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Abstract

In this paper, the Harnack inequality for G-SDEs with degenerate noise is derived
by the method of coupling by change of measure. Moreover, for any bounded and
continuous function f, the gradient estimate

_ _ 1
VP f| < clp, t) (B fIP)r, p>1,t>0

is obtained for the associated nonlinear semigroup P;,. As an application of Harnack
inequality, we prove the existence of weak solution for degenerate G-SDEs under some
integrable condition. Finally, an example is presented. All of the above results extend
the existing ones in the linear expectation setting.
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1 Introduction

Since Peng [11, 12, 13] established the fundamental theory of G-Brownian motion and s-
tochastic differential equations driven by it (G-SDEs), the study of G-expectation has gained
much attention. G-expectation has been applied in many areas, such as stochastic optimiza-
tion [5, 6], financial markets with volatility uncertainty [2], the Feyman-Kac formula [7] and
so on, see [14] and references within for more details.

*Supported in part by NNSFC (11801406).



Recently, Song [15] studied the gradient estimate for nonlinear diffusion semigroups by
using the method of coupling by change of measure introduced by Wang [16, Chapter 1].
In [15], the diffusion coefficient is assumed to be non-degenerate. Quite recently, the second
author obtained the dimensional-free Harnack inequality for G-SDEs with non-degenerate
noise in [22].

On the other hand, the stochastic Hamiltonian system, as a typical model of degenerate
SDEs in linear probability space, has been investigated in [4, 17, 21]. One can also refer
to [20] for the log-Harnack inequality of Gruschin semigroup, which is another degenerate
diffusion model, see the references in [20] for more details.

In this paper, we intend to investigate the Harnack inequality and the gradient estimate
for the stochastic Hamiltonian system driven by G-Brownian motion. Due to lack of ad-
ditivity of G-expectation, the Bismut formula [16, (1.8), (1.14)] cannot be proved either
by coupling by change of measure or by Malliavin calculus. Instead, to get the gradient
estimate, we focus on estimating the local Lipschitz constant defined in (3.2) below. The
coupling by change of measure and the Girsanov transform will play crucial roles. How-
ever, the Girsanov transform is different from the one in linear expectation case since the
quadratic variation process of G-Brownian motion is random, see [7] and Theorem 2.2 below
for more details. In addition, as an application of the Harnack inequality, we will prove the
existence of weak solution for degenerate G-SDEs perturbed by a drift which only satisfies
some integrable assumption with respect to a reference nonlinear expectation.

The paper is organized as follows. In Section 2, we first recall some knowledge on G-
expectation space, including the G-Girsanov transform; In Section 3, we investigate the
Harnack inequality and the gradient estimate; Finally, applying the Harnack inequality, the
existence of weak solution for degenerate G-SDEs with integrable drift is studied in Section
4. Furthermore, an example is presented.

2 Preparations

2.1 G-Expectation and G-Brownian Motion

Before moving on, we recall some preliminary on G-expectation and G-Brownian motion.
Let Q = Cy([0, 00); R?), the R¥-valued and continuous functions on [0, 00) vanishing at zero,
equipped with the metric

— 1
Z—{max lw} —w? A1, whw?eQ.
n:12 te[0,n]

For any T" > 0, set
LiP(QT) - {Q Wi @(wtu t '7wtn,) ‘ne N+7t17 ety € [OuT]a NS Cinp(Rd ®Rn)}7

and
Ly (2) = UrsoLip(Qr),



where C’bﬁp(Rd ® R™) denotes the set of bounded and Lipschitz continuous functions on
R? @ R™. Let S? be the collection of all d x d symmetric matrices and S¢ C S¢ denote all
d x d positive definite and symmetric matrices. Fix ¢,7 € Si with ¢ < @ and define

1

(2.1) G(A) == sup trace(y?A), A€ S%
2 ~v€Elo,5]NSe

Then it is not difficult to see

2
(2.2) G(A) — G(A) > AO(QQ )trace[A — A, A>A A AecS?,

where \g(c?) > 0 is the minimal eigenvalue of .

Let EY be the nonlinear expectation on €2 such that coordinate process B = (B;)s>o, i.c.
Bi(w) = wi,w € Q, is a d-dimensional G-Brownian motion on (€2, L (), EY), where L. ()
is the completion of L;,(£2) under the norm ES(|-|). See [15] for details on the construction
of EY. For any p > 1, let L% (Q) be the completion of L;,(Q) under the norm (E¢| - |p)%.
Similarly, we can define L% (Q2r) for any T' > 0.

Let
N-1
ME([0,T]) = {TH = Zgjf[tj,tﬁl)(t) D& ELG(), NeENT, 0=t <t) < <ty= T},
=0

and MZ([0,T]) be the completion of M%°([0,7]) under the norm
_ T b
7l 2z, 0,17y = (EG/O Int|pdt> .

ME([0,T))? ={X = (X", X? -, X" X'e M&([0,T]),1 <i<d},

-

Moreover, set

where * stands for the transpose of a matrix. Let M be the collection of all probability
measures on (£, B(€2)). According to [1, 9], there exists a weakly compact subset P C M
such that

(2.3) EC[X] = sup Ep[X], X € L5(Q),

PeP
where Ep denotes the linear expectation under probability measure P € P. P is called a
set that represents E¢. In fact, let W° be a standard d-dimensional Brownian motion on
a complete filtration probability space (€2, {%; }i>0,P), and H be the set of all progressively

measurable stochastic processes valued in [o,5]. For any 6 € H, define Py as the law of
Jo 0sdW?. Then by [1, 9], we can take P = {Py : 6 € H}, i.e.

(2.4) EC[X] = sup Ep,[X], X € L§(Q).



The associated Choquet capacity to E¢ is defined by

C(A) =supP(A), A e B(Q).

A set A C Q is called polar if C(A) = 0, and we say that a property holds C-quasi-surely
(C-q.s.) if it holds outside a polar set, see [1] for more details on capacity.

Finally, letting (B) be the quadratic variation process of B, then by (2.2) and [13, Chapter
I1I, Corollary 5.7], we have C-q.s.

(2.5) o’ < —(B); < 5%

2.2 Girsanov’s Transform

The following Girsanov’s transform is taken from [10, Proposition 5.10].

Theorem 2.1. Let {g;}<r € MZ([0,T])%. Assume that there exists a constant § > 0 such
that Novikov’s condition holds, i.e.

(2.6 e {(5+9) [ tanatBra) | <o

Then _
B:=B +/ d(B)wgu
0

is a G-Brownian motion on [0,T] under E[-] = ES[Ry(-)], where

Fr=ep| = [ towaz) = [ i)

According to [7, Remark 5.3], letting Q = Cy([0, 00), R?%), we can construct an auxiliary
G-expectation space (€, LL(Q),E%) with

A 1 7 TLixa
(2.7) G(A) = - sup trace {A ( ) )} , AeS§™

2 v€le,5)NS? Id><d Y

g, ) is a 2d-dimensional G-Brownian motion
with (B, B'), = tI4xq under EC. In addition, the distribution of B under E¢ is equal to that
of B under E¢. Moreover, letting

and a d-dimensional process B’ such that (

(2.8) G(A) = L sup trace [Ay7?], AeSY

2 ~v€lo,5]NSe



then B is a G-Brownian motion under EC. Letting C be the associated Choquet capacity
to K¢, we have C-q.s.

oy _ d(B)
(2.9) o - < gr

This together with Theorem 2.1 implies the following Girsanov’s theorem, which will be used
frequently in the sequel.

<o

Theorem 2.2. Let {gi}i<r € MA([0,T))%,i=1,2. If

210) e (5+9) [ (oh @)l + 6B + 20l g b < o

then . .
B:=B —I—/ grdu +/ d(B).g2
0 0

is a G-Brownian motion on [0,T] under B[] = E¢[Ry(-)] with

el ()95
_%/OT(<gg,d<B’>sg§>+<g§,d<B>sg§>+2<g§,g§>d8) :

Proof. Letting W = ( g, ) , we have

211 = T

and

212 [ (9 ) (9)) = [ ok atmhad) + 2ais)) + 20k gtyas)
Set

(2.13) W:W+/O.d<w><zf>.

2
In view of (2.10) and applying Theorem 2.1 with (VV, ( gl )) in place of (B, g), we conclude

that W is a 2d-dimensional G-Brownian motion on [0, 7] under E. This combined with (2.11)
and (2.7) implies that

é::B+/ gidu—l—/ d(B).g2
0 0

is a G-Brownian motion on [0, 7] under K. O



Remark 2.3. Theorem 2.2 extends the result in [7, Theorem 5.2], where g' and g* are
assumed to be bounded and in MZ(]0,T])%.

Throughout the paper, the letter C' or ¢ will denote a positive constant, and C'(6) or ¢(6)
stands for a constant depending on €. The values of the constants may vary from line to

line. For k € N*, let Cy(R¥) (G, (R¥)) denote the bounded (non-negative and bounded) and
continuous function on R*,

3 Harnack Inequality and Gradient Estimate

Consider the following G-SDE on R™*+¢:

X, = {AX, + MY,
51) {dt {AX, + MY, }dt,

dYy = by (X, Yo)dt + d(B)b2( Xy, V1) + QdBy,
where B; is a d-dimensional G-Brownian motion defined in Section 2, A is an m X m matrix,
M is an m x d matrix, Q is a d X d matrix and by, by : R™*% — RY are measurable.

In this paper, we only consider m = d = 1, where ¢ and @ in (2.1) are two positive
constants satisfying ¢ < @, and the corresponding generating function is given by

1 1
G(a) = =5%a™ — §g2a’, a € R

In this case, d(B).b2(X3, Y;) can be rewritten as by( Xy, Y;)d(B);. The result can be extended
to the case of m > 1 and d > 1, see Remark 3.5 below for more details. In this section, we
study the Harnack inequality and the gradient estimate for (3.1). To this end, we make the
following assumptions.

(A1) MQ #0.
(A2) There exists K > 0 such that

b1(2) = bu(3)| + ba(2) — ba(3)| < K]z — 2], 2,7 € B2

Remark 3.1. According to [13, Theorem 1.2], (A2) implies that (3.1) has a unique strong
solution (X7,Y7)* in MZ([0,T])* for any T > 0 and (Xo, Yo)* = 2z € R*. Let P, be the
associated nonlinear semigroup to (X7, Yy), i.e.

F)tf(z) - ]EGf(va Y?)? S Cb(R2)

For a real-valued function f defined on a metric sapce (H, p), set

(3.2) IVf(2) = limsupM

, z€ H.
p(xz,2)—0 p(l‘, Z)

|V f(2)| is called the local Lipschitz constant of f at point z € H. Moreover, let ||V [l :=
sup.cpr [Vf(2)].



Theorem 3.2. Assume (A1)-(A2). Then for any Ty > 0, there exists some constant
C > 0 depending on Ty, A, M, K and |Q ™| such that the following assertions hold for any
T € (0,Tp].

(1) For any z = (21, 22)*, h = (hy, ha)* € R%, p > 1, the Harnack inequality

B3 (el ) <P | L mmIe] e 6 @)
holds for
(3.4) S(T):=C(c?+7%) (T3 G i 1)3)

(2) The gradient estimate

(3.5) IVPrflloo < IflleVE(T), fe€C)f(R?)
holds.

(8) For any p > 1, there exists a constant ¢(p) > 0 such that
_ _ 1
(3.6) IVPrf(2)] < clp) (PrlfP(2))" VE(T), z€R? feCf(R%).

Remark 3.3. With (2.3) in hand, one can easily derive (3.3) provided that for any P € P,
the Harnack inequality

(3.7) (Eef(XFH" V7)< (BefP (X7, YY) exp{@(t, h,p)}, [ € Cf(R)

holds. However, it is difficult to get (3.7) by coupling by change of measure since By is a
martingale rather than Brownian motion under Ep. Therefore, the results in Theorem 3.2
are non-trivial.

Remark 3.4. Compared to the SDEs in [15], the SDE (3.1) is allowed to contain an extra
62

drift term byd(B);. Taking Ty = 1, we conclude that (3.3) holds for X(T) = &, T € (0,1]
with some constant ¢ > 0 independent of T'. This implies
X(T)

(3.8) II}L% P =c.

It is different from the result in [15, Theorem 4.1], where the diffusion coefficient is assumed
to be non-degenerate and the power of T in (3.8) is equal to —%.

Now, we are in the position to prove Theorem 3.2.



Proof. (1) Fix Ty > 0 and let T' € (0,Tp]. For any n € R?, let (X, Y},") solve (3.1) initial
value n. Let

Ts(T —5) _ s
Al(T) I:/ Te 2 AM2dS.
0
For h = (hy, hy)* € R?, define
T—s

1 (s) = 7 hy + ay(s), s€[0,T]

ap(s) = —S(T—;S)MG—SAAI(T)_I (h1 . /OT T_u

T

Noting that e=*4 > e 4T A 1,5 € [0, 7], it holds that

Ts(T —5) _,, _ Ts(T —s)
A (T) :/0 ——g e IMPds > (e A ) M2/0 ——g—ds

—2AT 1 M2
_ Lo 6A ) T, T e (0,7

This together with M # 0 due to (A1) yields

6
(e=2AT A1) M?

(3.9) IA(T) 7Y < T-'<CT™!, T e (0,Th)

for some constant C' > 0 depending on Ty, A and M. Let (Xt, ﬁ) solve the equation

(3.10) {dXt — {AX, + MY, }dt,

dy; = by (X7, Y7)dt + by (X7, Y7)d(B) + QdB; 4 ~1(t)dt

with (X, Y5)* = 2 + h. Set

@1(8) = (eAShl +/ 6(87U)AM71(u)du7 71(8)) , SE€ [OaT]
0
It follows from (3.1) and (3.10) that

(3.11) (X V2) = (X2,Y7) +04(s), s €0,

R

and in particular, (X, Y7) = (X2, YZ). In view of (3.9), there exists a constant C' > 0
depending on Ty, A and M such that

C
3.12 sup |[71(s)] < =—=|h|, sup |©:(s)| < C(1+T)|n|, T € (0,Ty).
312) s PG| < glhl s (i) < C(1+T)lHl, T (0.7



Let B’ be defined in (2.8) and

®1(s) = Qb (X5, YY) = bi(X,, o) +71(9)},
Dy(s) = Q Hbo (X2, YY) — by(X,, Y)Y, s €0,7T].

R

Then, (2.5), (2.9), (3.12) and (3.11) together with (A1)-(A2) imply C-q.s.
T T T
| 1eoPdm). + [ e PaB) 2 [ @l
’ T ’ T ’ T
§/ g_2|(1>1(s)|2d8+/ 52|<I>2(s)|2ds+2/ Dy (s5)Py(s)ds
0 . 0 , 0
gz/ g2|c1>1(s)|2ds+2/ 2|y (s) 2ds
’ T
0o [ (016 + o) ds + €7 [ 16
0
<clo?r (-t 47 2|h|2+62T(1+T)2]h]2
- - (T'A1)2

1
<C(c?+7%) (T3 + m) |h|?, T € (0, Ty

(3.13)

IN

for some constant C' > 0 depending on Ty, A, M, K and |Q7|.
Applying Theorem 2.2, we conclude that

B = B+/O. cbl(u)du+/ By(u)d(B).

0

is a G-Brownian motion on [0, 7] under Eq(-) = EC(Ry(T)(-)), where

el (284 2)
3 [ OB, @), + 2010 eal6)05)

Noting that (B) = (B), (3.10) reduces to

dX, = {AX, + MY, }dt,
di;;f = bl(Xtv ﬁ)dt + b?(Xb ﬁ)d<l§>t + Qdét

This yields that the distribution of (X;,Y;) under E; coincides with that of (X",
Y/") under E¢ (or ES). Thus, for any f € C;F(R?) and p > 1, it follows from



Holder’s inequality that

Prf(z+h) = E1f(X7, Y7)

= B [Ry(T) (X7, Y7)]
(314) NG [ ep z z % ol D

< (BO 17 (XG, Y {BORy(T)71}5

_ 1 A A p p—1

= (Prf?(2)) {E“Ry(T)71} 7,
here we used the fact that the distribution of B under E® is equal to that of B under
EY. Recalling the definition of R;(T) and (3.13), we have

1 g 2 / 2
20— 1)2/0 (121(s)[Pd(B')5 + |Do(s)] d(B)8+2<I>1(s)<I>2(s)ds)}

coxp [P [ (RPAB). + 0a()PA(B), + 20, (5)2a(5)0) }

p 2
< ——=2(T)|h T € (0,Tp].
—eXp |:2(p_1)2 ( )‘ ‘ :|7 6( ? 0]
Combining this with (3.14), we derive the Harnack inequality (3.3).

Now, we prove the gradient estimate (3.5). Since the distribution of B under E¢ is
equal to that of B under E“, we have

Prf(z) = B (X7, Y5) = B f(X7, Y7).
This combined with (3.14) yields
(3.15) [Prf(z+h) = Prf(2)] = [B€ [R\(T) F(X7, V)] - B9 (XG, Vi)
< E(If (X3, Y| R(T) = 1))
Applying |z — 1| < (z + 1)|log x|, > 0, we have

|Prf(z+h) — Prf(z)]

(3.16) < ||f lBCRy(T) | log Ry (T)| + || f[| | log Ry (T)|
— [l (| Tog By (T)| + £ 1og Ry (T)])

Let

B =B+ /0 ®y(u)d(B'), + /0 Dy (u)du.

10



From Theorem 2.2, we know that {é/t}te[O,T is a G-Brownian motion under E;. Noting
that (B’) = (B’) and (B) = (B), applying the B-D-G inequality [3, Theorem 2.1], we
obtain

]E1|log Rl(TT)\

L) (5))

- /0 (104 (5) PA(BYs + [2(5) PALBY, + 2 (5)Ba(s)ds)
[y a(2))

/0 <|<I>1(s)|2d(]§’>s + |@2(s)*d(B)s + 2@1(s)<1>2(s)ds) ‘

— [,

<E,

1
—-E
+21

ol

<FE, (/OT <|¢1(s)|2d<3’>5 |y (s)PA(B), + 2@1(3)@2(3)013))

1
—-E
+21

/0 (121()2A(B"), + |@3(5) PA(B)., + 201 (5)@a(5)dls) ‘

Since B’ and B’ are G-Brownian motions under E; and E¢ respectively, it follows from
(3.13) that

Ei|log Ry(T)| < X(T)|hI* + /E(T)|h,
where X(7') is defined in (3.4). Similarly, we arrive at

B log ”a(T)| < S(T)IAI* + VST,
Thus, (3.16) yields

[Prf(z+h) = Prf()] < |flloe (SDIRE + VEDIH), = R
So (3.2) implies
VP ) < [l VE(T), 2 € R,

which deduces (3.5).

(3) In order to get (3.6), let

m) = |- (g ) e ()

11



1 p2 T ) / ,
—g(p_l)g/o (|@1(s)Pd(B")s + | ®2(s) PA(B)s + 2®1(s)Po(s)ds) |,
and
B/=B’+/'pf1q>1(u>d<B'>u+/'pp @, (u)du,
(3.17) 0 0
A p
B=B+ i 1(u)du—i—/ ) @2( )d(B),.

Again using Theorem 2.2, we know that B’ is a G-Brownian motion under IEQ() =
ES(Ry(T)(-)). Combining (3.13) with |z — 1| < (z + 1)|log z|, z > 0, we have

B ||Ri(T) - 1/77
< B [(Ry(T) +1)77 | log Ry (T) 71|
(3.18) < (p)ES | By (T)77 |1og By (T)[7°7 | + c(p)ES [log iy (T)]7°7
< ¢(p) exp {2@% (T )|h|2} B¢ (Rl(T)|1ogRl(T)|rfl)
+ e(p)E | 1og Ry (T)]77

for some constants ¢(p

I > 0. On the other hand, (3.17), the B-D-G inequality [3,
Theorem 2.1, (B') =

(p
)
B') and (B) = (B) imply

_% /0 T(|q>1<s) 2A(B'), + |@a(s)PA(B), + 281 (5)Da(s)ds) |
5)2(5)
(- 3) [ (wora,
[AC8) G
(25-3) [ (@oras

/O (124(5)PALBY + [a(s) PA(B), + 28 (5)s(s)ds )

+ |y (s)[2d(B), + 2<I>1(s)<1>2(s)ds> ’

< c(p)E,

+ C(P)E2

e+ |@a(s)]*d(B) + 2<I)1(8)f1>2(8)d3)

B oD
< c(p)Ey

12



P
p—1

(-25-3) | (mepad). « wapa). + 20, eas)

Let C be the Choquet capacity associated to E,. Sing:e B’ is a G-Brownian motion
under E,, we conclude that C-q.s. (3.13) holds with (B, B’) in place of (B, B’). As a
result, we get

I < clp) (S(T) B2 77,
and ,

I < c(p) (B(T)|R?) 7.
Therefore, it holds that

p—1

(3.19) (B (R(m)tog Ri(T)[77) ) 7 < elp) (SR + /ST)]A1)

Similarly, by the B-D-G inequality and (3.13), we arrive at

p—1

(ES|1og Ry(T)[7") 7 < clp) (S(DIAE + /ET)|A])
This together with (3.15), (3.18), (3.19) and Hoélder’s inequality yields

1V By f(2)] = lim sup L2/ 2 1) = Prf(2)
|h|—0 |h|

p—1

(BS|Ry(T) —1)5"7) 7

_ 1
< (Prlf"(2))" limsup 7
|h|—0

< e(p) (PrlfP(2))7 /S(T), =€ R

This completes the proof.
]

Remark 3.5. When m > 1 and d > 1, we can replace (A1) with the Hormander-type rank
condition, i.e. there exists an integer 0 < k < m — 1 such that

Rank[M, AM,--- | A*M] = m.

In this case, we can define

T

T - *

Al(T) = / %eSAMM*eSA ds.
0

According to [16, (4.61)] with o = 0 (see also [21, Proof of Theorem 4.2(1)]), when m > 1
the matriz Ay (T) is invertible with

(3.20) [AL(T) Y| < eT(T A 1)720FD
for some constant ¢ > 0. Therefore, combining this with (2.5) and (2.9) and repeating the
proof of Theorem 3.2, we can extend the results there to the case of m > 1 and d > 1.

13



4 Applications of Harnack Inequality

As an application of the Harnack inequality, in this section, we will prove the existence of
weak solution for SDEs perturbed by an integrable drift with respect to an invariant nonlinear
expectation of a regular G-SDE. To this end, we assume that the Harnack inequality for the
regular G-SDE holds, which is crucial to prove Novikov’s condition. We should point out that
the following procedure can also be applied in non-degenerate G-SDEs. However, to make
the framework consistent, we only consider the stochastic Hamiltonian system. One can refer
to [18] and [19] for the linear expectation case. Let A, M, @, by, by and By be introduced in
Section 3 and by, by : R™*? — R? be measurable. For simplicity, we still consider m = d = 1
and stochastic Hamiltonian system:

dX, = {AX, + MY;}dt,
(X, Y))dE + by (X, Yi)A(B): + QdB,.

The reference SDE is

dX; = {AX, + MY, }dt
(42) { t { t+ t} )

d)/t - bl (Xt7 Yt)dt + bQ(Xt) K>d<B>t + QdBt

Assume that (4.2) has a unique non-explosive strong solution (X7, Y;?)* in MZ([0,T])* with
initial value z € R? for any 7' > 0. Let P? be the associated nonlinear semigroup to (4.2)
which is defined by

ng(z) = EGf(Xf7 YY), f€ Cb(RQ)'

Before formulating the result, we first introduce the definition of weak solution.

Definition 4.1. (Q,E, (X;,Y;), B) is called a weak solution to (4.1) with initial value z =
(z,y)* € R? if B is a G-Brownian motion on some nonlinear space (£2,E) and it holds that

X, =2+ [J{AX, + MY }dt,
}/ts =Y+ fos Bl(Xb }/t)dt + f@s BQ(Xta }/;)d<B>t
F [0y (X, Vi)ds + [20a(Xy, V)A(B)y + QdB,, s> 0.

Next, we recall the definition of invariant expectation, see [8] for more details. Let
C’L,-p(RQ) denote all the Lipschitz continuous functions ¢, that is: there exists a constant
C > 0 depending on ¢ such that

9(2) — ¢(2)| < Clz— 2|, 2,z € R

Definition 4.2. Let (R? Cp;,(R?),Eq) be a sublinear expectation space. Eq is called an
invariant sublinear expectation of P?, if for any f € Cp;,(R?), it holds

(4.3) Eo(P)f) =Eof, t>0.
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Theorem 4.1. Assume that P? has a unique invariant sublinear expectation Eq satisfying
that (4.3) holds for any f € Cy(R?), and for any p > 1, the Harnack inequality

(4.4) (PAFDP(2) < (BIFIP)(2)e™ 59, f € Cy(R?), 2,2 € R, 1> 0

holds for some continuous function ®, : (0,00) x R? x R? — [0, 00) with

! ds 9
(4.5) - <oo, t>0,z€eR
0 {Eoe_¢p(svzv')}5

If in addition, by and by are continuous and there exists some € > 0 such that
Eoe€(|51\2+|52|2) < o0,

then for any z € R?, the stochastic Hamiltonian system (4.1) has a weak solution with initial
value z.

Proof. Let (X;,Y;) be the solution to (4.2) with initial value z. Define
B.=B.— [ QX Yt + ba(X, Y(B).L
0

Then (4.2) can be rewritten as

dY; = b, (X, Yy)dt + BZ(Xta Y,)d(B);
+b1( Xy, Yy)dt + bo(Xy, Yy)d(B): + QdB.

It is sufficient to find out a constant ¢, > 0 such that {Bs}se[ovto] is a G-Brownian motion
under E[-] = E9[R(to)(-)], where

o e[ ["((B3 ) 2 (5)
1

-5 /0 (101 (Xo, i) PA(B ) + b X, Vi) PA(B) + 251 (X, Yi)ba(Xo, Vi )du) ] |

According to Theorem 2.2, we only need to prove

A~

e { (5+0) ([ (X YOPABY + X YOPAB) + 2008 (00 )}
< % exp {(1 +26) (/Ot o2 by (X, V)Pt + /Oto F[ha(X,, Yt)|2dt) }

EC exp {(1 +20)(¢7* +7?) /Oto (161(Xe, Yo)|” + [b2( X, V7)) dt} < 00

IN
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for some §,ty > 0. Firstly, noting that (4.3) holds for any f € Cy(R?), applying (4.4) for
=(1b1 *+[52[%)

f=e P A N for any N > 1, we obtain
0 Ahaelia ! —p(tz) 0 (e P+1Eal?)
Pt e P AN (Z)Eoe PR SEO (Pt (e ! : ANp))
_E( mmwnANﬁ.

Letting N go to infinity and utilizing the monotone convergence theorem, we have
12005412 p _ _
<Ptoee<|b1 :‘le )) (Z)]Eoe_ép(t’z") <E, (ee(|b1|2+\b2\2)> )

Thus, taking ty satisfying 1%0 > (07?2 +5%) and 6 = % — % > 0, by Jensen’s inequality

and (4.5), we arrive at

EY exp {(1 +26)(c™ 2 +7°) /0 i (|l_)1(Xt, Y)|? + |l_)2(Xt,Y})|2) dt}

=E° {% /to (11 (X6, YOI + [b2( Xy, Yo)I?) dt}
< —/ EGGXP{ |bl(Xt7Y;:)|2 |B2(Xt,yt)|2)}dt

e(lby 12 +1b2 %)

Ptoe z (z)dt
to
1 [ dt By 2 lBal2) ) 7
<= 4&WMWWY<mme?
o Jo {Ege—2rt2)}p

The proof is completed. O

Finally, we give an example in which (4.4) and (4.5) hold and (4.3) holds for any f €
Cy(R?).

Example 4.2. In (4.2), let A=0, M =Q =1, bp =0 and by(z,y) = —x —y. Then (4.2)
reduces to

X, =Y,
(4.6) {dt wdt,

Firstly, according to Theorem 3.2 (1), (4.4) holds for

|z — 2

D,(t, 2, 2) = e

. z,Z2€R*te(0,1)

with some constant ¢ > 0 independent of t.
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Next, by [8, Theorem 3.12], PP has a unique invariant sublinear expectation By and there
exists a family of weakly compact probability measures {m. }.cr defined on R? such that

Eof =sup | fdm,, f€ Cpi,(R?).

vl JR2

[18, Theorem 6.1.16] implies that By is reqular. On the other hand, for any f € Cy(R?) and
n > 1, define f, : R> = R by

fulz) = inf {f(¢) —n|z = 2|}, z€ R
2/ €R2

According to [9, Lemma 4.3], we know that {f,}n>1 C CLip(R?) and f, T f asn 1 oo. This
together with the reqularity of By and [13, 6.1.15] implies that Eo(f — f.) } 0 asn 1 oo. Thus,
Cy(R?) is contained in the completion of Cpri,(R?) under the norm Eo(| - |). Furthermore,
Eo(P.f) is well defined for any f € Cy(R?) due to the gradient estimate (3.5). As a result,
the monotone convergence theorem yields that (4.3) holds for any f € Cy(R?).

Finally, let 0° = g,5s > 0 and Pgo be the corresponding probability measure as represented
in (2.4), which implies

(4.7) ECf(Xe,Ys) > Ep,o f(Xe, Vi), f € Crip(R).

On the other hand, by [17, Theorem 3.1(1)], under the probability Py, (4.6) has a unique

mvariant measure
1 _le?+l?

e 22 dady.

MO(dx7dy) = 27TQ2

Combining this with [8, Theorem 3.3, Theorem 3.12] and letting the time t go to infinity in
(4.7), we arrive at

IEOf Z NO(f)a f € CLip<R2>-
This together with [18, Example 4.5] yields

Eq (e_%(t’z")) > o (e_%(t’z")) >e “ug(B(z, 1 A t%)) > az)(1 A t)%, t>0,2¢€R?

for some a € C(R?). Consequently, (4.5) holds for p > 3.
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