies |ΓQ|σ ≤ D|Q|σ (as in (1.4)) and the Q is D-parental
doubling if it satisfies the condition at the end of the previous display. It is easy to see that every D-3-
doubling cube is D-parental doubling, but the converse is false in general: D-parental doubling means that
the measure σ is under control on at least one side of Q, while D-Γ-doubling means that it is under control
on all sides. Thus there are many more cubes that one needs to test in the D-parental testing condition
than in the D-Γ-testing condition (1.4).

The proof of Theorem 1 splits neatly into two steps. In the first step, we prove the sufficiency of the
Γ-testing condition (1.3), which we record as the following theorem

Theorem 2. For Γ > 1 we have

NM (σ, ω) ≈ TM (Γ) (σ, ω) +
√
A2 (σ, ω),

for all pairs (σ, ω) of locally finite positive Borel measures on Rn, and where the implicit constants of com-
parability depend on both Γ and dimension n.

This step requires a careful application of a probabilistic argument of the type pioneered by Nazarov,
Treil and Volberg ([18]), and refined in [7]. In the second step we use this interim result to establish an a
priori bound on the operator norm NM (σ, ω) in order to absorb additional terms arising from the absence of
any testing condition at all in (1.4) when the cubes are not doubling. As a consequence of this splitting, we
will give the proof in two stages, beginning with the proof of the following weaker theorem, which requires
probability, and which is then used to prove our main result Theorem 1. We emphasize that this paper is
self-contained.

Our main result for fractional integrals is the following theorem, whose proof involves Whitney decompo-
sitions at each threshold that deal with the tails of the kernels of the operators. And multiples of Whitney
cubes have bounded overlap, a key to restricted testing. This is a phenomenon quite different from the
above maximal function case, which is naturally handled by taking maximal cubes at each threshold, whose
multiples fail to have bounded overlap and results in a number of delicate estimates explained in the above.

Theorem 3. Let Γ > 1. Then there is D > 1 depending only on Γ and the dimension n such that

NIα (σ, ω) ≈ TDIα (Γ) (σ, ω) + TDIα (Γ) (ω, σ) +
√
Aα2 (σ, ω),

for all locally finite positive Borel measures σ and ω on Rn.

For convenience we will restrict our proof of the above results to the case Γ = 3, the general case of Γ
large being an easy modification of this one.

2. Preliminaries

Here we introduce some standard tools we will use in the proof of Theorem 2.

2.1. Random dyadic grids. In this subsection we introduce the usual random dyadic grids. Let

D0 := {2−j([0, 1)n + k), j ∈ Z, k ∈ Zn}.
Then for β = {βj}∞j=−∞ ∈ ({0, 1}n)Z, define

(2.1) Dβ :=

Q+
∑

j:2−j<`(Q)

2−jβj , Q ∈ D0

 .
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Let P be the natural product probability measure on Ω := ({0, 1}n)Z. We have the following estimate, which
goes back to Fefferman and Stein [5, page 112] and also [20, Lemma 2]. For any β ∈ Ω, we denote the
associated dyadic maximal operator by

MD
β

f(x) := sup
Q3x,Q∈Dβ

1

|Q|

∫
Q

|f | .

Lemma 1. For x ∈ Rn and a positive Borel measure f ≥ 0 on Rn we have

(2.2) Mf (x) ≤ 24n+1EβMD
β

f (x) .

Proof. Fix x ∈ Rn, and let Q be a cube such that x ∈ Q and

1

|Q|

∫
Q

f >
1

2
Mf (x) .

Then there exists Q ⊂ Q̃ ∈ Dγ for some γ ∈ Ω such that

1

|Q̃|

∫
Q̃

f >
1

2n+1
Mf (x) .

Since γ is fixed, denote j0 = − log2 `(Q̃) + 1, we have

P({β ∈ Ω : γj0 + βj0 = (1, · · · , 1)}) = 2−n.

The key is when γj0 + βj0 = (1, · · · , 1), suppose

Q̃−
∑

j:2−j<`(Q̃)

2−jγj +
∑

j:2−j<`(Q̃)

2−jβj = [a1, b1)× · · · × [an, bn),

let Q̃β = J1 × · · · × Jn be the cube satisfying that Ji = [ai, 2bi − ai) if (γj0)i = 1 and Ji = [2ai − bi, bi) if

(γj0)i = 0, then Q̃β ⊃ Q̃ and Q̃β ∈ Dβ with some fixed βj0−1 (whose precise value depends on γj0 and the

standard dyadic cube Q̃−
∑
j:2−j<`(Q̃) 2−jγj). This implies

P({β ∈ Ω : MD
β

f >
1

22n+1
Mf}) ≥ 4−n

which completes the proof of (2.2). �

2.2. Whitney decompositions. In order to apply probabilistic method, here we use a slightly weaker
version of Whitney decomposition, which adapts to the probabilistic method quite naturally. Indeed, given
an open set Ω we let {Qj}j be the collection of dyadic cubes such that

(1) Qj ⊂ Ω;
(2) 10

√
n`(Qj) < dist(Qj ,Ω

c) ≤ 21
√
n`(Qj).

Notice that we do not request Qj to be the maximal dyadic cube such that the above properties holds.
With this definition, we prove the following proposition.

Proposition 1. Let Ω be an open set and {Qj} be the related Whitney cubes defined as the above. Then
there holds

(i) Ω ⊂ ∪jQj;
(ii)

∑
j χQj ≤ 2;

(iii)
∑
j χ3Qj ≤ cn.

Proof. To prove the first assertion, given x and a dyadic cube Q with x ∈ Q ( Ω, notice that

1

2
· dist(Q,Ωc)

`(Q)
−
√
n

2
≤ dist(Q(1),Ωc)

2`(Q)
≤ 1

2
· dist(Q,Ωc)

`(Q)
.

Obviously, we can take a dyadic cube Q0 3 x such that dist(Q0,Ω
c)

`(Q0) is sufficiently big, with the above estimates,

there must exists a cube Qx 3 x such that

10
√
n`(Qx) < dist(Qx,Ω

c) ≤ 21
√
n`(Qx).

Now we turn to prove (ii). Fix x ∈ Ω, let d = dist(x,Ωc) and x ∈ Qj , then

d ≥ dist(Qj ,Ω
c) > 10

√
n`(Qj).
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On the other hand,

d ≤ dist(Qj ,Ω
c) +

√
n`(Qj) ≤ 22

√
n`(Qj).

Combing the above two estimates one obtains that

d

22
√
n
≤ `(Qj) <

d

10
√
n
.

Now since Qj is a dyadic cube, we get (ii). Finally, let us fix x and 3Qj 3 x. If Ql is a Whitney cube such
that x ∈ 3Ql, then we have

21
√
n`(Ql) ≥ dist(Ql,Ω

c) ≥ dist(Qj ,Ω
c)− 2

√
n(`(Qj) + `(Ql)) > 8

√
n`(Qj)− 2

√
n`(Ql).

Likewise, we also have 23`(Qj) > 8`(Ql). Since dist(Qj , Ql) ≤ 2
√
n(`(Qj) + `(Ql)), we completes the proof

of (iii). �

2.3. Good/bad cubes. We call a cube Q ∈ Dγ is good, if for any R ∈ Dγ with `(R) ≥ 2r`(Q), there holds

dist(Q, ∂R) > `(Q)
1
2 `(R)

1
2 .

Otherwise we call Q is bad. We note that πgood := Pγ(Q +
∑
j:2−j<`(Q) 2−jγj is good) is independent

of Q ∈ D0, this is because by definition the goodness is determined by how the parent and ancestors of
Q +

∑
j:2−j<`(Q) 2−jγj are constructed(i.e. related with j : 2−j ≥ `(Q)). It is well-known that if r is large

enough, then πgood > 0. So without loss of generality, we can assume r > 4.

3. Strong triple testing

Now we begin the proof of Theorem 2, the ‘only if’ part is trivial, so we only focus on the ‘if’ part. We
shall prove

(3.1) NM (σ, ω) . TM (3) (σ, ω) +
√
A2 (σ, ω).

Fix f nonnegative and bounded with compact support, say supp f ⊂ Q(0, R) = [−R,R]
n
. Since M (fσ) is

lower semicontinuous, the set Ωk :=
{
M (fσ) > 2k

}
is open and we can consider the Whitney decomposition

of the open set Ωk into the union
⋃
j∈N

Qkj of Dγ-dyadic intervals Qkj with the properties as in Proposition 1,

where γ ∈ Ω. In the sequel, we will use Wγ
k to denote the Whitney cubes of Ωk in Dγ . We now use random

grids to obtain from Lemma 1 that

M (fσ) (x) . EγMD
γ

(fσ) (x) , x ∈ Rn.

Notice that if we replace ω by ωN = ω1Q(0,N) with N > R, we have∫
M (fσ)

2
dωN ≤ ‖f‖2L∞

∫
Q(0,N)

M(1Q(0,N)σ)2dω ≤ ‖f‖2L∞T2
M |3Q(0, N)|σ <∞,

and therefore, without loss of generality, we can assume∫
M(fσ)2dω <∞.

We now have

Eγ
∫
Rn

[
MD

γ

(fσ) (x)
]2
dω (x) ≤ EγCn

∑
k∈Z

22(k+m)
∣∣∣{MDγ (fσ) > 2k+m

}∣∣∣
ω

= EγCn
∑

k∈Z, j∈N
22(k+m)

∣∣Qkj ∩ Ωγk+m

∣∣
ω

≤ Cn,mEγ
∑

k∈Z, j∈N
22k
∣∣Ekj,γ∣∣ω + 3nCn2−2m0

∫
[M (fσ)]

2
dω ,

where

Ekj,γ := Qkj ∩
(
Ωγk+m \ Ωk+m+m0

)
, Ωγk+m =

{
x : MD

γ

(fσ) > 2k+m
}
,
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and we shall choose m0 to be sufficiently large so that the second term can be absorbed (since it is finite).
So the goal is to prove

Eγ
∑

k∈Z, j∈N
22k
∣∣Ekj,γ∣∣ω . (TM (3) (σ, ω)

2
+A2 (σ, ω)

)
‖f‖2L2(σ).

We claim the maximum principle,

(3.2) 2k+m−1 < MD
γ

Qkj
(fσ)(x) := sup

Q∈Dγ ,x∈Q⊆Qkj

1

|Q|

∫
Q

fσ, x ∈ Ekj,γ .

Indeed,

MD
γ

(fσ)(x) ≤MD
γ

(1(Qkj )cfσ)(x) +MD
γ

(1Qkj fσ)(x)

≤MD
γ

(1(Qkj )cfσ)(x) + sup
Q∈Dγ :Q)Qkj

1

|Q|

∫
Q

fσ +MD
γ

Qkj
(fσ)(x).

(3.3)

Given x ∈ Ekj,γ , there is Q ∈ Dγ with x ∈ Q and Q ∩
(
Qkj
)c 6= ∅ (which implies that Qkj ⊂ Q), and also

z ∈ Ωck, such that

MD
γ(
1(Qkj )

cfσ
)

(x) ≤ 2
1

|Q|

∫
Q\Qkj

fσ ≤ 2
1

|Q|

∫
50
√
nQ

fσ(3.4)

=
2(50
√
n)n

|50
√
nQ|

∫
50
√
nQ

fσ ≤ 2(50
√
n)nM (fσ) (z) ≤ 2k+m−2

if we choose m > 1 large enough.
This same computation shows that the cubes Q ) Qkj in the second term on the right of (3.3) satisfy

1

|Q|

∫
Q

fσ ≤ 2k+m−2.

Now we use 2k+m < MD
γ

(fσ) (x) for x ∈ Ekj to obtain

2k+m < MD
γ

(fσ)(x) ≤MD
γ

(1(Qkj )cfσ)(x) + sup
Q∈Dγ :Q)Qkj

1

|Q|

∫
Q

fσ +MD
γ

Qkj
(fσ)(x)

≤ 2k+m−2 + 2k+m−2 +MD
γ

Qkj
(fσ)(x) = 2k+m−1 +MD

γ

Qkj
(fσ)(x).

(3.5)

Hence we have proved the maximum principle. Thus set

Ω̃γk+m := {MDγ

Qkj
(fσ) > 2k+m−1}, Ẽkj,γ := Qkj ∩ (Ω̃γk+m \ Ωk+m+m0

)

then Ekj,γ ⊂ Ẽkj,γ and the latter depends only on the cube Qkj (not on its parents or ancestors in the dyadic

system Dγ) so in particular it is independent of the goodness of Qkj . Thus (see e.g. [8])

Eγ
∑
k,j

22k|Ekj,γ |ω ≤ Eγ
∑
k,j

22k|Ẽkj,γ |ω = π−1
goodEγ

∑
k,j

22k|Ẽkj,γ |ω1Qkj good.

We now introduce some further notation which will play a crucial role below. Let

Hkj := Ω̃γk+m,

Hkj,out :=
{
MD

γ

Qkj

(
1Qkj \Ωk+m+m0

fσ
)
> 2k+m−2

}
,

Hkj,in :=
{
MD

γ

Qkj

(
1Qkj∩Ωk+m+m0

fσ
)
> 2k+m−2

}
,

so that Hkj ⊂ Hkj,out ∪Hkj,in. We are here suppressing the dependence of Hkj on γ ∈ Ω. In particular in below
a dyadic cube always means a dyadic cube in Dγ .

We will now follow the main idea for fractional integrals in [22], but with two main changes:

(1) Sublinearizations: Since M is not linear, the duality arguments in [22] require that we construct
symmetric linearizations L that are dominated by M , and
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(2) Tripling decompositions: In order to exploit the triple testing conditions we introduce Whitney
grids, and construct stopping times for tripling cubes, which entails some combinatorics. In partic-
ular, most of our effort is spent on decomposing and controlling the analogue of term IV from [22]
using good and bad cubes.

Now take 0 < β < 1 to be chosen later, and consider the following three exhaustive cases for Qkj and Ẽkj,γ .

(1): Qkj is good and |Ẽkj,γ |ω < β|3Qkj |ω, in which case we say (k, j) ∈ Π1,

(2): Qkj is good and |Ẽkj,γ |ω ≥ β|3Qkj |ω and |Ẽkj,γ ∩Hkj,out|ω ≥ 1
2 |Ẽ

k
j,γ |ω, say (k, j) ∈ Π2,

(3): Qkj is good and |Ẽkj,γ |ω ≥ β|3Qkj |ω and |Ẽkj,γ ∩Hkj,in|ω ≥ 1
2 |Ẽ

k
j,γ |ω, say (k, j) ∈ Π3.

3.1. The three cases. The first case is trivially handled, the second case is easy, and the third case consumes
most of our effort.

Case (1): The treatment of case (1) is easy by absorption. Indeed,

(3.6)
∑

(k,j)∈Π1

22k|Ẽkj,γ |ω .
∑

k∈Z, j∈N
22kβ

∣∣3Qkj ∣∣ω . β ∫ M (fσ)
2
dω,

and then it suffices to take β sufficiently small at the end of the proof.
Case (2): In case (2) we have

(3.7)
∑

(k,j)∈Π2

22k|Ẽkj,γ |ω .
∑

(k,j)∈Π2

2k
∫

1Ẽkj,γ
Lkj
(
1Qkj \Ωk+m+m0

fσ
)
dω.

Here the positive linear operator Lkj given by

Lkj (hσ) (x) :=

∞∑
`=1

1

|Ikj (`)|

∫
Ikj (`)

hdσ1Ikj (`)(x),

where Ikj (`) ∈ Dγ(Qkj ) are the maximal dyadic cubes contained inHkj,out, which implies that Lkj (1Qkj \Ωk+m+m0
fσ) h

2k1Hkj,out
. Indeed, as we have calculated,

(3.8)
1

|Qkj |

∫
Qkj

fσ ≤ 2k+m−2,

so in particular, Ikj (`)’s are proper subcubes of Qkj and the claim follows. Now we can continue from (3.7)
as follows:∑
(k,j)∈Π2

2k
∫
Ẽkj,γ

Lkj
(
1Qkj \Ωk+m+m0

fσ
)
dω =

∑
(k,j)∈Π2

2k
∫
Qkj \Ωk+m+m0

Lkj
(
1Ẽkj,γ

ω
)
fdσ

≤
∑

(k,j)∈Π2

2k
(∫

Qkj \Ωk+m+m0

Lkj
(
1Ẽkj,γ

ω
)2
dσ
) 1

2
(∫

Qkj \Ωk+m+m0

f2dσ
) 1

2

≤
( ∑

(k,j)∈Π2

22k

∫
Qkj \Ωk+m+m0

Lkj
(
1Ẽkj,γ

ω
)2
dσ
) 1

2
( ∑

(k,j)∈Π2

∫
Qkj \Ωk+m+m0

f2dσ
) 1

2

≤
( ∑

(k,j)∈Π2

22k

∫
Qkj

Lkj
(
1Qkj ω

)2
dσ
) 1

2
(∑
k∈Z

∫
Ωk\Ωk+m+m0

2f2dσ
) 1

2

≤ Cm,m0
A

1
2
2

( ∑
(k,j)∈Π2

22k
∣∣Qkj ∣∣ω ) 1

2 ‖f‖L2(σ)

≤ β− 1
2Cm,m0

A
1
2
2

( ∑
(k,j)∈Π2

22k|Ẽkj,γ |ω
) 1

2 ‖f‖L2(σ),

where we have used the following trivial estimate

(3.9)

∫
Qkj

Lkj
(
1Qkj ω

)2
dσ ≤

∞∑
`=1

|Ikj (`)|ω|Ikj (`)|σ
|Ikj (`)|2

|Ikj (`) ∩Qkj |ω ≤ A2|Qkj |ω.
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Then immediately we get

(3.10)
∑

(k,j)∈Π2

22k|Ẽkj,γ |ω ≤ β−1C2
m+m0

A2‖f‖2L2(σ).

Case (3): For this case, we let {Ikj (`)}` be the collection of the maximal dyadic cubes in Hkj,in and define

Lkj similarly. Then likewise, Lkj (1Qkj∩Ωk+m+m0
fσ) h 2k1Hkj,in and therefore,∑

(k,j)∈Π3

22k|Ẽkj,γ |ω .
∑

(k,j)∈Π3

2k
∫
Ẽkj,γ

Lkj
(
1Qkj∩Ωk+m+m0

fσ
)
dω

=
∑

(k,j)∈Π3

2k
∫
Qkj∩Ωk+m+m0

Lkj
(
1Ẽkj,γ

ω
)
fdσ

=
∑

(k,j)∈Π3

2k
∑

i∈N: Q
k+m+m0
i ⊂Qkj

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
fdσ.

Before moving on, let us make some observations. Since we only need to consider Ikj (`) such that Ikj (`)∩
Ẽkj,γ 6= ∅, we have Ikj (`) 6⊂ Ωk+m+m0

. Therefore, if we fix Qk+m+m0
i , only those Ikj (`) such that Qk+m+m0

i ⊂
Ikj (`) contribute to Lkj . In other words, Lkj

(
1Ẽkj,γ

ω
)

is constant on Qk+m+m0
i . Set

(3.11) Akj :=
1∣∣Qkj ∣∣σ

∫
Qkj

fdσ.

We have∑
(k,j)∈Π3

22k
∣∣∣Ẽkj,γ∣∣∣

ω
.

∑
(k,j)∈Π3

2k
∑

i∈N: Q
k+m+m0
i ⊂Qkj

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ

= lim
N0→−∞

∑
k∈Z,k≥N0

j∈N,(k,j)∈Π3

2k
∑

i∈N: Q
k+m+m0
i ⊂Qkj

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ.

We make a convention that the summation over k is understood as k ≡ k0 mod (m + m0) for some fixed

0 ≤ k0 ≤ m+m0− 1, and since we are summing over products with factor |Ẽkj,γ |ω, without loss of generality

we only consider Qkj for the largest k if it is repeated, and define

W γ := {Qkj ∈ Dγ : k ≡ k0 mod (m+m0) , k ≥ N0, (k, j) ∈ Π3}.

So in particular, there are no repeated cubes in W γ . We have, using |Ẽkj,γ |ω ≈ |3Qkj |ω and Lkj (1Qkj∩Ωk+m+m0
fσ) h

2k1Hkj,in for (k, j) ∈ Π3 again, it suffices to prove that

∑
Qkj∈W γ

2k
∑

i∈N: Q
k+m+m0
i ⊂Qkj

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ

(3.12)

.
∑

Qkj∈W γ

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∑
i∈N: Q

k+m+m0
i ⊂Qkj

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ
]2
. (TM (3) (σ, ω) +

√
A2 (σ, ω))2‖f‖2L2(σ).

For notational convenience, set

III∗ :=
∑

Qkj∈W γ

III∗
(
Qkj
)

;

III∗
(
Qkj
)

:=
|Ẽkj,γ |ω
|3Qkj |2ω

[ ∑
i∈N: Q

k+m+m0
i ⊂Qkj

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ
]2
.



10 TUOMAS HYTÖNEN, KANGWEI LI, AND ERIC SAWYER

3.2. Principal cube decomposition. The subsection is to define principal cubes. Although we have
reduced the summation over good cubes, we still define the stopping collection which admits bad cubes. To
be precise, denote

Wγ := {Qkj ∈ W
γ
k : k ≡ k0 mod (m+m0) , k ≥ N0}.

With the grid W = Wγ in hand, we now introduce principal cubes as in [17, page 804] (note that we are
suppressing the dependence ofW on γ for reduction of notation). Define G0 to consist of the maximal cubes
in W. If Gn has been defined, let Gn+1 consist of those indices (k, j) for which Qkj ∈ W, there is an index

(t, u) ∈ Gn with k ≥ t and Qkj ⊂ Qtu, and

(i) Akj > ηAtu ,

(ii) A`i ≤ ηAtu whenever Qkj $ Q`i ⊂ Qtu .

Here η is any constant larger than 1, for example η = 4 works fine. Now define Γ ≡
∞⋃
n=0

Gn and for each

index (k, j) define P
(
Qkj
)

to be the smallest dyadic cube Qtu containing Qkj and with (t, u) ∈ Γ. Then we
have

(i) P
(
Qkj
)

= Qtu =⇒ Akj ≤ ηAtu ,(3.13)

(ii) Qkj $ Qtu with (k, j) , (t, u) ∈ Γ =⇒ Akj > ηAtu .

Now we return to the estimate of III∗. Splitting the sum over i inside III∗
(
Qkj
)

according to whether

(k +m+m0, i) ∈ Γ or P (Qk+m+m0
i ) = P

(
Qkj
)
:

III∗ .
∑

Qkj∈W γ

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∑
i∈N: P

(
Q
k+m+m0
i

)
=P(Qkj )

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ
]2

+
∑

Qkj∈W γ

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∑
i∈N: (k+m+m0,i)∈Γ

Q
k+m+m0
i ⊂Qkj

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ
]2

=: IV + V.

It is relatively easy to estimate term V by the Cauchy-Schwarz inequality and (3.9),

V =
∑

Qkj∈W γ

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∑
i∈N: (k+m+m0,i)∈Γ

Q
k+m+m0
i ⊂Qkj

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ
]2

(3.14)

≤
∑

Qkj∈W γ

|Ẽkj,γ |ω∣∣3Qkj ∣∣2ω
[ ∑
i∈N: (k+m+m0,i)∈Γ

Q
k+m+m0
i ⊂Qkj

|Qk+m+m0
i |σ

(
Ak+m+m0
i

)2]

×
[ ∑
i∈N: (k+m+m0,i)∈Γ

Q
k+m+m0
i ⊂Qkj

(∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
dσ
)2

|Qk+m+m0
i |−1

σ

]

≤
∑

Qkj∈W γ

|Ẽkj,γ |ω∣∣3Qkj ∣∣2ω
[ ∑
i∈N: (k+m+m0,i)∈Γ

Q
k+m+m0
i ⊂Qkj

|Qk+m+m0
i |σ

(
Ak+m+m0
i

)2] ∫
Qkj

[
Lkj
(
1Qkj ω

)]2
dσ

. A2

∑
(t,u)∈Γ

(Atu)2|Qtu|σ . A2‖f‖2L2(σ).

Thus we are left to estimate term IV . Fix (t, u), and consider the sum

IV t,u :=
∑

Qkj∈W γ :P (Qkj )=Qtu

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∑
i∈N: P (Q

k+m+m0
i )=P (Qkj )

Ak+m+m0
i

∫
Q
k+m+m0
i

Lkj
(
1Ẽkj,γ

ω
)
σ
]2
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.
(
Atu
)2 ∑

Qkj∈W γ :P (Qkj )=Qtu

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∫
Qkj

Lkj (1Qkj σ)ω
]2

=:
(
Atu
)2 St,u,

where

St,u :=
∑

Qkj∈W γ :P (Qkj )=Qtu

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∫
Qkj

Lkj (1Qkj σ)ω
]2
.

It is here in estimating St,u, that the only quantitative use of the triple testing condition occurs.

Lemma 2. We claim that

(3.15) St,u ≤ C
(

(TM (3))
2

+A2

) ∣∣Qtu∣∣σ .

Proof. Let {Ki}i∈I be the collection of maximal Dγ-children Ki satisfying 5Ki ⊂ Qtu. If `(Qkj ) < 2−r`(Qtu),

since Qkj is good, we have dist(Qkj , ∂Q
t
u) > 4`(Qkj ). Hence 5Qkj ⊂ Qtu and in particular Qkj ⊂ Ki for some

i ∈ I. For all cubes Ki we have∑
Qkj∈W γ :Qkj⊂Ki

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∫
Qkj

Lkj (1Qkj σ)ω
]2
≤

∑
Qkj∈W γ ,Qkj⊂Ki

|Ẽkj,γ |ω

[
1∣∣Qkj ∣∣ω

∫
Qkj

1KiM (1Kiσ) dω

]2

≤ C
∫ [

MD
γ

ω

(
1KiM (1Kiσ)

)]2
dω

≤ C
∫
Ki

M (1Kiσ)
2
dω . (TM (3))

2 |3Ki|σ .

Thus we have∑
i∈I

∑
Qkj∈W γ :Qkj⊂Ki

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∫
Qkj

Lkj (1Qkj σ)ω
]2
≤
∑
i∈I

(TM (3))
2 |3Ki|σ ≤ Cbound (TM (3))

2 ∣∣Qtu∣∣σ ,

where Cbound is a constant such that
∑
i∈I 13Ki ≤ Cbound1Qtu (due to a similar argument as (iii) of Propo-

sition 1). We also have∑
Qkj∈W γ : Qkj⊂Q

t
u

`(Qkj )≥2−r`(Qtu)

|Ẽkj,γ |ω
|3Qkj |2ω

[ ∫
Qkj

Lkj (1Qkj σ)ω
]2
≤ C

∑
Qkj∈W γ : Qkj⊂Q

t
u

`(Qkj )≥2−r`(Qtu)

A2|Qkj |σ ≤ CrA2

∣∣Qtu∣∣σ .

Combining the above estimates we conclude the proof. �

Then summing over (t, u) ∈ Γ we obtain

IV .
(

(TM (3))
2

+A2

) ∑
(t,u)∈Γ

|Qtu|σ
(
Atu
)2
.
(

(TM (3))
2

+A2

)
‖f‖2L2(σ) ,

which combined with (3.14) gives

(3.16)
∑

(k,j)∈Π3

22k
∣∣Ekj ∣∣ω ≤ ((TM (3))

2
+A2

)
‖f‖2L2(σ) .

3.2.1. Wrapup of the proof. Now letting the integer N0 → −∞ in the construction of principal cubes, and
summing over 0 ≤ k0 ≤ m + m0 − 1 in our convention regarding distinguished index pairs, we obtain from
(2.2) that∫

Rn
[M (fσ) (x)]

2
dω (x) . Eγ

∫
Rn

[
MD

γ

(fσ) (x)
]2
dω (x)(3.17)

. Eγ
( ∑

all (k,j)

22k|Ekj,γ |ω
)

+ 3nCn2−2m0

∫
[M (fσ)]

2
dω
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≤ π−1
goodEγ

( ∑
(k,j)∈Π1

22k|Ẽkj,γ |ω +
∑

(k,j)∈Π2

22k|Ẽkj,γ |ω +
∑

(k,j)∈Π3

22k|Ẽkj,γ |ω
)

+ 3nCn2−2m0

∫
[M (fσ)]

2
dω,

which by the estimates (3.6), (3.10) and (3.16) gives∫
Rn

[M (fσ) (x)]
2
dω (x)(3.18)

.
(
β + 2−2m0

) ∫
M (fσ)

2
dω + β−1C2

m+m0
A2‖f‖2L2(σ) +

(
(TM (3))

2
+A2

)
‖f‖2L2(σ)

Now we can absorb the first term on the right hand side by choosing β > 0 sufficiently small and m0

sufficiently large since the integral
∫
M (fσ)

2
dω is finite. Then we take the supremum over f ∈ L2 (σ) with

‖f‖L2(σ) = 1 to obtain

NM ≤ C
(
TM (3) +

√
A2

)
.

As the opposite inequality is trivial, this completes the proof of Theorem 2.

4. Weak triple testing: proof of Theorem 1

This section is devoted to proving Theorem 1. We begin with a basic observation, that is, the places
where we need TM (3) <∞ are the following

(1) qualitatively, at the beginning of the argument, in order to assume without loss of generality that∫
M (fσ)

2
dω <∞,

(2) and quantitatively, near the end of the argument, in the proof of Lemma 2.

The qualitative use of the triple testing condition is easily handled using D-triple testing as follows. As
before, we can replace ω by ωN = ω1B(0,N) with N > R, and f is supported on Q (0, R). Moreover, the
testing condition for the cube Qm = Q(0, 3mN) must hold for some m ≥ 0, since otherwise iteration of the
inequality |Qm|σ ≤

1
D |Qm+1|σ eventually violates the A2 condition,

A2 (σ, ω) ≥
|Qm|σ |Qm|ωN
|Qm|2

≥
Dm |Q0|σ |Q0|ω

32mn |Q0|2
=

(
D

32n

)m |Q0|σ |Q0|ω
|Q0|2

,

if D is chosen greater than 32n+1. Thus if the testing condition holds for the cube Qm we have∫
M (fσ)

2
dωN ≤ ‖f‖L∞

∫
Q(0,N)

M(1Qmσ)2dω <∞,

and therefore, without loss of generality, we can assume
∫
M(fσ)2dω < ∞. The second point is delicate.

Notice that, if we a priori have the usual testing, i.e., TM <∞, then we trivially have

TM (3) ≤ TDM (3) +D−1TM .

Then let D be sufficiently large and use the trivial fact that TM ≤ NM we get

NM ≤ C
(
TDM (3) +

√
A2

)
.

Therefore, the main goal is to remove the a priori assumption. To this end, consider the truncated maximal
function

M tf(x) := sup
Q3x,`(Q)≥t

1

|Q|

∫
Q

|f |.

Obviously, M t ≤ M and therefore, the related testing condition for M t also holds. By the monotone
convergence theorem, it suffices to prove

‖M t(fσ)‖L2(ω) ≤ C‖f‖L2(σ).

The argument for M t is basically identical with that for M above. Indeed, with the same proof, we have
the following analogy of Lemma 1:

M tf (x) ≤ 24n+1EγMD
γ ,tf (x) , MD

γ ,tf(x) := sup
x∈Q∈Dγ ,`(Q)≥t

1

|Q|

∫
Q

|f |.
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Then everything is same with M t and MD
γ ,t in place of M and MD

γ

, respectively. We only remark that
when `(Qkj ) < t we do not have the analogy of the maximal principle (3.2), instead, the same arguments will

imply that Ek,γj (defined according to M t and MD
γ ,t) is empty, which does not affect the proof.

Hence, for fixed t > 0, it remains to check that the a priori assumption TMt(σ, ωN ) <∞ holds automat-
ically. Indeed, fix a cube Q and denote K := Q(0, N), we have∫

Q

M t(1Qσ)2dωN ≤ 2

∫
Q

M t(1Q∩3Kσ)2dωN + 2

∫
Q

M t(1Q\3Kσ)2dωN

≤ 2

∫
K

M t(1Q∩3Kσ)2dω + 2

∫
Q∩K

M(1Q\3Kσ)2dω.

To continue, notice that trivially

M t(1Q∩3Kσ) ≤ t−nσ(Q ∩ 3K) and M(1Q\3Kσ)1K h constant.

Therefore, ∫
Q

M t(1Qσ)2dωN . t
−2nN2nA2σ(Q) + w(K)M(1Q\3Kσ)(cK)2

. (t−2nN2n + 1)A2σ(Q),

which affirms the claim and therefore the proof of Theorem 1 is complete.

5. Proof of Theorem 3

This section is devoted to proving Theorem 3. We start with the weak type inequalities for fractional
integrals. Let Nweak

Iα
(σ, ω) denote the best constant in the weak type (2, 2) inequality for the fractional

integral Iα:

sup
λ>0

λ2 |{Iα(fσ) > λ}|ω ≤ Nweak
Iα (σ, ω)

2
∫
|f |2 dσ, f ∈ L2 (σ) .

It is known from [21] that the weak type norm is equivalent to the dual testing condition, Nweak
Iα

(σ, ω) ≈
TIα (ω, σ), and also that Aα2 (σ, ω) ≤ TIα (ω, σ) where the α-fractional Muckenhoupt condition is given by

Aα2 (σ, ω) ≡ sup
Q∈Pn

|Q|σ
|Q|1−

α
n

|Q|ω
|Q|1−

α
n
.

Now we are ready to record the characterization of weak type inequalities for the fractional integrals.

Theorem 4. For D > 1 sufficiently large we have

Nweak
Iα (σ, ω) ≈ TDIα(3) (ω, σ) +Aα2 (σ, ω) ,

for all pairs (σ, ω) of locally finite positive Borel measures on Rn.

Proof. We modify the proof of the weak type characterization in [21]. For f bounded nonnegative and having
compact support, define

Ωλ ≡ {Iα(fσ) > λ} =
⋃
j

Qk

as in the standard Whitney decomposition with N = 9. Then we have the well known maximum principle,

Iα(f1(3Qk)cσ) (x) ≤ γλ, for x ∈ Qk ∩ {Mα(fσ) ≤ ε(γ)λ} .
Denote by E the set of indices k such that

(5.1) |9Qk|ω > D |Qk|ω ,

by F the set of indices k such that (5.1) fails and

(5.2)
1

|Qk|ω

∫
Qk

Iα (13Qkfdσ) dω > βλ,

and by G the set of indices k such that (5.1) and (5.2) fails. Then for k in F we have

λ2 |Qk|ω < β−2 |Qk|−1
ω

(∫
Qk

Iα (13Qkfdσ) dω

)2



14 TUOMAS HYTÖNEN, KANGWEI LI, AND ERIC SAWYER

= β−2 |Qk|−1
ω

(∫
3Qk

Iα (1Qkdω) fdσ

)2

≤ β−2 |Qk|−1
ω

(∫
3Qk

Iα (1Qkdω)
2
dσ

)(∫
Qk

f2dσ

)
≤ β−2

(
TDIα(3)

)2
D

(∫
Qk

f2dσ

)
,

where we have used D-restricted testing
∫

3Qk
Iα (13Qkdω)

2
dσ ≤ (TDIα(3))2D |Qk|ω since (5.1) fails for k ∈ F .

On the other hand, for k ∈ G, we have by the maximum principle that

|Qk ∩ {Iα(fσ) > (γ + 1)λ}|ω
≤ |Qk ∩ {Iα (13Qkfσ) > λ}|ω + |Qk ∩ {Mα (fσ) > ε(γ)λ}|ω
≤ β |Qk|ω + |Qk ∩ {Mα (fσ) > ε(γ)λ}|ω ,

since (5.1) and (5.2) fails. Altogether this gives the ‘good λ-inequality’

(3λ)
2 |
{
Iα(fσ) > 3λ

}
|ω

=
∑
k

(3λ)
2 |Qk ∩ {Iα(fσ) > 3λ}|ω

≤ 9
∑
k∈E

λ2 |Qk|ω + 9
∑
k∈F

λ2 |Qk|ω + 9λ2
∑
k∈G

|Qk ∩ {Iα(fσ) > 3λ}|ω

≤ 9

D

∑
k∈E

λ2 |9Qk|ω +

(
3

β
TDIα(3)

)2

D
∑
k∈F

(∫
Qk

f2dσ

)
+ 9λ2β

∑
k∈G

|Qk|ω

+ (3λ)2 |{Mα (fσ) > ελ}|ω

≤ 9CW
D

λ2 |{Iα(fσ) > λ}|ω +

(
3

β
TDIα(3)

)2

D

(∫
f2dσ

)
+ 9λ2β |{Iα(fσ) > λ}|ω

+ C(ε)Aα2 (σ, ω)

∫
f2dσ,

where CW is a dimensional constant. If we now choose β = 1
27 and D = 27CW , then we obtain for each

t > 0 that

sup
t≥λ>0

λ2 |{Iα(fσ) > λ}|ω ≤ sup
t≥λ>0

(3λ)
2 |{Iαfσ > 3λ}|ω

≤
( (

81TDIα(3)
)2
D + C(ε)Aα2 (σ, ω)

)(∫
f2dσ

)
+

2

3
sup
t≥λ>0

λ2 |{Iα(fσ) > λ}|ω ,

We now claim that supt≥λ>0 λ
2 |{Iα(fσ) > λ}|ω is finite for all t > 0, which will complete the proof of the

theorem after subtracting the last term on the right hand side from both sides, and then letting t→∞. To
prove the claim we recall that f is bounded and supported in B(0, R), so that

Iα(fσ) (x) ≈ 1

|x|n−α

∫
B(0,R)

fdσ, x /∈ 3B(0, R).

In other words,

(3B(0, R))c ∩ {Iα(fσ) > λ} ⊂ B
(

0,
(cn,α
λ

∫
B(0,R)

fdσ
) 1
n−α

)
=: B(0, rλ).

Then for 0 < λ ≤ t we have

λ2 |{Iα(fσ) > λ}|ω = λ2 |3B(0, R) ∩ {Iα(fσ) > λ}|ω + λ2 |(3B(0, R))c ∩ {Iα(fσ) > λ}|ω

≤ t2 |3B(0, R)|ω +
c2n−α

r
2(n−α)
λ

(∫
B(0,R)

fdσ
)2

|B(0, rλ)|ω

≤ t2 |3B(0, R)|ω + c′n,αA
α
2 (σ, ω)

∫
f2d σ,
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where in the last step we have used the fact that rλ > R. This proves the claim.
This completes the proof of the theorem since

Aα2 (σ, ω) + TDIα(3) (ω, σ) . Aα2 (σ, ω) + TIα (ω, σ) . Nweak
Iα (σ, ω)

is trivial. �

Now we are ready to prove Theorem 3.

Proof of Theorem 3. By the classical characterization of the weak and strong type two weight inequality for
the fractional integrals (see [21] and [22]), we see that

NIα (σ, ω) ≈ Nweak
Iα (σ, ω) + Nweak

Iα (ω, σ) .

Then Theorem 3 follows immediately from Theorem 4. �

6. Counterexamples

In this section we provide two counterexamples which showing that the classical Muckenhoupt condition is
needed in the characterization. We begin the following counterexample, which shows that the Muckenhoupt
A2 condition cannot be removed in Theorem 2.

Example 1. Define

dσ (y) = eydy,

dω (x) = 1[0,1] (x) dx.

Then

NM (σ, ω) ≥ A2 (σ, ω) ≥ sup
R>1

|[0, R]|ω
|R|

|[0, R]|σ
|R|

= sup
R>1

1

R

eR − 1

R
=∞,

and

TM (3) (σ, ω) . 1.

Indeed, without loss of generality, I = [a, b] with I∩[0, 1] 6= ∅ (since otherwise 1Iω = 0 and
∫
I
|M (1Iσ)|2 dω =

0) and so

(6.1) a < 1 and b > 0.

Now we assume (6.1) and compute 1
|3I|σ

∫
I
|M (1Iσ)|2 dω in two cases.

(1) Case b > 2: In this case we have M (1Iσ) (x) =
∫ b
x
eydy

b−x ≤ eb−1
b−1 for 0 ≤ x ≤ 1, and so∫

I

|M (1Iσ)|2 dω ≤
∫ 1

0

(
eb − 1

b− 1

)2

dx ≈ e2b

b2
,

|3I|σ =

∫ 2b−a

2a−b
dσ ≥

∫ 2b−a

2b−a−1

eydy ≈ e2b−a,

=⇒ 1

|3I|σ

∫
I

|M (1Iσ)|2 dω .
e2b

b2

e2b−a =
ea

b2
≤ 1.

(2) Case b ≤ 2: In this case we have M (1Iσ) (x) =
∫ b
x
eydy

b−x ≤ e2 for 0 ≤ x ≤ 1, and so we consider two
subcases.
(a) Subcase a ≥ −1: ∫

I

|M (1Iσ)|2 dω ≤ e2 |I ∩ [0, 1]|

|3I|σ =

∫ 2b−a

2a−b
eydy ≥ e2a−b3 (b− a) ≥ 3e−4 (b− a) ,

=⇒ 1

|3I|σ

∫
I

|M (1Iσ)|2 dω ≤ e2 |I ∩ [0, 1]|
3e−4 (b− a)

≤ e6

3
.
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(b) Subcase a < −1: In this subcase we also have b− a > 0− (−1) = 1 and so∫
I

|M (1Iσ)|2 dω ≤ e2 |I ∩ [0, 1]|

|3I|σ =

∫ 2b−a

2a−b
eydy ≥

∫ b

b−1

eydy = eb − eb−1 ≥ 1− e−1,

=⇒ 1

|3I|σ

∫
I

|M (1Iσ)|2 dω ≤ e2 |I ∩ [0, 1]|
1− e−1

≤ e2

1− e−1
.

On the other hand, if we interchange these measures, then we have TM (3) (ω, σ) =∞ since with I = [0, R]
and R > 2, we have

1

|3I|ω

∫
I

|M (1Iω)|2 dσ &
∫

[1,R]

∣∣∣∣∣
∫ 1

0
dx

y

∣∣∣∣∣
2

eydy =

∫ R

1

ey

y2
dy ≈ eR

R2
.

We now show that the weight pair (σ, ω) in Example 1 above also satisfies TIα(3) (σ, ω) < ∞ and
Aα2 (σ, ω) = ∞ for 0 < α < 1. Hence it is necessary to assume Aα2 (σ, ω) condition in Theorem 4 as
well.

Example 2. Define

dσ (y) = eydy,

dω (x) = 1[0,1] (x) dx.

Then

Nweak
Iα (ω, σ) ≥ Aα2 (σ, ω) ≥ sup

R>1

|[0, R]|ω
|R|1−

α
n

|[0, R]|σ
|R|1−

α
n

= sup
R>1

1

R1−αn

eR − 1

R1−αn
=∞,

and
TIα(3) (σ, ω) . 1.

Indeed, without loss of generality, I = [a, b] with I∩[0, 1] 6= ∅ (since otherwise 1Iω = 0 and
∫
I
|Iα (1Iσ)|2 dω =

0) and so
a < 1 and b > 0.

Now we assume this and compute 1
|3I|σ

∫
I
|Iα (1Iσ)|2 dω in two cases.

(1) Case b > 2: In this case we have

Iα (1Iσ) (x) =

∫ b

a

|x− y|α−1
eydy ≤ ex

∫ b

−∞
|y|α−1

eydy . bα−1eb

for 0 ≤ x ≤ 1, and so ∫
I

|Iα (1Iσ)|2 dω .
∫ 1

0

(
bα−1eb

)2
dx ≈ e2b

b2(1−α)
,

|3I|σ =

∫ 2b−a

2a−b
dσ ≥

∫ 2b−a

2b−a−1

eydy ≈ e2b−a,

=⇒ 1

|3I|σ

∫
I

|Iα (1Iσ)|2 dω .
e2b

b2(1−α)

e2b−a =
ea

b2(1−α)
. 1.

(2) Case b ≤ 2: In this case we have Iα (1Iσ) (x) =
∫ b
a
|x− y|α−1

eydy . e2 for 0 ≤ x ≤ 1, and so we
consider two subcases.
(a) Subcase a ≥ −1: ∫

I

|Iα (1Iσ)|2 dω . e2 |I ∩ [0, 1]|

|3I|σ =

∫ 2b−a

2a−b
eydy ≥ e2a−b3 (b− a) ≥ 3e−4 (b− a) ,

=⇒ 1

|3I|σ

∫
I

|Iα (1Iσ)|2 dω ≤ e2 |I ∩ [0, 1]|
3e−4 (b− a)

≤ e6

3
.
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(b) Subcase a < −1: In this subcase we also have b− a > 0− (−1) = 1 and so

∫
I

|Iα (1Iσ)|2 dω . e2 |I ∩ [0, 1]|

|3I|σ =

∫ 2b−a

2a−b
eydy ≥

∫ b

b−1

eydy = eb − eb−1 ≥ 1− e−1,

=⇒ 1

|3I|σ

∫
I

|Iα (1Iσ)|2 dω . e2 |I ∩ [0, 1]|
1− e−1

≤ e2

1− e−1
.
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