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Abstract

The goal of this paper is to approximate two kinds of McKean-Vlasov SDEs with irregular
coefficients via weakly interacting particle systems. More precisely, propagation of chaos
and convergence rate of Euler-Maruyama scheme associated with the consequent weakly
interacting particle systems are investigated for McKean-Vlasov SDEs, where (i) the diffusion
terms are Hölder continuous by taking advantage of Yamada-Watanabe’s approximation
approach and (ii) the drifts are Hölder continuous by freezing distributions followed by
invoking Zvonkin’s transformation trick.
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1 Introduction and main results

The pioneer work on McKean-Vlasov SDEs whose coefficients depend on state components and
their laws is initiated in [28]. In terminology, McKean-Vlasov SDEs are also referred to as
distribution-dependent SDEs or mean-field SDEs, which are derived as limits of interacting dif-
fusions. Since McKean’s work, McKean-Vlasov SDEs have been applied extensively in stochastic
control, queue systems, mathematical finance, multi-factor stochastic volatility and hybrid mod-
els, to name a few; see, for example, [4, 7]. So far, McKean-Vlasov SDEs have been investigated
considerably on wellposedness [7, 16, 36], ergodicity [18, 33], Feyman-Kac Formulae [5, 14, 33],
and Harnack inequalities [21, 38] among others.

In general, McKean-Vlasov SDEs cannot be solved explicitly so it is desirable to devise im-
plementable numerical algorithms so that they can be simulated. With contrast to the standard
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SDEs, the primary challenge to simulate McKean-Vlasov SDEs lies in approximating distribu-
tions at each step. At present, there exist a few of results on numerical approximations for
McKean-Vlasov SDEs; see e.g. [6, 26]. In particular, [17] is concerned with strong convergence
of the tamed Euler-Maruyama (EM for short) scheme for McKean-Vlasov SDEs, where the drift
terms involved are of superlinear growth w.r.t. the spatial variables. Subsequently, [17] is ex-
tended to the higher-order numerical schemes (e.g., the tamed Milstein scheme and the adaptive
EM scheme); see e.g. [8, 12, 24]. It is worthy to emphasize that the strong convergence of nu-
merical algorithms in [8, 12, 17, 24] is analyzed under the smooth condition (e.g., the drift terms
are locally Lipschitz and of polynomial growth w.r.t. the state variables). In the meantime, the
weak convergence analysis of numerical algorithms concerning McKean-Vlasov SDEs has been
treated; see e.g. [1, 11, 37], where the algorithm in [1] is based on new particle representations
and [37] is concerned with the (antithetic) multilevel Monte-Carlo algorithms. Finally, we refer
to [15] for importance sampling Monte Carlo methods for McKean-Vlasov SDEs with smooth
drifts.

The literature [39] initiates the strong convergence analysis of EM numerical scheme for
McKean-Vlasov SDEs with irregular coefficients, whereas the distribution involved is not simu-
lated and the convergence rate is not revealed. Compared with the strong convergence analysis
of numerical approximations for classical SDEs with irregular coefficients (see e.g. [2, 19, 31]),
the counterpart for McKean-Vlasov SDEs with irregular coefficients is rather scarce. Neverthe-
less, in the present work, for two kinds of McKean-Vlasov SDEs with irregular coefficients (e.g.,
Hölder continuous drifts or diffusions), we aim to investigate the overall strong convergence rate
of EM schemes based on stochastic interacting particle systems.

Next we start with some notation. Let (Rd, 〈·, ·〉, | · |) be the d-dimensional Euclidean space
and Rd ⊗ Rd the set of all d× d-matrices. C1(Rd;Rd ⊗ Rd) stands for the family of all Fréchet
differentiable functions f : Rd → Rd⊗Rd.P(Rd) means the collection of all probability measures
on Rd. For p > 0, if µ ∈P(Rd) has a finite p-th moment, i.e., µ(| · |p) :=

∫
Rd |x|

pµ(dx) <∞, we
then formulate µ ∈Pp(Rd). For µ, ν ∈Pp(Rd), the Wp-Wasserstein distance between µ and ν
is defined by

Wp(µ, ν) = inf
π∈C(µ,ν)

(∫
Rd×Rd

|x− y|pπ(dx,dy)
) 1

1∨p
,

where C(µ, ν) stands for the set of all couplings of µ and ν, that is, π ∈ C(µ, ν) if and only if
π(·,Rd) = µ(·) and π(Rd, ·) = ν(·). Let δx be Dirac’s delta measure centered at the point x ∈ Rd.
For a random variable ξ, its law is written by Lξ. For any t ≥ 0, let C([0, t];Rd) be the set of all
continuous functions f : [0, t] → Rd endowed with the uniform norm ‖f‖∞,t := sup0≤s≤t |f(s)|.
bac stipulates the integer part of the real number a ≥ 0.

Let (Ω,F ,P) be a complete probability space endowed with the filtration (Ft)t≥0, which
satisfies the usual conditions (i.e., F0 contains all P-null sets and Ft = Ft+ := lims↓t ∩Fs,
t ≥ 0), and is rich enough such that, for any µ ∈ P(R), there exists an R-valued random
variable ξ on (Ω,F0,P) such that Lξ = µ. Let W = (Wt)t≥0 be a standard 1-dimensional
Brownian motion on (Ω,F , (Ft)t≥0,P), which implies that W is adapted to (Ft)t≥0 and Wt−Ws

is independent of Fs for any t > s ≥ 0.
The classical Cox-Ingersoll-Ross (CIR) model (see e.g. [13])

dXt = (α− δXt)dt+ |Xt|hdWt, α, δ > 0, h ≥ 1

2
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deals basically with the development of interest rates. Nowadays, the CIR model has been ex-
tended considerably in different manners to characterize stochastic volatility. On the other hand,
in applications, the distribution of a stochastic process can be regarded as a macro property.
On account of the points above, in this paper we consider the following McKean-Vlasov SDE

(1.1) dXt = b(Xt, µt)dt+ σ(Xt)dWt, t ≥ 0, X0 = ξ,

where µt := LXt is the law of X at time t, b := b1 + b2, bi : R×P(R)→ R, i = 1, 2, σ : R→ R.
Throughout the paper, we assume that the initial value ξ is F0-measurable which implies that
ξ is independent of W .

Now we introduce the definition of strong solutions to (1.1), which is standard in literature;
see e.g. [38, Definition 1.1].

Definition 1.1. A continuous adapted process (Xt)t≥0 on R is called a (strong) solution of
(1.1), if ∫ t

0
E
{
|b(Xs, µs)|+ |σ(Xs)|2

}
ds <∞, t ≥ 0,

and P-a.s.

Xt = X0 +

∫ t

0
b(Xs, µs)ds+

∫ t

0
σ(Xs)dWs, t ≥ 0.

Remark 1.1. By Burkhold-Davis-Gundy’s inequality, Definition 1.1 yields E‖X‖∞,t < ∞ if
E|X0| <∞.

With regard to the drift term b and the diffusion term σ in (1.1), we assume

(H1) For fixed µ ∈ P(R), R 3 x 7→ b1(x, µ) is continuous and non-increasing, and there exist
constants K1 > 0 and β ∈ (0, 1] such that, for x, y ∈ R and µ, ν ∈P1(R),

(1.2) |b1(x, µ)− b1(x, ν)| ≤ K1W1(µ, ν), |b1(x, µ)− b1(y, µ)| ≤ K1|x− y|β,

(1.3) |b2(x, µ)− b2(y, ν)| ≤ K1

{
|x− y|+ W1(µ, ν)

}
.

(H2) There exist constants K2 > 0 and α ∈ [12 , 1] such that |σ(x)−σ(y)| ≤ K2|x−y|α, x, y ∈ R.

The theorem below addresses the strong wellposedness of (1.1).

Theorem 1.2. Assume (H1) and (H2). Then, for any Xξ
0 = ξ ∈ Lp(Ω → R; F0,P), p ≥ 2,

(1.1) has a unique strong solution (Xξ
t )t≥0 with the initial value Xξ

0 = ξ such that

(1.4) E‖Xξ
t ‖
p
∞,T ≤ Cp,T (1 + E|ξ|p)

for some constant Cp,T > 0 dependent on the parameters p and T.
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The strong wellposedness of McKean-Vlasov SDEs with regular coefficients has been in-
vestigated considerably; see [7, 36, 38] among others. Meanwhile, the strong wellposedness of
McKean-Vlasov SDEs with irregular coefficients has also received much attention. In particular,
[3] treats (1.1) with an additive noise and b has the decomposable form b(x, µ) = b̂(x, µ)+ b̃(x, µ),
where b̂ is merely measurable and bounded and b̃ is Lipschitz continuous w.r.t. the spatial vari-
ables; [10] investigates the following non-degenerate McKean-Vlasov SDE

dXt = b(Xt, µt(ψ1))dt+ σ(Xt, µt(ψ2))dWt, µt(ψ1) :=

∫
Rd
ψ1(x)µt(dx),

in which σ is Lipschitz continuous w.r.t. the first component; [34] handles the following mean-
filed SDE

(1.5) dXt =

∫
Rd
b(Xt, y)µt(dy)dt+

∫
Rd
σ(Xt, y)µt(dy)dWt

with a singular distribution dependent drift and a constant matrix σ; [21] investigates non-
degenerate McKean-Vlasov SDEs under integrability condition, which whereas excludes the
setup that the drift is of linear growth. Under the pathwise uniqueness, the unique strong
solutions is constructed in [29] by the Euler polygonal approximation rather than using the
famous Yamada-Watanabe theorem. As for the weak wellposedness of McKean-Vlasov SDEs,
we refer to e.g. [20] under measure-dependent Lyapunov type conditions (see (3.3) therein),
[27, 30] for the framework (1.5), and [25] (resp. [3]) for nondegenerate McKean-Vlasov SDEs
with bounded (resp. unbounded) measurable drifts. Whereas Theorem 1.2 above shows that
the McKean-Vlasov SDE we are interested in is strongly wellposed although the drift term and
the diffusion term are Hölder continuous (so that they are irregular in a certain sense).

Since (1.1) is distribution-dependent, we exploit stochastic interacting particle systems to
approximate it. Let N ≥ 1 be an integer and (Xi

0,W
i
t )1≤i≤N be i.i.d. copies of (X0,Wt). Consider

the following stochastic non-interacting particle systems

(1.6) dXi
t = b(Xi

t , µ
i
t)dt+ σ(Xi

t)dW
i
t , t ≥ 0, i ∈ SN := {1, · · · , N},

where µit := LXi
t
. By the weak uniqueness due to Theorem 1.2, we have µt = µit, i ∈ SN . Let

µ̃Nt be the empirical distribution associated with X1
t , · · · , XN

t , i.e.,

(1.7) µ̃Nt =
1

N

N∑
j=1

δ
Xj
t
.

Furthermore, we need to consider the so-called stochastic N -interacting particle systems:

(1.8) dXi,N
t = b(Xi,N

t , µ̂Nt )dt+ σ(Xi,N
t )dW i

t , t ≥ 0, Xi,N
0 = Xi

0, i ∈ SN ,

where µ̂Nt means the empirical distribution corresponding to X1,N
t , · · · , XN,N

t , namely,

µ̂Nt :=
1

N

N∑
j=1

δ
Xj,N
t
.

4



We remark that particles (Xi)i∈SN are mutually independent whereas particles (Xi,N )i∈SN are
not independent but identically distributed. Under (H1) and (H2), the stochastic N -interacting
particle systems (1.8) are strongly wellposed; see Lemma 3.1 below for more details.

To discretize (1.8) in time, we introduce the continuous time EM scheme defined as below:
for any δ ∈ (0, e−1),

(1.9) dXδ,i,N
t = b(Xδ,i,N

tδ
, µ̂δ,Ntδ )dt+ σ(Xδ,i,N

tδ
)dW i

t , t ≥ 0, Xδ,i,N
0 = Xi,N

0 ,

where tδ := bt/δcδ and

µ̂δ,Nkδ :=
1

N

N∑
j=1

δ
Xδ,j,N
kδ

, k ≥ 0.

The following result states that the continuous time EM scheme corresponding to stochastic
interacting particle systems converges strongly to the non-interacting particle systems whenever
the particle number goes to infinity and the stepsize approaches to zero. Most importantly, the
corresponding overall convergence rate is provided.

Theorem 1.3. Assume (H1) and (H2) and suppose further X0 ∈ Lp(Ω → R; F0,P) for some
p > 4. Then, for any T > 0, there exists a constant CT > 0, independent of δ and N , such that

(1.10) sup
i∈SN

E ‖Xi −Xδ,i,N‖∞,T ≤ CT

N−
1
8 +

(
1

ln 1
δ

)1/2
, α = 1

2

N−
2α−1

4 + δ
(2α−1)2

2 + δ
β(2α−1)

2 , α ∈ (12 , 1]

and

(1.11) sup
i∈SN

E ‖Xi −Xδ,i,N‖2∞,T ≤ CT


N−

1
4 + 1

ln 1
δ

, α = 1
2

N−
1
4 + δ

2α−1
2 + δ

β
2 , α ∈ (12 , 1)

N−
1
4 + δβ, α = 1.

The assumption on X0 ∈ Lp(Ω → R; F0,P) for some p > 4 is set to ensure that the
Glivenko-Cantelli convergence under the Wasserstein distance (see e.g. [7, Theorem 5.8]) is
available. According to Theorem 1.3, it is preferable to measure the convergence between the
non-interacting particle systems and the continuous time EM schemes of the corresponding
stochastic interacting particle systems in a lower order moment. Moreover, Theorem 1.3 extends
[2, 19] to McKean-Vlasov SDEs with Hölder continuous diffusions.

In the preceding section, we focused mainly on McKean-Vlasov SDEs, where, in particular,
the diffusion term is Hölder continuous. We now move forward to consider McKean-Vlasov SDEs,
in which the drift coefficients are Hölder continuous w.r.t. the spatial variables, the diffusion
terms are assumed to be non-degenerate, and both of them are Lipschitz in law under the W2-
distance (i.e., W2-Lipschitz). In the sequel, for d ≥ 1, we work on the following McKean-Vlasov
SDE

(1.12) dXt = b(Xt, µt)dt+ σ(Xt, µt)dWt, t ≥ 0, X0 = ξ,
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where b : Rd×P(Rd)→ Rd, σ : Rd×P(Rd)→ Rd⊗Rd, (Wt)t≥0 is a d-dimensional Brownian mo-
tion on some complete filtration probability space (Ω,F , (Ft)t≥0,P), and ξ is an F0-measurable
random variable.

Concerning (1.12), we assume

(A1) For each µ ∈ P2(Rd), σ(·, µ) ∈ C1(Rd;Rd ⊗ Rd), Rd 3 x 7→ σ(x, µ) is invertible for all
µ ∈P2(Rd), and

(1.13) ‖b‖∞ + ‖σ‖∞ + ‖∇σ‖∞ + ‖σ−1‖∞ <∞,

where ∇ denotes the gradient operator w.r.t. the space variable and ‖ · ‖∞ means the
uniform norm over the space variables and the measure variables.

(A2) There exist constants K > 0, α ∈ (0, 1] such that for any x, y ∈ Rd and µ, ν ∈P2(Rd),

(1.14) |b(x, µ)− b(y, ν)| ≤ K
{
|x− y|α + W2(µ, ν)

}
,

(1.15) |σ(x, µ)− σ(x, ν)| ≤ KW2(µ, ν).

Theorem 1.4. Assume (A1) and (A2). Then, for any X0 ∈ L2(Ω → Rd; F0,P), (1.12) has a
unique strong solution (Xt)t≥0 such that for some constant CT > 0,

(1.16) E‖X‖2T,∞ ≤ CT (1 + E|X0|2).

The proof of Theorem 1.4 is deferred into the Appendix A. One can also refer to [3, Theorems
2.3 & 2.7] or [25, Theorem 3.2] for the weak wellposedness when σ is not dependent on the
measure variable.

Consider the stochastic non-interacting particle systems associated with (1.12)

(1.17) dXi
t = b(Xi

t , µ
i
t)dt+ σ(Xi

t , µ
i
t)dW

i
t , t ≥ 0, i ∈ SN ,

where (Xi
0,W

i)1≤i≤N are i.i.d copies of (X0,W ). The stochastic interacting particle systems
corresponding to (1.12) solve

(1.18) dXi,N
t = b(Xi,N

t , µ̂Nt )dt+ σ(Xi,N
t , µ̂Nt )dW i

t , t ≥ 0, i ∈ SN .

To discretize (1.18), we further need to consider the following continuous time EM scheme

(1.19) dXδ,i,N
t = b(Xδ,i,N

tδ
, µ̂δ,Ntδ )dt+ σ(Xδ,i,N

tδ
, µ̂δ,Ntδ )dW i

t , t ≥ 0, Xδ,i,N
0 = Xi,N

0 .

By following the same line of the proof for Lemma 3.1 below, (1.18) has a weak solution. On
the other hand, employing Zvonkin’s transformation, we infer that (1.18) is pathwise unique.
Henceforth, the Yamada-Watanabe theorem (see e.g. [32, Theorem E.1.8]) yields that (1.18) is
strongly wellposed under (A1) and (A2).

Another contribution in the present paper is concerned with strong convergence analysis
between non-interacting particle systems and continuous time EM schemes of stochastic inter-
acting particle systems corresponding to the McKean-Vlasov SDE (1.12), where the drift is
Hölder continuous w.r.t. the spatial variables and the diffusion is Lipschitz continuous under
the W2-Wasserstein distance.
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Theorem 1.5. Assume (A1) and (A2) and suppose further X0 ∈ Lp(Ω→ Rd; F0,P) for some
p > 4. Then, for any T > 0, there exists a constant CT > 0, independent of N and δ, such that

(1.20) sup
i∈SN

E‖Xi −Xδ,i,N‖2∞,T ≤ CT


N−

1
2 + δα, d < 4

N−
1
2 logN + δα, d = 4

N−
2
d + δα, d > 4.

Remark 1.6. For the standard SDEs, the boundedness on the drifts can be dropped via a stopping
time technique (e.g., a localization approach); see e.g. [2]. However, concerning the McKean-
Vlasov SDEs, as stated in [17, Remark 3.4], the localization approach does not work any more
since applying a stopping time to a single particle does not allow us to fully bound the coefficients
and moreover destroys the result of all particles being identically distributed. By a close inspection
of the proof of Theorem 1.5, the assertion in Theorem 1.5 can indeed be extended to the case
b = b1 + b2, where b1 satisfies (A1) and (A2) and b2 is Lipschitz continuous with respect to both
space and measure variables which allows b2 to be unbounded.

The remainder of this paper is structured as follows: In Section 2, the strong wellposedness
of (1.1) is addressed by Yamada-Watanabe’s approximation; Section 3 is devoted to completing
the proof of Theorem 1.3 via Yamada-Watanabe’s approach; Section 4 aims to finish the proof
of Theorem 1.5 by employing Zvonkin’s transformation; In the Appendix section, we show that
(1.12) is strongly wellposed.

2 Proof of Theorem 1.2

To complete the proofs of Theorems 1.2 and 1.3, we shall adopt the Yamada-Watanabe ap-
proximation approach (see e.g. [19, 23]), where the essential ingredient is to approximate the
function R 3 x 7→ |x| in an appropriate manner. For γ > 1 and ε ∈ (0, 1), one trivially has∫ ε
ε/γ

1
xdx = ln γ so that there exists a continuous function ψγ,ε : R+ → R+ with the support

[ε/γ, ε] such that

0 ≤ ψγ,ε(x) ≤ 2

x ln γ
, x > 0,

∫ ε

ε/γ
ψγ,ε(r)dr = 1.

By a direct calculation, the following mapping

(2.1) R 3 x 7→ Vγ,ε(x) :=

∫ |x|
0

∫ y

0
ψγ,ε(z)dzdy

is twice differentiable (in this sense, we write Vγ,ε ∈ C2) and satisfies

(2.2) |x| − ε ≤ Vγ,ε(x) ≤ |x|, sgn(x)V ′γ,ε(x) ∈ [0, 1], x ∈ R,

where sgn(·) means the sign function, and

(2.3) 0 ≤ V ′′γ,ε(x) ≤ 2

|x| ln γ
1[ε/γ,ε](|x|), x ∈ R.

Herein, V ′γ,ε (resp. V ′′γ,ε) denotes the first(resp. second) order derivative of Vγ,ε.
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To obtain existence of solutions to (1.1), for k ≥ 1, we consider the distribution-iterated SDE

(2.4) dX
(k)
t = b(X

(k)
t , µ

(k−1)
t )dt+ σ(X

(k)
t )dWt, X

(0)
t = X

(k)
0 = X0, t ∈ [0, T ],

where µ
(k)
t := L

X
(k)
t

. For each fixed k ≥ 1, according to [23, Theorem 3.2, p.168], (2.4) has a

unique solution (X
(k)
t )t≥0. The lemma below shows that the second order moment is uniformly

bounded in a finite time interval.

Lemma 2.1. Assume (H1) and (H2). Then, for each k ≥ 1 and X0 ∈ L2(Ω → Rd; F0,P),
there exists a nondecreasing positive function T 7→ CT independent of k such that

E ‖X(k)‖2∞,T ≤ CT
(
1 + E|X0|2

)
.(2.5)

Proof. The proof of Lemma 2.1 is based on an inductive argument. From (H1) and (H2), it is
easy to see that for any x ∈ R and µ ∈P1(R),

(2.6) |b(x, µ)| ≤ 2K1

(
|x|+ W1(µ, δ0)

)
+ c1, |σ(x)|2 ≤ 2K2

2 |x|2 + c2,

where c1 := K1 + |b(0, δ0)| and c2 := 2(K2 + |σ(0)|)2. For each integer N ≥ 1, define the

stopping time τN = inf
{
t ≥ 0 : |X(1)

t | ≥ N
}

. Below, we set t ∈ [0, T ]. By Hölder’s inequality
and Burkhold-Davis-Gundy’s inequality, it follows from (2.6) that

E‖X(1)‖2∞,t∧τN ≤ 3
{
E|X0|2 + tE

∫ t∧τN

0
|b(X(1)

s , µ(0)s )|2ds+ 4E
∫ t∧τN

0
|σ(X(1)

s )|2ds
}

≤ C1(1 + t)
{

1 + E|X0|2 + E
∫ t∧τN

0

{
|X(1)

s |2 + W1(µ
(0)
s , δ0)

2
}

ds
}

≤ C2(1 + t)
{

1 + E|X0|2 +

∫ t

0
E|X(1)

s∧τN |
2 +

∫ t

0
µ(0)s (| · |)2ds

}
≤ C2(1 + t)2

(
1 + E|X0|2

)
+ C2(1 + t)

∫ t

0
E|X(1)

s∧τN |
2ds

for some constants C1, C2 > 0. This, together with Gronwall’s inequality, implies

E‖X(1)‖2∞,t∧τN ≤ C2(1 + t)2eC2(1+t)t
(
1 + E|X0|2

)
.

Thus, (2.5) holds with k = 1 by making use of Fatou’s lemma. Next, we aim to show that (2.5)
still holds true for k = n+1 once (2.5) is valid for some k = n. Indeed, this can be handled in the
same manner by using the triple (X(n+1), X(n), µ(n)) in lieu of (X(1), X(0), µ(0)). We therefore
complete the proof.

With the approximate function Vγ,ε, introduced in (2.1), and Lemma 2.1 at hand, we are in
a position to complete

Proof of Theorem 1.2. Below, we shall fix the time terminal T > 0. For notation brevity, we

set Z
(k)
t := X

(k)
t −X

(k−1)
t and Vε := V

e
1
ε ,ε

(i.e., γ = e
1
ε in (2.1)). By Itô’s formula, for any λ ≥ 0,
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it follows that

e−λtVε(Z
(k+1)
t ) = −λ

∫ t

0
e−λsVε(Z

(k+1)
s )ds

+

∫ t

0
e−λsV ′ε (Z(k+1)

s )
{
b(X(k+1)

s , µ(k)s )− b(X(k)
s , µ(k−1)s )

}
ds

+
1

2

∫ t

0
e−λsV ′′ε (Z(k+1)

s )
{
σ(X(k+1)

s )− σ(X(k)
s )
}2

ds

+

∫ t

0
e−λsV ′ε (Z(k+1)

s )
{
σ(X(k+1)

s )− σ(X(k)
s )
}

dWs

=: Iλ1,ε(t) + Iλ2,ε(t) + Iλ3,ε(t) + Iλ4,ε(t).

(2.7)

By virtue of (2.2), one obviously has

Iλ1,ε(t) ≤ λεt− λ
∫ t

0
e−λs|Z(k+1)

s |ds.(2.8)

By recalling b = b1 + b2, we deduce that

Iλ2,ε(t) ≤
∫ t

0
e−λsV ′ε (Z(k+1)

s )
{
b1(X

(k+1)
s , µ(k)s )− b1(X(k)

s , µ(k)s )
}

ds

+

∫ t

0
e−λs

∣∣V ′ε (Z(k+1)
s )

∣∣ · ∣∣b1(Xk
s , µ

(k)
s )− b1(X(k)

s , µ(k−1)s )
∣∣ds

+

∫ t

0
e−λs

∣∣V ′ε (Z(k+1)
s )

∣∣ · ∣∣b2(X(k+1)
s , µ(k)s )− b2(X(k)

s , µ(k−1)s )
∣∣ds

≤
∫ t

0
e−λs

∣∣V ′ε (Z(k+1)
s )

∣∣ · ∣∣b1(Xk
s , µ

(k)
s )− b1(X(k)

s , µ(k−1)s )
∣∣ds

+

∫ t

0
e−λs

∣∣V ′ε (Z(k+1)
s )

∣∣ · ∣∣b2(X(k+1)
s , µ(k)s )− b2(X(k)

s , µ(k−1)s )
∣∣ds

≤ 2K1

∫ t

0
e−λs

{
|Z(k+1)
s |+ W1(µ

(k)
s , µ(k−1)s )

}
ds.

(2.9)

Herein, the second inequality holds since

V ′ε (x− y) ≥ 0, b1(x, ·)− b1(y, ·) ≤ 0, x ≥ y;

V ′ε (x− y) < 0, b1(x, ·)− b1(y, ·) ≥ 0, x < y,

where we used the fact that x 7→ b1(x, ·) is non-increasing thanks to (H1) and sgn(x)V ′ε (x) ∈ [0, 1]
due to (2.2), and the third inequality is true by taking advantage of (1.2), (1.3) as well as (2.2).

Next, by utilizing (H2) and (2.3) with γ = e
1
ε and using α ∈ [1/2, 1], we infer

Iλ3,ε(t) ≤
K2

2ε

2

∫ t

0
e−λs|Z(k+1)

s |2α−11[ ε

e1/ε
,ε](|Z(k+1)

s |)ds ≤ 1

2
cλK

2
2 tε,(2.10)
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where cλ :=
{

11{λ=0} + 1
λ1{λ>0}

}
. So, taking advantage of (2.2), (2.9) and (2.10) leads to

e−λt|Z(k+1)
t | ≤

(
1 + (λ+ cλK

2
2/2)t

)
ε− (λ− 2K1)

∫ t

0
e−λs|Z(k+1)

s |ds

+ 2K1

∫ t

0
e−λsE|Z(k)

s |ds+ Iλ4,ε(t).

(2.11)

By (2.2) and (2.5), we have EIλ4,ε(t) = 0. Whence, choosing λ = 0, approaching ε ↓ 0, and
employing Gronwall’s inequality gives

(2.12) E|Z(k+1)
t | ≤ 2K1e

2K1t

∫ t

0
E|Z(k)

s |ds.

For notation simplicity, set

|[Z(k)]|λ,t :=
∥∥e−λ·E|Z(k)

· |
∥∥
∞,t, ‖[Z(k)]‖λ,t := E

∥∥e−λ·|Z(k)
· |
∥∥
∞,t, t ≥ 0.

In the sequel, we take λ ≥ 2K1e
1+2K1T and let t ∈ [0, T ]. In terms of (2.12), it follows from an

inductive trick that

|[Z(k+1)]|λ,t ≤ 2K1 sup
0≤s≤t

(
e−(λ−2K1)s

∫ s

0
eλr
(
e−λrE|Z(k)

r |
)
dr
)

≤ 2K1 sup
0≤s≤t

(
e−(λ−2K1)s|[Z(k)]|λ,s

∫ s

0
eλrdr

)
≤ 2K1

λ
e2K1t|[Z(k)]|λ,t ≤ e−1|[Z(k)]|λ,t ≤ e−k|[Z(1)]|λ,T ,

(2.13)

where the third inequality holds since s 7→ |[Z(k)]|λ,s is non-decreasing and the last two inequality
is due to λ ≥ 2K1e

1+2K1T . Subsequently, by invoking Burkhold-Davis-Gundy’s inequality,
Jensen’s inequality and (2.2) and taking (H2) into account followed by approaching ε ↓ 0, we
deduce from (2.11) and α ∈ [1/2, 1] that

‖[Z(k+1)]‖λ,t ≤ 2K1

∫ t

0
|[Z(k)]|λ,sds+ 4

√
2K2

(∫ t

0
|[Z(k+1)]|λ,sds

) 1
2
1{α= 1

2
}

+
{1

2
‖[Z(k+1)]‖λ,t + 16K2

2

∫ t

0
|[Z(k+1)]|2α−1λ,s ds

}
1{α∈( 1

2
,1]}.

This, in addition to (2.13), implies that there exists a constant CT > 0 such that

‖[Z(k+1)]‖λ,t ≤ CT exp
(
−
(1

2
1{α= 1

2
} + (2α− 1)1{α∈( 1

2
,1]}

)
k
)
.

As a result, there exists an (Ft)t∈[0,T ]-adapted continuous stochastic process (Xt)t∈[0,T ] with
X0 = ξ and µt = LXt such that

lim
k→∞

sup
t∈[0,T ]

W1(µ
(k)
t , µt) ≤ lim

k→∞
E‖X(k) −X‖∞,t = 0.(2.14)
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From (H1), we infer that∫ t

0
|b(X(k)

s , µ(k−1)s )− b(Xs, µs)|ds ≤
∫ t

0

∣∣b1(X(k)
s , µs)− b1(Xs, µs)

∣∣ds
+ 2K1

∫ t

0

{
|X(k)

s −Xs|+ W1(µ
(k−1)
s , µs)

}
ds.

By (1.2), and the continuity of b1(·, µ) for any µ ∈P1(R), we can apply (2.14) and the dominated
convergence theorem to obtain

(2.15) lim
k→∞

∫ T

0
E
∣∣b(X(k)

t , µ
(k−1)
t )− b(Xt, µt)

∣∣dt = 0.

Again, from (2.14) we find

(2.16) lim
k→∞

E
(

sup
0≤t≤T

∣∣∣ ∫ t

0

(
σ(X(k)

s )− σ(Xs)
)
dWs

∣∣∣) = 0,

since, by (H2), Burkhold-Davis-Gundy’s inequality, Young’s inequality and Jensen’s inequality,
we have

E
(

sup
0≤t≤T

∣∣∣ ∫ t

0

(
σ(X(k)

s )− σ(Xs)
)
dWs

∣∣∣) ≤ 4
√

2K2 E
(∫ T

0
|X(k)

t −Xt|2αdt
) 1

2

≤ 4
√

2K2

(∫ T

0
E|X(k)

t −Xt|dt
) 1

2
1{α= 1

2
}

+
{
E‖X(k) −X‖∞,T + 16K2

2

∫ T

0

(
E|X(k)

t −Xt|
)2α−1

dt
}

1{α∈( 1
2
,1]}.

Now with (2.15) and (2.16) at hand, by taking k →∞ in the following SDE

X
(k)
t = ξ +

∫ t

0
b(X(k)

s , µ(k−1)s )ds+

∫ t

0
σ(X(k)

s )dWs, k ≥ 1, t ∈ [0, T ],

we derive (by extracting a suitable subsequence) P-a.s.

dXt = b(Xt, µt)dt+ σ(Xt)dWt, t ∈ [0, T ],

so that the existence of strong solutions to (1.1) is now available.

In the sequel, we prove the uniqueness of (1.1). To this end, we assume that (X1,ξ
t )t≥0 and

(X2,ξ
t )t≥0 are solutions to (1.1) with the same initial value ξ. For Γt := X1,ξ

t −X
2,ξ
t , by following

the argument used in deriving (2.12), one has

E|Γt| ≤ 2K1e
2K1t

∫ t

0
E|Γs|ds,

which, by invoking Gronwall’s inequality and Remark 1.1, yields the uniqueness.
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Finally, we intend to show that the p-th moment of the solution process is uniformly bounded
in a finite time interval. For any n ≥ 1, define the stopping time τn = inf{t ≥ 0 : |Xt| ≥ n}.
Then, applying Hölder’s inequality and Burkhold-Davis-Gundy’s inequality and utilizing (2.6)
yield

E‖X‖p∞,t∧τn ≤ 3p−1
{
E|ξ|p + tp−1E

∫ t∧τn

0
|b(Xs, µs)|pds+ cpE

(∫ t∧τn

0
|σ(Xs)|2ds

)p/2}
≤ 1

2
E‖X‖p∞,t∧τn + Ct

∫ t

0
E‖X‖p∞,s∧τnds+ Ct

(
1 + E|ξ|p

)
+ Ct

∫ t

0
(E|Xs|)pds

for some positive increasing function t 7→ Ct. Thus, Gronwall’s inequality and Remark 1.1 yield

(2.17) E‖X‖p∞,T∧τn ≤ CT
(
1 + E|ξ|p

)
for some constant CT > 0. The estimate above implies

CT
(
1 + E|ξ|p

)
≥ E|XT∧τn |p ≥ E

(
|Xτn |p1{τn≤T}

)
= np P(τn ≤ T ).

Whence, one has

P(τn ≤ T ) ≤ 1

np
CT (1 + E|ξ|p), p ≥ 2,

which yields that the series
∑∞

n=1 P(τn ≤ T ) is convergent so that, by the Borel-Cantelli lemma,
we conclude that limn→∞ τn =: τ∞ > T a.s. Due to the arbitrariness of T , we have τ∞ = ∞,
a.s. So, (1.4) holds by taking n ↑ ∞ in (2.17) and using Fatou’s lemma.

3 Proof of Theorem 1.3

In this section, we intend to finish the proof of Theorem 1.3. Before we start, we prepare
some auxiliary materials. The lemma below addresses the well-posedness of the stochastic N -
interacting particle systems (1.8).

Lemma 3.1. Assume (H1) and (H2). Then, for each N ≥ 1 and any Xi
0 ∈ L2(Ω→ Rd; F0,P),

(1.8) admits a strong solution (Xi,N
t )t≥0 and there exists a nondecreasing positive function T 7→

CT independent of i, such that

(3.1) sup
i∈SN

E‖Xi,N‖2∞,T ≤ CT (1 + E|Xi
0|2).

Proof. For x := (x1, · · · , xN )∗ ∈ RN , xi ∈ R, set

µ̃Nx :=
1

N

N∑
i=1

δxi , b̂(x) : =
(
b(x1, µ̃

N
x ), · · · , b(xN , µ̃Nx )

)∗
,

σ̂(x) := diag
(
σ(x1), · · · , σ(xN )

)
, Ŵt : =

(
W 1
t , · · · ,WN

t

)∗
.

Obviously, (Ŵt)t≥0 is an N -dimensional Brownian motion. Then, (1.8) can be reformulated as

(3.2) dXt = b̂(Xt)dt+ σ̂(Xt)dŴt, t ≥ 0.
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By the Yamada-Watanabe theorem (see e.g. [32, Theorem E.1.8]), to show that (3.2) has a
unique strong solution, it is sufficient to verify that (3.2) possesses a weak solution and that it
is pathwise unique. By (1.2), (1.3) and (H2), a straightforward calculation yields

|b̂(x)|+ ‖σ̂(x)‖HS ≤

(
N∑
i=1

|b(xi, µ̃Nx )|2
) 1

2

+
( N∑
i=1

σ(xi)
2
)1/2

≤ CN (1 + |x|), x ∈ RN(3.3)

for some constant CN > 0, that is, b̂ and σ̂ are at most of linear growth in RN . Observe that

(3.4)
1

N

N∑
j=1

(δxj × δyj ) ∈ C(µ̃Nx , µ̃Ny ), xj , yj ∈ R,

so that we have

(3.5) W1(µ̃
N
x , µ̃

N
y ) ≤ 1

N

N∑
j=1

|xj − yj |.

This, together with (1.2) and (1.3), besides (H2), implies that for any x, x′ ∈ RN ,

|b̂(x)− b̂(x′)| ≤ ĈN{|x− x′|+ |x− x′|β}, ‖σ̂(x)− σ̂(x′)‖HS ≤ ĈN |x− x′|α(3.6)

for some constant ĈN > 0 so that b̂ and σ̂ are continuous . Consequently, (3.3) and (3.6) yield
that (3.2) has a weak solution; see, for instance, [35, Theorem 175, p.147]. Moreover, by carrying
out a similar argument to derive (2.12), we can infer that (1.8) is pathwise unique. As a result,
we reach a conclusion that (1.8) has a unique strong solution (Xi,N

t )t≥0. Finally, with (3.3)
at hand, (3.1) can be available via Hölder’s inequality, Burkhold-Davis-Gundy’s inequality and
Gronwall’s inequality.

The following lemma reveals the phenomenon of propagation of chaos and provides the
corresponding convergence rate.

Lemma 3.2. Under the assumptions of Theorem 1.3, for any T > 0, there exists a constant
CT > 0, which is independent of N, such that

(3.7) sup
i∈SN

E
∥∥Xi −Xi,N

∥∥
∞,T ≤ CT

{
N−

1
8 1{α= 1

2
} +N−

2α−1
4 1{α∈( 1

2
,1]}

}
,

and

(3.8) sup
i∈SN

E
∥∥Xi −Xi,N

∥∥2
∞,T ≤ CTN

− 1
4 .

Proof. In what follows, let i ∈ SN and set Zi,Nt := Xi
t −X

i,N
t . First of all, we are going to prove

that there exists a constant CT > 0, independent of N, such that

(3.9) E|Zi,Nt | ≤ CTN−
1
4 , t ∈ [0, T ].
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Applying Itô’s formula to Vε := V
e
1
ε ,ε

and taking Xi
0 = Xi,N

0 , i ∈ SN , into consideration yield

Vε(Z
i,N
t ) =

∫ t

0
V ′ε (Zi,Ns )

(
b1(X

i
s, µ

i
s)− b1(Xi,N

s , µis)
)
ds

+

∫ t

0
V ′ε (Zi,Ns )

(
b1(X

i,N
s , µis)− b1(Xi,N

s , µ̂Ns )
)
ds

+

∫ t

0
V ′ε (Zi,Ns )

(
b2(X

i
s, µ

i
s)− b2(Xi,N

s , µ̂Ns )
)
ds

+
1

2

∫ t

0
V ′′ε (Zi,Ns )

(
σ(Xi

s)− σ(Xi,N
s )

)2
ds+M i,N

t

=: Υi
1,ε(t) + Υi

2,ε(t) + Υi
3,ε(t) + Υi

4,ε(t) +M i,N
t ,

(3.10)

where

M i,N
t :=

∫ t

0
V ′ε (Zi,Ns )

(
σ(Xi

s)− σ(Xi,N
s )

)
dW i

s .

Recall that x 7→ b1(x, ·) is non-increasing. This, together with sgn(x)V ′ε (x) ∈ [0, 1] owing to
(2.2), leads to

(3.11) V ′ε (x− y)
(
b1(x, ·)− b1(y, ·)

)
≤ 0, x, y ∈ R

so that we infer Υi
1,ε(t) ≤ 0. On the other hand, using (1.2), (1.3) and (H2) and taking advantage

of (2.2) and (2.3), we derive that

4∑
j=2

Υi
j,ε(t) ≤ 2K1

∫ t

0

{
|Zi,Ns |+ W1(µ

i
s, µ̂

N
s )
}

ds+K2
2ε

∫ t

0
1[ε/γ,ε](|Zi,Ns |)|Zi,Ns |2α−1ds

≤
(
2K1 ∨K2

2

) ∫ t

0

{
|Zi,Ns |+ W1(µ

i
s, µ̂

N
s ) + ε2α

}
ds.

We henceforth obtain from (2.2) and (3.10) that

|Zi,Nt | ≤ ε+ C1

∫ t

0

{
|Zi,Ns |+ W1(µ

i
s, µ̂

N
s ) + ε2α

}
ds+M i,N

t(3.12)

for some constant C1 > 0. So, by taking expectations on both sides, approaching ε ↓ 0, and
utilizing the triangle inequality for W1, one obtains

E|Zi,Nt | ≤ C1

∫ t

0

{
E|Zi,Ns |+ EW1(µ

i
s, µ̃

N
s ) + EW1(µ̃

N
s , µ̂

N
s )
}

ds,

where µ̃N was introduced in (1.7). By the Glivenko-Cantelli theorem (see e.g. [7, Theorem 5.8]),
there exists a constant C2 > 0 such that

(3.13) EW1(µ
i
t, µ̃

N
t ) ≤ C2N

−1/4.
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As a consequence, exploiting (3.5) and (3.13), we derive that

E|Zi,Nt | ≤ C1

∫ t

0

{
E|Zi,Ns |+

1

N

N∑
j=1

E|Xj
s −Xj,N

s |+ C2N
−1/4

}
ds

≤ C3

∫ t

0

{
E|Zi,Ns |+N−1/4

}
ds

for some constant C3 > 0, where in the last display we used the fact that (Zj,N )1≤j≤N are
identically distributed. Subsequently, by employing Gronwall’s inequality, (3.9) is available.

Next, by Burkhold-Davis-Gundy’s inequality, Young’s inequality as well as Jensen’s inequal-
ity, we derive from (1.2) and (1.3) that there exist constants C4, C5 > 0 such that

E
(

sup
0≤s≤t

|Zi,Ns |
)
≤ C4

∫ t

0

{
E|Zi,Ns |+N−1/4

}
ds+ C4E

(∫ t

0
|Zi,Ns |2αds

)1/2
≤ C4

∫ t

0

{
E|Zi,Ns |+N−1/4

}
ds+ C4

(∫ t

0
E|Zi,Ns |ds

)1/2
1{α=1/2}

+
{1

2
E‖Zi,N‖∞,t + C5

∫ t

0

(
E|Zi,Ns |

)2α−1
ds
}

1{α∈(1/2,1]}.

As a result, (3.7) follows from (3.9).
Again, by applying Hölder’s inequality and Burkhold-Davis-Gundy’s inequality, it follows

from (H2) and (3.12) that there exists a constant C6 > 0 such that

E
(

sup
0≤s≤t

|Zi,Ns |2
)
≤ C6t

∫ t

0

{
E|Zi,Ns |2 + EW1(µ

i
s, µ̂

N
s )2
}

ds+ C6

∫ t

0
E|Zi,Ns |2αds.

Owing to (3.4), we have

(3.14) W2

( 1

N

N∑
j=1

δxj ,
1

N

N∑
j=1

δyj

)2
≤ 1

N

N∑
j=1

|xj − yj |2, xj , yj ∈ R.

Whence, it follows that

(3.15) EW2(µ̃
N
t , µ̂

N
t )2 ≤ 1

N

N∑
j=1

E|Zj,Nt |2 = E|Zi,Nt |2

from the fact that (Zj,N )1≤j≤N are identically distributed into consideration. Moreover, accord-
ing to the Glivenko-Cantelli theorem (see e.g. [7, Theorem 5.8]), there exists a constant C7 > 0
such that

(3.16) EW2(µ
i
s, µ̃

N
s )2 ≤ C7N

−1/2.
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Thus, combining (3.15) with (3.16) and employing Young’s inequality, we infer that

E‖Zi,N‖2∞,t ≤ C8t

∫ t

0

{
E|Zi,Ns |2 + EW2(µ

i
s, µ̃

N
s )2 + EW2(µ̃

N
s , µ̂

N
s )2
}

ds+ C6

∫ t

0
E|Zi,Ns |2αds

≤ C9t

∫ t

0

{
E|Zi,Ns |2 +N−1/2

}
ds+ C6

∫ t

0
E|Zi,Ns |ds1{α= 1

2
}

+ C6

∫ t

0

{
2(1− α)E|Zi,Ns |+ (2α− 1)E|Zi,Ns |2

}
ds1{α∈(1/2,1]}

for some constants C8, C9 > 0. Finally, (3.8) holds true from (3.9).

The lemma below shows that the p-th order moment of the continuous time EM scheme,
defined by (1.9), is bounded in a finite time horizontal.

Lemma 3.3. Assume (H1) and (H2) and suppose X0 ∈ Lp(Ω → R; F0,P) for some p > 0.
Then, there exists a constant Cp,T , dependent on p and T but independent of N and δ, such that

(3.17) E‖Xδ,i,N‖p∞,T ≤ Cp,T
(
1 + E|X0|p

)
.

Proof. Below, without loss of generality, we set p ≥ 2 since the lower order moment estimate can
be achieved by Hölder’s inequality. By (2.6), in addition to Burkhold-Davis-Gundy’s inequality,
it follows that

E‖Xδ,i,N‖p∞,t ≤ 3p−1
{
E|Xi,N

0 |
p + tp−1

∫ t

0
E|b(Xδ,i,N

sδ
, µ̂δ,Nsδ )|pds

+ E
(

sup
0≤s≤t

∣∣∣ ∫ s

0
σ(Xδ,i,N

rδ
)dW i

r

∣∣∣p)}
≤ C1

(
1 + E|Xi,N

0 |
p
)

+ C1

∫ t

0
E
(
|Xδ,i,N

sδ
|+ W1(µ̂

δ,N
sδ
, δ0)

)p
ds

+ C1E
(

sup
0≤s≤t

|Xδ,i,N
sδ
|
∫ t

0
|Xδ,i,N

sδ
)|ds

)p/2
≤ C1

(
1 + E|Xi,N

0 |
p
)

+ C2

∫ t

0

(
E|Xδ,i,N

sδ
|p +

1

N

N∑
j=1

E|Xδ,j,N
sδ
|p
)

ds

+
1

2
E
(

sup
0≤s≤t

|Xδ,i,N
sδ
|p
)

+ C2

∫ t

0
E|Xδ,i,N

sδ
|pds, t ∈ [0, T ]

for some constants C1 = C1(p, T ), C2 = C2(p, T ) > 0, where in the last display we also used the
fact that Xi,N

0 shares the same law with that of X0. Since

sup
0≤s≤t

|Xδ,i,N
sδ
| ≤ ‖Xδ,i,N‖∞,t,

and (Xδ,i,N
· )i∈SN are identically distributed, we thus derive that

E‖Xδ,i,N‖p∞,t ≤ C3(1 + E|X0|p) + C3

∫ t

0
E‖Xδ,i,N‖p∞,sds
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for some constant C3 = C3(p, T ). Consequently, Gronwall’s inequality yields the desired asser-
tion (3.17).

The following lemma demonstrates the convergence rate of the continuous time EM scheme
associated with (1.8).

Lemma 3.4. Under the assumptions of Lemma 3.1, for any T > 0, there exists a constant
CT > 0, independent of N and δ, such that

(3.18) sup
i∈SN

E‖Xi,N −Xδ,i,N‖∞,T ≤ CT
{

1{α= 1
2
}

( 1

ln 1
δ

) 1
2

+ 1{α∈( 1
2
,1]}

(
δ

(2α−1)2

2 + δ
β(2α−1)

2

)}
,

and

sup
i∈SN

E‖Xi,N −Xδ,i,N‖2∞,T ≤ CT
{

1{α= 1
2
}

1

ln 1
δ

+ 1{α∈( 1
2
,1)}(δ

2α−1
2 + δ

β
2 ) + 1{α=1}δ

β
}
.(3.19)

Proof. For i ∈ SN , let Zδ,i,Nt = Xi,N
t − Xδ,i,N

t and Λδ,i,Nt = Xδ,i,N
t − Xδ,i,N

tδ
. Below, we set

t ∈ [0, T ]. By using Hölder’s inequality and Burkhold-Davis-Gundy’s inequality, for any q > 0,
we obtain from (3.17) that there exists ĈT,q > 0 such that

(3.20) E|Λδ,i,Nt |q ≤ ĈT,qδq/2, t ∈ [0, T ].

Below, by Itô’s formula, it follows that

dVγ,ε(Z
δ,i,N
t ) =

{
V ′γ,ε(Z

δ,i,N
t )

(
b(Xi,N

t , µ̂Nt )− b(Xδ,i,N
tδ

, µ̂δ,Ntδ )
)

+
1

2
V ′′γ,ε(Z

δ,i,N
t )

(
σ(Xi,N

t )− σ(Xδ,i,N
tδ

)
)2}

dt+ dM̂ i,N
t ,

where
dM̂ i,N

t := V ′γ,ε(Z
δ,i,N
t )

(
σ(Xi,N

t )− σ(Xδ,i,N
tδ

)
)
dW i

t .

Observe from (3.11) that

V ′γ,ε(Z
δ,i,N
t )

(
b1(X

i,N
t , µ̂Nt )− b1(Xδ,i,N

tδ
, µ̂δ,Ntδ )

)
= V ′γ,ε(Z

δ,i,N
t )

(
b1(X

i,N
t , µ̂Nt )− b1(Xδ,i,N

t , µ̂Nt )
)

+ V ′γ,ε(Z
δ,i,N
t )

(
b1(X

δ,i,N
t , µ̂Nt )− b1(Xδ,i,N

tδ
, µ̂Nt )

)
+ V ′γ,ε(Z

δ,i,N
t )

(
b1(X

δ,i,N
tδ

), µ̂Nt )− b1(Xδ,i,N
tδ

, µ̂δ,Ntδ )
)

≤ V ′γ,ε(Z
δ,i,N
t )

(
b1(X

δ,i,N
t , µ̂Nt )− b1(Xδ,i,N

tδ
, µ̂Nt )

)
+ V ′γ,ε(Z

δ,i,N
t )

(
b1(X

δ,i,N
tδ

, µ̂Nt )− b1(Xδ,i,N
tδ

, µ̂δ,Ntδ )
)

≤ K1

{
W1(µ̂

N
t , µ̂

δ,N
tδ

) + |Λδ,i,Nt |β
}
,

17



where the last display is due to (1.2) and (2.2). Then, combining this with (1.3) and taking
advantage of (2.2), (2.3) as well as (3.20) gives

E|Zδ,i,Nt | ≤ ε+ c1

∫ t

0
E
{
|Zδ,i,Ns |+ |Λδ,i,Ns |+ |Λδ,i,Ns |β + W1(µ̂

N
t , µ̂

δ,N
tδ

)

+
1

|Zδ,i,Ns | ln γ
1[ε/γ,ε](|Zδ,i,Ns |)

(
|Zδ,i,Ns |2α + |Λδ,i,Ns |2α

)}
ds

≤ C1,T

{
ε+

ε2α−1

ln γ
+

γ

ε ln γ
δα + δ

1
2 + δ

β
2 +

∫ t

0
E|Zδ,i,Ns |ds

}
for some constants c1, C1,T > 0, where we also utilized

EW1(µ̂
N
t , µ̂

δ,N
tδ

) ≤ E|Λδ,i,Nt |+ E|Zδ,i,Nt |

and the fact that (Zδ,i,Nt )1≤i≤N are identically distributed. Thus, Gronwall’s inequality yields

E|Zδ,i,Nt | ≤ C2,T

{
ε+

ε2α−1

ln γ
+

γ

ε ln γ
δα + δ

1
2 + δ

β
2

}
(3.21)

for some constant C2,T > 0. Furthermore, by virtue of Burkhold-Davis-Gundy’s inequality and
Jensen’s inequality, we deduce from (H1), (H2), (2.2), and (2.3) that

E‖Zδ,i,N‖∞,t ≤ C2,T

{
ε+

ε2α−1

ln γ
+

γ

ε ln γ
δα + δ

1
2 + δ

β
2

}
+ c1

(∫ t

0
(E|Zδ,i,Ns |+ E|Λδ,i,Ns |)ds

)1/2
1{α=1/2}

+
{1

2
E‖Zδ,i,N‖∞,t + c2

∫ t

0
(E|Zδ,i,Ns |)2α−1ds+ c2

(∫ t

0
E|Λδ,i,Ns |2αds

) 1
2 }

1{α∈(1/2,1]}

(3.22)

and that

E‖Zδ,i,N‖2t,∞ ≤ C3,T

{
ε+

ε2α−1

ln γ
+

γ

ε ln γ
δα + δ

1
2 + δ

β
2

}2

+ c3

∫ t

0
(E|Zδ,i,Ns |+ E|Λδ,i,Ns |)ds1{α=1/2}

+ c4

{∫ t

0
(E|Zδ,i,Ns |+ E|Zδ,i,Ns |2)ds+

∫ t

0
E|Λδ,i,Ns |2αds

}
1{α∈(1/2,1]}

(3.23)

for some constants c2, c3, c4, C2,T , C3,T > 0. Consequently, the desired assertions (3.18) and

(3.19) follows from (3.22) and (3.23) and by taking ε = 1
ln 1
δ

and γ = (1/δ)
1
3 for α = 1

2 and

ε =
√
δ and γ = 2 for α ∈ (1/2, 1], respectively.

Proof of Theorem 1.3. With the help of Lemmas 3.2 and 3.4, we complete directly the proof
of Theorem 1.3.
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4 Proof of Theorem 1.5

The proof of Theorem 1.5 is based on two lemmas below, where the first one is concerned with
propagation of chaos for non-degenerate McKean-Vlasov SDEs with Hölder continuous drifts
and W2-Lipschitz continuous diffusions.

Lemma 4.1. Under the assumptions of Theorem 1.5, for any T > 0, there exists a constant
CT > 0, independent of N, such that

(4.1) sup
i∈SN

E‖Xi −Xi,N‖2∞,T ≤ CT


N−

1
2 , d < 4

N−
1
2 logN, d = 4

N−
2
d , d > 4.

Proof. Below we set t ∈ [0, T ]. For i ∈ SN and x ∈ Rd, let

bµ
i

t (x) = b(x, µit), b
µ̂N

t = b(x, µ̂Nt ), σµ
i

t (x) = σ(x, µit), σ
µ̂N

t (x) = σ(x, µ̂Nt ).

Then, (1.17) and (1.18) can be rewritten respectively as

dXi
t = bµ

i

t (Xi
t)dt+ σµ

i

t (Xi
t)dW

i
t , dXi,N

t = bµ̂
N

t (Xi,N
t )dt+ σµ̂

N

t (Xi,N
t )dW i

t .

For λ > 0, consider the following PDE for uλ,µ
i

: [0, T ]× Rd → Rd:

(4.2) ∂tu
λ,µi

t +
1

2
Tr
(
σµ

i

t (σµ
i

t )∗∇2uλ,µ
i

t

)
+∇

bµ
i

t

uλ,µ
i

t + bµ
i

t = λuλ,µ
i

t , uλ,µ
i

T = 0,

where ∇2 is the second order gradient operator in space. By recurring to [2, Lemma 2.1], for
λ > 0 large enough, (4.2) has a unique solution uλ,µ

i
such that

(4.3) ‖∇uλ,µi‖∞ + ‖∇2uλ,µ
i‖∞ ≤ 1/2.

Using Itô’s formula to θλ,µ
i

t (x) := x+ uλ,µ
i

t (x), x ∈ Rd yields

dθλ,µ
i

t (Xi
t) = λuλ,µ

i

t (Xi
t)dt+ (∇θλ,µ

i

t σµ
i

t )(Xi
t)dW

i
t ,

dθλ,µ
i

t (Xi,N
t ) =

{
λuλ,µ

i

t (Xi,N
t ) +∇θλ,µ

i

t (bµ̂
N

t − b
µi

t )(Xi,N
t )

}
dt+ (∇θλ,µ

i

t σµ̂
N

t )(Xi,N
t )dW i

t

+
1

2
Tr
[(
σµ̂

N

t (σµ̂
N

t )∗ − σµ
i

t (σµ
i

t )∗
)
∇2uλ,µ

i

t

]
(Xi,N

t )dt.

(4.4)

Hence, for Λλ,i,Nt := θλ,µ
i

t (Xi
t)− θ

λ,µi

t (Xi,N
t ), we derive from Hölder’s inequality and Burkhold-

Davis-Gundy’s inequality that

E‖Λλ,i,N‖2∞,t

≤ C1

{∫ t

0
E
∣∣uλ,µis (Xi

s)− uλ,µ
i

s (Xi,N
s )

∣∣2ds
+

∫ t

0
E
{∣∣(∇θλ,µis (bµ̂

N

s − bµ
i

s )
)
(Xi,N

s )
∣∣2 +

∣∣∣Tr[(σµ̂
N

s (σµ̂
N

s )∗ − σµis (σµ
i

s )∗)∇2uλ,µ
i

s ](Xi,N
s )

∣∣∣2}ds

}

+

∫ t

0
E
∥∥(∇θλ,µis σµ̂

N

s )(Xi,N
s )− (∇θλ,µis σµ

i

s )(Xi
s)
∥∥2
HS

ds

=: C1{I1,i(t) + I2,i(t)}+ I3,i(t)
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for some constant C1 > 0. Set Zi,Nt := Xi
t −X

i,N
t for convenience. By means of (4.3), one has

(4.5) I1,i(t) ≤ C2

∫ t

0
E|Zi,Ns |2ds.

for some constant C2 > 0. Next, via (A1)-(A2) and (4.3), in addition to (3.15), it follows from
the triangle inequality that

I2,i(t) ≤ C3

∫ t

0

{
EW2(µ̂

N
s , µ̃

N
s )2 + EW2(µ̃

N
s , µ

i
s)

2
}

ds

≤ C3

∫ t

0

{
E|Zi,Ns |2 + EW2(µ̃

N
s , µ

i
s)

2
}

ds

(4.6)

for some constant C3 > 0. Furthermore, owing to (1.13) and (4.3), we obtain that for some
constants C4, C5 > 0,

I3,i(t) ≤ 3

∫ t

0
E
∥∥∇θλ,µis (Xi,N

s )(σµ̂
N

s (Xi,N
s )− σµ̂Ns (Xi

s))
∥∥2
HS

ds

+ 3

∫ t

0
E
∥∥∇θλ,µis (Xi,N

s )(σµ̂
N

s (Xi
s)− σµ

i

s (Xi
s))
∥∥2
HS

ds

+ 3

∫ t

0
E
∥∥(∇θλ,µis (Xi,N

s )−∇θλ,µis (Xi
s))σ

µi

s (Xi
s)
∥∥2
HS

ds

≤ C4

(∫ t

0
E|Zi,Ns |2ds+

∫ t

0

{
EW2(µ̂

N
s , µ̃

N
s )2 + EW2(µ̃

N
s , µ

i
s)

2
}

ds

)
≤ C5

∫ t

0

{
E|Zi,Ns |2 + EW2(µ̃

N
s , µ

i
s)

2
}

ds.

(4.7)

Thus, with the aid of (4.5), (4.6) and (4.7), we find that for some constant C6 > 0,

(4.8) E
(

sup
0≤s≤t

|Λλ,i,Ns |2
)
≤ C6

∫ t

0

{
E|Zi,Ns |2 + EW2(µ̃

N
s , µ

i
s)

2
}

ds.

From (4.3), it follows that

|Zi,Nt | ≤ |Λ
λ,i,N
t |+ |uλ,µ

i

t (Xi
t)− u

λ,µi

t (Xi,N
t )| ≤ |Λλ,i,Nt |+ 1

2
|Zi,Nt |

so that |Zi,Nt | ≤ 2|Λλ,i,Nt |. This, besides (4.8), gives

E
(

sup
0≤s≤t

|Zi,Ns |2
)
≤ C7

∫ t

0

{
E|Zi,Ns |2 + EW2(µ̃

N
s , µ

i
s)

2
}

ds

for some constant C7 > 0. Hence, the desired assertion (4.1) follows from Gronwall’s inequality
and the fact that

(4.9) sup
0≤t≤T

EW2(µ̃
N
t , µ

i
t)
2 ≤ C8


N−

1
2 , d < 4

N−
1
2 logN, d = 4

N−
2
d , d > 4

for some constant C8 > 0; see, for instance, [7, Theorem 5.8].
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Lemma 4.2. Under the assumptions of Theorem 1.5, for any T > 0, there exists a constant
CT > 0, independent of N and δ, such that

(4.10) sup
i∈SN

E‖Xi,N −Xδ,i,N‖2∞,T ≤ CT


δα +N−

1
2 , d < 4

δα +N−
1
2 logN, d = 4

δα +N−
2
d , d > 4.

Proof. In the sequel, let t ∈ [0, T ]. For x ∈ Rd, set

bµ̂
δ,N

kδ (x) := b(x, µ̂δ,Nkδ ), σµ̂
δ,N

kδ (x) := σ(x, µ̂δ,Nkδ )

so that (1.19) can be reformulated as

dXδ,i,N
t = bµ̂

δ,N

tδ
(Xδ,i,N

tδ
)dt+ σµ̂

δ,N

tδ
(Xδ,i,N

tδ
)dW i

t .

Applying Itô’s formula to θλ,µ
i

t (x) = x+ uλ,µ
i

t (x) and taking the fact that uλ,µ
i

solves (4.2) into
consideration gives that

dθλ,µ
i

t (Xδ,i,N
t ) =

{
λuλ,µ

i

t (Xδ,i,N
t ) +∇θλ,µ

i

t (Xδ,i,N
t )

(
bµ̂
δ,N

tδ
(Xδ,i,N

tδ
)− bµ

i

t (Xδ,i,N
t )

)
+

1

2

d∑
k,j=1

〈(
(σµ̂

δ,N

tδ
(σµ̂

δ,N

tδ
)∗)(Xδ,i,N

tδ
)− (σµ

i

t (σµ
i

t )∗)(Xδ,i,N
t )

)
ej , el

〉
∇ej∇elu

λ,µi

t (Xδ,i,N
t )

}
dt

+∇θλ,µ
i

t (Xδ,i,N
t )σµ̂

δ,N

tδ
(Xδ,i,N

tδ
)dW i

t .

(4.11)

Set
Θδ,i,N
t := θλ,µ

i

t (Xi,N
t )− θλ,µ

i

t (Xδ,i,N
t ), Zδ,i,Nt := Xi,N

t −Xδ,i,N
t .

Then, from (4.11) and the second SDE in (4.4), we deduce from Hölder’s inequality and
Burkhold-Davis-Gundy’s inequality that

E‖Θδ,i,N‖2∞,t ≤ C
{∫ t

0
E|uλ,µis (Xi,N

s )− uλ,µis (Xδ,i,N
s )|2ds

+

∫ t

0
E
∣∣∇θλ,µis (bµ̂

N

s − bµ
i

s )(Xi,N
s )−∇θλ,µis (Xδ,i,N

s )
(
bµ̂
δ,N

sδ
(Xδ,i,N

sδ
)− bµis (Xδ,i,N

s )
)∣∣2ds

+

∫ t

0
E
( ∣∣∣Tr[(σµ̂

N

s (σµ̂
N

s )∗ − σµis (σµ
i

s )∗)∇2uλ,µ
i

s ](Xi,N
s )

∣∣∣2
+

d∑
k,j=1

∣∣〈((σµ̂δ,Nsδ
(σµ̂

δ,N

sδ
)∗)(Xδ,i,N

sδ
)− (σµ

i

s (σµ
i

s )∗)(Xδ,i,N
s ))ej , el〉∇ej∇elu

λ,µi

s (Xδ,i,N
s )

∣∣2)ds

+

∫ t

0

∥∥(∇θλ,µis σµ̂
N

s )(Xi,N
s )−∇θλ,µis (Xδ,i,N

s )σµ̂
δ,N

sδ
(Xδ,i,N

sδ
)
∥∥2
HS

ds
}

= C{J1,i(t) + J2,i(t) + J3,i(t) + J4,i(t)}
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for some constant C > 0. In what follows, we intend to estimate Jk,i(t), k = 1, 2, 3, 4, one-by-one.
Owing to (4.3), there exists a constant c1 > 0 such that

(4.12) J1,i(t) ≤ c1
∫ t

0
E|Zδ,i,Ns |2ds.

Next, thanks to (1.14) and (4.3), it follows from (3.14) that

J2,i(t) ≤ c2
∫ t

0

{
EW2(µ

i
s, µ̂

N
s )2 + E|Xδ,i,N

s −Xδ,i,N
sδ
|2α + EW2(µ

i
s, µ̂

δ,N
sδ

)2
}

ds

≤ c3
∫ t

0

{
δα + EW2(µ

i
s, µ̃

N
s )2 + EW2(µ̃

N
s , µ̂

N
s )2 + EW2(µ̃

N
s , µ̂

δ,N
sδ

)2
}

ds

(4.13)

for some constants c2, c3 > 0, where we have used, for some constant cq,T > 0,

(4.14) E|Xδ,i,N
t −Xδ,i,N

tδ
|q ≤ cq,T δq/2, q > 0, t ∈ [0, T ]

which can be obtained in a standard way under (1.13). Set Zi,Nt := Xi
t −X

i,N
t , i ∈ SN . On the

other hand, by virtue of (3.14) and (4.14), we have for some constant c4 > 0,

EW2(µ̃
N
t , µ̂

N
t )2 + EW2(µ̃

N
t , µ̂

δ,N
tδ

)2 ≤ 1

N

N∑
j=1

{
E|Zj,Nt |2 + E|Xj

t −X
δ,j,N
tδ
|2
}

≤ c4δ + E|Zi,Nt |2 + 2E|Zδ,i,Nt |2,

(4.15)

where in the last display we used the fact that (Zj,N )j∈SN (resp. (Zδ,j,N )j∈SN ) are identically
distributed. Then, plugging (4.15) back into (4.13) gives that

(4.16) J2,i(t) ≤ c5
∫ t

0

{
δα + EW2(µ

i
s, µ̃

N
s )2 + E|Zi,Ns |2 + E|Zδ,i,Ns |2

}
ds

for some constant c5 > 0. Similarly to J2,i(t) and (4.7) for I3,i(t), taking (A1)-(A2), (4.3), and
(4.14) into account, we find that there exists a constant c6 > 0 such that

(4.17) J3,i(t) + J4,i(t) ≤ c6
∫ t

0

{
δα + EW2(µ

i
s, µ̃

N
s )2 + E|Zi,Ns |2 + E|Zδ,i,Ns |2

}
ds.

Now, combining (4.12), (4.16) with (4.17), we arrive at

E‖Θδ,i,N‖2∞,t ≤ c7
∫ t

0

{
δα + EW2(µ

i
s, µ̃

N
s )2 + E|Xi

s −Xi,N
s |2 + E|Zδ,i,Ns |2

}
ds

for some constant c7 > 0. This, together with |Zδ,i,Nt |2 ≤ 4|Θδ,i,N
t |2 due to (4.3), yields

E‖Zδ,i,N‖2∞,t ≤ c8
∫ t

0

{
δα + EW2(µ

i
s, µ̃

N
s )2 + E|Xi

s −Xi,N
s |2 + E|Zδ,i,Ns |2

}
ds

for some constant c8 > 0. Consequently, the desired assertion (4.10) holds true by applying
Gronwall’s inequality and employing (4.1) and (4.9).

Proof of Theorem 1.5. On the basis of Lemmas 4.1 and 4.2, the proof of Theorem 1.5 can
be complete.
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A Appendix

In the appendix section, we aim to complete

Proof of Theorem 1.4. Below, we follow the line of [22] to complete the proof of Theorem
1.4. For µ· ∈ C([0, T ]; P2(Rd)) and x ∈ Rd, let bµt (x) = b(x, µt) and σµt (x) = σ(x, µt). Consider
the following time-dependent SDE

(A.1) dXµ
t = bµt (Xµ

t )dt+ σµt (Xµ
t )dWt, t ∈ [0, T ].

In terms of [9, Theorem 1.1], (A.1) is strongly wellposed. For any µ· ∈ C([0, T ]; P2(Rd)), let
Φt(µ) = LXµ

t
, where (Xµ

t ) solves (A.1) with Xµ
0 = X0, the initial value of (1.12). For any λ > 0,

consider the following PDE for uλ,µ : [0, T ]× Rd → Rd:

(A.2)
∂uλ,µt
∂t

+
1

2
Tr
(
σµt (σµt )∗∇2uλ,µt

)
+∇bµt u

λ,µ
t + bµt = λuλ,µt , uλ,µT = 0.

According to [2, Lemma 2.1], under (A1) and (A2), for λ > 0 sufficiently large, (A.2) has a
unique solution uλ,µ satisfying

(A.3) ‖uλ,µ‖∞ + ‖∇uλ,µ‖∞ ≤
1

2
, ‖∇2uλ,µ‖∞ <∞.

In the sequel, we set t ∈ [0, T ]. For Θλ,µ
t (x) := x + uλ,µt (x), x ∈ Rd, (A.2) and the Itô formula

yield

dΘλ,µ
t (Xµ

t ) = λuλ,µt (Xµ
t )dt+ (∇Θλ,µ

t σµt )(Xµ
t ) dWt,

dΘλ,µ
t (Xν

t ) = λuλ,µt (Xν
t )dt+ (∇Θλ,µ

t σt)(X
ν
t ) dWt

+
{(
∇Θλ,µ

t (bνt − b
µ
t )
)
(Xν

t ) +
1

2
Tr
(
(σνt (σνt )∗ − σµt (σµt )∗)∇2uλ,µt

)
(Xν

t )
}

dt.

Whence, we have

d
(
Θλ,µ
t (Xµ

t )−Θλ,µ
t (Xν

t )
)

= λ
(
uλ,µt (Xµ

t )− uλ,µt (Xν
t )
)
dt

+
(
(∇Θλ,µ

t σµt )(Xµ
t )− (∇Θλ,µ

t σνt )(Xν
t )
)
dWt

−
{(
∇Θλ,µ

t (bνt − b
µ
t )
)
(Xν

t ) +
1

2
Tr[(σνt (σνt )∗ − σµt (σµt )∗)∇2uλ,µt ](Xν

t )
}

dt

=: Λ1(t)dt+ Λ2(t)dWt + Λ3(t)dt.

By (A.3), there exists a constant c1 > 0 such that

(A.4) |Λ1(t)| ≤ c0|Xµ
t −Xν

t |.

Moreover, it follows from (A1), (A2) and (A.3) that for some constant c2 > 0

|Λ3(t)| ≤ c2W2(µt, νt),

‖Λ2(t)‖2HS ≤ 3‖(∇Θλ,µ
t σµt )(Xµ

t )−∇Θλ,µ
t (Xµ

t )σµt (Xν
t )‖2HS

+ 3‖∇Θλ,µ
t (Xµ

t )σµt (Xν
t )−∇Θλ,µ

t (Xµ
t )σνt (Xν

t )‖2HS

+ 3‖∇Θλ,µ
t (Xµ

t )σνt (Xν
t )− (∇Θλ,µ

t σνt )(Xν
t )‖2HS

≤ C2

(
W2(µt, νt)

2 + |Xµ
t −Xν

t |2
)
.

(A.5)
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Combining (A.4) with (A.5) and

|Xµ
t −Xν

t | ≤ 2|Θλ,µ
t (Xν

t )−Θλ,µ
t (Xν

t )|

due to (A.3), we find that there exists a constant c3 > 0 such that

E|Xµ
t −Xν

t |2 ≤ c3
∫ t

0
E|Xµ

s −Xν
s |2dt+ c3

∫ t

0
W2(µs, νs)

2ds.

Thus, Gronwall’s inequality implies

E|Xµ
t −Xν

t |2 ≤ c3ec3t
∫ t

0
W2(µs, νs)

2ds.

This further yields

(A.6) W2

(
Φt(µ),Φt(ν)

)2 ≤ E|Xµ
t −Xν

t |2 ≤ c3ec3t
∫ t

0
W2(µs, νs)

2ds.

For t0 > 0 (which indeed is independent of the initial value) such that c3e
c3t0t0 ≤ 1

2 , set

Ẽt0 :=
{
µ· ∈ C([0, t0]; P2(Rd)) : µ0 = LX0

}
equipped with the uniform metric

ρ̃(µ, ν) := sup
0≤t≤t0

W2(µt, νt).

Hence, from (A.6), we have

ρ̃
(
Φ(µ),Φ(ν)

)
≤ 1

2
ρ̃(µ, ν)

so that Φ is strictly contractive in Ẽt0 . Consequently, the Banach fixed point theorem, together
with the definition of Φ implies that there exists a unique µ ∈ Ẽt0 such that

Φt(µ) = µt = LXµ
t
, t ∈ [0, t0].

Therefore, (1.12) is strongly wellposed in the time interval [0, t0]. Next, by repeating the previous
procedure with initial time it0 and initial value Xit0 for i ≥ 1, in finite many steps we may derive
the strong well-posedness up to time T .
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