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Abstract. An efficient spectrally accurate multigrid method for the Bogoliubov-de Gen-

nes excitations of the quasi-2D dipolar Bose-Einstein condensates is proposed. The wave

function/eigenmodes are spatially discretised by the Fourier spectral method. The con-

volution-type nonlocal potential are computed in O (N log(N)) operations with a spectral

accuracy by the kernel truncation method. In addition, the influence of the model pa-

rameters on the eigenvalue distribution is studied and for various dipole orientations and

an anisotropic external potential the phase diagrams of the eigenmodes are presented.

Examples verify the spectral accuracy of the method.
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1. Introduction

The Bose-Einstein condensate (BEC), known as the “fifth state of matter”, was theoret-

ically predicted by S. Bose and A. Einstein at the beginning of the last century. Since 1995,

the realisation of the BEC of dilute alkalis metal atoms opens up a new direction in the study

of ultra-cold atoms [2]. Over the past few years, physicists have been looking for a novel

type of quantum gases with dipolar interaction, acting between particles with permanent

magnetic or electric dipole moments. It is possible to explore the dipolar BEC of ultra-

cold atomic in experiments due to the remarkable discovery of 52C r atoms in 2005 [26].

A dipolar BEC with 164D y atoms, whose dipole-dipole interaction (DDI) is much stronger

than that of 52C r, was achieved in experiments in 2011 [32]. In 2012, a new dipolar BEC

of 168Er atoms has been realised at the Insbruck University [1]. These experiments show

that apart from early BECs, the DDI of dipolar BEC is anisotropic and long-range ones and
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this produces some unique phenomena. All of these have greatly promoted the theoretical

and numerical investigations of dipolar BECs.

If the temperature T is much lower than a critical temperature Tc, the evolution of

quasi-2D dipolar BEC is described by a macroscopic wave function ψ = ψ(x, t), which

satisfies the 2D Gross-Pitaevskii equation (GPE) with DDI term [7,9,43]

i∂tψ(x, t) =

�
−1

2
∆+ V (x) + β |ψ|2 +λΦ(x, t)

�
ψ(x, t), x ∈ R2, t > 0, (1.1)

Φ(x, t) =
�
U ∗ |ψ|2� =
∫

R2

U(x− x′)ρ(x′)dx′, x ∈ R2, t ≥ 0 (1.2)

with the initial data

ψ(x, t = 0) =ψ0(x), x ∈ R2. (1.3)

Here, x = (x , y)T ∈ R2, t is the time, ρ(x, t) := |ψ(x, t)|2 the density, β a dimensionless

interaction constant (positive for repulsive interaction and negative for attractive interac-

tion), and Φ(x, t) is the real-valued nonlocal (long-range) DDI defined as the convolution

of the interaction kernel U(x) and a density function ρ. Besides, V (x) is a given real-valued

external trapping potential determined by the type of the system under consideration. In

most of the BEC experiments, the harmonic potential V (x) is chosen to trap the condensate

— i.e.

V (x) =
1

2

�
γ2

x x2 + γ2
y y2
�

,

where γx > 0 and γy > 0 are dimensionless constants proportional to the trapping fre-

quencies in x - and y-directions, respectively. Moreover, λ is a constant characterising the

strength of DDI and U(x) is a long-range DDI potential. Here, U(x) has the form

U(x) = −3

2

�
∂n⊥n⊥ − n2

3∇2
⊥
� 1

(2π)3/2

∫

R2

e−s2/2

p|x|2 + ε2s2
ds, x ∈ R2 (1.4)

with a given unit vector n= (n1, n2, n3)
T , i.e. ‖n‖l2 =
q

n2
1
+ n2

2
+ n2

3
= 1, representing the

3D dipole axis [7], and

∇⊥ = (∂x ,∂y)
T , n⊥ = (n1, n2)

T , ∂n⊥ = n⊥ · ∇⊥, ∂n⊥n⊥ = ∂n⊥(∂n⊥).

As the confinement gets stronger and by a formal analysis — c.f. Refs. [9,21], we have

U → U∞(x) := −3

2

�
∂n⊥n⊥ − n2

3∇2
⊥
� 1

2π

1

|x| , as ε→ 0. (1.5)

The quasi-2D GPE (1.1)-(1.3) conserves two important quantities — viz. the total mass

(or normalisation) of the wave function

N
�
ψ(x, t)
�

:= ‖ψ(x, t)‖2 =
∫

R2

|ψ(x, t)|2dx ≡ N
�
ψ(x, 0)
�
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and the energy per particle

E
�
ψ(x, t)
�

:=

∫

R2

�
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + β

2
|ψ(x, t)|4 + λ

2
Φ(x, t)|ψ(x, t)|2

�
dx

≡ E
�
ψ(x, 0)
�
, t ≥ 0.

In order to study the steady-state solution φs(x) by the ansatz function ψ(x, t) = eiµt

×φs(x), the 2D GPE (1.1)-(1.3) can be formally reduced to the following nonlinear eigen-

value problem:

µsφs(x) =

�
−1

2
∆+ V (x) + β |φs(x)|2 + λΦs(x)

�
φs(x), (1.6)

where µs is the chemical potential, φs(x) the time-independent wave function and Φs(x) =

U ∗ |φs|2. Its eigenvalue (or the chemical potential) µs can be computed from the corre-

sponding eigenfunction φs as

µs =

∫

R2

�
1

2
|∇φs(x)|2 + V (x)|φs(x)|2 + β |φs(x)|4 +λΦs(x)|φs(x)|2

�
dx

= E(φs) +
1

2

∫

R2

�
β |φs(x)|4 +λΦs(x)|φs(x)|2

�
dx.

The ground state φg(x) of BEC is defined as the minimizer of the following non-convex

minimization problems as follows:

φg(x) = argmin
φ∈S

E(φ),

where

S :=

�
φ(x) | ‖φ‖2 :=

∫

R2

|φ(x)|2dx= 1, E(φ) <∞
�

.

Moreover, the ground state is a one stationary state with the lowest energy. Nowadays, there

are various studies of the ground state [3,4,7–9,13,30,31,38,42,44] and the dynamics of

dipolar BECs [12,15,28,34].

It is well known, that GPE can be used to accurately describe BECs at the mean field

level [22]. On the other hand, GPE does not accurately describe the fluctuations of the

BEC [27]. In order to capture the multi-body effects of interatomic interactions, we first

need to study the collective excitations beyond GPE. The collective excitation behavior of

interacting Boson systems can be explained by the fundamental excitation of the system

controlled by quasi-2D GPE (1.1)-(1.3). When excitation is weak and quantum depleted,

the collective behavior of the interacting Boson gases can be explained by elementary ex-

citations of the systems governed by GPE (1.1)-(1.3). This phenomenon can be better

described by the Bogoliubov-de Gennes (BdG) excitations [5, 16, 29, 33]. Nowadays, the

works on elementary excitations in BECs are mainly composed of the GPE for the condensed
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part of trapped atom cloud and of BdG excitations for the non-condensed part [27]. In or-

der to present BdG excitations, we assume that the evolution of GPE (1.1)-(1.3) is located

around the stationary state φs with a chemical potential µs. Then we represent the wave

function as

ψ(x, t) = e−iµt
�
φg(x) +δ
�
u(x)e−iωt + v(x)eiωt

��
, x = (x , y)T ∈ R2, (1.7)

where ξ is the complex conjugate of ξ, 0 < δ ≪ 1 a small quantity used to control the

population of quasiparticle excitation, (u, v) are the modes of the excitations, and ω the

corresponding frequency — cf. [23,35]. Here the mode functions are normalised as

∫

R2

�|u(x)|2 − |v(x)|2�dx= 1. (1.8)

Substituting (1.7) into (1.1)-(1.3), collecting the linear terms in δ and evolving in time like

e−iωt and eiωt , we arrive at the following BdG equations:

LGPu+ β |φs|2u+ βφ2
s v +λU ∗ �φ̄su+φsv

�
φs =ωu, (1.9)

LGPv + β(φs)
2u+ β |φs|2v +λU ∗ �φ̄su+φsv

�
φ̄s = −ωv, (1.10)

where ω is the frequency, (u, v) the corresponding eigenvector, and

LGP := −1

2
∆+ V (x) + β |φs|2 + λΦs −µs.

The system (1.9)-(1.10) can be written in the matrix form

� A B
−A ∗ −B∗
��

u

v

�
=ω

�
u

v

�
, (1.11)

where

A =LGP + β |φs|2 +λbχ1, B = βφ2
s
+λ bχ2,

andA ∗ andB∗ are the adjoints of the operatorsA andB , respectively. The operators bχ1

and bχ2 are defined as follows:

�
bχ1(ξ)
�
(x) := φs(x)
�
U ∗ (φ̄sξ)
�
(x) = φs(x)

∫

R2

U(x− x′)φ̄s(x
′)ξ(x′)dx′, (1.12)

�
bχ2(ξ)
�
(x) := φs(x) [U ∗ (φsξ)] (x) = φs(x)

∫

R2

U(x− x′)φs(x
′)ξ(x′)dx′. (1.13)

It is worth noting that GPEs are much better studied than BdG equations. Physicists are

concerned with analytical solutions of BdG [27,39]. Since the solution of BdG equations is

based on accurate evaluation of steady-state BECs, numerical approaches to BdG, especially

in the case of dipolar BECs, require substantial efforts. In particular, Ronen et al. [35, 41]

incorporated the Hankel transform in a fast and accurate numerical algorithm to solve BdG
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equations. LAPACK and ARPACK libraries can be applied to the BdG equations discretised

by finite element/difference methods [18,20,29]. Gao and Cai [23] investigated analytical

properties of BdG equations for BEC and proposed numerical methods for their solution.

For BdG equations of the quasi-2D dipolar BEC (1.1)-(1.3), we first have to determine

an accurate stationary/ground state solution of a quasi-2D dipolar BEC. However, the non-

locality and anisotropy of the DDI term create substantial difficulties in the evaluation

of evaluation of nonlocal potentials. Nevertheless, nowadays there are efficient methods

to solve stationary/ground state of dipolar BECs such as non-uniform fast Fourier trans-

form (NUFFT) [13] and preconditioned conjugated gradient (PCG) with kernel truncation

method (KTM) [4]. In order to find solutions of the BdG equation (1.11), one has to be

able to efficiently evaluate the corresponding operator-functions and solve non-Hermitian

operator matrix eigenvalue problems. In particular, the operator-function evaluation re-

quires the fast computation of bχ j(ξ) defined by a convolution and multiplication — cf.

(1.12)-(1.13), with a smooth and fast-decaying function ξ(x). Moreover, it is also the most

time-consuming part, which often bottlenecks the entire simulation process because of the

absence of fast algorithms, especially, in high dimensional cases. Besides, since the coef-

ficient matrix discretised by a spectral method is large, dense and nonsymmetric, it is not

possible to directly store it.

In this paper, we first use the PCG method to compute the ground states of quasi-2D

dipolar BECs via KTM for DDI evaluation — cf. [40] with a spectral method for the spatial

discretisation. After that, a KTM is employed in order to determine the nonlocal interaction

bχ j(ξ) in (1.12)-(1.13). The large-scale, dense and nonsymmetric discrete BdG equations

can be solved by a matrix-free version of the implicitly restarted Arnoldi method (IRAM)

[37] such as eigs function in MATLAB and ARPACK. Based on the KTM method and matrix-

free version of the IRAM, we construct an efficient multigrid method for the eigenvalue

problem (2.9). Extensive numerical results demonstrate the efficiency and accuracy of the

numerical approach used.

This paper is organised as follows. In Section 2, analytical properties of BdGs are dis-

cussed. Section 3 introduces the Fourier spectral method for spatial discretisation, the KTM

for the convolution evaluation and a multigrid method for eigenvalue problems. In Sec-

tion 4, numerical tests are carried out to show the accuracy and efficiency of the numerical

methods and to investigate the phase diagram of BdG excitations. Finally, some conclusions

are drawn in Section 5.

2. Analytical Properties of BdG Equations

In this section, we show properties of BdG equations (1.9)-(1.10).

Lemma 2.1. If {(u, v),ω} is a solution of the Eqs. (1.9)-(1.10), then so is {(v̄, ū),−ω}. Be-

sides, if u, v satisfy the normalisation constraint (1.8), then the eigenfrequency ω is real.

Proof. Taking the complex conjugates of the Eqs. (1.9)-(1.10) gives

LGPū+ β(φ̄s)
2 v̄ + β |φs|2ū+λU ∗ (φ̄s v̄ +φsū)φ̄s =ωū,
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LGP v̄ + β |φs|2 v̄ + βφ2
s ū+λU ∗ (φ̄s v̄ +φsū)φs = −ωv̄,

which immediately implies {(v̄, ū),−ω} is also a solution.

Multiplying (1.9)-(1.10) respectively by ū and v̄, integrating over Rd and combining

the resulted equations yield

ω

∫

Rd

�|u(x)|2 − |v(x)|2� dx

=

∫

Rd

§
1

2

�|∇u(x)|2 + |∇v(x)|2�+ �V + 2β |φs|2 +λΦs −µs

� �|u(x)|2 + |v(x)|2�

+ β
�
φ2

s ūv + φ̄2
s uv̄
�
+λ
�
ūbχ1(u) + v̄ bχ∗1(v) + ūbχ2(v) + v̄ bχ∗2(u)

�ª
dx. (2.1)

It is clear that the right-hand side of (2.1) is real and hence substitute Eq. (2.1) from its

conjugate, we arrive at the identity

(ω− ω̄)
∫

R2

�|u(x)|2 − |v(x)|2�dx = 0.

Combining it with the normalisation constraint (1.8) shows that ω is also real.

In the context of elementary excitations for BECs, we consider the BdG equations (1.9)-

(1.10) under the condition (1.8) linearised around the ground state φg . In order to reduce

the large scale of (1.11), we use variables change

u= f + g, v = f − g. (2.2)

For real-valued stationary state φs, all nonlocal operators are identical — i.e.

bχ1 = bχ2, A =A ∗, B =B∗.

Then the BdG equations (1.11) can be written as

�
0 H−
H+ 0

��
f

g

�
=ω

�
f

g

�
, (2.3)

where

H− =LGP = −
1

2
∆+ V (x) + β |φs|2 −µs +λΦs, (2.4)

H+ =LGP + 2β |φs|2 + 2λbχ1 = −
1

2
∆+ V (x) + 3β |φs|2 −µs +λΦs + 2λbχ1. (2.5)

Correspondingly, the original constraint (1.8) takes the form

ℜ
�∫

R2

�
f (x)g∗(x)
�
dx

�
=

1

4
, (2.6)
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where ℜ refers to the real part of the corresponding expression. Hence, we have

H+ f =ωg, (2.7)

H−g =ω f . (2.8)

From (2.7) and (2.8), the eigenvalue problem (2.3) can be transformed to one of the prod-

uct eigenvalue problems — viz.

H−H+ f =ω2 f , (2.9)

H+H−g =ω2 g. (2.10)

Here, we focus on solving the eigenvalue problem (2.9) under the constraint (2.6). It is

worth noting that the coefficient operators H−H+ in (2.9) and H+H− in (2.10) are also

non-selfadjoint.

Lemma 2.2. Let V be the harmonic potential

V (x) =
1

2

∑

α

γ2
αα

2

with α = x or α = y. If the stationary state φs is real-valued, then there exist Bogoliubov

eigenvalues ωα = γα and the associated eigenfunctions

uα =
1p
2

�
γ
− 1

2
α ∂αφs − γ

1
2
ααφs

�
, vα =

1p
2

�
γ
− 1

2
α ∂αφs + γ

1
2
ααφs

�
.

Proof. We only consider the case α = x . The other one can be proved analogously.

Since the situations β = 0 or λ= 0 can be easily handled, we focus on the cases β 6= 0 and

λ 6= 0. It is well known that the steady state φs satisfies the Euler-Lagrange equation

µsφs(x) =

�
−1

2
∆+ V + β |φs|2 +λΦs(x)

�
φs(x), ‖φs‖= 1. (2.11)

Computing the first derivative of the Eq. (2.11) in x gives

H+(−∂xφs) =

�
−1

2
∆+ V + 3β |φs|2 +λΦs + 2λbχ1 −µs

�
(−∂xφs) = γ

2
x xφs. (2.12)

Multiplying this equation by γx x yields

H−(γx xφs) =

�
−1

2
∆+ V + β |φs|2 +λΦs −µs

�
(γx xφs) = −γx∂xφs. (2.13)

It follows that (−∂xφs,γx xφs) solves (2.7) and (2.8) with ω= γx . Observing that

−
∫

R2

γx x∂xφsφsdxdy =
γx

2
,
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we obtain that the functions

f =
1p
2
γ
− 1

2
x ∂xφs, g = − 1p

2
γ

1
2
x xφs

satisfy the Eqs. (2.7) and (2.8) with the eigenvalue ω = γx . It follows from the variables

change (2.2) that

(ux , vx ) =

�
1p
2

�
γ
− 1

2
x ∂xφs − γ

1
2
x xφs

�
,

1p
2

�
γ
− 1

2
x ∂xφs + γ

1
2
x xφs

��
,

where ω= γx with respect to x , is an analytic solution of BdG equation (1.9)-(1.10).

3. Numerical Algorithms for BdG Equations

In this section, we present numerical algorithms, including the Fourier spectral discreti-

sation, KTM for nonlocal interaction and a multigrid method.

3.1. Fourier spectral discretisation

Due to the external trapping potential V (x), the solution of the dipolar GPE (1.1)-(1.3)

decays exponentially fast at the far-field, and so is the solution of the BdG equation (1.9)-

(1.10). It is reasonable to assume that the stationary state φs and the eigenfunction (u, v)

are smooth and decay rapidly. Usually we first truncate the space R2 into a sufficiently large

rectangular domain Ω := [−L, L]2 such that the truncation error is negligible and impose

periodic boundary conditions for the wave function φs and the eigenfunctions (u, v). Since

the long-range nonlocal DDI Φs and the convolution part of bχ j(ξ) given by (1.4) and (1.12)-

(1.13), decay polynomially fast at the far field, it is natural not to prescribe any boundary

condition but to directly evaluate the convolutions. Note that it is challenging to efficiently

compute such convolutions with a spectral accuracy.

By using Fourier spectral method [7,9] for the discretisation of (2.9), we obtain a linear

algebraic system in the matrix form — viz.

H−
h

H+
h

f h = (ωh)2 f h, (3.1)

where H−
h
= Hh,1 + Hh,2 + Hh,3 and H+

h
= Hh,1 + eHh,2 + Hh,3 + Hh,4 are, respectively, the

matrices of the discrete operators for H+ and H− in (2.9). We note that Hh,1, Hh,2, eHh,2,

Hh,3 and Hh,4 are the discretisation matrices of−1
2∆, V (x)+β |φs|2−µs, V (x)+3β |φs|2−µs,

λΦs and 2λbχ1 in (2.4)-(2.5), respectively, and ( f h, gh) is the discrete vector for ( f , g).

The Fourier spectral method can be briefly described as follows. The domain Ω is dis-

cretised by a mesh of size h, and the mesh grid is Th = {(xp, yq)}(p,q)∈Λ with Λ= {(p,q)|p =
0,1, . . . , N − 1,q = 0,1, . . . , N − 1}. Take symmetric and uniform interval discrete with L.

Then xp = −L+ ph, yq = −L+ qh,h= 2L/N with p,q = 0,1, . . . , N −1. The wave function

ψ, the derivatives of ψ, and the Laplacian of ψ are well approximated by the discrete fast
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Fourier transform (FFT). The Fourier pseudo-spectral approximation for function ξ(x , y)

with periodic boundary conditions can be written as

ξ(x , y) ≈ 1

N2

N
2 −1∑

k=− N
2

N
2 −1∑

l=− N
2

bξkle
ikπ

L (x+L)e
ilπ
L (y+L)

with the discrete Fourier transforms coefficients

bξkl =

N−1∑

p=0

N−1∑

q=0

ξpqe−
ikπ

L (xp+L)e−
ilπ
L (yq+L), k, l = −N/2, . . . ,−1,0,1, . . . , N/2− 1,

where ξpq := ξ(xp, yq), p,q = 0,1, . . . , N − 1. According to the Fourier spectral discretisa-

tion we have

∂x xξ(x , y) ≈ 1

N2

N
2 −1∑

k=− N
2

N
2 −1∑

l=− N
2

�
ikπ

L

�2
bξkle

ikπ
L (x+L)e

ilπ
L (y+L),

∂y yξ(x , y) ≈ 1

N2

N
2 −1∑

k=− N
2

N
2 −1∑

l=− N
2

�
ilπ

L

�2
bξkle

ikπ
L (x+L)e

ilπ
L (y+L),

so that the approximation of the second order derivative (∂x x + ∂y y )ξ(x , y) at the grid

points (xp, yq), p,q = 0,1, . . . , N − 1 is

(∂x x + ∂y y )ξ(x , y) ≈ 1

N2

N
2 −1∑

k=− N
2

N
2 −1∑

l=− N
2

�
iπ

L

�2 �
k2 + l2
� bξkle

ikπ
L (x+L)e

ilπ
L (y+L).

It is easy to determine Hh,1. Since Hh,2 and eHh,2 are multiplication operators in the physical

space, their operations on fh are easily accessed by the point-wise multiplication. Since the

nonlocal interaction bχ j(ξ) consists of convolution and multiplication. Therefore, it is not

diagonalisable in either phase or physical space. Efficient and accurate evaluation of bχ j(ξ)

represents a challenging problem. However, it can be handled with a spectral accuracy by

the KTM [4,40] considered in the next subsection.

3.2. KTM for DDI and nonlocal interaction evaluation

Given a smooth and fast-decaying density ρ(x), we introduce KTM for the following

nonlocal convolution:

ϕ =

�
1

(2π)3/2

∫

R

e−s2/2

p|x|2 + ε2s2
ds

�
∗
�
−3

2

�
∂n⊥n⊥ − n2

3∇2
⊥
�
ρ

�

=: eU ∗ eρ.
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For simplicity, below we omit the tilde in the symbols of eU and eρ. Since the density ρ is

compactly supported in Ω, we have

ϕ(x) =

∫

R2

U(x− x′)ρ(x′)dx′ =
∫

Ω

U(x− x′)ρ(x′)dx′. (3.2)

In order to compute ϕ over Ω, we cut off the interaction outside a larger domain, which

is usually chosen as a ball BG := {x||x| < G} with the radius G superior to the diameter

of Ω. Setting U(x) = 0 for all x ∈ R2\BG, noticing that x − x′ ∈ BG for any x,x′ ∈ Ω and

combining it with (3.2) yield

ϕ(x) =

∫

R2

UG(x− x′)ρ(x′)dx′ =
1

(2π)2

∫

R2

bUG(k)bρ(k)eik·xdk, x ∈ Ω, (3.3)

where UG(x) = U(x)ζBG
(x) and ζBG

(x) is the characteristic function on the ball BG. Now

we apply the trapezoidal quadrature to the modified Fourier integral whose integrand is

not singular any more [4].

It has to be mentioned that the Fourier transform of a 2D truncated kernel UG can be

written as

bUG(k) = 2π

∫ G

0

J0(kr)U(r)dr, (3.4)

where k = |k|, r = |x| and J0 is the first-kind Bessel functions with index 0 [25]. The in-

tegral can be evaluated via adaptive Gauss-Kronrod quadrature numerically with a desired

accuracy (3.4).

In this work, we consider the square domain Ω = [−L, L]2 and set G ≥ 2
p

2L. This

suggests that a threefold zero-padding of the density in each spatial direction is sufficient

to guarantee spectral accuracy. It is known that a twofold zero-padding is sufficient with

a precomputation from [40]. We can use the Fourier spectral method to compute ρ. Let

ρ̄pq refer to the zero-padding by a factor of S, i.e.

ρ̄pq =

(
ρpq, p =

S − 1

2
Nx , . . . ,

S + 1

2
Nx − 1 and q = S−1

2 Ny , . . . , S+1
2 Ny − 1,

0, else,

where ρpq := ρ(xp, yq). Then we have

bρ(km, kn) =∆x∆y

SNx−1∑

p=0

SNy−1∑

q=0

ρ̄pqe−ikm(xp+SL)e−ikn(yq+SL),

where

km =
πm

SL
, m = −SNx

2
, . . . ,

SNx

2
− 1,

kn =
πn

SL
, n= −SNy

2
, . . . ,

SNy

2
− 1,
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xp = −SL + p

�
2L

Nx

�
, p = 0, . . . ,SNx − 1,

yq = −SL + q

�
2L

Ny

�
, q = 0, . . . ,SNy − 1.

Applying trapezoidal quadrature to (3.3), we approximate the values of ϕ as

ϕ(xp, yq) ≈
1

(2π)2
∆kx∆ky

×
SNx

2 −1∑

m=− SNx
2

SNy
2 −1∑

n=− SNy
2

bUG(km, kn) bρ(km, kn)e
ikm(xp+SL)eikn(yq+SL). (3.5)

The nonlocal interactions bχ j(ξ) defined by (1.12)-(1.13) consists of convolution and mul-

tiplication. Since the multiplication by the stationary state φs(x) and its conjugate can be

easily determined, one has to efficiently compute the convolution U∗(φsξ). However, since

(φsξ) is smooth and fast-decaying, the KTM allows to accurately compute the correspond-

ing convolution.

Thus the nonlocal interaction bχ j(ξ) can be efficiently computed in three steps — viz.

1. Multiply the ground state φs (or its conjugate) and function ξ.

2. Compute the convolution ϕ := U ∗ (φsξ) (or ϕ := U ∗ (φ̄sξ) ).

3. Multiply the convolution potential ϕ and the ground state φs.

Below, we present detailed step-by-step Algorithm 3.1 using bχ1(ξ) as an example. Its

adaptation to bχ2(ξ) is obvious and direct.

Algorithm 3.1 KTM for computing bχ1(ξ)

Require: Given a smooth function ξ, the ground state φs on mesh grid Th, pre-compute

the Fourier transform (bUG)mn .

1: Compute φ̄sξ by multiplication.

2: Compute the density ρ by differentiating φ̄sξ using Fourier spectral method.

3: Compute the Fourier transform of ρ̄pq via FFT.

4: Compute bρmn(bUG)mn by multiplication.

5: Compute the potential ϕ (3.5) via inverse FFT.

6: Compute bχ1(ξ) = φsϕ by multiplication.

The following example shows the accuracy of Algorithm 3.1. For the sake of simplicity,

we study the nonlocal interaction bχ1(ξ) as a representative.

Example 3.1. Consider φs(x) = e−|x|
2/2σ2

and ξ(x) = φs(x). The computational domain

Ω := [−12,12]2 is discretised uniformly in each direction with the mesh of size h. As the

reference solutions we take the numerical one on the fine mesh with size h= 1/16.
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Table 1: Example 3.1. Accuracy of nonlocal interaction bχ1(ξ), σ = 2, γ= 32.

h 2 1 1/2 1/4

n= (0,0,1)T 1.5975E-02 1.1291E-06 1.4544E-15 1.8422E-15

n= (1,0,0)T 1.5975E-02 1.1574E-06 1.3574E-15 1.3574E-15

n= (
p

6
3 ,
p

3
3 , 0)T 1.4624E-02 2.4054E-06 1.0665E-15 1.5513E-15

n= (0,
p

6
3 ,
p

3
3 )

T 2.5869E-02 5.7621E-06 3.2386E-15 4.2737E-15

Table 1 shows the accuracy in relative maximum norm of the nonlocal interaction bχ1(ξ)

for different mesh sizes h and different dipolar orientations n. Note that the numerical

errors of the nonlocal interaction bχ1(ξ) have the spatial spectral accuracy.

3.3. Numerical computation for BdG equations

In order to accelerate the solution of the eigenvalue problem (2.9), we will employ

a multigrid method — cf. Algorithm 3.2. First, we generate an initial mesh grid Th1
with

mesh size h1 and consider the Thk+1
obtained from Thk

(k = 1,2, . . . , n) by regular refine-

ments such that hk+1 = hk/2. Let I
hk+1

hk
refer to the Fourier spectral interpolation operator

from Thk
to Thk+1

. The process of solving (3.1) by IRAM is denoted by

�
f hk ,ωhk
�
= IRAM
�

f̂ hk ,Thk

�
,

where f̂ hk is the initial value, Thk
the k-th mesh grid and ( f hk ,ωhk ) the solution.

Algorithm 3.2 Multigrid method for eigenvalue problem

Require: Given a initial mesh grid Th1
and initial value f̂ h1 of the initial meshTh1

randomly.

1: Use Fourier spectral method and Algorithm 3.1 to discretise (2.9) and obtain (3.1).

2: Solve ( f h1 ,ωh1) = IRAM( f̂ h1 ,Th1
) to obtain ( f h1 ,ωh1), and set k = 1.

3: For k = 1, . . . , n− 1, do the following iteration

• Set f̂ hk+1 = I
hk+1

hk
fhk

.

• Use Fourier spectral method and Algorithm 3.1 to discretise (2.9) and obtain

(3.1).

• Do the solving process ( f hk+1 ,ωhk+1) = IRAM( f̂ hk+1 ,Thk
).

End Do

Remark 3.1. Since the corresponding linear system (3.1) is non-symmetric, real-valued

and dense, it is impossible to explicitly store the corresponding large matrix because of

memory constraints. It is necessary to utilise the matrix-free version of the IRAM. In this

work, we only have to provide the operator-function action — i.e. to compute z← H−
h

H+
h
ξ

for a given ξ, which is updated iteratively to approximate the eigenfunction.
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The next algorithm is used for solving the BdG equations (1.9)-(1.10).

Algorithm 3.3 Main method for BdG equations

1: Compute the stationary state φs and chemical potential µs in (1.6) for quasi-2D model

by PCG-KTM.

2: Solve the fourth order linear nonsymmetric eigenvalue problem (2.9) by Algorithm 3.2

to compute the first k smallest magnitude eigenvalues ωh
ℓ
, ℓ = 1, . . . , k and the corre-

sponding eigenfunctions f h
ℓ

, ℓ= 1, . . . , k on the bounded domain Ω.

3: Evaluate (2.7) to obtain gh
ℓ
, ℓ= 1, . . . , k.

4: Based on (2.2), we can obtain normalised numerical solutions (uh
ℓ
, vh
ℓ
), ℓ = 1, . . . , k

corresponding to eigenvalue ωh
ℓ
, ℓ = 1, . . . , k by using the discrete normalisation con-

ditions (2.6) of f and g .

4. Numerical Results

Let us consider numerical examples in order to illustrate the accuracy and effectiveness

of the methods introduced in Section 3. In Subsection 4.1, we study the influence of dif-

ferent harmonic potentials and dipolar orientation on Bogoliubov excitations around the

ground state of GPE. Computing the ground state solution of the BEC and eigenpairs of BdG

equations, we check the accuracy of numerical method and validity of our analysis. The ef-

ficiency of the multigrid method is considered in Subsection 4.2. Subsection 4.3 is devoted

to the convergence of the BdG equation for quasi-2D and limit model. In Subsection 4.4,

we present a few interesting phenomena related to the BdG excitations of quasi-2D dipo-

lar BEC from the eigenvalue coincidence, pairing and crossing. We also show interesting

effects of the BdG excitations of quasi-2D dipolar BEC in Subsection 4.4.

The exact ground state φg is computed numerically by the PCG-KTM algorithm [4]

on a large enough domain by using a fine mesh size h such that the errors of the spatial

discretisation is negligible. The BdG equation is solved on Th where the numerical ground

state φh
g

is interpolated by the Fourier spectral method from the exact solution φg . The

algorithms were implemented in MATLAB R2019b, and run on a 2.27GH Intel(R) Xeon(R)

CPU E5520 with a 8 MB cache in Debian GNU/Linux. We adapt matrix-free version eigs

function in MATLAB to solve large-scale, dense and nonsymmetric algebraic eigenvalue

problems.

4.1. Accuracy tests

Here, we demonstrate the numerical spectral accuracy confirmation by employing a har-

monic trap. Since we have obtained exact solution φg , Lemma 2.2 allows to determine

obtain analytical solutions (ωℓ,uℓ, vℓ), ℓ = 1,2 of the BdG equations (1.9)-(1.10) for the

harmonic potential V (x , y).

Using a reference solution, we define the relative error of numerical solutions (ωh
ℓ
,uh
ℓ
, vh
ℓ
)

(ℓ = 1,2) by



14 Y. Zhang, X. Liu and M. Xie

ǫh
ωℓ
= |ωℓ −ωh

ℓ |, ǫh
funℓ
= ǫh

uℓ
+ ǫh

vℓ
,

where

ǫh
uℓ
=
‖uh
ℓ
− uℓ‖l2

‖uh
ℓ
‖l2

, ǫh
vℓ
=
‖vh
ℓ
− vℓ‖l2

‖vh
ℓ
‖l2

.

Example 4.1. For harmonic potential V (x , y) = (γ2
x x2 + γ2

y y2)/2, computational domain

Ω= [−12,12]2, and the initial mesh size h0 = 1, we consider two cases.

Case 1. γx = γy = 1 (symmetric trap), β = 200,λ = 50, ǫ = 1/
p

10, and n = (1,0,0)T ,

n= (
p

6/3,
p

3/3,0)T or n= (
p

3/3,
p

3/3,
p

3/3)T .

Case 2. γx = 1,γy = 2 (asymmetric trap), β = 150,λ = −50, ǫ = 1/
p

32, and n =

(0,0,1)T , n= (
p

2/2,0,
p

2/2)T or n= (1/2,1/2,
p

2/2)T .

In Case 1, the eigenvalues are ωx = ωy = 1 and the dimension of the eigenvspace is

two. In Case 2, ωx = 1 and ωy = 2, thus the corresponding eigenspaces have dimension

one.

The exact ground state φg is computed on Ω = [−12,12]2 with mesh size h = 1/16.

The BdG equation is solved numerically on the same domain with the residual accuracy

tolerance 10−10 and 10−9 for the symmetric and asymmetric traps, respectively. Table 2

shows that for different dipole orientations n, the numerical errors have spatial spectral

accuracy .

4.2. Efficiency of the multigrid method

Consider the efficiency of Algorithm 3.2.

Example 4.2. For harmonic potential V (x , y) = (γ2
x
x2 + γ2

y
y2)/2, computational domain

Ω= [−12,12]2, and the initial mesh size h0 = 3/4, we study two cases

Case 1. γx = γy = 1 (symmetric trap), β = 200,λ= 50, ǫ = 1/
p

10, and n= (1,0,0)T .

Case 2. γx = 1,γy = 2 (asymmetric trap), β = 150,λ = −50, ǫ = 1/
p

32, and n =

(0,0,1)T .

The initial values of the direct method are selected by the default random selection of

MATLAB. For the initial mesh Th0
, we choose the same initial values as in Algorithm 3.2.

Table 3 shows that for eigenvalue problems, the multigrid method more very efficient than

the direct one.

4.3. Asymptotic convergence for quasi-2D and limit model

The example below deals with the asymptotic convergence of the BdG equations for

quasi-2D and limit models.
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Table 2: Example 4.1. Numerical errors for the BdG equation.

Case 1: γx = 1, γy = 1

h h0 = 1 h0/2 h0/4 h0/8

~n= (1,0,0)

ǫh
ω1

1.291E-02 2.481E-05 8.894E-08 6.933E-10

ǫh
ω2

1.935E-03 8.339E-06 9.665e-08 7.483E-10

ǫh
fun1

4.781E-02 9.994E-04 9.195E-08 3.229E-10

ǫh
fun2

4.109E-02 4.759E-04 3.701E-07 3.783E-10

~n=
�p

6
3 ,
p

3
3 , 0
�

ǫh
ω1

1.109E-02 2.644E-05 1.996E-08 1.113E-10

ǫh
ω2

7.147E-03 1.256E-05 2.175E-08 1.440E-10

ǫh
fun1

4.551E-02 8.466E-04 2.107E-07 1.480E-10

ǫh
fun2

4.355E-02 6.519E-04 2.366E-07 1.816E-10

~n=
�p

3
3

,
p

3
3

,
p

3
3

�
ǫh
ω1

2.564E-03 3.711E-06 2.671E-08 1.616E-11

ǫh
ω2

1.825E-05 5.267E-06 2.848E-08 1.717E-11

ǫh
fun1

4.536E-02 5.185E-04 1.170E-07 1.916E-10

ǫh
fun2

4.343E-02 5.278E-04 1.136E-07 2.979E-10

Case 2: γx = 1, γy = 2

h h0 = 1 h0/2 h0/4 h0/8

~n= (0,0,1)

ǫh
ω1

1.082E-01 1.346E-03 1.863E-06 2.971E-09

ǫh
ω2

1.622E-01 9.422E-04 9.605e-07 1.484E-10

ǫh
fun1

8.288E-02 1.513E-03 1.306E-06 1.410E-09

ǫh
fun2

2.817E-01 1.085E-02 3.527E-05 2.064E-09

~n=
�p

2
2 , 0,

p
2

2

�
ǫh
ω1

3.991E-02 6.424E-04 9.941E-07 1.384E-09

ǫh
ω2

2.008E-01 6.107E-04 5.402E-07 4.816E-10

ǫh
fun1

7.692E-02 9.285E-04 6.781E-07 1.027E-09

ǫh
fun2

3.532E-01 1.007E-02 2.778E-05 4.308E-09

~n=
�

1
2
, 1

2
,
p

2
2

�
ǫh
ω1

8.319E-03 9.876E-04 5.630E-08 3.825E-10

ǫh
ω2

1.873E-01 4.055E-04 3.914E-08 1.112E-10

ǫh
fun1

7.766E-02 9.894E-04 4.914E-07 3.227E-10

ǫh
fun2

3.541E-01 9.829E-03 1.647E-05 5.879E-10

Example 4.3. For harmonic potential V (x , y) = (γ2
x
x2 + γ2

y
y2)/2, computational domain

Ω= [−12,12]2 and the mesh size h= 1/8, we study two cases.

Case 1. γx = 1,γy = 1, β = 250,λ = 100, n = (1,0,0)T , and change ε from 1/20 to

1/210.

Case 2. γx = 1,γy = 3, β = 180,λ = 60, n = (
p

2/2,
p

2/2,0)T , and change ε from 1/20

to 1/210.
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Table 3: Example 4.2. Number of iterations.

Case I: γx = 1, γy = 1

h0 = 3/4 h1 = h0/2 h1 = h0/4 h1 = h0/8

Multigrid method 87 132 323 1370

Direct method 87 140 497 3042

Case II: γx = 1, γy = 2

h0 = 3/4 h1 = h0/2 h1 = h0/4 h1 = h0/8

Multigrid method 219 244 397 1137

Direct method 219 268 556 2964

In the limit case, we solve the BdG equations with the limit dipole convolution kernel

U∞(x) := (1/2π)(1/|x|) and obtain eigenpairs (ω∞
l

,u∞
ℓ

, v∞
ℓ
), ℓ = 1,2, . . .. Lemma 2.2

yields that the first or the second eigenpair does not depend on ε, so that we do not have

to compare the errors for the first and the second eigenpairs. Let us set

ǫωℓ = |ω∞ℓ −ωℓ|, ǫuℓ
=
‖u∞
ℓ
− uℓ‖l2

‖uℓ‖l2

, ǫvℓ
=
‖v∞
ℓ
− vℓ‖l2

‖vℓ‖l2

. (4.1)

The numerical results for eigenpair approximations presented in Fig. 1, show that our

method can achieve optimal first convergence order — cf. [7].
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10-4

10-3

10-2

10-1
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Figure 1: Example 4.3. Errors. Top Row: Case 1. Bottom Row: Case 2. Left: ωℓ. Middle: uℓ.
Right: vℓ.
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4.4. BdG solutions of dipolar BECs

Example 4.4. For harmonic potential V (x , y) = (γ2
x
x2 + γ2

y
y2)/2, n = (0,0,1)T , compu-

tational domain Ω= [−12,12]2, and the mesh size h = 1/8, we consider three cases.

Case 1. γx = 1,γy = 1, fixed β = 250, ε = 1/
p

10, change λ from −100 to 80.

Case 2. γx = 1,γy = 1, fixed λ= −100, ε= 1/
p

24, change β from 0 to 200.

Case 3. γx = 1,γy = 1, fixed β = 150, λ= −50, change ε from 1/1024 to 1.

Fig. 2 shows the eigenvalues ωℓ, ℓ = 1, · · · , 9 for β = 250, ε = 1p
10

, different λ on the

left (Case 1) and λ = −100, ε = 1p
24

, different β on the middle (Case 2) and β = 150,

λ= −50, different ε on the right (Case 3). In Case 1-3, the lowest eigenvalueω1 =ω2 = 1

remains the same. This indicates that in an external harmonic potential corresponding to a

rigid motion of the center of mass, the lowest dipole mode does not depend on the nature

of the interatomic forces [20,39]. The associated numerical amplitudes for ω1 = ω2 = 1,

presented in Fig. 2, are consistent with the analytical solutions in Lemma 2.2. Moreover,

we observe that the multiplicity of eigenvalue ω7 is 1, while ω1 =ω2, ω3 =ω4, ω5 =ω6

and ω8 = ω9, which indicates that the multiplicity of eigenvalues ω1, ω3, ω5 and ω8 is

two.
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1.8

2

2.2

2.4

2.6

1

2

3

4

5

6

7

8

9

Figure 2: Example 4.4. Eigenvalues ωℓ, γx = γy = 1, n = (0, 0, 1). Left: β = 250, ε = 1/
p

10 (Case 1).

Middle: λ = −100, ε= 1/
p

24 (Case 2). Right: β = 150, λ= −50 (Case 3).

Example 4.5. In this example, we consider the harmonic potentials V (x , y) = (γ2
x x2 +

γ2
y y2)/2, n= (1,0,0)T , computational domain Ω= [−12,12]2, mesh size h= 1/8.

Case 1. γx = 1,γy = 4, fixed β = 200, ε = 1/
p

60, change λ from 0 to 200.

Case 2. γx = 1,γy = 4, fixed λ= 40, ε= 1/
p

120, change β from 0 to 200.

Case 3. γx = 1,γy = 4, fixed β = 250, λ= 100, change ε from 1/1024 to 1.
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Figure 3: Example 4.5. Eigenvalues ωℓ, γx = 1, γy = 4, n = (1, 0, 0). Left: β = 200, ε = 1/
p

60 (Case

1). Middle: λ= 40, ε= 1/
p

120 (Case 2). Right: β = 250, λ= 100 (Case 3).

Fig. 3 shows the eigenvalues ωℓ, ℓ = 1, . . . , 9 for β = 100, ε = 1/4, different λ in the

left (Case 1) and λ= 40, ε= 1/
p

120, different β in the middle (Case 2), and β = 250, λ=

100, different ε in the right (Case 3). For Cases 1-3, the associated numerical amplitudes for

ω1 = 1 and 4 presented in Fig. 3, are consistent with the analytical solutions in Lemma 2.2.

Fig. 3 indicates that the multiplicities of all of eigenvalues ωℓ, ℓ = 1, . . . , 9 are single. The

eigenvalue 4 remains unchanged but its order can change: ω6 changes to ω5 (left) andω4

changes to ω5 change to ω6 (right). We choose two from all of intersection points. The

intersection point in Case I is around 80.08, and the intersection point in Case II is around

131.66 (up to two decimal places). The intersection point means the multiplicity of the

eigenvalue is two.

Example 4.6. For harmonic potential V (x , y) = (γ2
x x2 + γ2

y y2)/2, β = 200, λ = 100,

ε = 1/4, computational domain Ω = [−12,12]2 and the mesh size h = 1/8, we consider

three cases.

Case 1. γx = γy = 1, n = (0,1,0)T .

Case 2. γx = γy = 1, n = (
p

6/3,
p

3/3,0)T .

Case 3. γx = 1, γy = 3, n= (0,1,0)T .

Fig. 4, containing the contour plots of numerical solutions (uℓ, vℓ), shows that the dipole

orientation essentially affects the eigenmodes (uℓ, vℓ). The eigenmodes (uℓ, vℓ) orientations

are parallel to the dipole orientation. It also indicates that the influence of anisotropic ex-

ternal potential (γy > γx) on the eigenmodes is also very significant. Indeed, the presence

of DDI and anisotropic external potential leads to a much richer phase diagram for eigen-

modes of the BdG equations.

5. Conclusion

We propose an efficient spectrally accurate multigrid method for the BdG excitations

of the quasi-2D dipolar BECs. The wave function/eigenmodes are spatially discretised by
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Figure 4: Example 4.6. Contour plots of eigenmodes. Rows 1-2: Case 1. Rows 3-4: Case 2. Rows 5-6:
Case 3. Even rows: u1, . . . , u5 from left to right. Odd rows: v1, . . . , v5 from left to right.

the Fourier spectral method. The convolution-type nonlocal potential can be computed

in O (N log(N )) operations with a spectral accuracy by KTM. Non-symmetric and dense

eigenvalue system are solved by the matrix free version of IRAM. Examples confirm the

spectral accuracy of the method. Besides, the influence of the model parameters on the

eigenvalue distribution is studied and for various dipole orientations and an anisotropic

external potential the phase diagrams of the eigenmodes is presented. The method can

be extended to other problems such as BdG equation for rotating BEC, high-order local

interaction, multi-component BECs.



20 Y. Zhang, X. Liu and M. Xie

Acknowledgments

The authors would like to thank Prof. Yong Zhang (Tianjin University) for his stimu-

lating discussions and fruitful cooperations that have motivated this work. This work

was supported in part by the National Natural Science Foundation of China (Grant Nos.

12001402, 12071343).

References

[1] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm and F. Ferlaino, Bose-Einstein

Condensation of Erbium, Phys. Rev. Lett. 108, Article 210401 (2012).

[2] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of

Bose-Einstein condensation in a dilute atomic vapor, Science 269, 198–201 (1995).

[3] X. Antoine, A. Levitt, and Q. Tang, Efficient spectral computation of the stationary states of

rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method,

J. Comput. Phys. 343, 92–109 (2017).

[4] X. Antoine, Q. Tang, and Y. Zhang, A preconditioned conjugated gradient method for comput-

ing ground sates of rotating dipolar Bose-Einstein condensates via kernel truncation method for

dipole-dipole interaction evaluation, Commun. Comput. Phys. 24 (4), 966–988 (2018).

[5] D. Baillie, R.M. Wilson, and P.B. Blakie, Collective excitations of self-bound droplets of a dipolar

quantum fluid, Phys. Rev. Lett. 119 (25), Article 255302 (2017).

[6] W. Bao, N.B. Abdallah, and Y. Cai, Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein

condensate with anisotropic confinement, SIAM J. Math. Anal. 44, 1713–1741 (2012).

[7] W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation,

Kinet. Relat. Mod. 6 (1), 1–135 (2013).

[8] W. Bao and Y. Cai, Mathematical models and numerical methods for spinor Bose-Einstein con-

densates, Commun. Comput. Phys. 24, 899–965 (2018).

[9] W. Bao, Y. Cai, and H. Wang, Efficient numerical methods for computing ground states and

dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys. 229, 7874–7892 (2010).

[10] W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a nor-

malized gradient flow, SIAM J. Sci. Comput. 25 (5), 1674–1697 (2004).

[11] W. Bao, H. Jian, N.J. Mauser, and Y. Zhang, Dimension reduction of the Schrödinger equation

with coulomb and anisotropic confining potentials, SIAM J. Appl. Math. 73 (6), 2100–2123

(2013).

[12] W. Bao, D. Marahrens, Q. Tang and Y. Zhang, A simple and efficient numerical method for

computing the dynamics of rotating dipolar Bose-Einstein condensates via rotating Lagrangian

coordinates, SIAM J. Sci. Comput. 35, A2671–A2695 (2013).

[13] W. Bao, Q. Tang, and Y. Zhang, Accurate and efficient numerical methods for computing ground

states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT, Commun.

Comput. Phys. 19 (5), 1141–1166 (2016).

[14] C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose-Einstein condensation

in an atomic gas with attractive interactions, Phys. Rev. Lett. 75, 1687–1690 (1995).

[15] R. Carles, P.A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar

quantum gases, Nonlinearity 21, 2569–2590 (2008).

[16] F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in

trapped gases, Rev. Mod. Phys. 71 (3), 463–512 (1999).



Computation of BdG Excitation for Quasi-2D Dipolar BECs 21

[17] I. Danaila and F. Hecht, A finite element method with mesh adaptivity for computing vortex states

in fast-rotating Bose-Einstein condensates, J. Comput. Phys. 229, 6946–6960 (2010).

[18] I. Danaila, M.A. Khamehchi, V. Gokhroo, P. Engels, and P.G. Kevrekidis, Vector dark-antidark

solitary waves in multicomponent Bose-Einstein condensates, Phys. Rev. A 94 (5), Article 053617

(2016).

[19] K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ket-

terle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75, 3969–3973

(1995).

[20] M. Edwards, P.A. Ruprecht, K. Burnett, R.J. Dodd, and C.W. Clark, Collective excitations of

atomic Bose-Einstein condensates, Phys. Rev. Lett. 77 (9), 1671–1674 (1996).

[21] L. Exl, N.J. Mauser and Y. Zhang, Accurate and efficient computation of nonlocal potentials

based on Gaussian-sum approximation, J. Comput. Phys. 327, 629–642 (2016).

[22] A.L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81, 647–691 (2009).

[23] Y. Gao and Y. Cai, Numerical methods for Bogoliubov-de Gennes excitations of Bose-Einstein

condensates, J. Comput. Phys. 403, Article 109058 (2020).

[24] K. Gòral, K. Rzazewski and T. Pfau, Bose-Einstein condensation with magnetic dipole-dipole

forces, Phys. Rev. A 61, Article 051601 (2000).

[25] L. Greengard, S. Jiang and Y. Zhang, The anisotropic truncated kernel method for convolution

with free-space Green’s functions, SIAM J. Sci. Comput. 40(6), A3733–A3754 (2018).

[26] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Bose-Einstein condensation of

Chromium, Phys. Rev. Lett. 94, Article 160401 (2005).

[27] B. Hu, G. Huang, and Y.L. Ma, Analytical solutions of the Bogoliubov-de Gennes equations for ex-

citations of a trapped Bose-Einstein-condensed gas, Phys. Rev. A 69 (6), Article 063608 (2004).

[28] Z. Huang, P.A. Markowich and C. Sparber, Numerical simulation of trapped dipolar quantum

gases: collapse studies and vortex dynamics, Kinet. Relat. Mod. 3, 181–194 (2010).

[29] L. Jia, A.-B. Wang, and S. Yi, Low-lying excitations of vortex lattices in condensates with

anisotropic dipole-dipole interaction, Phys. Rev. A 97, Article 043614 (2018).

[30] S. Jia, H. Xie, M. Xie and F. Xu, A full multigrid method for nonlinear eigenvalue problems, Sci.

China Math. 59 (10), 2037–2048 (2016).

[31] T.F. Jiang, W.C. Su, Ground state of the dipolar Bose-Einstein condensate, Phys. Rev. A 74, Article

063602 (2006).

[32] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and T. Pfau, Observing

the Rosensweig instability of a quantum ferrofluid, Nature 530, 194–197 (2016).

[33] A.J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev.

Mod. Phys. 73 (2), 307–356 (2001).

[34] N.G. Parker, C. Ticknor, A.M. Martin and D.H. O’Dell, Structure formation during the collapse

of a dipolar atomic Bose-Einstein condensate, Phys. Rev. A 79, Article 013617 (2009).

[35] S. Ronen, D.C. Bortolotti and J.L. Bohn, Bogoliubov modes of a dipolar condensate in a cylin-

drical trap, Phys. Rev. A 74, Article 013623 (2006).

[36] C.A. Rozzi, D. Varsano, A. Marini, E.K. Gross, and A. Rubio, Exact coulomb cutoff technique for

supercell calculations, Phys. Rev. B 73 (20), Article 205119 (2006).

[37] Y. Saad, Numerical methods for large eigenvalue problems, SIAM (2011).

[38] L. Santos, G.V. Shlyapnikov, P. Zoller and M. Lewenstein, Bose-Einstein condensation in trapped

dipolar gases, Phys. Rev. Lett. 85, 1791–1794 (2000).

[39] S. Stringari, Collective excitations of a trapped Bose-condensed gas, Phys. Rev. Lett. 77 (12),

2360–2363 (1996).

[40] F. Vico, L. Greengard, and M. Ferrando, Fast convolution with free-space functions, J. Comput.

Phys. 323, 191–203 (2016).



22 Y. Zhang, X. Liu and M. Xie

[41] R.M. Wilson and S. Ronen and J.L. Bohn, Stability and excitations of a dipolar Bose-Einstein

condensate with a vortex, Phys. Rev. A 79, Article 013621 (2009).

[42] H. Xie and M. Xie, A multigrid method for ground state solution of Bose-Einstein condensates,

Commun. Comput. Phys. 19 (3), 648–662 (2016).

[43] S. Yi and L. You, Trapped condensates of atoms with dipole interactions, Phys. Rev. A 63, Article

053607 (2001).

[44] Y. Yuan, Z. Xu, Q. Tang and H. Wang, The numerical study of the ground states of spin-1 Bose-

Einstein condensates with spin-orbit-coupling, East Asian J. Appl. Math. 8, 598–610 (2018).


